The total number of pulses (as estimated in the analysis of the call demand under Section 4-3) includes DINAS pulses, which have no potential of generating revenue. For this reason, the number of DINAS pulses was estimated, using the data for the past three years.

As a result, the number is projected in the following equation:

Number of DINAS pulses = $0.122 \times (Total number of pulses)^{0.918}$ (R = 0.93)

Thus, revenue is calculated by deducting the number of DINAS pulses from the total number of pulses.

- (3) Project Loan

 Based upon the assumptions for the Pelita IV, the project loan should reflect the following scenario:
 - 1) 60% of the initial investment should be financed by external funds.
 - 2) The interest rate should be 18% per annum, with a grace period of 5 years and a repayment period of 10 years for principal.

8-1-4 Results of the Analysis

The cash flow statements, the profit and loss statement and the source and application statement are shown in Table 8-1-3, 4, 5, 6 respectably.

Table 8-1-3 Cash Flow Statement of Scenario-1

The color of the			Table 8-1	<u>ო</u>	Cash Flow	w Statement	of Scen	ario-1				
1969 1960					RR= 6.8		100			. !	- 	:
15810125 1563187 1563187 1563187 1563187 1663187 1663187 1663187 1663187 1663187 1663187 1663187 1663187 1663187 1663187 1663187 1663187 1663187 1663188 1663187 166	1		1 00			1991	1 B	၂ က ျ	ကြော	 	∣ത∣	
12713340 215231583 24724658 431095557 387860371 417324427 402281884 4158751584 3964288 3966288		i (i)					591043 305480 363869	1565318 606021 3150022	91653 97399 84892	4,00	1308 5503 9410	859862 501643 585367
THE TERRITORY OF THE TERROR TO		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	! !	:	1" 1	260392	5321363	073945	159	6222	14687
158320735		1 0	1 :	1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	271334	1523158	4628540	385	2788	074
158320735			i i	. 2	ι ω	3109555	878603 338140 230090 414794	1732442 3075547 3318257 7994132	028518 393161 441289 281025	41537 2768 5468 16202	164 216 513 324	64298 39655 65590 12121
1998 1999 2000 2001 2002 2003 2004 2005			832073	2877		3109555	8616290	6120380	1439948	597	7816	16666
1998 1999 2000 2001 2002 2003 2004 200 069510 16659657 4648856 8617709 27047199 27047199 27047199 27047199 301365 24500019 25392599 134545487 1153038579 1171833107 1190933987 121034621 168239 1054348329 134545487 1153038579 1171833107 1190933987 121034621 539113 1047038575 1084389784 1170210395 1180035778 1198880307 1217981186 123733341 458246 889982788 921731316 994678836 1003072911 1018048261 1055284008 105178439 853647 373791016 853647 37684558 21884256 2518223 4792605 4870724 495011 853647 3737963 338170134 366869981 366427194 373890801 375065568 38267800 878022 1235118687 1210272302 536787999 516979179 526717167 527970054 51612		101	1 00 1		8779	3109	37345	34597	26811	1 (7) 1		
069510 16659657 4648856 8617709 27047199 270470054 27047199 27047199 27047199 27047199 27047199 2704717167 2704717167 2704717167 2704717167		100		101	100	500			003	2004	181	
539113 1047038575 1084389784 1170210395 1180085778 1198880307 1217981186 123739341 458246 889982788 921731316 994678836 1003072911 1019048261 1035284008 105178439 864104 760456983 733791016 21884256 2518223 4792605 4870724 495011 853647 37357363 9524558 148033762 14803762 14803762 <td></td> <td>140695 213013 651682</td> <td>10 1665 35 2450 39 100587</td> <td>557 319 399</td> <td>54885 39259 34832</td> <td>861 2704 113454</td> <td>27047 1153038</td> <td>9 2704 9 ::117183</td> <td>199 270 107 11909</td> <td>719 398</td> <td>2704719 1034621</td> <td></td>		140695 213013 651682	10 1665 35 2450 39 100587	557 319 399	54885 39259 34832	861 2704 113454	27047 1153038	9 2704 9 ::117183	199 270 107 11909	719 398	2704719 1034621	
65458246 889982788 921731316 994678836 1003072911 1019048261 1035284008 105178439 76864104 760456983 733791016 21884256 2518223 4792605 4870724 495011 30853647 37377363 9524558 21884256 2518223 4792605 4870724 495011 91085995 108839983 1287365 148033762 148033762 148033762 148033762 85074276 328464358 338170134 366869981 364427194 373890801 375065568 38267800 83878022 1235118687 1210272302 536787999 516979179 526717167 527970054 5356188 -318420 -345136 -288541 457891 486094 492331 507314 51612	ť	539	3 1047038	I (~	38978	117021039	11800857	8 1.19888	307 12179	1186	23739341	
76864104 760456983 733791016 21884256 2518223 4792605 4870724 4950111 30853647 37357363 128786594 148033762 148033762 148033762 148033762 148033762 148033762 148033762 148033762 148033762 148033762 148033762 148033762 148033762 148033762 148033762 148033762 148033762 148033762 128786594 36869981 368427194 373890801 375065568 38267800 83878022 1235118687 1210272302 536787999 516979179 526717167 527970054 5356188	. ,	654582	889982	1 ∞ 1	92173131	99467883	10030729	1 101904	261 10352	400	5178439	
83878022 1235118687 1210272302 536787999 516979179 526717167 527970054 53566188 -318420 -345136 -288541 457891 486094 492331 507314 51612	l .	768641 308536 910859 850742	76045 3735 10883 32846	00000000000000000000000000000000000000	79101 52455 78659 17013	2188 14803 36686	25182 1480337 3664271	3 479 2 14803 4 37389	605 48 762 1480 801 3750	722	495011 4803376 8267800	
318420 -345136 -288541 457891 486094 492331 507314 51612	. :	83878	2 1235118	ıω	27230	53678799	9 5169791	9 52671	167 5279	005	3566188	
		318	134		885	578	1 4860	4. 49	31 50	731	1612	4

2014	730722 580223	913109467	76143	390486 067942	364584284	4115					·		
2013	09869 88401	982710	263530	0 114851184 310047510	89868			· · · · ·					
2012	2389239 0230432	1 (1		(4.0)	5201	562400							
2011	704719 364784	069504	1156590790	54544 63322 03435	ıω	614461	2020	16546 43646	96019231		-346977237 19247168 26743754	0098631	38260
2010	704 225	1339305241	1138409455	536692 4388104 9255954	0751	598602	2019	4718 4006	145487248	3664	39193779 40391405	958518	
2009	270471: 912112	1825849	1120519722	52808 480337 924293	74396	574776	2018	4583 6741	23013	7456126	56947767 89391941	146339708	82
2008	70471 05021	975493	1102916916	51961 80337 20263	452562	557661	2017	8447180	467393818	972847	യ ത	201827858	195457
2007	27047199 1250125074	7717227	1085596433	5112 48033 84308	537455522	548141	2016	11030760 589703803	600734563	1062437	82442929 165207828	247650756	OL I
2006	27047199 1230074854	1257122054	1068553746	5030804 148033762 383610971	536675537	531878	2015	14601696 768086049	782687745	528458	0 93338149 219407551	312745700	352539

Table 8-1-4 Cash Flow Statement of Scenario-2

			1			************			
) S:		1989	1990	1991	1992	1993	1994	1995	1996
. Cash Inflow 1. Installation 2. Annual Renta 3. Call Charge	ι ι ι ι ω		te		4.386.47 2.762.20 2.753.93	13.412.33 5.337.37 03.887.59	16.817.5 8.566.3 32.882.4	18.484.77 12.115.41 76.438.58	18.816.61 15.728.20 25.392.64
otal Infl		1 1 1 1 1 1 1 1 1	r)]]] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9.902.61	.637.30	58.266.28	07.038.77	59.937.4
ontribution of	oject	i i i i i		F	101.917.222	89.241.71	304.526.346	430.982.958	560.946.847
ash O Initi Worki Maint	lent 149	.564.421	0.703.6	401.681.603	7.00	437.248.515 26.197.347 31.937.448 70.326.746	30.947.14 34.585.39 43.406.37 12.658.41	3.306.9 7.936.9 4.710.0 8.738.5	.467.59 .989.16 .550.96
Total Outflow	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	64.421	70	81.60	5.294.52	5.710.05	1,597.3	.692.44	74.429.14
C. Cash Surplus (*1	000)	-149.564	-270.704	-401.682	-383.3	-376.46	17.0	-233.7	ļ
1997	1998	6 1	999	1000	2001	2002	2003	2004	2005
13.135.874 1.18.250.290 2.733.433.542 86	5.230.639 1.174.573 0.018.515	1.5	21 4.641. 21 25.412. 99 1.055.182.	521 8.5 693 27.0 664 1.134.5	.157 .219 27.047 .319 1.153.039	19 27,047 24 1,171.833	.19 27.047 167 1.190.934	.219 27.047 .860 1.210.347	21 09
764.819.707 89	6,423,726	.048.715.2	42 1.085.236.	878 1.170,10	.695 1.180.086	3 1.198.881	86 1.217.982	.080 1.237.394	.318
96.751 76	1,960,1	91,407.9	56 922.451.	ெர	.691 1.003.073	019.049		.768 1.051.78	170
616.464,161 68 26.744.971 3 75.032.174 9 240.473.043 28	7.293.599 3.559.025 1.201.886	4.88.9.0 8.8.2.1	723.966. 9.313. 129.044.	513 017 21.6 288 148.0 397 366.8	.803 2,544 .762 148,033 .032 366,427	887 4.792 762 148.033 463 373.891	608 4.870 762 148.033 075 375.065	.728 4.950 .762 148.033 .843 382.678	.121 .762 .283
958.714.349 1.09	5.696.480	2.411.0	6 1.200.759.	5 536.52	.597 517.006	12 526.717	445 527.970	.333 535.662	19
α 1 α α α α α α α α α α α α α α α α α α	1000 200	101111111111111111111111111111111111111		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1	1 1		

2014	3.480.88 5.549.35	5.030	75.70	7.38 6.89	2.984.2	7.9						· .		÷.	
2013	.709.847 1 .654.632 95	4.480 9	8.259.808 8	0 .096.314 .726.607	6,822,92	521.437									
2012	.285.016 2 .968.102 1.10	.241.253.118 1.12	055.065.151 95	0 6.474.212 9.256.181	30.39	569.335									
2011	0. 4.4	.696,045 1	56,591.63	5,454,40 37,010.22 00.343.88	08.52	613,783	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2020	1.634.526	4.854.30	0.626.15	-346.977.491 18.989.474		-301.568.725	382.19
2010	7.04	9,306,22	38	5.36 44.11 92,55	1 ~	596.373	1 .	2019	2.525.698	.260.23	2,621.20	38.804.324		78.855.076	.76
2009	7.04	00	.120,520,544 1	0.00 ∞.70	4.2	574.776		2018	5.872.646	30,142,2	80.620.87	56.831.876		148.196.712	2.42
5008	27.047 .270.503	.297.550.264	7.72	5.196.14 8.033.76 2.026.65	6.5	557.66	; - t (2017	8.796.929	745,86	3,733,9	73.001.588		207.280.657	206.45
2007	27.047.219 .250.125.991	.277.173.21	1,085,597,229 1	5,112.81 8,033.76 4,309,23	.455.80	548.141	1 6	2016	11.319.017	616.433.00	23,968,05	82.482.7	00,020,0	252.007.851	271.9
2008	27.047.219 1.230.075.756 1	257,122,976	.068.554.	0 00 00 I	536.675.822	531.879	1 1 1	2015	14.931.80 785.450.70	00.382.5	680.325.135	93.323.743	224.35/.55	317,691,594	362.6

Table 8-1-5 Profit and Loss Statement of Scenario-1

. !		٠		(Rp.1000)				
Description	0000	1990	1991	1992	1003	1994	1995	1986
A.Operating Revenue 1.Installation Fee 2.Annual Rental 3.Call Charge				15.910.435 3.054.804 113.638.690	15.653.187 6.060.215 231.500.227	19.165.399 9.739.972 378.489.221	14.091.308 12,445.503 489.419.410	18.598.626 16.016.439 636.853.670
Total Revenue	0	0	0	132,603,929	253.213.630	407,394,591	515.956.222	671.468.735
Contribution of Project	0	0	0	112,713,340	215.231.585	346.285.402	438.562.788	570.748.425
B.Operating Expense 1.Maintenance 2.Operation 3.Depriciation	0 00	600	000	23.009.091 41.479.442 239.062.272	33.182.578 79.941.328 111.715.288	44.128.901 128.102.558 129.046.966	54.695.613 162.022.824 145.777.593	65.590.833 212.121.375 163.028.359
Total Expense	0	0	0	303.550.804	224.839.195	301.278.425	362.496.029	440.740.567
C.Operating Profit	0	(C)	0	-190.837.464	-9.607.609	45.006.977	76.066.759	130.007.858
After Corporate Tax DPS Deffered Profit Defined Farmings	::00c	0000	0000	0000	0000	24.753.838 13.614.611 6.188.459	41.836.718 23.010.195 10.459.179 8.867.344	71.504.322 39.327.377 17.876.080
OPERATING RATIO (%)			0	269	104	18	· - -	1 2 3
***************************************	 		• • • • • • • • • •	9 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1		

				t 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
78	79	80	81	60	62	22		75
25	- 1		1					18.063.411
-	:							22,579,263
125 68	120.241.925 66.133.059	111,958,386	107.276.928 59.002.310	102.416.653 56.329.159	105,427,452	121.644.748 66.904.611	102,246,253	90.317.053
227.509.638	218.621.683	203.560.702	195.048.959	186,212,097	191.686.276	221.172.269	185.902.279	164.212.824
824.274.760	816.662.326	815.487.558	808.023.952	808,466,739	730.045.040	668.810.520	579.555.968	498.399.932
i	293.562.996	293.562.996		293,562,996	263.088,312	231.506.179	203.395.697	178.157.856
148.033.762	148.033.762 375.065.568	148.033.762	148.033.762	148.033.762	128,786,594	108.839.983 328.464.358	91.085.995	75.146.306
1.051.784.399	1.035,284.008	1.019.048.261	1.003.072,911	994.678.836	921.731.316	889.982.788	765.458.246	662,612,756
1.237.393.410	1.217.981.186	1.198.880.307	1.180.085.778	1.170.210.395	1.084.389.784	900.539.113 1.047.038.575	900.539.113	779.544.419
27.047.199	27,047.199	27.047.199	27.047.199	8.617.709 27.047.199 1.134.545.487	4.648.856 25.392.599 1.054.348.329	14.069.510 16.659.657 21.301.365 24.500.019 865.168.239 1.005.878.899	14.069.510 21.301.365 865.168.239	13,456,143 18,600,019 747,488,257
2005	2004	2003	2002	2001	2000	1999	1998	1997

2014	7.307.22 5.802.23	46	- 1	103.904.861 260.679.423 164.516.030	00.31	73	135.873.503 74.730.427 33.968.376 27.174.701	89	
2013	20.986.98	1 1	26.353.04	114.851.184 310.047.510 181.847.708	08,746,40	06.63	175.783.651 96.681.008 43.945.913 35.156.730		
2012	23.992.39 02.304.32	101	.042.352.2	125.024.672 354.927.347 197.955.730	77,907,74	44.4	0.244.45 0.244.45 0.111.11		
2011	27.047.199 33.647.848	360,695.047	56,590.790	136.332.208 400.343.595 215.859.330	52.5	1 -	22,230,61 22,226,83 55,557,65 44,446,12	in in	
2010	27.047.1 12.258.0	339.305.241	.138.409.455	143.881.046 392.559.546 227.811.656	64,252,2	4.157.20	05.786.4 13.182.5 51.446.6 41.157.2	ωı	
2009	27.047.19	318.258.	120.519.72	148.033.762 392.429.357 293.562.996	34.026.11	.493.60	57.571. 86.664. 39.392. 31.514.		
2008	27.047. 70.502.	.297.549.31	02.9	000 000	23.12	69.293.78	148.111.584 81.461.371 37.027.896 29.622.317		
2007	27.047.199	72.274	.085.596.433	148.033.762 384,308.953 293.562.996	.905.7	59.690.72	.829.8 .556.4 .707.4		
2006	27.047.1 30.074.8	257.122.05	068.553.74	148,033.762 383.610.971 293.562.996	25.207.72	3.346.01	133.840.3 73.612.1 33.460.0 26.768.0		

2.832.907 1.858.0909 7.08.227 5.66.581	9,887,812 -5,438,296 -2,471,953 -1,977,562	20,929,840 11,11,412 5,232,460 4,185,968	44.028.461 24.215.654 11.007.115 8.805,692	72.841.442 40.062.793 18.210.360 14.568.288
5,150,740	-17.977.840	38,054,254	80.051.748	į
76,465,606	141.642.000	236,507,007	317,232,997	378,185,393
30.474.683	62,056,816	90.167.299	115.405.139	
19,247,168	39.193.779	56.947.767	72.887.456	
81.616.346	123.664,161	274.561.261	397.284.745	
96,019,231	145,487,248	323.013.248	467.393.818	
1.654.600	2.547.180	5.745.835	8.447.180	
2020	2019	2018	2017	!

Table 8-1-6 Source and Application Statement of Scenario-1

Description	1989	1990	1991	1992	1993	1994	1995	1996
A.Source 1.Operating Income				112.713.340	215.231.585	346.285.402	438.562.788	570.748.425
Sub-total 3. Long-term Borrowings	94.992.441	172.677.951	258.657.334	351.775.611 232.716.223	326.946.873 250.394.656	475,332,368 241,711,130	584,340,381 249,225,698	733.776.783 218.579.261
TOTAL SOURCES	94.992.441 172.677.8	172.677.951	258.657.334	584.491.834	577.341.529	717.043.499	833.566.079	952.356.045
B.Application 1.Initial Investment 2.Working Capital	158.320.735 287.796.	287.796.585	431,095,557	387,860,371	417,324,427	402.851.884	415.376.164	
3.Maintenance 4.Operation 5.Repayment of	17.098.639	48.180.671	94.738.991	23,009,091 41,479,442 136,627,911	33,182,578 79,941,328 181,698,949	44.128.901 128.102.558 229.245.522	54,695.613 162.022.824 281.447.489	65,590,833 212,121,375 331,788,480
Interest & Principal								
TOTAL APPLICATION	175.419.374	335.977.256	525.834.548	622.790.816	742.902.756	843.645.010	941.225.305	1.013.455.148
C.Change in Cash	-80.426.933	-163.299.305	-267,177.214	-38.298.983	-165.561.227	-126.601.511	-107.659.225	-61.099.103
Debt-Service Ratio	0	0	0	2.10	1.18	1.32	1.31	1.37

i e-i i	i e i j	i e i i	698.105.264 698.105.264 1.215.084.443 81,551.464	682.603.713 682.603.713 1.219.391.712 68.850.120	338.170.134 673.310.894 1.883.583.196 -258,488.958	583.465.723 583.465.723 1.818.584.410 -240.821.252	245.095.770 285.074.275 328.454. 407.313.344 491.060.107 583.465. 1.362.809.333 1.574.938.129 1.818.584. -157.421.952 -199.965.723 -240.821. 1.28 1.21 1.	245.095.770 407.313.344 .362.809.333 1 -157.421.952
4.950.117 148.033.762 382.678.003 693.927.114	4.870,724 148.033.762 375,065.568 713.632.369	4.792.605 148.033.762 373.890.801 715.371.245	2.518.223 148.033.762 366.427.194 698.105.264	21.884.256 148.033.762 365.869.981 682,603.713	733.791.016 9.524.558 128.786.594 338.170.134 673.310.894	760.456.983 37.357.863 108.839.983 328.464.358 583.465.723	676.864.104 30.853.647 91.085.995 285.074.276 491.060.107	607.694.613 27.559.299 75.146.306 245.095,770
1.345.347.394	1.328.847.004	1.312.611.256	1,296,635,907	1,288,241,832	1.625.094.238	1.577.763.158	.205.387.380 1.374.972.406 1.577.763.	
1.051.784.399 293.562.996 1.345.347.394	1.003,072.911 1.019.048.261 1.035.284.008 1.051.784.399 293.562.996 293.562.996 293.562.996 293.562.996 1.296.635.907 1.312.611.256 1.328.847.004 1.345.347.394	1,019,048,261 293,562,996 1,312,611,256	.003.072.911 293.562.996 296.635.907	994.678.836 1 293.562,996 288.241.832 1	921.731.316 263.088.312 1.184.819.629 440.274.609	889.982.788 231.506.179 1.121.488.968 456.274.190	765.458.246 203.395.697 968.853.943 406.118.463	662.612.756 178.157.856 840.770.613 364.616.768
2005	2004	2003	2002	2001	2000	10001	10001	

2014	776.143.047 164.516.030 940.659.076	940.659.076	103.904.861 260.679.423 97.967.547	62.551.83			
2013	926.353.040 181.847.708 1.108,200.748	1.108.200.748	0 114.851.184 310.047.510 199.495.234	24.393.92		3,43	
2012	1.042.352.214 197.955.730 1.240.307.944	1,240,307,944	0 125,024,672 354,927,347 289,862,539	69.814.55	470.493.386	2.6	
2011	1.156.590.790 215.859.330 1.372.450.120	1.372,450.120	5,454,401 136,332,208 400,343,595 370,995,108	13.125.31	459.324.808	1 63 1	
2010	1.138.409.455 227.811.656 1.366.221.111	.366.221.111	5.366.920 143.881,046 392.559,546 419.632,194	61.439.70	4,781,40	1.98	
2009	1.120.519.722 293.562.996 1.414.082.718	.414.082.718	5,280,842 148,033,762 392,429,357 475,088,561	.020.832.52	393.250.19	1.84	
2008	.102,916,916 293,562,996 .396,479,911	1.396.479.911 1	5,196,145 148,033,762 392,026,369 528,872,826	.074.129.102	.350.809	1.62	
2007	.085.596.433 293.562.996 .379.159.428	.379.159.428	5.112.806 148.033.762 384.308.953 584.589.303	.122.044.825	257,114,604	1.45	e e
2006	1.068.553.746 1 293.562.996 1.362.116.741 1	1.362.116.741 1	5,030.804 148.033.762 383.610.971 636.372.070	173.047.607	189.069.134		

000.000	0/0-1/0-0	C1	07.		
147, 785, 403	130 534 637	115 405 120	GO 187 799	62 056 816	
000		000000	701		
813.059.986	641.159.015	512.689.884	364,728,559	185.720.977	112,091,029
0	0	C	0	0	
010 000 010	041 100 046		004:309 550	100 000 101	110 001
000.000.000	041.100.010	500.800.710	800.07/.400	100.120.001	112.031.029
		-			
•			,	•	
0	0	-	0		٠.
93,338,149	82,442,929	72,887,456	56.947.767	39 193 779	19,247,168
010 A07 EE	000 000	100 040	170 000	100 0V	
718.401.001	070./07.001	104.040.7	140.100.00	・ウコザ・エのり・コザ	
. 0	0	. 0	0	0	0
				-	
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	;	11 11 11 11 11 11 11 11 11 11 11 11 11	
312,745,700	247.650.756	201.827.858	148.339.708	79,585,184	-300.986.314
				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
500.324.286	393 508 259	310,862,027	218.388.851	106, 135, 793	413.077.344
000		10.100		0001	***

The cash flow statement (scenario 1) produce higher internal rate of return (I.R.R.), 6.8% thus scenario 2 due to the emphasize placed on the financial revenue of evaluation criteria (in area priority ordering) though, more or less, these two scenario have not such a big difference in I.R.R. (The value of F.I.R.R is based on "Before Tax")

The FIRR of 6.8% which results if the network is extended to cover the Desa is only one-third of the FIRR of 19.5% which results if network coverage extends to only the IKK. In other words, the FIRR in the Desa is extremely poor compared with that of IKK and KEC. (Refer to Figure 8-1-1)

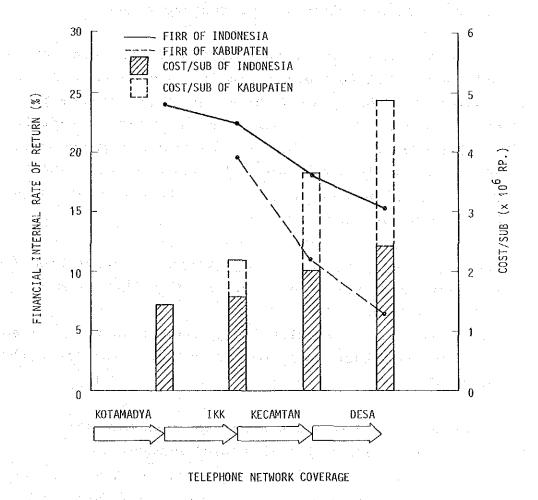


Figure 8-1-1 Telephone Network Coverage and F.I.R.R.

In the profit and loss statement, the operating ratios of the first several years show the deficit of operating profits, that is, more than 100%. However, this ratio will be turned down to around 80% in the later stage.

The corporate tax rate is assumed to be 45% in this plan. DPS means the provision for the development fund and 55% of the operating profits (after tax) is allocated.

The total amount of internal reserve generated until the year 2000 is estimated about 2000 billion rupiahs and shares about 35% of the total investment cost. (about 5643 billion rupiahs) This proves the plan to be financially feasible since this holds the same share as in PELITA IV described in the next section.

The source and application statement is prepared in the conditions that 60% of the initial investment cost is procured for this plan with 18% of annual interest rate. Of this Table, "Change in Cash" are in deficit until the year 2000 and turn is surplus from the year 2001. The maximum cumulated deficits amounted about 1867 billion rupiahs in the year 2000 and requires the procurement of short-time loan.

Debt-service ratio (operating profit + depreciation / repayment of interest and principle) shifts from 2.1 in 1992 to 1.07 in 2000.

In general, telecommunication project requires at least 1.3, but this plan positions under this rate until the year 2005.

Therefore, the following financial measures are requested to reduce the financial burden.

- 1. The procurement of soft loan
- 2. The reduction of maintenance and operation cost of Desa
- 3 Teke the measures to reduce the initial investment cost of Desa (obtained low FIRR) or to procure a external subsidy for Desa.
- 4. Area priority ordering plan is prepared without creating any gaps in priority between Province, but the financial burden can be relieved to some extent if the ordering plan is re-prepared in accordance with the high FIRR obtained obtained by Kabupaten.

8-1-5 Changes in the Financial Position of PERUMTEL

(1) Outline of the year until the period of the PELITA IV Table 8-1-7 shows the profit and loss statements of PERUMTEL for 1979 through 1983. PERUMTEL has not operated on a profitable basis over the past 5 years. Expenditures have grown at a higher rate than revenues, thus raising the operating ratio (Expenditures/Revenues x 100). Therefore, its financing has been dependent on continual equity contributions from the Government.

Under the PELITA IV, the operating ratio is expected to change from 84% to 62%, a very sound rate. This reflects a proposed tariff rate revision, in which the tariff rate will be raised by 20% every two years.

Under the PELITA IV, the internal reserves are projected at Rp. 1,065,791 million (approximately equal to one-third of the total investment for the period). Fig. 8-1-1 shows the financial sources intended for the PELITA IV.

Table 8-1-7 Profit and Loss Statement Until PELITA IV

(Million Rp.)

	1979	1980	1981	1982	1983	Total	1984	1985	1986	1987	1988	Totai
Operating Revenue share of Telephone(%)	147.404	194.001	248,422	324.477	409.278		615.740	739.760	1.153.090	1.517.290	1.908.640	5.934.520
Operaling Expense	106.313	129.982	199.300	263.705	336519		443.520	517,510	616.100	79.100	858.070	3.164.390
Operating Profit	41.091	64.019	49.061	60.772	72.757		172.220	222.250	536.990	788.190	1.050.570	2.770.130
Net Profit	38,807	37,686	36.528	51.551	53.770	218.322	102.520	89,980	328.910	513.180	716.020	1.750.610
Net Profit After Tax	21,406	20.779	20.153	28.416	29.636	12.390	56.386	49,489	180.81	282,249	393,811	962,836
Operating Ratio(%)	72.1	67.0	80.3	81.3	82.2		72.0	70.0	53.4	48.1	45.0	53.3

	External	Soft Loan	12%
Total	Fund	Bank	33%
Investment			
Cost		Other	12%
	Internal	Equity	10%
	Fund	Internal	
		Reserve	33%
	L		

Figure 8-1-2 Fund Procurement in Pelita IV

(2) Financial Position Up to the Year 2000
In order to analyze the potential impact of this plan (which is scheduled for implementation from 1989 on) on the financial position of PERUMTEL, the assumptions shown in Table 8-1-2 are made regarding the demand and cost in the area (Kotamadya) that is not covered by the plan.

If the Kotamadya are included, then the FIRR is estimated at 15% even if the network is extended to cover the Desa. It can therefore be judged that the implementation of a rural telecommunications network project is sufficiently feasible from a financial viewpoint.

The cash flow statement (PERUMTEL) based on the above assumptions will be shown in Table 8-1-8.

If the Kotamadya are included, then the FIRR is estimated at 15% (shown in Figure 8-1-1) even if the netwrok is extended to cover the Desa. The FIRR, extendeing to cover the Kecamatan, is abut 18% shows the possibility to implement the plan even if the external loan with 18% of interest rate is procured.

Therefore, Rural Telecommunications Network Projectd in Indonesia, in the angle of network coverage consideration, can be concluded as the compensation of using the profits derived in Kotamadya to the low profits seen in Kabupaten.

Soft loan or external subsidy should be procured for Desa construction to relieve the financil burden.

Although the FIRR varies greatly depending on specific areas and network coverage, it can be justified financial feasibility to implement this plan in general.

Based on the above discussion, although the FIRR of a rural telecommunications network project in Indonesia varies greatly depending on specific areas and network coverage, it is possible to obtain an adequately sufficient value overall if the low FIRR seen in some areas is compensated using the profits derived in areas with high FIRR.

8-2 Economic Evaluation

8-2-1 Objective

This section is to examine economic effects of this project. For this purpose, study is made to measure the economic effects which this project will generate to the nation and the rural areas.

Table 8-1-8 Cash Flow Statement of PERUMTEL Total (Urban + Rural)

1995	662500 547200 493640	467033400	ကြ	800000 784233 793000 015381	703926	-236893	2004	80952000 3564453648	64540564	6454056	∠ 4 ∞	7068695	074
1994	062500 844000 516062	7422562	1174225625	44000019874121951001937844	1556135748 1	-381910	2003	80952000 3507284904	58823	3588236904	17.	542	2024983
	6000000 0640000 8448000	45088000	845088000	41000 85591 91380 84835	402806276	-557718	2002	8095200 5103306	5319850	3531985065	497989 463009	71247	2003273
1 6	53750 37280 06816	5978460	559784600.	100000 763264 465000 934929	3193	-672847	2001	3875000 8095200 39568342	5153854	3515385425	684270 463000 123911	1118	1882674
၂ တ	1850000 693600 4223980	6767580	267675800	70000 87408 71400 20846	084965561	-817290	2000	3337500 7351200 05235607	15924307	3159243075	8500000 8793014 1608000 4759719	3	422636
	762500 338400 753055	5395	138539550	00000 56186 72000 55536	7837231		6001	4400000 6710400 75503860	86614260	2866142600	345 000 000 020	. io	230719
1080			! ! ! ! ! ! ! ! ! !	524000000	00	-524000	1998	401250 586560 3823501		2481131100	1221000000 103251180 240870000 833554110	2398675290	82458
Year			Project	tment	1 1 1 1 1 1 1 1 1 1 1	(x1000)	1997	38375000 50952000 2047633500	2136960500	2136960500	117100000 95435310 205740000 714104046	2186279356	-49319
escr	Cash Inf Installa Annual R	otal Infl	ontributi	Cash Initi Worki Maint	otal Out	Cash Surplus	9661	42250000 43584000 1733008800	1818842800	1 8	949000000 105542820 177270000 610873590	1842686410	

2013	60312 071612	3131924661	3131924661	693360	0	1899339							
2012	67224 68721	77	3435945775	8998000 7745362	1367433629	2068512							
2011	7401600 64959336	72360936	3723609368	i ⊢o	2641	2241683	2020	7440 4315	1755	431755731	6 to 4	-933307964	1365064
2010	77568 63392	84096068	3840960680	38910 16130	1555040981	2285920	2019	1384800 7710790	5590	790955906	7713000	317445102	473511
2009	80952000 3864582647	9455346	3945534647	7400	1637404179	2308130	2018	2229600 3111692	5341292	1253412926	376 990		759747
2008	809520 026002	88355226		1829648 35463000 24059272	1351921	22	2017	300000 6299402	5994021	1659940218	4889000 0192630	81630	1009124
2007	8095200 74161198	82256398	၂၈	1800303 35463000 23494679	607579	221498	2016	37368000 1997691169	03505916	2035059169	7736000 1390462	5462	1243795
2006	809520 6816018	76255387		17714 354630 228757	60110160	218	2015	0 45480000 2392362719	43784271	1 [~ 1	20670000 74612128	282128	1485021
2005	3095200 2255424	0350624	3703506242	1743017 35463000 20560359	7766377	21258	2014	525120 7179608	770472	2770472894	23502000 84581308	8083308	1689640

The people or organizations affected by telecommunications business can be classified into the following three categories. Their cost benefits items are also.

	Costs	Benefits
User	Installation fee, Rental fee, call charge	Economic benefits
PERUMTEL	Construction costs, Operation/maintenance costs	Financial benefits - Installation fee, Rental fee, - Call charge
Regional Society	Subsidy/Development expenditures	Economic benefits

Financial analysis is conducted by considering only the revenue and cost incurred in PERUMTEL. The objective of economic evaluation is to measure economic benefits that accrue to users and thus to evaluate rural projects from the national perspective.

8-2-2 Economic Effects

Telecommunications are a kind of modern communication media. They can make information exchanges with remote areas at once. Telephone plays a significant role in daily activities as a one of the important two-way personal communication media. Development of communications will establish the closer socio-economic inter-dependence between isolated areas through inter-regional division of labour.

The impacts of telephone services introduction will be summarized as expansion effects and substitution effects.

The expansion effects mean that time reduction in communications by exchanging information and the faster communications with remote areas will improve managerial efficiency in both public and private sectors, the increase of profit opportunities as the results of easier market accessibility and improve life-styles of people through being able to obtain better information.

The impact flow chart of telephone services introduction will be shown in Figure 8-2-1.

The impact on industrial sector will result in easier market accessibility. The easier market accessibility will make business firms collect market information more quickly, will improve the existing market structure, and will introduce agricultural technologies, which will bring more production. Another impacts on modernization of the agricultural sector come for faster preparations against vermins faster reactions to natural disasters and easier monetary transactions. Development of the agricultural sector will accelerate the establishment of agro industry, encourage other business sectors, increase employment opportunities and increase regional income as the final results.

In Indonesia, communication media such as H. F. Radio, and messengers are widely used in the rural areas. However, these communication methods keep the management efficiency and social services levels to local people low because they cannot respond well to recent demand for faster communications and high quality information.

The telephone services can be expected to bring more efficient organizational structure better social/medicals service to local people.

The substitution effects mean cost savings on communication expenses. Cost of telephone use are cheaper than those of other communication media. The efficient use of communication media will be also realized by introduction of telephone services.

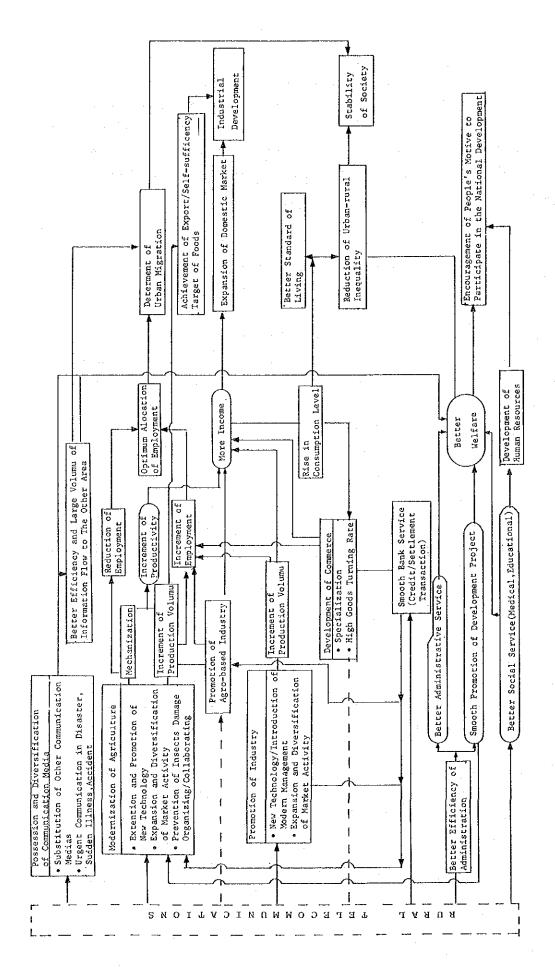
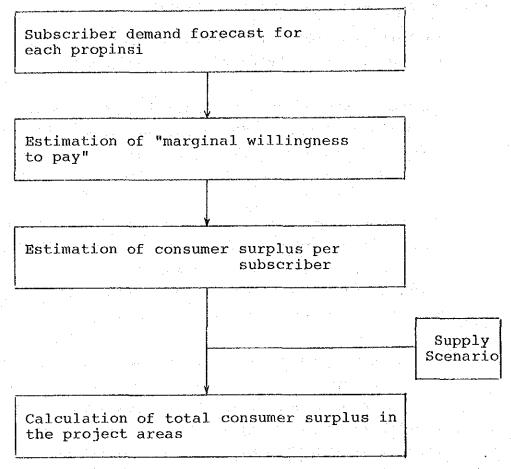


Figure 8-2-1 Impact Flow

8-2-3 Measurement of Economic Effects

In this, the following three analyses will be considered to measure the effects of telephone services.

Consumer surplus can be classified into realized and unrealized surplus. Those two surpluses will accrue to users and regional societies. Consumer surplus include the expansion and substitution effect.


Media cost comparison analysis can be made only in the sample areas and should not be applied in the nation wide level. Therefore, the measured benefits of this study should be applied in the feasibility study which will be executed by PERUMTEL in future.

The economic benefits can be measured by a functional relationship of gross regional domestic products and telephone service. This relationship is derived from results of statistical analysis on socio-economic data since this relationship does not reveal the actual cause and effect relationship. The purpose of this analysis will be restricted to illustrate the significance of telecommunications development against other infrustructure development. This analysis will not measure the economic benefits in monetary terms.

(1) Consumer Surplus

The method of estimation is described in Chapter 6 "Area Priority Ordering" in detail.

The results of estimation for province will be shown in Table 8-2-1. The procedure of calculation is shown as follows.

It is assumed to be no differences of surplus between the objective area and the non-objective area.

The nominal installation fee is assumed to be Rp500,000 (from the year 1985) for all propinsi, that is charged real terms by the consumer price index in 1975 for each propinsi.

In Indonesia rural, the total amount Rp670 billion of consumer surplus can be expected to accrue to users and Rp491,000 per subscriber on average. The cost benefit ratio in the installation of telephone will be expected to be 12 ("total willingness to pay"/actual expenditure). Estimated marginal

willingness to pay is very close to what people in the sample areas mentioned in the interviews. Therefore, these facts are concluded to indicate that the high benefit will be generated to users in telephone introduction.

- (2) Media Costs comparison

 In Indonesia, the following communication medias are observed to be widely used in general.
 - Telephone service
 - Telegram service
 - H. F. Radio (SSB)
 - Mail service
 - Messenger services
 - Face to face meetings
 - 1) Theoretical Consideration A person will choose a communication method which is the most effective for him.

In this study, media costs, one of the important factors for media selection will carefully examined.

Media costs will be classified into non-transmission costs include those cost incurred in the possession of communication means and time costs of making messages.

Assume that there exist the above-mentioned six communication methods between two remote area and denote TCi as the transmission costs, NTCi as the non-transmission costs of the i-th communication method. One may choose mail services which incur zero possession costs but

Table 8-2-1 Consumer Surplus of Economic Analysis

	CONSUMER SURPLUS 1992-2001		1.357.14	.045.70	7.811.89	518,63	4.875.43	30.156.284	1.326.86	.292.11		701.8	.760.7	C1	.011.2	8.556.6	.554.7	.281.3	49.6	.632.6	64.4	1.764.0	.290.5	1.471.2	.917.7	.882.0	987.9	453.1	2.5	669.834.971
1 1 1	RURAL TOTAL DEMAND (2000)	1		-00	(C~		C	62118	47	44362		7	49	-	9	07	4,	41	ഗ	ů	11		8	~	86		£~	8	28660	1.363.542 F
RP.1000)	* d		678	1.167	610	677	4.6	639	302	507	5.567	553	S	813	Θ	α	44	C/I	O1	Ø	က	ω	S	7	တ	5	\circ	LO.	5	831
	5 2000	1	က	54	515	525	500	വ	99	57	ሌ 4	57	65	დ წ	23	0.2	თ ზ	61		.61	.52	52	60 60	64	55	90	54	55	70	52
	* 2000 d.		ശ	m	ဖ	ব	~	818	4	(v)	Θ	_	9	~	$^{\sim}$	∞	ω	4		7.1	\circ	ın	4	_	N	844	ıΩ	-	r~	. 1.4181
1 1 1 1	- 2000 P	1 1	07	e	27	40	00	1.336	! ~	<u>۲</u>	∞	1.164	0	∞	.58	$^{\circ}$	വ	202		851	<u>ب</u>	ð	~	Ŋ	837	1.416	1,071	1.357	1.611	1.759
	P- *		√"	\sim	$^{\circ}$	un.	N	332	F~	[∼	ത	Θ	∞	r ∼	4.	ထ	0	142	777	ത	293	œ	\circ	യ	O	312	Θ	ഗ	0	423
 	* 1992 P							<u>က</u> တ																		86				92
	C 000		501	725	402	490	450	4 8 5 5	208	488	2.317	396	302	507	477	721	212	253		C1	(r)	Ø	∞		$^{\circ}$	451	တ	~	0	541
	- 1992 P	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	783	1,233	647	787	737	759	449	637	6.081	619	460	842	777	1.241		384		482	699	1.047	1.670	825	493	Ċ.	611	754	924	6 6 6 6
						٠.		tan						rta '	 .		a Barat	a Timur ;	 ·.	arat.	engah !	elatan	Timur	 	gah	Selatan (enggara		u- u	VERAGE: 1
	Province		.I. Aceh	Sumatra Utara	א) ;	Jambi	ra Sela	===	Lampung	Dki Jakarta	Jawa Barat	Jawa Tengah	D.I. Yogyakar			Tenggar	느	imor Timur	Kalimantan Ba	Kalimantan Te	Kalimantan Se		ulawes! Utra	Sulawesi Tengah		Sulawesi Teng	Maluku	rian Jaya	INDONESIA (AVERAGE)
	Code	1 1	\hookrightarrow		S S			16 S		α'n		32 J	ෆ	4	Ŋ	_	8	က	4		Ç1	ო	4	_	ÇI	m	বা	_	. (1)	Н

a high time costs or he may choose telephone services which incur high possession costs but the smallest time costs. These tell that people evaluate their time costs differently.

Assume that total cost incurred to use the i-th method is Si, one will choose method which minimizes Si, i.e..

Min Si = NTCi + TCi

The total costs Si will be affected by the frequency of media use and the distance for messages to be transmitted.

Suppose that three media cost curves are drawn as S1, S2 and S3 in the following figures, the medium 2 will be used up to Di and the medium 3 will be used for more than D1. Therefore, the triangle area NTC3-D2-NTC2 is the total amount of cost saving's incurred to a user when he chooses the medium 2 up to the distance D2.

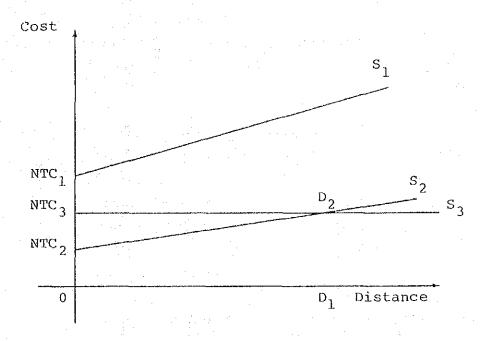


Figure 8-2-2 Cost Curve of Media

- 2) Break-down of Media Costs Any medium will be considered to generate the following costs.
 - a) Non-transmission cost
 - . Message preparation costs
 - . Access costs to media
 - . Operator's costs
 - . Possession costs

The possession costs of media are shown in Table 8-2-2. The annual present value is estimated from durable periods for each medium. The 12% of interest rate per year is applied to calculate the discounted time value, ie., the present time value.

Table 8-2-2 Annual Present Cost of Each Media (Possessioin Cost)

(Rp)	Annual Present Cost	22,800		39,000		473,048		2,252,404		1,088,422		5,442,108
	Present Value Coefficient						3.605				3.605	
	Annuity Cost					131,220		624,800		301,920		1,509,600
	O/M Cost	12,000		24,000		48,000		70,000		80,000		400,000
	Annual Pay-back of Initial Cost	10,800		15,000		83,220		554,800		221,920		1,109,600
	Pay-back Coefficient	0.12		0.12			0.2774				0.2774	
	Salvage Value						0		4		0	**************************************
	Durable Period						w.				'n	
	Initial Cost	000,06		125,000		300,000		2,000,000		800,000		4,000,000
	·	Manual		Automatic	÷			le		r		2
	Media		Telephone	∵ ™		Motor Cycle		Motor Vehicle		H.F. Radio		H.F. Radio

* Interest Rate per year : 12%

^{*} Motor Cycle, Motor Vehicle is Second-hand Price.

- b) Transmission costs The following assumptions are made to calculate the transmission cost of each medium.
 - The volume of information was assumed to be the same as the three minutes communication by telephone. One minute in telephone communication can transmit 300 words. The conversion rate of telephone to other media are assumed as follows (applied in the Japanese standards);

Three minutes in Telephone - 900 words

Letter - 1000 words

Telegram - 900 words

Three minutes in H. F. Radio - 900 words

- . The frequency of information to be exchanged is assumed to be 10 times per month (three minutes communication for each time, obtained from the interview survey of the sample area).
- . Transportation costs are based on the following assumptions.

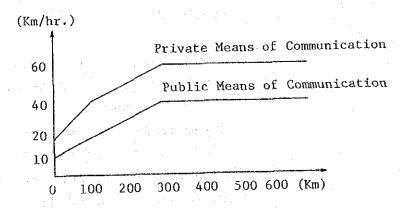


Figure 8-2-3 Speeds of Transportation

Up to 100 km, the average speed can be in the range between 20 km/hour and 40 km/hour by private means of transportation.

The costs incurred by using private means of transportation are assumed to be mainly gasoline cost. This method requires one liter of gas per 50 km. The price of gasoline is Rp 350 per one liter. Thus, Rp 7 is required for 1 km of operation.

The costs incurred by using public means of transportation are bus fares shown as follows.

Charging Zone in Telephone	0-25 km	25-100 km	100-200 km	200-300 km
Road Distance	12.5 km	1.00 km	300 km	600 km
Bus Fares	Rp.200	Rp.500	Rp.2000	Rp.5000

- . Time value of messengers is estimated as Rp300-Rp700 per hour.
- 3) Results of analysis

The following situations are analyzied.

- 1. Telephone subscriber in automatic office to telephone subscriber in automatic office
- 2. Telephone subscriber in manual office to telephone subscriber in automatic office
- 3. Telephone subscriber in manual office to telephone subscriber in manual office
- 4. A user in public call office to telephone subscriber in automatic office
- 5. A user in a public call office to telephone subscriber in manual office
- 6. Letters
- 7. Messenger sent by motor bikes
- 8. Messenger sent by bus
- 9. Telegrams
- 10. H.F radio

a) Non-transmission costs

The formula of non-transmission costs is as follows.

 $NTC = (TM \times 2 + TA + TO) \times N \times W + PC$

where, NTC: Non-transmission costs

TM: Preparation costs

TA: Access costs to media

TO: Operator's costs

N : Frequency of information per month

W : Time Value

PC: Possession costs of a medium per month

The results of analysis are shown in Table 8-2-3, 4. The H.F radio is most expensive and requires Rp900,000 per month to use because of its high possession costs.

Compared with telephone, H.F radios have shorter service periods and high trouble occurrence rate. Though the possession cost of motorbike is higher, the total costs of motorbike are cheaper than that of H.F radios because motor bikes can be used not just for sending messages (here, 40% of total possession cost are assumed to be incurred for communication purpose.)

The difference between in Riau and in Jawa Tengah is access costs to public call offices, which affect the non-transmission costs in medium 4 and 5.

MEDIA COST COMPARISON NON-TRANSMISSION COST(NTC)

	PROVINCE: RI	RIAU		. !	. !			
EDIA	TM	A H	TO) Dd.	 3	Z	COST (Rp)	COST FORMULA(NTC)
\vdash	0.05	1 1 1 1 1 1		6500	2007	10	7200	(TM*2+TA+TO)*N*W+PC
MANU TO AUTO	0.05	0		5150	700	10	12850	(TM*2+TA+TO)*N*W+PC
MANU TO	Φ.	0		3800	200	10	11500	(TM*2+
4. PCO TO AUTO TEL	0.05	7	-	3250	200	10	24950	(TM*2+TA+TO)*N*W+PC
5. PCO TO MANU TEL	0.05	7	•	1900	700	10	23600	(TM*2+
1	0.25	 1	0	0	700	တ	9450	(TM*2+TA+TO)*N*W+PC
MESSENGER BY B	0.25	0	0	15768	700	6	18918	(TM*2+
	0.25	0	0	0	700	ത	6300	(TM*2+TA+TO)*N*W+PC
	0.25	1	0	O	200	10	10500	
10. H.F. RADIO	0.02	0	0.25	907018	700	10	909468	(TM*2+TA+TO)*N*W+PC
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 5	1,1111111111111111111111111111111111111			1. 1. 1. 1. 1. 1. 1.		

COST(NTC)	
NON-TRANSMISSION	
COMPARISON	
MEDIA COST	
Table 8-2-4	

PROVINCE: JAWA TENGAH

MEDIA	TM	TA	TO	PC	3	z	COST(Rp)	COST FORMULA(NTC)
1. AUTO TO AUTO TEL	0.05	 0 1 1	1 1 1 1 1 1	6500	7007	0.1	7200	
2. MANU TO AUTO TEL	0.05	0	-	5150	700	10	12850	<u></u>
3. MANU TO MANU TEL	0.05	0	 (3800	700	1.0	11500	_
4. PCO TO AUTO TEL	0.05	ا اسبو	***	3250	200	10	17950	(TM*2+TA+TO)*N*W+F
5. PCO TO MANU TEL	0.05			1900	700	10	16600	(TM*2+TA+TO)*N*W+F
6. LETTER TO LETTER	0.25	****	0	0	200	က	9450	(TM*2+TA+TO)*N*W+F
7. MESSENGER BY BIKE	0.25	0	0	15768	700	റ	18918	(TM*2+TA+TO)*N*W+F
8. MESSENGER BY BUS	0.25	0.5	0	0	700	o	6300	(TM*2+TA+TO)*N*W+1
9. TELEGRAM	0.25	, 	0	0	200	10	10500	(TM*2+TA+TO)*N*W+F
10. H.F. RADIO	0.05	0	0.25	907018	700	10	909468	(TM*2+TA+TO)*N*W+I

b) Transmission Costs The formula is given as follows

Telephone : TC=TariffxTMx60xN

letter : TC=TariffxN

Transportation $TC = (\frac{D}{V} \times W + GasolinexD) \times Nx2$

Transportation : TC=(W/Vf+GasolinexD)x2

Telegram : TC=(Tariff)xNx900

H.F radio : TC=0

where, TC : Transmission cost

TM : Time to transmit message

V : Speed (km per hour)

D : One-way distance (km)

Transmission costs depend on distance. This analysis is made according to the distances divided by the telephone charging zones.

The telephone tariffs in 1985 are given as follows.

0 - 25 km Rp. 75

25 - 100 km Rp.750

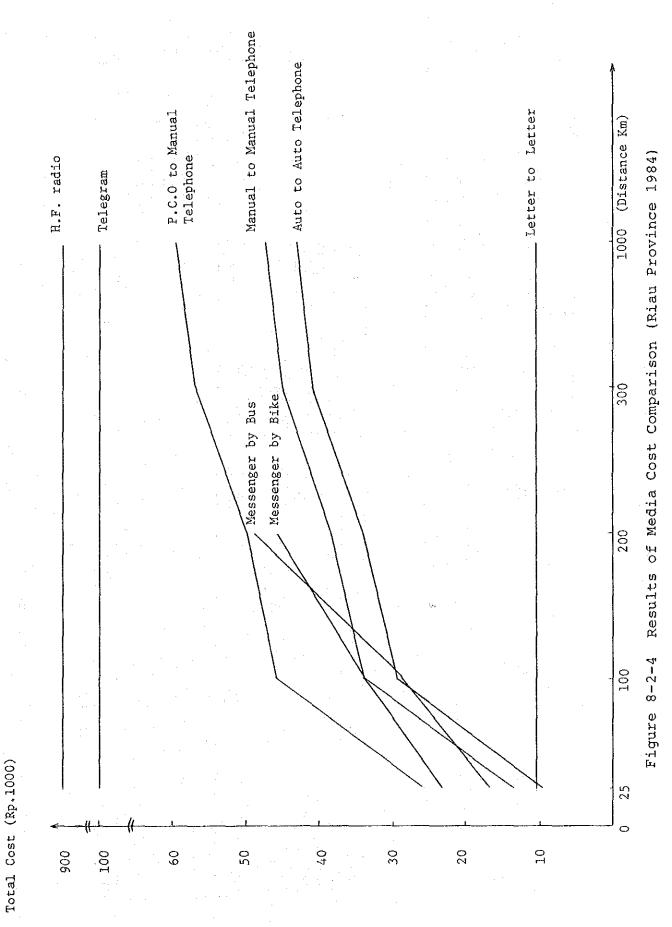
100 - 200 km Rp. 900

200 - 300 km Rp.1125

300 - 1000 km Rp.1500

more than 1000 Rp.2250

Mail charge is Rp.140 for a normal letter in 1984. The speed and distance are based on the assumptions shown in Figure 8-2-3. Telegram tariff is Rp.10 per word.


Total costs of each medium including non-transmission costs and transmission costs are shown in Figure 8-2-5, 6. These figures show the high costs of H.F radio and telegrams. Transmission costs of telegrams are extremely expensive in comparison with those of telephone.

The costs of letter are extremely low at distance more than 25 km. If the time cost of letters in the rural areas of Indonesia are taken into account, the costs of letters will be higher than those of telephone because it usually takes one week for a letter to reach in the rural areas.

In conclusion, the substitution effects of telephone introduction to all other media will be generated in the distance more than 100 km and even within the distance 100 km, the effects will be generated against the media of H.F radio, telegram and messengers sent by motorbike.

- (3) Cross Impact Analysis

 The objective of this analysis is to examine the functional relationship between economic development and telephone introduction by applying the statistical analysis (Macro-approach).
 - Theoretical consideration
 Those indexs such as economic activity index,
 communication index, standard of living index,

Media Cost Comparison Total Cost Table 8-2-5

	PROVINCE: RIAU	RIAU						
MEDIA	0-25Km		(Rp)	25-100Km	(m)	(Rp)	100-200Km	(Rp)
1. AUTO TO AUTO TEL 3. MANU TO AUTO TEL 4. PCO TO AUTO TEL 5. PCO TO AUTO TEL 6. LETTER TO LETTER 7. MESSENGER BY BUK 8. MESSENGER BY BUK 9. TELEGRAM 10. H.F. RADIO	NTC+175×17M×60×N NTC+775×17M×60×N NTC+775×17M×60×N NTC+175×17M×60×N NTC+175×17M×60×N NTC+175×17M×60×N NTC+175×17M×60×N NTC+175×17M×60×N NTC+170×N×60×N	NTC+75*TM*60*N NTC+75*TM*60*N NTC+75*TM*60*N NTC+75*TM*60*N NTC+75*TM*60*N NTC+75*TM*60*N NTC+140*N NTC+140*N NTC+100*N*25*2 NTC+10*N*900	15100 13750 13750 27200 27200 25850 10710 17100 100500	NTC+750*TM*6 NTC+750*TM*6 NTC+750*TM*6 NTC+750*TM*6 NTC+750*TM*6 NTC+1400*N NTC+(400/20* NTC+(400/20* NTC+(400/20* NTC+(400/20*	NTC+750*TM*60*N NTC+750*TM*60*N NTC+750*TM*60*N NTC+750*TM*60*N NTC+750*TM*60*N NTC+140*N NTC+140*N NTC+140*N NTC+140*N NTC+10*N*900	29700 329700 34000 34000 47450 46100 10710 34218 28800 100500 9468	NIC+900*TM*60*N NIC+900*TM*60*N NIC+900*TM*60*N NIC+900*TM*60*N NIC+140*N*60*N NIC+140*N*60*N NIC+140*N*60*N NIC+140*N*60*N NIC+140*N*60*N NIC+140*N*80*N	34200 39850 38850 38500 51950 50600 10710 48300 100500
200-300Km	(RP)	300-1000Km		(Rp)	MORE 1000Km	(RP)		·
NTC+1125*TM*60*N NTC+1125*TM*60*N NTC+1125*TM*60*N NTC+1125*TM*60*N NTC+1125*TM*60*N NTC+1125*TM*60*N NTC+1125*TM*60*N NTC+140*N ND CALUCULATION NO CALUCULATION NO CALUCULATION NO CALUCULATION NO CALUCULATION NO CALUCULATION	10710 909468	NTC+1200*TM*60*N NTC+1200*TM*60*N NTC+1200*TM*60*N NTC+1200*TM*60*N NTC+1200*TM*60*N NTC+1200*TM*60*N NTC+140*N NO CALCULATION NO CALCULATION NO CALCULATION	N X X N N N N N N N N N N N N N N N N N	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	NTC+2250*TM*60*N NTC+2250*TM*60*M NTC+2250*M NTC+2250*TM*60*M NTC+2250*M NTC+2250*M NTC+2250*M NTC+2250*M NT	1	74700 80350 79000 92450 91100 10710 100500	

Table 8-2-6 Media Cost Comparison Total Cost

PROVINCE: JAWA TENGAH

MEDIA	0-25Km		(Rp)	25-100Km	7.1	(Rp)	100-200Km	(Rp)
1. AUTO TO AUTO TEL 2. MANU TO AUTO TEL 3. MANU TO MANU TEL 4. PCO TO AUTO TEL 5. PCO TO MANU TEL 6. LETTER TO LETTER 7. MESSENGER BY BIKE 8. MESSENGER BY BUS 9. TELEGRAM 10. H.F. RADIO	NTC+70%+TM%+60%N NTC+70%+TM%+60%N NTC+70%+TM%+60%N NTC+70%+TM%+60%N NTC+100%N NTC+100%N NTC+100%N NTC+100%N NTC+100%N NTC+10%N	VTC+75*TM*60*N VTC+75*TM*60*N VTC+75*TM*60*N VTC+75*TM*60*N VTC+75*TM*60*N VTC+140*N VTC+140*N VTC+10*N*900 VTC+10*N*900	159450 100500 100500 100500 100500 100500 100500	NTC+750*TM*6 NTC+750*TM*6 NTC+750*TM*6 NTC+750*TM*6 NTC+750*TM*6 NTC+140*N NTC+(300/40+ NTC+(300/20* NTC+(0*N*900)	NTC+750*TM*60*N NTC+750*TM*60*N NTC+750*TM*60*N NTC+750*TM*60*N NTC+750*TM*60*N NTC+140*N NTC+(300/40+7)*N*100*2 NTC+(400/20*100+500)*N*2 NTC+10*N*900	29700 35350 34000 40450 39100 10710 34218 28800 100500 909468	NTC+900*TM*60*N NTC+900*TM*60*N NTC+900*TM*60*N NTC+900*TM*60*N NTC+900*TM*60*N NTC+140*N NTC+(400/30*200+2000)*N*2 NTC+10*N*900	34200 39850 38500 44950 43600 10710 45918 48300 100500 909468
			:	. !	· ·	!		÷.3
200-300Km	(Rp)	300-1000Km		(Rp)	MORE 1000Km	(Rp)		
NTC+1125*TM*60*N NTC+1125*TM*60*N NTC+1125*TM*60*N NTC+1125*TM*60*N NTC+1125*TM*60*N NTC+1125*TM*60*N NTC+110*N*900 NTC+110*N*900 NTC+110*N*900	40950 46600 45250 51700 50350 10710 100500 999468	NTC+1200*TM*60*N NTC+1200*TM*60*N NTC+1200*TM*60*N NTC+1200*TM*60*N NTC+1200*TM*60*N NTC+140*N NO CALCULATION NO CALCULATION NTC+10*N*900 NTC+10*N*900		48850 47500 52800 52800 100500 100500 908488	NTC+2250*TM*60*N NTC+2250*TM*60*N NTC+2250*TM*60*N NTC+2250*TM*60*N NTC+2250*TM*60*N NTC+2250*TM*60*N NTC+140*N NO CALUCULATION NO CALUCULATION NTC+10*N*900	24700 85450 85450 10050 10050 909468	10000000000000000000000000000000000000	

quality of manpower index were created by applying socio-economic data of 26 province (excluding Timor Timur) in Indonesia (1980) through the principal component analysis.

These indexes are the scores of the first principal components described in Chapter 2 "General View" in detail.

The impact flow of the telephone introduction is assumed to be as follows.

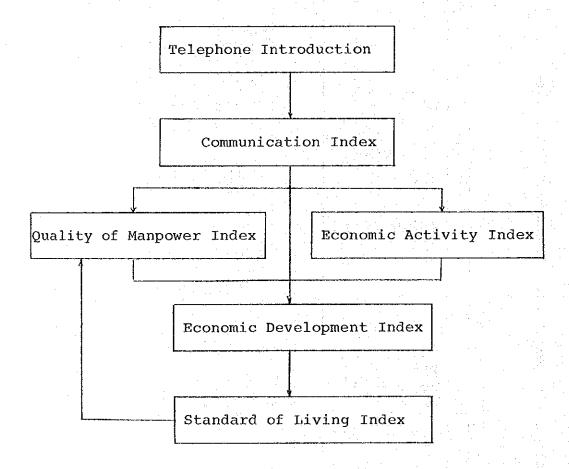


Table 8-2-7 Score of Principal Component Analysis

ECONOMIC AC TIVITY*WANP OWER QUALITY	3.727	2.778	-2.304	1.028	0.719	0.878	0.239	0.481	1,015	-4.863	0.471	-0.229	0.463	-0.719	1.539	0.758	0.284	0.293	-10.036	2.987	-0.004	0.926	-1:777	0.449	-1.232	-0.698
F STANDARD OF LIVING SCORE 2	-0.367	-0.502	-0.016	0.045	0.685	0.244	0.540	0.744	0.762	090.0	-0.198	2.510	-0.179	2.340	0.510	-0.130	-0.388	-0.927	-0.355	-1.790	-1.120	-0.374	-0.421	0.977	-0.929	-1.690
STANDARD O	-0.413	0.786	-0.242	0.059	-0.467	0.571	-0.356	-0.723	4.010	-0.616	-0.708	0.279	-0.628	0.257	-0.920	-1.062	-0.067	-0.239	0.206	1.589	0.196	-0.389	-0.334	-0.582	-0.453	0.234
ECONOMIC ACIVITY SCORE 2	-0.859	-0.568	-0.122	0.550	-0.064	-0.296	0.534	-0.231	-1.460	-0.819	-0.911	-0.375	-0.823	-0.447	-0.443	-0.365	-0.166	0.924	0.583	4.000	-0.093	0.194	-0.349	0.564	0.160	. 0.677
ECONOMIC ACIVITY SCORE 1	-1.069	-0.193	-0.305	0.111	-0.386	-0.263	-0.213	-0.458	4.277	-0.238	-0.168	-0.192	-0.167	-0.277	-0.558	-0.641	-0.331	-0.158	0.252	1.847	-0.003	-0.257	-0.237	-0.163	-0.438	0.224
QUALITY OF MANPOWER SCORE 2	-0.241	-0.217	-0.054	-0.227	-0.112	-0.345	-0.288	0.477	0.471	1.990	1.590	-0.730	1.920	0.073	1.400	-1.180	0.362	-0.493	0.543	0.934	-1.360	-1.110	-0.169	-0.615	-1.780	-1.420
QUALITY OF MANPOWER SCORE 1	-0.287	-0.070	0.132	0.108	-0.536	-0.300	-0.891	-0.952	4.214	0.049	-0.357	0.839	-0:380	0.386	-0.363	-0.835	-1.167	-0.538	-0.025	0.618	0.821	-0.277	0.134	-0.362	0.355	-0.321
COMUNICATION SCORE 2	-0.097	-0.237	-0.206	0.929	-0.579	-0.255	0.577	-0.744	-1.220	-1.070	-0.876	0.032	-0.984	-0.549	-0.996	-0.356	-0.852	-0.005	1.180	2.310	0.090	0.366	-0.684	-0.284	1.840	2.400
COMUNICATION COMUNICAS	-0.309	0.114	-0.061	-0.060	-0.242	-0.235	0.006	-0.412	4.683	-0.483	-0.393	-0.033	-0.328	-0.136	-0.649	-0.489	-0.467	-0.323	0.303	0.302	-0.102	-0.420	-0.397	-0.566	0.129	0.553
		 1	_ <u></u>												at ''	in in		- 4 : *					·			
Province	D. I. Aceh	Sumatra Utara	Sumatra Barat	Riau	Jambi	Sumatra Selatan	Bengkulu	Lampung	Dki Jakarta	Jawa Barat	Jawa Tengah	D.I. Yogyakarta	Jawa Timur	Bali	Nusa Tenggara Barat	Nusa Tenggara Timur	Kalimantan Barat	Kalimantan Tengah	Kalimantan Selata	Kalimantan Timur	Sulawesi Utra	Sulawesi Tengah	Sulawesi Selatan	Sulawesi Tenggara	Maluku	Irian Jaya
Code] 	2	<u>හ</u>	1.4	15	16	17	18		32	ဗ	34	32	51	25	വ	9	62	63	64	7.1	72	7.3	74	8	8 2 2 2

The impact on communication index will affect the encouragement of economic activity by increasing accessibility to markets and social service organizations, and then lead to economic development.

As results of economic development, living standards will go up.

2) Results of Estimation

The result of functional equation in terms of GRDP per capita is as follows;

GRDP/Capita =
$$117.1+34.29 \text{ COM} + 6.38 \frac{\text{ECAC}}{\text{QM}}$$
(3.44) (1.69)

R = 0.63

$$QM = 0.0016 + 0.605 COM + 0.312 STAN$$

$$(2.87) (1.48)$$
 $R = 0.9$

where, COM : Communication Index

ECAC : Economic Activity Index

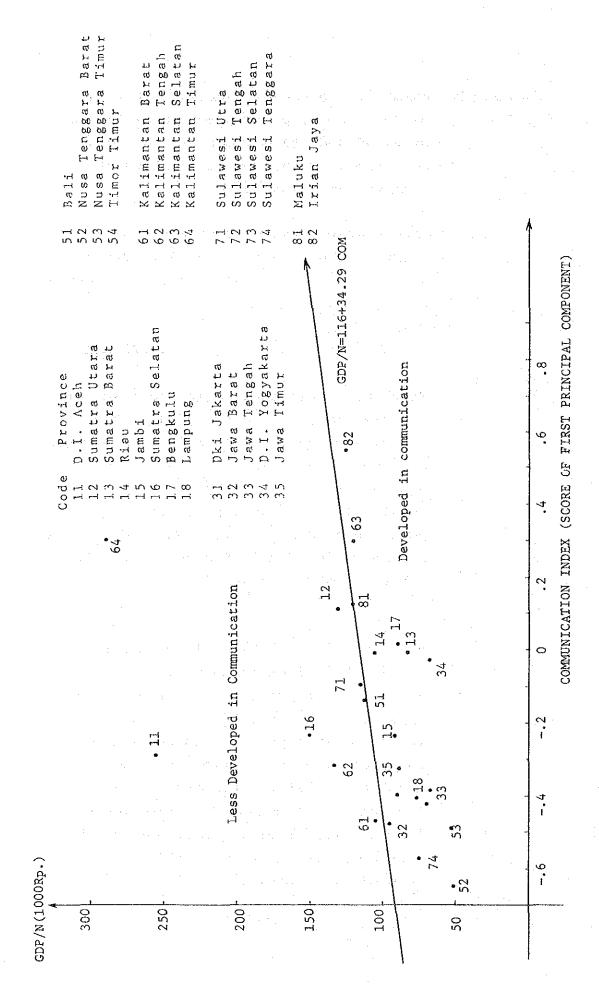
QM : Quality of Manpower Index

STAN: Living Standard Index

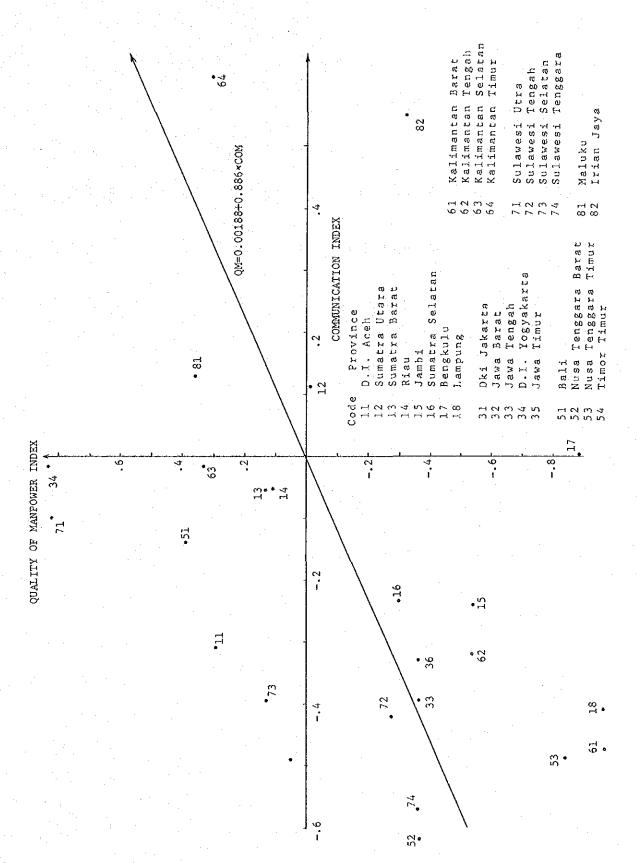
R : Co-relation Co-efficient

Figures in () are t-value

3) Findings


- a) If communication index increase by 1 unit GRDP per capita increase by 34.39 (Rp1000).
- b) If economic activity index increases by 1 unit weighted by quality of manpower index, GRDP per capita (Rpl000) increase by 6.38 (Rpl000)

- c) Communication index increases by 1 unit causes quality of manpower index increase by 0.605 and standard of living index increase by 1 unit causes quality of manpower index increase by 0.312.
- d) The relation between GRDP per capita and communication index is shown in Figure 8-2-5. The functional equation is derived as


GRDP per capita = 116 + 34.29 COM.

Those provinces located in the down-part of this line, can be regarded as the relatively developed area in communication and those provinces, located in the upper-part, can be regarded as the relatively less developed. Thus, the policy consideration is requested in those provinces located in the upper-part to increase GRDP per capita.

correlation with the quality of manpower index. This fact is shown in Figure 8-2-6. Those provinces located in the upper-part of the line, can be regarded as the less developed area in communication, compared with the development level of manpower quality. Therefore, these provinces are requested to provide more communication facilities because there exist more people who are able to use communication media.

Economic Performance Index Versus Communication Index Figure 8-2-5

Quality of Manpower Index Versus Communication Index Figure 8-2-6

CHAPTER 9 GUIDELINES FOR BASIC PLANS, DESIGNS, AND EVALUATION OF RURAL TELECOMMUNICATIONS NETWORK

CHAPTER 9. GUIDELINES FOR BASIC PLANS, DESIGNS, AND EVALUATION OF RURAL TELECOMMUNICATIONS NETWORK

The following elements shall be especially considered in planning telecommunications network.

- (1) Technological advances in telecommunications are so rapid that a wide technological gap is normally produced between new and existing facilities. A variety of problems (in operation, maintenance, investment, etc.) may occur at the transition stage (where the new and old facilities coexist), and thus should be dealt with in a long-term view point.
- (2) The integration of various elements into a single system is essential in order for telecommunications to be able to fully function.
- (3) The domestic network must be developed to comply with the international standards as much as possible because it forms a part of the worldwide telephone network..

The Flow of the study procedure is outlined in Figure 9-1-1.

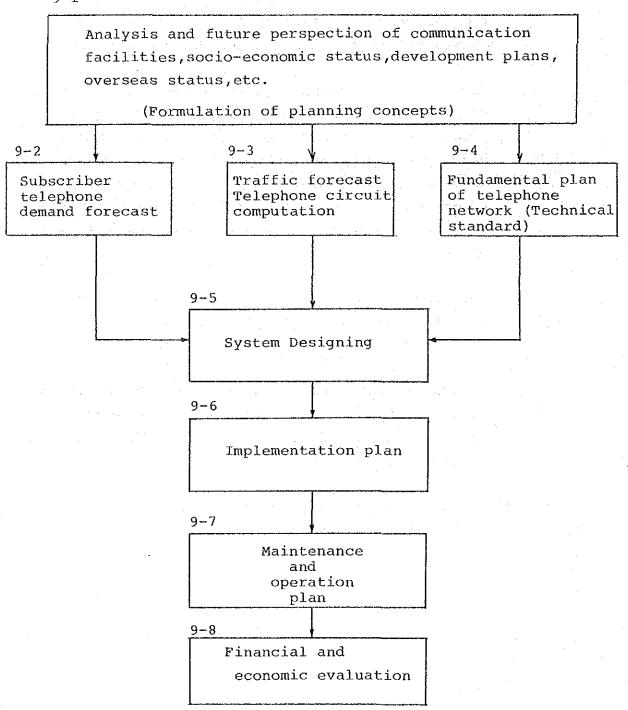


FIGURE 9-1-1 OUTLINE OF STUDY PROCEDURE

9-1 Apprehension of status quo and future prospects

Planning concepts such as the significance and future prospects of the project shall be formulated in accordance with the present status of society, the economy, communication facilities.

All relevant information and data with regard to existing facilities and service conditions shall be collected in tandem with close reference to almanacs and statistics.

9-2 Subscriber telephone demand estimation

The estimation procedure for subscriber telephone demand is outlined in Figure 9-2-1.

The growth path of telephone demand may be classified into the following three stages: slow growth period (initial stage), accelerated growth period (rapid growth stage), and decelerated growth period (saturation stage). A preliminary basic configuration should be conceived prior to the initiation of actual forecast, to determine the stage of demand growth (taking account of overseas situations, urban situations, etc.).

The estimation method shall be selected from the following: (1) Estimation by time series data; (2) Estimation by cross sectional data; (3) a combination of the above two methods. Demand estimation for small areas shall be subject to a carefull consideration because of lack of time series data. The past data will not possess information of the future development plan, the national policy, etc. In addition, because the public needs (administrative offices, etc.), economic needs (commercial offices, etc.) and personal needs (individuals) occur sequantially (corresponding to a certain priority), accuracy may be improved by estimating demand by subscriber categories.

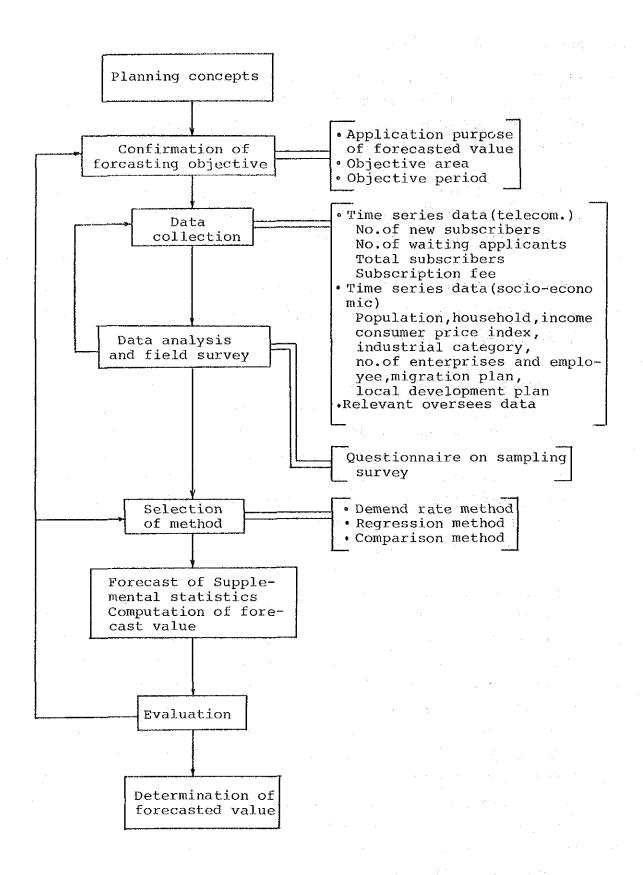


Figure 9-2-1 Outline of Forecasting Procedure for Subscriber Telephone Demand

9-3 Traffic forecast

Traffic data are used for operational planning, facility costs computation, revenue estimation, etc. The average subscriber calling rate, the average holding time, and the toll-to-local ratio of traffic are specific variables needed as traffic data.

In this study, the traffic forecast was made by metered pulses (which is closely related to calling rate) because of the insufficient time series traffic data. The forecasting procedure shall be shown in Figure 9-3-1. And distribution ratio of toll to local traffic was obtained as follows:

$$\frac{\text{toll metered pulses}}{\text{local metered pulses}} = \frac{\text{CR. at } \frac{\text{Dt}}{\text{Tt}}}{\text{CR. al } \frac{\text{Dl}}{\text{Tl}}}$$

$$= \frac{\text{at. Dt. Tl}}{\text{al. Dl. Tt}} = \frac{\text{a. D}}{\text{T}}$$

where,

CR: Average subscriber calling rate (Erlang)

at: Toll call rate in traffic

al: Local call rate in traffic

Tt: Average holding time per toll call

Tl: Average holding time per local call

Dt: Average metered pulses per toll call

D1: Average metered pulses per local call

$$a = \frac{at}{al}$$
, $D = \frac{Dt}{Dl}$, $T = \frac{Tt}{Tl}$

Collection of traffic data on automatic exchanges in the rural areas are not often available due to the limited number of existing facilities. In such cases, the use of traffic data of manual exchanges may be one of the alternative methods. It is generally said that an automatic exchange operates with twice as many calls. (0.7)

- 0.8 times of the holding time) as a manual exchange does. Thus an approx. 50% traffic increase may be expected in some cases.

Past traffic data, especially toll call data, may be greatly affected by trunk links conditions. For instance, in a case that transfer links are insufficient and that busy conditions continue for a long time, subscribers may lose their desive to call. This makes traffic unpredictable. A continual supervision and reevaluation of the traffic will become necessary.

The required number of telephone circuits shall be calculated by the estimated traffic (calling rate x number of subscribers) that satisfies the specified connection quality. Because the forecasted traffic value differs from the real traffic value in many cases, it is inevitably necessary to reevaluate the number of telephone circuits by conducting continual supervision, to maintain a telephone service satisfactory.

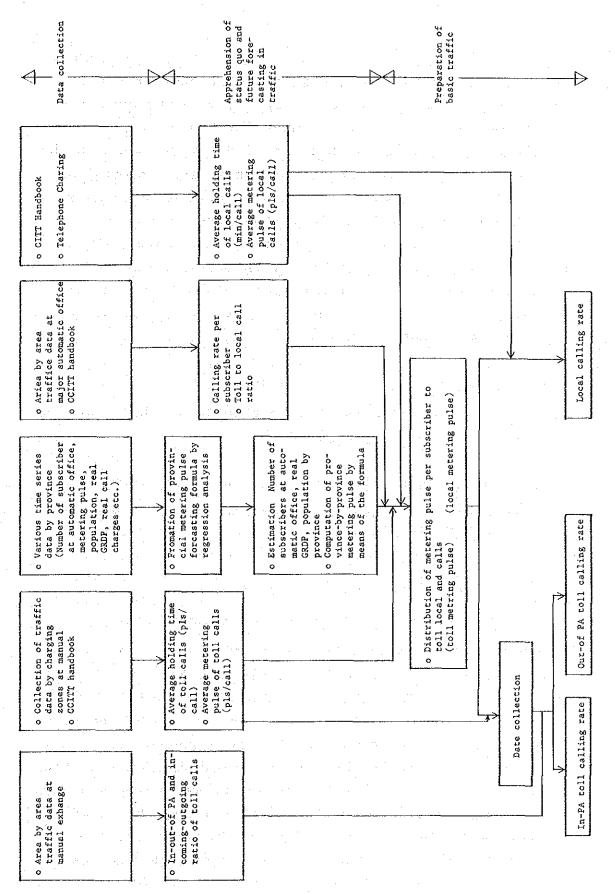


Figure 9-3-1 Traffic Forecasting Procedure

9-4 Technical standards

Technical standards are a significant factor in the determination of service quality. They also have a big impact on the scale of investment for the construction of a telecommunications network. An 1 dB improvement in the transmission loss for subscriber lines, for example, an extremely large amount of investment will be necessary. For this reason, the technical standards must be based on long-term strategies to meet telecommunications network development plans. Fortunately, Indonesia possesses its own "Fundamental Plan" for technical standards, and its domestic network has been developed to be a part of the worldwide telephone network.

9-5 System designing

Upon planning a telecommunications network, the following standards are commonly applied:

- Consistency with the government objectives
- Consistency with the government policies and strategies
- Economic advantages
- Financial and resource requirements
- Flexibility of telecommunications network

Because of ISDN construction as an ultimate objective of Indonesia and its already developed digital telecommunications technology, economic factors are regarded as the most significant standard among the above items. From economic points of view, construction, maintenance and operating expenses, revenue, depreciation expenses, etc. must be considered. Depreciation expenses and revenue depend on construction costs and the number of subscribers. Maintenance and operating expenses are expected to be reduced by a certain amount due to new

technologies. It is essential to combine the subsystems shown in Figure 5-2-2, according to the procedure shown in Figure 5-2-3 to obtain the least costs system.

In this project, a system selection diagram (Fig. 5-4-9) was prepared. This diagram shows the combination of main exchange technologies and transmission technologies for various parametric combinations of sizes of users and distance from main exchanges. Taking account of this diagram and the geographical conditions (mountains, rivers, jungles, islands, etc.), systems in sample areas were examined. Total construction costs in Indonesia were estimated by regression analyses based on the construction costs of the sample areas and geographical data (distance between Kabupaten capital and Kecamatan capital, number of subscribers per unit area size, etc.).

9-6 Implementation plan

Construction of telecommunications network shall be implemented, according to area priority orderings. However, the scale of the implementation plan may be expanded or reduced, depending on the government budget and/or other development plans. Especially, at the time the world recession, the reduction in scale is unavoidable in many cases. In such cases, supply rate of telephone services (fulfilment rate) will be reduced or the target year of demand fulfilment realization will be postponed. To determine supply rates, the following factors should be considered:

- (1) The demand fulfilment rate up to the target year is reduced in a certain percentage for all areas.
- (2) Mainly accommodate subscribers into nearby exchanges of which construction costs are relatively inexpensive, are connect in priority and restrict new subscriptions from remote areas.

- (3) Establishing an area priority ordering and a high priority area only will be suffices completely in accordance with the budgetary constraints.
- (4) Giving priority in public and industrial subscribers and suspending the demand fulfilment of residential subscribers to the next program.
- (5) Determine a scale of demand fulfilment by combining above-mentioned factors.

To determine an area priority ordering, the following points should be taken into consideration:

- 1) From the viewpoint of area development policy -
 - Boundary areas
 - Inconvenient transportation areas
 - Developing areas whose industry requires telephone installation high.
 - Regional potentiality (Increment of population density)
- 2) From the view point of social and economic effects -
 - Consumer surplus
 - Covering Population size per subscriber
- 3) From the view point of financial revenue
 - Internal rate of return gaining rate

The determination of, "what view point shall be preferable" is rather impracticable, because of the diverse state of national affairs. Instead, this shall be determined by the planners, in consultation with the relevant authority concerned.

A bar chart provided in this report was made to fulfil the demand for rural telecommunications in the

year 2000, assuming each Kabupaten as a unit of construction. In compiling this chart, the following periods were used as standards of the required numbers of months in the construction work schedule:

Field survey and basic design	3 - 5 months
Preparation of specifications	2 - 4 months
Tendering period	2 months
Tender document evaluation	2 - 4 months
Contract negotiations	1 - 3 months
Preparation of construction DWGs	4 - 6 months
Review of construction inspection	
of equipment	6 - 10 months
Tower construction	6 - 10 months
Delivery period	2 - 3 months
Construction period	20 - 24 months
Acceptance inspection	2 - 8 months
Construction supervision	- 30 months
Training	3 - 6 months

The entire period for a single project (Kabupaten unit) including the above work schedules is estimated to take approx. 24 - 48 months on average.

9-7 Maintenance and Operation

Maintenance and operation work faces the following problems:

- (1) The maintenance area is excessively large.
- (2) Most sites are located in hard-to-reach areas.
- (3) Because a cable or radio transmission system is used for distribution to subscribers besides audio cables, multiple types of technicians are required for 1the maintenance of subscriber facilities.

(4) Because a state-of-the-art digital exchange replaces the existing local exchange, additional specialists are required for their maintenance.

A large number of staff will be required if maintenance and operation personnel are assigned to individual offices to cope with these problems. Therefore, an intensive maintenance circuit will become inevitable, utilizing mobility to the full extent. In addition, the required number of operation personnel may be reduced, and the productivity of staff may increase, by introducing new technologies.

This is quite conceivable fact that 40 - 100 or more staffs are employed per 1,000 subscribers in developing countries, whereas 10 or fewer staffs per 1,000 subscriber are generally engaged in advanced countries. A maintenance and operation plan is recommended to be formulated at the level of 20 staffs per 1,000 subscribers in the target year of 2000.

- 9-8 Financial Analysis and Economic Evaluation
- 9-8-1 Financial Analysis

This chapter is intended to show the method, how to check the feasibility of the project easily for the PERUMTEL's regional feasibility study in the future.

In general, the index of financial internal rate of return (F.I.R.R.) is applied for the study.

F.I.R.R is a function of revenue and cost will be indicated as in Figure 9-8-1. If revenue (call charge) per subscriber takes in the horizontal line and cost (initial cost) per subscriber in the vertical line, the value of F.I.R.R can obtain in the I.R.R. line in Figure 9-8-1.

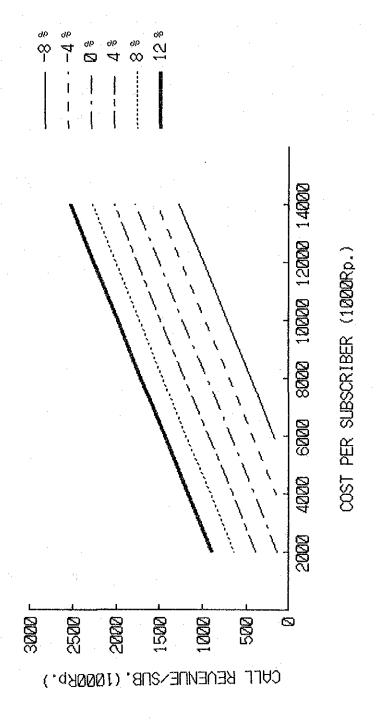


Figure 9-8-1 Chart of IRR

The other revenue and cost items are based on the assumption described in Chapter 8 "Financial Analysis".

In this figure, the value of F.I.R.R. can estimate by applying the incurred cost and revenue of a particular Kabupaten. When the required F.I.R.R. is obtained before-hand, the maximum cost to invest can be calculated by applying the F.I.R.R. line with the expected revenue.

The functional equation of F.I.R.R., cost per subscriber and revenue per subscriber is as follows.

F.I.R.R =
$$2.14363 - 0.0021625 C + 0.01579 Re$$

(-19.675) (7.52298)
(R = 0.97)

where, C: construction cost per subscriber

Re: calling revenue per subscriber

R: correlating coefficient

The figure in () indicate t-value

In financial analysis, the following indexes are used besides the index of F.I.R.R.

- Self-financing ratio

This index is used for checking the extent of internal fund coverage over new annual amount of investment.

The value of this ratio indicates the stability of a financial status and this should be in the range between 25% and 40%

The Formula is as follows.

Total Revenue - (Operation cost + Interest & Principle Repayment New Investment Amount + Interest Repayment in New Investment Amount

- Internal Cash Ratio
This index shows that the amount of internal fund, as
the percentage of total investment capital, can retain
every year.

The value of this ratio indicates the availability of internal fund when the business entity makes a plan of new investment. This should be 3-4% in general.

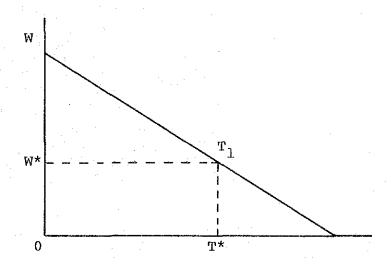
The formula is as follows.

Total Revenue-(Operation Cost + Interest & Principal Repayment) Total Investment Capital

- Debt-service Ratio

This index indicate the repayment capability of interest and principale every year and the minimum 1.3 of value is required to keep the sound financial position.

The Formula is as follows.


Total Revenue - Operating Cost
The Repayment Amount of Interest and Principle

9-8-2 Economic Evaluation

The economic benefits can possible to measure in monetary value, will be proposed the following two, expansion effect and substitution effect.

	Expansion Effect	Substitution Effect
User	. Consumer Surplus (Realized)	. Consumer Surplus . Media Cost Comparison
Regional Society	. Consumer Surplus (Not-realized) . Cross-impact study	. Consumer Surplus
1) Consum	ner Surplus	
The co	ner surplus can be go	
The co	ner surplus can be go	all charge can be ng equation is introduced

And the equation (1) will be modified in terms of $^{\prime\prime}W^{\prime\prime}$

Assuming that traffic volume is T*, the call charge W* is determined. In this case, the triangle area W-T1-W* is called as the consumer surplus in the call charge W*. The square area W*-T1-T*-O indicate the total call charge payment to PERUMTEL.

(2) Media Cost Comparison

The formula of media cost comparison was described in detail in "Chapter 8 Economic Analysis". This formula can be applicable to the economic evaluation of Feasibility Study, to be executed in the future.

ANNEX

ANNEX 2-2-1

THE DISTRIBUTION OF THE NUMBER OF KABUPATEN ACCORDING TO POPULATION SIZE IN KECAMATAN WITH MANUAL EXCHANGE STATIONS (1980)

ANNEX 2-2-2

- DITTO WITH AUTOMATIC EXCHANGE STATIONS (1980) ANNEX 2-2-3
- DITTO WITH NO TELEPHONE STATIONS (1980)

Note: These data are prepared for the significance of the project.

ANNEX 2-2-1 shows that D.I. Aceh province has eight Kabupatens and, among them, one Kabupaten has a less than 10% of Kecamatan share with manual exchange office, 4 Kabupatens have 10 - 20% of Kecamatan share and 3 Kabupatens have 20 - 40% of Kecamatan share.

ANNEX 2-2-1 The Distribution of the Number of Kabupaten According to population Size in Kecamantan with Manual Exchange Stations (1980)

Province	Less than 10%	10	20	30	40	50	60	70	80	90	100(%)
D.I. Aceh	1	4	3								
S. Utara	1	6	3	1							
S. Barat	3	1	1	3							
Riau	1	2		3.	1						
Jambi	2	3									
S. Selatan	2	2		2	2						
Bengkulu		1		2							
Lampung	2		1								
J. Barat	4	9	7								
J. Tengah	13	8	6	1	1						
D.I.	2	2									
Yogyakarta											
J. Timur	14	6	6	2	1						
Bali	4	2	1								
N. Teng	1	2	2								
Barat											
N.T. Timur	5	5	1			1					
Timor Timur	6	1	2	2	2						
K. Barat	3	1	2								
K. Tengah	3	3	2	1							
K. Selatan	2	4	1	1	1						
K. Timur		3	1								
Sul Utara	2	1	1								
Sul Tengah	2		2								
Sul Selatan	5	4	7	3	1		1				
Sul Tengara	1	1	1	1							
Maluku	1	2		1							
Irian Jaya	5	1	2	1							

ANNEX 2-2-2 The Distribution of the Number of Kabupaten According to population Size in Kecamantan with Automatic Exchange Stations (1980)

Province		10	20	30	40	50	60	70	80 90	100(%)
D.I. Aceh	6	·		1	1					
S. Utara	6		1	4	,	•				
S. Barat	7		1.							
Riau	4				1				en e	
Jambi	3		1		1			4		
S. Selatan	4		4			٠.			:	
Bengkulu	2				1	•				
Lampung	3						•			
J. Barat	13		3	4			•		•	The second
J. Tengah	19		9	1						
D.I.	4									
Yogyakarta										
J. Timur	26		3						÷ i	.;-
Bali	4		2	1	1					
N. Teng	4		1	1						
Barat			•		•			•	:	÷
N.T. Timur	11		1							
Timor Timur				1	2		1	1		
K. Barat	4		2		-		_	-		
K. Tengah	7		1		1					w vi
K. Selatan	9				_					
K. Timur	3				1					
Sul Utara	4									
Sul Tengah	3		1					:		9
Sul Selatan			#	1	1					more than
Sul Tengara			1					•		
Maluku				1						
	2		1	1	-	^				
Irian Jaya	4		2		1	2				g in the
										4

ANNEX 2-2-3 The Distribution of the Number of Kabupaten According to population Size in Kecamantan with No Telephone Stations (1980)

Province 10	20	30	40	50	60	70	80	90	100(%)
D.I. Aceh					1	1	3	3	
S. Utara	· · · · · · · · · · · · · · · · · · ·	e de la companya de La companya de la co		1	2	1	4	2	1
S. Barat	•					3	1	2	2
Riau				2		1		2	
Jambi						2		2	1
S. Selatan				1	2	1	2	2	
Bengkulu	1					1		1	
Lampung	4					1		1	1
Dki Jakarta				•					
J. Barat		•	٠		1	4	8	5	2
J. Tengah				1		3	9	10	6
D.I.								2	2
Yogyakarta									•
J. Timur					2	3	5	12	7
Bali					1	1	2	4	
N. Teng Barat 1				1.	1		2	2	
N.T. Timur			•			1	1	6 .	4
Timor Timur			l	1	2	4	3	1	1
K. Barat							. '	2	2
K. Tengah					÷	2	3	2	2
K. Selatan					1	1	1	4	2
K. Timur				1 .	•		1	2	
Sul Utara							1	1	2
Sul Tengah					* .		2	1	1
Sul Selatan		•	1	***	1	4	8	4	3
Sul Tengara						1	1	1	1
Maluku				1			1	1	1
Irian Jaya		1		1	1		3	2	1

ANNEX 2-4-1 SOCIO-ECONOMIC VARIABLES FOR PRINCIPAL COMPONENT ANALYSIS ANNEX 2-4-1 SHOWS THE FIGURES OF THE ORIGINAL 20 VARIABLES.

- Index of manpower quality
 This index was created by the following three variables through the principal component analysis.
 - The number of high school, vocational academy and university graduates per 100 people.
 - 2: The number of professional and managerial workers per 100 working population.
 - The number of workers in the tertiary sector per 100 Working population.
- Index of Living Conditions
 This index was created by the following 5 variables trough
 the principal component analysis.
 - 4: The number of hospitals per 10,000 people
 - 5: The number of radios possessed per 100 people
 - 6; The number of T.V. sets possessed per 100 people
 - 7: The number of motorized vehicles possessed per 100 people
 - 8: The number of cinema houses per 10,000 people
- Index of Economic Activities

This index was created by the following five variables through the principal component analysis.

- 9: The amount of development expenditures (10,000 Rp per people)
- 10: The amount of government expenditures (10,000 Rp per people)
- ll: The ratio of asphalted road length to the total road length (%)
- 12: The share of urban population (%)
- 13: The total amount of bank credits (10,000 Rp per person)
- 14: The share of the secondary sector in GRDP (%)
- 15; The share of the tertiary sector in GRDP (%)
- 4) Index of communications

This index was created by the following five variables through the principal component analysis.

- 16: Telephone density per 100 people
- 17: The number of post offices per 1,000 people
- 18: The number of letters sent per person
- 19: The number of metered telephone meterd pulses (10 pulses per person)
- 20: The number of telegraphs per 100 people

Socio-Economic Variables for Principal Component Analysis ANNEX 2-4-1 (1/2)

Code	Province	t 1	QUALITY EDUCATIO	Y OF MANPOWER INTELEC POPIND 3	POPIND-	! ! !	110S/N	STANDARD RADIO/N T.	OF LIVING	VING MOTOR/N CINE/N	CINE/N 8	ļ
!			1 1	1 6	1 6	1 -	1 1 1	1 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 (1 -	!
-	U.I. Acen	_	3.25	\supset	N	_	4		0.78	<i>y</i>	٠.	_
2	Sumatra Utara		4	ω.	?		$^{\circ}$	ო			•	
<u>ო</u>	~		~	Θ.	C		-	7	6	ω.	0	
7	Rlau		3.7	Θ.	3		v.	۲,	0	~	~	
2	Jambl		η	φ.	0.2		c	(L)	۲.	~	0	~~
9	Sumatra Selatan		3.27	2.85	0.24		0.83	2.45	1.42	5.12	0.15	
	Bengkulu		۲-	ď	0.14		÷	ω	0	r.	•	
æ	Lampung		مسر د	9			(,)	4.	8	r.	0	
	Oki Jakarta		۲.	w	۲.		1.95	r.	\circ		4	
~	Jawa Barat	_	œ	ο.	ω,		Ċ	ŗ.	Ξ.	0.	0	
ო	Jawa Tengah		ď	ī,	4		ī	0.	0	Ξ.	0	
⊽	D.I. Yogyakarta			φ.	ò		o,	ιċ	0,	θ.	٥.	
เก	Jawa Timur	_	۲.	ω.	0	•	٠. تن	0.	Ξ.	~	0	
	Bali		Ξ.	4	ω		æ	9	~	(C)	6	
25	Nusa Tenggara Barat		٥.	ά.	Ġ	_	Ġ	<u> </u>	ω,	φ.	0.	
53	а Тепддага Т		ώ.	۲.	~-		κί	Ġ,	Ġ	S	0	
61	antan Bara		۲.	θ,	~	_	9	٥.	٥.	4	•	
62	Teng		ς.	φ.	,4		4.	~	o.	9	0	
සු	_		3.09	3.35	0.29		7	ū		3.69	٠.	
64	Ξ	_	۲.	۲.	G,		ti,	œ	3		Ġ	
7.1	Sulawesi Utra		σ,	₹	60		4	Ġ	4		٠.	
72	e:1)g		~	4	٠.		۷.	ņ	ti,	~	٠.,	
73	Sela		4	7	5		έ	-	φ.		0	
74	lawesi		o,		0.5		'n	(7)	IJ	n	0.	
8	Majuku	_		T	0.24		o,		Ŋ	0	٠.	
83	Irlan Jaya	_	9	G	_		7	0	Θ		•	

Socio-Economic Variables for Principal Component Analysis ANNEX 2-4-1 (2/2)

Code	. d.	LEVEL DEVEX/1	LEVEL OF ECONOMIC ACT DEVEX/N GEXP/N ROAD 9 10 11	MIC ACTIVE ROAD	VITY URBANPO 12	BANKCRE 13	GRDP-25	GROP-35 1	COMMUN	ICATION POSTOFF 17	DEVEL POSTI	OPMENT ET TELTRAP	TELGRM 20	GRDP/N
1 -	O.I. Aceh	0.32	1.1	12.39	8	1.85	71.47	10.35		0	0.64	0.52	4.49	1 256.03
2	Sumatra Utara	0.26	1.0	26.8	25.4	3,39	27.96	36.24		0	1.4	2.92	2.43	1 129.64
· ·	Sumatra Barat	0.19	0.1	17.07	12.7	1.43	16.27	48.3	4	0.0		1.5	4.8	82.14
7		0.39		3.22	27.1	2.05	14.25	56.5		0.0	0.87	0.97	14.55	106.86
13	Jambl	0.41	6.1	133	12.6	1.69	14.13	33.81	4	0.0		1.84	3.85	1 92.04
9	Sumatra Selatan	0.3	0	15.63	27.4		32.78	37.47		0.0	0.83	1.78	3.65	151.3
7	Bengkulu	9.0	1.5	12.56	9	1.36	11.86	41.34	-	0.0	1.86	0.09	20°	90.39
8	Lampung	0.17	0.6	12.55	12.5	1.53	9.83	43.85	_	0.0	112	0.91	1.57	1 77 67
	Dki Jakarta	1.2	2.41	223.2	93.4	33.88	21.59	76.82	œ	0.0	14.92	23.11	13.89	1 259.31
32	Jawa Barat	0.08	0.6	45.79	21	1.79	26.22	44.51	$\overline{}$	0.0	6.0	1.12	1.49	1 96.14
33	Jawa Tengah	1 0.08	0	56.68	18.7	1.68	14.41	45.21	_	0.0	1.06	0.86	2.23	1 67.68
34		0.18	1.18	21.55	22.1	1.71	17.05	43,65	۳.	0.0	2.45	1.51	7.04	1 68.61
35	ಹ	60.00	0.64	50.32	19.6	2.32	17.27	46.09	Ÿ	0.0	1.21	1.72	ල	1 88.75
:. ::		0.16	1.0	27.24	14.7	2.06	14.02	44.03	ď	0.0	1.29	2.07	4,0	1 111.53
52	Nusa Tenggara Barat	0.14	0	11.22	14.	0.97	11.08	37.13	0.14	0.03	0.37	0.23	4.0	1 52.82
S S	Nusa Tenggara Timur	0.19		10.53	7.5	0.44	5.26	က	0	0.0	0.79	0.57	7.59	56.4
9	=	0.23		2.91	16.8	3.07	18.14	ത	•	0.0	1.23	0.82	3.43	105.59
62	Kalimantan Tengah	0.93	2.59	0.86	10.3	1.77	29.03	n.	~	0.0	0.71	0.07	2.13	131.97
63	Kallmantan Selatan	0.37		9.51	21.4	36.36	5.86	ω	~:	0.0	1.97	2.02	9.42	119.89
90	Kalimantan Timur	2.06		2.02	39.8	4.84	6.45	တ	Ŋ	0.0	1.18	0.11	18.85	1 290.01
7.1	Sulawesi Utra	1 0.36	1.73	14.04	9	3.13	7.49	ď	7	0.0	0 62	2 2	10.29	1 114.21
72		0.44	2.0	5.82	cn.	1.91	10.68	œ	-	0.0	0.7	0.05	17.1	70.15
73	u 1	0.16	0.1	16.07	CVI	2.1	7.41	æ		0.0	0 71	1.34	5 23	90.5
74		1 0.46	-	7.87		1.18	13.65	ထ	0	0.0	0.48	0.05	7.78	74.26
		1 0.4	1.6	3.94	8.9	0.72	15.41	œ	Ξ.	0.0	0.87	1.62	23.38	1 119.41
83	Irian Jaya	1 0.64	3.33	1.66		6.0		က	က	0.0	1.86	1.09	20.89	1 122.28
1		111111	11111111			1111111	1111111	111111		111111111		111111	1111111	

ANNEX 2-5-1 SYSTEM PARAMETERS - EARTH STATIONS

ANNEX 2-5-1 (1/3) System Parameters - Earth Stations

		PALAPA A	PALAPA B	
			For Indonesia	For ASEAN
I.	Ant. Gain (Tx)	29.0 (25.0) dB	28.0	24.0
2.	Ant. Gain [Rx]	28.0 (24.0) dB	28.0	24.0
3.	G/T	- 7,5 dB/k	- 5.0	- 7.0
4.	e.i.r.p):Beam Edge	34.0 (30.0)dBW	36.0	3 2.5

			Positions in Orbit	Launch
PALAPA	ΑΙ		83°E	Aug. 1976
PALAPA	A 2	*)	77 ° E	Aug. 1976
PALAPA	8 1	±)	108°E	June. 1983
PALAPA	82		113°E	
PALAPA	B3		118 ° E	July . 1986 (Scheduled)
PALAPA	C		141 ° E	

t) In Service. As of Dec. 1984.

ANNEX 2-5-2 (2/3) Total Power per Carrier to be Applied to Earth Stations

I. STANDARD STATIONS (SBB / SBS)

CARRIER SIZE	MIN	MAX
600 FDM	20.8 dB₩	24.7 dBW
12 FDM	6.7	12.0
SCPC	- 4.4	2.7

2. SMALL EARTH STATION (SBK)

SCPC $0.4 dB\overline{W}$ $9.7 dB\overline{W}$

NOTE: The maximum e.i.r.p. toward the orbital position of 74°E long. for earth stations located within the operating INSAT - IA 10 dB - down contour. shall not exceed 25 dBW in any contiguous 30 KHz in the band 6,265 MHz to 6,340 MHz.

ANNEX 2-5-3 (3/3) System Parameters - Satellite

						(SOLID)	× 2 Ex.) × 2 Ex.)
	S B K	4 0	4 4 8 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	° ° 8 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	8.6	10 W 7.5 W	15 KVA x 2 (Manual Ex. 25 KVA x 2 (Auto. Ex.)
Satellite	S	0.01	53. 5 50. 5	0.35° 0.5°	25.0	400 ₩ ₩	40 KWA x 2
System Parameters - S	80 80 80	0.01	53.5 50.5	O O O	0.0	400 ≅	80 KVA × 2 250 KVA × 2 (SURABAYA)
ANNEX 2-5-3 (3/3) System	MCS (Master Control St.)	10.0 mø	53.5 dB 50.5 dB	0.0 0.0 0.0	>29.0 dB/k	3 k≅	500 KVA × 3
ANNE		Ant. Diameter	Ant. Gain [Tx] [Rx]	Beam width [Tx] [Rx]	1/9	HPA Output (MAX.)	E/G
		•	Ni Ni	'n	4.	Ś	٠ <u></u>

ANNEX 2-6-1
REQUIREMENTS AND SYSTEM TECHNICAL STANDARD
FOR EARTH STATION LOCATED IN RURAL AREA
ANNEX 2-6-2
LIST OF SCPC STATION/INCLUDING PELITA IV
ANNEX 2-6-3
LOCATION MAPS OF SCPC STATIONS/SUPERIMPOSED
ON TERRESTRIAL NETWORK
ANNEX 2-6-4
ACCESSIBILITIES OF EACH KABUPATEN

- ANNEX 2-6-1 Requirements and System Technical Standard for Earth Station located in Rural Area
- 1. Requirements for Earth Stations located in Rural Areas
 Following are required for the earth stations to be located in the rural areas:
 - 1) Low cost

Small-sized earth station is preferable for the purpose of cost reduction. However, it is not recommendable to reduce the present standard size of SBK antenna (standard 4.5m) in order to satisfy the transmission quality of satellite link as specified for 75 SBK project.

Following alternative measures could be taken in order to minimize the size of an earth station:

a) Raise the frequency band to be used.

However, it should be noted that rainfall attenuation as well as degradation of cross polarization discrimination (XPD) cannot be ignored above the frequency range of 10 GHz.

A great deal of rainfall margin must be secured for the satellite communications system at the band of more than 10 GHz, judging from the meteorological conditions in Indonesia.

Therefore, it may be troublesome to reduce the size of antenna used for the satellite communications system, even though frequency band is raised.

b) Raise the E.I.R.P (Equivalent Isotropically Radiated Power)
In order to raise the E.I.R.P. of a satellite itself, there are two ways.

- To raise the output power of a satellite itself, or
- To employ spot-beam arrangement.

Adoption of three-axis stabilized satellite instead of spin-stabilized may be required to achieve those objectives.

2) Easy Operation and Maintenance

It is very difficult to secure the skilled technicians for maintenance and operation in rural areas. Therefore, centralization of monitoring functions is essential to the satellite communications system.

On the other hand, the functions required for an earth station to be situated in rural areas shall be simplified as much as possible.

In addition, progressive use of solar power supply system is desirable to raise maintenability of power supply system, parallel to technical evolution in terms of power consumption conservation for equipment.

3) Good Transportability

Accessibility to rural community where earth station(s) are located is not good. It means that rural communities are isolated from urban areas in most cases. Total cost for installing an earth station in rural area is very sensitive to the transportability of an earth station.

Transportability could be raised by sheltering equipment. It is also cost-effective to house equipment in a small-sized shelter, even if relocation of earth stations is required afterward.

2. System Technical Standard

Required C/N

For no reason whatsoever, technical standard of satellite communications system to be utilized for rural communications system to be lower than that of terrestrial communications system. Even if the technical standard of satellite communications system is lowered, no much contribution to cost reduction can be expected.

Performance standard for the now operating SCPC system is based on CCIR Rec. 353-4. Typical examples of system design are in Table 2-6-1 (1/2-2/2). According to this system design, SBK antenna diameter of 4.5 m is the allowable minimum. Further reduction of SBK size is not realistic unless e.i.r.p. of satellite itself is raised.

Table 2-6-1 (1/2) System Design of SCPC Link (Overall Link)

1 \	Olara (Da rana)	60 0 TE 0 TE:
1)	C/No (Up-Link)	60.9 - 75.0 dBHz
2)	C/No (Down-Link)	50.2 - 55.2 dBHz
3)	C/I (assumed)	65.0 dBHz
4)	C/No (Overall)	49.7 - 54.7 dBHz
5)	Channel Noise Bandwidth	Tye, Sie, asse
	(25 kHz : 30 kHz spacing)	44.0 dB
6)	Received C/N	5.7 - 10.7 dB
7)	Margin to Required C/N	-3.5 - 1.5 dB
	7 7 7	
	Required S/N	50.0 dB
	Companding Improvement	17.0
	Emphasis / Weighting	8.5
	FM Improvement	15.3
	-	

9.2 dB

Table 2-6-1 (2/2) System Design of SCPC Link (Up/Down Link)

(Up-Link)

1)	Earth Station Transmit Power Antenna Gain (4.5 mg)	
3)	Feed Line Loss	1.0 dB
4)	Earth station e.i.r.p.	
5)	Spreading Factor (38,600 km)	-162.7 dB
6) 7)	In-orbit Flux Density/CH Path Loss (38,600 km)	-116.8 dBW/m ² 200.0 dB
8)	Rain Attenuation	0 dB
9)	Pointing Error Loss	0.8 dB
10)	Satellite Antenna Gain	28.0 dBi
11)	Satellite Receiver Noise Temp	33.0 dB
12)	Satellite G/T	-5.0 dB/K
13)	C/No , Up-Link (Note 1)	60.9 - 75.0 dBHz
		and a figure of the state of th

(Note 1) (3) = (4) - (7) + (8) + (9) + (12) - (-228.6)

-228.6 : Boltzman's constant in dB/Hz.K

(Down-Link)

1)	Satellite e.i.r.p. saturated	1.	36.0	dBW
2)	Output Back-off		5.4	
3)	Power sharing		26.0	dB
	Capacity: 1,000 CH/Tr.			
	Activity Factor: 0.4			*
4)	Available e.i.r.p.		-0.4 - 4.6	dBW
5)	Pointing Loss		0.4	dB
6)	Path Loss (38,600 km)		196.2	dB
7)	Rain Attenuation		0	dΒ
8)	Earth Satation G/T (4.5 mø)		18.6	dB/K
9)	C/No , Down-Link (Note 2)		50.2 - 55.2	dBHz
			and the second s	

(Note 2) 9 = 4 - (5 + 6 + 7) + 8 - (-228.6)

-228.6 : Boltzman's Constasht in dB/Hz.K

ANNEX 2-6-2

List of SCPC Station / including PELITA IV

														٠.		
	1989	3/3	1/2	ø	1/0	2/3	0/1 (2/1)	0/1	0/0			1/1	0/1	0	0/2	
	NOTES	IKK	IKK		IKK	IKK P. SIMBULUB				SBB		IKK/P.NIAS			IKK P. SAMOSIR (INLAND)	
	MODEM	6/6/6	3/9	· .	2/9	3/9	'n	ហ		51/73	ഗ	3/6	ß		ហហ	
SILE	PLANNED (PELITA IV)		BLANGKEJEREN	1		CALANG	SEILIMUN	MEUREUDU	. 1		JANTHOI		PANYABUNGAN	ı	BALIGE	
	EXISTING (1984)	TAPAK TUAN SINGKIL BLANGPIDI	KUTAKANE	1	TAKENGON	MEULABOH SINABANG			ı	BANDA ACHE		G. SITOLI		ı		
	KABUPATEN	01 ACEH SELATAN	02 ACEH TENGGARA	03 ACEB TIMUR	, 04 ACEH TENGAR	05 ACEH BARAT	06 ACEH BESAR	07 PIDIE	08 ACEH UTARA	71 KODYA/IBUKOTA PROP. (06)		Ol NIAS	02 TAPANULI SELATAN	03 TAPANULI TENGAH	04 TAPANULI UTARA	
	PROPINSI	DAERAH ISTIMEWA ACEH										SUMATERA UTARA				
	OZ	7700										1200	-			

. *							-															
			1,000	1989	0/2		Ö	(T/T)	0	0	0	0 (1/1)	0							1/2 (2/3)	0/2 (0/3)	
				NOTES										æ						*		
		14.5		морем	տւ								: ·	76/96 SBB 3/10		សេច	າ ເດ	ന ന ന	•	3/9 IKK	ທທ	
	: :		SITE	PELITA IV)	LABUIIAN BILIK	SHOW THOU	J		. I	1	1	1				BAGANSIAPIAPI	DOLOG MARANGIR	KUALA MEMBANG MUDA PULAU RAKYAT		BALAI SELASA	ALAHAN PANJANG MUARA LABUH	
·	EARTH STATION/SCPC			EXISTING (1984)			1		1	1.	l	i	1	MEDAN MEDAN 1 TANJUNG BALAI						PAINAN		
	EARTH S			KABUPATEN	OS LABUHAN BATU		06 ASAHAN		07 SIMALUNGUN	08 DAIRI	09 KARO	10 DELI SERDANG	11 LANGKAT	KODYA/IBUKOTA PROP. KOTAMADYA						Ol PESISIR SELATAN	02 ѕогок	
		ļ			:	<u> </u>						·		(10) 75 72	(90)		<u></u>		-			
				PROPINSI	(SUMATERA UTARA)															SUMATERA BARAT		
				NO.											-					1300		

	1984/	1/0	0	1/0	0	0	0/2			 1/3	1/1	4/4		0/2 (1/3)	
	NOTES	IKK		P. SIBERUT			IKK	SBB		IKK	IKK	SES/P.BATAM P.SINGKEP P.KUNDUR P.BUNGURAN		IKK	
	МООБМ	ហ		1/9			la ia	32/35	មេមាម	 3/10	4/9	57/57 3/9 2/9) }	νiν	
SITE	PLANNED (PELITA IV)	SIJONJONG	ľ		ì	1	LUBUKSIKAPING AIR BANGIS	SAWAH LUNTO	SUNGAI PENUH LUBUK BASUNG SUNGAI DAREH TALU	AIR MOLEK TELUK KUANTAN				BANKINANG PASIR PANGARAIAN	
7	EXISTING (1984)			MUARA SIBERUT	ı	ı		PADANG		RENGAT	TEMB I LAHAN	PULAU BATAM DABO SINGKEP TANJUNG BATU RANAI			were the second second of the second
	KABUPATEN	SAWAHLUNTO/ SIJUNJUNG	TANAH DATAR	5 PADANG PARIAMAN	5 AGAM	7 LIMA PULUH KOTO	3 PASMAN	корха/івикота ркор. котамаруа		1 INDRAGIRI HULU	2 INDRAGIRI HILIR	3 KEPULAUAN RIAU		4 KAMPAR	
	-	03	0.4	0.5	90	0.7	80	(41) (41) 73 K(02)		01	02	03		40	
	PROPINSI	(SUMATERA BARAT)								RIAU					
	NO.									1400		······································			

EARTH STATION/SCPC

					G # F 0			
NO.	PROPINSI	·	KABUPATEN	EXISTING (1984)	PLANNED (PELITA IV)	морем	NOTES	1984/
	(RIAU)		05 BENGKALIS	BENGKALIS		5/5	IKK/P.	1/1
				DUMAI		25/28	C T T C C C C C C C C C C C C C C C C C	(2/2)
		77	KODYA/IBUKOTA PROP.	PEKANBARU	(04) Tarempa	45/51	SBB	
1500	JAMBI		01 KERINCI	1.	ı		-	0
7.			02 SARKO		BANGKO	ίΩ	IKK	1/0
			03 BATANGHARI	ı				o.(.)
			04 TANJUNG JABUNG	KUALA TUNGKAL		4/22	IKK	1/1
			05 BUNGO TEBO	MUARA BUNGO		4/9	IKK	ν. 1/1·
		77	KODYA/IBUKOTA PROP.	JAMBI (03)		23/39	SBB	
				SEKAYU	MUARA TEBO	5		
1600	SUMATERA SELATAN		01 OGAN KOMERING		BELITANG	ıń.		0/2
			urn		MUARA DUA	'n		
			02 OGAN KOMERING ILIR	ı	f .			0
······································			03 LEMATANG ILIROGAN TENGAH (LICI)		PENDAPO LINTANG	ıń		1/0

	1984/	1/0	0/1	0 (7	1/3		1/2		.2/2	0/1	1/1 (2/2)					
	NOTES					SBS, P.BANGKA		P. BELITUNG	ans	IKK		IKK	Sas	·.	-		
	морем	ហ	ഗ			65/65	വസ	4/9	52/131	3/8	ហ	3/6	46/53				
SITE	PLANNED (PELITA IV)	TEBING TINGGI	MUARA RUPIT	·		ACHAIN	TOBOALI	MANGGAR			MUARA AMAN		. •				
8	EXISTING (1984)			ł		PANGKAL PINANG		TANJUNG PANDAN	PALEMBANG (06)	BINTOHAN MANA		ARGAMAKMUR	BENGKULU (03)				
	KABUPATEN	04 LAHAT	05 MUSI RAWAS	06 MUSI BANYU ASIN		07 BANGKA		08 BELITUNG	KODYA/IBUKOTA PROP.	OI BENGKULU SELATAN	02 REJANG LEBONG	03 BENGKULU UTARA	KODYA/IBUKOTA PROP.				
									71.				7.1				
	PROPINSI	(SUMATERA SELATAN)								BENGKULU							
	NO.									1700							

	1984/	0/2 (1/3)	0	1/2						
	NOTES									
	морем	N W	:	1/9	29/25	വവവ			·	
SITE	PLANNED (PELITA IV)	KALIANDA KOTA AGUNG	: I	Manggara		PRING SEWU BANDAR JAYA WAY JEPARA				
S	EXISTING (1984)		1	KRUI	TANJUNG KARANG					
	KABUPATEN	01 LAMPUNG SELATAN	02 LAMPUNG TENGAH	03 LAMPUNG UTARA	71 KODYA/IBUKOTA PROP.					
	PROPINSI	LAMPUNG								
	NO.	7800								

	1984/	1/1		0	77.	0/1	-	(1/1)	0/1	0	0	0	0	0	0	0	0
	NOTES	яв/ввя	 		CIBINONG MASTER CONTROL ST.			BANDUNG TRAIN- ING CENTER									
	мадом	257/			4/4	w		2/2	'n								
1.60	PLANNED (PELITA IV)		ı	ı		PELABUHAN RATU	I :		PAMENGPEUK		ı	1.	ı	. 1	1	i	ı
	EXISTING (1984)	JAKARTA/GAMBIR	ı	ı	TEST CIBINONG CIBINONG	:	ı	GEGERKALONG		1	1	1	ı		:		
	Kabupaten		PANDEGLANG	LEBAK	восоя	SUKABUMI	CIANJUR	BANDUNG	GARUT	TAS IKMALAYA	CIAMIS	KUNINGAN	CIREBON	MAJALENGKA	SUMEDANG	INDRAMAU	SUBANG
			10	02	03	04	0.5	90	07	80	60	0 1	11	12	13	14	15
	PROPINSI	D.K.I. JAKARTA	JAWA BARAT														
	o Z	3100	 3200														

EARTH STATION/SCPC

					STATE			
NO.	PROPINSI		KABUPATEN	EXISTING (1984)	PLANNED (PELITA IV)	МООЕМ	NOIES	1984/
	(JAWA BARAT)		16 PURWAKARTA		1			0
			17 KARAWANG	ı	ı			o
			18 BEKASI	1	ı			0
			19 TANGGERANG	ı				. 0 :
		-	20 SERANG	1	ı			0
		73	KODYA/IBUKOTA PROP.	BANDUNG (06)		31/78		
3300	JAWA TENGAH		01 CILACAP	CILACAP	1	3/29	IKK, SBS	1/0
			02 BANYUMAS	ı	1	· 		0
			03 PURBALINGGA	1	1		·	0
			04 BANJARNEGARA	ı	i			0
			OS KEBUMEN	ı	ı			0
			06 PURWOREJO	ı	1		-	0
			07 WONOSOBO	1	1			0
			08 MAGELANG	ı	I		÷	۵
		···	09 BOYOLALI	1	ı			0.
			10 KLATEN .	l'	ı			0,
			11 SUKOHARJO	ı	1			0
			· .					

	1984/	0	o	0	0	0	o o	0	0	0	0	(1/1)	. 0	0	0	0	0	0	
	NOTES								<u> </u>	P. KARIMUN JAWA				<u>-</u> :	:			:	
	морем									u)				······································				1- 2-	
SITE	PLANNED (PELITA IV)	1	1 .	l	ı	l	ı	t	1	KARIMUN JAWA	ı	1	1	1	1 .	1:	ì		
1	EXISTING (1984)	1	1	ı	1	1	1	ı	ı	I	J			ı	ı	ı	1	1	
	KABUPATEN	WONOGIRI	KARANGANYAR	SRAGEN	GROBOGAN	BLORA	REMBANG	PATI	KUDUS	JEPARA	DEMAK	SEMARANG	TEMANGGUNG	KENDAL	BATANG	PEKALONGAN	PEMALANG	28 TEGAL	
		12	13	14	LS.	16	17	18	9.4	20	21	22	23	24	25	26	27	28	
	PROPINSI	(JAWA TENGAH)																	
1	!																	1	

1984/	0		0	0	0	0	(1/1)		 						
NOTES															
.		SEB						SBB							
мэры		68/6						3/107							
TE PLANNED (PELITA IV)	1		ļ	ı	ı	į				:	<i>a</i> . 1				
EXISTING (1984)	1	SEMARANG (22)	 1:	: 1	ł	ı		YOGYAKARTA (04)							
KABUPATEN	29 BREBES	KODYA/IBUKOTA PROP.	01 KULON PROGO	02 BANTUL	03 GUNUNG KIDUL	04 SLEMAN		KODYA/IBUKOTA PROP.	 		· · · · · · · · · · · · · · · · · · ·	1. :			
<u> </u>		74		·	<u>.</u>			7.1							
PROPINSI	(JAWA TENGAH)		DAERAH ISTIMEWA	TOGENERAL											
o Z			3400									,	 	-	

	1984/	1/1	0	0	0	0	0	0	O	0	0	0	0	0	0	0	, o	٥	
	NOTES	IKK			-					· .									
	морем	'n													,			·	
SITE	PLANNED (PELITA IV)	PACITAN	ı	I	ł		ı	ı	1	1	I	1	ı	I .	ļ		ļ	1	
!!	EXISTING (1984)		į	ı	. 1	ı	1.	ı	ţ	1	ı	ı	ſ		ı	ı		1	
	KABUPATEN	PACITAN	PONOROGO	TRENGGALEK	TULUNGAGUNG	BLITAR	KENDIRI	MALANG	LUMAJANG	JEMBER	BANYUWANGI	BONDOWOSO	SITUBONDO	PROBOLINGGO	PASURUAN	SIDOARJO	MOJOKERTO	JOMBANG	
		10	02	03	0 4	ខ	90	07	08	60	10	11	12	13	14	15	16	17	
	PROPINSI	JAWA TIMUR				-													
	ON	3500														-			

1984/	0	G	0	0	0	0	00	0	0 (7/7)		O . 1	0,	O :		•				
NOTES									:					SBB SURABAYA 1	י אוישקשמה				
морем				21	:			<u></u>		•					2		:	:	
SITE PLANNED (PELITA IV)	1	ı	1	ı		1	·	ı			ı	1	1		KANGEAN				
EXISTING (1984)		ı	1	,		1	. 1	ı			1.	1	t	SURABAYA (25)			:		
KABUPATEN	NGANJUK	MADIUN	MAGETAN	NGAWI	BOJONEGORO	TUBAN	LAMONGAN	GRESIK	BANGKALAN		SAMPANG	PAMEKASAN	SUMENEP	KODYA/IBUKOTA PROP.					
	8	13	20	21.	\$ 22	23	24	25	26	٠	27	28	29						
											<u></u> .—		—	78		 ·			
PROPINSI	(JAWA TIMUR)																		
NO NO					··		1.									 			

	1984/	0	0	0 5	(7/7)	0	1/0	0	٥	177	0 (1/1)	1/0	1/0	0/1	0	0		-
	NOTES						IKK/P. BALI			SBB, P.BALI		IKK/P. LOMBOK	IKK/P. LOMBOK	P. SUMBAWA			Р. ГОМВОК	
	МООЕМ		-				Ŋ			12/149		Ŋ	ស	'n			4/49	
SITE	PLANNED (PELITA IV)	1		t,	1	1	BAWGLI	ı			1	PRAYA	SELONG	ALAS	1	1		
	EXISTING (1984)	ŧ	ł	1	1	1		I.	ı	DENPASAR (03)	1				. 1	1	MATARAM (Ol)	
	KABUPATEN	JEMBRANA	TABANAN	BADUNG	GIANYAR	KLUNGKUNG	BAWGLI	KARANGASEM	BULELENG	KOTA ADM.	LOMBOK BARAT	LOMBOK TENGAR	LOMBOK TIMUR	SUMBAWA	ромъп	BIMA	KOTA ADMINISTRASI IBUKOTA PROPINSI	:
		10	02	03	04	05	90	07	80	XO	10	02	03	0.4	0.5	06	KO	
	PROPINSI	BALI			·						NUSA TENGGARA BARAT							
	NO.	5100									5200							

	2 m					. س	۔۔۔۔۔		۔۔۔۔۔		۔۔۔۔			 	······································	
	1984/	1/1	1/1	0/1	0/1	1/0	1/1	1/1	1/1	1/1	1/1	1/1	0			
	NOTES	IKK/P. SUMBA	SBS/P. SUMBA	P. ROTI SBS/P. TIMOR	IKK/P. TIMOR	IKK/P. TIMOR	P. ALOR	P. ALOR	IKK/P. FLORES	IKK/P. FLORES	IKK/P. FLORES	IKK/P. FLORES				
	морем	3/6	2/2	5 70/70	ម៉ា	ហ	3/9	1/9	3/9	2/9	3/25	Ŋ	,			
	PLANNED (PELITA IV)			BAA	SOE	KEFAMENANU						ВАЈАМА	1			
	EXISTING (1984)	WAIKABUBAK	WAINGAPU	KUPANG			ATAMBUA	KALABAHI	LARANTUKA	MAUMBRE	ENDE		1			
	KABUPATEN	SUMBA BARAT	SUMBA TIMUR	KUPANG	TIMOR TENGAH SELATAN	TIMOR TENGAH UTARA	การย	ALOR	FLORES TIMUR	SIKKA	EQNE	NGADA	MANGGARAI			
		10	0 7	60	0 4	05	90	07	08	60	10	11	12			
	PROPINSI	NUSA TENGGARA TIMUR		· · · · · · · · · · · · · · · · · · ·												
F	NO.	5300								, · · · · · · · · · · · · · · · · · · ·				 		

,														<u> </u>			 ,	 	
	1984/	1/0	1/0	1/0	7/0	1/0	1/0	1/0	17		0/1	1/0	0/0	て,	1/0	:	 · · ·		
	NOIES	IKK/P. TIMOR	IBUKOTA P. TIMOR	PROPINSI	IKK/P. TIMOR	IKK/F. TIMOR	IKK/P. TIMOR	IKK/P. TIMOR	IKK/P. TIMOR										
	мэдом	2	ιń	ហ	Ŋ	Ś	ıΩ	w	5/41		ıΩ	ഗ	นา	w	'n	: .			~
SITE	PLANNED (PELITA IV)	suai	AINARO	SAME	VIKEKE	LOS PALOS	BAUCAU	MANATUTO			AILIU	LIQUICA	ERMERA	MALIANA	PANTEMAKASAR				
5	EXISTING (1984)							· .	סודדו										
	KABUPATEN	COVALIMA	AINARO	MANUFAHI	VIKEKE	LAUTEM	варсар	MANATUTO	DILLI	-	AILIU	LIQUICA	Бпмвка	BOBONARO	AMBENO				
		. 01	02	03	0.4	90	90	07	08		60	10	Ţ	12	13				
	PROPINSI	TIMOR TIMUR																	
	NO.	5400																	-
_																	 	 	

	1984/	2/3	0/1 (1/2)	3/3		1/2	1/1	1/1		1/1	1/2		0/1 (1/2)
	NOTES	IKK		IKK	IKK P. KARIMATA	IKK	IKK	SBB		IKK	IKK		IKK
	морем	3/9 3/10 5	ហ	2/9	3/3	2/24	3/9	56/100	សហ	2/22	4/31	'n	ŧ۵
C	PLANNED (PELITA IV)	BENGKAYANG	NGABANG	Balaikarangan		nangap inoh			ngabang Sukamara		KUALA PEMBUANG	KASONGAN	KUALA KAPUAS
	EXISTING (1984)	S INGKAWANG SAMBAS		ANGGAU	KETAPANG PADANG KARIMATA KENDAWANGAN	SINTANG	PUTU SIBAU	PONTIANAK (02)		PANGKALAN BUN	SAMPIT		
	KABUPATEN	Ol SAMBAS	02 PONTIANAK	03 SANGGAU	04 KETAPANG	05 SINTANG	06 KAPUAS HULU	KODYA/IBUKOTA PROP.		Ol KOTA WARINGIN BARAT	02 KOTA WARINGIN TIMUR	03 KATINGAN	04 KAPUNS
						·		17					
	PROPINSI	KALIMANTAN BARAT								KALIMANTAN TENGAH			
	NO.	6100								6200			

1984/	1/1	0/1	1/1	1/1	0		0/1	эн 1/2	0	0	0	0	0		_
NOTES	IKK	IKK	IKK	IKK		SBS	IKK	IKK/P. LAUH						···	
мэдом	2/22	ភ	3/9	3/9		44/39	r.	2/9					···•		
SITE PLANNED (PELITA IV)		TEMIANG LAYANG			i		PLEIHARI	PAGATAN	I	l L	1	t			
EXISTING (1984)	BUNTOK		MUARA TAWEH	KUALA KURUN	1	PALANGKA RAYA (04)		KOTA BARU	ı	ţ		ı	ı	1	
KABUPATEN	05 BARITO SELATAN	06 BARITO TIMUR	07 BARITO UTARA	08 GUNUNG MAS	09 MURUNG RAYA	KODYA/IBUKOTA PROP.	01 TANAH LAUT	02 KOTA BARU	03 BANJAR	04 BARITO KUALA	05 TAPIN	06 HULU SEI SALATAN	07 HULU SEI TENGAH	08 HULU SEI UTARA	
)	J	~		•	17									
PROPINSI	(KALIMANTAN TENGAN)						KALIMANTAN SELATAN						-		
NO.							6300								

EARTH STATION/SCPC

	,												 		 	
	1984/	۵		0	0	1/1	3/3							_		
	NOTES		gas			IKK	P. TARANKAN	SES P. NUNUKAN IKK	SBB							
	морем		52/123			2/10	32/39	3/13	76/113	2/9					· .	
	PLANNED PELITA IV)			. 1.	1					×		•				
	SITE 1 (P)	·			•			<u>-</u>		MELAK			 			
	EXISTING (1984)	1	BANJARMASIN		1	TANJUNG REDEP	TARAKAN	NUNUKAN TANJUNG SELOR	SAMARINDA	KUALA KUAYAN	·					
	KABUPATEN	09 TABALONG	KODYA/IBUKOTA PROP.	Ol PASIR	02 KUTAI	03 BERAU	04 BULONGAN		KODYA/IBUKOTA PROP.							
			71						72							
	PROPINSI	(KALIMANTAN SELATAN)		KALIMANTAN TIMUR				,								
	NO.			6400									 			
•													 			

	1984/	0 (1/1)		0/1	1/1			1/2	1/2	1/2		1/1			
	NOTES		IKK		IKK/P.SANGIR	SBB		IKK P.Banggai	IBUKOTA PROPINSI	KOTA ADMINISTRASI	SHS	IKK			-
	морем		3/7	S.	4/7	47/152	3/18	3/45	3/8	53/68	ın	2/9			
SITE	PLANNED (PELITA IV)	•		AMURANG				BANGGAI	ampana		PARIGI		;	:	
1	EXISTING (1984)	ſ	KOTA MOBAGO		TAHUNA	MANDADO (03)	GORONTALO (01)	בטאטא	POSO	PALU		ror rori	-		
	KABUPATEN	01 GORONTALO	02 BOLAANG MANGONDOW	03 MINAHSA	04 SANGINE TALAUD	72 KODYA/IBUKOTA PROP.	71 KOTAMADYA	01 LOWUK/BANGGAI	02 POSO	03 DONGGALA		04 BUOL TOLI-TOLI			
	PROPINSI	SULAWESI UTARA						SULAWESI TENGAH							
	NO.	2100	· · · · · · · · · · · · · · · · · · ·					7200			٠.	····			

NO. SULAWEST SELATEN 10.0 SULAWEST SELATEN 10.1 SELAYAR 10.2 SULAYAR 10.2 SULAYAR 10.3 SULAYAR 10.3 SULAYAR 10.4 SULAYAR 10.5 SULAYAR																		
SULLAMES I SELATAR 1 1944) NODEA 1916 NODEA	1984/	0	0	0	1/0	1/0	0	1/1	1/1	0	0	0	0	0	0	0	1/1	2/2
SULAMESI SELATAN 0.1 SELAYAR 0.2 BULUKUMBA 0.3 BANTAENG 0.4 JENEPONTO 0.5 TAKALAR 0.6 GOMA 0.7 SINJAI 0.8 BONE 0.9 MANOS 1.1 BARRU 1.1 BARRU 1.2 SOPERNG 1.3 MAJO 1.4 SIDENRENG 1.5 PINNANG 1.6 ENBENKANG 1.7 LUWU 1.8 SOROAKO 1.7 SOROAKO 1.7 SOROAKO 1.8 PALOPO 1.9 SOROAKO 1.1 LUWU 1.1 ENBENKANG 1.1 ENBENKANG 1.2 SOROAKO 1.3 SOROAKO 1.4 SIDENRENG 1.5 PINNANG 1.7 LUWU 1.7 LUWU 1.7 SOROAKO 1.7 SOROAKO 1.7 LUWU 1.8 FALOPO 1.7 SOROAKO 1.7 SOROAKO 1.7 LUWU 1.8 FALOPO 1.7 SOROAKO 1.7 LUWU 1.8 FALOPO 1.8 FALOPO 1.8 SOROAKO 1.7 LUWU 1.8 FALOPO 1.8 SOROAKO 1.7 SOROAKO 1.7 LUWU 1.8 FALOPO 1.8 SOROAKO 1.7 LUWU 1.8 FALOPO 1.8 SOROAKO 1.7 LUWU 1.8 FALOPO 1.8 SOROAKO 1.8 SOROAKO 1.9 SOROAKO 1.7 LUWU 1.8 FALOPO 1.8 SOROAKO 1.9 SOROAKO 1.7 LUWU 1.8 SOROAKO 1.9 SOROAKO 1.9 SOROAKO 1.9 SOROAKO 1.9 SOROAKO 1.9 SOROAKO 1.7 LUWU 1.8 SOROAKO 1.9 SOROAKO 1.9 SOROAKO 1.7 SOROAKO 1.8 SOROAKO 1.9 SOROAKO 1.9 SOROAKO 1.7 LUWU 1.8 SOROAKO 1.9 SORO	NOTES							•										1
SULAMESI SELATAN 01 SELAYAR 02 BULUKUMBA 03 BANTAENG 04 JENEPONTO 05 TAKALAR 06 GOMA 07 SINJAI 10 PANGKADENE 11 BARU 12 SOPPENG 13 MAJO 14 SIDDENRENG 15 PINRANG 16 ENRENKANG 17 SUND 18 ENRENKANG 19 ENLONG 10 ENRENKANG 10 ENRENKANG 11 ENRENKANG 12 SOROANG 13 LUNU 14 SIDDENRENG 15 ENRENKANG 16 ENRENKANG 17 LUNU 18 PALOPO 19 PALOPO 10 PALOPO 10 PALOPO 11 ENLONG 12 ENLONG 13 PALOPO 14 SIDDENRENG 15 PINRANG 16 ENRENKANG 17 LUNU 18 PALOPO 19 PALOPO 10 PALOPO 10 PALOPO 11 ENLONG 12 ENLONG 13 PALOPO 14 PALOPO 15 PINRANG 16 ENRENKANG 17 LUNU 18 PALOPO 19 PALOPO 10 PALOPO 10 PALOPO 10 PALOPO 11 PALOPO 12 PALOPO 13 PALOPO 14 PALOPO 15 PALOPO 16 PALOPO 17 PALOPO 18 PALOPO 18 PALOPO 19 PALOPO 10 PALOPO 10 PALOPO 10 PALOPO 10 PALOPO 10 PALOPO 11 PALOPO 11 PALOPO 12 PALOPO 13 PALOPO 14 PALOPO 15 PALOPO 16 PALOPO 17 PALOPO 18 PALOPO 18 PALOPO 19 PALOPO 10 PALOPO 10 PALOPO 10 PALOPO 10 PALOPO 10 PALOPO 11 PALOPO 11 PALOPO 12 PALOPO 13 PALOPO 14 PALOPO 15 PALOPO 16 PALOPO 17 PALOPO 18 PALOPO 18 PALOPO 19 PALOPO 19 PALOPO 10 PAL			-			IKK	.· 	IKK	IKK								IKK	SES IKK
SULAMESI SELATAN 01 SELAYAR 02 BULUKUMBA 03 BANTARNG 04 JENEPONTO 05 GONA 06 GONA 07 SINJAI 10 PANGKAJENE 11 REPULAUAN 12 SOPPENG 13 WAJO 14 SIDDENBENG 15 ENBENKANG 16 ENBENKANG 17 LUWU 18 ENBENKANG 19 PANGKAJENE 11 SOPPENG 12 LUWU 13 PANGKAJENE 14 SIDDENBENG 15 LUWU 16 ENBENKANG 17 LUWU 18 PANGNKO 19 PANGNKO 10 PANGNKAJENE 11 SOPPENG 12 LUWU 13 PANGNANG 14 SIDDENBENG 15 ENBENKANG 16 ENBENKANG 17 LUWU 18 PANGNOKO 19 PANGNANG 10 PANGNANG 11 LUWU 12 LUWU 13 PANGNANG 14 SIDDENBENG 15 ENBENKANG 16 ENBENKANG 17 LUWU 18 PANGNOKO 19 PANGNANG 10 PANGNANG 11 PANGNANG 11 PANGNANG 12 LUWU 13 PANGNANG 14 SIDDENBENG 15 PANGNANG 16 PANGNANG 17 LUWU 18 PANGNANG 19 PANGNANG 10 PANGNANG 11 PANGNANG 11 PANGNANG 12 PANGNANG 13 PANGNANG 14 SIDDENBENG 15 PANGNANG 16 PANGNANG 17 LUWU 18 PANGNANG 18 PANGNANG 18 PANGNANG 18 PANGNANG 19 PANGNANG 19 PANGNANG 10 PANGNANG 10 PANGNANG 10 PANGNANG 11 PANGNANG 12 PANGNANG 13 PANGNANG 14 PANGNANG 15 PANGNANG 16 PANGNANG 17 LUWU 18 PANGNANG 18 PANGNANG 18 PANGNANG 18 PANGNANG 19 PANGNANG 19 PANGNANG 19 PANGNANG 19 PANGNANG 10 PANGNANG 10 PANGNANG 10 PANGNANG 11 PANGNANG 11 PANGNANG 12 PANGNANG 13 PANGNANG 14 PANGNANG 15 PANGNANG 16 PANGNANG 17 PANGNANG 18 PANGNANG P	морем				Ŋ	S		1/10	1/10								1/10	3/3
SULAWESI SELATAN 01 SELAYAR 02 BULUKUMBA 03 BANTAENG 04 JENEPONTO 05 TAKALAR 06 GOWA 07 SINJAI 08 BONE 09 WAROS - 10 PANGKAJENE 11 BARRU 12 SOPPENG 13 WAJO 14 SIDDENRENG 15 ENNENKANG 16 ENRENKANG 17 LUWU 19 PALOPO		***	ı	1	JENEPONTO	TAKALAR	ı			I	ŧ	l	l	I	i	į		
SULAWESI SELATAN 01 SE SULAWESI SELATAN 01 SE 03 BA 04 JE 06 GC 06 GC 07 SI 07 SI 08 BC 09 MA 11 BF 11 BF 11 ST 11 ST 11 ST 11 EF	l I			ı			ı	SINJAI	WATAMPUNE		1	ı	1	ı	f	ı	ENRENKANG	SOROAKO PALOPO
SULAWES I SELATAN	KABUPATEN	SELAYAR	BULUKUMBA	BANTAENG	JENEPONTO	TAKALAR	GOWA	SINJAI	anoa	MAROS	PANGKAJENE KEPULAUAN	BARRU	SOPPENG	WAJO	SIDDENRENG RAPPANG	PINRANG	ENRENKANG	LUWU LUWU
SULAWESI		0.10	02	03	04	0.5	90	20	80	60	70	11	12	13	1.4	इत	76	17
7300 7300	PROPINSI																	
	NO.	7300																

EARTH STATION/SCPC

1984/	1/2	٦/٥	O	0/1		1/1	1/T	1/1	1/1					
NOTES	IKK			IKK	SBB	IKK/P.Buton	IKK/P.MUNA	IBUKOTA PROPINSI/SBS	IKK	:				
морем	3/10	ហ		ហ	74/119	3/9	3/9	40/59	3/9					
SITE PLANNED (PELITA IV)	MAKALE	POLEWALI	ł	MAMUJU										
 EXISTING (1984)	RANTEPAO	ı	· I	f	UJUNG PANDANG (09)	BAU BAU	RAHA	KENDARI	KOLAKA					
KABUPATEN	18 TANA TORAJA	19 POLEWALI MAMASA	20 MAJENE	21 MAMUJU	KODYA/IBUKOTA PROF.	01 BUTON	02 MUNA	03 KENDARI	04 KOLAKA					
	4	H	Š	6	71 K	Ó	Ö		0	٠	·		·	
PROPINSI	(SULAWESI SELATAN)					SULAWESI TENGGARA								
NO.	ı					7400								

1984/	2/2	2/4 (3/5)	1/1	,				2/2	1/1	2/2	1/2	
NOTES	IKK/P.KAI P.TANIMBAR	F.BURU IKK/P.SERAM P.SAPARUA P.SERAM	IKK/P.TIDORE	SBB .	IAN/F. IEMMALE P. HALMAHERA P. SANANA P. BACAN	SBB, P.AMBON		IKK, SBS			FROFINSI, SEB	
морем	3/39	1/10 1/10 5 5	1/10	36/47	2/10 1/10 5	37/77	വവാവ	30/34	2/7	50/64	1/10 2/6 5	
PLANNED (PELITA IV)		Sabarua Wahai			Labuha		DOBO BANDANAIRA MOROTAI				ENAROTALI	
EXISTING (1984)	TUAL SAUMLAKI	namlea Masohi	SOA SIU	TERNATE	TOBELO SANANA	AMBON		MERAUKE TANAH MERAH	WAMENA	JAYAPURA	SARMI NABIRE	
KABUPATEN	01 MALUKU TENGGARA	02 MALUKU TENGAH	03 HALMAHERA TENGAH	04 MALUKU UTARA		71 KODYA/IBUKOTA PROP.		Ol MERAUKE	02 JAYA WIJAYA	03 JAYAPURA	04 PANIAI	
PROPINSI	магоко							IRIAN JAYA				
o N	8100							8200				

	1984/	3/3	2/2	1/2	VT	1/1						
	NOTES	IKK, SBS SBS	IKK, SBS	IKK, SBS	P.SURENAWA	SBS/P.BIAK						
	МООБИ	5/5 4/4 2/10	42/44	30/36	2/10	35/35			:	 		
SITE	PLANNED (PELITA IV)			RANSIKI	* 4					:		
1	EXISTING (1984)	FAK-FAK TEMBAGAPURA KAIMANA	SORONG	MANUKWARI	SERUI	BIAK						
	KABUPATEN	erk-frk	SORONG	MANUKWARI	YAPEN WAROPEN	TELUK CENDRAWASIH		:				
		05	φ Ο	0.0	08	60			4			
	PROPINSI	(IRIAN JAYA)										
	NO									 		