HERRICA OF ANDONESY:

THE STUDY

ON

THE AIRPORT DEVELOPMENT PROJECT

CENTRAL JAVA AND YOGYAKARTA

MOVERER

AGE I VENEEUR MOENVERHOOD INMONTENAMENT INDE

REPUBLIC OF INDONESIA

THE STUDY ON THE AIRPORT DEVELOPMENT PROJECT IN CENTRAL JAVA AND YOGYAKARTA

APPENDIX

NOVEMBER 1986

JAPAN INTERNATIONAL COOPERATION AGENCY

国	除協力事	禁团
受入 月日	87. 1. 20	108
登録 No.	15807	75.7 SDF

	Appendix to Part I, Chapter 3 (I-3) Traffic Flow Survey for Yogyakarta, Surakarta and Semarang Airports Appendix to Part I, Chapter 10 (I-10)
	Traffic Flow Survey for Yogyakarta, Surakarta and Semarang Airports
	Traffic Flow Survey for Yogyakarta, Surakarta and Semarang Airports
ſ	and Semarang Airports
·	Appendix to Part I Chapter 10 (I-10)
•	
	Aircraft Noise in Semarang Airport
I	Appendix to Part II, Vol.1, Chapter 3 (II-1-3)
	Results of Soil Investigation
1	Appendix to Part II, Vol.1, Chapter 4 (A) (II-1-4 (A))
	Material Relating to Method of Establishing ATS Routes
	Defined by VOR
,	Appendix to Part II, Vol.1, Chapter 4 (B) (II-1-4 (B))
r	Adi Sucipto Training Area, WIR-8, which is divided
	into ten portions
· .	Appendix to Part II, Vol.1, Chapter 4 (C) (II-1-4 (C))
F	Guidance Material on the Characteristics of Wake Turbulence and Application of Increased Longitudinal Separation of
	Aircraft in such Condition
. <i>E</i>	Appendix to Part II, Vol.1, Chapter 4 (D) (II-1-4 (D)) Estimated Altitude Coverage for Alternative Radar Sites
	Appendix to Part II, Vol.1, Chapter 4 (E) (II-1-4 (E))
	Dimensions of Realigned ATS Routes, Fixes and Intersections
A	Appendix to Part II, Vol.1, Chapter 6 (II-1-6)
•	Construction Cost Estimates
F	Appendix to Part II, Vol.1, Chapter 7 (II-1-7)
	Economic Analysis
P	Appendix to Part II, Vol.2, Chapter 3 (II-2-3)
	Considerationof Parallel Taxiway
,	Appendix to Part II, Vol.2, Chapter 4 (II-2-4)
	AdiSumarmo Training Area, WRR-6, Which is divided
-	into Nine Portions

							٠
Appendix to Par Constructi				(II-2-		 *******	64
Appendix to Par Economic An	t II, Vo	1.2, Chap	oter 7	(II-2-	7)		, 65
			·				:

Appendix to Part I, Chapter 3 (I-3)

Traffic Flow Survey for Yogyakarta, Surakarta and Semarang Airports

1 Survey Items

Survey items for passengers are as follows:

- (1) Nationality
- (2) Purpose of trip
- (3) Orignal point of departure to the airport
- (4) Access mode to the airport
- (5) Fare and access time to the airport
- (6) Route of the trip (for foreigenrs only)
- (7) Sex.
- (8) Age
- (9) Occupation

2 Period of the Survey

The survey was executed for four days from Thursday, Aug. 29 to Sunday, Sep. 1, 1985.

Survey hours were from one hour before the first departing flight to the time of last departing flight at each airport.

3 Method of the Survey

The survey was made by directly interviewing the departing passengers. The interview survey form is shown in Fig. 1. The interview was carried out at the gate lounge or check-in lobby of each airport.

For the tourist group, only the group leader was interviewed as a representative of all members.

The number of departing passengers in the survey period is shown in Table 1, and the number of passengers interviewed is shown in Table 2. More than 80 % of all departing passengers were interviewed at each airport.

free and access cing to Dis per person/tisp orang tripore Ongon kandaraan Townoongan	- u		Rouge of City 7 year CEG			8850i	U : United States Ja : Johnston Ji : Johnsto	Sex Male Female Perceptum Perceptum	8. 4Ks 1. Under 19 2, 25-29 3, 30-39	4. 40-69 5. 50-59 6. Diama over	Occupation Administrative, executive staff Agricultura/Libbary worker 9. Pekerjaan. 1. Pekerjaan. 2. Pekerjaan.	Covernment official Students Pagaval negeti	Professional Rousevice), Wiresver	Sali-employed Others Others Pedaging Others Lain-lain
No. Date / Tgl Flight No. / Nomor Penerbangan	Nectoosity Todonesis Jopan Metherland 1. Kevers Methers 2. Japan 3. Belands Methers	United States France A. Amerika Serikac 3. Perantis	6- Japon Batec 7 Augustalia	9. Lath-lato	Purpose of your Signe-seeing Business 1. Tuluan urams 1. Partwisers 2. Degang (Pinas until disass) te	Josjakerta/Java Othere	Tab.Crobogsa [Tab.Grobogsa	L Kot. Senorang Kot. Senorang Kab. Blace	Seal for an account to the seal of the sea		1 Lab. Savanganyee Kot. Tegal. Lab. Savanaria Kot. Peralongan Lab. Soyalaii	Tax.	1. Takst. 2. Kendartan pr.	June 4. Gaferiato

Fig. 1 Interview Survey Form

Table 1 Number of Passengers of Departure Flight

1. YOGYAKARTA

FLT NO.	DESTINATION	DEPARTURE	TYPE OF	טא	MBER OF	PASSENGER	S	1.OAD
	jaran er Litaria	TIME	ALIXCRAFT	AUG. 29	30	31	SEP. 1	FACTOR
MZ 546 GA 431 GA 630 BO 236 GA 433 GA 036 GA 632 GA 437 BO 237 GA 439 GA 634	SURABAYA JAKARTA DENPASAR BANJARMASIN JAKARTA JAKARTA DENPASAR JAKARTA BANDUNG JAKARTA DENPASAR	7:00 8:10 8:20 8:30 10:10 11:40 12:00 13:40 14:15 15:10	F27 D9S D9S HS7 D9S D9S D9S D9S HS7 D9S	18 98 10 40 - 94 28 - 105 84	31 87 23 27 102 46 23 97 75	15 40 7 20 40 21 13 53 10 44	29 51 45 38 23 50 61 69 27 71	47.2 %

		тот	A L	490	511	317	. 482	l
2. SURAKAI	RTA							
FLT NO	DESTINATION	DEPARTURE	TYPE OF		MANBER OF	PASSENGERS		'LOAD
		TIME	ALECRAFI	AUG. 29	30	31	SEP. 1	FACTOR
 GA 306 GA 405 GA 409	SURABAYA JAKARTA JAKARTA	8 : 40 8 : 50 14 : 50	F28 F28 F28	12 60 66	13 30 39	7 14 27	17 61 46	51.5 %
	!	тот	A L	138	82	48	134	

1.5		·	- : :_ :		NUMBER OF	PASSENG	ERS	LO
FLT NO.	DESTINATION	DEPARTURE TIME	TYPE OF AIRCRAFT	AUG. 29	30	31	SEP, 1	FAC
QH 251	JAKARTA	7:00	VCV	53	·	39	35	
DC 583	PANGKALANBUN	7 : 00	CASA	- 13		-	16	
GA 020	JAKARTA	7:20	F28	37	53	40	30	l
MZ 433	PANGKALANBUN	7:30	CS2	13	20	10	19	
GA 026	SURABAYA	7 : 55	F28	38	26	39	23	Į .
GA 002	JAKARTA	8 : 20	F28	36	.15	17	22	ļ -
MZ 554	SURABAYA	8:40	F27	-	5	1	9	
BO 239	BANJARMASIN	8:45	HS7	5	11	21	14	47.7
GA 022	JAKARTA	10 : 20	F28	43	56	33	37	
GA 004	JAKARTA	12 : 20	F28	18	35	46	43	l
QH 253	JAKARTA	13:15	VCV	_	-	-	-	l
GA 425	JAKARTA	13 : 20	F28	37	30	30	39	ነ
BO 238	JAKARTA	14:00	HS7	50	3	29	25	
MZ 555	BANDUNG	15 : 10	F27	24	11	17	17	l
GA 427	JAKARTA	15 ; 20	F28	50	53	66	67	1
GA 304	SURABAYA	15 : 30	F28	36	33	53	29	
GA 429	JAKARTA	16 : 20	F28	63	32	40	24	l

NOTE: AIRLINE CODES

GA : GARUDA QH : MANDALA
MZ : MERPATI DC : DERAYA
BO : BOURAQ

SEAT CAPACITY

F28 : 65 HS748: 44 F27 : 44-56 CASA : 18

Table 2 Number of Passengers Interviewed by Route

<u></u>			Paccana	ers Inte	rviewed		7
	Destination		rasseng	ers inco	T Viewed		Rate of Passengers Interviewed
Airport	Describeron	29	30	31	1	Total	THESTATEMEN
خىقىغىرى <u>بىرى بىرى ئۇچىنى ئايلىك سال ئىستىرى دېرى بىرى بىرى</u>	JAKARTA	263	222	151	202	838	
	SURABAYA	18	21	14	19	72	
1. YOGYAKARTA	BANJARMASIN	32	11	20	22	85	$\frac{1.446}{1.000} = 80.3\%$
	BANDUNG	8	23	7	10	48	1,800
	DENPASAR	103	144	60	96	403	(Actual Total
	TOTAL	424	421	252	349	1,446	PAX 1,800)
	JAKARTA	126	66	41	107	340	398 00 07
	SURABAYA	12	13	7	26	58	$\frac{398}{402} = 99.0\%$
2. SURAKARTA	TOTAL	138	79	48	133	398	(Actual Total PAX 402)
	JAKARTA	352	272	330	296	1,250	
	PANGKALANBUN	26	19	10	34	89	$\frac{1.661}{1.799} = 92.3\%$
	SURABAYA	46	51	87	56	240	(Actual Total
3. SEMARANG	BANJARMASIN	5	11	15	14	45	PAX 1,799)
	BANDUNG	4	11	14	8	37	
	TOTAL	433	364	456	408	1,661	
TOTAL		995	864	756	890	3,505	$\frac{3,505}{4,001} = 87.6\%$

4 Result of Survey

(1) Nationality

The passengers of each airport are classified by nationality as shown in Table 3.

At Semarang and Surakarta airports, Indonesians made up 80 - 90 % of total passengers. However at Yogyakarta airport, Indonesians were less than 50 %, and foreigners mainly from Japan, Europe and United States were more than 50 % of all passengers.

There are five air routes from Yogyakarta, and the number of passengers travelling on each route is also shown in Table 3. For Indonesians, passengers bound for Jakarta or Denpasar were about 70 %, and others were bound for local cities. But for foreigners, passengers bound for Jakarta or Denpasar were more than 90 % of the total number of foreign passengers.

At Surakarta and Semarang airports, 70 - 90 % of the passengers were bound for Jakarta.

1. YOGYAKARTA

Nationality Route	Indonesia	Japen	Netherland	v.s.	France	Hest Cermony	Australia	Others	Total
JAKARTA	864 (60.5)	171 (30.4)	80 (37.6)	(64.0)	254 (94.4)	120 (87.2)	28 (58.3)	336	1,917 (58.1)
SURABAYA	156 (40.9)	(0)	8 (3.8)	(0)	(0)	(0)	(0)	(0.6)	167 (5.1)
BANJARHASIN	206	(0)	(0)	8 (6.0)	6 (2.2)	(0.7)	(0)	(1.1)	225 (6.8)
BANDUNG	(110	(0)	(0)	12 (12.0)	(0)	(0)	(0)	(0.8)	126 · (3.8)
DENPASAR	91 (6.4)	391 (69.6)	125 (58.7)	18 (18.0)	9 (3.3)	25 (17.1)	20 (41.7)	184 (34.5)	863 (26.2)
TOTAL	1,427 (100.0)	562 (100.0)	213 (100.0)	100	269 (103.0)	146 (100.0)	48 (100.0)	533 (100.0)	3,298 (100.0)
TOTAL	1,427 (43.3)	562 (17.0)	213 (6.6)	100	269 (8.2)	146 (4.4)	48 (1.5)	533 (16.2)	3:298 (100.0)

2. SURAKARTA

Nationality Route	Indonesia	Japon	Netherland	IJ.S.	France	West Germany	Austrolla	Others	Total
JAKARTA	558 (90.7)	19 (79.2)	8 (80,0)	6 (54.5)	0 (-)	5 (20.0)	0 (-)	40 (85.1)	636 (86.9)
SURABAYA	57	. 5	2 (20.0)	5 (45.5)	0 (-)	20 (80.0)	n (-)	7 (14.9)	96 (13.1)
TOTAL	615	24 (100.0)	10 (100.0)		0 (-)	25 (100.0)	(-)	47 (100.0)	732 (100.0)
	615 (84.0)	(3.3)	10 (1,4)	11 (1.5)	(0)	25 (3.4)	(0)	(6.4)	(100°0) 135.

3. SEMARANG

Patievality Route	Indonesia	Augun	Netherland	u.s.	France	Mest Georgia	Australia	Dibers	Total
JAKARTA	1,996	46 (74.2)	2 (8.0)	32 (80,0)	0 (0)	3 (100.0)	(49.0)	164 (91.1)	2,247 (72.4)
PANGKALANBUN	160 (5.7)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	160 (5,2)
SURABAYA	437 (15.7)	16 (25.8)	23 (92.0)	8 (20.0)	(0)	(0)	(0)	16 (8.9)	500 (16.1)
BANJARMASIN	75 (2.7)	(0)	3 (0)	0 (0)	(0)	(0)	(0)	(0)	75 (2,4)
BANDUNG	115	(0)	0 (0)	0 (0)	0 (0)	0. (0)	6 (60.0)	0 (0)	\$21 (3.9)
TOTAL	2,783 (100.0)	62 (100.0)	25 (100.0)	40 (100.0)	, 0 (100.0)) (100.0)	10 (100.0)	180 (100.0)	3,103 (100,0)
	2,783 (89.7)	62 (2.0)	25 (0.8)	40 (1.3)	(0)	(0.1)	10 (0.3)	180 (5,8)	3,103 (100.0)

(2) Purpose of Trip

The purpose of trip of the passengers is shown in Table 4.

At Yogyakarta airport, nearly 50% of passengers were on sightseeing excursions, and 20 % were on business trips.

But at Surakarta and Semarang, sightseeing passengers consisted of only 7 - 20 % of all passengers, but business passengers made up 30 -60 %.

Table 5 shows the purpose of trip for Indonesians and foreigners.

At Yogyakarta, 82 % of foreigners were tourists on sightseeing excursions. However, Indonesian tourists on sightseeing trips only amounted to 4 %, and business passengers totalled 34 %.

At Surakarta, Indonesian sightseeing tourists were also only 2 %, and business passengers were 34 %. Foreign sightseeing tourists were 38 % and business passengers were 33 %.

At Semarang, about 50 % of Indonesians and foreigners were on business trips, with the sightseeing passengers only amounting to 20 - 30 % for the Indonesians and foreign passengers.

Table 4 Purpose of Trip by Routes

1 YOGYAKARTA

():%

Purpose Route	Sightseeing	Business	Others	Total	
JAKARTA	938 (48.9)	421 (21.9)	561 (29,2)	1,920 (100)	
SURABAYA	8 (4.8)	74 (44.6)	84 (50.6)	166 (100)	
BANJARMASIN	17 (7.6)	68 (30.2)	140 (62.2)	225 (100)	
BANDUNG	20 (15.7)	47 (37.0)	60 (47.2)	127 (100)	
DENPASAR	624 (72.2)	42 (4.9)	198 (22.9)	864 (100)	
TOTAL	1,607 (48.7)	652 (19.7)	1,043 (31.6)	3,302 (100)	

2. SURAKARTA

Purpose Route	Sightseeing	Business	Others	Total
JAKARTA	42 (6.7)	205 (32.5)	384 (60.8)	631 (100)
SURABAYA	28 (28.9)	32 (33.0)	37 (38.1)	97 (100)
TOTAL	70 (9.6)	237 (32.6)	421 (57.8)	728 (100)

3. SEMARANG

Porpose Route	Sightseeing	Sightseeing Business		Total
JAKARTA	377 (16.8)	1,321 (58.8)	549 (24.4)	2,247 (100)
PANGKALANBUN	41 (25.6)	87 (54.4)	32 (20.0)	160 (100)
SURABAYA	85 (17.0)	255 (51.1)	159 (31.9)	499 (100)
BANJARMASIN	28 (37.3)	31 (41.3)	16 (21.3)	75 (100)
BANDUNG	16 (13.2)	67 (55.4)	38 (31.4)	121 (100)
TOTAL	547 (17.6)	1,761 (56.8)	794 (25.6)	3,102 (100)

Table 5 Purpose of Trip by Nationality

1, YOGYAKARTA

();%

Purpose Nationality	Sightseeing	Business	Others	Total
Indonesians	49 (-3.4)	518 (36.3)	859 (60.2)	1,426 (100)
Foreigners	1,557 (83.0)	133 (7.1)	186 (9,9)	1,876 (100)

2. SURAKARTA

Purpose Nationality	Sightseeing	Business	Others	Total
Indonesians	18 (3.0)	200 (32.8)	392 (64.3)	610 (100)
Foreigners	52 (43.7)	37 (31.1)	30 (25.2)	119 (100)

3. SEMARANG

Purpose Nationality	Sightseeing	Business	Others	Total	
Indonesians	451 (16.2)	1,585 (57.0)	747 (26.8)	2,783 (100)	
Foreigners	96 (30.2)	175 (55.0)	47 (14.8)	318 (100)	

(3) Original Point of Departure to the Airport

The original point of departing passengers is summarized as shown in Table 6.

More than 80 % of passengers in each airport come from the zone including that airport.

Table 6 The Original Zone by Nationality

1. YOGYAKA	\RTA	Ŭ.	nit: Person (%)
Original Zone	Indonesian	Foreigner	Total
1	10 (1.5)	12 (1.5)	22 (1.5)
2	50 (7.7)	3 (.0.4)	53 (3.7)
3	61 (9.4)	8 (1,0)	69 (4.8)
4	12 (1.9)	3 (0.4)	15 (1.0)
5	0 (0)	0 (0)	0 (0)
6	1 (0,2)	0 (0)	1 (0.1)
7	508 (78.6)	756 (94.4)	1264 (87.4)
- 8	4 (0.6)	19 (2.4)	23 (1.6)
Total	646 (100)	801 (100)	1447 (100)

2. SURAKARTA

Z. SUKAKAA	14		
Original Zone	Indonesian	Foreigner	Total
1	1 (0.3)	0 (0)	1 (0.3)
2	0 (0)	0 (0)	0 (0)
3	298 (87.9)	44 (73.3)	342 (85.7)
4	7 (2.1)	0 (0.)	7 (1.8)
5	0 (0)	0 (0)	0 (0)
6	0 (0)	0 (0)	ρ(0)
7	15 (4.4)	16 (26.7)	31 (7.8)
8	18 (5.3)	0 (0)	18 (4.5)
Total	339 (100)	60 (100)	399 (100)
			.1

3. SEMARANG

Original Zone	Indonesia	Foreigner	Total
1	11 (0.7	7) 8 (4.9)	19 (1.1)
2	22 (1.5	5) 0.(0)	22 (1.3)
3	20 (1.3	3) 0 (0)	20 (1,2)
4	1328 (88.6	5) 139 (85.3)	1467 (88.3)
5	59 (3.9) 4 (2.5)	63 (3.8)
6	27 (1.8	6 (3.7)	33 (2.0)
7	6 (0.4	1 (0.6)	7 (0.4)
8	26 (1.7	7) 5 (3.1)	31 (1.9)
Total	1499 (100) 163 (100)	1662 (100)

Note ; Zone codes are shown in Fig 2.

Kab.Cilacap Kab.Klaten Kab.Blora Kab.Banyumas Kab.Sukohar jo Kab.Rembang Kab.Purbalingga Kab.Wonogiri Kab.Pati Kab.Banjarnegara 3 Kab.Karanganyar Kab.Kudus Kab.Sragen _ Kab.Jepara Kab.Surakarta Kab.Boyolali Kab.Kebumen Kab.Batang Kab.Purworejo Kab.Pekalongan Kab.Wonosobo Kab.Pemalang Kab Magelang Kab.Grobogan 6 Kab.Tegal Kab. Temanggung Kab.Semarang Kab.Brebes Kot Magelang 4 Kot.Salatiga Kot.Tegal Kab.Kendal 💌 Kot.Pekalongan Kot.Semarang 7. Yogyakarta 8.Others/Lain-lain

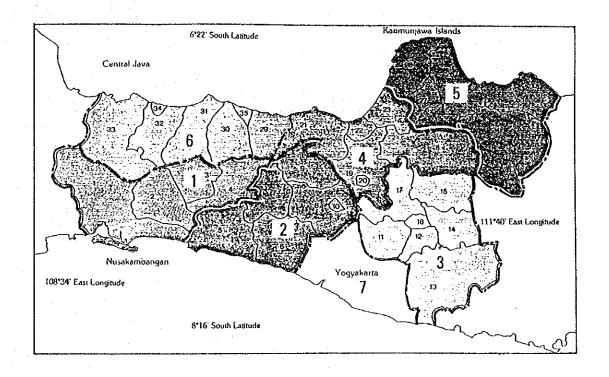


Fig. 2 Original Zone Codes

(4) Access mode to the Airport

The mode of access to the airport is shown in Table 7.

At Surakarta and Semarang airports, private cars were used for access by more than 60 % of the passengers. At Yogyakarta, private cars were used by 26 % of the passengers, because many tourist groups used buses for access to the airports.

Table 7 Access Mode by Nationality

1. YOGYAKARTA						(): %
Nationality Mode	Indo	nesian	Fore	igner	1	otal
Taxi	246	(17.2)	342	(18.2)	588	(17.8)
Private Car	724	(50.7)	90	(4.8)	814	(24.7)
Bus	133	(9.3)	1008	(53.8)	1141	(34.6)
Others	323	(1.6)	436	(23.3)	759	(23.0)
Total	1426	(100.0)	1876	(100.0)	3302	(100.0)

2. SURAKARTA

Nationality Mode	Indonesian		Foreigner		Total	
Taxi	102	(16.6)	8	(6.9)	110	(15,0)
Private Car	407	(66.1)	47	(40.5)	454	(62,0)
Bus	12	(1.9)	30	(25.9)	42	(5.7)
Others	95	(15.4)	31	(26.7)	126	(9.4)
Total	616	(100,0)	116	(100.0)	732	(100.0)

3. SEMARANG

Nationality Hode	Indonesian		Foreigner		Total	
Texi	593	(21.3)	41	(12.8)	634	(20,4)
Private Car	1694	(60.9)	212	(66.3)	1906	(61.4)
Bus	70	(2.5)	47	(14.7)	117	(3,8)
Others	426	(15,3)	20	(6.3)	446	(14.4)
Total	2783	(100.0)	320	(100.0)	3103	(100.0)

4. TOTAL

Nationality Mode		nesian	Fore	eigner	1	otal
Texi	941	(19.5)	391	(16.9)	1332	(18.7)
Private Car	2825	(58.5)	349	(15.1)	3174	(44.5)
Bus	215	(4.5)	1085	(46.9)	1300	(18.2)
Others	844	(17.5)	487	(21.1)	1331	(18.6)
Total	4825	(100,0)	2312	(100.0)	7137	(100.0)

(5) Fare and Access Time to the Airport

Average value of the fare and the time for access are shownin Table 8.

Average access fare was Rp.1,000 - 1,600 per person for the three airports, and the access time was approximately 30 minutes to each airport.

 Item
 Fare (Rp)
 Time (min)

 Yogyakarta
 1371.4
 34.6

 Surakarta
 1642.2
 27.7

 Semarang
 1022.6
 34.1

Table 8 Average Access Fare & Access Time

(6) Route of Trip of Foreign Passengers

According to the results of the survey, there are many kinds of travelling routes used by foreign passengers. More than 60 kinds of samples were collected for Yogyakarta airport, and about 15 kinds for Surakarta, and 20 kinds for Semarang.

However all the trip routes can be grouped into several typical patterns. For example, the following trip routes are represented by typical patterns, as shown below.

Jakarta - Ujung Pandang - Bali - Yogyakarta - <u>Jakarta</u>

Medan - Jakarta - Bali - Yogyakarta - Jakarta

Jakarta - Bali - Yogyakarta - Surabaya - Yogyakarta - Jakarta

Jakarta - Bali - Ujung Pandang - Surabaya - Yogyakarta - Jakarta e.t.c.

Jakarta - Bali - Yogyakarta - Jakarta

a) Yogyakarta Arport

Trip routes are classified into seven patterns.

Table 9 Trip pattern in Yogyakarta Airport

Pattern	All Passengers	Sightseeing Passengers
1. ① (Y) B	581 (36.5%)	567 (41.3%)
2. Y B	351 (22.0%)	351 (25.6%)
3. J Y B	305 (19.2%)	209 (15.2%)
4. J\Y	187 (11.7%)	170 (12.4%)
5. J. Y. B	102 (6.4%)	10 (0.7%)
6. J. Y B	35 (2.2%)	35 (2.5%)
7. ① Y B	31 (1.9%)	31 (2.3%)
Total	1,592 (100.0%)	1,373 (100.0%)

Note: ① = Jakarta, ② = Yogyakarta, ③ = Bali.

As shown in the above table, passengers visiting only Yogyakarta from Jakarta are 12 % (pattern 4). However, there are many passengers dropping in at Yogyakarta on their way to Bali from Jakarta, and also other passengers are making a return trip from Bali.

Those passengers visiting both Yogyakarta and Bali make up more than 85 % of all foreign passengers. About 60 % of all foreigners are passengers between Yogyakarta and Bali, and others are passengers between Yogyakarta and Jakarta.

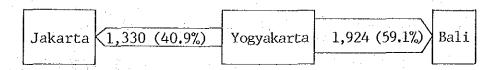


Fig. 3 Number of Passengers of Major Route

b) Surakarta Arport

There are two air routes from Surakarta airport, one is for Jakarta, and another for Surabaya. Though the number of collected samples is not so great in comparison with other two airports, the trip routes by passengers are classified into five patterns.

More than 50 % of foreign passengers come from Jakarta and return to Jakarta. And other passengers travel from Jakarta to Surabaya or Bali by way of Surakarta.

Nearly 80 % of all foreigners are passengers using the Jakarta - Surakarta route.

Table 10 Trip Pattern in Surakarta Airport

Pattern	Foreign Passengers	Foreign Sightseeing Passengers
① : \\	41 (53.9%)	2 (7.1%)
J, & B	20 (26.3%)	20 (71,4%)
(S) (S) (B)	5 (6.6%)	5 (17.9%)
J: 80 SB	5 (6.6%)	1 (3.6%)
	5 (6 . 6%)	0 (0,0%)
Total	76 (100.0%)	28 (100.0%)

Note: (J = Jakarta Su = Surakarta SB = Surabaya
B = Bali

Jakarta (117 (77.0%) Surakarta 35 (23.0%) Surabaya,

Fig. 4 Number of Passengers of Major Routes

Bali

c) Semarang airport

About 40 % of foreign passengers come from Jakarta and return to Jakarta. Other passengers travel through Semarang and other cities, such as Surabaya or Yogyakarta. Especially 36 % of sightseeing passengers are bound for Yogyakarta and Surakarta.

More than 80 % of all foreigners are passengers using the Jakarta - Semarang route.

er (egit (j. 1875) error (egit - 1875) error (egit - 1875) error (egit - 1875) error (egit - 1875) error (egit

Pattern	Foreign Passengers	Foreign Sightseeing Passengers
1. (J. Se)	71 (40.8%)	25 (36.2%)
2. (J) Se SB	50 (28.7%)	19 (27.5%)
3. (1) (5)	42 (24,1%)	25 (36,2%)
Yor Su		
4. (J. Se SB)	11 (6.3%)	0 (0.0%)
Yor Su		
Total	174 (100.0%)	69 (100.0%)

Table 11 Trip pattern in Semarang Airport

Note: (J = Jakarta, Se = Semarang, SB = Surabaya, (Y) = Yogyakarta, Su = Surakarta

Fig. 5 Number of Passengers on the Major Routes

Appendix to Part I, Chapter 10 (I-10)

Aircraft Noise in Semarang Airport

Aircraft noise contour in Semarang airport in 2010 is shown in Fig. 1. The Aircraft noise is calculated in WECPNL based on the following conditions:

1) Runway Dimensions : 2,500m x 45m, RWY 13/31

2) Ratio of Landing/Take-off operations: LDG/TKOF = 1:1

3) Glide Slope Angle : 3° (for RWY 13 Approach)

4) Runway Usability : RWY13 : RWY 31 = 90 % : 10 %

5) Daily Aircraft Movements: B-747 --- 16

MD-82 --- 10

F -28 --- 8

6) Proportion of Day and Night Flights:

- From/to JKT, SUB: Day - 80 %

Night- 20 %

- Others : Day -100 %

7) Flight Tracks : RWY 13 LDG --- Straight-in

RWY 31 LDG --- Circling

RWY 13 TKOF --- Left Turning

RWY 31 TKOF --- Straight

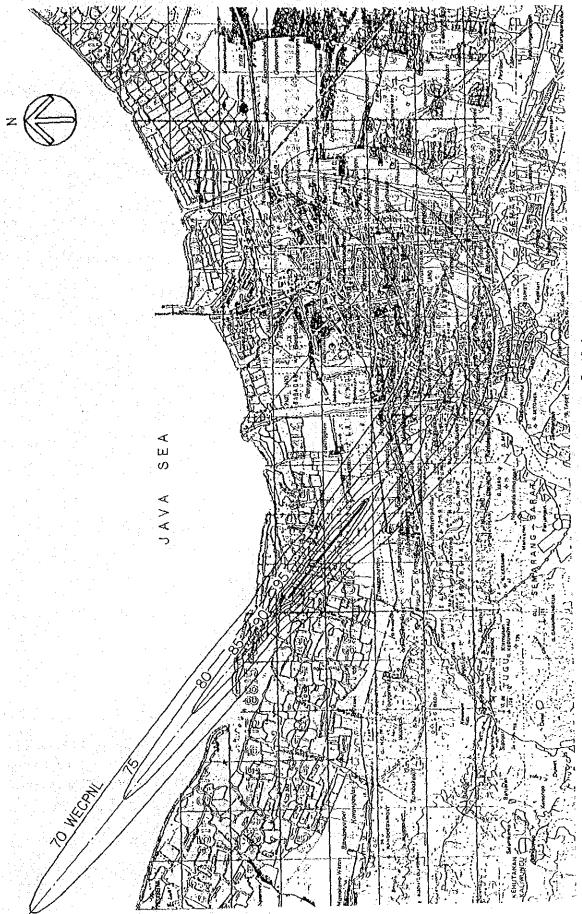


Fig. 1 Area Affected by Aircraft Noise

Appendix to Part II, Vol.1, Chapter 3 (II-1-3)

Results of Soil Investigation

1 Scope of Work

The soil investigation included both field tests and laboratory tests. The field tests consisted of the following.

- a) Soil Borings
- b) Test Pit Excavation
- c) Standard Penetration Test
- d) In-place Density
- e) Field CBR Test
- f) Sampling of Soils

The laboratory tests consisted of the following.

- a) Physical Property Tests
 - Specific Gravity
 - Natural Water Content
 - Particle Size Analysis
 - Liquid Limit
 - Plastic Limit
 - Plasticity Index
- b) Soil Engineering Tests
 - Modified CBR Test

2 Location of the Soil Investigation

The site of the soil investigation is shown in Fig. 1 and the locations of soil borings and test pits are shown in Fig. 2. The investigation locations were divided into two areas for the proposed runway and terminal area.

The tests performed in the field and laboratory are shown in Table 1.

Fig. 1 Location of Soil Investigation (1)

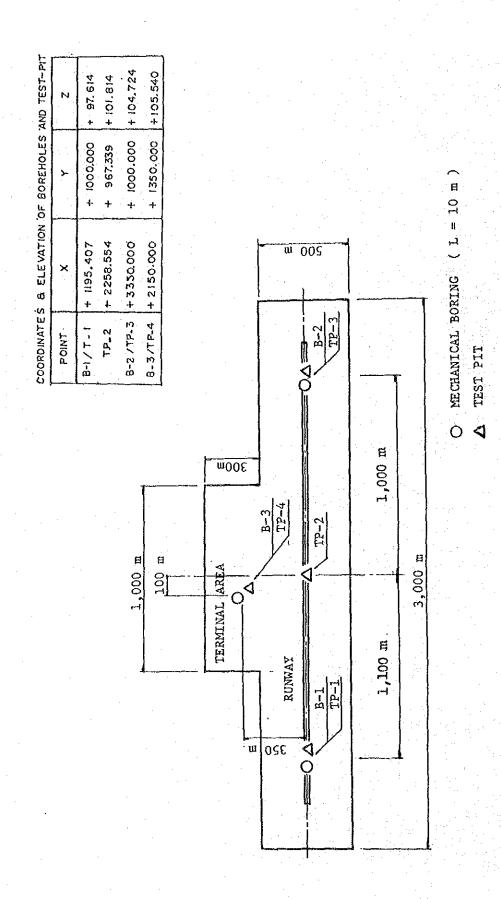
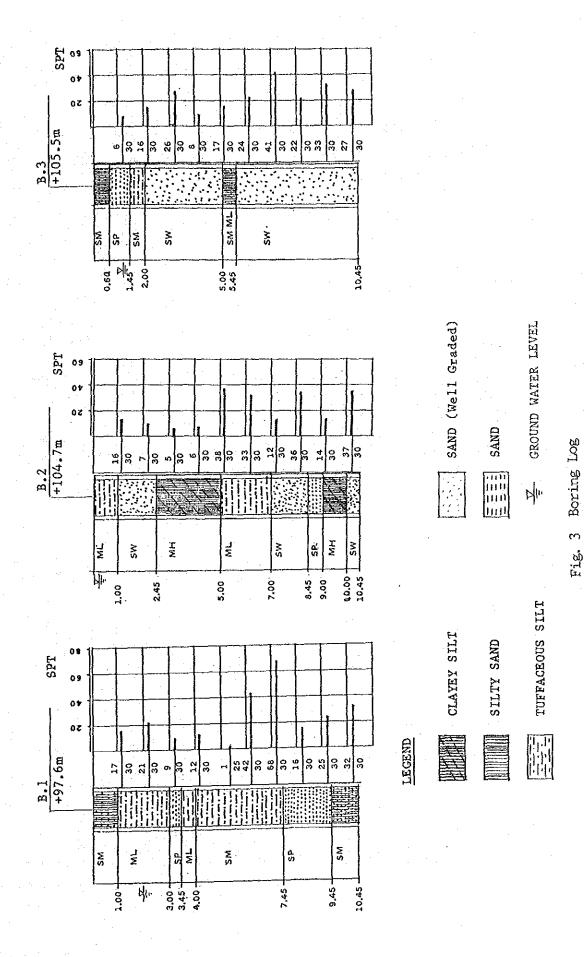


Fig. 2 Location of Soil Investigation (2)

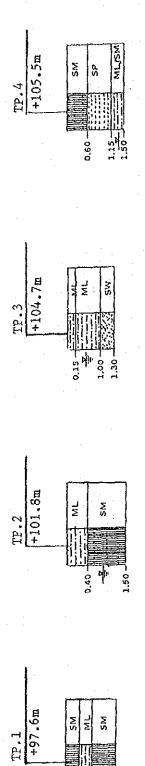
Table 1 Items of Soil Investigation

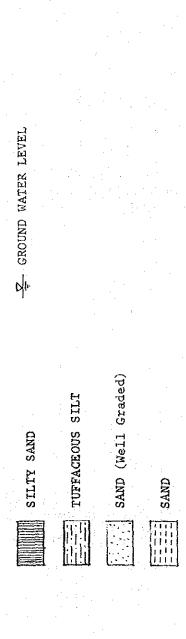
Items	Proposed Runway	Proposed Terminal Area
Soil Boring with SPT*	2 holes D=10 m each	1 hole D=10 m
Test Pit In-place Density Natural	3 locations D=1.5 m each 3 tests with Field CBR determinations 3 tests	l point D=1.5 m l test with Field CBR determinations l test
Nater Content 1. Physical Pr - Specific - Natural V - Particle - Liquid Li - Plastic I	roperty Test 13 Gravity for Water Content and Size Analysis Limit	determinations 3 samples for each boring Each test pit
- Plastici 2. Engineering - Modified	; Property Test 4 t	ests from h Test Pit

* SPT : Standard Penetration Test


3 Surface and Subsurface Soil Conditions

The results of the field tests are summarized in Figs. 3 and 4 which show that the surface and subsurface soil layers consist mainly of clayey silt, silty sand, tuffaceous silt and sand. Top soil consisting of roots, decayed vegetation and organic material was found up to a depth of 0.5 m below the existing ground surface as determined from test pit and soil boring observations.


N values for the subsurface soil layers were determined to be within a range between 5 and 30 up to a depth of 5 m. Based on these N values, the subsurface soil layers are characterized as loose to medium dense types of soil.


The high ground water level as shown in Fig. 3 is an important factor related to geotechnical and design considerations.

In determination of the geotechnical requirements for the earthwork and strength requirements for the structures, a more in-depth study of the influence of the ground water level based on a more detailed soil investigation should be made.

- 25 -

LEGEND

4 Soil Mechanical Properties of the Soils

Physical properties and engineering properties which were determined by the field and laboratory tests are summarized in Table 2.

With regard to the physical properties of the soils, it is noted that the tuffaceous layer has a high natural water content with a low density.

The design CBR test carried out on the soaked specimens showed high values such as CBR 23, 24, 36 and 42. The high CBRs are related to the fact that the tests were performed on specimens compacted at about optimum water content and were estimated at a dry density of 95 % of the maximum.

In addition, samples of TP. 1, 2,3 and 4 consisted mainly of sandy types of soil.

The field CBR values, however, were much smaller than those determined in the laboratory. It is considered that this is dependent on the following reasons.

- The soils are influenced by the high ground water level.
- The field CBR tests were carried out at a level of only 0.5 m depth just below the top soil.

For design purposes, the CBR values of the fill portion were estimated to be at least 10 % for the compaction condition at around the natural water content, and for the natural subgrade in the outside area also. It is considered necessary that the ground water level should be lowered by drainage based on the pavement requirements, so that the higher CBR values can be expected on the natural subgrade after drainage and compaction treatments.

These results and descriptions only show the general aspects of the surface and subsurfaces soil conditions and the physical and engineering properties of just a few soil samples have been determined. More detailed soil investigations for studying design requirements of the earthwork, strength conditions of structural design, stability analysis, etc., should be carried out.

Table 2 Laboratory Test Results

							ATTE	ATTERBERG LIMIT	TIM		COMPACTION MODIFIED	MODIFIED	-	
2	ON TAIN	DEPTH	s _S	n'n	<u>ب</u>	' ≻"	3	ďM	I.P	finer by weight	W opt.	٨٩		Field
ž	OR THIN	(a co co co		B-4	t/m3	t/23	*	**	**	passing sleve		вах.		C.B.R
										(USCS, symbol)	×	g/cm3	٠ ۲	Ħ
1:	B.1	05.0	2.77	26.8	1.92	1.51	non-plastic	tic		43 (SM)	- 1	•	t	
2.		3.45 - 4.00	2.68				42.1	27.1	15.0	79 (ML)	-		ı	'
m		7.00 - 7.45	2.68				non-plastic	tic		(dS) 07	•	1	1	
4	В.2	0.50	2.72	66.4	1.55	0.93	32.2	22.0	10.2	(ML) 69	-	1	1	
5.		5.00 - 7.00	2.69				33.4	25.2	8.2) 9 (ML)	•	ı	ŀ	ı
9		9.00 - 10.00	2.64				52.2	31.2	21.0.	(HM) 56	1	_	_	1
7	в.3	0.50	2.76	28.5	1.90	1.48	non-plastic	stic		48 (SM)	-	_	ı	ι
8		1.45 - 2.00	.2.75				non-plastic	tic		45 (SP)	1	1	-	1
6.		5-00 - 5.45	2.69				0.04	29.1	10.9	51 (SM)	ı	J	ı	1
10.	TP.1	0.50- 1.50	2.74	26.0	1.95	1.55	27.5	19.5	8.0	45 (SM)	12.7	1.90	24	4.4
11.	TP.2	0.50 - 1.50	2.76	37.7	1.81	1.31	non-plastic	stic		33 (SM)	13.5	1.849	42	5.0
12.	179.3	0.50 - 1.30	2.72	69.2	1.57	0.93	30.2	21.1	9.1.	33 (ML)	15.5	1,808	36	2.9
13	TP.4	0.50 - 1.50	2.74	26.4	16.1	1.51	non-plastic	stic		47 (SP)	13.5	1.847	23.0	3.0
ا														

Appendix to Part II, Vol.1, Chapter 4 (A) (II-1-4 (A))

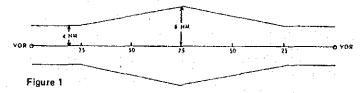
Material Relating to Method of Establishing ATS Routes Defined by VOR

1.-Introduction

- 1.1 The guidance material in this Attachment is the result of a comprehensive data collection carried out under the auspices of ICAO in 1972 and the subsequent analysis and review of the data, which comprised radar extracted plots of some 13 000 tracks of aircraft flying on selected VOR-defined routes in Europe. No Doppler VORs were included in the route samples. Details of the data collection and analysis are contained in ICAO Circular 120-AN/89/2 Methodology for the Derivation of Separation Minima Applied to the Spacing Between Parallel Tracks in ATS Route Structures.
- 1.2 In applying the guidance material in 3 and 4, it should be recognized that the data on which it is based, although considered to be representative of the type of air traffic environment in which it was collected, may not be a true reflection of the actual situation in all parts of the world. Any additional information available regarding the actual track-keeping performance of aircraft in a given portion of the airspace should therefore be taken into account.
- 1.3 Attention is also invited to the basic assumptions in 4.2 and to the fact that the values given in 4.1 represent a cautious approach. Before applying these values, account should therefore be taken of any practical experience gained in the airspace under consideration, as well as the possibility of achieving improvements in the over-all navigation performance of aircraft.
- 1.4 Further research and improvements in operational performance may result in changes in the values indicated in 3 and 4.
- 1.5 States are encouraged to keep ICAO fully informed of the results of the application of this guidance material.

2.—Determination of VOR system performance values

The large variability of the values which are likely to be associated with each of the factors that make up the total VOR system, and the limitation of presently available methods to measure all these effects individually with the required precision (for example, there is no agreed method of measuring flight technical error), has led to the conclusion that an assessment of the total system error provides a more realistic method for determining the VOR system performance.


Note. — Guidance material on over-all VOR system accuracy is also contained in Annex 10, Volume I, Attachment C to Part I.

3.—Determination of protected airspace along VOR-defined routes

- 3.1 For VOR-defined routes where radar is not used to assist aircraft in remaining within the protected airspace, the following guidance is provided.
- 3.2 As a minimum, 95 per cent of the traffic should be considered as requiring protection against activity in airspace adjacent to the routes.
- 3.3 The work described in ICAO Circular 120-AN/89/2 indicates that a VOR system performance based on the probability of containing 95 per cent of the traffic will require the following protected airspace along the centre line of the route to allow for possible deviations:

VOR routes with 50 NM or less between VORs: ± 4 NM.

VOR routes with up to 150 NM between VORs: ± 4 NM up to 25 NM from the VOR then expanding protected airspace up to ± 6 NM at 75 NM from the VOR.

3.4 If the appropriate ATS authority considers that a better protection is required, e.g. because of the proximity of prohibited, restricted or danger areas, climb or descent paths of military aircraft, etc., it may decide that a higher percentage of the traffic should be contained within the protected airspace. For delineating the protected airspace the following values will then be used:

for segments with 50 NM or less between VORs, use the values in line A of the table below.

for segments with more than 50 NM and less than 150 NM between the VORs use the values given in line A of the table up to 25 NM, then expand linearly to the value given in line B at 75 NM from the VOR.

	Per	centage	of traffic	contained	in protecti	ed area
	95	96	97	98	99	99.5
	NM	NM	NM	NM	NM	NM
Α	±4	±4	±4.5	±5	±5.5	± 6
В	± 6	±6	±6.5	± 6.5	± 7	±8.5

For example, the protected area for a route of 120 NM between VORs and for which 99.5 per cent of the traffic should

Annex 11 - Air Traffic Services

be contained in the protected area should have the following shape:

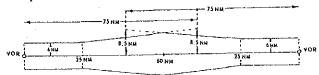
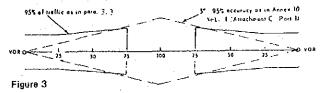



Figure 2

- 3.5 If two segments intersect at the VOR at an angle of more than 25 degrees, additional protected airspace should be provided in the vicinity of the VOR station.
- 3.6 Measured data for routes longer than 150 NM between VORs are not yet available. To determine protected airspace beyond 75 NM from the VOR, the use of an angular value of the order of 5° as representing the probable system performance would appear satisfactory. The following figure illustrates this application:

4.—Spacing of parallel routes defined by VORs

- 4.1 The data collection mentioned in 1.1 indicates that, in the type of environment investigated, the distance between route centre lines (S in Figure 4) for distances between VORs of 150 NM or less should normally be a minimum of:
 - a) 18 NM for parallel routes where the aircraft on the routes fly in opposite direction; and
 - b) 16.5 NM for parallel routes where the aircraft on the two routes fly in the same direction.

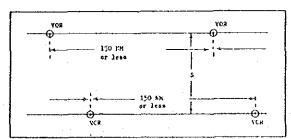
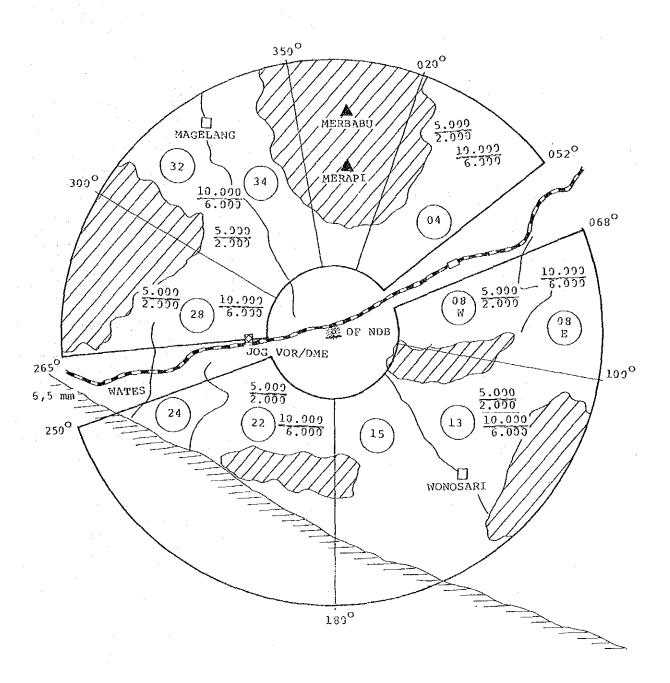


Figure 4

- 4.2 This spacing of parallel routes assumes:
- a) aircraft may either during climb or descent or during level flight be at the same flight levels on the two routes;
- b) traffic densities of 25 000 to 50 000 flights per busy two-month period;

- c) VOR transmissions which are regularly flight checked in accordance with ICAO Doc 8071, Manual on Testing of Radio Navigation Aids and have been found to be satisfactory in accordance with the procedures in that document for navigational purposes on the defined routes; and
- d) no monitoring or control of the lateral deviations is exercised.
- 4.3 Preliminary work indicates that, in the circumstances described in a) to d) below, it may be possible to reduce the minimum distance between routes. However, the figures given have not been precisely calculated and in each case a detailed study of the particular circumstances is essential:
 - a) if the aircraft on adjacent routes are not assigned the same flight levels, the distance between the routes may be reduced; the magnitude of the reduction will depend on the vertical separation between aircraft on the adjacent tracks and on the percentage of climbing and descending traffic, but is not likely to be more than 3 NM;
 - b) if the traffic density is much lower than indicated in 4.2 above, the distance between route centre lines may be slightly reduced; for example for traffic densities of about 10 000 flights per busy two-month period a reduction of 0.5 to 1 NM may be possible depending on the characteristics of the traffic flow (cf. ICAO Circular 120-AN/89/2);
 - c) the relative locations of the VORs defining the two tracks and the distance between the VORs will have an effect on the spacing, but this has not been quantified;
 - d) application of radar monitoring and control of the lateral deviations of the aircraft may have a large effect on the minimum allowable distance between routes.


5.-Change-over points for VORs

- 5.1 When considering the establishment of points for change-over from one VOR to another for primary navigational guidance on VOR-defined ATS routes, States should bear in mind that:
 - a) the establishment of change-over points should be made on the basis of performance of the VOR stations concerned, including an evaluation of the interference protection criteria. The process should be verified by flight checking (see Doc 8071, Volume I, Chapter 2);
 - b) where frequency protection is critical, flight inspection should be undertaken at the highest altitudes to which the facility is protected.
- 5.2 Nothing in 5.1 should be interpreted as placing a restriction on the service ranges of VOR installations meeting the specifications in Annex 10, Volume I, Part I, 3.3.

Appendix to Part II, Vol.1, Chapter 4 (B) (II-1-4 (B))

Adi Sucipto Training Area, WIR-8, which is divided into ten portions

ADISUTJIPTO MILITARY CONTROLLED AIRSPACE

Appendix to Part II, Vol.1, Chapter 4 (C) (II-1-4 (C))

Guidance Material on the Characteristics of Wake Turbulence and Application of Increased Longitudinal Separation of Aircraft in such Condition

1. Introduction

- 1.1 The hazards associated with wake turbulence have long been demonstrated by a number of accidents and incidents. Many States have found it necessary to develop national regulations prescribing the application of increased separation minima in specified circumstances.
- There is at the present time insufficient understanding of the correlation between turbulent wake theory and operational experience to state with an acceptable degree of certainty what weight classifications should be denoted and what separation should be applied between them. It is expected that the analysis of turbulent wake data collected by certain States will permit the development of more definitive criteria. Meanwhile this guidance material is provided to assist States to establish national procedures.

2. Wake Turbulence Characteristics

- Wake turbulence vortices are present behind every aircraft, but are particularly severe when generated by large and wide-bodied jet aircraft. These vortices are two counter-rotating cylindrical air masses trailing aft from the aircraft (See Figure 7). The vortices are most dangerous to following aircraft during the take-off, initial climb, final approach and landing phases of flight. They tend to drift down, and when close to the ground move sideways from the track of the generating aircraft, occasionally rebounding upwards.
- The characteristics of the wake vortex generated by an aircraft in flight are established initially by factors related to the aircraft gross weight, airspeed, configuration and wing span. Subsequently, the vortex characteristics are altered and eventually dominated by interactions between the vortices and the ambient atmosphere. The wind, wind shear, turbulence and atmospheric stability affect the motion and decay of a vortex system. Also in the terminal area, the proximity of the ground significantly affects vortex transport and decay.
- Vortex wake generation begins on rotation when the nose wheel lifts off the runway and ends when the nose wheel touches down on landing. Vortex strength increases proportionally to weight, is greatest when the generating aircraft is heavy, is in a clean configuration, and is slow.
- 2.4 Helicopters produce vortices when in flight and there is some evidence that, per kilogramme of gross weight, their vortices are more intense than those of fixed wing aircraft. When hovering or while air taxiing they should be kept well clear of light aircraft.

- 2.5 Special attention needs to be given to situations of light wind, where vortices may stay in the approach and runway touchdown areas, drift to a parallel runway, or sink to the landing or take-off paths of succeeding aircraft.
- 2.6 Vortices generally dissipate or break up in one of three ways: first, over a long period of time, turbulent diffusion can enlarge each wake so that the wakes merge and dissipate; second, disturbances along the length of the vortices become unstable and sinuous oscillations develop which cause the vortices to touch and link together; and third, a sudden structural change known as vortex breakdown or bursting can abruptly widen the vortex core.
- Ground effect becomes an important factor when considering the movement and decay of the vortices. The ground acts as a plane of reflection; as the trailing vortices descend toward the ground their vertical velocity decreases and (with no or little wind) they begin to travel horizontally over the ground away from each other at a height approximately half the wing span of the generating aircraft.

3. Effect of Wake Turbulence on Aircraft

The three basic effects of wake turbulence on a following aircraft are imposed roll, loss of height or rate of climb, and possible structural stress. The greatest danger is the imposed roll on the penetrating aircraft to a degree exceeding its counter control capability. Should the vortex encounter occur in the approach area, its impact is heightened because the following aircraft is in a critical state with regard to speed, thrust, altitude and reaction time.

4. Wake Turbulence Categorization of Aircraft

- 4.1 Wake turbulence separation minima should be based on a grouping of aircraft types into three categories according to the maximum certificated take-off weight.
- The three categories recommended for use (Appendix 2, Item 9 of the flight plan) are:
 - (a) HEAVY (H) all aircraft types of 136 000 kg (300 000 lb) or more;
 - (b) MEDIUM (M) aircraft types less than 136 000 kg (300 000 lb) and more than 7 000 kg (15 500 lb); and
 - (c) LIGHT (L) aircraft types of 7 000 kg (15 500 lb) or less.

5. Application of Wake Turbulence Minima

- Wake turbulence minima are intended to minimize the potential hazards of wake turbulence. When the separation minima normally required for IFR purposes is greater than that for wake turbulence, such IFR minima will apply.
- 5.2 Wake turbulence minima may be applied for any situation not covered by specific minima whenever a controller believes there is a potential hazard due to wake turbulence. Since wake turbulence is invisible, its presence and exact location cannot be determined with precision. Consequently, controllers as well as pilots should thoroughly understand the likely situations where hazardous wake turbulence may be encountered.

6. Separation Minima related to Turbulent Wake Conditions

6.1 Based on the knowledge and experience accumulated to date, the following minima are offered as guidance to States.

6.2 Radar Separation Minima

Leading Aircraft Category	Following Aircraft Category	Minima
HEAVY	HEAVY MEDIUM LIGHT	4 NM 5 NM 6 NM
MEDIUM	HEAVY MEDIUM LIGHT	3 NM 3 NM 4 NM
LIGHT	HEAVY MEDIUM LIGHT	3 NM 3 NM 3 NM

Note - See Figure 1.

- 6.2.1 The minima set out in 6.2 should be applied when:
 - (a) an aircraft is operating directly behind another aircraft at the same altitude or less than 300 m (1 000 ft) below; or
 - (b) both aircraft are using the same runway, or parallel runways less than 760 m (2 500 ft) apart; or
 - (c) an aircraft is crossing behind another aircraft at the 6 o'clock position.

6.3 Non-radar Separation Minima

6.3.1 Arriving aircraft

- 6.3.1.1 For timed approaches, the following minima should be applied to aircraft landing behind a HEAVY aircraft as follows:
 - (a) MEDIUM aircraft 2 minutes;
 - (b) LICHT aircraft 3 minutes.

6.3.2 Departing aircraft

- 6.3.2.1 Except as set out in 6.3.2.2, a minimum of 2 minutes should be applied between a LIGHT or MEDIUM aircraft taking off behind a HEAVY aircraft when the aircraft are using:
 - (a) the same runway;
 - (b) a parallel runway separated by less than 760 m (2 500 ft);

- (c) crossing runways if projected flight paths will cross;
- (d) a parallel runway separated by 760 m (2 500 ft) or more, if projected flight paths will cross.

Note. - See Figure 2 and Figure 3.

- 6.3.2.2 The separation minimum of 3 minutes should be applied between a LICHT or MEDIUM aircraft when taking off behind a HEAVY aircraft from:
 - (a) an intermediate part of the same runway; or
 - (b) an intermediate part of a parallel runway less than 760 m (2 500 ft) apart.

Note .- See Figure 4.

6.4 Displaced landing threshold

6.4.1 A separation minimum of 2 minutes should be applied between a LIGHT or MEDIUM aircraft and a HEAVY aircraft when operating on a runway with a displaced landing threshold when:

- (a) a departure follows a HEAVY aircraft arrival; or
- (b) an arrival follows a HEAVY aircraft departure if the projected flight paths are expected to cross.

6.5 Opposite direction

6.5.1 A separation minimum of 2 minutes should be applied between a LICHT or MEDIUM aircraft, and a HEAVY aircraft making a low or missed approach when:

- (a) utilizing an opposite direction runway for take-off; or
- (b) landing on the same runway in the opposite direction, or on a parallel opposite direction runway separated by less than 760 m (2 500 ft) apart.

Note. - See Figure 5.

Cautionary Wake Turbulence Messages (Cautionaries)

7.1 Figure 6 gives examples of when aerodrome controllers should advise aircraft of the potential existence of turbulent wake.

WAKE TURBULENCE SEPARATION MINIMA FOR CROSSING AND FOLLOWING AIRCRAFT

Figure 1 (see 6.2.1)

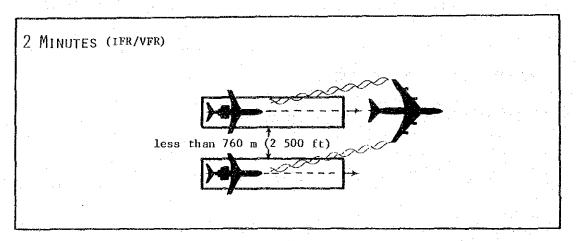


Figure 2 (see 6.3.2.1)

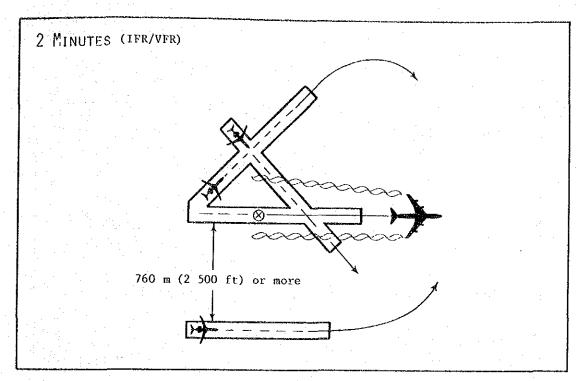


Figure 3 (see 6.3.2.1)

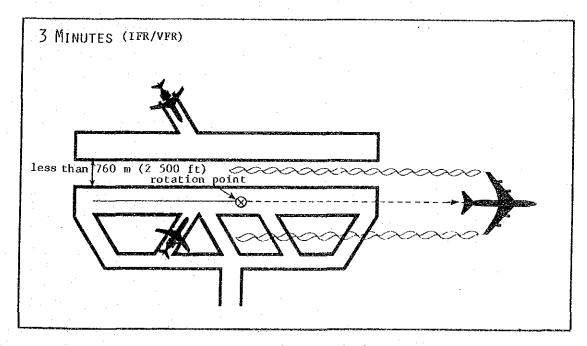


Figure 4 (see 6.3.2.2)

FOR OPPOSITE DIRECTION AIRCRAFT

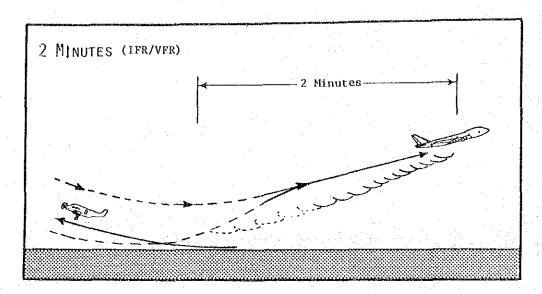


Figure 5 (see 6.5.1 (a))

CAUTIONARIES

VFR and VISUAL APPROACHES

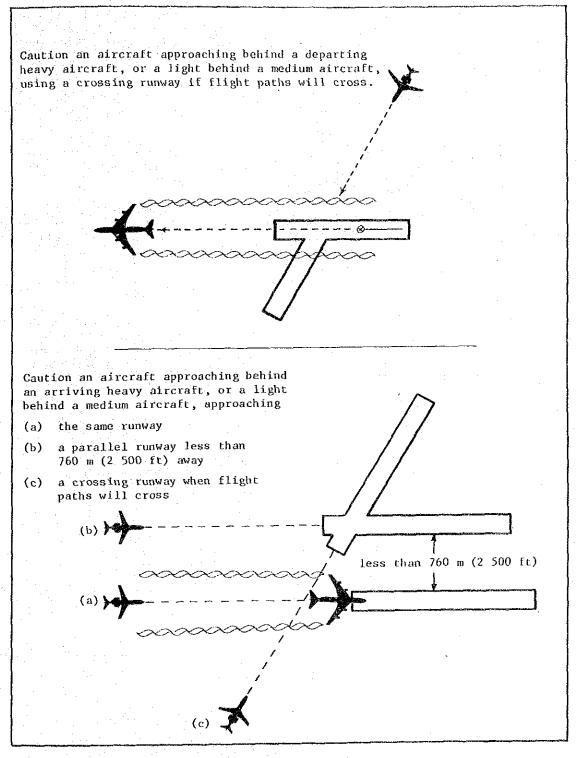
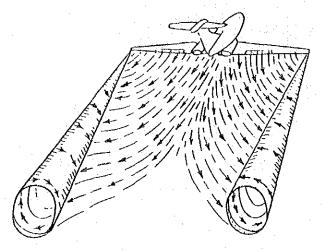



Figure 6 (see 7.1)

VORTICES

WAKE TURBULENCE

Wake turbulence could descend into the circuit of another airport

WATCH FOR

- (a) calm or stable air,
- (b) a light cross wind or tail wind which could keep a vortex on the runway,
- (c) turbulence drifting to another runway.

Known VFR traffic should be advised of heavier group aircraft when they may be affected.

Caution aircraft about wake turbulence whenever the potential for it exists.

Caution taxiing aircraft and other vehicles manoeuvring behind a heavy jet.

Do not approve a rolling take-off by a heavy aircraft if its jet engine blast may be hazardous to a following aircraft or vehicle, or to taxiway lights.

Helicopters hovering or airborne while taxiing should be kept well clear of light aircraft.

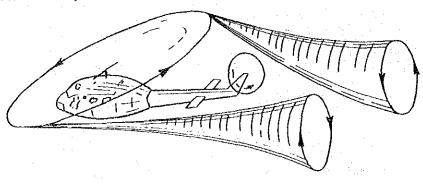
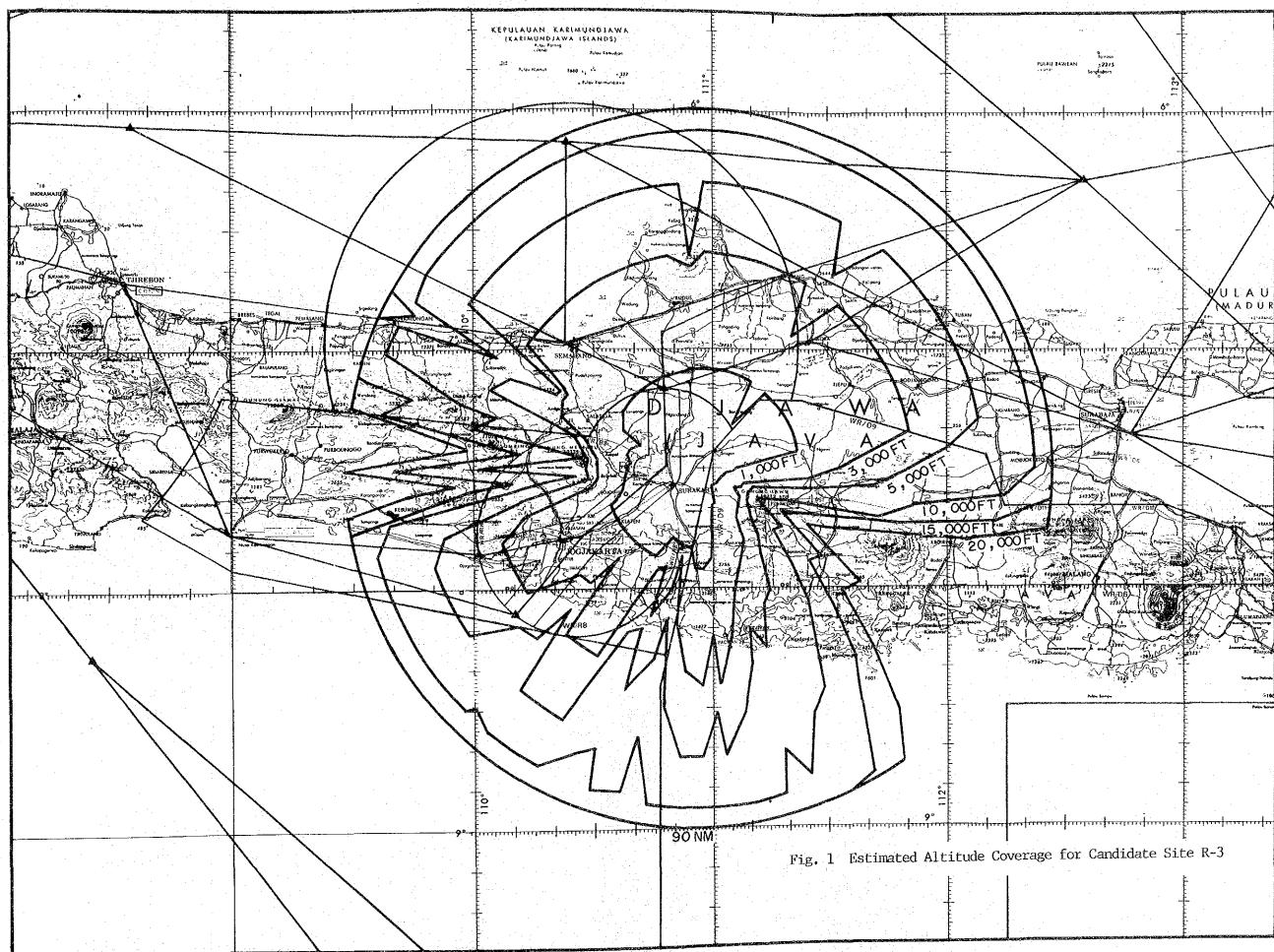
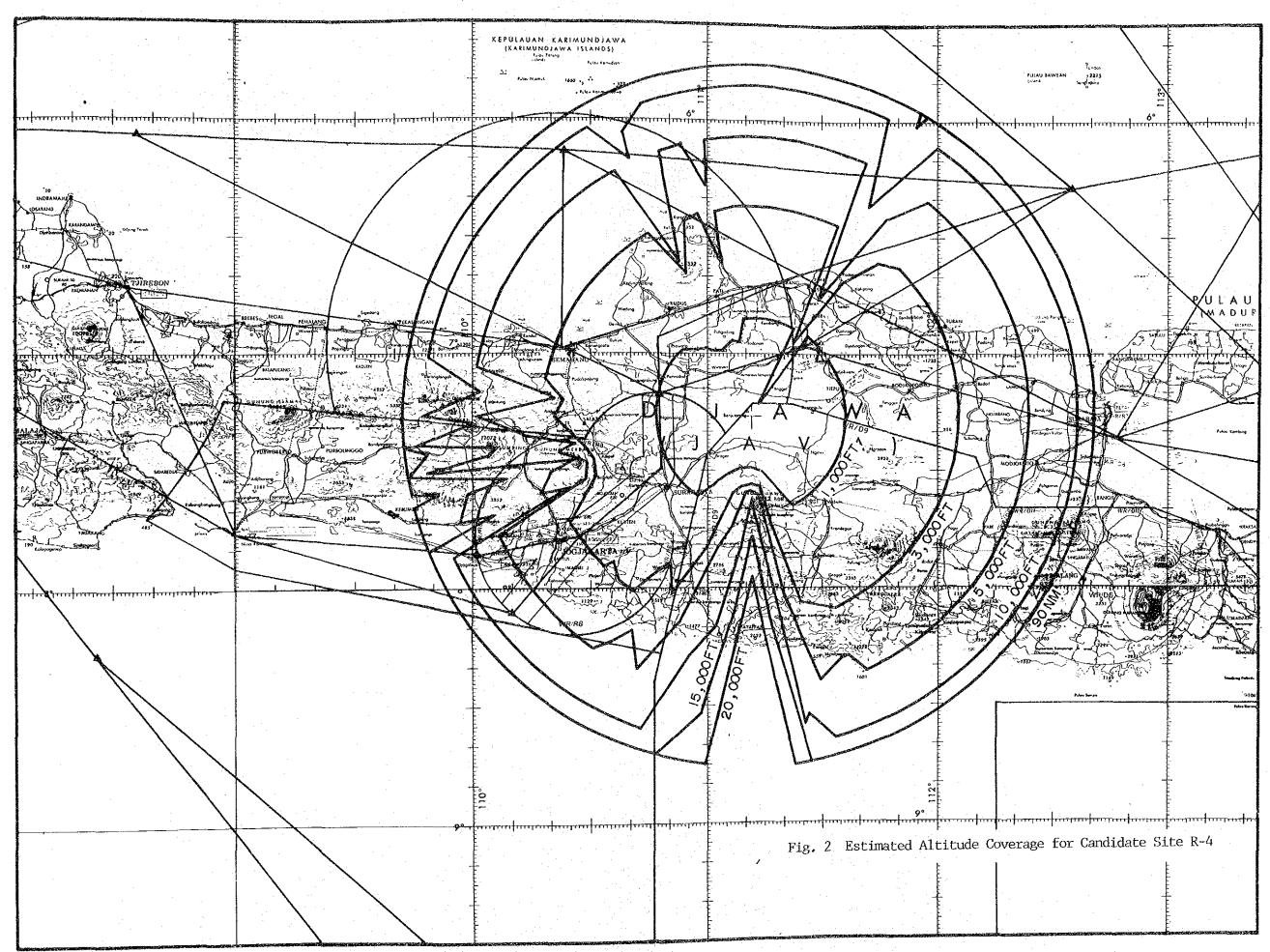
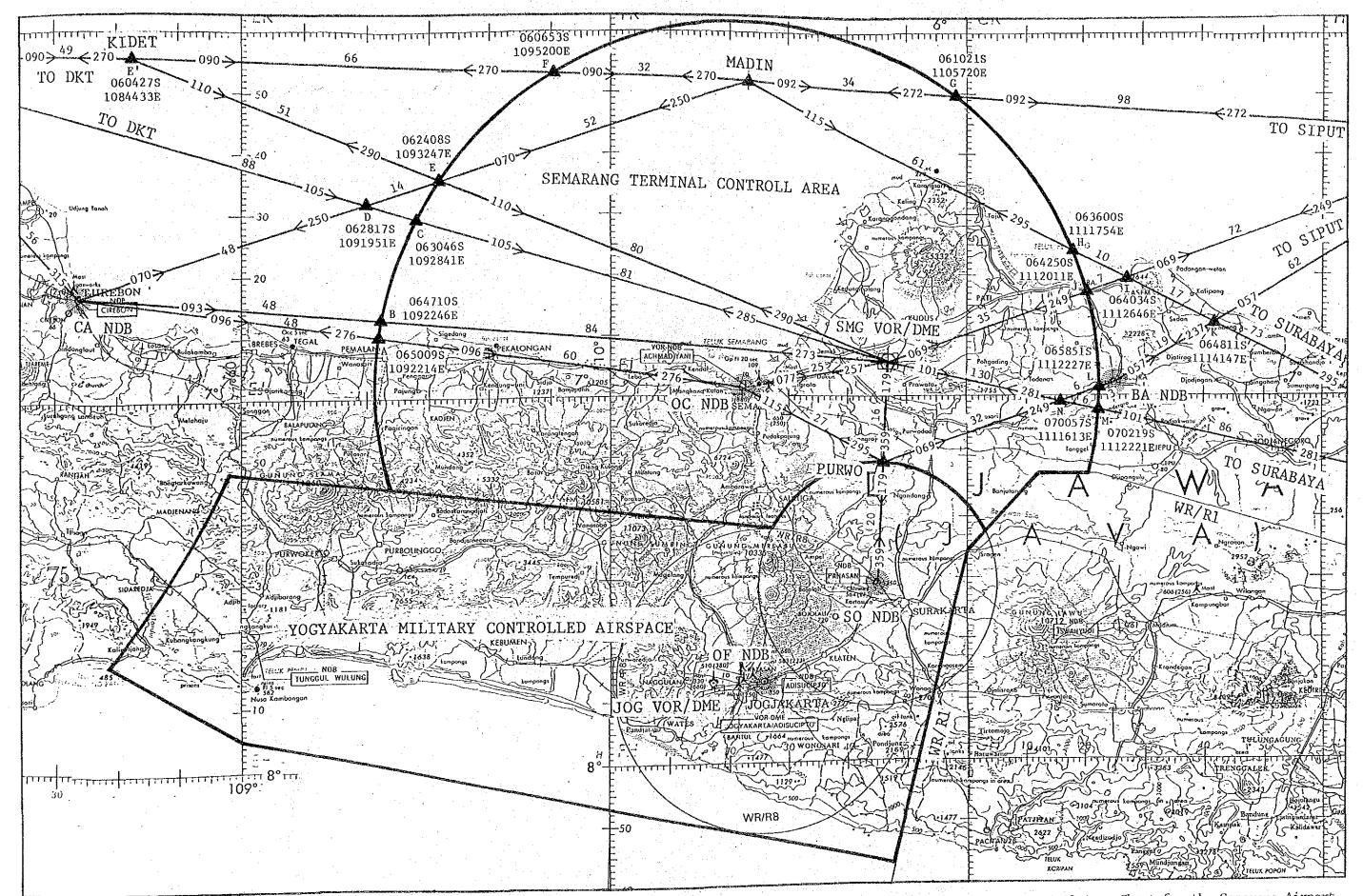




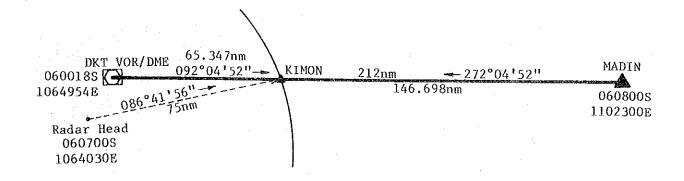
Figure 7 (see 2.1)

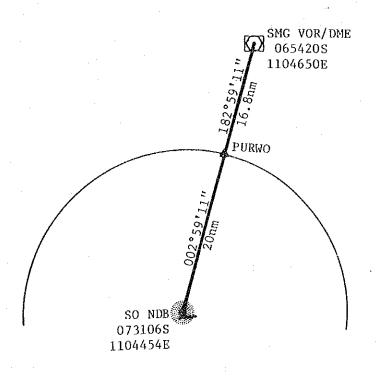
Appendix to Part II, Vol.1, Chapter 4 (D) (II-1-4 (D))
Estimated Altitude Coverage for Alternative Radar Sites

Appendix to Part II, Vol.1, Chapter 4 (E) (II-1-4 (E))

Dimensions of Realigned ATS Routes, Fixes and Intersections




Fig.1 The Proposed New Terminal Area Chart for the Semarang Airport using SMG VOR/DME


Dimensions of Realigned ATS Routes, Fixes and Intersections in the Semarang TMA and its Vicinity Area

Dimensions of realigned ATS routes, Fixes and Intersections in the Semarang TMA and its vicinity area are listed in Tables 1 and 2.

a) Change of the Coordinates of "Kimon" and "Purwo"

The coordinates of "Kimon" and "Purwo" was calculated based on the following data.

b) Change of the Coordinates of Purwo

At present, installation work for a new VOR/DME is in progress at 3.5 Km east of Surakarta airport. In near future, when corridor between Surakarta airport and Purwo is revised using new VOR/DME, the coordinates of "Purwo", Points "N" and "L" and magnetic track of ATS routes between "Purwo" and SMG VOR/DME, OC and BA NDBs should be changed as shown in the chart below and Table 3.

The coordinates of Surakarta VOR/DME is presumed as 073025S / 1104732E in this calculation.

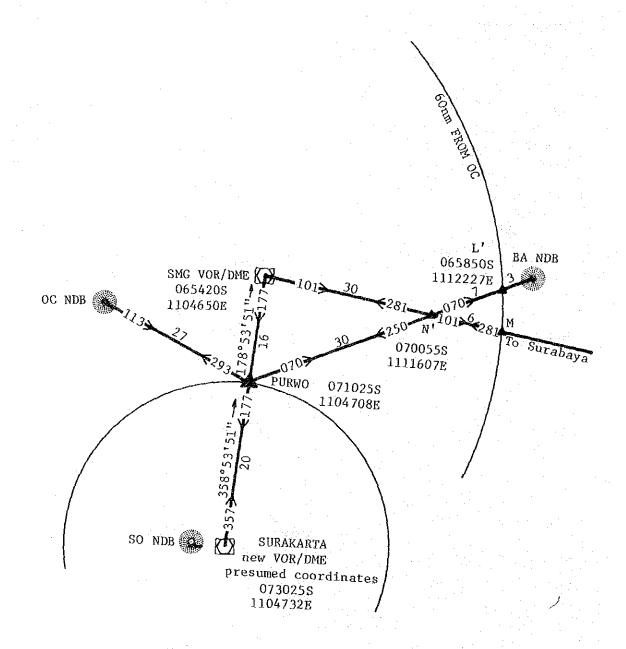


Table 1 The Dimensions of Realigned ATS Routes in the Semarang TMA and its Vicinity Area

(Magnetic variation is used 2 degrees east.)

Coordinates and na	ame of NAVAID and Fix	Distance (NN)	True Course	Magnetic Course
OC NDB 065900S/1102200E	CA NDB 064300S/1083400E	108.416	278029'12"/098029'12"	2760/0960
OC NDB	PIALA 065009S/1092214E	60.000	278 ⁰ 29'12"/098 ⁰ 29'12"	2760/0960
CA NDB	PIALA	48.416	098029'12"/278029'12"	0969/2769
SMG VOR/LIME 065420S/1104650B	CA NDB 064300S/1083400E	1,32,382	274054'40"/094054'40"	2730/0930
SMG VOR/DME	"B" 064710S/1092246E	83.784	274954140"/094954140"	2730/0930
SING VOR/LIME	KIMON 060240S/1075534E	177.845	286°53'20"/106°53'20"	2850/1050
SMG VOR/DME	"C" 063046S/1092841E	81.111	286 ⁰ 53'20"/106 ⁰ 53'20"	2850/1050
SMG VOR/DME	"D" 062917S/1091951E	89.965	286 ⁰ 53'20"/106 ⁰ 53'20"	2850/1050
SMG VOR/DME	"E" 0624085/1093247E	79.510	292019*23"/112019*23"	290°/110°
SMG VOR/UNE	"E'." 0604275/1084433E	131.343	292 ⁰ 19'23"S/112 ⁰ 19'23"	2900/1100
DKT VOR/INE 060018S/1064954E	MADIN 060800S/1102300E	212.045	092004'52"/272004'52"	090°/270°
DKT VOR/DYE	KINCN 060240S/1075534E	65.347	092004152"/272004152"	090°/270°
DKT VOR/DYE	New KIDET (E') 060427S/1084433E	114.089	092004'52"/272004'52"	.090°/270°
DKT VOR/DME 060018S/106495E	F 060653S/1095200E	181.202	272904152"/092904152"	27000900
MVDIN	SIPUF 061700S/1123500E	131,534	093 ⁰ 55'25"/273 ⁰ 55'25"	0920/2720
MADIN	G 061021S/1105720E	34,309	093 ⁰ 55125"/273 ⁰ 55125"	0920/2720
SBY VOR/THE 072118S/1124648E	MADIN	160,518	297 ⁰ 10 ' 15"/117 ⁰ 10 ' 15"	295°/115°
SBY VOR/IME	H 063600S/1111754E	99.197	297°10'15"/117°10'15"	2950/1150
. + H	I 064034S/1112646E	9.969	117°10'15"/297°10'15"	1150/2950
1	K 0648115/1114147E	16.709	117 ⁰ 10'15"/297 ⁰ 10'15"	11502950
H	MJDIM	61.322	297010'15"/117010'15"	2950/1150
SBY	I	89.228	297010'15"/117010'15"	295 ⁰ 115 ⁰
1	MADIN	71.291	297010'15"/117010'15"	2950/115
SMG VOR/IME	SIPUT	113.752	070058125"/250050125"	0699/2499

Γ	Coordinates and na	ne of NAVAID and Fix	Distance (NM)	True Course	Magnetic Course
-	SMG VOR/DME	I	41.975	70°50'25"/250°50'25"	0690/2490
-	I	SIPUT	71.777	70050'25"/250050'25"	0699/2499
-	I	J	6.905	70°50'25"/250°50'25"	0690/2490
-	SMG VOR/DME	J	35.070	070°50'26"/250°50'25"	0699/2499
-	BA NDB 065800S/1112500E	SIPUT	80.720	59°28'27"/239°28'27"	0570/2370
	BA NDB	K 064811S/1114147E	19.324	59°28'27"/239°28'27"	0579/2379
	К	SIPUT	61.396	59028127"/239028127"	0579/2379
_	SBY VOR/IME	ĸ	72.519	297010'15"/117010'15"	2950/1150
	BA NDB	PURWO 0711085/1104557E	40.918	251016'42"/071016'42"	2490/0690
	BA NDB	L 065851S/1112227E	2.676	251016'42"/071016'42"	2490/0690
	L	PURWO	38.255	251016'42"/071016'42"	2490/0690
	SMG VOR/IME	SBY VOR/IME	122.055	102045'51"/282045'51"	1010/2810
	SBY VOR/DME	M 0702195/1112221E	85.905	282 ⁰ 45'51"/102 ⁰ 45'51"	2810/1010
-	SMG VOR/DME	М	36.150	102045'51"/282045'51"	1019/2819
	SBY VOR/DME	N 070057S/1111613E	92.107	282045'51"/102045'51"	2810/1010
	SMG VOR/DME	N	29.948	102045'51"/282045'51"	1010/2810
	SMG VOR/QME	MADIN	52.033	332055'48"/152055'48"	3310/1510
	SMG	œ	25.089	259 ⁰ 16'49"/079 ⁰ 16'49"	2570/0770
	Purwo	œ	27.431	294 ⁰ 35*42"/114 ⁰ 35*42"	293°/113°
	SMG VOR/IME	SO NOB	36.817	182 ⁰ 59'11"/002 ⁰ 59'11"	1810/0010
_	SMG VOR/DME	Purwo	16.817	182°59'11"/002°59'11"	1810/0010
_					
			. : .		

Table 2 The Dimensions of Realigned Fixes and Intersections in the Semarang TMA and its Vicinity Area

Table 3 The Dimensions of Realigned ATS Routes, Fixes and Intersections when "Purwo" is shifted on the line joining Semarang and Surakarta VOR/DME

and the second s	and the second s			5 5 50 7
C∞rdinates and na	me of NAVAID and Fix	Distance (NM)	True Course	Magnetic Course
SMG VOR/TME 065420S/1104650E	SURAKARTA VOR/IME 073025S/1104732E	36.090	178053'51"/358053'51"	1770/3570
SMG VOR/DME	New Purwo 071025S/1104708E	16.090	178 ⁰ 53'51"/358 ⁰ 53 ¹ 51"	1770/3570
New Purwo	SURAKARTA VOR/IME	20.000	178053151"/358053151"	1779/3570
New Purwo	OC NDB 065900S/1102500E	27.431	294035142"/114035142"	2930/1130
New Purwo	BA NDB	39.577	071942'56"/251942'56"	0700/2500
New Purwo	N' 070055S/1111607E	30,287	071942'56"/251942'56"	0709/2509
N'	BA NDB 065800S/1112500E	9.290	071042'56"/251042'56"	070 ^O /250 ^C
SING VOR/IME	N'	29.804	102045'51"/282045'51"	1010/2810
New Purwo	L' 065850S/1112227E	36.922	071942'56"/251942'56"	070º/250º
N'	М	6.346	102045'51"/282045'51"	10102810
L'	BA NDB	2.655	071042'56"/2510/42'56"	0709/2509
	(Magnetic variation is	s used 2 degree	s west)	

Appendix to Part II, Vol.1, Chapter 6 (II-1-6)

Construction Cost Estimates

Table 1 Estimated Construction Cost
(Foreign Portion in U.S.Dollars)

	Phase of Construction	Phas		Phase		Tot	al
	THESE OF CONSCRUCTION	Local Foreign		Local	Foreign	Iccal	Foreign
	Work Item	Portion (million Rp.)	Portion (thousand US\$)	Portion (million Rp.)	Portion (thousand US\$)	Portion (million Rp.)	<u>Portion</u> (thousand (US\$)
Ę	Land Acquisition	15,979	. 0	0	0	15,979	0
d ittic	Compensation	280	0	0	0	280	0
Land	Land Acquisition * (Ultimate Expansion Area)	(3,835)	(0)	(0)	(0)	(3,835)	(0)
¥	Sub Total	16,259	0	0	0	16,259	0
7.	Earth Work	2,456	1,571	45	36	2,501	1,607
in	Drainage Works	441	495	12	18	453	513
Works	Pavement Works	5,504	9,832	2,265	3,951	7,769	13,783
Civil V	Access Road	500	218	0	0	500	218
ซี	River Diversion	222	375	0	0	222	375
	Sub Total	9,123	12,491	2,322	4,005	11,445	16,496
Ŋ	Passenger Terminal Building	4,543	4,740	2,288	2,388	6,831	7,128
Works	Cargo Terminal Building	230	787	131	103	361	284
	Administration Building	473	.515	139	151	612	666
ectu	Other Buildings	322	253	. 0	0	322	253
Architectural	Special Equipment	0	3,966	0	1,332	0	5,298
Är	Sub Total	5,568	9,655	2,558	3,974	8,126	13,629
SIII	Radio Navigation Aids	501	4,345	81	1,655	582	6,000
Systems	Air Traffic Control and Aero- nautical Telecommunications	118	3,173	43	1,265	161	4,438
	ATC Radar System	254	7,936	99	3,173	353	11,109
gati	Aeronautical Ground Lights	1,262	3,124	248	621	1,510	3,745
Navigation	Meteorological System	62	1,738	19	517	81	2,255
Air	Sub Total	2,197	20,316	490	7,231	2,687	27,547
	Power Supply System	370	2,137	27	852	397	2,989
Ş	Water Supply System	56	95	0	4	56	99
tilities Works	Sewarage System	243	354	12	23	255	377
itie	Solid Waste Disposal System	30	116	0	- 0	30	116
7:11	Telecommunication System	185	550	0	0	185	550
س الني	Sub Total	884	3,252	39	879	923	4,131
(S	Vehicles for Fire Fighting Services, etc.	0	332	0	1,127	0	1,459
Other	Sub Total	0	332	0	1,127	0	1,459
	tal of Construction Works	34,031	46,046	5,409	17,216	39,440	63,262
E	ngineering Services Cost	3,403	4,605	541	1,721	3,944	6,326
	Sub Total	37,434	50,651	5,950	18,937	43,384	69,588
	Contingency	3,743	5,065	595	1,894	4,338	6,959
	Grand Total	41,177	55,716	6,545	20,831	47,722	76,547

^{*} Land Acquisition Cost for Ultimate Expansion Area is not included in Total Cost. Exchange Rate: US\$ 1.00 = Rp. 1,125

Appendix to Part II, Vol.1, Chapter 7 (II-1-7)

Economic Analysis

Table 1 Total Passenger Transportation Cost of Airline Companies
(Mill Rp./Year, 1985 price)

Item	"Without Project" or the Cost by Smaller Air Plane				"With Project" or the Cost by Larger Air Plane			
Year	Jakar- ta	Den- pasar	Sura- baya	Ban- dung	Jarkar- ta	Den- pasar	Sura- baya	Ban- dung
95	15,991	7,457	1,432	1,203	13,092	6,769	1,432	1,203
2000	20,862	8,826	1,841	1,547	17,080	8,826	1,841	1,547
5	27,746	12,937	2,454	2,063	22,699	11,169	1,764	2,063
1.0	36,924	17,254	3,315	2,749	30,208	14,904	2,383	2,749

Table 2 The Passenger which will Spill Over the Present Capacity of the Airport and which will Use Highway Bus (or Sea Route) Inevitably

(pass./year)

		·			(pa	ss./year)
Access Zone	Route	Year	1995	2000	2005	2010
Solo	Yogyakarta	Jakarta	1,520	9,229	24,837	41,258
Magelang	11	13	1,171	7,107	19,127	31,774
Yogyakarta	11	11	11,869	72,064	193,936	322,167
Solo	11	Denpasar	608	3,692	9,935	16,504
Magelang	II	II .	468	2,843	7,651	12,710
Yogyakarta	u ta	B	4,748	28,825	77,574	128,867
Solo	11	Surabaya	1.17	710	1,911	3,174
Magelong	11		90	547	1,471	2,444
Yogyakarta		35	913	5,543	14,918	24,782
Solo	t t	Bandung	23	142	382	635
Magelang	11	U	18	109	294	439
Yogyakarta	11	II.	183	1,109	2,984	4,956
Solo	11	Banjarmasin	70	426	1,146	1,904
Magelang	u	11	54	328	883	1,466
Yogyakarta	11	U	548	3,326	8,951	14,869

Table 3 User Benefit the Passenger which will Divert from Bus (or Sea Route) to Air due to Larger Capacity of New Airport

(Rp/Pass. 1985 price)

Access Zone	Route	Year	1995	2000	2005	2010
Solo	Yogyakarta	Jakarta	2,031	13,227	25,785	38,300
Magelang	ţţ	11	0	7,575	18,891	30,169
Yogyakarta	Ħ	IJ	11,914	23,158	35 , 769	48,337
Solo	н	Denpasar	17,389	29,382	42,834	56,240
Magelang	и .	\$1	38,256	52,550	68,583	84,562
Yogyakarta	ii .	į1	40,331	54,123	69,593	85,010
Solo	81	Surabaya	0	0	0	0
Magelang	B	11	6 , 873	13,383	20,684	27,960
Yogyakarta	11	11	8,951	14,958	21,696	28,411
Solo	11	Bandung	0	6,211	15,075	23,910
Magelang	11	11	0	362	7,958	15,528
Yogyakarta	11	11	8,191	16,142	25,059	33,947
Solo	n	Banjarmasin	161,245	190,067	222,397	254,616
Magelang	H	ti .	182,110	213,233	248,143	282,935
Yogyakarta	11	18	184,187	214,808	249,155	283,386

Table 4 Trip Cost by Mode

(1985 price)

					(130	35 price)
		Item	By Bu Sea R (or "Wit	oute	By 1 (or "W	
Access Zone	Route		Trip Time	Fare	Trip Time	Fare
			(hour)	(Rp)	(hour)	(Rp)
Solo	Yogyakarta	Jakarta	16.15	8,398	3.27	82,440
Magelang	11	11	14,48	7,527	2.87	78,590
Yogyakarta	11	81	15.53	8,073	2.25	72,553
Solo	11	Denpasar	17.16	9,202	3.27	73,300
Magelang	It	1 1	19.81	10,582	2.87	69,450
Yogyakarta	IJ	II	18.76	10,034	2.25	63,413
Solo	ii	Surabaya	7.10	3,692	2.98	46,275
Magelang	1)	II.	9.75	5,070	2.58	42,425
Yogyakarta	ŧŧ	e	8.70	4,524	1.96	36,388
Solo	n	Bandung	11.65	6,058	2.78	61,450
Magelang	n	11	9.95	5,174	2.38	57,600
Yogyakarta	11	ţţ.	11.03	5,733	1.76	51,563
Solo	11	Banjarmasin	38.75	63,683	3.66	98,275
Magelang	n Anna	11	41.40	65,061	3.26	94,425
Yogyakarta	11	17	40.35	64,515	2.64	88,388

Table 5 Economic Cash Flow for Sensitive Analysis ($cost 10 \% \ up$)

Unit:Million Rp.

					·								مبت												
1	Net Benefit	406	0.4°C	- 100 %. - 100 %.	701	2090	473	364	402	Ľλ,	1	787	-	4	വ്	õ	Ó	с н.	8	=======================================	φ -/1	55	23	80	6
	Total Benefit	0			0	0	o		ις)	7621.	33	5	2		4	7401	က်	9327	Š	33	Ö	တ္ထ	2	46	29
ts	Over Flow Pax.	00	5 C		o	0	0		T-1	3335.	Ľ.	w	$\overline{}$	Š.	32	4		ത്	7	44	20	92	99	တ္ထ	က
Benefi	Saving Transp. Cost	0	• c		0	0	0		Ω.	3626.	99	2	7	Ω.	ίŅ	~	C.	~	3	8	$\tilde{\mathbf{z}}$	õ	4	ŏ	ത്
	Saving O & M Cost	0	-		0	0	.0	Ċ	n.	.099	CO	m	n)	œ	O	w	w	w	w.	w	w	w	w	w	w
	Total Cost	96	⊃ (c	5333.	701	060	5	364	162	36	9	20	8	9	90	4	2	9	9	90	2	8	3	F.3	23
Costs	O & M Cost	ő	• c		0	0	0	0	62	1713.	82	6	00	10	28	44	56	73	91	90	22	38	S	73	75
	Const. Cost	Ö	d' Ü	5004. 5003.	0	60	\sim	36	0	M	24	Φ	8	12895.	762	0	7	4178.	0	c	0	0	1030.	0.	0
	Year	86	ο α η σ	1990	99	99	66	99	99	99	99	99	66	00	00	00	00	00	00	00	00	00	00	01	0.1

Discount Rate = 9. % B/C Ratio = 1.500 Discount Rate = 12. % B/C Ratio = 1.099 Discount Rate = 15. % B/C Ratio = 0.812

Table 6 Economic Cash Flow for Sensitive Analysis (Benefit 10 % down)

Unit: Million Rp.

-						V																ومصم
NOt	Benefit	-3698. -5820.	91 84	-637	157	2149	<u>ښ</u> (43	න ර න ර	γ () L	200	028	244	391	16	X V V V	200	200	ο υ υ	1 C	7	103
	Total Benefit	0.	00	00			60	က္က	862	α γ α Σ α	13927.	929	466	003	539	U / 0	× × × × × × × × × × × × × × × × × × ×	ならなっ	707	909	0	444
ts	Over Flow Pax.	00	00	00	00		23	00	53	Δ, 4 O (9929.	462	932	401	8716	4.0	0.048	0 0 0 0	D 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ຕິ	0	658
Benefits	Saving Transp. Cost	0	00	0			2	8	800	n n	3359	07	7	4	φ i	$\mathcal{C}_{\mathcal{C}}$	2 5	3	7	200	ינע הכל	6
	Saving 0 & M Cost	00.	00	٥.			ന	ന	നാ	J) (ა გიდ გ.	വ	O	o	י נט	ဘေးမ	U) (י נכ	J)	ינט	JJ 1	U,
	Total Cost	3698. 5820.	~ 4	637	2 K	149	8	7	თ (800	(a) (b)	20	\simeq	CI	യ ~	י כא	2	יי ער	``	9		4.
Costs	O & M Cost	000		0		0	4 , ∞	S.	65	(C)	1821.	0,2	2	32	48	ന വ	2	9	0	S .	귝	ব্য
	Const. Cost	3698. 5820.	91.0	637	57	149		86	ÇΩ I	9	7 20	693		3791.	78	0	0	0		936.	0	0
	Year	1987 1988	80 00	000	9 G	က္က	9	07	യ : സ	(C)	00 0	0	8	00	8	8	<u></u>	$\ddot{\circ}$	$\tilde{\circ}$	0	$\overline{}$	0

NPV = 42717. NPV = 6831. NPV = -11774. B/C Ratio = 1 B/C Ratio = 1 B/C Ratio = 0 Discount Rate = 1 Discount Rate = 1 Discount Rate = 1

EIRR = 12.886 %

Table 7 Economic Cash Flow for Sensitive Analysis (Cost 10 % up and Benefit 10 % down)

Unit: Million RP.

											<u>.</u>																
7	net Benefit	-4068.	-6402.	760	533	701	2090	က္	2364	Θ.	O	Š	8	껐		8	\sim	35	&. 4.	က် သ	~ ~	1.7	86.	45	24	90	
	Total Benefit	0.		0	0	0	<u>.</u>	•		5	Ε,	362	33	12160.	8	2	3	ĕ	က	\sim	ò	9	20	8	6	44	
ts	Over Flow Pax.	0	0.	0	0	0	0	0		\sim	9	œ.	÷.	8197.	3	462	8	401	87	341	007	99	83	66	65	65	
Benefi	Saving Transp. Cost	0	0	.0	.0	.0	0	0	0	$\frac{8}{2}$	26	က္က	က	3369.	5	03	4	4	80	23	20	9	2	S	ő	တို	
	Saving O & M Cost	0	.0		.0	0	0	c	0	ത	S)	ത	G	594.	Q3	O,	Ġ,	ന	ന	ന	ത	Q)	O)	C)	Qξ	Ų)	
	Total Cost	90	6402	60	33	0.1	060	73	364	162	66	90	70	90	99	90	44	73	91	91	90	27	8	58	73	2	
Costs	O & M Cost	0	0	0	0	.0	0	0	0	62	<u>~</u>	82	9	2003.	10	28	44	56	73	9	90	22	38	55	75	75	
	Const. Cost	90	6402.	60	က	Ö	060	23	364	-	S	24	7.9	8 8 8 8	89	762		17			0	С		1030.		O	
	Year	80	88	တ္တ	86	8	66	99	68	66	99	99	66	66	00	00	00	00	00	00	00	200	00	200	201	2011	

NPV = 34105. NPV = -377. NPV = -17925.Ratio = (Ratio = 0 0 0 0 0 0 Discount Rate = 9. % Discount Rate = 12. % Discount Rate = 15. %

EIRR = 11.954 %

Table 8 Economic Cash Flow (Devaluation of Rupiah by 45 %)
Unit:Million Rp.

† 	Benefit		669	2	486	60	534	212	2853		99	87	42	40	182	975	497	541	00	239	0.13	786	558	196	တ္တ	925	
	Total Benefit	0	0	0	0.	0	0	0	0	S	62	50	154	5	547	143	740	336	932	529	316	103	890	677	464	291	
ts	Over Flow Pax.	0	0	0	0	0	0	0	0	41	3335.	25	18	10	103	25	1470	899	1907	712	4498	1870	924	661	398	86.	
Benefi	Saving Transp. Cost	.0	0.	0	0	0	0	0	0	50	3626.	99	7.0	74	28	22	27	07	28	20	00	50	00	49	6	တ	
	Saving O & M Cost	0	0	0	0	0		0	.0	.099	.099	O	တ	O	ω	œ	Ø	Φ,	œ	$\mathbf{\omega}$	ω	w	Ψ	Ų,	w	w.	
	Total Cost	$ \infty$	9	ij	36	9	534	2	853	1645.	മ	70	S	0	82	8	42	8	60	8	8	2	8	8	8	8	
 Costs	0 & M Cost	0	.0	0	0.	0	0			Θ	2	83	9	8	8	26	42	S	71	80	0	Ţ.	က်	4	8	ш,	
	Const.	28	99	51	4861.	60	534	12	853		22	87	2	1106.	2	4		4	5424.		0	0	0	1337.		ò	
	Year	8	∞	8	9	0	9	60	9	9	96	9	99	(C)	00	00	0	0	0	0	8	0	0	0	0	2011	

Discount Rate = 9.% B/C Ratio = 1.321 Discount Rate = 12.% B/C Ratio = 0.969 Discount Rate = 15.% B/C Ratio = 0.718

%

EIRR = 11.690

NPV = NPV NPV = NPV

Appendix to Part II, Vol.2 Chapter 3 (II-2-3)

Consideration of Parallel Taxiway

Based on the traffic demand forecast in the year 2010, air traffic is expected to be 6.2 movements in a peak hour (both takeoff and landing) and 6,400 movements annually. Therefore, parallel taxiway may not be justified as long as the civil aircraft movement up to the year 2010.

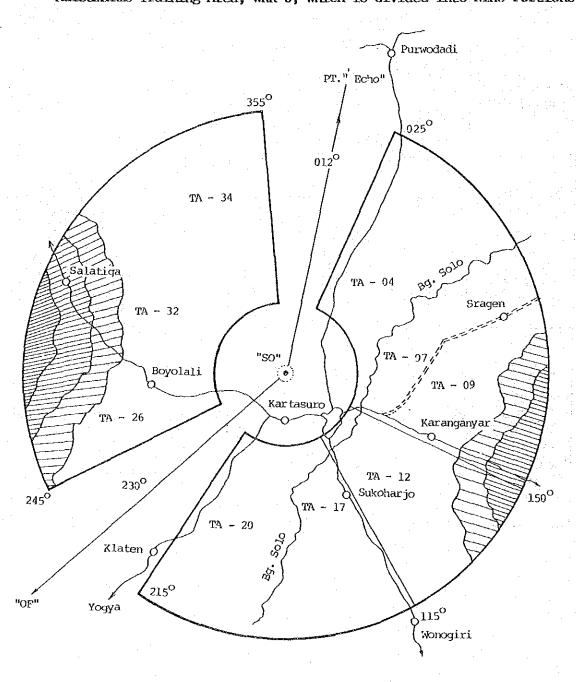

When a parallel taxiway will become necessary in a long future, it is desirable to construct the parallel taxiway in accordance with the implementation program with the capacity of runway operation shown in Table 1.

Table 1 Capacity of Runway Operations

	Taxiway Layout	Annual Aircraft Movements (IFR)	Peak Hour Movements (IFR)
Phase I & II (up to 2010)		- 50,000	10 - 12
Phase III		50,000 - 80,000	18 - 20
Phase IV Phase V		80,000 - 140,000	30 - 35
Design Movements (2010)		6,400	6.2

Appendix to Part II, Vol.2, Chapter 4 (II-2-4)

AdiSumarmo Training Area, WRR-6, Which is divided into Nine Portions

Appendix to Part II, Vol.2, Chapter 6 (II-2-6)

Construction Cost Estimates

Table 1 Estimated Construction Cost (Foreign Portion in U.S.Dollars)

	Phase of Construction	Phas	e I	Phase	II	Tot	al
in the second		Local Portion	Foreign Portion	Local Portion	Foreign Portion	Local Portion	Foreign Portion
	Work Item	(million Rp.)	(thousand US\$)	(million Rp.)	(thousand US\$)	(million Rp.)	(thousand US\$)
Ę	Land Acquisition	1,560	0	0	0	1,560	0
Land Acquisition	Compensation	35	0	0	O	35	0
Land	Land Acquisition * (Ultimate Expansion Area)	(1,654)	(D)	(0)	(0)	(1,654)	(0)
X	Sub Total	1,595	.0	0	0	1,595	0
	Earth Work	966	446	10	35	976	481
to.	Drainage Works	529	649	0	0	529	649
Örk	Pavement Works	2,777	4,961	955	1,574	3,732	6,535
Civil Works	Access Road	235	108	470	222	705	330
ő	River Diversion	34	42	0	0	34	42
	Sub Total	4,541	6,206	1,435	1,831	5,976	8,037
s	Passenger Terminal Building	2,106	2,198	1,366	1,426	3,472	3,624
Works	Cargo Terminal Building	262	207	230	181	492	388
	Administration Building	334	363	111	121	445	484
Architectural	Other Buildings	306	240	0	0	306	240
hit	Special Equipment	0	2,365	0	84	0	2,449
Ar	Sub Total	3,008	5,373	1,707	1,812	4,715	7,185
SIIIS	Radio Navigation Aids	235	5,044	68	1,513	303	6,557
Navigation Systems	Air Traffic Control and Aero- nautical Telecommunications	87	2,271	37	908	124	3,179
uo.	ATC Radar System	0	0	0	0	0	0
gatı	Aeronautical Ground Lights	1,238	3,025	247	605	1,485	3,630
Navi	Meteorological System	62	1,694	19	506	81	2,200
Air	Sub Total	1,622	12,034	. 371	3,532	1,993	15,566
	Power Supply System	479	2,238	23	842	502	3,080
S.	Water Supply System	44	80	0	4	44	84
tilities Works	Sewarage System	257	353	12	3	269	356
tie	Solid Waste Disposal System	29	116	0	. 0	29	116
1	Telecommunication System	260	550	. 0	0	260	550
Þ.	Sub Total	1,069	3,337	35	849	1,104	4,186
men.	Vehicles for Fire Fighting	. 0	965	. 0	0	.0	965
Other Equipment	Services Sub Total	0	965	0	0	0	965
	tal of Construction Works	11,835	27,915	3,548	8,024	15,383	35,939
E	ngineering Services Cost	1,184	2,792	355	802	1,539	3,594
	Sub Total	13,019	30,707	3,903	8,826	16,922	39,533
7.50 m	Contingency	1,302	3,071	390	883	1,692	3,953
	Grand Total	14,321	33,778	4,293	9,709	18,614	43,486

^{*} Land Acquisition Cost for Ultimate Expansion Area is not included in Total Cost.

Exchange Rate: US\$ 1.00 = Rp. 1,125

Appendix to Part II, Vol.2, Chapter 7 (II-2-7)

Fconomic Analysis

Table 1 Total Passenger Transportation Cost of Airline Companies (Mill Rp./Year, 1985 price)

Item	"Without" or the Cost Air P	by Smaller	"With Pr or the Cost Air P	by Larger
Year	Jakarta	Surabaya	Jakarta	Surabaya
1995	8,754	1,499	7,961	1,499
2000	11,967	2,029	10,882	2,029
5	16,485	2,793	14,239	2,793
10	22,733	3,883	19,636	3,883

Source : Estimated by JICA

Table 2 The Passenger which will Spill Over the Present Capacity of the Airport and which will Use Highway Bus Inevitably

(pass./year)

						
Access Zone	Route	Year	1995	2000	2005	2010
Solo	Surakarta	Jakarta	0	45,865	179,186	314,061
II .	11	Surabaya	0	9,394	36,701	64,326
Yogyakarta	11	Jakarta	0	3,105	12,129	21,259
13	ŧŧ	Surabaya	0	636	2,484	4,354

Table 3 User Benefit the Passenger which will Divert from Bus to Air due to Larger Capacity of the Airport

(Rp/Pass. 1985 price)

					\- 407 × 0		- T
Access Zone	Route	Year	1992	1995	2000	2005	2010
Solo	Surakarta	Jakarta	4,599	13,433	25,108	38,203	51,253
11	19	Surabaya	0	398	5,348	10,900	16,433
Yogyakarta	11	Jakarta	0	0	8,489	20,498	32,467
11	11	Surabaya	0	0	3,539	9,970	16,379

Source : Estimated by JICA

Table 4 Trip Cost by Mode

(1985 price)

					(130	os price)
		Item	By I (or "Wi		By <i>l</i> (or "W	
Access Zone	Route		Trip Time (hour)	Fare (Rp)	Trip Time (hour)	Fare (Rp)
Solo	Surakarta	Jakarta	16.15	8,398	2.36	74,290
į š	. 19	Surabaya	7.10	3,692	1.57	36,925
Yogyakarta	ri .	Jakarta	15.53	8,073	3.27	83,040
11	11	Surabaya	8.70	4,524	2.48	45,675

Table 5 Economic Cash Flow for Sensitive Analysis (Cost 10 % up)

Unit: Million RP.

Costs Benefits Net 0 & M Transp. Flow Benefit Plow Benefit 0. 0 & M Transp. Flow Benefit 0. 0 & M Transp. Flow Benefit 0. 0. 0 & Cast 0. 0. 0 & Cass 14370 0. 0 & Cass 177 1087 1048 1111 100 397 1545 1169 255 1571 2266 1111 100 314 4154 1231 100 3517 2417 1231
Total Saving Saving Over Total Cost 0 & M Transp. Flow Benefit Cost 0 & M Transp. Flow Benefit Cost 0 & M Transp. Flow Benefit Cost 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
Total Saving Saving Over Cost O & M Transp. Flow Cost O & M Transp. Flow Oost Oost Oost Oost Oost Oost Oost Oost
Total Saving Sa Cost Cost Cost Cost Cost Cost Cost Cost
Total Cost Cost Cost Savin Cost 1353. Cost 13684. Cost 100 12321. 100 12321. 100 12321. 100 12321. 100 12321. 100 12321. 100 1264. 100 12215. 100 12515. 1
100 11 10 10 10 10 10 10 10 10 10 10 10
Costs Costs Cost Cost 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.
Const. Cost. 1353. 1353. 14970. 11595. 14970. 11595. 14970. 17595. 25336. 1868. 1868. 1868. 1015.
X

NPV III NPV III NPV III NPV B/C Ratio = 1 B/C Ratio = 1 B/C Ratio = 0 Discount Rate = 1 Discount Rate = 1 Discount Rate = 1

EIRR = 13.074 %

Table 6 Economic Cash Flow for Sensitive Analysis (Benefit 10 % down)

, i	
ú	٠ بد
€	3
	4
-	4
. +	:
<u>.</u>	7 7 7

ţ				·								···	-														l
	N +	Benefit	-1230.	15.4	1189	360	1046	730	05	67	27	23	63	46	35	43	916	263	778	123	595	29	445	004	473	299	
		Total Benefit	0.0	0	0		₹ 4	30	03	68	7	3739.	26	200	ä	882	240	594	949	304	786	68	750	233	715	542	
	ts	Over Flow Pax.	0.0	. 0	0		!	94	4	88	9	2830.	30	77	24	58	091	425	759	092	559	26	493	960	427	427	
	Benefi	Saving Transp. Cost	0		0.		~	LO.	$^{\circ}$		O	819.	~	O	~	₩.	39	9	8	02	17	C4	848	83	700	78	
		Saving O & M Cost	0.0		0	0	.06	90.	.06	90.	.06	90.	.06	.06	.06	.06	.06	.06	.06	.06	90.	90.	90.	.06	90	.06	
		Total Cost	1230.	2 4	189	30	120	99	38	Ξ	93	97	3	53	9	3	8	8	71	80	9	0.1	80	28	4	4	
	Costs	O & M Cost	00		0	0	\sim	$\overline{}$	\sim	0	90	1119.	20	27	5	2,4	8	61	7	80	9	0		8	4	4	
		Const. Cost	1230.	o Д	189	60	054	99		0	~	2858.	ヹ	9	1-		9	1698.	0	0	0	0	923.		_ _	0	
		Year	1987	Σ ∞	0	ð	ð	9	Š	6	9	60	90	9	00	00	8	20	9	0	0	0	0	$\ddot{\circ}$	0		

Discount Rate = 9. % B/C Ratio = 1.564 NPV = Discount Rate = 12. % B/C Ratio = 1.123 NPV = Discount Rate = 15. % B/C Ratio = 0.817 NPV = NPV = Discount Rate = 15. %

EIRR = 13.077 %

Table 7 Economic Cash Flow for Sensitive Analysis (Cost 10 % up and Benefit 10 % down)

Unit: Million Rp.

100	net Benefit	-1353. -2536. -1694. -13085. -14970. -11581. -8178. 953. 1578. 1082. -636. 2474. -4293. 963. 7292. 8841. 12299. 17610. 25761. 30470. 34149. 39814. 44488.
	Total Benefit	0. 0. 0. 0. 1391. 2039. 2689. 3213. 3739. 4785. 5310. 8856. 12402. 15948. 19494. 23040. 27862. 32685. 37509. 47155.
ts	Over Flow Pax.	0.00.00.00.00.00.00.00.00.00.00.00.00.0
Benefits	Saving Transp. Cost	0.00.00.00.00.00.00.00.00.00.00.00.00.0
	Saving O & M Cost	
	Total Cost	1353. 2536. 1694. 13085. 14970. 12321. 9569. 1087. 1111. 2131. 4347. 1564. 3561. 3649. 1987. 2215. 2518.
Costs	O & M Cost	726. 0. 7777. 1087. 1111. 11231. 1583. 1564. 1564. 1584. 1584. 1584. 1584. 1584. 1584. 1584. 1584. 1584. 1584. 1584. 1584. 1586.
	Const. Cost	1353. 2536. 1694. 13085. 14970. 11595. 8792. 8792. 2835. 1868. 1868. 1015. 00.
	Year	100000 10000

NPV = 22975. NPV = 962. NPV = -10214.B/C Ratio = 1.422 B/C Ratio = 1.021 B/C Ratio = 0.743 Discount Rate = 9. Discount Rate = 12. Discount Rate = 15.

EIRR = 12.191 %

Table 8 Economic Cash Flow (Devaluation of Rupiah by 45 %)

Benefits 0.% down

Cost 0.% up

Unit: Million RP.

Net Benefit		-1583.	بر ن	יינג יינג יינג	54	828	1396	991	20	87	8	0	86	83	94	28	71	357	 დ ტ	366	891	17	811	459	982	808	
	Total Benefit	0.		5) (0		\sim	ъ.	58	න	3570.	5	50	3	90	984	378	2	166	260	095	631	167	703	239	990	
ts	Over Flow Pax.	0.	0	-	.0		3	04	57	60	2619.	144	99	19	7	4	213	83	954	325	844	363	882	400	919	919	
Benefits	Saving Transp. Cost	0	0	0	0	0	Ö	Q	တ	တ	851.	~~	9	02	80	3	54	78	01	24	41	ထ က	5	92	30	O	
	Saving O & M Cost	0	0		0	0	\circ	\odot	0	0	100.	\bigcirc	\circ	\circ	\circ	\circ	\circ	0	0	\Box	\circ	\Box	\circ	Ç	\sim	Ψ,	
	Total Cost	1583.	_	189	541	8	478	145	9		30	9	5	2	S U	က္က	07	S	2	8	0.4	44	56	4	10	57	
Costs	O & M Cost	0.	0	0	0	0	N		90		9	2	8	က	50	Ω (Π	67	ζ.	8	ő	0		2	ব	'n	2573.	
	Const. Cost	58	3011.	တ	541	29	411	073		0	22	3946.	S	ω (γ	E.		40	2400.		0	0		1303.	,	· c		
	Year	80	<u>φ</u>	φ.	တ္တ	ð	9	000	တ	8	(0)	ത	C)	m	0	00	0	0	0	0	~		č	ć	ć	2011	

Discount Rate = 9.% B/C Ratio = 1 Discount Rate = 12.% B/C Ratio = 0 Discount Rate = 15.% B/C Ratio = 0

= 21477. = -2265. = -14201.

NPV NPV NPV

1.338 0.958 0.695

EIRR = 11.609 %

