REPUBLIC OF INDONESIA

MINISTRY OF PUBLIC WORKS DIRECTORATE GENERAL OF WATER RESOURCES DEVELOPMENT

FEASIBILITY STUDY

THE BILA IRRIGATION PROJECT

ANNEX VOLUME-1

1. METEOROLOGY AND HYDROLOGY

II. SOIL AND LAND CLASSIFICATION

III. GEOLOGY

ON

W. SOIL MECHANICS

V. AGRICULTURE AND AGRICULTURAL ECONOMY

JUNE 1982

JAPAN INTERNATIONAL COOPERATION AGENCY TORYO, JAPAN

No.

REPUBLIC OF INDONESIA

MINISTRY OF PUBLIC WORKS DIRECTORATE GENERAL OF WATER RESOURCES DEVELOPMENT

FEASIBILITY STUDY

ON

THE BILA IRRIGATION PROJECT

ANNEX VOLUME-I

1. METEOROLOGY AND HYDROLOGY

II. SOIL AND LAND CLASSIFICATION

III. GEOLOGY

N. SOIL MECHANICS

V. AGRICULTURE AND AGRICULTURAL ECONOMY

JUNE 1982

JAPAN INTERNATIONAL COOPERATION AGENCY TOKYO, JAPAN

国際協力事業団 系257.8.26 月1884.9.14 容録X6.409064 AFT

ANNEX + I METEOROLÓGY AND HYDROLÓGY

-

ч - Ал

÷.,

ANNEX-I METEOROLOGY AND HYDROLOGY

	· ·		
		CONTENTS	
			Page
	1,	GENERAL	I - 1
		1,1 Objectives	I - 1
	-	1.2 River Basin	1 - 1
	. ·		
	2.	HYDROLOGICAL DATA	1 - 3
		2.1 Meteorological Data	1 - 3
		2.2 Rainfall	I - 5
	tatu.	2.3 Water Level and Discharge Rating Curve	I - 5
	·	2.4 Water Quality	I - 6
	3.	WATER RESOURCES	I - 6
		3.1 Rainfall Characteristics	I - 6
		3.1.1 Rainfall in the Bila river basin	J - 6
	х. Х	3.1.2 Rainfall in the Project area	I - 6
	1	3.1.3 Seasonal rainfall	I - 7
		3.2 Bila River Discharge	I - 8
	1	3.2.1 Mean monthly discharge	1 - 8
		3.2.2 Average 10-day discharge	1 - 8
		3.2.3 Discharge duration	I - 9
		3.3 Kalola River Discharge	I - 9
		3.3.1 General	I - 9
		3.3,2 Analysis of rainfall characteristics	
		around the Kalola river basin	I - 9
	i e La deservationes de la deservationes de la deservationes de la deservationes de la deservation de la deservation	3.3.3 Analysis of observed discharge data	I - 11
	•	3.3.4 Estimate of the Kalola river discharge	1 - 12
	4.	HYDROLOGICAL STUDY FOR WEIR AND RESERVOIR PLAN	1 - 14
		4.1 Plood Discharge	1 - 14
		4.1.1 Flood discharge of the Bila river	I - 14
:	 	4.1.2 Plood discharge of the Ralola river	I - 16
	. '	4.2 Sediment Load	1 - 18

i

			Pag	ie
		1	:	20
5.	PLOO	INUNDATION AREA		20
	5.1	Water Level of Lake Tempe	(<u>-</u>	22
	5.2	Existing Condition of Inundation	•	
	:	5.2.1 Mainstream of Bila river	[23
, ·		·	. - 1	24
		5.2.2 Natora i iver	· · ·	24
		5.2.3 Boya river		
		5.2.4 Lancirang river	L —	24
		5.2.5 Lake Tempe	[-]	25
		e a c Athar area	- 1	25
		D. Z.O Venet alea	Í ÷	25
	5.3	Inundation Depth and Duration	- -	Åε
		5.3.1 Inundation area	L —	23
	÷	5.3.2 Under present condition	I '	25
		5.3.3 After improvement of drainage	- 1	25
			·	

Mean Monthly Air Temperature	1 -
Mean Monthly Relative Humidity	I -
Kean Monthly Sunshine Duration	1 7
Mean Monthly Wind Velocity	Í,-
Kean Monthly Evaporation	1 -
Rainfall Gauging Stations	1 -
Mean Monthly Rainfall	I.
Water Level Gauging Stations	I -
Result of Water Quality Analysis	τ-
Water Quality Analysis made in Master Plan	I -
Seasonal Rainfall	I -
Kean Monthly Discharge	1 -
10-day Average Discharge of the Bila River	1.
Discharge Duration	1 -
Accumulated Rainfalls of 11 Stations	I
Gilirang Water Balance (1980)	,1 -
Kalola Water Balance	Ĭ
Rainfall in the Kalola River Water Balance	I
Evaporation in the Kalola River Water Balance	1
	Mean Monthly Air Temperature Mean Monthly Relative Humidity Mean Monthly Sunshine Duration Mean Monthly Wind Velocity Mean Monthly Wind Velocity Mean Monthly Evaporation Rainfall Gauging Stations Mean Monthly Rainfall Water Level Gauging Stations Result of Water Quality Analysis Water Quality Analysis made in Master Plan Seasonal Rainfall Mean Monthly Discharge 10-day Average Discharge of the Bila River Discharge Duration Accumulated Rainfalls of 11 Stations Gilirang Water Balance (1980) Kalola Water Balance Rainfall in the Kalola River Water Balance Rainfall in the Kalola River Water Balance

ii -

		1 - 50
Table 4.1	Probable Plood Hydrograph	1 ~ 61
Table 4.2	Runoff Coefficient of the Kalola River Basin	r - 61
Table 4.3	Runoff Coefficient of the Bila River Basin	(- 01
Table 4.4	Probable Plood Discharge at Kalola Dam Site	1 - 02
Table 5.1	Monthly and Yearly Average Water Level of	
anda a tu	Lake Tempe	1 - 03
Table 5.2	Annual Maximum Water Levels of Lake Tempe	1 - 64
Table 5.3	Annual Minimum Water Levels of Lake Tempe	I - 64
Table 5.4	High Water Level Days of Lake Tempe	I - 65
Table 5.5	Return Period of Water level Duration of	
	Lake Tempe	1 - 66
Table 5.6	Inundation Area	1 - 67
Table 5.7	Bstimated Inundation Area	I - 68
Table 5.8	Probable Inundation Depth and Duration	
-	(Under present condition with ill drainage)	1 - 69
Table 5.9	Probable Flood Inundation Depth and Duration	
	(After Improvement of drainage)	I - 70
Table 5.10	Estimated Plood Inundation Depth and Duration	I - 71
Fig. 1.1	BILA RIVER BASIN	1 - 73
Fig. 2.1	MEAN MONTHLY DATA ON METEOROLOGY	I - 7
Fig. 2.2	COLLECTED RAINFALL DATA	I - 7
Fig. 2.3	ANNUAL PATTERN OF MEAN MONTHLY RAINPALL	1 - 7
Fig. 2.4	EXISTING CONDITION OF WATER LEVEL DATA	1 - 7
Fig. 2.5	DISCHARGE RATING CURVES	I - 7
Fig. 3.1	MASS-CURVE OF ANNUAL RAINFALL	I - 8
Pia: 3.2	SEASONAL RAINPALL IN MAGNITUDE ORDER	I - 8
Pig. 3.3	HONTHEY DISCHARGE RELATION	I - 8
Pia. 3.4	ANNUAL PATTERN OF MEAN MONTHLY DISCHARGE	I – 8
Pia. 3.5	ANNUAL PATTERN OF MEAN 10-DAYS DISCHARGE AT BILA .	1 - 8
gia 2 K	DISCHARGE DURATION CURVE	1 - 8
219, JIV	MONTHLY RAINPALL DISTRIBUTION PATTERN	1 - 8
2191 J.I	DOUBLE MASS-CURVE ANALYSIS OF RUNOFF	I - 9
EIGI 240	DOUBLE MASS-CURVE AVALYSIS OF RAINFALL	I ~ 9
ETA' 2'2	DINNER DATTERN OF BILL AND GILLEANG RIVERS	1 - 9
101 - 1 1 1 A	RUMPE FALLOW OF DIDU THE VINTURIO INTENSE	

iii

		· .
		Page
Pig. 4.1	PROBABLE FLOOD DISCHARGE AT BILA	I - 95
Fig. 4.2	RELATION BETWEEN SPECIFIC DISCHARGE AND	· .
	CATCHMENT AREA	I - 96
ig. 4.3	PLOOD HYDRÓGRAPH AT BILA	I - 97
Pig. 4.4	PROBABLE FLOOD HYDROGRAPH AT BILA	1 - 99
rig. 4.5	HYDROGRAPH OP KALOLA REVER	I -100
Pig. 4.6	DATLY RAINPALL AND HOUREY RAINPALL	1 -101
Pig. 4.7	PROBABLE FLOOD HYDROGRAPH OF KALOLA DAM	T -102
Fig. 4.8	RELATION BETWEEN SEDIMENT LOAD AND DISCHARGE	I -103
8ig. 5.1	LOCATION OF WATER LEVEL STATION	T ~104
Fig. 5.2	RELATION OF WATER LEVEL	I -105
Pig. 5,3	MONTHLY WATER LEVEL HYDROGRAPH (LAKE TEMPE)	I -106
Fig. 5.4	RETURN PERIOD OF ANNUAL MAXIMUM WATER LEVEL	
	(AT LAKE TEMPE)	t -107
Pig. 5.5	RETURN PERIOD OF WATER LEVEL OF LAKE TEMPE	I -108
Fig. 5.6	RETURN PERIOD OF WATER LEVEL DURATION AT	1
	LAKB TEMPB	I -109
Fig. 5.7	ANNUAL PATTERN OF PEAK DISCHARGE AND WATER LEVEL .	I -110
Pig. 5.8	INUNDATION AREA	1 -111

iv

ANNEX-I METEOROLOGY AND HYDROLOGY

1. GENERAL

1.1 Objectives

The hydrological investigation and study are conducted to make clear the hydrological properties in and around the area for irrigation and flood control planning with the following specific objectives:

- (1) Review and examine the available basic data collected before,
- (2) Additional collection of meteorological and hydrological data,
- (3) Sampling for water quality analysis,
- (4) Studies of flood and drought discharges,
- (5) Investigation of sediment load, and
- (6) Investigation of flood inundation area.

1.2 River Basin

The major streamflows relevant to the irrigation planning are the Bila, the Kalola and the Gilirang river. The following are the general characteristics of their river basins:

The Bila river originates in Mt. Tallu of the northern mountainous zone and flows into Lake Tempe. The river collects the Boya, the Kalola and the Lancirang rivers in its downstream reaches. The basin stretches over two (2) Kabupaten of Wajo and Sidrap. The river system is shown in Fig. 1.1 and has a catchment area of 1,368 km² at the river mouth. River length of the Bila is about 87 km from the river mouth to the headwaters. The elevation of an alluvial plain formed by the main stream of the Bila ranges from about 8 m near Lake Tempe to the maximum about 30 m near the Bila gauging station. The alluvial plain has a flat topography sloping from north to south with gradients ranging from 1/1,000 at the upper to 1/3,500 near Lake Buaya.

A catchment area at the Bila gauging station is 379 km^2 . About 95% of the catchment area is the mountainous area covered with thick forest and the remaining is presently used for cultivation of paddy.

The Kalola river, one of tributaries of the Bila, originates from Mt. Bottolingerang with elevation of 262 m and passes through the valley. Catchment area of the proposed dam site is 122 km^2 and total catchment area at the confluence to the Bila river is 167 km². In the upstream basin of the proposed dam site, the river basin is classified into three (3) areas. 50% of the basin is the mountainous area with scattered trees, 40% of that is the hilly area with no tree and the remaining is under paddy cultivation. The Gilirang river basin lies contiguously to the Kalola river basin on the east. The Gilirang river rises from the mountainous zone of east edge of the Bila river basin and flows directly to the Bay of Bone. The catchment areas are 518 km^2 and 300 km^2 , 220 km^2 at the river mouth, Tarumpakkae and Gilirang respectively. In the upstream of Gilirang gauging station, the river basin is classified into three kinds by its coverage. About 70% of the basin is the mountainous area with forest, 20% of that is the hilly area with no tree and the remaining is plain area.

On the other hand, the shape of river basin which has influence on flood discharge is estimated by Norton's form factor and Gravelius' compactness.

- $\gamma = A/L^2$
- C = 2 A/S

where:	F;	Horton's form factor	
	C;	Gravelius' compactness	
	A;	Catchment area (km ²)	
	6;	River length of mainstream	(km)
	S;	Basin perimeter (km)	
	· É	= 3,14	

Three (3) river basins are summarized below:

River basin	Bila	Kalóla	Gilirang
Point	Bila	Proposed dam site	Gilirang
Catchment area (km ²)	379	122	220
Topography	en e		
Mountain Hill Plain Gradient	958 - 58 1/90	508 408 108 1/150	708 208 108 1/430
River length, L	41 km	18 km	43 km
Basin perimeter, S	86 km	48 km	99 km
Porm factor (P)	0.23	0.38	0.12
Compactness (C)	0.80	0.82	0.53

2. HYDROLOGICAL DATA

2.1 Meteorological Data

In and around the Bila irrigation project area, there are four (4) meteorological stations as shown below:

(1) Sengkang (Kab. Wajo, Kec. Tempe: P3SA)

- (a) rainfall
- (b) temperature
- (c) relative humidity
- (d) sunshine
- (e) wind velocity
- (f) evaporation

(2) Kanyuara (Kab. Sidrap, Kec. Maritengae: PROSIDA)

- (a) rainfall
- (b) temperature
- (c) relative humidity
- (d) sunshine
- (e) wind velocity
- (f) evaporation

(3) Bontouse (Kab. Wajo, Kec. Tanasitolo: DIPERTA)

- (a) rainfall
- (b) temperature
- (c) relative humidity

(4) Menge (Keb. Wajo, Kec. Belawa: PMA)

- (a) rainfall
- (b) evaporation

The locations of these stations are shown in Fig. 1.1. Meteorological data excluding rainfall data cover for about seven (7) years at Sengkang and Kanyuara, and for three (3) years at Bontouse. These meteorological data provide basic information for the agriculture and irrigation planning.

Rainfall data are described in the Section 2.2 of this ANNEX. General climatic characteristics of the Project area are described hereunder.

(1) Temperature

Kean monthly air temperature is ranging from 26°C to 29°C and annual mean temperature indicates 27.4°C. Higher temperature appears from October to November and lower temperature appears from June to August. Table 2.1 and Pig. 2.1 show the mean air temperature.

I - 3

(2) Relative humidity

The annual average relative humidity is very high with 80% at Sengkang, 86% at Bontouse and 90% at Kanyuara. Lower relative humidity occurs during September to October, Monthly values are shown in Table 2.2 and Fig. 2.1.

(3) Sunshine

Mean monthly sunshine duration at Sengkang is ranging from 5.0 to 8.0 hours and annual mean sunshine duration is 6.3 hours that is 53% in percentage. Minimum duration occurs from December to January and maximum duration occurs from August to October.

On the other hand, minimum solar radiation at Kanyuara appears from June to August. Maximum solar radiation appears in October. The second maximum appears in March.

Based on the values at two (2) stations, subshine duration and solar radiation in the Project area will be summarized as follows:

- (a) The minimum sunshine value will appear in June.
- (b) The maximum sunshine value will occur from September to October.
- (c) The second minimum value will occur in the period of December and January, and gradually sunshine value will rise up to the second maximum during March to May.

Table 2.3 and Fig. 2.1 show the monthly sunshine values.

(4) Wind velocity

The wind velocity is generally low. Mean monthly wind velocity is 1.0 to 2.5 m/sec. The lower mean monthly wind velocity occurs during the period of April to June and the higher value appears during August to September. The mean monthly wind velocity is as shown in Table 2.4 and Fig. 2.1.

(5) Evaporation

The annual evaporation from the standard class-A Pan records 2,000 mm (5.5 mm/day) at Sengkang and 2,200 mm (5.9 mm/day) at Kanyuara. The monthly average evaporation reaches its maximum in October at both stations and is approximately 6.6 mm/day at Sengkang and 7.1 mm/day at Kanyuara. The minimum one occurs in June with 3.9 mm/day at Sengkang and 4.7 mm/day at Kanyuara. The mean monthly data are as shown in Table 2.5 and Fig. 2.1.

2.2 Rainfall

Rainfall data of seventeen (17) stations in and around the Project area were collected. The network of the rainfall station in the irrigation project area is well established but that in the river basins is not sufficiently existed. The location of the stations is shown in Fig. 1.1, and the existing conditions of the data are shown in Fig. 2.2. The setting year and operational organization of those stations are given in Table 2.6.

Mean monthly and annual rainfalls at the 17 stations are presented in Table 2.7. Out of those data, 12 stations were selected considering the observation periods, and the monthly rainfalls are illustrated in Pig. 2.3 in terms of average and minimum values.

2.3 Water Level and Discharge Rating Curve

Water level records at 10 stations are made available in the Bila river basin and its surrounding area since 1973 as shown in Table 2.8. The locations of the stations and the periods of available records are shown in Pigs. 1.1 and 2.4 respectively.

During the Master Plan Study on the Central South Sulawesi Water Resources Development Project, the discharge rating curves at Bila, Bulu Cenrana and Tanru Tedong stations of the Bila river system were preparded on the basis of the discharge measurement data. In this feasibility study, those rating curves were examined and confirmed based on the supplemental discharge data measured thereafter by PMA during the period of November 1978 through May 1981. However the curves at high water portion could not be checked due to the lack of data on high water.

In the Gilirang river system, there exist two water level gauging stations; Tarumpakkae and Gilirang.

At Gillrang station, a discharge rating curve was prepared in this study based on the discharge data measured by PMA during the period of June through August 1981. On the other hand, the discharge rating curve at Tarumppake station, which was prepared during the Master Plan Study, was not checked because of no supplemental data.

The discharge rating curve at Kalola station was prepared based on the discharge measurement carried out by the Study Team in the month of August 1981 with supplement of calculated discharges from river profiles.

The discharge rating curves at 6 stations thus established are as shown in Fig. 2.5 in which the broken lines on high water portion show the extrapolated curve based on the calculated water level-discharge relation from Manning's formula.

2.4 Water Quality

To make the characteristics of the irrigation water quality more clear, water sampling were carried out in the middle of August 1981 for five (5) wells and the Kalola river to supplement the results made in the Master Plan.

The samples were sent to the Hydrochemical Laboratory, Institute of Hydraulic Engineering, Bandung for analysis. The results of water quality analyses for each sites are shown in Table 2.9. The water quality of the Bila and the Boya rivers analysed in the Master Plan are also shown in Table 2.10.

According to the results, the following matters are clear:

- The water in the Project area seems to be harmless for irrigation and domestic purposes.
- (2) At the well No.3 in Desa Tancung, sampled water contains a little mineral.
- (3) Water quality of the Kalola river (Sample No.6) is almost same as that of the Bila river.

3. WATER RESOURCES

3.1 Rainfall Characteristics

3.1.1 Rainfall in the Bila river basin

The mean annual rainfall in the Bila river basin upstream from Bila water level station varies from 2,000 mm to 2,500 mm. The wet season occurs from April to September and the dry season appears from October to March. Heavy precipitation generally occurs during the period from May to July during the east monsoon season and May is generally the month of heaviest rainfall.

3.1.2 Rainfall in the Project area

For making examination of the tendency on regional distribution of annual rainfall in the Bila Irrigation Project area, mass curves of annual rainfall selected at the stations of Sengkang, Tanru Tedong, Bila and Maroanging were made as shown in Pig. 3.1, using the data during the period from 1931 to 1940. Pig. 3.1 shows that the annual rainfall increases gradually toward the north.

In the Project area, the mean annual rainfall varies from about 2,000 mm in the northern part to about 1,500 mm in the southern part.

About 50 percent of the annual rainfall occurs during the period from April to July. The average monthly rainfalls are about 270 mm during the period from April to July and about 100 mm during the period from August to Narch.

3.1.3 Seasonal rainfall

For the purpose of examining the soundness of planning years for irrigation study, the rainfalls during the wet and dry seasons at four (4) stations of Rappang, Tanru Tedong, Anabanua and Parla were arranged in the order of magnitude as shown in Table 3.1 and Fig. 3.2. The selection of the above stations was made in view of; (1) availability of long term data, (2) availability of the data in the recent years, (3) the similar pattern of the wet and dry season and (4) close relation to the Project area. Then the period was classified into three (3) periods of dry, average and wet years and the years of 1973/74 - 1980/81 applied for the irrigation study were plotted on the curves in Fig. 3.2.

Fig. 3.2 shows that the dry season rainfalls for the years of 1973/74 - 1980/81 belong to the dry year and the wet season rainfalls of the said years belong to the average year.

Further, the probable rainfalls during the dry season at the said stations were estimated as shown below:

		(Unit:	FED)			
	Rainfall during dry season					
Rappang	Tanru Tedong	Anabanua	Paria			
800	660	600	690			
660	520	435	510			
600	445	365	430			
540	365	320	380			
500	300	275	330			
	Rappang 800 660 600 540 500	Rainfall during Rappang Tanru Tedong 800 660 660 520 600 445 540 365 500 300	(Unit: Rainfall during dry season Rappang Tanru Tedong Anabanua 800 660 600 660 520 435 600 445 365 540 365 320 500 300 275			

The return periods of the average rainfall of Tanru Tedong during the dry season for the years from 1973/74 to 1980/81 were also estimated as shown below:

Year	Rainfall	in dry s	eason	Return period
		(110)		(year)
1973/74		662	·	2.0
1974/75		442	1.1	10
1975/76		581	:	2.9
1976/77		515		5.0
1977/78	and the second second second	543	1.1.1	4.0
1978/79		364		20
1979/80	• •	520		5.0
1980/81		559		3.3

3.2 Bila River Discharge

3.2.1 Mean monthly discharge

The daily water levels at Bila, Tanru Tedong and Bulu Cenrana stations were converted into daily discharges using the discharge rating curves at each station. For the purpose of examining the general pattern of the river discharge in the basin, the mean monthly discharges at the said stations are presented in Table 3.2 together with Gilirang river discharge. For the periods lacking in daily water level records the discharge estimate was made by use of a linear regression equation based on the monthly discharge correlation studies between the other gauge stations as shown in Fig. 3.3. The correlation formulae and its correlation coefficients are as follows;

1		 이 것은 것 같았어.	an a
Formul	a	Correlatio coefficien	n t
Q _{Bila}	= 0.354 Q _{T.Tedong}	0,86	
Q _{T.Tedong}	= 2.825 Q _{Bila}	0.86	
Q _{B.Cenrana}	= 0.412 Q _{T.Tedong}	0.76	

The monthly discharges for May and July 1981 at Tanru Tedong are rather large compared with the discharges for the other months as shown in Table 3.2. For the purpose of the checking the said discharges, the discharge relations between Tanru Tedong and the other two (2) stations were plotted on the graph in Fig. 3.3. The plotted points for Bila are agreed, but the points for Bulu Cenrana are not fitted with the correlation curve. Therefore, the accuracy of the discharges observed at Bulu Cenrana were low for the portion on high water.

Generally, the annual pattern of the river discharge varies widely throughout the year. The wet season flow appears during the months of April through September. But the discharge of September varies widely year by year and is larger than that of August. On the other hand, September occasionally has a small discharge less than 3 m³/sec at Bila and 10 m³/sec at Tanru Tedong. From these characteristics, it seems that September is a transitional month to the dry season flow. The drought flow appears during the months of October through March, especially the stream-flow becomes small in November, January and Pebruary. The mean monthly discharges are illustrated in Fig. 3.4.

3.2.2 Average 10-day discharge

In order to garp the fluctuation characteristics of discharges in a short period, 10-day average discharges at Bila (downstream) gauging station are examined for the period of April 1973 through July 1981 as shown in Table 3.3. Fig. 3.5 shows the annual pattern of average and minimum 10-day discharge at Bila. It is a large difference in 10-day discharge between mean and minimum values, and the difference between monthly discharge and 10-day discharge is also large, especially during the months of April through September. These fluctuations indicate that the stream-flow of the Bila river changes widely day by day.

3.2.3 Discharge duration

The discharge duration curves at Bila and Tanru Tedon stations are prepared in Fig. 3.6 for the years of 1974 through 1980 at Bila station and 1975 through 1980 at Tanru Tedon station. Table 3.4 shows the discharges which correspond to maximum, 95-day, 185-day, 274-day, 355-day and minimum at the said stations.

3.3 Kalola River Discharge

3.3.1 General

The long-term hydrological data on the Kalola river are not available at present. In order to evaluate the potential water resources of the Kalola river, the estimate of the Kalola river discharge is conducted.

As no water level gauging station had been networked along the Kalola river, a gauging staff was installed near the possible dam site to be studied for the Project by the Study Team. The measurement of the water level was commenced on September 1981 and is going on. The measurements of water levels are carried on in three (3) times a day. Those data provide the effective information for estimate of the Kalola river discharge.

There exist the observed discharge data of the Bila river for 8 years since 1973 and the Gillrang river for six 6 years since 1975, of which watersheds are located contiguously to that of the Kalola river. Although the rainfall station is not networked in the Kalola river watershed, the rainfall data observed around it are available for a long period, emcompassing the watershed of the Kalola river.

First the rainfall characteristics around the watershed are analysed then the runoff characteristics of the observed Kalola river flows and the Bila and the Gilirang river flows are studied.

3.3.2 <u>Analysis of rainfall characteristics around the Kalola river</u> basin

Meteorological or rainfall gauging stations relevant to the watershed of the Kalola river are shown in the Pig. 1.1 and the existing condition of rainfall data is shown in the Pig. 2.2.

I - 9

Several monthly rainfall patterns for recent years are shown in the Fig. 3.7 which shows considerable monthly fluctuation of rainfalls. In general, rainfall is ample in April, May, June and July, and the occasional increase of rainfall is observed in November and December.

For examining basin rainfall patterns in and around the catchment area, monthly correlation coefficients by using the rainfall records collected in Tanru Tedong and Sengkang were calculated by use of available data from 1931. The results are as shown below:

		1 A 1 A 1 A 1					19 C.					1. T. C.
	Jan.	Peb.	Mar.	Apr.	Мау	Jun,	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
Coefficient	0.86	0,38	0.75	0.69	0.59	0.49	0.60	0.80	0.88	0.75	0.63	0.35
Number of months	21	20	21	22	23	21	24	23	22	19	20	19

The above table shows that the rainy months of April, May, June and July are not well agreed with each other, and the dry months of August, September and October well coincide each other.

In the same way, annual correlation coefficients were estimated to reveal the relation between annual rainfalls of Tanru Tedong and those of other places by use of the data available from 1931. The following table indicates the results:

Méteorological stations	Correlation coefficient	Number of years	Location
Bila	0.69	5	Project area
Rappang	0.79	13	West to Project area
Maroanging	0.61	6	North to and elevated from Project area
Bola Malimpong	0.91	7	Project area
Siwa	0,19	5 5	East Coast

Because of difficulty to know the rainfall patterns in the catchment area of the Kalola river by using single correlation method, double-mass curve method was adopted.

In order to examine the relation between the river runoff depths and rainfall depths of Tanru Tedong, the accumulated monthly rainfall or monthly runoff depths of the Bila and Gilirang rivers for 1976 to 1980 are plotted for the accumulated monthly average rainfall of 7 stations consisting of Rappang, Bulu Cenrana, Tanru Tedong, Belawa, Bontouse, Sakkoli and Paria as shown in Fig. 3.8. According to the said figure, the rainfall depth of Tanru Tedong is about 1.08 times of the average rainfall of 7 stations, while the runoff of the Bila river is 848 of the average one. Concerning the basin rainfall of the Bila river, it will be somewhat higher than the rainfall of Tanru Tedong since the ratio of the runoff of the Bila river to the Tanru Tedong rainfall, 0.78, is higher than the runoff coefficients generally recognized.

In addition, for estimating the precipitation over mountainous area within which the watershed of the Kalola is included, the rainfall records of 4 stations (Sengkang, Tanru Tedong, Bila and Maroanging) were examined by utilizing the double-mass curve method. Because of extremely poor availability of data observed recently for a continuous period, the precipitation obtained during 1931 and 1940 was used to establish the curves.

The Table 3.5 indicates the average accumulative annual rainfalls of 11 stations and the accumulated precipitations of each station in question. Bleven (11) stations consist of Enrekang, Siwa, Maroanging, Rappan, Bila, Bola Malimpong, Paria, Sengkang, Batu-Batu, Pompanua and Tanru Tedong. The estimated doublemass curves are shown in the Fig. 3.9. Bach slope of the curve is as follows:

	Corre	elation curve	Relative depth
Station	Slope	Correlation coefficient	of rainfall to Tanru Tedong
Sengkang	0.84	0.99	0.79
Tanru Tedong	1.06	0.99	1.00
Bila	1.18	0,99	1.11
Maroanging	1.28	0.99	1.21
<u></u>	and the second second		

In the above four stations, Bila and Maroanging stations are situated in the north of Tanru Tedong and Sengkang meteorological station is located in the south of Tanru Tedong. This states that the northern area has more rain than the southern area.

The rainfall gauging stations which are adjacent to the catchment area of the Kalola river are Tanru Tedong, Bila and Barukku stations. As rainfall data of Bila station in the recent years are extremely few, the preciptation records of this station were excluded from estimating the basin rainfall over the watershed of the Kalola river. The average annual rainfall of Burukku station located in the northern area is more abundant by 25% than that of Tanru Tedong station. The basin rainfall of the Kalola river to expressed by using the precipitation records of Barukku and Tanru Tedong meteorological stations.

3.3.3 Analysis of observed discharge data

The rivers running near the Kalola river are the Bila river and the Gilirang river. The basin characteristics of the above three rivers are as shown in Section 1.2. The watershed of the Kalola river is more similar to that of the Gilirang river than that of the Bila river from the viewpoint of the coverage of the watershed.

In addition, according to several hydrographs obtained so far, the outflow of the Kalola and the Gilirang rivers increase soon after the rainfalls occurred. After attaining to the peak, the discharges decrease gradually, approaching to the basic flow. On the contrary to the above two rivers, the runoff pattern of the Bila river is characterized by the gentle slope on rising and falling to limbs of hydrographs.

As to the seasonal fluctuation of the river discharge, the discharge of the Gilirang river increases more rapidly than that of the Bila river at the beginning of the wet season and decreases more quickly. During the dry season, the outflow of the Gilirang river is extremely low (See Fig. 3.10). According to the hydrological observation, the Kalola river discharge is very poor during the dry season.

The conclusion is that the runoff pattern of the Kalola river is more similar to that of the Gilirang river than that of the Bila river.

3.3.4 Estimate of the Kalola river discharge

As mentioned in the previous Section, the runoff characteristic of the Gilirang river is similar to that of the Kalola river. It is assumed that the runoff model of the Gilirang river to be analysed can be representive of the Kalola river. In this context, the runoff mathematical model is analysed by use of the Gilirang discharge data and the rainfall depths of the station relevant to the catchment of the river. The station used in this study is selected in view of the similar patterns of runoff and rainfall depths and the overlapping of the data on the same period. Then, the analysis was made for the period of 1980 by use of the rainfall data of Sakkoli rainfall station.

The model established involves several components; precipitation, evaporation, soil moisture, infiltration, storage, and consequent baseflow and direct runoff.

The basic conditions to establish the runoff model of the Gilirang river are as follows:

- (1) Monthly rainfall over the basin of the Gilirang river is represented by the monthly precipitation of Sakkoli meteorological station.
- (2) Konthly evaporation is estimated by multiplying theoretical evapotranspiration of Sengkang as estimated in ANNEX-VI by the average coefficient depending on the rainfall frequency) the coefficient is referred to the "Crop Water Regulrements" published by PAO 1975.

- (3) Soil moisture is expressed as the capability which retains the water in the soil. In the model, the upper limit of the capability is set to be 200 mm through out the year. Difference in water depth between precipitation and evaporation is stocked in the soil within a limit of 200 mm. When the soil is saturated, the surplus water contributes to groundwater in part and the remaining induces the surface runoff.
- (4) 30% of surplus water is assumed to infiltrate, and 80% of the infiltrated water is supposed to percolate. The percolated water contributes to charge or recharge groundwater.
- (5) Groundwater at the initial stage of the dry season is assumed to be slight. The sum of the percolated water and the groundwater in depth was considered as stocked water, 50% of which is lost due to the profound percolation.
- (6) The base flow is represented by subtracting the percolated water from the infiltrated water.
- (7) The direct runoff is represented by deducting the infiltrated water from the surplus water.

Based on the above basic conditions, runoff simulation of the Gilirang river in 1980 is made. The result of simulation is shown in Table 3.6. The results are as summarized below:

			U) -	niti	na)/m	ma/month)						
Month	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
Bstimated								e e e e e e e e e e e e e e e e e e e	 		-	
runoff depth	3	1	1	268	446	229	42	136	20	10	5	0
Measured runoff depth		1	13	271	443	290	41	167	8	6	ч [.] 2	1

Evaluated runoff depth of each month as well as the monthly runoff pattern well coincides with measured data. Therefore, this mathematical model is able to simulate the runoff of the Gilirang river.

This simulation method is adopted to estimate the runoff of the Kalola river.

The basin rainfall of the Kalola river was evaluated by using the rainfall records of Barukku and Tanru Tedong meteorological stations. The rainfall data which are not available at Barukku station were derived from the precipitation observed at the Tanru Tedong station.

Initial ground water was assumed to be 3 ma in stead of 4 mm for the Gillrang river. Other initial conditions and assumptions are identical with those for the outflow of the Gillrang river.

The calculated runoff discharges were compared with the data recorded for a period from September to November in 1981.

I - 13

			(Unit:	m ³ /sec)
Month	September	October	November	Décember
Calculated discharge	7.57	5.54	1,67	
Measured discharge	11.37	5.62	1,38	0.17

The calculated results of October and November coincide with the measured data. Measured discharge of September is greater than the calculated result. Taking into consideration the occurrence of the large runoff observed in September 1981, observation of water level three time a day could not catch the total runoff accurately. It is concluded that this mathematical model is applicable to the estimation of the Kalola discharge.

The calculated monthly runoff discharges of the Xalola for 8 years since 1973 are shown in the Table 3.7 and the data used in the calculation are presented in Table 3.8 and 3.9. The summarized results are as tollow:

· ·							used 1	- 	(Unit	tt m	/sec)
Month	Jan. Feb.	Mar.	Apr. May	Jun.	Jul.	Aug.	Sèp.	Oct.	Nov.	Dec.	Aver-
+											age
							• .				
Dis-					1.1		- 19-		÷.		1.1.1

charge 1.02 2.29 2.21 8.51 7.44 10.7 6.56 5.35 5.32 3.45 2.60 1.46 4.74

The minimum discharge of Kalola river occurs in January and the discharge increases in April. It reaches the maximum of 10.7 m3/sec in June. After the peak, the discharge of the Kalola decreases with a gentle slope and the average annual discharge is estimated to be 4.74 m3/sec corresponding to the runoff depth of 1,200 mm.

4. HYDROLOGICAL STUDY FOR WEIR AND RESERVOIR PLAN

4.1 Flood Discharge

4.1.1 Flood discharge of the Bila river

(1) Peak discharge

The records of the observed annual maximum water levels and peak discharges at Bila station are as follows:

t - 14

			Annual maximum value				
Year	Month	Date	Water level (m)	Peak discharge (m3/sec)			
1974	Sep.	12	3.98	680			
1975	July	28	4.07	705			
1976	March	13	2.95	430			
1977	June	18	3.14	50.5			
1978	May	14	4.10	750			
1979	Sep.	11	3.48	590			
1980	May	4	2.81	430			
1981	Мау	15	3.38	56 5			

Although the above records are observed at the proposed headworks site of the project, those annual maximum flood data series are too short to derive the probable flood discharges with long term return periods. The probable flood analysis based on the above data series is made for the floods with probabilities less than 5% (20 years flood).

The results are as shown in Fig. 4.1 (1) and summarized below.

			1. 1. 1. A.
2	5	10	20
570	730	840	940
1, 50	1.93	2.22	2.48
	2 570 1,50	2 5 570 730 1.50 1.93	2 5 10 570 730 840 1,50 1.93 2.22

In order to estimate the probable flood discharges with longer return periods than the above, the regional flood frequency curves in the Central South Sulawesi area are introduced. With reference to the correlation curves between the specific discharge and catchment area for the rivers around Lake Tempe presented in the report of the Master Plan study, the flood frequency curve at the catchment area of the Bila station is prepared as shown in Fig. 4.1 (2).

The regional flood frequency curve as mentioned above is shown in Fig. 4.2. The estimated probable discharges on long-term return period are as follows:

Return period (year)		3.00	200	500	1.000
Discharge (m ³ /sec)	1.070	1,180	1.250	1.350	1,500
Specific discharge	2.82	3.11	3.30	3.56	3,96
$(m^3/sec/km^2)$		· · · · ·			

t - 15

(2) Plood discharge hydrograph

For the design of spillway of the proposed Bila dam, the probable flood discharge hydrographs at Bila station were prepared for the return periods of 20-year, 100-year, 200-year and 1000-year under the following Condition:

- The estimated probable discharges described above represent the peak discharge of hydrographs.
- A hydrograph is divided into two time components that are rising period up to peak and recession period after peak. The increase and decrease of runoff are expressed by a linear increase during the rising period and a recession curve during the recession period.
- The rising period is assumed at six (6) hours based on the observed discharge hydrographs at Bila station in the past as shown in Fig. 4.3. The runoff discharge during the recession period is expressed by the following formula:

 $Qt = 1.25 Qp exp - (t-t_{p})$

whère, Qt: discharge at time t (m³/sec) Qp: peak discharge (m³/sec) t_p: time at peak discharge (hr)

The calculation results of the probable flood discharge hydrographs at Bila station are shown in Table 4.1 and they are illustrated in Fig. 4.4.

4.1.2 Flood discharge of the Kalola river

(1) Hydrological data

(a) Water level and discharge

In the Kalola river, a staff gauging station was established downstream of the proposed damsite in the beginning of September 1981. Water level observation has been carried out three (3) times per day since the beginning of September 1981. In this study period, two (2) flood records were obtained. They are the floods of September and October 1981 as shown in Fig. 4.5.

(b) Rainfall

At present, there is no rainfall station in the Kalola river basin. Therefore it is unavoidable to apply the data at the rainfall station close to the basin. In this study, the rainfall data at Bila and Tanru Tedong stations were applied for flood analysis of the Kalola river.

(2) Methodology for analysis

The flood analysis of the Kalola river was carried out by means of analysing the rainfall, runoff depth and runoff coefficient observed in the Bila river basin including the Kalola river basin. In this study, the rational formula was adopted in view of the availability of the hydrological data. The runoff coefficient and rainfall intensity of the flood discharge of the Kalola river are estimated as follows:

(a) Runoff coefficient

The runoff coefficient in the rational formula of the Kalola river was estimated be use of the flood date obtained so far.

Rational formula is expressed below:

 $Q = \frac{1}{3.6} \text{A·r·f}$

where: Q: peak discharge (m³/sec) A: catchment area (km²) r: rainfall intensity (mm/hr) f: runoff coefficient

In the above formula, the rainfall intensity is defined as average rainfall in mm/hr during the time of concentration which means surface runoff time from remotest point of stream channel in the basin to calculation point. In this study, the time of concentration was assumed at five (5) hours based on the observed data. The rainfall intensities of the past floods were estimated by use of the Mononobe formula as described below:

$r = (R_{24}/24)(24/T)^{2/3}$

where, r : rainfall intensity (mm/hr) R24: daily rainfall ($m\pi/day$) T: time of concentration (hr)

Regarding the constant value of 2/3 in the above formula, it was proved by mass curves of rainfall intensity on the basis of the hourly rainfall record at Bulu Cenrana station as shown in Pig. 4.6. The rainfall intensities of the past floods of the Kalola river were estimated applying the daily rainfall at Bila and Tanru Tedong. Then the runoff coefficients were obtained by the reverse calculation as shown in Table 4.2. Based on the results, the runoff coefficient of the Kalola river was adopted at 0.85.

(b) Rainfall Intensity

Due to the lack of rainfall data at the station close to the Kalola river basin, the probable rainfalls of the Kalola river were assumed to be the same as the rainfalls in the Bila river basin which were converted from the probable flood discharge of

the Bila river. In making conversion of the flood discharge to the probable rainfall, the time concentration and runoff coefficient of the Bila river basin were assumed at six (6) hours and 0.6 respectively, based on the past flood discharge hydrographs at Bila station as shown in Fig. 4.3 and Table 4.3.

The probable rainfall intensities for the Kalola river basin thus calculated are shown in Table 4.4.

(3) Peak discharge

The peak and specific discharges of the probable floods at the proposed Kalola dam site are as follows:

			· · · ·		
Return period					
(year)	5	20	100	200	1000
Peak discharge (m ³ /sec)	380	485	610	645	770
Specific discharge (m ³ /sec/km ²)	3.11	3.98	5.10	5.29	6.31

(4) Plood discharge hydrograph

For the design of spillway of the proposed Kalola dam, the probable flood discharge hydrographs at the proposed dam site were prepared for the return periods of 5-year, 20-year, 100-year, 200-year and 1000-year under the same condition as to that of the Bila river.

In making the discharge hydrograph, the rising period was assumed at five (5) hours and the following formula was used for the recession period.

$Qt = 1.25 Qp exp - (t-t_p)$

The calculation results of the probable flood discharge hydrographs at the proposed Kalola dam site are shown in Table 4.1 and they are illustrated in Fig. 4.7.

4.2 Sediment Load

In order to determine the capacity of sedimentation of the proposed Kalola reservoir, the sediment yield of the Kalola river basin was estimated on the basis of the data on sediment transport at Tanru Tedong.

For estimation of sediment transport at Tanru Tedong, sediment discharges was divided into two (2) components of bed-load and suspended load including wash load.

(1) Bed-load

Sato-Kikkawa-Ashida formula is adopted to estimate the bed-load. This formula is expressed as follows:

aB/U* dm = o F(o/c) U*2/(s/w-1)g dm

where: gB; bed-load per unit river width per unit time (m3/sec/m)
U*; friction velocity (m/sec)
dm; mean diameter (m)
g; acceleration of gravity (= 9.8 m/sec2)
o; tractive force of flow (ton/m²)
c; critical tractive force (ton/m²)
F; function of o/ c
s; unit weight of bed material (ton/m³)
w; unit weight of water (ton/m³)
o; = 0.623 (when coefficient of roughness n = 0.025)

Using the cross-section at the point of BI 16.4 just upstream from Tanru Tedong Bridge, the bed-loads for various water discharges were calculated applying dm = 8.0 mm of river bed material obtained from the results of grain size analysis shown in ANNBX IV.

The relation between bed-load and water discharge prepared in the Master Plan Study was reviced as shown in Fig. 4.8. Reviced curve is expressed as the following equation.

Newly obtained curve is expressed as the following equation.

QB = 1.511 x 10-6 01.460

(2) Suspended load

Suspended load discharge is estimated by the following equation making reference to the results in the Master Plan.

 $OS = 1.833 \times 10^{-6} O1.958$

(3) Sediment load at Tantu Tedong

Applying daily discharge during the period from 1975 to 1980, annual total sediment load at Tanru Tedong is calculated using the abovementioned formula. The results are as shown below:

Уеаг	<u></u>	Sediment	t discharge	
Ical	OB	QS	Q3 + QS	(QB + QS)/A
	(10 ³ m ³ /yr)	(10 ³ m ³ /yr)	(10 ³ m ³ /yr)	(m ³ /yr/km ²)
1975	23.3	347.0	370.3	330
1976	11.6	132.4	144.0	128
1977	13.2	178.3	191.5	171
1978	23.5	365.3	388.8	346
1979	15.0	233.3	248.3	221
1980	17.8	297.0	314.8	280
Average	17.4	258.9	276.3	246

- ; Annual total sediment discharge of bed-load $(10^3 \text{ m}^3/\text{yr})$
- QS ; Annual total sediment discharge of suspended load $(103 \text{ m}^3/\text{yr})$
- (QB + QS)/A; Specific sediment discharge $(m^3/yr/km^2)$ A ; Catchment area at Tanru Tedong (= 1,123 km²)

Assuming the void ratio of 30%, specific sediment discharge of the Bila river basin ranges from 240 to 500 $m^3/yr/km^2$ and the average is 351 $m^3/yr/km^2$.

5. FLOOD INUNDATION AREA

5.1 Water Level of Lake Tempe

(1) Review of existing data

Water Level of Lake Tempe was reviewed for the following purposes:

- (a) To delineate the irrigation project area near Lake Buaya,
- (b) To determine the design water level at the river mouth of the Bila river for the flood control study.

After the completion of the Master Plan Study, the station named "Staff Gauge Danau Tempe" was abolished in November 1978. But water level observation at "AWLR/1 Danau Tempe" was started in March 1978. The location of these stations is shown in Fig. 5.1. The distance between these two (2) stations, Staff Gauge and AWLR, is about five (5) km, so that the relation between water levels at these stations was examined using the recorded data during the same period of March thru October in 1978. This relation is shown in Fig. 5.2. Recorded water levels accord with each other.

(2) Mean monthly water level

Based on the daily water level records, mean monthly water levels were calculated for each year during 1969-1971 and 1975-1981 as shown in Table 5.1. Furthermore, the average water levels for each month are plotted in Fig. 5.3. Fig. 5.3 indicates the following seasonal tendency of water level fluctuation of Lake Tempe.

- (a) High water levels occur during a period from May to August.
- (b) Low water levels occur during a period from October to December.

(3) Probable annual maximum water level

The available annual maximum water level data of Lake Tempé are shown in Table 5.2. Although the obtained data is not successive, the calculation of probable water levels was made by use of Thomas plot method as shown in Fig. 5.4. The results of calculation are as follows:

/1: Automatic Water Level Recorder

Return period (year)	2	5		10	20	50
Water level (BL. m)	8.0	8.9	9	.4	9.9	10.4
Water level (BL. m)	8.0	8.5	9.0	9,5	10.0	10.9
Return period (year)	2.0	3.2	5.7	n. 1	25	55

(4) Frequency of low water level

According to the available records in the past, the annual minimum water levels of Lake Tempe are shown in Table 5.3. The lowest annual water level presented in Table 5.3 is BL. 3.2 m in November, 1977. On the other hand, in the Master Plan Study it was clear that a drought occurred in 1972 with a low water level of Lake Tempe lower than that of 1977, by the information collected from local people in Sengkang.

Based on the recorded data and the information, the return period of annual minimum water level was estimated. Fig. 5.5 shows the relation between them. That is,

			<u>.</u>	<u> </u>		
Return period (year)	2	<u>. </u>	5	<u>]</u>	10	20
Water level (BL. m)	(BL. B) 3.9 3.4		3.1		2.9	
Water level (BL. m)	4.0	3.8	3.6	3.4	3.2	3.0
Return period (year)	1.8	2.3	3.2	5.0	8.3	17.2

The water level of Lake Tempe usually declines from October to November due to the decrease of inflow of rivers draining into Lake Tempe. About 70% of annual minimum water levels occurred during this period of October and November.

(5) High water level duration

To know the duration of inundation caused by high water level of Lake Tempe, the frequency of high water level was studied. For the following three (3) periods; (1) Annual, (2) March to September (flood season of the Bila) and (3) May to August, the duration of high water level was counted. Table 5.4 shows total days of high water level. Return period of duration were estimated using the data shown in Table 5.4, and the results are shown in Table 5.5 and Fig. 5.6.

(6) <u>Relation between water level of Lake Tempe and flood discharge of</u> the Bila river

The fluctuation of water level of Lake Tempe is caused by the difference between inflow and outflow. The inflow is the runoff from the Bila, Walanae and other small tributaries. The outflow is the discharge through the Cenranae river whith pours into the Bay of Bone. The catchment areas of these river basins are as follows:

Name of basin	Catchment área	Percentage	Annual rainfail
· · · · · · · · · · · · · · · · · · ·	(k@2)	(%)	(aun)
Bila Walanae Tributaries and Lake Tempe	1,368 3,190 1,580	22.3 52.0 25.7	1,500 to 2,500 1,500 to 3,000 1,500 to 2,000
Total	6,138	100.0	

Since the catchment area of the Bila river basin is about 22 percent of all the river basins, the fluctuation of water level of the lake is mostly affected by the runoff from the Walanae and other tributaries basins.

The monthly mean water level of Lake Tempe and the peak discharge at Tanru Tedong are shown in Fig. 5.7. The fluctuation of water level is summarized below:

- (a) The monthly mean water level in a period from May to August is higher than 6 meters
 - (b) The discharges more than 500 m³/sec occur mainly in a period from April to September

5.2 Existing Condition of Inundation

To estimate inundation area, field investigation was carried out over the areas extending along the Bila, the Boya and the Lancirang rivers.

Number of field investigation is as follows:

and the second		and the second	
District (Kabupaten)	Subdistrict (Kecamatan)	Village (Desa)	Nos.
Sulawesi-Selatan Sidrap	Dua Pitue	Tanru Tedong	20
		Bila	10
		Lancirang	10
		Otting	1
		· .	
Wajo	Belawa	Belawa	8
		Wele	14
	Tanasitolo	Lowa	2
	Maniang Pajo	Anabanua	2
		Kalola	2
		· · · · · · · · · · · · · · · · · · ·	69
	District (Kabupaten) Siðrap Wajo	District Subdistrict (Kabupaten) (Kecamatan) Sidrap Dua Pitue Wajo Belawa Tanasitolo Maniang Pajo	DistrictSubdistrictVillage (Mesa)SidrapDua PitueTanru Tedong Bila Lancirang OttingWajoBelawaBelawa Mele Tanasitolo Maniang PajoMajoaBelawa Kalola

In each survey point, the following items were investigated by interview:

- (1) Maximum flood in the past
- (2) Small floods in recent years
- (3) Frequency of inundation (depth and duration)
 - (4) Inundation area (for each flood)
 - (5) Inundation depth (for each flood)
- (6) Inundation duration (for each flood)
 - (7) Direction of inundated water flow (for each flood)
 - (8) Form of residence (height of floor, property, etc.)
 (9) Resided period of the local people

 - (10) Others

Based on the results of field investigation, the whole inundation area is characterized in the following each region.

5.2.1 Mainstream of Bila river

Inundated area along the mainstream is located on both sides between the proposed Bila intake site and the river mouth of the Bila. The inundation is caused almost by over-topping of river water due to lack of carrying capacity of the channel, especially in the downstream area from Tanru Tedong. In this area inundated water flows with expansion.

In the upstream of the confluence of the Boya river, inundated water flows downstream along the river course and on the left side of the Bila river, inundated water scarcely flows over the road which connects Tanru Tedong and Bila villages.

2

5.2.2 Kalola river

Plood water flows from the hilly area which has a catchment area of 135 km². After passing the valley, flood water flows into the left side due to lack of carrying capacity of the channel. Plooded water flows over paddy field along the drainages named S. Padang and S. Belawa and gradually flows into Lake Buaya. The lack of carrying capacity of these streams presently makes inundated water retarded.

On the other hand, flood water which flows through the channel, joints the Bila river just upstream of confluence of the Bila and the Boya. The water surface slope at the downstream of the Kalola is gentle extremely during a flood season, even though the spillway has been constructed at the northern side of provincial road. Gentle water surface slope causes inundation at the downstream of the Kalola. Plooded water at the southern part of this area flows along the S. Wele drainage. When there is no flood on the Kalola river but on the Bila river, flooded water flows into this area along the Kalola river channel reversely and also flows toward south along the S. Wele drainage. The lack of carrying capacity of S. Wele drainage canal causes inundation over paddy field and makes inundated water retarded.

5.2.3 Boya river

In the stretch of 3 to 7 km upstream from the confluence of the Bila river, flood water flows into both sides on occasion. Plooded water into the left side returns to the Boya river channel. Some of flooded water into the right side returns to the Boya and the rest flows toward the provincial road.

Near the confluence of the Bila river, flooded water overflows from the right bank into paddy field when the water level at the confluence is very high. Flooded water is retarded by the provincial road and flows into the low-lying area with the flooded water overflows from the mainstream of the Bila.

5.2.4 Lancirang river

In every flood season, flood water overflows the bank forming submergence, because the channel of the downstream reaches of the Lancirang river is very small.

Near the confluence of the Bila mainstream, flooded water from the Bila, the Boya and the Lancirang rivers flows into the low-lying area. Runoff water from the plain area in Desa Otting also flows into the area mentioned above. Retarded water in depressions flows out gradually to the Bila river according as the water level of the Bila mainstream goes down.

When the Bila river has a longer period of high water level, inundated water flows out into the left side of the downstream of the Bila.
5.2.5 Lake Tempe

In the area near Lake Buaya and Lake Tempe, inundation is caused by the high water level of Lake Tempe. The characteristics of water level of Lake Tempe are described in Section 5.1. The fluctuation of water level at northern part of Lake Buaya is not the same as that of Lake Tempe. The water level and duration of inundation near Lake Buaya are rather higher and longer than that of Lake Tempe.

5.2.6 Other area

In the plain area excluding the area mentioned above, inundation occurs due to lack of the carrying capacity of drainage canals. After the completion of the drainage canal improvement works, inundation will be decreased for a level of improvement scale.

5.3 Inundation Depth and Duration

5.3.1 Inundation area

Inundation area is further divided into several areas in each region as shown in Table 5.6 and Pig. 5.8. Components of inundation area are presented in Table 5.7.

5,3,2 Under present condition

Relation between inundation depth-duration and its return period is estimated in each area under the present condition. Inundation frequency found in the field is adopted to estimate the relation. Furthermore, return period of annual maximum discharges at Bila and Tanru Tedong and the big floods occurred in the past are considered especially in the area along the Bila and Boya rivers. In the Kalola area, the Lancirang area and downstream area of the Bila, inundation frequency in recent years and carrying capacity of existing river channel are taken into consideration.

Bstimated inundation depth and duration for each return period are shown in Table 5.8.

5.3.3 After improvement of drainage

Inumdation is caused by the ill drainage condition, so that the depth and duration of inundation caused by flooded river water are estimated. On the draiange planning, drainage canal will be designed as to drain the precipitated water, which has a level of 5-year.

Considering the existing condition of the lower reaches of drainage, inundastion depth and duration are estimated as shown in Table 5.9. Based on these relations, mean depth and duration of inundation for each flood are arranged in Table 5.10.

1-26

Table	2.1	Mean	Monthly	Air	Tem	perature

			Tabla	21	Noàn k	onthly	ATT	Temper	ature				
			Table	£1£.	neon r	Content.							
Sengkang	L ¹ _{and} a									• •		(Uni	t:
Year	Jan,	Feb.	Mar.	Apr.	Кау	Jun.	Jul.	Aug.	Sep.	Oct,	Poy.	Dec.	An
1975	· -				26.9	26.3	26.1	25.9	27.1	27.4	28.0	27.8	
1976	27.9	28.4	28.3	27.8	27.6	25.1	24.8	25.3	26.0	29.2	28.4	28.5	2
1977	28.7	29.0	28.0	28.7	29.0	27.0	27.0	27.6	26.9	28,2	28,0	27.0	2
1978	27.5	28.0	27.5	27.3	27.6	27.8	26.1	26.3	26.6	28.7	27,1	27.2	2
1979	27.4	27.2	27.6	27.2	26.6	26.2	25.7	26.6	27.7	27.7	28.2	27.4	2
1980	28.0	27.4	27.3	27.2	26.9	26.4	25.8	25.2	Ž7,1	28.2	7.9	27.4	2
1981	27.3	27.5	27.3	27.2	27.2	27.0				·			
Average	27.8	27.9	27.7	27.6	27.4	26.5	25.9	26.3	26.8	28.2	27.9	27.5	2
	·····								······································				

÷ *					1 A A A A A A A A A A A A A A A A A A A									
1	Year	Jan.	Feb.	Har,	Apr.	Хау	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Annual
No.	1975	26.1	27.4	27.8	27.9	27.0	26.3	26.0	26.4	26.9	27.8	27,8	26.9	27.1
	1976	26.7	27.0	27.4	27.3	27.0	26.0	25.8	26.4	26.7	27.0	27.5	26.9	26.8
	1977	27.3	27.0	27.4	27.4	27.3	26.6	26.7	27.1	27.5	27.3	27.7	26.3	27.1
	1978	27.0	27,1	27.0	27,1	26.9	25.8	26.9	25.9	27.1	28.1	27.8	27.5	27.0
	1979	26.1	26.2	26.5	27.3	26.8	26.4	26.4	26.9	27.3	27.8	27.8	27.4	26.9
	1980	27.2	27.2	27.7	27.7	26.5	27.3	26.8	26.3	28.5	28.3	27.3	28.0	27.4
	1981	26.6	26.2	27.1	27.4	26.9	26.7	· · · à						
Ì	verage	26.8	26.9	27.3	27.4	26.9	26.4	26.4	26.5	27.3	27.7	27.7	27.2	27.0
	-								:					· · · · · · · · · · · ·
191		•										. •		
E	ontouse	-				÷.,		:						

	Year	Jan.	Feb.	Kar.	Apr.	Кау	ປັນກ.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Annual
	1979	27.7	27.7	27.5	27.8	28.1	27,8	28.1	28.1	28.0	28.8	28.7	28.2	28.0
	1980	28.8	28.5	28.3	. <u>-</u>		27.3	27.8	27.2	28.0	28.7	28.4	27.8	28.1
	1981	27.6	27.8	28.0	28.3	27.5	27.0	26.4						
- 51	lverage	28.0	28.0	27.9	28.0	27.8	27.4	27.5	27.6	28.0	28.8	28.5	28.0	28.0
1999 1990 1990	·													
	-				· .									
2														
						:				÷.,				

r - 27

Table 2.2	Mean Monthly Relative	Humidity
10016 516	Fields	

Sengkand	1											(Ur	itr 1)
Year	Jan.	Feb.	Mar.	Apr.	Кау	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Annual
1975			~	-	78.3	78.7	75.7	75.2	74.8	75.5	72.2	71.9	-
1976	70.7	66.1	68.0	69.8	73.2	75.5	75.0	68.4	60.7	63.4	68.7	65.2	68.7
1977	66.7	65.0	62.0	68.0	69.0	80.0	72.8	71.3	80.7	74.0	81.0	88.0	73.2
1978	83.7	80.4	86.6	84.9	87.2	87.4	86.8	84.2	85.4	86.4	84.0	90.0	85.6
1979	86.4	90.8	86.8	92.9	85.5	87.3	84.7	76.8	80.2	65.9	77.0	89.1	83.6
1980	86.4	89.6	85.1	89.0	87.5	81.9	85.6	84.0	76.2	84.7	90.8	89.3	85.8
1981	72.1	85.7	88.4	86.8	88.3					. –			
Average	77.7	79.6	79.5	81.9	81.3	81.8	80, 1	76.7	76.3	75.0	79.0	82.3	79.2

Kanyuara

.

Year	Jan.	Feb.	Kər.	Apr.	Kay	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Annual
1975	95.8	95.9	96.5	85.8	82.0	82.9	90 .0	95.2	93.6	90.0	87.2	88.0	90.3
1976	90.0	69.0	90.0	91.0	91.0	93.0	95.0	94.0	96.0	97.0	96.0	96.0	93.2
[:] 1977	95.0	97.0	97.0	91.5	91.0	93.9	97.0	97.0	96.3	95.8	87.5	91.4	94.2
1978	91.5	98.3	93.8	99.0	98.9	91.9	87.3	84.2	84.3	81.2	84.0	87.5	90.6
1979	87.7	83.7	83.0	83.Ó	85.0	92.7	69.2	84.5	85.2	89.3	80.8	83.3	84.9
1980	82.6	80.1	81.9	81.2	86.0	83.0	86.0	85.7	76.6	78.3	78.3	87.6	82.3
1981	86.8	87.1	86.4	87.9	90.0	88.4				· ·			
Average	89.9	90.2	90.5	88.5	89.1	89.4	90.8	90.1	89.7	87.2	85.6	89.0	89.1

-1

Fontouse

Year	Jan.	Feb.	Kar.	Apr.	Kay	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Annúa]
1979	83.5	83.6	84.0	83.8	82.7	85.4	82.7	79.4	83.7	78.6	84.7	0.33	83.2
1930	85.3	87.7	86.8	87.8	-	90.2	85.3	87.7	83,7	83.9	68.0	90.5	87.0
1981	92.6	90.6	91.8	91.6	93.1	9ż.7	92.8						
Avezage	87.1	87.3	87.5	87.7	87.9	89.4	£6.9	83.6	83.7	81.2	86.4	88.3	86.4

Table 2.3 Mean Monthly Sunshine Duration

Sengkang

									- <u> </u>		(Unit:	hour	s/month s/day
Year	Jan.	Feb.	Kar.	Apr.	Hay	Jun.	Jul.	Aug.	Sep.	Oct.	toy,	Dec.	Annual
1975	-	· ••		_	-	139	179	209	221	215	210	155	
÷	-	-	-	-	-	(4.6)	(5.8)	(6.8)	(7.4)	(6.9)	(7.3)	(5,0)	-
1976	194	204	188	210	188	162	200	262	260	212	210	160	A 16A
	(6.3)	(7.3)	(6.1)	(7.0)	(6.1)	(5.4)	(6.5)	(8.4)	(8,7)	(6,9)	(7.0)	(5.5)	2,900 {6.7}
1977	147	117	192	185	201	145	206	292	279	367	231	174	2 43 2
	(4.7)	(4.2)	(6,2)	(6.2)	(6.5)	(4.8)	(6.6)	(7.4)	(9.3)	(9.9)	(7.7)	(5.6)	<i>2</i> ,913 (6.6)
1978	155	245	162	169	211	178	198	194	181	254	104	161	2 204
•	(5.0)	(5.2)	(5,2)	(5.6)	(6.8)	(5.9)	(6.4)	(6.3)	(6.1)	(8.2)	(6.5)	(5.2)	(6.0)
1979	155	149	145	183	230	144	216	272	231	244	100	364	A A33
	(5.0)	(5.4)	(4.7)	(6.1)	(7.4)	(4.8)	(7.0)	(8.8)	(7.7)	(7.9)	(6.3)	(5.0)	(6,3)
1980	124	132	169	148	177	162	226	206	756	515	177	140	A
	- (4.0)	(4.6)	(5.5)	(5.0)	(5.7)	(5.4)	(7.0)	(6.7)	(8.9)	(7.0)	(5.9)	(4.4)	(5.8)
1931	159	141	195	179	183	204							
	(5.0)	(5.0)	(6.3)	(5.9)	(5.9)	(6.8)							
Average	156	148	175	179	198	162	204	739	240	741		100	
	(5.0)	(5.2)	(5.7)	(6.0)	(6,4)	(5.4)	(6.6)	(7.7)	(8.0)	(7.8)	(6.8)	(5.1)	2,292

Yanyuara

							· · · · · · · · · · · · · · · · · · ·				(Fadia	ation:	e//day)
Year	Jan.	Feb.	Har.	Apr.	Kay	Jun.	Jul.	Aug.	Sep.	Get.	Nov.	Dec.	Annual
1975	18.2	17.2	20.2	17.4	17.3	15.7	15.8	16.7	18.1	21.5	20.5	18.5	18.1
1976	17.1	18.4	18.5	19.9	19.1	18.4	21.5	19.3	18.9	18.9	20.1	17.3	18.9
1977	16.6	17.3	20.5	19.2	18.8	17.5	18.1	19.3	20.7	20.0	18.1	19.3	18.7
1978	18.3	17.9	17.8	18.4	19,9	19.3	19.0	17.8	18.9	20.8	18.9	18.5	18.8
1979	19.9	19.3	17.6	20.0	19.7	15.3	16.2	16.8	17.7	19.8	19,1	19.3	18.4
1980	17.8	20.9	21.9	18.5	17.9	17.3	16.6	16.7	20.5	19.0	20.3	17.0	16.7
1981	18.2	17.3	20.7	21.3	19.6	19.5	-						
Average	18.0	18.3	19.6	19.2	18.9	17.6	17.9	17.8	19.1	20.0	19.5	18.3	18.7

Sengkand	ł											(Unit:	n/sec)
Year	Jan.	Feb.	Har.	Apr.	Hay	Ĵun.	301.	Aug.	Sep.	Oct.	Nov.	Dec.	Annua]
1975	*	•	 		•	-		1.0	0,8	0.6	0.7	1.4	-
1976	1.3	1.5	1.5	1.1	1.3	1.2	1.5	1.8	1.6	1.3	0.9	1.5	1.4
1977	1.5	2.0	1.3	1.1	1.0	1.4	1.8	2.0	2,0	2.0	1.4	1.2	1.5
1978	1.2	1.2	1.0	1.1	1.1	1.0	1.1	1.4	1.3	1.3	1.0	1.3	1.1
1979	1.2	1.2	1.1	1.0	1.0	1.3	1.7	1.9	1.8	1.3	1.2	1.3	1.3
1980	1.5	1.3	1.3	0.9	1.7	1.3	1.4	1.5	1.7	1.5	1.4	1.3	1.4
1981	1.8	1.3	1.0	1.0	1.1	0.9			· .				
Average	1.4). 4	1.2	1.0	1.2	1.2	1.5	1.6	1.5	1.3	1.1	1.3	1.3

Table 2.4 Mean Monthly Wind Velocity

Kanyuara

	÷			·								(Unit:	n/sec)
Year	Jan.	Feb.	Mar.	Apr.	Xay	Jun.	301.	Aug.	Sep.	Oct.	For.	Dec.	Annual
1975	2.5	2.2	2.9	2.5	3.7	2.4	2.3	2.0	2.4	1.9	2.6	2.9	2.5
1976	2.6	2.4	2.4	2.3	2.6	2.2	2.2	2.7	3.2	2.6	1.8	2.4	2.5
1977	2.1	3.3	2.3	2.2	1.8	2.0	2.5	2.9	3.2	2.9	1.4	1.6	2.4
1978	1.6	1.7	2.2	2.1	1.7	1.0	1.8	2.3	2.1	2.9	1.7	1.9	1.9
1979	1.9	1.6	2.1	1.9	1.4	1.8	2.0	2.7	2.4	1.8	1.8	1.8	2.9
1980	1.6	1.4	2.0	1.7	2.6	2.1	1.7	2.2	2.3	2.3	1,5	2.1	2.0
1981	2.3	1.4	1.6	1.8	2.7	1.5						•	
Average	2,1	2.0	2.2	2.1	2.4	1.9	2.1	2.5	2.6	2.4	1.8	2.1	2.2
	-	_							·				

e

I = 30

Table 2.5 Mean Monthly Evaporation

Sengkang	

(Unit:	n/sec)
Dec.	Annual
159	-
168	2,022
181	2,193
145	1,880
122	1,953
288	2,128
177	2,003
	145 122 288 177

Kanyuara	- ·	:									(Un	it: FF	v/conth)
Year	Jan.	Feb.	Mar.	Apr.	Kay	ປະກ.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Annual
1975	174	181	189	166	230	202	192	187	140	180	204	165	2,210
1976	174	201	220	180	199	147	198	217	270	228	184	190	2,408
1977	172	132	154	144	160	140	146	143	177	205	208	151	1,932
1978	142	162	150	386	128	98	103	147	163	202	173	157	1,816
1979	176	155	202	184	170	121	158	224	205	275	229	217	2,310
1980	220	221	255	174	167	147	174	193	281	268	219	156	2,474
1981	181	153	188	176	170	146			:				
луегаде	177	172	194	173	175	143	163	185	206	226	203	172	2,188

						· ·	
No,D	Naze of Station	Belonging 12, 13	Setting Year	Kind of data 2	Data available	River System	Name of River
1.	Enrekang	n. Ржс (400)		х х	1917 - 1941 1971 - 1981	Sadang	Sadang
2.	Baraka	N. 1946 (400a)		ж ж	1953 - 1955 1975 - 1981	Bila	Boya
3.	Rapping	N. PHG	1909	ж	1917 - 1941	Rappang	Rappang
		(402)		н Н	1952 - 1957		
	•			x	1971 - 1981		
		N. DIPERTA		D	1972 - 1973		-
_				D	1975 - 1981		
4.	Maroanging	N. FHG	1930	A	1931 - 1940	Bila	Lancinson
ر ر	Dulla Óstari	(4016)		· R	1924 - 1950		:
у. к	bulu Centera	A. P3SA	Dec. 1973	Đ	1974 - 1981	Bila	Boya
۰.	Sarukku	N. 1746		K	1921 - 1927	Bila	Bila
		(9093) N. P3SA	Sep. 1975	л D	1974 - 1981 1979 - 1981		
7.	Bila	N. PKG		¥	1031 - 1040	R().	
		(402c)		11	1771 - 1742	2110	6119 6
_		A. PBSA	1977	D	1980 - 1981		
8.	Tanru Tedong	N. FNG	1930	×	1931 - 1941	Bila	Bila
		(493a)		x	1953 - 1959		
		N. DIPERTA		n D	1971 - 1981 1972 - 1981		
		N. FRA	Nov. 1974	Ð	1974 - 1981		19 A.
9.	Belava/	N. FNG		x	1923 - 1941	Lake	telava
	Kenge	(405a)		. н	1953 - 1955	Tezze	
				<u>Б</u> Х	1957 - 1969		e de la companya de l
				X	1977 - 1981		
10		N. DIPERTA		D	1977 - 1981		
30.	Anebanua/ Bola Kalénsean	N. PHG	1925	x	1925 - 1941	lake	Larate
	Dolle Hallsberg	(d(V#))		н М	1953 - 1967	Buaya	
		N. DIPERTA		D	1977 - 1981		
11.	Bostouse	n. Phô	1930	ж	1953 - 1966	1.1.	
		(4951)		<u>к</u> – к	1970 - 1972	Terce	Laie Teace
		N. DIPERTA		X .	1976 - 1981		
16.	Batu-Zarn	N ENC		Ð	1976 - 1981		
		(495c)	1978	<u>к</u>	1930	Lete	Batu-Batu
				8	1951 - 1981	Tezșe	
				x	1957 - 1967		
		N. DIPERTA		R D	1973 - 1977		
17.	Secglang	N. 1760	16-50	. .	1373 - 1977		
		(405)	1109	X	1917 - 1941 1953 - 1933	CEDIADAE	Centanae
		N. DIP <u>ERTA</u>		D	1927 - 1977		
		A. 1335	May 1974	D	1974 - 1976		
20.	Parpacua	N. 20G	1004	v	1918 - 1981		
		(406)	×300	л	1917 - 1941	Cearsase	Centanse
43.	Szizoli	N. 1743	1959	×	1969 . 1475		
		(4038)		44	1707 - 13//	Gilfræng	Gilizang
46.	Parla	A. DIFERIA		Ð	1977 - 1981		
	- 01 1 0	- 8. 125G (40453	1918	x	1918 ~ 1941	Gilirane	<u>Giltraa</u>
		10101		х х	1953 - 1969		A111408
••		N. DIPERTA		D	1971 - 3381 1976 - 1981		
45.	Siva	N. FNG		A	1010 - 1011		
		(400a)			-7+7 - 1941	AV4	Ava .

Table 2.6 Rainfall Gauging Stations

keastks : [] rainfall station number in Fig. 1.1

A; automatic gauge, N; normal gauge 12

- L3

PMG INeteorology and Geophisics Center DIPERIA; Ministry of Agricolture P35A ; Sub-directorate of Planning and Programing for Water Desources PMA ; Institute of Egdraulic Section

A; annual data K; moatbly data D; datly data

Table 2.7 Mean Monthly Rainfall (1/13)

Enrekang

nit: na)	(Un												_ +
Annual	Dec.	Nov.	Oct.	Sep.	Aug.	July	June	Hay	Apr.	Yar.	Feb.	Jan.	Year
2,503	200	179	293	95	169	230	139	214	263	260	295	184	1917
1.992	305	233	114	2	0	1	56	242	153	166	298	414	1918
2,127	265	146	30	37	45	242	138	264	350	172	429	109	1939
2,801	310	312	100	100	65	173	399	165	371	495	154	258	1920
2,427	306	206	189	77	45	37	260	116	351	399	398	223	1921
1.840	314	89	57	58	28	69	213	201	286	208	173	244	1922
2,088	316	50	83	20	23	195	168	309	397	133	244	150	1973
2.867	E35	305	326	109	95	47	185	274	499	454	342	195	1924
1.595	235	76	25	26	45	81	252	306	137	126	188	98	1925
2.026	378	100	93	106	58	87	107	176	122	231	231	337	1926
2.132	261	198	135	28	. 4	42	191	130	508	413	137	85	1927
2.146	125	101	153	53	44	76	197	73	283	465	136	390	1928
	188	120	3	47	36	103	173	538	183	-	245	170	1929
2.005	211	106	180	3	n	17	101	300	434	360	141	143	1930
2.152	136	191	115	114	83	141	493	368	354	142	81	46	19)1 👘
2.017	227	174	107	- 54	107	37	68	392	382	177	116	205	1932
1.960	80	289	159	43	53	32	123	312	304	160	214	139	1933
2.357	174	255	106	228	67	417	268	252	181	179	251	<u>179</u>	2934
2.407	375	214	80	39	18	48	255	197	414	222	394	153	1935
2.410	129	196	19	90	59	28	193	293	535	301	257	304	1936
2.229	243	64	79	202	81	95	148	298	287	275	199	258	1937
2.223	159	221	22	16	104	74	117	303	183	481	167	376	1938
2.331	128	210	133	10	134	224	326	183	368	315	245	150	1939 -
1.749	273	155	63	6	19	7	162	385	162	193	102	222	1940
1,877	276	160	15	2	4	10	142	369	201	254	235	209	1941
÷	881	225	235	429	237	179	161	282		~	-		1971
1,866	263	206	0	0	90	3	43	171	223	201	81	573	1972
2,994	409	138	118	337	132	- 193	233	236	292	229	169	428	1973
2,614	242	222	-319 -	420	42	183	183	249	276	101	241	135	1974
2,334	107	60	218	85	199	183	237	170	438	212	177	242	1975
1,456	273	176	146	1	41	28	38	49	164	245	119	187	1976
-	365	-	0	0	60	7	176	203	491	192	184	184	1977
2,033	118	158	128	129	200	234	36	310	203	343	· 66	108	1978
1,749	197	53	3	53	9	79	331	23	216	261	359	310	1979
1,854	245	183	92	· 5	18	5	207	243	344	157	183	176	1930
-	-	-	-	-	-	-	137	243	261	567	170	202	1981
2.172	234	17)	313	89	70	98	181	233	292	268	204	220	Average
2.938	409	312	326	429	237	417	493	385	535	455	429	428	Man.
1 265	50	50	0	0	0	1	38	23	322	101	66	45	Nin.

Baraka

			· · · ·	·								(Ur	nit: ra)
Tear	Jan.	Feb.	Far.	Açer .	×37	June	Jely	A23.	Sep.	Oct.	Nov.	Dec.	Annual
1953		-		127	260	78	59	0	98	144	258	{(8	-
1954	293	200	211	276	278	561	44	92	164	242	347	519	3,233
1955	76	287	104 .	285	216	368	529	418	209	171	262	166	3,111
1975	97	160	123	150	204	162	172	183	173	156	52	67	1,699
1976	50	40	47	136	255	250	67	22	₹€	61	144	6-8	1,084
1977	84	92	90 90	175	72	122	27	65	9	😐	-	155	-
1978	127	33	145	98	106	47	126	86	105	. 97	60	107	1,140
2973	46	232	247	138	96	106	46	3	48	21	96	166	2,035
1980	319	62	72	226	144	372	16	114	9	124	75	67	1,420
1981	27	54	181	198	230	57		~	-	-	-	-	· -
Average	103	118	124	181	176	212	121	109	96	112	162	200	1,714/
Hag.	293	287	233	285	278	561	529	418	209	242	342	519	3,233/2
Kin.	27	33	47	98	72	47	16	Ô. 1	9.	0	52	68	1,035/3

Lata Source: tefore 1977 Muster Plan Study Report after 1978 Northly Data by ING

Secarks.

- no data
 11 total of monthly averages
 12 maximum of annual rainfall
 13 minimum of annual rainfall

Table 2.7 Mean Monthly Rainfall (2/13)

Rapparg												<u></u> (v	nit: Pro)
Year	Jan.	Feb.	Mar.	Apr.	Kay	June	July	Aug.	Sep.	Oct.	Nov.	Dec.	Annual
1917	110	396	203	390	353	390	284	177		-	· •	-	<u>-</u>
1918	216	552	412	254	172	114	Ø	· Ø	1	108	182	147	2,158
1919	120	287	135	132	292	94	105	15	31	15	150	324	1,500
1920	185	109	162	286	82	431	364	37		÷	17.	127	
1921	50	181	102	316	170	374	201	54	. 71	354	132	135	1,540
1922	34	64	32	417	60	210	÷	. 🛥	-	49	240	-	•
1923	93	128	103	238	240	30	192	•	. 3	193	- 32	176	1,406
1924	91	116	419	290	578	226	177	- 71	251	232	168	165	2,784
1925	25	315	36	237	212	172	33	56	43	6	112	120	1,173
1926	350	122	52	332	295	172	1(8	136	206	192	- 74	208	2,247
1927	€6	282	243	409	209	160	64	24	53	146	136	256	2,058
1928	-	· -	273	198	118	183	31	· -	. -	-	-		-
1929	154	70	157	256	79	112	49	11	235	14	129	215	1,481
1930	53	50	256	277	422	. 43	15	. 3	0	168	50	44	1,381
1931	70	249	172	345	565	405	349	78	83	38	246	162	2,758
1932	176	71	142	184	395	124	238	90	5	154	213	122	1,864
1933	94	119	164	374	241	154	79	361	83	361	205	42	2,082
1934	226	144	109	262	184	307	265	109	81	180	76	179	2,122
1935	110	149	227	311	507	217	103	145	3	315	279	139	2,506
1936	124	1,87	177	222	241	162	79	311	97	67	81	110	1,658
1937	317	138	230	310	163	232	170		68	119	168	157	•
1938	416	78	207	77	460	115	92	292	35	110	221	136	2,239
1939	€8	230	153	134	- 424	-	100	56	36	152	64	- 64	4
1940	139	40	248	111	534	235	69	6	0	- 4	202	150	1,728
1941	326	114	161	127	491	159	-	<u> </u>	8	-	· -	•	•
1952	-	-	-	-	-	-	122	n	22	154	116	241	-
1953	121	191	167	58	238	-			-	•	-	51	× -
1954	36	74	149	178	206	473	96	201	-	192	155	169	÷ 🔟
1955	76	255	109	136	62	403	297	233	137	102	93	114	2.017
1956	60	72	192	69	358	242	91	256	127	217	101	316	2.120
1957	63	68	234	42	344	90	200	42	Q	•	244	-	+
1962	208	- 71	178	377	184	314	248	198	35	196	163	197	2,169
1963	75	36	137	153	165	157	21	42	Ó	0	40	65	915
1964	66	291	92	512	356	103	145	-	387	-	-	-	-
1965	32	-	83	35	186	0	0	23	0	132	-	•	-
1971	-	-	-	138	153	139	223	247	238	222	188	89	`. ⊢
1972	376	152	21	347	160	98	17	26	÷. O	0	148	380	1,725
1973	194	143	142	272	226	292	240	365	393	203	117	150	2,737
1974	24	143	82	172	247	235	176	67	397	216	153	76	1,988
1975	79	5-4	152	214	285	245	224	254	110	191	83	164	2,055
1976	117	126	202	107	145	198	193	355	1	163	161	55	1,597
19//	333	118	137	294	300	188	78	•	0	6	354	154	-
19/8	65	. 23	-	·	•	164	164	191	325	75	94	168	-
19/9	67	44	158	166	113	249	15	10	78	. 4	- 76	62	1,047
1950	114	145	114	339	163	169	4	42	35	31	29	164	1,340
1981	31	101	329	179	474	91	478	-	÷	-	-	-	•
Average	124	145	169	225	265	196	141	169		169	136	144	1.242/1
Par.	416	552	419	512	578	473	345	365	397	315	279	350	2.7847
Nin.	24	23	23	35	60	0	0	ø	0	0	20	42	017/

Data Source: before 1977 Master Plan Study Report after 1978 Monthly bata by DIFERTA

Records

=

- no data /1 total of monthly averages /2 maximum of annual rainfall /3 minimum of annual rainfall _-

Table 2.7 Mean Monthly Rainfall (3/13)

Marcangin

Year	Jan.	Fed.	Kar.	Apr.	Kay	June	July	kog.	Sep.	Oct.	Nov.	Dec.	Annua)
1931		 f	•••••	• •		•	*	*	*	•	•		1.475
1932			1 3			1 a				*	•		3.345
3933	1 b	٠.		.								*	3.480
1934	. •	*		*					•	*			2.763
1935	1 de la composición de la comp	*	ŧ	1	+		+	1 a	*	*			3.237
1936	4	· 1	*		5	. . .		±	▲ ¹	+		*	2.791
1937					· •		+	1		1			2.683
193B	•					*				▲ 1.1	` #	*	2,939
1939		•	۰. 🔺				٠		*	•			2.082
1940	•			*	\$			٠	*	٠			1,724
1954	245	166	131	165	-	863	213	316	188	356	195	270	-
1955	61	145	120	225	303	818	420	315	165	122	94	116	2.934
1956	E 6	62	75	284	282	510	75	355	217	272	135	279	2.613
1957	184	98	270	56	435	137	341	50	31	68	168	205	2.089
1958	204	337	312	· •	303	210	35	386	75	249	-	206	-
1959	141	243	282	157	253	380	87	62	243	-	204	172	-
1960	269	135	316	218	319	358	578	255	377	156	247	-	-
Average	167	178	215	193	317	472	250	246	185	187	174	208	2.789/
Kax.	269	397	316	284	436	863	578	3E.E.	377	356	247	279	3.469
Xin,	61	62	75	92	259	137	75	50	31	68	94	116	1,724

Bulu Centana

11: 243	(Un									<u> </u>	·		
Annuð 1	Dec.	Nov.	Oct.	Sep.	Nog.	July	June	Kay	Acr.	Mar.	Feb.	Jan.	Tear -
	169	182	280	593	63	297	147			-	-	-	1974
2,067	119	51	265	139	269	303	140	260	275	87	64	95	1975
-	50	122	E3		-	-	-	-	59	69	68	47	1976
-	+	~	-	-	-	+	30	16	137	67	-	79	1977
1,166	53	55	127	176	378	0	30	320	108	151	125	102	1978
-	85	15	23	183	45	37	44	119	193	168	-	· •	1979
-	58	59	63	7	93	0	70	60	127	-	-	-	1980
-	-	~	. –	-	. 29	60	47	87	68	48	33	20	1931
1.314/	69	81	143	221	103	116	73	110	139	98	73	63	Average
2.067/	169	182	260	59\$	269	303	147	260	275	331	125	102	Kar.
165/	50	15	23	7	45	0	30	18	59	48	33	20	Nin.

Lata Source: before 1977 Master Plan Study Report after 1978 Monthly Data by P3SA

Fezerks

- z po data uncollected in this study uncollected in this story
 (1) total of conthly averages
 (2) satisfies of annual rainfall
 (3) sinipus of arnual rainfall

Table 2.7	Mean Monthly	Rainfall	(4/13)	:

Parulky												(Ur	nit: m)
Year	Jan.	Feb.	Xər.	Ąr.	Kay	June	July	Aog.	Sep.	Öct.	Nov.	Dec.	(sunny
1921	47	204	92	133	160	223	198	83	27	139	121	132	1,559
1922	44	46	66	181	84	320	36	50	. 5	49	24	270	1,165
1923	103	91	101	165	169	9	146	់រ	0	31	28	127	977
1924	81	32	385	252	438	145	115	27	105	155	206	319	2,162
1925	51	119	54	322	205	118	44	53	25	÷.	53	88	
1926	264	167	45	109	214	131	65	106	29	11	32	217	1,290
1927	126	124	245	262	191	242	110	12	34	72	126	188	1,732
1974	32	136	205	360	315	159	117	73	÷	118	186	84	
3975	205	216	172	438	140	184	199	232	182	261	87	137	2,453
1976	45	115	94	83	133	17	57	45	2	-	216	158	-
1977	246	37	105	615	76	16	0	119	0	0	99	250	1,364
1978	÷			-	_	-		-	÷ 1	÷	<u>~</u> `	- 1	-
1979	225	79	337	268	191	593	215	69	192	35	125	255	2,581
1980	75	179	163	592	264	259	177	247	2	36	61	169	2,215
1991	0	23	232	424	418	75	-	-	-		-	÷	in en
Average	310	112	164	279	214	178	114	86	51	83	104	176	1.671/3
Yax.	264	216	356	592	438	593	215	247	192	261	216	319	2,581 12
Xin.	32	32	45	83	76	9	0	7	0	O I	14	84	977/3

<u>511a</u>

	·										<u> </u>	(Vi	it: 1a)
Yezr	Jan.	Геб.	Kar.	Apr.	Kay	June	July	λ.g.	Sep.	Oct.	NOV	Dec.	Annual
1931	145	157	138	406	497	585	630	197	177	83	103	76	1.195
1932	116	52	134	350	432	287	472	423	5	397	212	49	2.840
1933	- 63	135	169	325	487	276	185	369	168	293	195	60	2.747
1934	234	65	E4	222	251	472	316	127	144	259	135	30	2.260
1935	53	277	241	471	700	450	235	\$2	ăí -	194	374	120	1 102
1936	119	Ĵ7	154	360	512	216	23	24	28	21	72	22	101
1937	25	302	568	430	318	597	456	61	130	155		74	1,104
1933	263	58	330	95	549	21.9	114	310	50	30.0	1.0	00	3,171
1939	26	291	161	100	514	295	123		-	203	1.0		2,692
1940	-	58	. –	-	-	÷.	-	· _	-			-	-
1980	-			297-	337	321	148	147	15	42	75	115	a si
1931	7	24	173	•	275	233	664		217	225	146		
Average	108	136	218	326	413	355	123	196	97	760	341	76	1011
Max.	265	302	588	430	549	597	FFS	471	217	354	374	10	C, C 34 C
Kió.	7	24	64	95	251	216	73	23	5	42	54	30	1,764

Date Source: before 1977 Master Plan Study Report after 1978 Monthly Data by PSSA

Fea erks

÷

- no data
 1 total of mosthiy averages
 12 Faximum of annual rainfall
 13 minimum of annual rainfall

Table 2.7 Mean Monthly Rainfall (5/13)

.

Tanto Tedong

kanual .	Dec.	Nov.	Oct.	Sep.	AUG.	J uly	June	Kay	Apr.	Par.	Feb.	Jan.	Yesr
2,717	172	162	67	123	143	529	405	580	189	158	155	14	1611
2,005	70	155	120	3	163	389	217	215	349	191	35	108	1977
1,981	18	215	220	135	. 232 *	134	202	350	150	92	115	109	1774
•	69	167	166	70	173		. =	181	203	69	56	130	1777
2,676	49	331	232	8	65	298	388	502	405	195	115	68	1025
2,051	142	81	6	230	115	91	244	486	242	256	98	60	1977
	59	50	65		68	317	316	289	440	152	212	50	1739
-		· 🗕	101	. 75	343	183	193	550	117	275	46	254	1911
- ·		57	63	78	111	152	218	0	2+3	175		-	1030
1,639	206	67	. 0	9	41	52	340	643	115	117	63	A.6.	1937
-	-	-	21	•	25	- 5	391	487	172	119	189	145	1941
-	38	175	-	29	0	216	222	260	00	142	6.6.6		2111
2,002	92	312	126	199	193	177	418	- 278		101	141	. 99	1953
· _	60	-	205	198	376	315	253	100	156	101	132	. 83	1954
-	+	- -	-	-	-	-			1.	X41 .	310	. 42	1955
	77	84	-	18	62	217	47	450	-		-	•	1956
÷ '	54	65	-	41	380	79	-	-	111	136	1.00		1957
-	-	62	÷	25	24	316	541	379	110	120	100	126	1958
			_ + -	111	•••			213	310		110	. 57	1959
1 665	363	121	225	236	368	179	208	136	79	· 🕳	-	- <u>-</u>	1971
1,005	153	64	8	0	70	12	70	183	231	17	- 24	188	1972
2,773	101	249	179	277	442	114	383	187	365	100	282	95	1973
2 644	57	C 8	200	442	4	196	159	220	249	60	45	37	1974
2,004	31	36	234	358	230	195	259	- 3EÒ	193	45	66	5	1975
1 205	31	153	149	106	85	211	343	132	193	173	23	- 38	1976
1,200	20	192	1>	0	230	0	192	183	223	65	40	76	1977
1,011	39	54	11	87	133	183	412	448	-156	158	E4	51	1978
1,007	11	14		437	31	100	474	112	232	147	51	17	1979
4,017	71	101	18	0	100	14	268	278	445	260	79	95	1980
	·		212	249	-	730	211	484	117	270	13	0	1981
1,874/	74	123	114	129	156	194	280	301	176	140	103		
2,7714	206	331	274	437	442	230	541	Č43	445	275	292	254	HAFT GAL
1,0854	31	36	0	0	0	0	47	Ó	- 79	17	13	0	Min.

±' -

Data Source: before 1977 Master Plan Study Report after 1978 Monthly Data by DIPERTA

Rezorks

- so data /1 total of mosthly averages /2 maximum of annual rainfall /3 minimum of annual rainfall

1 - 37

infall (6/13)

Se)ava												(0	it: m)
Year	Jan.	Feb.	ж эг.	Apr.	Kay	June	July	A49.	sep.	Oct.	Nov.	Dec.	Annual
1923	30	<u> </u>	11	229	139	24	176	25	0	22	114	129	968
1974	23	63	204	237	393	143	-54	79	178	107	61	97	3,725
1925	94	34	13	165	207	110	54	83	119	- 22	55	112	1,069
1976	262	152	56	-140	227	143	69	327	73	- 44	56	171	1,526
1927	53	61		200	190	216		·	23	125	57	204	
1928	106	83	92	130	162	125	8	9	35	0	37	28	795
1929	206	29	94	235	162	120	90	- 6	<u>131</u>	11	122	124	1,330
1930	44	303	128	346	329	138	26	4	• •		110	92	· •
1931	18	119	273	219	561	344	526	. 117	70	37	÷ 68	-	4
1932	115	55	14	126	302	215	265	- 46	1	\$6	173	128	1,584
1933	137	97	59	223	282	134	129	168	129	175	150	13	1,691
1934	281	79	60	153	363	473	132	70	50	- 250	57	38	2,006
1935	41	125	129	418	342	335	148	50	- 	237	237	91	2,157
1936	79	33	178	258	394	267	87	123	52	22	130	37	1,660
1937	113	39	202	214	253	293	347	46	62	95	314	36	1,614
1938	500	57	226	136	364	159	225	249	90	0	198	165	2,369
1939	103	396	96	107	280	245	119	ES .	39	- 36	39	45	\$,573
1940	-	-	94	90	371	378	11	13	Q	Ö	\$5	42	
1941	130	65	73	191	313	331	5	31	13	0	167	328	1,427
1953	45	134	94	17	161	76	199	0	25	41	233	142	1,167
1954	53	29	180	148	195	217	131	101	83	-	- -	-	÷.
1955	-	-	÷	+	1. 2	145	33	42	35	78	111	55	-
1956	-	-	•	-	÷	-	-	-	-	-	-	-	÷.
1957		·	· _	· . –	-	-	133	47	. 0	4	103	82	
1958	129	68	23	115	267	269	43	182	53	124	112	116	1,500
1959	68	49	109	124	193	434	97	31	119	11	110	109	1,426
1950	61	6 3	32	100	223	129	330	241	68	79	151	39	1,539
1961	174	245	69	322	152	210	12	15	· -	6	130	102	-
1962	165	62	206	110	126	351	78	292	33	87	-	76	•
1963	76	52	85	37	206	56	82	50	з	0	4	52	703
1964	46	252	54	238	152	316	242	122	213	161	26	j)n	1,793
1965	33	- -	66	189	239	87	7	63	0	23	73	55 -	
1966	125	71	163	259	181	107	38	45	45	164	45	72	1,257
1967	138	81	83	155	103	145	162	97	35	191	110	65	1,352
1968	53	81	193	<u>97</u>	51	240	67	233	66	29	120	390	1,676
1969	68	49 -	- 83	451	526	310	126	1 39	-	-	` -	÷ .	•
1972	-	-	-	143	10	21	5	15	0	0	28	107	•
1977	-	-	132	•	: +	- '		29	O	· 🔺	: 41	41	· •
1978	-	43	273	282	345	73	227	88	128	100	65	113	÷.
1979	67	76	127	113	\$7	251	20	C	440	0	16	42	-
1980	-		-	-	· -	87	7	173	5	75	45	170	-
1981	41	67	286	181	255	177	-	-	-	-		-	•
Averaçe	103	88	318	189	244	190	312	. 84	63	65	99	103	1.166/
Kax.	500	396	266	451	561	473	526	292	440	250	237	390	2.169/
Kin.	18	23	31	17	10	21	5	C	0	0	4	13	2017

Data Scorce: before 1977 Master Plan Study Report after 1978 Monthly Data by DIPERIA

Reparks : -

ro data
 /1 total of conthly averages
 /2 maximum of annual rainfall
 /3 minimum of annual rainfall

Table 2.7 Mean Monthly Rainfall (7/13)

Anabanua/Bola Kalispong

Year	Jan.	Feb.	Kar.	Apr.	Kay	June	July	Aug.	Sep.	Oct.	100	Dec.	Annual
1925		33	- 95	150	277	219	83	107	\$0	31	42	133	•
1926	167	65	165	217	266	343	224	217	185	9	243	82	1,880
1927	25	152	108	310	185	447	325	25	42	142	71	74	1,706
1928	· 71	10	80	92	155	460	105	334	17	•	156	-39	*
1929	229		197	124	452	218	171	12	92	2	193 -	203	-
1930	10	108	129	355	472	203	47	17	0	96	150	63	1,676
1931	- 84	176	167	187	782	269	4 0 2	· 91	EE	19	225	50	2,403
1932	67	39	56	418	250	409	349	114	23	136	195	82	2,118
1933	210	46	93	211	489	165	187	240	106	190	120	7	2,070
1934	190	60	59	209	36-8	393	260	<u>9</u> 9	62	186	: 85	72	2.046
1935	28	755	83	331	478	317	253	90	13	255	248	61	2,278
1936	. 52	97	253	496	420	280	78	124	176	0	10	48	2,034
1937	·· 44,	156	198	302	234	285	241	n	106	102	87	127	1,243
1938	250	51	272	150	528	245	199	-	. -	•	÷	+	-
1939	-			: -	411	219	73	81	51	56	43	27	-
1940	20	40	106	324	556	444	29	42	÷.	0	139	101	1,601
3943	333	53	67	264	345	305	18	26	0	52	197	538	1,595
1953	97	60	70	112	335	238	÷	5	80	92	258	156	-
1954	66	84	53	25	342	235			149	149	80	89	-
1955	6	206	77	174	156	233	235	321	175	110	36	. 44	1,724
1956	29	40	192	275	198	257	100	222	43	118	84	63	1,621
1957	0	32	÷	83	436	31	141	76	33	3	- 76	163	
1958	. 1	233	192	203	215	279	113	253	77	154	33	24	1,916
1959	41	227	297	157	238	\$58	192	24	124	- 50	84	74	2,316
1960			63	151	259	213	469	235	206	105	111	72	2,016
1961	117	157	100	661	291		61	38	-	7	252	259	-
1962	145	47	186	· .	· •	252	139	549	80	÷	-	148	
1963	131	92	69	73	519	165	161	03	1	0	86	89	1,4(6
1984	45	200	103	511	159	57	529	122	297	245	54	62	2,376
1965	61	-	34	357	406	91	36	63	G	11	141	184	-
1966	. 79	41	323	320	307	150	115	55	25	52	10	137	1,688
1957	- 35	26	141	180	160	313	430	1/3	10	U	195	123	1,854
1977		· -	<u> </u>	-	138	258	102	315	0	្រភា	-	- '	-
1978	-	- 1		172	256	-	204	42	247	123	88	147	÷
1979	39	102	186	220	215	402	41	Ó	392	0	33	42	1,672
1980	98	73	93	433	397	207	31	142	4	51	56	93	1,662
1981	0	23	232	424	416	75	-	-	-	<u> </u>	-		-
Average	82	89	138	246	342	267	172	315	85	78	114	93	1,824/
Bax.	250	299	329	66)	782	658	529	540	392	255	258	238	2,408/
Hin.	0	10	34	25	338	33	31	0	0	0	30	7	1,645/

Data Source: before 1917 Master Plan Study Perort after 1978 Monthly Data by DIFEFTA

Renarks

- <u>s</u> no data iso uses
 total of conthly averages
 isaxima of anneal rainfall
 inimum of anneal rainfall

.

1 - 39

Table 2.7 Mean Monthly Rainfall (8/13)
--

<u>concesse</u>								-			i	(Ur	it: m)
Year	Jan.	Feb.	Kar.	Apr.	Кау	June	July	ynd.	Sep.	pet.	Nov.	Dec.	Annual
1953	6		•	< 3	186	99	156	0	44	73	297	140	
1954	52	66	98	86	254	214	148	3	184	225	178	203	1,611
1955	57	205	219	329	292	333	576	620	221	216	65	88	3,242
1956	126	ō	175	166	215	269	- 44	231	174	330	60	115	1,697
1957	100	. 75	91	28	257	83	70	82	0	. 25	27	. 93	942
1958	in .	91	184	229	277	165	88	319	61	195	78	66	1,684
1959	133	107	113	82	314	403	47	47	56	12	241	61	1,620
1960	120	76	3	÷	-	-	343	141	134	18	121	- 51	-
1951	204	134	156	385	179	433	-	9	-	1	109	<u> </u>	· •
1962	418	51	302		196	309	-	+	72	÷	249	173	-
1963	191	120	£8	57	306	123	36	26	0	0	14	26	967
1964	44	183	94	102	124	227	477	53	204	197	27	74	2,106
1965	36	50	38	237	202	17	17	32	0	10	32	. 59	710
1966	97	57	117	364	200	60	10	33	39	110	139	176	1,438
1970	18	10	128	167	322	338	296	187	105	245	177	10	2 003
1971	23	18	28	107	68	72	100	288	43	42	23	46	663
1972	164	77	56	62	76	41	4	31	0	O	29	134	674
1976	34	0	. 14	120	257	-	222	14	0	60	126	-	-
1977	-	35	- 24	41	17	56	7	2	0	0	108	87	-
1978	69	16	217	237	283	322	211	61	142	176	140	260	1,970
1979	40	37	233	365	180	208	60	· 0	226	25	39	75	1,288
1980	49	158	\$7	257	260	180	21	70	0	5	23	146	1,266
1981	29	21	248	91	375	95	-	-	-	+	<u>د</u>	· •	
Average	98	72	123	176	220	191	146	9 3	86	87	106	104	1,506/1
Мах.	418	206	302	402	322	431	576	620	226	310	297	260	3,242/2
Nin.	6	Ó	3	28	37	17	14	0	0	Ö	32	10	674/3

Data Source: before 1977 Master Plan Study Report after 1978 Monthly Data by DIFERIA

Ferents

z

no data
 /1 total of southly averages
 /2 maximum of annual tainfall
 /3 minimum of annual rainfall

1 - 40

Table 2.7 Mean Monthly Rainfall (9/13)

Batu-Batu

Year	Jan.	Feb.	Mar.	N⊊r,	Каў	June	July	Aug.	Sep.	Oct.	Nov.	Dec.	Leinal
1930			,	•		*	 6	•				·	
1931	150	75	250	245	582	. 537	322	127	36	-			1,230
1937	117	22	157	315	169	257	244	30	30		82	30	1,873
1933	. 0	352	75	112	421	130	101	242	ň	43		183	1,676
1934	218	130	72	24	357	225	31	105	43	176	131	35	1,868
3935	115	113	262	278	502	246	70	AV.5 6	11	113	60	61	1,650
1936	86	46	219	239	195	181	326	04	22	235	212	125	2,173
1937	132	205	204	343	239	324	162	20	~ ~ ~		149	57	1,439
1938	522	64	304	135	432	743	176	105	10	21	79		1,507
1939	.96	244	125	233	255	202	163	100	. 73	38	259	130	2,679
1940	197	234	40	175	487	222	201	14	10	>3	62	24	1,576
1941	75	82	70	150	292	136	õ	7	o o	0 0	89 189	79 226	1,502
1951	25	50	55	125	60	235	· <u>-</u>	÷		_	_		-,
1952	85	35	219	105	129	175	82	0	<		20		
1953	35	143	105	15	205	55	160		: 17	-	410		922
1954	Ó	÷	-	-	-	240	45	119	6.5	110	410	•	-
1955	111	219	172	148	298	239	175	320	115	25		-	-
1956	-	-	. <u>.</u>	-		-	-	-		-	-	•	-
1957	÷	•	*	←	500	25	111	132	0	50	47	100	-
1958	120	161	74	188	231	104	65	ini	42	125	52	100	1 433
1959	54	101	119	224	270	327	EA	11	101		101	195	1,472
1960	47	193	90	220	251	156	222	192	43	22	-	1/1	-
1961	272	257	131	333	154	93	36	17			105	37	_
1962	186	90	259	166	116	192	69	112	62	÷.	25	104	•
1963	. 143	58	93	58	151	103	-	35	1	Ġ	10	334	
1964	92	170	108	_	226	107	183	131	160	215	120		-
1965	46	197	170	222	-				Ĩ		112	66	-
1966	346	114	194	400	125	107	38	50	١Š	6.8	113	05	1 310
1967	244	377	61	323	125		-	40	-	-	-	-	-
1971	68	174	55	67	89	250	183	130	455	54	831	268	9.869
1974	59	127	81	192	27	83	104	10	173	161	73	37	1,172
1975	-	10	127	108	246	168	144	127	110	366	52	123	
1976	63	25	155	43	<u>92</u>	119	119	24	Ó	-	26.7	31	-
1977	167	142	117	318	152	243	142	53	- O	0	26	52	-
Average	125	178	139	181	248	193	154	24	55	76	175	102	7 602/
Bax.	522	352	304	400	582	327	244	320	455	N.A.	410	276	3 620/
Min.	. 0	10	40	15	6.0	55	0	0	0	0	: 0	31	922/

Data Source: before 1977 Haster Plan Study Feport

Lecarks

1 -1 no data
 uncollected in this study
 total of nonthly averages
 rarison of annual rainfall
 minison of annual rainfall

Table	2.7	Mean	Monthly	Rainfall	(10/13)
		the second se			

Sengkang												<u>(</u> Gr	nits pe)
Year	Jan.	Feb.	Bar.	Apr.	Kay	Jure	July	Aug.	Sep.	oct.	Nov.	Qec.	Annual
1917	33	179	54	134	171	326	174	203	81	154	203	43	2,703
1918	36	146	116	70	163	57	÷. O	e	0	37	114	. 76	610
1919	73	227	165	133	216	67	105	3	30	U	202	61	1,151
1920	83	39	515	226	263	223	98	95	>>> >>>	90 154	202	89	1.917
1921	8	260	85	134	248	330	315	147	17	121	-111	128	1.293
1922	18	19	32	243	291	160	46 100	31		25	46	189 :	1,389
1923	56	153	54	304	221	- 0	222	170	22	122	293	165	2,132
1924	58	- 74	252	- 219	417	211	£9	53	19	e	61	73	1,155
1923	20	103	- 66	130	332	171	70	100	55	13	118	163	1,393
1922	115	143	171	287	162	337	213	16	49	103	76	85	1,758
1928	114	22	57	106	299	150	45	35	. 7	. 11	92	60	3,018
1929	219	12	51	278	181	231	93	20	24	. 11	268	94	1,486
1930	23	76	81	437	321	188	20	10	0	135	89	54	1,434
1931	17	178	197	155	493	294	162	52	57	40	120	43	1,008
1932	72	10	179	243	256	538	219	33	16	67	101		1,209
1933	116	90	67	201	455	131	205	166	132	152	123	137	1,0/0
1934	150	67	63	178	212	395	240	63	83	222	169	79	2.320
1935	109	141	163	321	526	234	76	100	54	222	135	121	1.683
1936	78	3 -	205	367	293	1/4	131	111	21	23	70	87	1.660
1937	200	122	130	235	212	200	135	280	63	42	245	144	2.597
1030	500	212	50	124	212	220	102	161	35	20	41	37	1,493
1940	60	47	53	146	515	211	25	46	ó	0	150	140	1,527
1941	65	33	77	134	243	227	2	10	6	24	266	232	1,319
1953	52	79	147	146	181	51	157	4	36	32	178	67 150	1,130
1954	47	84	- 79	93	292	243	125	22	154	203	57	5.00	2 149
1955	37	21	137	164	194	211	531	316	100	163	20	କ	1.676
1957	100	40	120	101	225	111	140	63	10	- iii	28	320	1.108
1958	129	170	120	219	304	321	55	116	21	101	81	137	1.674
1959		76	178	179	366	293	129	26	54	19	1.32	97	1,593
1960	220	52	45	151	221	260	309	69	301	23	125	42	1,646
1951	146	98	61	361	172	243	24	-	-	13	75	120	-
1962	147	52	243	178	146	204	87	161	38	58	-	35	-
1963	70	65	103	44	197	\$3	67	66	0	0	, O	49	753
1964	87	208	80	291	160	123	210	£4	207	161	25	313	1 689
1965	68	50		169	2€2	178	3	10		0	22	32	. .
1955	4/	94	109	354	128	199	21	30	31	63	128	94	1,304
1907	10	47	717	304	61	247	222	202	31	11	103	160	1,028
1969	56	35	110	137	233	4/1 92	293 Q(303	41 5	219 27	55	330	1,020
1970	26	26	109	88	256	. 715	350	371	376	160	725	222	37976
1971	-			105	108	198	95	178	144	144	114	72	-
1972	213	-	•	-	-	_	-	_	-	+	-	-	_
1973		-	-	-	.	-	-	-	-	-	· 🔺	-	
1974	-	-	÷	· -	-	130	235	49	185	150	166	22	-
1975	33	52	9	124	83	152	42	110	192	160	61	53	1,056
1976	23	21	85	\mathbf{m}	154	-	-	-	-	•	-	-	-
1977	-	-	-	-	<u>.</u>	-	-	•	-		-	-	-
1978	-	-		-	166	180	273	130	143	220	164	64	-
1000	50 50	335 336	185	181	166	332	37	0	223	16	166	101	1.520
1991	45	81	283	175	534 291	103	35 394	109	1 93	14 329	315 326 ·	217	1,733 -
	86	6 8	125	189	253	207	138		63	63	316		1 632 /
Kax.	368	227	300	437	526	335	337	316	3:4	222	231 231	71 222	2, (2)
Min.	13	3	9	44	£4	0	0	0	0	ō	0	2	759/

Data Source: before 1977 Master Plan Study Report after 1978 Monthly Data by P35A

Perarks

z

- no data /1 total of monthly averages /2 maximum of annual rainfall /3 minimum of annual rainfall -

Table	2.7	Mean	Monthly	Rainfall	(11/13)	
				· · · · · · · · · · · · · · · · · · ·		

7

Panpanua

[Unit: ma}	<u>(</u> Ur	·	•									••••	
(sourd	Dec.	HOV.	OCt.	\$ep.	A03.	July	June	YAY	Apr.	×31.	1 eD.		1691
7 3/4	43	112	112	155	202	179	368	257	236	117	255	67	1917
4,394	161		14	6	0	10	77	180	124	63	176	166	1918
3 434	1 2 1	19		30	ò	162	92	285	107	137	398	95	1939
1,974	10	301	114	30	66	192	105	254	317	139	27	. 79	1920
1,701	40	372	219	25	195	289	262	120	349	88	134	25	1921
	101	1/3	217	11	51	85	219	182	502	96	19	75	1922
2,933	103	20	24	13	100	179	54	221	243	7)	89	20	1923
1,210	147	12	176	31	139	1 12	276	450	349	509	1 90	145	1924
3,100	>>	250	173	11	20	-	261	245	173	34	47	53	1925
1,204	83	38	0		60	- 56	250	265	146	216	240	133	1926
1,728	223	/3		33		119	211	155	243	272	23	96	1927
1,524	21		2,50	20	22	60	222	111	198	159	30	324	1928
1,447	37	151		29	70	242	222	132	140	184	40	116	3929
1,615	284	105		14	~ ~	30	103		122	136	60	64	1930
1,522	59	60	149		70	102	370	434	163	192	200	119	1931
2,132	153	115	. 23	32	70	150	310	343	220	339	64	100	1932
1,732	63	196	113		141	120	143	221	310	55	85	86	1933
1,822	105	111	144	113	191	235	290	565	290	39	102	203	1934
2,674	147	192	83		103	230	200	550	335	201	85	49	1935
2,214	47	393	262	0	59	133	332	221	a ża	191	69	116	1936
1,840	149	79	48	. 37	192	63	213	221	763	545	200	16	1937
1,877	193	58	79	134	107	303	210	101	427	511	176	213	1918
2,150	105	172	22	- 52	158	200	2/4	913	97	11	253	30	1939
1,588	87	70	- 55	22	193	92	235	318	320	120	151	45	1940
1,536	157	75	0	o	66	13	255	435	230		315	43	1941
1,747	304	121	36	2	19	30	98	390	323				
1.251/	119	127	87	43	87	137	222	293	246	150	147	93	Average
3.3007	304	301	333	155	202	308	370	550	502	503	498	215	PAX.
1,204	27	43	ò	Ó	. Ö	10	54	150	92	34	- 39	16	Xin.

Salkoli

	~		·									(Ur	it: ma)
Year	Jan.	feb.	Kar.	Åpr.	Ray	June	Salk	λυ9.	Sep.	Oct.	Nov.	Dec.	Arnoa1
1969	0				242	107	196	179	38	47		109	
1970	3	12	191	122	0	385	433	357	190	69	346	12	כנל נ
1971	36	36	17	86	130	61	28)	361	329	165	-10		1,192
1972	130	0	0	245	208	142	0	0	0	22	122	220	1,505
1973	179	3 7	213	0	0	0	166	0	670	117			1,1,0
3974	0	•	46	183	452	60		3	20	137	ŏ	ŏ	12104
1975	45	63	46	265	437	372	253	162	501	106	356	20	3 603
1976	4	2	149	396	371	584	360	45	6	186	122		2,007
1977	165	81	111	29	233	465	253	44	ñ	40	215	- 	2,202
1978	-	_	213	445	330	-	-	-	247	-		511	1,073
1979	39	-	136	-	-	-	-	-	-	-	33	-	-
1980	23	83	156	481	P ()	320	171	259		50	35	167	
1981	0	-13	245	300	640	263	-	-	-	-	-	-	-
Average	47	39	127	232	305	245	264	121	186	136	83	97	1.682/1
Xax,	179	97	245	491	640	584	4.56	361	670	337	215	111	2.6077
Xio,	0	Ó	- Ö	Ó	0	0	0	0	0	40	0	0	1,156/3

Data Sources	tefore 1977	Kaster Plan Study Report
	after 1978	Monthly Data by DIFERTA

FERSTRS

- 1978 Honthly Data by DIFER
- no data
 1 total of ponthly averages
 1 paxing of annual rainfall
 1 pining of annual rainfall

		· · · ·			
Table	2.7	Mean	Monthly	Rainfall	(12/13)

												<u>(</u> (nit: ra)
Year	Jan.	Feb.	Mar.	Apr.	Kay	June	JULY	Aug.	Sep.	Oct.	Nov.	Dec.	Annua}
1918	-	•	-	÷	-		•	-	.	6	270	132	, • ,
1919	171	136	45	385	310	94	134	36	178	0	<u>99</u>)13	1,681
1920	18	- 32	395	395	146	107	107	97	87	235	64	53	1,556
1921	9	149	69	301	184	403	249	225	38	108	92	67	1,784
1922	22	1	166	394	473	8	73	38	15	392	160	11	3,782
1923	34	141	54	436	335	- 14	207	43	: \$	49	114	259	1,691
1924	106	134	340	222	587	260	181	93	229	178	383	38	2,751
1925	29	27	-44	97	228	238	\mathbf{m}	322	50	0	117	104	1,167
1926	129	235	80	81	396	230	113	73	. 91	8	. 79	32	1,550
1923	65	162	225	356	271	440	166	10	4/	1/3	310	20	2,351
1920	336	. 11	30	-	292	292		107	27 03		60	20	1 440
1930	3.50	02	245	232	241	236	315		- 20	331	149	43	2.184
1931	66	157	160	102	420	202	431		40	160	140	183	2.234
1932	22	-62	259	450	1010	110	367	60	63		-	40	
1933	67	103	192	215	650	168	- 21	376	154	199	107	82	2.417
1934	257	133	57	121	381	393	252	109	68	191	82	218	2.302
1935	23	184	65	355	589	468	218	57	0	205	174	144	2.482
1936	59	100	361	345	438	141	- 75	167	93	25	95	140	2,039
1937	46	50	242	197	331	314	160	52	149	170	98	105	1,921
1938	253	36	259	220	525	271	243	238	103	79	187	140	2,554
1939	22	202	- 39	420	497	400	157	189	97	116	75	2	2,216
1940	· 1	55	121	136	725	443	0	12	0	0	-	.=	-
1941	62	348	65	212	454	193	- 34	34	13	21	262	306	1,811
1953	97	75	101	£4	317	242	306	0	90	23	201	244	1,765
1954	21	93	120	136	373	449	194	124	193	316	189	87	2,301
1955	144	168	136	329	364	451	369	643	292	291	176	106	3,489
1956	58	35	198	415	440	321	175	627	156	179	285	193	3,082
1937	90	42	50	120	676	143	214	264	0	£8	370	SCE	2,561
1950	182	239	323	541	756	362	94	279	0	142	· +	42	-
1960	5	125	39	370	163	780	133	- 8	103	18	69	127	2,553
1961	121	356	10	128	325	402	595	1/8	298	54	240	120	2,564
1962	103	17	102	202	305	425	30				÷ .	•	-
1963	-	68	32	110	305	75.4	202	225	26	•	-	-	-
1964	93	297	145	572	507	- 213	796	21	366	*	18	90) 61	-
1965	0	-	s	261	623	747	93	- 67)20 0	122	-	33	-
1966	452	623	232	646	594	445	367	158	120	13	-	103	•
1967	31	127	ท	446	465	663	212	63	5	6	714	27	2 442
1968	12	25	230	456	468	790	258	514	222	155		63	2,101
1969	106	67	305	•	862	416	200	135	65	230	265	411	
1910	· -	-	-	-	-	-	_	-	-		-	-	
1971	-		-	23	167	172	194	442	148	±.	· 4	-	-
1972	176		-	164	405	53	5	18	. 0	0	160	444	-
3973	311	101	220	209	363	343	-	244	493	326	82	- 93	÷
1016	. 32	38	63	256	241	240	616	29	· •	259	88	19	*
19/5	80	186	63	342	516	593	258	254	623	344	177	20	3,366
1970	13		74	161	360	-	325	-	0	176	434	÷.	-
1978	103	101	103	145	135	423	40	155	0	0	147	263	1,656
1979	15	23	255	154	372	245	279	102	320	197	138	97	2,049
1930	ŝ	41	55	214	510	590	88	Û	209	-	101	52	*
1931	Ō	23	232	424	418	4/1 331	83 -	74	0	30	86	85	1,795
Average	P4	111	7.4.4										
Max.	452	621	441	309	423	323	200	150	108	130	162	245	2,797/1
tio.	0	1	5	920 72	176	190	165	લર	623	393	434	683	3,489/2
						8	v	0	0	0	7	2	3,167/2

Data Source: before 1977 Master Plan Study Report after 1978 Monthly Data by DIFERTA

Rezarks

:

-

no data
 /1 total of nonthly averages
 /2 maximum of annual rainfalt
 /3 minimum of annual rainfalt

Table 2.7 Mean Monthly Rainfall (13/13)

Annual	Dec.	Nov.	Oct.	Sep.	Aug.	July	June	Kay	Apr.	Mar.	feb.	Jan.	Year
2,049		\$		*	•	•		÷	*			•	1919
2,718	\$	•			*	*	•				•		1920
3,146	*	*	.	•	. •	•			A.	\$		•	1921
-	*	*	- -		•	1 •				5 5	▲ 1	é	1922
2,728		+	۰.	# 1	*		•		\$.		*		1923
2,987		*				*	· •	4	.	4	٠.		1924
2,897	*	- .	\$			*	¢		*		\$.	#	1925
3,419			° \$	\$		*	· •		*	4	#	*	1926
2,360		1	* 1	· 4			*	∳	\$	1	\$		1927
· -	4		#		.		•	*	- .				1928
3,128	*					\$	· •					*	1929
2,930	•			1 a					*	4			1930
3,430					•	· •	•			. •	*		1931
3,574		•	•		4	•					.	5 1	1932
2,173					*	•				÷ 🔺	•		1933
1,842	*	+			٠			#	*		•	•	1934
2,302			• 1		.	+	4			. #	٠		1935
	+		*	*		+	· •	*			*		1936
2,236	*		¥	٠	•						1		1937
2,778			4	٠	` *				•		\$	≜	1938
-	*	+	+				•	*		*		*	1939
2,439	4			°.≱		4			\$		٠	i 🔺	1949
2,255			1 #	۰.		•	*	•	*	4	a	• .	1941
2,711				\$					4	*			Average
3,5744	•			•		•	+		•		a -	•	Yax.
1,842			± .					•	*	· •	· •		1110

Data Source: annual data by PHG

2

Fezarits

no data
 uncollected in this study
 average of annual rainfall
 neximum of annual rainfall
 minimum of annual rainfall

No.	Name of Station	Bel	longing	Sotti	rear gu	River System	Name of River
- 1	Bulu Cenrana (1)	ż	P3SA	oct.	1975-	Bila	Воуа
5.	Bulu Cenrana (2)	ZA	P3SA P3SA	Oct. Mar	1975 1977	จะรุย	Eoya
л. Г	Bila (Downstream)	۸.	VWd	Apr.	1973	Bila	Bila
4.	Tanru Tedong	Α.	AMA	Mar	1974	Bila	Bila
24.	L. Tempe	Α.	P3SA	Mar.	1978	L. Tempe	L. Tempe
25.	L. Tempe	N.	P3SA	Oct.	1975	L. Tempe	L. Tempe
26.	Laringgi	N.	DIPERTA	FCD.	1968	L. Tempe	L. Tempe
28.	Gilirang	ZA	P35A P35A	Sep. Oct.	1975 1978	Gilirang	Gilirang
29.	Tarunpakkae	N.	P3SA	Sep	1975	Gilirang	Gilirang
30.	Bila (Upstream)	4	AMA	.107.	1978	8778	Bila
31.	Xalola	N.	P3SA	Scp	1961	Bila	Kalola

Table 2.8 Water Level Gauging Stations

Classification of automatic gauge : A Classification of ordinary gauge : N

ы.

1 - 46

Parazete	er	Unit	(1) Well No1	(2) Well Po2	(3) Well No3	(4) Well No4	(5) Kell No5	(6) Kalola River
Chemical & Phys	sical Pro	perties						
Colour		Unit PtCo	5.0	5.0	5.0	5.0	5.0	5.0
Conductivity		mg// \$102	1.8	1.8	1.8	1.8	1.8	1.8
Total Solid		Eg/1	388	406	1,200	E40	630	96
рн		-	8.4	8.5	9.0	8.7	8.8	8.8
S.A.R.			0.4	ò.6	7.5	1.6	2.7	0.12
1 Natrium			'n	16	71	31	48	7.3
R.S.C.			· •	0.3	11	0.01	5.8	0.5
D.H.L.		unho/cm	550	580	1,580	990	820	120
+ 10n (K)								
Potassium	(X)	mg//	Ó. 52	0.82	11.3	2.1	2.11	1.8
Sodium	(Sa)	13/X	13.7	21.2	251	65	90	2.1
Calcium	(Ca)	Fq/1	41	43	8.7	33	6.9	13
Magnesium	(Bg)	E9/1	34	31	46	57	47	5.7
Iron	(Fe)	₽ 7/1	0.02	*	0.01	*	*	0.05
Kanganese	(Kn)	rs/1				*	ŧ	. *
Armonium	(NH4)	E3/1	0.54	0.48	0.05	0.25	0.04	
- Ion (A)								
Chloride	(C1)	F3/1	53	43	37	87	9.7	4.9
Sulphate	(504)	E-3/1	2.8	4.8	75	63	11.6	1.0
Nitrate	(80 ₃)	12g/1	4.4	1.4	0.04	2.9	0.67	•
Sitrite	(802)	₽g/ [•	•	*	0.01	0.02	0.02
Bicarbonate	(HCO3)	rg//	238	260	783	330	468	67
Carbonate	(003)	E 19/ [14	21	63	28	70	14
Fhosphor	(P)	F3/1	*		*	±	*	. .
Foron	(B)	m3/1	•	•	0.02	0.01	0.002	0.004
Cosper	(ເນ)	E9/1	*	•		*	•	
Cadaiua	(63)	E 3/1	۲	9	+	*		4
Lead	(Pb)	rg//	*	•		4		A
Zinc	(Zn)	=3/ /	*		· •	•	*	•.
Nickel	(Ni)	bg/f	•	· •	•	*	•	*
Chronium	(Cr)	1/64	● 1	٠	*	· •	*	

Table 2.9Result of Water Quality Analysis(Sampled 21 Aug. 1981)

Pezarki – no analysis

* negligibly scall

(1); Kab. Sidrap, Kec. Dua Pitue, Desa Bila, Kappung Pallae

(2); Kab. Sidrap, Kec. Dua Fitue, Desa Tanru Tedong, Kaspung Avakalulku

(3); Kab. Wajo, Kec. Tanasitolo, Desa Tancung, Kampung Labuangpatu

(4); Kab. Wajo, Kec. Maniangpajo, Desa Anabanua, Kampung Bola Malinpong

(5); Kab. Wajo, Kec. Maniangrajo, Desa Kalola, Kaspung Awatarae

(6); Kab. Sidrap, Kec. Dua Pitue, Desa Tanru Tedong, Kampung Kalosi

· · · · · · · · · · · · · · · · · · ·	******		Bi	la	Bulu C	enrana
Paramet	er	Unit	Oct.1978	Mar.1979	Oct.1978	Mar.1979
Chemical &	Physica	al		. :		
Properties	*	un dem				
Colour		Unit PtCo	13 K	2.5	2.5	7.5
Disolved So	lid	mq/X	100	· _	932	
Suspended S	olid	nq/1	332	-	88	
Total Solid		mq//	432		1,020	
Conductivit	Y	ma/f	174	34	1,210	185.0
р.н.	•	-	8.4	7.6	8.5	7.6
Organic Sol	iđ	EG// KMnOA	12	_ '	8.2	_
.002		ma/1		16	-	8.8
Hardness		d	4.4	-	18.5	
		u i				
<u>+ Ion (K)</u>						
Potassium	(K)	mg/1	1.1	2.4	20	1.4
Sodium	(Na)	mq/Y	4.2	2.1	230	3.9
Calcium	(Ca)	Erg/1	18	1.5	50	21
Magnesium	(Ma)	EQ/Y	8.0	1.5	50	4.4
Iron	(Fe)	wa/1	0.42	*	*	*
Manganese	(Mn)	mg/Y	*	*	¥	· .
Armonium	(NHA)	ma//	0.04	0.13	0.24	0.10
Nitrogén To	tal	mg/1	-	0.45	0.63	0,59
4 -				•		· · · · ·
<u>- Ion (A)</u>	:			·	· · ·	
Fluorine	(F)	ng/X	1.2	*	0.24	0.10
Chloride	(C1)	mg/X	4.2	3.3	23	6.0
Sulphate	(SO4)	mg/X	5.1	6.3	449	4.6
Nitrate	(NO3)	109/1	7.7	0.21	2.9	0.28
Nitrite	(NO2)	mg/1	0.03	± ·	0.02	*
Phosphate	(P04)	mq/f	¥	0.26	0.08	0.24
Silicate	(Si0 ₂)	mg/X	42	24	51	32
Bicarbonate	(HCO3)	Eq/f	87	30	346	78
Carbonate	(003)	mg/1	10	-	32	
Phosphor	(P)	Eq/1		-	0 02	
Silicon	(Si)	Eq/1	20	_	24	-
Borón	(B)	EQ/I	*	0.02	2.4	-
Copper	(Cu)	τα //	* *	1	•	0.10
Cadmium	(Ca)	ma//	*	±	*	
Lead	(Ph)	ma/r		-	× .	*
Zinc	(20)	reg/A	0.12	-	x	#
	, en 1	10 9/ X	0.12	4	0.87	*

Table 2.10 Water Quality Analysis Made in Master Plan

Remark: - no analysis

* negligibly small

							(Unit : am/	6 months}
· .	Rapi	Pang	Tantu	Tedong	Acab	8000	Pa	rla
8 F	Wet Season	Dry Season	Vet Season	Dry Season	Ket Season	Dry Season	Wet Season	Dry Seaso
	543	979						
10	669	765					1.167	457
10	-	-					939	599
51	7.96	441					1.200	476
23	700	<i>,,,</i>					1 001	1 601
22	202	1					1 0/0	1 002
23	003	1,027					1 4 2 2	1,001
24	1,593	791			664	100	1,312	665
25	759	76Z			000	600	040	693
26	1,249	1,05>			1,252	212	304	214
27	929	-			1,139	434	1,320	054
28 .					953	-		592
29	742	714			1,059	651	910	632
930	760	744 -			1,094	762	1,497	749
31	1,830	185	1,969	725	1,797	326	1,849	1,237
32	1,035	866	1,3%	€61	1,563	768	1,649	-
33	1,297	88)	1,203	708	1,398	626	1,667	830
34	1.208	921	· · · •	800	1,391	576	1,374	763
35	1.287	1.221	1.665	1.026	1.482	965	1,687	1,043
x	912	743	1.498	673	1.574	455	1.259	598
- .	-	1.345	-	749	1.13	863	1.214	917
37	1 611	018	1 461				1.600	669
30	1,071	510	60.7		_	20.8	1 760	320
59	-	N7	1 300	-	1 105	461	3 316	570
940	975	927	1,700	120	\$1173 67.9	471	1,010	
41	-	-	-	-	010	-	343	-
42	-	-	-	-	-	-	-	-
43	-	-	-	-	-	-	-	-
44	· · · ·	-	-	-	-	-	+	-
45 .	÷	-	-	-	-	-	· •	· -
46	-	-	-	-	-	-	-	-
47		-	-	-	-	-	-	-
48	· •	· -	+	-	· -	-	-	-
49	-	-	. –	-	÷	•	-	-
950	·	-	-	-	-	-	-	-
51	÷ *	÷	-	-	· _	· –	-	-
\$2	-	850	-	-	-	-	-	+
6	-	_	838	-	÷	709	1,019	716
55		956	3.355	628	-	607	1.469	1,069
54	1 746	657	1 453	-	1.335	451	2.448	
22	1,200	1 676	1,477	_	1 (95	-	2.134	673
20	1,143	TPACA		_	500	804	1.417	1.231
- 27	/10	-	-	_	1 143	A74	2 0 12	-,
28		-	• • •	-	1,145	103	2 207	410
28	-	• -	1,31	-	1,400	492	1 056	1 079
1960	-	-	-	-	1,3/4	60 <i>1</i>	12233	1,073
61		-	-	-	-	643	-	-
62	1,156	804	-	-	-	-	-	-
63	559	560	-	-	979	524	C18	
64	+	-	-	-	1,666	·	2,929	-
65	<u> </u>	-	-	-	953	785	1,722	-
66	-	-	-	-	973	468	2,328	-
67	· 🔟	-	-	-	3,345	-	1,871	62
68	-	-	-	-	+	-	2,706	64
6.9	-	-	-	-	·	-	-	-
1920		-	-	-	-	-	-	~
. 31	1 141	*20 f	1.34	668	-	-	1,146	-
33		1 007	571	202	-	-	665	-
- 17	010 1 1 100	1,000	1 274	667	-	-		43
. 13	1,100	/17	1 2 2 2 2	213	_	-	-	63
-74	1,794	/30	1,2/0	242	-	_	2.496	63
- 75	1,332	683	1,691	195		_		-
- 76		768	1,068	212	-	-	 671	-
n	-	. –	834	543	. –	-	110	
- 78	<u>ت</u>	606	3,419	364	-	632	1,02	21
79	635	515	1,356	520	1,270	337	1,3/1	
		7.85	3.44	640	101 /	451	1.533	

Table 3.1 Seasonal Rainfall

Femarks : Vet Season ; April - September Dry Season ; October - March Table 3.2 Mean Monthly Discharge (1/2)

Gilirang	(Catchm	ent area:	220 k	m ²)		:.						Unit: m	3/sec)
хоаг	Jan.	Feb.	Mar.	. Apr.	May	Jun -	Jul.	Aug.	Sep.	Oct -	Nov.	Dec.	Mean
1978	1		•	E	1	3	B	1	1	9-6	6"S	15.8	I
1979	6.5	1°3	4-0	6.5	t	F	10.8	4 .3	4.0	0.4	Ч.4	1.1	ı
1980	(1-0)	(1-0)	4-4	23.0	36.4	24.6	3.4	13.7	0.7	0.5	0.2	1.0	8.7
1981	0.0	ч ч.о	3.2										
Average	2.2	0.5	1.5	14.8	36.4	24.6	7.1	0.0	2.4	5-3	2.5	5.7	9-3
-													
Tarumpaki	kae (Cati	chment Ar	रक्तः 30	0 km ²)								·	
Year	Jan.	Fcb.	Mar -	. тау	Yew	Jun.	741.	Aug.	Scp.	Set.	Nov.	Dec.	Mean

Хеаг	Jan.	rcb.	Ner	. YQY	Yen	- תטע	Jul	Aug	. Scp.	Oct.	Nov.	Dec	Mean
1975	ľ		•	1		ľ	1		59.7	22-2	3•8 3	2.0	₿.
1976	н • Н	0.4	З.Т.	3.3	27.0	38.8	62.3	1.11	0.8	16.1	2.3	л•0 Т	13,9
1977	24.5	33.0	37.5	35.2	30.3	56.1	60.0	23.1	15.0	6.11	2+0	3-8 3	27.6
1978	14.9	2.3	9.4	19.6	68.3	7.5	23.3	8	15.2	6.7	2+3	20-9	17.6
1979	3.1	а . я	10 10 10 10 10 10 10	•	1	ī	1	E :	J	1 1		1	
verage	10.9	9.8	16.1	19.4	41.9	34.1	48.5	17.1	22.7	15.0	2.6	6 . 9	20-4

Bils (Catchment area: 379 km²)

											(0	oit: B	/sec)
Year	Jeo.	Feb.	Kar.	Apr.	Kay	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Yeao
1973	-	-	•	-	45.2	26.6	50.7	28.2	36.1	19.5	14.6	28.1	· 🚽
1974	7.7	8.8	3.7	15.1	18.5	16.8	31.9	12.2	54.2	28.2	18.3	13.1	19.6
1975	9.8	28.7	23.3	10.1	(21.8)	-	36.1	33.3	47.2	28.9	14.8	11.0	-
1976	5.6	3.5	10.0	7.8	21.6	14.5	10.9	-	2.9	4.9	12.5	9.5	+
1977	9.2		7.7	29.5	17.Z	25.8	10.6	17.2	2.5	2.4	2.5	31.0	-
1978	18.3	11.7	27.2	31.5	47.3	32.3	33.3	17.8	19.2	H.9	7.9	23.0	23.5
1979	8.7	13.7	12.8	24.6	18.4	28.2	12.1	3.8	14.4	3.3	5.Š	12.2	13.1
1980	13.1	6.6	5.9	24.7	32.1	31.8	9.6	8.9	4.9	3.4	3.6	6.4	12.5
1981	2.7	3.0	16.3	23.5	49.0	16.4	50.7	•					
Average	9.4	10.9	13.1	20.9	39.1	24.1	27.3	17.3	22.7	12.7	9.8	16.8	18.0

Remarks, (): Estimated discharge from Tanru Tedoog by use of correlation formula; $Q_{311a} = 0.334 Q_{T.Tedoog}$

Tanru Tedong (Catcheeat area: 1,123 ka2)

Tear	Jan.	Feb.	Kar.	Apr.	Yay	Jun.	Jul.	Aug.	Sep.	Óct.	Sev.	Dec.	Keao
1976		-		38.0	50.0	43.2	57.9	31.0	(153.1)	96.9	50.8	49.3	-
1975	22.0	-	26.4	34.2	61.6	-	97.5	50.9	104.4	65. <u>3</u>	36.1	31.7	-
1976	23.1	14.4	37.1	41.2	25.6	63.4	54.2	-	3.0	10.7	39.0	40.0	-
1977	30.4		41.2	81.8	31.5	70.5	17.2	31.8	8.0	4.7	4.3	53.1	-
1978	50.8	21.7	37.6	52.3	103.8	73.3	\$2.9	61.9	69.3	21.5	18.5	39.7	53.0
1979	24.5	(38.7)	(36.2)	\$2.9	40.1	(79.7)	17.1	15.2	48.5	9.9	11.8	21.1	32.8
1930	26.1	17.7	20.0	(69.8)	(90.7)	120.6	34.6	22.8	10.5	(9.6)	9.0	14.5	37.1
1981	8.5	7.6	48.7	58.5	150.5	21.7	159.3	17.3					
Avecage	26.5	20.0	35.3	53.6	69.2	67.5	67.7	33.0	57.4	31.2	24.2	34.3	43.4

Balu Centana (Catchment area: 514 7m2)

Year	Jan.	Feb.	Xır.	Apr.	Xay	Jun.	Jul.	Aug.	Sep.	Oct.	Sev.	Dec.	Neaa
1975	(9.j)	·	(10.9)	(16.1)	(25.4)	•	(40.2)	(21.0)	(43.0)	17.8	9.4	16.8	-
1976	11.1	12.6	31.7	27.3	30.9	27.8	30.3	9.0	3.9	4.6	11.5	10.5	17.5
1977	10.7	+	24.8	39.1	14.3	21.4	4.0	-	1.1	0.5	6.2	19.4	-
1978	25.2	31.8	28.5	(21.5)	(42.8)	(30.2)	(34.2)	24.5	(28.6)	(8.9)	19.7	26.2	24.3
1979	19.0	26.9		19.5	15.5	•	15.8	\$.2	11.8	3.4	4.4	17.3	-
1930	16.4	9.3	10.8		-	(49.7)	(14.3)	(9.4)	1.8	4.4	6.2	9.8	
1981	5.8	2.6	(20.1)	(24.1)	36.3*	2.5	33.41	(7.1)			<u> </u>		,
Average	14.2	12.6	21.1	24.3	27.7	26.3	24.6	12.8	15.0	6.5	8.6	16.7	17.6

Remarks, (): Estimated discharge from Tenru Tedong by use of correlation formula; $Q_{B,Centana} = 0.412 Q_{T,Tedong}$

* : Values do not fit the correlation curve.

<u></u>								(U	nit ; m	³ /s)
Year Month	1973	1974	1975	1976	1977	1978	1979	1980	1981	Ave.
		11.3	9.5	8.1	19.5	13.4	11.3	16.0	3.0	11.5
Jan.		7.3	7.3	5.2	4.7	21.1	6.5	14.8	2.6	8.7
		7.0	15.9	3.9	3.4	20.1	8.5	8.9	2.7	8.8
		6.1	48.6L	3.1	3.9	8.8	9.4	8.4	2.7	11.4
Feb.		12.2	28.9	3.2	5.4	10.4	22.4	3.8	2.8	11.1
		8.5	20.1	4.3	6.7	17.0	8.4	8.0	3.5	9.6
		3.9	27.7	8.2	5.4	32.8	9.0	9.1	6.2	12,8
Mar.		3.0	21.2	13.3	4.8	27.0	6.7	4.3	3.6	11.0
		4.5	17.0	8.7	12.6	22.3	21.4	4.3	30.6	15.2
	51.7	12.8	14.2	6.9	39.5	30.4	32.9	20.9	24.7	26.0
Apr.	29.2	25.5	7.5	11.2	33.2	15.0	14.3	28.5	16.3	20.1
	26.9	7.0	8.7	5.3	16.0	49.2	29.2	24.9	29.5	21.9
	33.1	16.9	27.0	48.7	25.1	65.6	35.2	43.9	47.0	38,1
May	52.7	15.3	51.64	7.4	13.1	63.9	12.8	17.0	79.0	34.8
	49.5	22.9	41.24	9.9	13.7	15.7	8.3	35.3	23.7	24.5
	24.4	9.2	36.62	7.2	18.3	35.Ŷ	35.8	22.9	9.3	22.2
Jun.	14.7	22.6	31.7	20.5	49.1	30.4	32.2	57.5	24.6	31.5
	40.8	20.6	18.0	15.8	10.0	30.8	16.7	15.2	15.4	20.4
	86.5	34.1	17.8	19.0	13.1	24.8	12.5	11.3	36.6	28.4
Jul.	41.4	38.1	39.3	5.5	9.1	32.4	18.5	12.8	57.6	28.3
	26.5	24.4	49.0	8.5	9.7	41.8	5.8	4.7	57.3	25.3
	50.5	14.8	19.3	17.5/1	9.4	27.7	3.0	8.5		18.8
Aug.	16.4	9,9	33.9	12.0	25.3	16.8	2.9	6.4		15.5
	18.6	12.0	35.6	6.30	5.9	9.5	5.3	11.5		13.1
<u>_</u>	24.1	35.7	75.8	3.2/1	2.6	20.6	22.4	6.3		23.8
Sep.	47.8	97.1	34.9	2.8	2.5	15.0	17.9	4.6		27.8
	36.2	29.6	31.1	2.7	2.5	22.0	3.0	3.0		16.3
	14.7	25.2	47.9	4.3	2.6	9.2	2.7	2.8		12.7
Oct.	8.4	44.0	18.1	3.8	2.4	6.8	3.5	4.1		11 6
	34.0	17.8	21.6	6.3	2.3	15.6	3.6	3.3	di se	13.1
	19.1	21.1	20.7	5.7	2.2	6.6	5.1	3.0	. '	10.7
Nov.	12.9	22.1	12.5	18.0	2.3	8.6	5.8	3.0		10.2
.*:	11.8	10.8	11.3	10.9	2.7	7.6	6.3	5.0		8.3
	30.0	14.3	17.8	7.1	12.4	12.3	6:8	57	н на н	13.3
Dec.	30.1	8,9	9.7	6.6	57.1	37.8	13.9	5.2		13.3
	18.1	15.7	6.1	14.2	23.3	24.0	15.6	8 1	- 	16 7
	• • • • • • • • •						~~ • • •	ViJ		12.7

Table 3.310-day Average Discharge of the Bila River
(at Bila)

Remarks, (1 : Estimated discharge by use of interpolation curve.

[2 : Estimated discharge from Tanru Tedong by use of correlation curve.

Year Maximum 95-day 185-day 275-day 355-day Marimum 1974 204.0 20.7 12.8 8.3 3.0 2.9 1975 205.0 20.7 12.8 8.3 3.0 2.9 1975 205.0 20.7 12.8 8.3 3.0 2.9 1977 205.0 10.4 6.0 3.0 2.6 2.2 1978 255.0 10.4 6.8 2.9 2.1 2.1 1978 355.0 10.4 15.8 9.9 2.1 2.1 2.1 1990 129.7 13.5 6.0 2.7 2.1 2.1 Maximum 129.7 13.5 6.0 2.8 2.1 2.7 2.6 Maximum 129.7 13.5 6.0 2.8 3.1 2.7 2.6 1997 303.4 13.5 10.6 12.8 2.2 1.7 1977 505.5 64.1	Bila						
1974 204.0 20.7 11.8 8.3 3.0 1975 305.0 30.4 19.1 31.8 12.8 12.8 1975 305.0 30.4 19.1 31.8 12.8 12.8 1977 1980 14.1 6.8 2.9 2.2 2.2 1977 1980.0 14.1 6.8 2.8 2.1 2.2 1978 159.3 14.1 6.8 2.9 2.1 2.2 2.2 1978 159.3 14.1 6.8 2.9 2.1 2.2 2.	Year	Maximum	95-day	185-day	275-day	355-day	Minimu
1975 305.0 30.4 19.1 12.8 2.1 1975 305.0 10.4 6.8 2.8 2.1 2.1 1977 189.0 14.1 15.5 6.8 2.8 2.2 2.1 1977 189.0 14.1 6.8 2.8 2.1 2.1 2.1 1977 189.0 14.1 6.8 2.8 2.1 2.1 2.1 1977 189.0 14.1 6.8 2.8 2.1 2.1 2.1 1978 159.3 14.1 6.8 5.1 2.7 2.2 3.1 1990 129.7 18.2 10.6 6.8 3.1 2.7 2.6 Maximum 129.7 13.5 6.0 12.8 3.1 2.7 2.6 Maximum 129.7 13.5 64.1 35.2 1.0 2.7 3.1 1978 630.0 59.5 41.6 12.0 7 3.1 3.7 1978 630.0 59.5 41.6 12.0 7 3.1 <	76.44	0 206	20.7	12.8	8.3	3.0	2.9
1975 305.0 30.4 4.0 30.4 4.0 3.0 1976 189.0 14.1 6.8 2.8 2.2 3.0 1977 189.0 14.1 5.8 2.1 3.0 1977 189.0 129.7 14.1 5.8 9.9 5.1 2.7 3.7 1978 159.7 14.1 5.8 9.9 5.1 2.7 2.6 3.7 1978 159.7 18.2 10.6 6.8 9.9 5.1 2.7 2.6 Average 326.7 18.2 10.6 6.8 3.3 2.7 2.6 Maximum 129.7 13.2 10.6 6.8 3.2 2.7 2.6 Maximum 129.7 13.2 6.0 2.8 5.1 2.7 2.6 Maximum 129.7 46.1 35.2 10.7 2.6 3.7 2.7 2.7 2.7 2.7 2.7 3.7 3.7 3.7 <td< td=""><td>+/ 6T</td><td></td><td>> </td><td></td><td>12.8</td><td>4.7</td><td>- H • •</td></td<>	+/ 6T		>		12.8	4.7	- H • •
1976 245.0 14.1 6.8 2.8 2.2 2.2 1977 189.0 14.1 6.8 2.8 2.2 2.2 1978 355.0 14.1 6.8 2.8 2.2 2.2 1978 355.0 14.1 6.8 2.8 2.2 2.7 2.1 1980 129.7 13.5 6.8 5.1 2.7 2.7 2.7 Maximum 355.0 14.1 6.8 5.1 2.7 2.7 2.7 Maximum 129.7 13.5 6.0 2.8 5.1 2.7 2.7 2.7 Maximum 129.7 13.5 6.0 2.8 5.1 2.7 2.6 Maximum 129.7 13.5 6.0 2.8 3.1 2.7 2.6 1975 305.5 64.1 35.2 20.7 5.3 3.7 3.7 1976 30.2 39.6 13.6 10.8 16.0 7.8 3.1 1976 30.2 39.6 19.0 11.6 5.3	1975	305.0	30.4	, LY	2 (2.6	2.5
1977 198.0 14.1 15.8 4.9 5.1 3.7 1978 159.0 14.1 15.8 5.1 2.7 2.7 1978 159.0 122.7 14.1 6.8 5.1 2.7 2.6 1980 122.7 18.2 10.6 6.8 5.1 2.7 2.6 Maximum 152.7 18.2 10.6 6.8 3.1 2.7 2.6 Maximum 122.7 13.5 6.0 2.8 3.1 2.7 2.6 1975 505.5 64.1 35.2 20.7 9.4 3.1 3.7 1976 30.2 42.1 30.9 13.0 12.6 3.1 3.1 1978 530.0 53.2 19.0 12.6 5	1976	245.0	10.4			2.2	2.2
1978 355.0 24.0 15.5 6.8 5.1 2.7 2.7 1980 129.7 14.1 6.8 5.1 2.7 2.6 Avecrage 226.7 18.2 10.6 6.8 5.1 2.7 2.6 Mastimum 355.0 226.7 18.2 10.6 12.8 5.1 2.7 2.6 Mastimum 129.7 13.5 6.0 2.8 5.1 2.7 2.6 Mastimum 129.7 13.5 6.0 2.8 5.1 2.7 2.6 Mastimum 129.7 13.5 6.0 2.8 5.1 2.7 2.6 Mastimum 129.7 13.5 6.1 2.8 5.1 2.7 2.6 Mastimum 129.7 13.5 64.1 35.2 12.0 2.1 3.7 1975 30.2 64.1 35.2 10.8 2.7 3.1 3.1 1975 50.2 64.1 35.2 10.8 14.4 3.1 3.1 1976 50.2 53.2	1077	189.0	14.1	- 0 - 0	> C	n 1 → 1	3.7
Lyro Lyro Lyro Lyro Lyro Lyro Lyro Lyro	- t 	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	24.0	15.5	9.9	, L,	5 E 1 E
1979 159.3 14.1 6.8 5.1 2.7 2.6 Average 226.7 14.1 30.4 19.1 12.7 2.6 Average 226.7 18.2 10.6 6.8 5.1 2.7 2.6 Average 226.7 18.2 10.6 12.8 5.1 2.7 2.6 Maximum 129.7 13.5 6.0 2.8 5.1 2.7 2.6 Markinum 129.7 13.5 6.0 2.8 5.1 2.7 2.6 Markinum 129.7 13.5 64.1 35.2 20.7 9.4 3.7 1975 303.4 44.9 26.9 10.8 2.7 2.1 1977 451.2 42.1 35.2 19.0 12.0 5.3 2.7 2.1 1978 503.7 53.2 39.5 19.0 12.0 5.3 2.7 2.4 2.7 2.5 1980 50.2 2.5 2.5 </td <td>87.6T</td> <td></td> <td>3 1 3 1</td> <td>5 F</td> <td>6.0</td> <td>2.7</td> <td>£ • /</td>	87.6T		3 1 3 1	5 F	6.0	2.7	£ • /
1980 129.7 14.1 6.3 3.1 Average 226.7 18.2 10.6 6.8 3.3 Maximum 355.0 30.4 19.1 12.8 3.3 2.6 Maximum 129.7 13.5 6.0 12.8 3.3 2.7 Maximum 129.7 13.5 6.0 2.8 2.1 3.7 Maximum 129.7 13.5 6.0 2.8 2.2 1.7 Intru Tedons 129.7 13.5 64.1 35.2 $2.0.7$ 5.1 3.7 1975 505.5 64.1 35.2 12.0 9.4 3.1 1977 461.2 44.9 20.7 5.3 2.7 2.3 1978 503.0 532.2 39.6 19.0 12.0 9.4 3.1 1979 530.2 39.6 19.0 12.0 7.8 2.7 2.3 1980 603.7 39.6 19.0 11.6 2.7 2.7 2.7 <td>1979</td> <td>159.3</td> <td>13.0</td> <td>50</td> <td>л (- (</td> <td>2.7</td> <td>2.6</td>	1979	159.3	13.0	50	л (- (2.7	2.6
Average 226.7 13.2 10.6 6.8 3.3 2.6 Maximum 129.7 30.4 19.1 12.8 5.1 3.7 3.7 Maximum 129.7 13.5 6.0 12.8 5.1 3.7 Maximum 129.7 13.5 6.0 2.8 5.1 3.7 Maximum 129.7 13.5 6.0 2.8 2.2 1.7 Maximum 129.7 13.5 64.1 35.2 20.7 9.4 3.7 1975 505.5 64.1 35.2 20.7 9.4 3.1 1977 630.0 59.5 44.9 26.9 10.8 2.7 3.1 1978 630.0 59.5 44.6 19.0 11.6 5.3 2.7 34.4 1978 530.2 64.2 19.0 11.6 20.7 45.2 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7	08 61	129.7	14.1	ð. v	ر • ۲		
Average 226.7 18.2 19.7 12.8 5.11 3.7 Maximum 129.7 13.5 6.0 12.8 5.11 3.7 Tanru Tedong 129.7 13.5 6.0 12.8 5.11 3.7 Tanru Tedong 129.7 13.5 6.0 2.8 2.2 1.7 Tanru Tedong 129.7 13.5 64.1 35.2 $2.0.7$ 2.8 2.2 1.7 Near Maxtanum $95-day$ $185-day$ $275-day$ $355-day$ $Mintm$ 1975 505.5 64.1 35.2 20.7 9.4 3.7 1976 303.4 42.9 26.9 10.8 25.7 2.3 1978 530.0 59.5 42.9 30.6 19.6 12.0 5.3 2.7 2.7 2.5 1979 530.2 39.6 19.0 11.6 6.5 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2					5 7	زی: ا	2.6
Maximum 355.0 30.4 49.4 2.8 2.2 1.7 Maximum 129.7 13.5 6.0 2.8 2.2 1.7 Immum 129.7 13.5 6.0 2.8 2.2 1.7 Immum 129.7 13.5 6.0 2.8 2.2 1.7 Immum 129.7 13.5 64.1 35.2 20.7 9.4 3.1 1975 303.4 44.9 26.9 15.0 35.2 20.7 9.4 3.1 1976 303.4 42.1 35.2 20.7 9.4 3.1 1977 481.2 42.1 35.2 10.8 16.0 2.7 2.1 1978 630.0 59.5 19.0 11.6 7.8 2.7 2.1 1980 603.7 39.6 19.0 11.6 2.7 2.1 Average 510.2 48.2 28.8 15.0 8.0 2.7 2.7 2.7 2.7 <td>Averase</td> <td>226.7</td> <td>18.2</td> <td>- 10 - 10</td> <td></td> <td>5.1</td> <td>3.7</td>	Averase	226.7	18.2	- 10 - 10		5.1	3.7
Maximum 129.7 13.5 6.0 2.5 4.5 Tanru Tedong Maximum 95-day 185-day 275-day 355-day Minim Year Maximum 95-day 185-day 275-day 355-day Minim 1975 505.5 64.1 35.2 20.7 9.4 3.1 1976 303.4 42.1 35.2 15.0 15.0 5.3 2.7 9.4 3.1 1977 481.2 44.9 26.9 10.8 2.7 9.4 3.7 1978 537.2 39.5 19.0 11.6 2.7 2.3 2.7 2.1 1979 537.2 39.5 19.0 11.6 2.7 2.7 2.1 Average 510.2 48.2 28.8 15.0 8.0 8.0 5.2 Average 510.2 48.2 28.8 15.0 8.0 14.4 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7	バッ・ イオンヨンヨ	355.0	30.4	T KT		ار	1.7
Tanru TedonsTanru TedonsYearMaximum95-day185-day275-day355-dayMinim1975S05.5 64.1 35.220.7 9.4 3.1 1975S05.5 64.1 35.2 20.7 9.4 3.1 1976303.4 44.9 26.9 10.8 2.7 5.3 1977 481.2 42.1 30.9 10.8 2.7 5.3 1978 630.0 59.5 41.6 12.0 5.3 2.7 1979 537.2 39.6 19.0 11.6 5.2 1980 603.7 39.6 19.0 11.6 5.2 Average 510.2 48.2 28.8 15.0 8.0 530.0 64.1 19.0 11.6 2.7 2.7	Minimum	129.7	13.5	0.0	6 • C •		
Year Maximum 95-day 185-day 215-day 303-day 30-day 1975 505.5 64.1 35.2 20.7 9.4 3.1 1975 303.4 44.9 26.9 15.0 5.3 3.1 1976 303.4 44.9 26.9 10.8 2.7 5.3 3.1 1977 481.2 59.5 44.9 30.9 10.8 2.7 5.3 3.1 1978 630.0 59.5 19.0 19.6 12.0 5.3 2.7 14.4 1979 537.2 39.6 19.0 11.6 7.8 2.3 1980 603.7 39.6 19.0 11.6 5.3 2.1 Average 510.2 48.2 28.8 15.0 8.0 5.3 Maximum 630.0 64.1 41.6 20.7 16.0 5.1 14.4 530.0 530.0 14.4 14.4 2.7 2.1 <t< th=""><th>Tanru Tedon</th><th>E.</th><th></th><th></th><th></th><th></th><th></th></t<>	Tanru Tedon	E.					
1975 505.5 505.5 64.1 35.2 20.7 9.4 1976 303.4 44.9 26.9 15.0 5.3 3.7 1978 630.0 59.5 44.9 26.9 10.8 2.7 3.7 1978 530.2 59.5 44.9 30.9 10.8 2.7 3.7 1978 530.0 39.2 19.0 19.6 12.0 5.3 2.7 1980 603.7 39.2 19.0 11.6 7.8 2.7 1980 500.2 48.2 19.0 11.6 5.8 5.8 1980 500.1 48.2 12.0 14.4 5.4 1980 500.2 48.2 19.0 11.6 5.8 5.8 1980 50.0 11.6 5.5 5.4 5.4 5.4 1980 50.0 14.4 5.5 5.5 5.5 5.5 1980 11.6 5.5 5.5 5.5 5.5 5.5 14.4 5.0 14.4 5.5 5.5	Year	Maximum	95-day	185-day			
1975 303.4 44.9 30.9 15.0 5.3 1976 303.4 44.9 30.9 10.8 2.7 2.1 1977 481.2 42.1 30.9 10.8 2.7 2.1 1978 630.0 59.5 44.9 30.9 10.8 2.7 2.1 1978 630.0 537.2 39.2 19.0 11.6 7.8 2.1 1979 50.7 39.6 19.0 11.6 5.3 5.8 5.3 1980 603.7 39.6 19.0 11.6 5.8 5.8 Average 510.2 48.2 28.8 15.0 5.8 5.8 Maximum 530.0 64.1 41.6 20.7 16.0 5.2 19.0 11.6 20.7 16.0 5.2 5.2 19.0 11.6 20.7 14.2 5.2 19.0 11.6 2.7 2.1 5.2 19.0 11.6 2.7 2.1 5.2			64 1	35-2	275-day	355-day	Minim
1976 30.9 10.8 2.7 1977 481.2 42.1 30.9 10.8 1978 630.0 59.5 41.6 19.6 19.6 1978 537.2 39.2 19.0 11.6 2.7 1979 537.2 39.6 19.0 11.6 5.8 1980 603.7 39.6 19.0 11.6 5.8 Average 510.2 48.2 28.8 15.0 8.0 5.3 Maximum 530.0 64.1 41.6 20.7 16.0 5.3 19.0 11.6 2.7 14.4 19.0 11.6 2.7 2.3	c/ 61		6 77		275-day 20.7	355-day	Minim 3.1
1977 401.4 19.6 16.0 14.4 1978 630.0 39.5 11.6 12.0 2.1 1979 537.2 39.2 19.0 11.6 5.8 2.1 1980 603.7 39.6 19.0 11.6 6.5 5.8 Average 510.2 48.2 28.8 15.0 8.0 5.2 Maximum 530.0 64.1 41.6 20.7 16.0 14.4 Maximum 530.0 64.1 41.6 20.7 16.0 5.2 19.0 11.6 20.7 16.0 2.7 2.1	1976	· 01 · 1	- 2 2	26.9	275-day 20.7 15.0	355-day 5 . 3	Minim 3.7
1978 630.0 39.2 19.0 12.0 7.8 2.1 1979 537.2 39.2 19.0 11.6 6.5 5.8 1980 603.7 39.6 19.0 11.6 6.5 5.8 Average 510.2 48.2 28.8 15.0 8.0 5.2 Maximum 630.0 64.1 41.6 20.7 16.0 14.4 Maximum 630.0 30.7 19.0 11.6 2.7 2.1	1977	404.4	п I I I I I I I I I I I I I I I I I I I	26.9 30.9	275-day 20.7 15.0 10.8	355-day 5:3 2.7	Xini# 3.1 2.5
1979 537.2 39.4 19.0 11.6 6.5 5.8 1980 603.7 39.6 19.0 11.6 6.5 5.2 Average 510.2 48.2 28.8 15.0 8.0 5.2 Maximum 630.0 64.1 41.6 20.7 16.0 14.4 Maximum 530.1 19.0 11.6 2.7 2.1	1978	0.00		26-9 30-9	275-day 20.7 15.0 10.8 19.6	355-day 9.4 5.3 2.7 16.0	Xini# 3.1 14.4
Average 510.2 48.2 28.8 15.0 8.0 5.3 Maximum 630.0 64.1 41.6 20.7 16.0 14.4 Maximum 630.0 70 70 19.0 11.6 2.7 2.1	४ घ १८ घ	537.2 603.7	>	440 44 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	275-day 20.7 15.0 19.6	355-day 5.3 2.7 16.0 7.8	Mini# 3.1 2.5
Average 510.2 48.2 28.8 15.0 0.0 14.4 Maximum 630.0 64.1 41.6 20.7 16.0 14.4 Maximum 630.0 10.7 19.0 11.6 2.7 2.1		- 1	39.2 39.6	26.9 41.6 19.0	275-day 20.7 15.0 10.8 19.6 12.0 11.6	355-day 9.4 5.3 7.8 6.5	Minite 3.1 2.5 5.8
AVELAGE Jong 64.1 41.6 20.7 Lo.U Lo.U Maximum 630.0 64.1 41.6 20.7 2.7 2.1			39.2 39.6	26 24 29 29 20 29 20 20 20 20 20 20 20 20 20 20 20 20 20	275-day 20.7 15.0 10.8 19.6 12.0 11.6	355-day 9.4 7.8 7.8	Xinia 3.7 2.5 5.8
	Average	C - C - D	39.2 48.2	22 199-06-9 28-8 00699	275-day 20.7 15.0 10.8 19.6 12.0 11.6	355-day 9.4 5.3 7.8 6.5	Xinia 2.5 5.8 5.8
	ベッイ・ヨーヨ	510-2	39.2 48.2 44	22 24 24 24 24 24 24 24 24 24 24 24 24 2	275-day 20.7 15.0 19.6 12.0 11.6	355-day 9.4 5.3 16.0 7.8 6.5 8.0	Minia 24.5 5.1

Table 3.4 Discharge Duration

(m3/000)

				_		- itina
Table	15	Accumilated	Rainfalls	of	11	Stations
10010	9.0	neconterenter				

											(Ur	it: pun)
Year	Enrekang	Siva	Moroangin	Rappang	Bila	Malimpong	Paría	Senkang	Batu-Patu	Ропралиа	Tanru Tedong	Average
1033	3 167	3 430	3 475	2.758	3.195	2,408	2,734	1,808	1,823	2,132	2,717	2,603
1033	2,012	3 574	1, 145	1.854	2.840	2.118		1,509	1,626	1,732	2,005	2,263
3774	3 960	2 141	3 490	2.082	2.747	2.070	2,417	1,870	1,868	1,822	1,981	2,222
1014	2 367	1 642	2 763	2,122	2.269	2.044	2,307	1,902	1,660	2,674		2,196
1025	2,337	2,002	3 222	2.555	3,403	2.278	2,482	2,120	2,173	2,214	2,676	2,527
1936	2,410	*,502	2 201	1.658	1.784	2.034	2,039	1,683	1,439	1,840	2,051	1,973
1937	2 329	2 295	7 681	.,	3.171	1.843	1,921	1.660	1,907	1,677		2,176
1918	2 222	2 779	2 9 9 3 9	7.219	2.632		2,554	2,597	2,629	2,150		2,533
1033	2 234	* , / 10	2 082	.,,	-1		2,216	1,493	1,576	1,588		1,682
1940	1 7/9	2 489	3.774	1.728		1.601		1 527	1,502	1,536	1,699	2,210
Total	21,843	20,854	28,519	16,957	22,101	16,396	18,670	18,169	18,223	19,565	13,129	214,421
Хеал	2,184	2,054	2,852	2,120	2,763	2,050	2,334	1,817 ccumilat	1,077	1,327		
Yeər			Noroargi	n		Bila			Serkan	9	ិ ដែល	ru tedono
1931			3,475			3,195	,		1,808			2,717
1932			6,820			6,035	•		3,317			4,722
1933			19,309			8,782	2		5,167			6,703
1934			13.063			11,051			7,059			6,703
1935			16.300			24,454	۱.		9,269			9,379
1935			19,091			16,238	•		10,692	·	· · · · · ·	11,439
1937			21.774			19,409	;		12,552			11,430
1936			24,713			22,101	L'		15,149			11,430
1939			26,795			22,101	ł		16,642			11,430
1940			28,517			27,101	i i		18,169			13,129

Remarks: This table is formulated by using correlation method between famru Tedong and Purpanua. Correlation equation is $Y = 799.22 + 1.5896 \times X$ (X: Eurpanua, Y: Tenru Tedong).

												(Usit	(A3)
		Jan.	Feb.	Mar.	Ъşс.	Хау	Jun.	301.	1-3-	Sep.	Oct.	Nov.	Dec.
1.	Frecipitation	21	83	155	491	619	320	111	259	3	59	70	162
2.	Evaporation	97	92	126	1(-8	122	168	103	323	3€	107	94	103
3.	3 - 2	-76	-9	27	373	437	212	2	316	-33	-48	-24	59
4.	Soil Moisture	124	115	142	250	200	250	200	200	167	319	95	154
5.	Surplus	0	C	o	315	497	ž12	2	136	0	0	0	0
€.	Infiltration	0	Ó	0	95	143	€€	1	41	6	0	0	0
7.	Infiltration x 0.8	0	0	0	76	119	51	Ó	33	0	0	0	
8.	K x V(S-1)	4	2	1	3	38	79	65	33	33	16	8	4
9.	Storage	· 4	2	1	76	157	130	65	65	33	16	8	4
10.	$V{S} = V{S} - V{S-1}$	-3	-1	-1	47	51	-17	-40	0	-20	-10	-5	0
11.	Baseflow	3	1	1	43	56	81	41	43	20	10	5	0
12,	Direct Rusoff	0	0	. Q	221	348	149	1	95	Ó	ō	0	0
	Estimated Q	3)	1 -	263	{{{ } { }5	223	42	136	20	10	5	. 0
	Coserved Q	. 1	1	13	271	{ {}	290	41	167	8	6	2	1

Table 3.6 Gilirang Water Balance (1980)

Remarks: 1) Infiltration/Surplus + 0.30 2) Initial K x V(X-1) + 4.0 3) V(X) = (V(X) - V(X-1))/0.80

.

Table 3.7 Kalola Water Balance (1/4)

Summary												(Unit:	* 3/sec)
Year	Jan.	Feb.	Mar.	Açr.	Kay	Jun.	Jul.	Aug.	Sep.	oct.	Nov.	Dec.	Averaçe
1013	1.01	11.45	1.08	13.90	5.92	16.67	3.05	18.89	9.97	5.70	9.49	2.90	8.34
1074	0.03	0.05	0.02	2 43	6.35	4.74	5.84	0,79	12.93	6.26	1.55	0. 98	3.50
1075	2.41	4.09	1.09	10.44	3.98	4.99	4.03	5.97	3.75	6.15	0.84	0.64	4.03
1976	0.03	0.05	0.33	4.60	2.50	13.64	8.45	2.72	4.44	3.79	3.49	0.97	3.74
1977	0.03	0.05	0.02	4,25	5.69	8,17	0.97	9.16	1.04	0.50	4.34	1.01	2.94
1978	1.21	2.04	4.13	5.48	17.93	18.95	7.03	3.85	1.71	2.11	1.47	0.42	5.53
1979	3.07	0.51	7.52	7.20	3.32	19.66	4.82	1.23	5.92	0.76	Ö.47	4.78	4.94
1980	1.08	2.33	3.07	18.43	7.73	7.72	2.12	3.21	0.59	0.28	0.15	0	3.89
1981	0.09	0.05	2.65	9.83	13.57	1.80	22.76	2.34	7.57	5.54	1.67		6.18
average	1.02	2.29	2.21	8.51	7.44	10.70	6.56	5.35	\$.32	3.45	2.60	1.46	4.74
MANIFEM	3.07	11.45	7.52	18.43	17.93	19.66	22.76	18.89	12.93	6.26	9.49	4.78	
Ninipa	0.09	0.05	0.02	2.41	2.50	1.80	0.97	0.79	0.59	0.28	0.15	0	

1973									•			(Unit	: 123)
· · · · · · · · · · · · · · · · · · ·	Jan.	Feb.	Har.	Apr.	Kay	Ĵun.	J31.	Aug.	Sep.	ost.	к м.	Dec.	Annoal
1. Frecipitation	119	354	126	459	235	485	143	556	343	225	302	127	3,481
2. Evaporation	95	ĊĆ	123	124	118	98	113	95	153	122	96	317	1,344
1 - 2	24	264	3	335	317	388	30	461	195	103	206	10	
4. Soil Moisture	200	200	200	200	200	200	200	200	200	200	200	500	
5. Surpius	24	264	3	335	117	338	30	461	195	103	206	10	
6. Infiltration	7	79	ì	160	35	117	- 9	138	53	31	62	3	
7. Tofiltration x 0.8	6	63	1	63	28	93	2	111	47	25	49	2	
8 X X V(N-1)	3	4	34	17	49	38	€6	37	76	60	42	46	
9 Storace	9	63	35	98	77	132	73	147	120	85	92	46	
$y_{1} = y_{1}(y_{1}) - y_{1}(y_{2}-1)$	2	. 37	-21	39	-13	34	-37	46	-17	-22	4	-54	
11 Esseflow	5	42	22	61	48	87	46	92	75	53	57	57	
12. Direct Rupoff	17	185	2	234	: 82	272	21	323	137	72	144	7	
Estimated O	22	227	24	295	130	354	67	415	212	125	202	64	2,137
(bserved Q (x3/sec)	1.01	in.45	1.08	13.90	5.92	36.67	3.05	18.89	9.97	5.70	9.49	2.90	

974										1		(fri	L: m)
	Jan.	Feb.	Mar.	Apr.	Kay	Jun.	Jul.	Aug.	sep.	Oct.	NOV.	Dec.	Anno 91
1. Precipitation	37	45 57	60 75	249 313	220 277	159 200	196 246	- 4 5 ;	442 556	200 251	85 107	41 52	1,738 2,165
3 Discosting	45	90	123	124	118	93	113	95	153	122	96	117	1,344
2. Evaporación	-18	-33	-48	169	159	102	133	-90	403	129	n	-65	
3. 1 * Z	11.7	119	21	200	200	200	200	110	200	200	200	135	
4. SOIT ADISCOLE			0	60	159	102	133	0	313	129	n	0	
5. Surplus	~	Ň	ŏ	18	48	31	40	Û	91	39	3	0	
6. Infiltration	· ·	0	ŏ	14	38	24	32	0	75	31	3	0	
A Y - WOW-11	3	2	1	0	7	23	24	28	14	45	38	20	
0. F.R. 913-11	3	2	3	15	45	47	56	28	83	75	49	20	
$10 u(w) = u(w) = u(v_{-})$	-2	-1	0	9	19	3	5	-17	38	-\$	-22	-21	
$10. \forall \{n\} = \forall \{n\} = \forall \{n-1\}$		1	0	9	28	29	35	17	56	47	25	21	
12. Direct Sotoff	•	0	0	42	111	71	93	Ó	219	90	8	0	
			0	51	139	101	128	17	275	137	33	23	957
ESTIMATES Q (Estimates Q (Estimates Q	0.03	0.05	0.07	2.41	6.35	4.74	5.84	0.79	12.93	6.26	1.55	0.98	

Table 3.7 Kalola Water Balance (2/4)

1076								•				(Das	ti kal
<u></u>				Apr.	Kay	ქსე.	Jul.	Aug.	Sep.	Oct.	NOV.	Dec.	Annual
	Jan.	100.			165	203	198	232	226	264	74	115	2,356
1. Precipitation	155	179	140	378	118	98	313	95	153	122	96	117	1,344
2. Evaporation	93 20	90 69	- 125	254	- 71	105	85	137	73	142	-22	-5	· ·
3. 1 - 2 A Toil Maistore	200	- 200	200	200	200	200	200	260	200	200	178	172	
5 Surplus	60	89	17	254	ท่	105	85	137	73	142	¢	. 0	
6. Infiltration	18	27	5	76	23	32	26	41	22	43	•	0	
7. Infiltration x 0.8	14	21	- 4	61	18	25	20	33	18	34	•••••	0	
8. X x V(N-1)	3	9	15	10	35	27	26	23	28	23	28	. 14	
9. Storage	17	30	19	71	54	52	46	56	- 46	57	28	14	.t
10. $V(N) = V(S) - V(N-1)$	· 7	8	-7	32	-10	-1.	- 4	6	7	. 7 	-18	-14	
11. Baseflow	- 11	19	. 12	- 44	34	33	29	35	28	30	. 10	- *	· ·
12. Direct Runoff	42	62	32	178	54	74		95					
Estimated Q	53	81	24	222	÷ 87	106	69	131	80	135	18	14	1,039
Observed Q (a ³ /sec)	2.41	4.03	1.09	10.44	3.98	4.93	4.03	5.97	3.75	6.35	0.84	0.€4	

1976	5											::	(Voi	t: 1#)
		Jan.	Feb.	Yar.	Apr.	Kay	Jun.	391.	λ≃g.	Sec.	oct.	NOV.	Dec.	Aniseal
1.	Precipitation	43	23	217	243	166	423	265	107	133	187	192	39	2,055
2.	Evacoration	71	100	115	129	j 12	98	81	70	42	107	223	43	1,097
3.	1 - 2	-23	-71	102	114	54	331	184	37	91	60	69	-10	
4.	Soil Moisture	177	106	200	200	200	200	200	200	200	200	200	390	
5.	Surolus	0	0	8	114	54	331	164	37	91	63	€3	Ó	
6.	Infiltration	0	• 0	ź	34	16	93	55	11	27	24	21	0	÷
7.	Infiltration x 0.8	0	0	2	27	13	79	<1	9	22	19	17	Ó	
8.	K x V(K-1)	3	. 2	1	3	14	14	47	45	÷ 27	24	22	19	· 4
9.	Storate	3	2	3	- 29	27	93	91	54	49	44	38	19	
10.	V(S) = V(S) - V(S-1)	+2	-1	1	16	-1	43	-1	∔23	' -3	-3	-3	-20	
11.	Baseflow	2	1	2	18	17	58	57	34	31	27	-24	20	· . ·
12.	Direct Rusoff	0	. 0	6	63	38	232	129	26	84	56	46	Ó	
Est	irated Q	2	1	7	93	55	293	165	60	94	83	72	20	\$58
Cios	erved Q (s ³ /sec)	0.09	0.05	ò.33	4.60	2.50	13.64	8.45	2.72	4.44	3,79	3.40	0.92	

1	9	7	7	
÷.,		-	_	

1977	•					:	· · ·	-				1	(Un i	ti mo)
		Jan.	Feb.	Zar.	Apr.	Kay	Jun.	301.	λog.	Sep.	Get.	Nov.	Dec.	Arrest
1.	Precipitation	95	50	83	280	238	241	0	289	0	19	245	25	1,617
2.	Evaporation	108	8E	71	138	100	54	- 15	50	20	22	120	70	854
3.	1 - 2	-12	-35	12	142	138	187	-15	239	-20	3	125	5	
4.	Soil Moisture	168	152	164	200	200	200	185	200	189	177	200	200	
5.	Surplus	0	0	.0	106	138	187	0	224	0	Ó	102	5	
€.	Infiltration	. 0	Ó	0	32	41	55	0	67	0	0	31	2	
7.	Infiltration x 0.8	0	0	0	25	33	45	G	54	· 0	6	24	1	
8.	K x V(S-1)	3	2	3	0	13	23	34	17	35	- 18	9	: 17	÷.,
9.	Storage	Э	2	1	26	45	€.3	34	71	35	18	33	18	
10.	V(N) = V(N) - V(N-1)	-2	-1	0	16	13	14	-21	23	-22	-31	10	-17	
11	Baseflow	: 2	≥ 1	0	16	23	42	21	44	22	11	21	19	
12.	Direct Runoff	0	Ó	0	. 74	95	- 111	0	157	Ó	0	- 21	· 4	
Esti	Bated Q	2	1	ò	95	125	174	21	201	22	11	92	22	762
()òse	rved Q (a3/sec)	0.03	0.65	0.02	4.25	5.69	8.17	0.97	9.16	1.04	0.50	4.31	1.01	

Table	3.7	Kalóla	Water	Balance	(3/4)
		the second se		the second s	

	:												
	Tab	le 3.	7 <u>K</u>	alóla	Wate	er Bal	ance	(3/4)		. *	·		
1978					•								
	Jan.	Feb.	Har.	Apr.	Мау	JUB.	Jul.	AU3.	Sep.	oct.	Nov.	Uni Dec.	Li mal Annual
1. Precipitation	64	80	199	196	563	518	230	167	166	89		 43	2 110
2, Evaporation	35	36	98	71	117	92	110	169	89	49	20	13 69	904
3. 1 - 2	29	44	101	125	446	426	120	58	17	- 40	26	-26	244
4. Soll Moisture	200	200	200	200	200	200	200	203	200	200	200	174	
5. Surplus	29	44	101	125	445	426	120	58	17	40	76		
6. Infiltration	9	13	30	. 38	334	328	36	17	ŝ	12	. 8	0	
7. Infiltration x 0.8	7.	- 13	24	30	107	102	23	14	4	10	6		
8. K x V(N-1)	. 3	Ś	8	16	23	65	84	56	35	20	15	10	
9. Storage	10	16	32	46	130	167	112	70	39	- 29	21	10	
10. $V(N) \neq V(N) - V(N-1)$	2	. 3	10	. 9	\$3	23	-34	-26	-19	-6	-5	-9	
11. Esseflor	6	10	20	29	81	105	70	44	24	18	13		
12. Direct Runoff	. 20	: 31	\cdot n	83	312	298	84	41	12	28	18	0	
Estizated Q	27	41	91	116	394	103	154		36		11	<u> </u>	1.432
Coserved Q (# ³ /sec)	1.21	2.04	4.13	5.48	17.93	18.95	7.03	3.85	1.71	2.11	1.47	0.42	
<u>1979</u>			· ·	• <u>•</u> ••••••••••••••••••••••••••••••••••					<u>-</u> -		•	·	
		Feb	Xar.	100								(Uni	t: 153)
5					r.ay			- N.9.				Dec.	AJ J 43 81
2 Duentation	173	. 11	230	259	1/1	568	431	53	253	26	113	194	2,358
		58	100	88	103	94	112	70	104	. 39	98	35	1,692
J, J = Z		. 4	190	161	62	474	74	-17	149	-}3	15	100	
t. Solt Moisture	200	200	200	200	200	200	200	183	200	187	200	200	
D. Suipius		4	199	161	62	474	74	0	132	0	2	100	
	23	1	57	43	19	147	22	0	40	Ó	1	30	
A THE WAY Y	18	1	46	39	15	114	18	0	32	• 0	0	24	
G. K X V[X-1]	3	n 11	6	26	32	24	69	43	22	27	13	7	
J. SLOTAGE	71	12	51	64	47	137	86	43	53	27	14	31	
10. $V(N) = V(N) = V(N-1)$	10	-6	25	8	-11	55	-32	-27	6	-17	-8	-5	

11. Easeflow 7 32 12. Direct Runoff 3 133 Ó Ł Estimated Q 10 165 10 105 1,276 Observed Q (m3/sec) 3.07 0.51 7.52 7.20 3.32 19.66 4.82 1.23 5.92 0.76 0.47 4.78

1	930	
-		

······································	.											lUni	t: 123)
	Jan.	Feb.	Bar.	Apr.	Хзу	Jun.	391.	A39.	Sep.	Oct.	Nov.	Dec.	Annea
1. Frecipitation	80	254	187	555	268	261	136	210	5	32	88	143	2,116
2. Evaporation	54	101	'n	304	213	104	113	145	41	64	69	103	1,125
3. 1 - 2	26	53	73	451	Ì55	157	23	65	-39	- 32	19	40	•
4. Soll Bolsture	200	500	200	200	200	200	200	200	361	129	148	163	
S. Surplus	26	53	73	451	155	157	23	65	O	0	Ò	· 0	
6. Infiltration	8	16	22	335	47	47	7	20	Ð	Ū.	0	0	
7. Infiltration x 0.8	6	13	18	1(8	37	38	6	16	¢	0	0	0	
8. X x V(8-))	3	1.4	- 9	.13	61	49	43	24	20	10	5	3	
9. Storage	9	37	26	121	98	81	49	40	20	10	5	3	
10. V(S) = V(S) - V(S-1)	2	\$	- 6	60	-15	-1	-24	-6	-13	-6	-3	Ó	-
11. Baseflow	Ś	- 11	36	76	£1	54	31	25	13	6	3	Õ	
12. Direct Runoff	19	37	51	316	109	110	16	46	0	Û	0	0	
Estimated Q	24	48	67	391	170	164	47	n	73	6	3	0	1,003
Otserved Q (#3/sec)	30.6	2,33	3.07	10.43	7.73	7.72	2.12	3.22	0.59	0.28	Ó. 15	0.00	

Table 3.7 Kalola Water Balance (4/4)

1981	La construction de la constructi												41In C	te mi
		Jan.	Feb.	Har.	Apr.	. May	ຽນກໍ	. Jul.	Aug.	Sep.	Oct,	Nov.	Lec.	Arioua1
1.	Precipitation	Ó	21	242	347	435	109	703	20	249	212	93	102	2,548
2.	Evaporation	32	59	104	106	109	105	136	23	87	98	81	123	1,091
3.	3 - 2	- 32	-38	138	241	326	4	567	3	162	114	37	-21	
4.	Soil Moisture	168	130	200	200	200	200	200	197	200	200	200	179	
5.	Serplus	0	0	68	241	326	4	567	o	159	114	17	· 0	
6.	Infiltration	0	0	20	72	98	1	170	• • •	48	34	5	0	
7.	Infiltration x 0.8	0	. O	16	58	78	1	135	0	38	27	4	Ď	
е.	X x V(N-1)	3	2		. 9	33	- 56	28	82	- 41	€D.	33	16	
9.	Storage	3	2	17	66	1)1	57	164	82	79	67	38	18	· - :
10.	V(N) = V(N) + V(N-1)	-2	-1	10	31	28	-34	67	-51	-2	-8	-18	-14	
i 1. ;	Basefice	2	· 1	'n	41	70	35	103	51	50	42	23	14	
15'	Direct Runoff	0	0	48	169	228	3	397	0	$\cdot \mathbf{m}$	80	12	Ó	;
Esti	mated Q	2	1	58	210	293	38	500	51	161	122	35	14	1.470
Cose	rved Q (x3/sec)	ō.09	0.05	2.65	9.89	13.57	1.80	22.76	11.37	5.32	1.38	0.20	0.62	

Remarks: For August 1975 - June 1981, the evaporation was estimated based on the potential evapotranspiration of Sengkang; for Jacuary - July 1975 and July - December 1983, the average monthly potential evapotranspiration on two stations (Sengkáng and Kanyuara) was adopted for estimation.

Table 3.8 Rainfall in the Kalola River Water Balance

•	1973		1974		1975					1617			
Bonth	Painfall of Tantu Tedong	Estimated Rainfall	Rainfall of Tanru Tedong	Estimated Painfall	Rainfa Tanru Tedong E	ll of Isrukku	Estimated Fainfall	Painfall of Tanru Tedong	Estimated Painfall	Rainfall Of Tanru Tedong	Estimated Fainfall		
1	95	319	37	47	5	205	155	38	48	76	96		
2	282	354	45	57	65	216	179	23	29	40	50		
3	100	150	60	75	45	172	140	173	217	66	83		
4 -	365	459	249	313	199	438	378	193	243	223	280		
5	187	235	220	277	360	140	195	132	165	189	238		
6	389	486	159	200	259	184	203	341	429	192	241		
7	114	343	195	245	195	193	198	211	265	ŭ	0		
8	412	556	4	·	230	232	232	85	107	230	283		
9	277	348	442	556	358	182	228	106	133	0			
10	179	225	200	251	274	261	264	143	187	iš	19		
11	240	302	85	107	6	87	74	153	192	195	245		
12	101	127	41	52	37	137	112	31	33	60	75		
• •		1978		1979			192	30		1981			
Bòsth	Rainfa of Tan Tedop	11 ru Estizate Rainfall 3	d Pai Tanr Tedo	nfall of V Barukku	Estimated Painfall	1 1 7	ainfall of first Earsto dong	Estirat v Rainfal	ed Pain 1 Tenn 1 Tedor	nfall of Barukka	Estimated Painfall		
1	51	64	. 17	225	173		95 75	80	0	0	6		
2	64	60	51	79	72		79 179	154	13	23	21		
3	158	199	147	337	290	2	60 163	187	270	232	242		
- 4	156	196	232	26.8	253	4	45 592	· \$55	117	424	347		
5	448	\$63	315	191	171	2	78 24	268	484	418	435		
6	412	518	474	573	568	2	68 259	263	211	75	103		
·			•		·				Rain Tanri Tedor	fall of Bila	Estirated Fainfall		
7	183	230	100	215	166		14 177	136	735	664	637		
8	133	167	31	60	53	3	00 247	210	_	•	20		
9	87	106	437	192	253		0 2	2	249	217	233		
10	71	63	0	35	26		18 36	32	212	225	219		
n	44	55	75	125)13	1	67 61	58		148	173		
12	34	43	່າ		104		01 100	142					

Ferarks: For '73, '74, '76, '17 and '78, estimated rainfall = rainfall of Tanru Tedong x 1.25; refer to Fig.

5.10. For '75, '79 and '80, estimated rainfall = rainfall of Tahru Tedong x 0.25 + rainfall of Earutku x 0.75. For the period from Jahuary and July in 1981, estimated rainfall = (rainfall of Tahru Tedong + rainfall (r = 1.1)of Bila) x 1/2. The precipitation of August 1981 is rainfall recorded at Sulu Central because of no other available

data.

Table 3.9 Evaporation in the Kalola River Water Balance

	· · · · · · · · · · · · · · · · · · ·		÷ .									(a	ait: m)
Year	Jan.	Feb.	Mar.	Apr.	Хзу	Jun.	301.	Aug.	Sep.	Oct.	Nov.	Dec.	Asaua)
3973	95	90	123	324	116	98	113	95	153	122	96	117	1,344
1974	95	93	123	254	118	98	333	95	153	122	96	117	1,344
1975	95	90	123	124	118	98	113	95	153	122	- 96	317	3,344
1976	5 71	100	115	129	215	98	81	70	42	107	123	49	1,097
1977	108	86	n	138	160	54	15	50	20	22	120	70	854
1978	35	36	98	21	117	92	110	109	89	49	23	69	904
1979	96	€8	100	98	103	94	112	70	104	39 .	98	94	1,082
1980	SE .	101	214	104	223	204	323	145	41	64	69	103	1,125
1981	32	53	304	106	109	105	136	23	87	98	81	323	1,094
Average	76	¢Э	108	113	113	93	101	£4	94	83	90	95	1,130

BIIA					1
Time			Discharge (m ³ /	sec)	
<u>(hr)</u>	5-yr.	20-yr.	100-yr.	200-yr.	1000-yr.
• •	• 0	0	0	0	0
1	122	157	197	208	250
2	243	313	393	417	500
3	365	470	590	625	750
4	487	627	787	833	1,000
5	608	783	983	1,042	1,250
6	730	940	1,180	1,250	1,500
. 7	584	752	944	1,000	1,200
8	467	602	755	800	960
9	374	481	604	640	768
10	299	385	483	512	614
11	239	308	387	410	492
12	191	246	309	328	393
13	153	197	247	262	315
14	122	158	198	210	252
15	98	126	158	168	201
16	78	101	126	134	161
17	63	81	101	107	129
18	50	65	81	86	103
19	.40	52	65	69	82
20	32	41	52	55	66
21	26	33	42	44	52

Table 4.1 Probable Plood Hydrograph

Ka	1	0	1	ā
_	_	_		_

Time	······································		Discharge (m3/	sec			
(hr)	5-yr.	20-yr.	100-yr.	200-yr.	1000-yr		
0	0	0	0	 			
1	76	97	122	129	154		
2	152	194	244	258	PCT		
3	228	291	366	200	300		
4	304	388	488	516	402		
5	380	485	610	545	010		
6	304	388	488	516	770		
7	243	310	300	010	616		
8	195	248	212	913	493		
9 -	156	199	312	330	394		
10	125	159	200	264	315		
11	100	122	200	211	252		
12	80	167	160	169	202		
13	64	102	128	135	161		
14	51	61	102	108	129		
15	- 31	C0	82	87	103		
16	22	22	65	69	83		
17	33	42	52	55	66		
10	20	33	42	44	. 53		
10	21	27	34	35	42		
17	11	21	27	28	72		
20	13	17	21	22			
-21	11	14	17	18	22		
	Flood		Peak	Time	Rai	nfall	Runoff
------	-------	-------	--	----------------------------	----------------------------	---------------------------	-----------------------
Year	Month	Date	Discharge Qp <u>/1</u> (m ³ /s)	Concentration T (hr)	Daily R24/2 (nm/day)	Intensity r (mm/hr)	Coeffi- cient f
1981	Sep.	6	110	7	50	4.74	0.70
1981	Sep.	° 9 °	200	7	76	7.20	0.82
1981	Oct.	8	110	б	35	3.67	0.87

Table 4.2Runoff Coefficient of the Kalola River Basin
(at Kalola W.L Station)

Remarks, /1: observed discharge at Kalola W.L. station

/2: basin average daily rainfall estimated from rainfalls at Bila and Tanru Tedong

Catchment area: 122 km²

Table 4.3	Runoff	Coeffici	ient c	of th	e Bila	River	Basin
		(at	Bila	W.L	Statio	n)	

	Flood	· · ·	Peak	Time	Rai	nfall	Runoff
Yéar	Month	Date	Discharge $\frac{Q_p}{(m^3/s)}$	Concentration T (hr)	Daily R ₂₄ /2 (mm/day)	Intensity r (mm/hr)	Coeffi- cient f
1974	Sep.	11	505	3	91	15.17	0.32
1974	Sep.	12	680	8	94	8,15	0.79
1978	Apr.	28	660	6	75	7.87	0.80
1979	June	9	555	6	85	8.92	0.59
1979	Sep.	11	590	6	90	9,45	0.59
1981	May	14	565	6	89	9.34	0.57
				· .		Average	= 0.6

Remarks, /1: observed discharge at Bila W.L. station

/2: basin average daily rainfall estimated from rainfalls at Bulu Cenrana, Tanru Tedong and Barukku

Catchment area: 379 km²

Table 4.4 Probable Flood Discharge at Kalola Dam Site

Return period (year)	Daily rainfall on the Kalola river (mm/day)	Rainfall intensity r (mm/hr)	Runoff coefficient f	Flood Discharge Q (m ³ /see)
1,000	226	26.8	0.85	772
200	189	22.4	0.85	645
100	178	21.1	0.85	608
20	142	16.8	0.85	484
Ś	011	13-0	0.85	374

Table 5.1 Monthly and Yearly Average Water Level of Lake Tempe

							•						
Year	Jan.	Чөр.	MAY.	Apt.	Yex	Jun.	out.	Aug.	Sep.	œt.	Nov.	280	ADDUAL
1968	١	6.215	5.865	6.795	5.815	6.445	7.115	7.855	6.595	4.725	4.775	5.155	6-105
1969	5-975	5.945	5,805	6.485	7-145	8.025	6.975	6.095	5.525	4.615	4.465	1	\$60.95
1970	5.539	5.485	6.515	5.715	6.635	8.675	7.785	7.305	6.165	5,605	5.055	5.445	6.325
1971	5.725	5.595	5,995	5.115	4.285	5,545	6.135	6.275	6.675	6.725	6.365	6, 355	5,895
1972	8.035	7.985	6.975	5.615	4.615	:				•			
1975	(2.156)	(5.579)	(2-336)	(2.341)	(616.3)	(7.775)	(1.027)	(316.7)	(6.775)	(6-710)	6.200	5,652	6-307
1976	5.624	5.071	4.922	4.862	5.014	5,688	6.207	5.002	4.057	4.100	4,035	4.482	4.922
1977	5.953	6.473	6.713	6.473	5.827	111.7	6.785	5.008	3.938	(3,462)	(3.256)	(661.5)	5.441
1979	5-310	4.843	5.246	5.244	6.767	6.710	6.582	6.412	5.301	4 909	4.551	459	
6791	5,003	5.281	5.162	5.439	6.015	4.898	4.290	5.225	4.896	4370	3-8-2	1.022	4.917
086 T	4.694	5.164	5.492	6.644	7.535	7.356	6.177	4.764	4,043	3.632	3,592	4.465	No. V
1981	5.628	5.203	5.278	6.460	7.327	6.870	7.126	6.813	5.319	1	1	3	r r
orage	5.775	5.737	5.775	5.849	6.158	6.927	6.564	6.188	5.390	4.884	4.605	4.948	5, 725

sengrang (contained tiver). Using the correlation between the water levels at Sengrang TOADT 100 and Lake Tempe

•

I ~ 63

Year	Bonth	W.L (n)	Zero Point of Gage (m)	Kater Level (EL.m)	Remarks
1939	feb.	9.43	0.0	9.49	dpu
1940	J ար,	9.33	0.0	9.33	•
1941	Jun.	8.00	0.0	8.00	4
1948	Jun .	9.33	0.0	8.33	-
1952	Jun.	6.93	0.0	6.93	1 4
1953	Feb.	7.86	0.0	7.86	· · · · · · · · · · · · · · · · · · ·
1954	Jun.	9,38	Ó.0	9.38	#
1968	Aug.	3.95	3.3	7.34	Dinas Perikanan
1969	Jun.	4.32	3.3	7.62	• • :
1970	ວັນກ.	6.28	3.3	9.58	al an
1971	Oct.	3.90	3.3	7.20	• • • • • • • • • • • • • • • • • • • •
İ975	Jun.	-	-	8.10	Estimated
1976	Ĵul.	2.91	3.875	6.785	P3SA (Staff Gage)
1977	Jun.	5.05	3.875	8,925	- (-)
1978	Xay	3.63	3.875	7.505	(-)
1979	Xay	3.14	3.285	6.425	* (AWLR)
1980	Kay	(4.69)	3.285	8.00	Estipated
1981	J ul.	5.00	3.285	8.258	P3SA (AWLR, before Oct.)

Table 5.2 Annual Maximum Water Levels of Lake Tempe

Table 5.3 Annual Minimum Water Level of Lake Tempe

Year	Month	L.K.L (EL.B)	Rank	Penarks
1968	Oct.	3.9	5	
1969	Nov.	4.3	8	
1970	Nov.	4.3	Ġ.	
1971	May	4.2	2	· .
1972	-	(3.0)	1	Arrun A
1975	Apr.	4.9	11	Est (maked
1976	Nov.	3.9	. •• 	Estifated
1977	toy.	3.2		*******
1978	lov.	4.5	2	LSCIPALED
1979	Nov.	3.7	10	
1980	Boy.	3.5	3	н. Алагана (1996)

3 3 3				:	•	ہ ۔ ا		•		WALCE	Tever	(El. m)		.			- - -				
3		5.5			7.0			2.5			8.0			8.5			0.6	:		9*5	
	2 10	. s.	чч. М.	•S•X	ۍ.د د	Anu.	ы. С. С.	D.S.	Anu.	w.S.	D.S.	Anu.	w.S.	0.S.	Anu.	N.N.	<u>р.</u> S.	You.	ж.S.	D.S.	Anu.
939 5	z.	16	118	24	46	72		74	39		n	27			16			٢			
940 6	X	64	64	\$\$	55.	55	40	9	40	24	24	24	2	20	2	0	4	v			
9 I76	Š.	65	65	ጵ	36	36	19	18	18	ਸ	н	A									
948 LC	19	513	175	69	89	113	35	35	33	. 19	76	55				-					
952 5	코	66	66			ŗ															
953 6	35	511	147	3	8	75	7	21	36												
95¢ 11	<u>2</u>	ı	1	100		1	19		ı	17		ı	S			17		ı			
968 S	Š	53	ŝ	23	23	23															
969 1	<u>5</u>	59	- 	34	ž	34	5	77	17												
970 5	7	16	16	68	Ęð	68	40	40	40	24	15	15	ŝ	Ś	ŝ	4	4	4	н	н	н
971	0	0	¢,			ñ															
975 L1	13	140	173	86	60	53	\$0	8	50	4	4	4									
976	2	"	~																		
977 .	35	6 8	88	ę	38	40	20	20	50 70	22	г,	ĩ	~	r.	~						
978 6	30	90	BO.	11	ส่	rr T	-1	ન	ศ												
979	ò	0	0																		
580 7	7.	90	99	64	81	87	24	24	24.	H	~1	ન									
981 E	38	105		35	55	•	60	39		19	19				1				.	1	

rable 5.4 High Water Level Days of Lake Tempe

I - 65

D.S., Dry season (September - March)

Remark: W.S., Wet seastn (May - August)

Return Period	(year)	2	3	5	10	20
Duration	(days)				•	
(Annual)	9.5 m	0	0	0	0	1
- "	9.0 m	0	Ó	4	11	17
	8.5 m	0	0	11	26	37
	8.0 m	3	14	25	37	47
	7.5 m	20	33	45	59	70
(Mar Sep.)	9.5 m	0	0	0	0	1
· · ·	9.0 m	0	Ó	1	8	15
	8.5 m	0	0	6	18	28
	8.0 n	0	10	23	36	47
	7.5 n	18	30	42	54	70
(May - Aug.)	9.5 m	0	0	0	0	1
	9.0 n	0	Ó	1	8	15
	8.5 m	• 0	0	5	18	28
	8.0 m	0	8	21	35	47
	7.5 m	18	28	41	54	70
Duration (da	ys)	1	7	15	20	30
Return Period	(year)		н Стал			:
(Annual)	9.5 в	12	-		1	
				-	-	
	9.0 m	5.4	6.8	15.4	30	÷
	9.0 m 8.5 m	5.4 2.9	6.8 4.1	- 15.4 5.8	30 7.3	 12.5
	9.0 m 8.5 m 8.0 m	5.4 2.9 2.0	6.8 4.1 2.2	- 15.4 5.8 3.0	30 7.3 3.7	- 12.5 6.3
	9.0 m 8.5 m 8.0 m 7.5 m	5.4 2.9 2.0 1.4	6.8 4.1 2.2 1.5	15.4 5.8 3.0 1.8	30 7.3 3.7 2.0	- 12.5 6.3 2.7
(Mar Sep.)	9.0 m 8.5 m 8.0 m 7.5 m 9.5 m	5.4 2.9 2.0 1.4 12	6.8 4.1 2.2 1.5	15.4 5.8 3.0 1.8	30 7.3 3.7 2.0	12.5 6.3 2.7
(Mar Sep.)	9.0 m 8.5 m 8.0 m 7.5 m 9.5 m 9.0 m	5.4 2.9 2.0 1.4 12 5.4	6.8 4.1 2.2 1.5 - 8.6	15.4 5.8 3.0 1.8	30 7.3 3.7 2.0 - 35	12.5 6.3 2.7 -
(Mar Sep.)	9.0 m 8.5 m 8.0 m 7.5 m 9.5 m 9.0 m 8.5 m	5.4 2.9 2.0 1.4 12 5.4 3.9	6.8 4.1 2.2 1.5 - 8.6 5.4	- 15.4 5.8 3.0 1.8 - 20 8.3	30 7.3 3.7 2.0 - 35 13.0	- 12.5 6.3 2.7 - - 23
(Mar Sep.)	9.0 m 8.5 m 8.0 m 7.5 m 9.5 m 9.0 m 8.5 m 8.0 m	5.4 2.9 2.0 1.4 12 5.4 3.9 2.3	6.8 4.1 2.2 1.5 - 8.6 5.4 2.7	15.4 5.8 3.0 1.8 - 20 8.3 3.6	30 7.3 3.7 2.0 - 35 13.0 4.4	- 12.5 6.3 2.7 - - 23 7.0
(Mar Sep.)	9.0 m 8.5 m 8.0 m 7.5 m 9.5 m 9.0 m 8.5 m 8.0 m 7.5 m	5.4 2.9 2.0 1.4 12 5.4 3.9 2.3 1.4	6.8 4.1 2.2 1.5 - 8.6 5.4 2.7 1.5	15.4 5.8 3.0 1.8 - 20 8.3 3.6 1.9	30 7.3 3.7 2.0 - 35 13.0 4.4 2.1	- 12.5 6.3 2.7 - - 23 7.0 3.0
(Mar Sep.) (May - Aug.)	9.0 n 8.5 n 8.0 n 7.5 n 9.5 n 8.5 n 8.0 n 7.5 n 9.5 n	5.4 2.9 2.0 1.4 12 5.4 3.9 2.3 1.4 12	6.8 4.1 2.2 1.5 - 8.6 5.4 2.7 1.5	- 15.4 5.8 3.0 1.8 - 20 8.3 3.6 1.9	30 7.3 3.7 2.0 - 35 13.0 4.4 2.1	- 12.5 6.3 2.7 - - 23 7.0 3.0
(Mar Sep.) (May - Aug.)	9.0 m 8.5 m 8.0 m 7.5 m 9.5 m 9.0 m 8.5 m 8.0 m 7.5 m 9.5 m 9.0 m	5.4 2.9 2.0 1.4 12 5.4 3.9 2.3 1.4 12 5.4	6.8 4.1 2.2 1.5 - 8.6 5.4 2.7 1.5 - 8.6	- 15.4 5.8 3.0 1.8 - 20 8.3 3.6 1.9 - 20	30 7.3 3.7 2.0 - 35 13.0 4.4 2.1 - 35	- 12.5 6.3 2.7 - - 23 7.0 3.0 -
(Mar Sep.) (May - Aug.)	9.0 m 8.5 m 7.5 m 9.5 m 9.0 m 8.5 m 8.0 m 7.5 m 9.5 m 9.0 m 8.5 m	5.4 2.9 2.0 1.4 12 5.4 3.9 2.3 1.4 12 5.4 3.9	6.8 4.1 2.2 1.5 - 8.6 5.4 2.7 1.5 - 8.6 5.4	- 15.4 5.8 3.0 1.8 - 20 8.3 3.6 1.9 - 20 8.3	30 7.3 3.7 2.0 - 35 13.0 4.4 2.1 - 35 13.0	- 12.5 6.3 2.7 - - 23 7.0 3.0 - - 24
(Mar Sep.) (May - Aug.)	9.0 n 8.5 n 7.5 n 9.5 n 9.0 n 8.5 n 8.0 n 7.5 n 9.0 n 8.5 n 8.0 n 8.5 n 8.0 n	5.4 2.9 2.0 1.4 12 5.4 3.9 2.3 1.4 12 5.4 3.9 2.5	6.8 4.1 2.2 1.5 - 8.6 5.4 2.7 1.5 - 8.6 5.4 2.9	15.4 5.8 3.0 1.8 - 20 8.3 3.6 1.9 - 20 8.3 3.8	30 7.3 3.7 2.0 - 35 13.0 4.4 2.1 - 35 13.0 4.7	- 12.5 6.3 2.7 - - 23 7.0 3.0 - - 24 7.4

Table 5.5 Return Period of Water Level Duration of Lake Tempe

Table
სი • ი
Inundation
Arca

912 - 1	EA - 5	1 4 4	1 1 1 3	14 I 2	5 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	38) : 2	1 - 68	80 - 4	30 - 3	30 - 2	1 - 08	BX - 3	9X - 1	9X - 1	XX - 4	-XX - 3	KA + 2	7 - XX	14 1 1	80 14 1 1	BI - 1	Code No.
Wajo	Sidrap	Sidrap	Sidrap	Sidrap	Sidrap	Sidrap	Sidrap	Sidrap	Sidrap	Sidrap	Sidrap	Wajo	Sidrap	Sidrap	Wajo	Sidrap	Sidrap	Wajo	Wajo	Sidrap	Sidrap	(District)
Belawa	Dua Pitue	Jua Pitue	Dua Pítue	Dua Pítue	Dua Pitue	Dua Pítue	Dua Pitue	Dua Pitue	Dua Pitue	Dua Pitue	Dua Pitue	Balawa	Dua Pitue	Dua Pitue	Dolawa	Dua Pitue	Dua Pitue	Maniang Pajo	Dolawa	Dua Pitue	Dua Pitue	Xocomatan (Subdistrict)
weld	Lancizang	Lancirang	Lancizang	Octing	Lancirang	Tanru Tedong	Tanru Todong	Lancizate	Lancizang	Otting	Bila	Wele	Tanru Tedong	Tanru Tedong	5493	Tanru Tedong	Tanru Todong	Xalola	Hoto	Tanru Todong	Dila	Doma (Village)
Right bank in downstream of the Bila river	Southern area of the provincial road	West side area of Kampung Samallangi	Along the Lancirang, northern area of Provincial road	East side area of Xampung Ajibissue	West side area of Kampung Ajubissue	Right bank of the Dila, southern area of the road	Right bank of the Pila, northern area of the road	Southern area of the Provincial road	West side area of S. Jampu drainage	Right bank of the Doya river	Left bank of the Boya river	West side area of 5. Wele drainage	West wide area of S. Wele drainage	Right bank in downstream of the Xalola	Along S. Padang drainage	Southern area of the Provincial road	Loft bank of the Kalola river	Left bank of the Kalola river	Along S. Att drainage	Loft bank, Tanzu Todong - confluence of Lancirang	Hild AWLR station - confluence of the Doya	Location

Tablo	57	Estimated	Inundation	Area
10010			the second se	

	Paddy Area	Others	Total	Estimated Paddy	Remarks
Code No.	$(km^2) \frac{1}{2}$	(km ²)	(km ²)	Field (ha) 12	
ВТ —)	2 43	5.80	8.23	220	x <u>/3</u>
BI - 1 BI - 2	A 67	1.43	6.10	420	x
BI - 3	7.00	2.33	9,33	630	X
DI J	,	2,05	•••		
KA - 1	1.16	0.30	1.46	100	X
KA - 2	0.15	0.70	0.85	10	X
KA - 3	8.72	0.50	9.22	780	5 X
KA - 4	3.21	1.01	4.22	290	X
BK - 1	4,00	0.25	4.25	360	X
BK - 2	2.74	0.63	3.37	250	x
BK - 3	3,08	1.02	4.10	280	X
BO - 1	1.03	0.35	1.38	90	x .
Sub-total	38.19	14.32	52.51	3,430	<u>×</u>
				· · · ·	
80 - 2	3.15	0.12	3.27	280	_ /4
BO - 3	5,80	0.82	6.62	520	
BO - 4	2.23	1.71	3.94	200	-
BB - 1	8.50	0.97	9.47	770	-
BB - 2	2.12	3.51	5.63	190	
[- A]	8.06	2.45	10.51	730	- -
LA - 2	7.53	0.45	7.98	680	_
LA - 3	1.51	3.00	4.51	140	_
la - 4	5.05	0.50	5.55	450	-
LA - 5	3,08	2.57	5.65	280	_
8L - 1	9.53	4.89	14,42	860	-
Svb-total	56.56	20.99	77.55	5,100	·
					· · · ·
Total	94.75	35.31	130.06	8.530	
					1

Note: $\underline{/1}$ measured on the map of 1/25,000 prepared by JICA in 1978.

 $\underline{/2}$ adopted values for estimation of flood damage.

 $\underline{/3}$ X; in the Bila irrigation project area.

 $\underline{/4}$ -; out of the Bila irrigation project area.

ode No, 👘	Item	·····		Prob	ability		
		2/1	1/1	1/2	1/5	3/10	1/20
BI - 1	Depth (m)	0.20	0.30	0.60	0.80	0.95	1 6
	Ouration (days)	1	1	1	1	1	1.0.
81 - 2	Depth (m)	-	6 96				_
	Duration (days)	-	1	0,59 A	0.65	0.75	0.80
			•		9	4	4
81 - 3	Depth (n)	Ö. 30	0.40	0,80	1.15	1.40	1.50
	Duration (days)	2	4	4	4	4	4
KA - 1	Depth (m)	0.10	A 44				
	Duration (days)	1	0.40	0,10	0.40	0.50	0.55
	•••	-	*	*	1	1	1
KA - 2	Depth (n)	0.05	0.10	0.40	0.70	0.89	6.9 0
	Duration (days)	1	1	1 -	1	1	1
KA - 3	Depth (m)	0.30	0.40				
	Duration (days)	2	0.40	1.00	1.20	1.35	1.45
	•		3	3	4	4	4
(A ~ 4	Depth (n)	0.30	0.40	0,90	1.00	1.05	1.10
	Duration (days)	2	3	5	6	7	. 8
sx - 1	Depth (n)	0 20	0.10				
	Duration (days)	1	1	0.89	1.05	1.20	1.30
		-	2	,	6	6	7
5K - 2	Depth (a)	0.30	0.40	0.90	1.10	1.20	1.30
	Duration (days)	2	2	3	5	5	5
X - 3	Depth (n)	0.30	0.40	0 00			
	Duration (days)	2	3	4	1.15	1.30	1.45
				•	-	- F	4
0 - 1	Depth (mj	-	0.05	0.10	0.35	0.55	1.05
	Duration (days)	-	1	1	1	1	1
0 - 2	Depth (m)	-	0.05	0 10	0.35	<u> </u>	
	Duration (days)	- .	1	1	1	0.55	1.05
			-		-	•	· 1
3 - 3	Depth (m)	0.20	0.25	0.30	1.10	1.30	1.50
	Duration (days)	I	1	1	1	7	1
0 - 4	Depth (a)	0.30	0-50	0.70	0.00	1 00	
	Duration (days)	2	3	8	10	10	1.15
8 - 1	Depth (n)	0.30	0.40	0.60	1.10	1.30	1.50
	Doration (cays)	1	1	1	1 -	· 1	1
B - 2	Depth (a)	0.30	0.50	0.70	0.90	1.00	1 16
	Duration (days)	2	3	8	10	10	10
4 - 1	Depth (n)	0.30	0.40	0.60	1.00	1.10	1.25
	conaction (cays)	2	3	>	7	7	7
λ-2	Depth (n)	0,20	0.25	0.30	0.70	1.00	1.15
	Duration (days)	1	2	2	4	7	7
	.						
n - 3	Depth (B)	0.30	0.40	0.80	1.00	1.)0	1.25
	conacton (days)	3	-	0	R	8	8
A = 4	Depth (n)	0.20	0.39	0,60	0.90	1.05	1.20
	Duration (days)	3	4	6	8	8	8
	· · · · · · ·	.					
n - >	Lepin (m)	0,30	0.50	0.80	1.10	1.20	1.30
	mation (0375)	3	4	3	8	8	8
L - 1	Depth (a)	0,30	0.40	0.70	0.90	1.05	3.15
	Duration (dave)		4	7	•	A	~ ~ ~ ~

Table 5.8 Probable Inundation Depth and Duration (Under present condition with ill drainage)

÷ 1

<u></u>		·····		Proba	bility		
Code No.	Itea	2/1	1/1	1/2	1/5	1/10	1/20
BI - 1	Depth (m) Duration (days)	0.20 1	0.30 1	0.60 1	0.80 1	0.95 1	1.05
BI - 2	Depth (m) Duration (days)	-	0.30 1	0.50 3	0.65	0.75 3	0.80 3
81 - 3	Depth (m) Duration (days)	0.20 1	0.30 3	0.70 3	1.05 3	1.30	1.40 3
KA - 1	Depth (m) Duration (days)		0.30 1	1.00 1	1.30 2	1.40 2	1.45 2
KĀ - 2	Depth (m) Duration (days)	-	-	0.30 1	0.60 1	0.70 1	0.80 1
KA - 3	Depth (m) Duration (days)	0.20 1	0.30 2	0.90 2	1.10 3	1.25 3	1.35 3
KA - 4	Depth (2) Duration (days)	0.20	0.30 2	0.89 4	0,90 5	0.95 6	1.00 7
BK - 1	Depth (m) Duration (days)	0.20 1	0.30 2	0.80 4	1.05 5	1.20 5	1.30 6
BK - 2	Depth (m) Duration (days)	0.20 1	0.30 1	0.80 2	1.00 4	3.10 4	1,20 4
BX - 3	Depth (m) Duration (days)	0.20 1	0.30 2	0.80 3	1.05 3	1.20 3	1.35 3
BÒ - 1	Depth (m) Duration (days)	-	-	0.10 1	0.35 1	0.55 1	1.05 1
BO - 2	Depth (B) Duration (days)	-	-	0.10 1	0.35 1	0.55 1	1.05 1
BO - 3	Depth (m) Duration (days)	0.10 1	0.15 1	0.20 1	1.00 1	1.20 1	1.40 1
BO - 4	Depth (m) Duration (days)	0.30 1	0,50 2	0.70 7	0,90 9	1.00 9	1.15 9
88 - 1	Depth (m) Duration (days)	0.20 1	0.30 1	0.70 1	1.00 1	1.20 1	1.40 1
BB - 2	Detph (m) Duration (days)	0.30 1	0,50 2	0.70 7	0.90 9	1.00 9	1.15 9
LX - 1	Depth (m) Duration (days)	0.20 1	0.39 2	0.70 4	6 0 .9 0	1.00	1.15
LA - 2	Depth (m) Duration (days)	0.10 }	0.15 1	0.20 1	0.60 3	0.90 6	1.05
IA - 3	Depth (m) Duration (days)	0.20 2	0.30 3	0.70 S	0.90 7	1.00 7	1.15 7
LA - 4	Depth (m) Duration (days)	0.10 2	0.20 3	0.50 5	0.89 7	0.95 7	1.10 7
LA - 5	Depth (m) Duration (days)	0.39 2	0,50 3	0.80 4	1.10	1.20 7	1.30
BL - 1	Depth (m) Duration (days)	0.20 3	0.30 5	0.60 6	0.80 7	0,95 7	1.05

Table 5.9 Probable Inundation Depth and Duration (After improvement of drainage)

Table 5.10 Estimated Flood Inundation Depth and Duration

H: pean depth (m)

Tear				19	11							10	36		· · · · · · · · · · · · · · · · · · ·	T: duration (da									
assth	Jul.	15	Sep. 1.	2-17	Oct. 1	6-17	Dec.	25	Jun.	19	345 . 21	2-20	5100 B		·			19	16	- <u></u> -		1	<u>977</u>		
cis3/sec)	629		921		710	,	655		5.78		831		<u></u>	- 14	.07.	31	<u></u>	<u> - ></u>	Pay 4	•6	Apr.	17	Jun. 1	1-20	
code	H	Ť	H		11	·	11				*****			<u></u> _	154		161	<u> </u>	8/8	L 	£47	, 	672	I made	
								بې				-	<u></u>		<u> </u>	. T		<u> </u>		7	В	1	H	1	
P2 - 3	-		0.55	6	0.20	2	0.10	1	0.15	1	0,30	3	0.25	3	0.20	1	0,25	2	0.40	Ĵ.	0.05	1	0.65	÷ қ. –	
FI - 2			0.45	6	0.05	2	•	-	: -	-	0.30	3	0,20	3	0.10	Ĵ.	0.15	2	0.35	1	-	2	-	-	
FI - 3	0.15	1	0.70	- 6	0.20	2	0.15	А.	0.20	ì	0.30	3	0.25	3	0.20	Ż	0.25	2	Ó.45	3	0.15	h	0.15	5	
ya - 1	-	-	0.80	6	0105	Ż	*	-	-	-	ŏ.4ŏ	3	0.20		0 10	•	A 14	~	A	-		-			
12 - 2	-	÷	0.45	6	- ·	_	4	-			0.10	5	-	-	V.10		0.15	×.	0.00	3	-	•	-	-	
12 - 3	0.15	1	0.70	6	0.20	2	0.15	ì	ò. 20	1	0 35	1	0.25	-	0 0ô				0.25	3	- 	1		-	
12 - 4 1	0.15	2	0.60	6	0.20	2	0.15	ī	0.20	ī	0.35	ž	0.25	÷	0.10		6.25	÷.	0.33	- 2	0.15	1	0.15	5	
	_	_	A 74	:, :				-					v	3	0.20	1	V. 23	4	U. 50	•	0.15	1	0.12	2	
21 - 1	-		0,10	- P	0.20	2	~	-	0.10	1	0.35	3	0.25	3	0.20	1	0.25	5	0.50	4	-	-	0.05	5	
11 - 2		,	V. 03	2	0.20	2			0.10	1	0.35	3	0.25	3	0.20	1	0.25	2	0.50	3	-	-	0.05	5	
38 - 3	V.15		0.70	¢	0.20	2	0.15	ł	0.20	1	0.35	3	0.25	3	0.20	1	0.25	5	0.50	3	0.15	1	0.15	5	
10 - 1	•	-	0.35	6	~	+	, +	-	-	-	0.05	3	-	-	-	-	-	· _	ó.1ó	٦	<u>م</u>		-	-	
<u>50 - 2</u>	· . · · · · ·		0.35	6	-	•	~	+	+	-	0.05	. 3	•	-	-	-	-	-	0.10	3	~	-	· _	-	
80 - 3	0.10	1	0.70	6	0.10	2	0.10	1	0.10	1	0,15	3	0.15	3	0.10	Ì	0.15	2	0.20	3	Ũ. 1Ŏ	้า	ò.10	ć.	
во - 4	0.15	1	0.60	9	0.25	2	0.20	1	0.20	1	0.49	4	0.35	3	0.30	Ĵ.	0.39	2	0.45	7	0.20	ĩ	0.20	ś	
£5 - 1	. - '	-	0.70	6	0.20	2.	~	-	Ó.1Ó	1	0.30	3	0.25	3	0.30	1	Å 35		0.43	•		-		-	
18 - 2 .	0.15	1	0.60	9 :	0.25	2	0.20	1	0.20	ĩ	0.49	Ă.	0.35	ź	0.30	î	0 30	- 5 -	0.45	2	A 20	ĩ	0.05	2	
12 - 3	0.15	1	0 60	6	0 20	1	A 10			-		÷		-			0.30	*		'	0.20	1	0.20	2	
18 - 2	-	1	0.55	š	0 10	5	U.13	1	0.20	1	0.30	3	0.25	3	0.20	1	0,25	5	0.45	4	0.15	1	0.15	5	
12 - 3	0.15	2	0.60		0.10	5	0.36	-	Å 30	-	0.15	3	0.15		0.10	1	0.15	2	0.20	3		-	-	-	
73 - 4	0.05	5	0.50	5	0.10	5	0.12	4	0.20	~	0.30	- 9 -	0.25	5	0.20	2	0.25	2	0.45	5	0.15	2	0.15	5	
12 - 5	0.15	2	0.20	ź	0.10	\$	0.10	5	0.10	2	0.25	۹ ۲	0.20	3	0.10	2	0.15	3	0.35	5	0.10	2	0.10	5	
					V.23	•	0.20	e	V.25	e	0.49	5	0.35	3	0.25	2	0.30	3	0,50	4	0.20	2	0.25	5	
1 - 24	0.15	2	0.69	7	0.20	3	Ó.1Š	2	0.20	Ĵ.	0.30	5	0.25	5	0.20	3	0.25	4	0.49	6	0.15	2	0.15	5	
							<u> </u>																		

		1978		197	9	1930	1981											
Acath	Kay 1-2	Jun. 26-27	Jul. 23-24	Jun. 9-11	Sep. 11	Nay 4-6	Yar. 27-29	May 14-18	301. 22-25									
Q(z // S)	814	772	810	873	891	700	705	898	748									
Code	<u>8 T</u>	<u> </u>	<u> </u>	H T	8 1	ET	RT	нт	ET									
PI - 1	0.25 3	0.25 2	0,25 3	0.40 3	0,45 1	0.20 3	0.20 3	0.50 1	0.20 5									
21 - 2	Ô,25 3	0.20 2	0.25 3	0.35 3	0.40 3	·		0.45 3	615 5									
£1 - 3	0.25 3	0.25 3	0.25 3	0.49 3	0.50 3	0.20 3	0.20 3	0.60 3	0.20 5									
1X - 1	0.25 3	0.20 2	0.25 3	0.55 3	0.65 1	÷ -		0.70 1	0 15 5									
XX - 2		-, -	÷. •	0.20 2	0.30 1			0.35 1										
N-3	0,25 3	0.25 2	0.25 3	0.50 3	0.60 3	0.20 3	0.20 3	0.65 1	0.20 5									
IX - 4	6.25 3	0.25 2	0.25 3	0.45 4	0.55 5	0.20 3	0.20 3	0.55 3	0.20 5									
EK - 1	0.25 3	0.25 2	0.25 3	0.45 4	0.60 5	0.15 3	0.20 3	0.65.3	0.20 5									
EK - 2	0,25 3	0.25 2	0.25 3	0.45 3	0.55 3	0.15 3	0.20 3	0.60 3	0.20 5									
25 - 3	0.25 3	0.25 2	0.25 3	0.45 3	0.60 3	0.20 3	0.20 3	0.65 3	0.20 5									
50 - 1		·		0.30 2	0.20 1			0.25 1										
BQ - 2		- - -		0,10 2	0,20 1	÷ -		0.25										
10 - J	0,15 3	0.15 2	0.15 3	0.20 3	0.49 1	0.10 3	Ó.10 3	0.55 1	0.10 5									
10 - 4	0.35 3	0.30 2	0.35 3	0.45 7	0,50 9	0.25 3	0.25 3	0.55 9	0.30 5									
£a - 1	0.25 3	0.25 2	0.25 3	0.40 3	0,55 1	0.15 3	0.20 3	9.60 1	0.20 5									
18 - 7	0.35 3	0.30 2	0.35 3	0.45 7	0.50 9	0.75 3	0.25 3	0.55 9	0.30 5									
la - 1	0,25 3	0.25 2	0.25 3	0.40 4	0.50 5	0.20 3	0.20 3	0.55 6	0.20 5									
2A - 2	0.15 3	0.15 2	0.15 3	0.20 3	0.35 3	0.05 3	0.10 3	0.40 3	0.10 5									
LA - 3	0.25 3	0,25 3	0.25 3	0.40 5	0.50 6	0.20 3	0.20 3	0.55 7	0.70 5									
LA - 4	0.20 3	0,20 3	0,20 3	0.35 5	0.49 6	0.10 3	0.10 3	0.45 7	0.15 5									
EA = 5	0.35 3	0.35 3	0.35 3	0.50 4	0.60 6	0.25 3	0.25 3	0.65 7	0.30 5									
FL - 1	0.25 5	0.25 5	0.25 5	0.40 6	0.45 7	0.20 3	0.20 3	0.50 7	0.20 5									

THE BILA IRRIGATION PROJECT

Fig. 1.1 BILA RIVER BASIN

			r7	······			ر-	r				r	1					1	r	rI			1			-1	-1	-	T	1		-1	 			-1	
g	-	2	ю	4	n	Q	2	ဆ	თ	<u>0</u>		9	~ -	80 80	4	4	46		No.		N	ю	4	'n	φ		Ø	ກ	2	-	9		200	4	4	40	
47		••••••		1		·					 •								81	ō	0	0		0	0	0	<u></u>	•	⊇∣	0		0		0	0	_	
4									- 1										80	ō	0	0		0	0	0			<u>)</u>			0		0	0	_	- 1
4		: .			-							· :					L		3 79	0	2	$\overline{0}$		© ⊘	\odot	-		2	ž		-	<u>د</u>	-		š	I	25
344						-													7 78		0	0								Ĭ	0	Ě		0	ě		Ŭ Č V Č
24		-			<u></u>										_				6 7	0	0	$\overline{\odot}$		ŏ	ŏ		ŏ	Ť	Ĭ	ō	õ	\odot		Ō	õ	·	5
4	0							0	ō	$\overline{0}$		$\overline{\mathbf{O}}$	Ó	$\overline{\mathbf{O}}$		õ	7		5 7	ŏ	ŏ	õ	-	$\overline{\odot}$	ō		ō			-	•	\odot	_	0	ō		5
<u>¥</u>	õ	ŀ	ŏ	4	-		0	ō	Õ	õ		Ō	õ	Õ		õ	┛		74	ō	-	0		\odot	0		o				\odot	\odot		Q	ō		Ă.
395	ō	-	o	4	:		ō	0	ō	Ò		0	0	ō		0			73	0		0					Ō				•			0	0		_ ∢(
38	Ö		0	٩			Ō	Ò	ō	o		ō	$\overline{\mathbf{o}}$	ō		0	٩		72	0		0	:				0	0		<u>0</u>	_	\odot		Ò	0	_	
37	0		0	٩			0	0	0	0		0	0	Ö		0	٩		2	<u>0</u>		0					의			0		\odot		0	0		o z
36	0	L	Ó	4			0	0	0	<u>0</u>		0	0	0		0			20		_				÷			_	_	<u>0</u>		0		0			ы С
135	0		0	4			0	0	0	0	<u></u>	0	0	0		0	4		3 69								-	0				\odot		0	0		ω L
334	0	_	0	4		<u> </u>	0	0	0	0		0	0 0	0	·	0	4		7 66							_	-		_		~	0			0		
2		┞	Ы	4								Р	0			0	4		99	_	_					-	Ì	3	Ž	2				r ,	С С		
約 二	0	┞	6	4	-		0		H			K	0						5 G		-				- <u></u>			0		$\frac{1}{2}$	ŏ	õ			$\frac{1}{2}$		
<u>Š</u>	0		0	~			Ĕ		ŏ	$\frac{1}{0}$		4	0 O	0 0	-	v o	7		54 e			Ŭ 0				·	-	ŏ	ŏ	ŏ	ŏ	õ	-		ŏ	1	
29.1	Ŭ 0	╞	ŏ						ŏ	ŏ			õ	ŏ		ŏ	4		53.6		-	ŏ	-			-	-	ŏ	0	0	0	0	-		0		
28	0	╞╴	0						Ö	0			0	0		ō			62			0		-				o,	Ó	0	0	0		-	Ó		
27	0		0			0			0	0			\odot	0		0	٩		9			-						0	0	0	0	\odot			Ó		
26	0		0			0			0	0		ŀ	0	0		<u>0</u>	₽		0 9				ō					<u>0</u>	0	0	0	\odot		_	0		
25	0	L	0			0			0	0			0	0		0	4		60				0				0	0	0	0	0	\odot		_	0		
524	0		0	•		0			0	_			0	0	- :- -	0	₫		8		-		0		-		0	0	0	0	0	0		-	0		
<u>8</u> 8	0	-	0			0			0				0	0		0	₫		5			0			••		0	9		0	0	0		Ļ	0		
~		-	Ы				-	-	-			-				20			s S		$\overline{\mathbf{a}}$		K								0			┝	E		
8	6	╞	0			Y	$\left[-\right]$		-				$\frac{1}{2}$	ŏ		0	7		10 14			$\frac{1}{2}$	6	ŀ			K	č		K		F	-	┢─	F		
<u>8</u>	ō	-	6		-	-	-		-		-	\square	ŏ	0		ŏ	4		<u>8</u>		ŏ	ŏ	Ĕ	-			$\tilde{0}$	ŏ	ŏ	ŏ	$\frac{0}{0}$	6	ļ	┝	Б	$\left\{ \cdot \right\}$	
с О	0	Ţ	0								-		0	0		0			N			õ		╞			Ň	Ť	Ť	Ť	ŏ	Ĕ	-	-	ř		
1	δ	T	0		-						-		0	0					5					†				-			Ō		t	1-	1-		
9															-				ŝ													T	T	T			
\$	L	Ŀ																	49											-				Γ	İ -		
4		 			:														49										_					ŀ			
							ŀ			1 Sector	ļ								6			•			ľ				ğ								
					6			ļ	2	E									Ę,									0	E					ļ			
	0	Į	÷	ę	čou			000	čev	20					• .		ŀ		F.				0	l e	ŀ		Š	Due	N ON		,				1		
	Ū Ū	l 9	000	ğ	ŝ	2		F	10	Ş	2	Bati	ðu c	١ ١ ٢	Ę					ouo auo	0	2		2 Cer	ĴĴ		ř	N N	Š	2	80 <u>1</u>	000					
Ş	10	102	ada	e S	, lu	Ň	<u> </u> 2	D'C	NO.1	8	1 to	IJ.	ş	Ě	Įž	Ê	3		§	ľž	х 2	lå	1 0 2	2	E	0	22	Š	Š	100	2	Įž	ÖQF	24	2	2	
Stat	ພົ	6	č	ž	ര്	ø	ō	ľř	ສິ	Į	l 👸	å	တိ	ď	S	ď	lõ		Į	ង្រ	စိ	l å	۱ŝ	80	8	ā	Þ	e B	Į¥	B B	80	3	lõ	v	à	Ī	
	-	<u> </u> _	-		<u>مد</u> ج		-	<u> </u>	F		┢╌		-	-		-	╞		۲ ۲	-		-	$\left \right $	ŀ	┞	┡				<u> </u>	-		-	-		-	1
ž	-	10	M	4	N	Ψ	1	^a	ן מי	12	=	۲	15	18	14	14	18		lg	-	N	10	4	i n	Įΰ	1	တ	۱ø	0	-	ø	1	ļç		łł	2	ł

Fig. 2.2 COLLECTED RAINFALL DATA

0010 7100

I ~ 76

Fig. 2.3 ANNUAL PATTERN OF MEAN MONTHLY RAINFALL

1 - 77

29 Ó M 5 5 7 7 5 5 6 80 14 2.5.2 4 ò m 9 0 8 7 6.2 2 ģ Data partialy available in M 14 14 è Ŷ Ũ Data available 7261 1981 8 ł . 0 1980 1973 Legend Đ U ٥ EXISTING CONDITION OF WATER LEVEL DATA . 4 1972 1979 0 1978 1461 Q G 0 1970 1977 0 2 -----Fig. 2.4 į 10 1 Her 2157. ł ţ 9 i, 0 1969 1 1976 Q ł 1968 ------1975 11111111111 ; Bila(Downstream) Station Bulu Cenrand (1) — do — (2) 24 L. Tempe (A) 25 L. Tempe (N) Tanru Tedong Butu Centana(1.) - do - (2) Bila (Downstream) Bila(Upstreem) L. Tempe (N) L. Tempe (A) Bila(Upstream) Yanru Tedong Tarumpakkae Tarumpakkae Station Laringgi Kal ola Gilirang 26 Laringo 28 Gilinang Katola 3¢ ğ ŝ 4 10 (1 \$ N 30 3 Ó e ÷ Ň c ğ ž ä •

. .

Arithmetric Meon (x103mm)

Fig. 3.1 MASS-CURVE OF ANNUAL RAINFALL

1 - 82

1 - 84

Fig. 3.4 ANNUAL PATTERN OF MEAN MONTHLY DISCHARGE

- Average Malak Dec. Nov. oet. Sep. -Aug-July June ſ... Ŋ КаХ Apr. Mar. Feb. Jan. ; (m³/sec) 50 7 ន 3 g ŝ Nonth

Fig. 3.5 ANNUAL PATTERN OF MEAN 10-DAYS DISCHARGE AT BILA

I ~ 86

Legend :

O observed data

 Δ calculated value by specific discharge

Fig. 4.1 PROBABLE FLOOD DISCHARGE AT BILA

Fig. 4.2 RELATION BETWEEN SPECIFIC DISCHARGE AND CATCHMENT AREA

specific discharge (m³/sec/km²)

1 - 97

1 - 98

t - 99

Fig. 4.5 HYDROGRAPH OF KALOLA RIVER (1981)

I - 101

F19. 4.7 PROBABLE FLOOD NYDROGRAPH OF XALOLA DAM

Fig. 5.2 RELATION OF WATER LEVEL (AWLR LAKE TEMPE STAFF GAUGE - LAKE TEMPE)

a terres a serves

Fig. 5.4 RETURN PERIOD OF ANNUAL MAXIMUM WATER LEVEL (AT LAKE TEMPE)

