NO. 8

REPUBLIC OF INDONESIA

FEASIBILITY STUDY FOR THE BALI INTERNATIONAL AIRPORT DEVELOPMENT

FINAL REPORT

JUNE 1982

Japan International Cooperation Agency

SDF

82-099 (2/3)

w.

JIGA LIBRARY

REPUBLIC OF INDONESIA

FEASIBILITY STUDY FOR THE BALI INTERNATIONAL AIRPORT DEVELOPMENT

FINAL REPORT

JUNE 1982

Japan International Cooperation Agency

108 15.7 SDF No. 13947

国際協力事	業団
受入 月日 5'84.99.173	1080
登録%10952年	7597
T SW 09054	SDF 2

PREFACE

In response to the request of the Government of the Republic of Indonesia, the Government of Japan decided to conduct a feasibility study on the Bali International Airport Development Project, and entrusted the study to the Japan International Cooperation Agency (JICA). The JICA sent to Indonesia a survey team headed by Mr. Masaaki KAMIMURA, Director of the Construction Divison, Aerodrome Department, Civil Aviation Bureau, Ministry of Transport, from December 2, 1981 to January 19, 1982.

The team had discussions with the officials concerned of the Directorate General of Air Communications, Government of Indonesia and conducted a field survey. After the team returned to Japan, further studies were made and the present report has been prepared.

I hope that this report will serve for the development of the Project and contribute to the promotion of friendly relations between our two countries.

I wish to express my deep appreciation to the officials concerned of the Government of the Republic of Indonesia for their close cooperation extended to the team.

June, 1982

Keisuke Arita

President

Japan International Cooperation Agency (JICA)

•

ŧ

, , ,

•

200

<u>.</u> '

ABBREVIATION LIST

AAGR Average Annual Growth Rate

ACC Area Control Center

A/C Aircraft

ADB Asia Development Bank

ADF Automatic Direction Finding

ADM Administration
AFL Airfield Lighting

AIP Aeronautical Information Publication

AIR COND Air Condition

A/L Airline

ALS Standard Approach Lighting System

ALT Altitude APCH Approach

APP Approach Control (Office)

APPROX Approximate

ARCH Architect (Architectural)

ARR Arrival

ASR Airport Serveilance Radar (= PSR)

ATC Air Traffic Control

ATIS Automatic Terminal Information Service

AVBL Available

BIA Bali International Airport

BLDG Building
BM Bench Mark
CAFE Cafeteria
CAT Category

CBR California Bearing Ratio

CH Channel

C.I.Q. Custom Immigration and Quarantine

CM Centimeter
CONC Concrete
CONS Concession
D Distance
DEP Departure

DGAC Directrate General of Air Communications of

Indonesia

DH Decision Height

DIV Division

DME Distance Measuring Equipment

DN Down
DOM Domestic
DPS Denpasar

D/VOR Doppler type VOR

DWG Drawing
EA Each
ELEC Electric
ELEV Elevation

EPNL Effective Perceived Noise Level

ESCA Escalator

FAA Federal Aviation Administration

FIG Figure Floor

the Gross Domestic Product GDP Garuda Indonesian Airways GIA Gross National Product GNP Glide Path GP Ground Service Equipment GSE Honolulu HNL HR Hour International Air Transport Association IATA International Civil Aviation Organization ICAO Instrument Landing System ILS Information INFO INTL International JCAB Civil Aviation Bureau of Japan JICA Japan International Cooperation Agency JKT Jakarta JOG Jogyakarta KOE Kupang LCN Load Classification Number LLZLocalizer LP Light Propeller Aircraft MAP Missed Approach Point MAX Maximum MDA Minimum Descent Altitude MECH Mechanic (Mechanical) MES Medan MHA Minimum Holding Altitude ΜJ Medium Jet MM Middle Marker MNA Merpati Nusantara Airline MNM Minimum NAV Navigation Aids NDB Non Directional Beacon NM Nautical Mile LMN New Medium Jet OFF Office OM Outer Marker PAX Passenger PBB Pax. Boading Bridge PDG Padang PKU Pakanbaru PLM Palembang Perusahaan Listrik Negara PLN PNL Perceived Noise Level Petroleum Oil and Lubricants POL PSR Primary Serveilance Radar QF Quantas Airline Radial REPELITA National Development Plan REV Revision(s), Revised

Roof Floor

Runway Visual Range

Room

Runway

Sector

RFT.

RVR

SECT

RWY (R/W RW)

RM

SID Standard Instrument Departure

SJ Small Jet

SP Small Propeller Aircraft

SRG Semarang

STA Straight in Approach

STAR Standard Terminal Arrival Route STOL Short Take-Off Landing Aircraft

SUB Surabaya

TDZ Touch Down Zone

TECH Technical
TRANS Transition
TV Television
TYP Typical

TWR Aerodrome Control Tower

TWY (T/W TW) Taxiway
TX Transmitter
UPG Ujung Pandang

VAR Magnetic Variation

VASIS Visual Approach Slope Indicator System

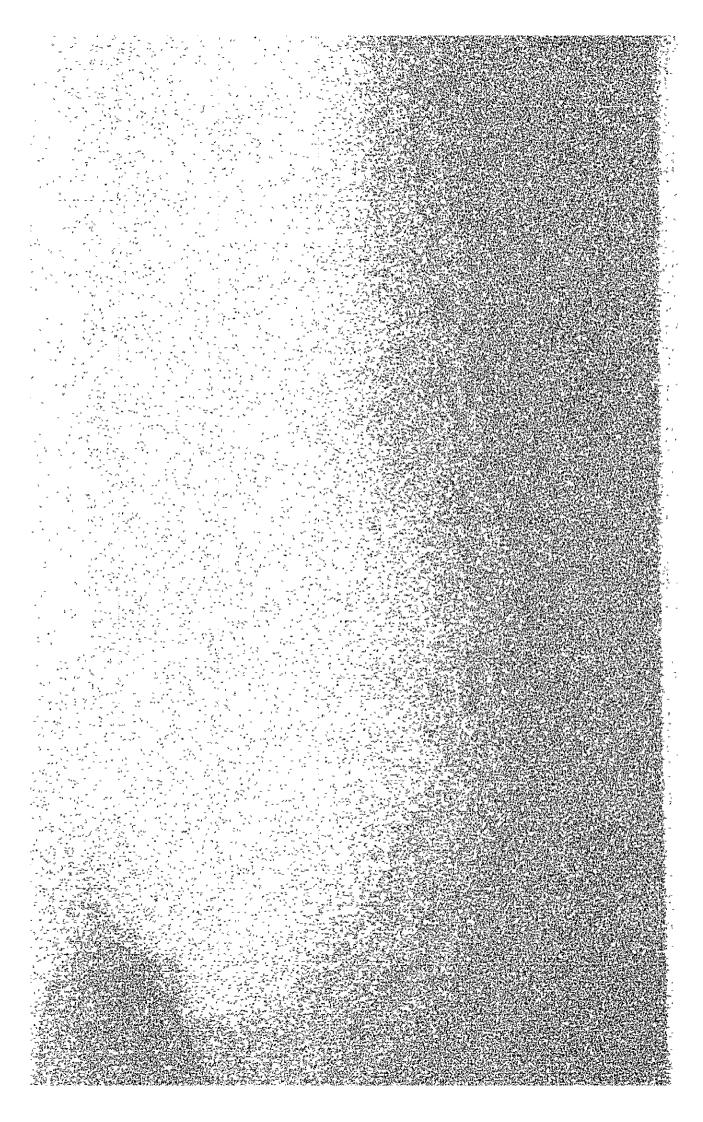
VIS Visibility VOL Volume

VOR Very High Frequency Omni Directional Range

WB Wide Body Jet

WHO World Health Organization

WECPNL Weighted Equivalent Continuous Perceived Noise


Level

WK Week & And

C Centerline
Number

TABLE OF CONTENTS

TABLE OF CONTENTS

	$ar{ar{\mathbf{F}}}$	age
CHAPTER 1	INTRODUCTION	
1.1	General	1-1
1.2	Objective and Scope of Work	1-2
1.3	Study Method and Reporting System	1-5
1.4	Study Organization	1-6
CHAPTER 2	BACKGROUND OF PROJECT	
2.1	Economic Situation of Indonesia	2-1
2.2	The Transportation Sector	2-6
2.3	Air Transport in Indonesia	2-8
2.4	Bali International Airport	2-12
2.5	Problems of BIA	2-17
2.6	Necessity of Development Planning of BIA.	2-20
CHAPTER 3	AIR TRANSPORT DEMAND FORECAST	
3.1	Outline of Air Transport Demand Forecast.	3-1
3.2	Actual Movement of Demand	3-3
3.3	Demand Forecast for Domestic Passengers and Cargo	3-9
3.4	Demand Forecast for International Passengers and Cargo	3-14
3.5	Demand Forecast for International/ Domestic Transit Passengers	3-20
3.6	Verification of Passenger Forecast Demand	3-24
3.7	Breakdown of Air Traffic Volume	3-26
CHAPTER 4	BASIC POLICY ON DEVELOPMENT OF BALI INTERNATIONAL AIRPORT	<u></u>
4.1	Purpose and Policy of Planning	4-1
4.2	Target Years	4-2
	AIRPORT FACILITY REQUIREMENTS	<u>.</u> .
	General	
	Airside Infrastructures	
5.3	Obstacle Limitation Surfaces	5-14

5.4	Air Navigation Aids	5-19
5.5	Passenger & Cargo Terminal Facilities and Other Buildings	
5.6	Administration and Operational Facilities	
5.7	Service Facilities	
5.8	Access Road and Car Parking	
CHAPTER 6	EVALUATION OF EXISTING AIRPORT FACILITIES	
6.1	General	6-1
6.2	Airside Infrastructures	6-1
6.3	Air Navigation Aids	6-6
6.4	Passenger & Cargo Terminals Facilities and Other Buildings	6-18
6.5	Administration and Operational	
	Facilities	
6.6	Service Facilities	
6.7	Access Road and Car Parking	6-30
CHAPTER 7	TERMINAL CONCEPT	
7.1	General	7-1
7.2	Zoning in the Terminal Area	7-1
7.3	Basic Concepts	7-7
7.4	Processing Level Concept	7-9
7.5	Selection of Terminal Concept	7-11
7.6	Selection of Terminal Layout	7-14
CHAPTER 8	ALTERNATIVE TERMINAL AREA PLAN	
8.1	General	8-1
8.2	Alternative Terminal Area and Evaluation	8-1
CHAPTER 9	DEVELOPMENT PLAN OF BALI INTERNATIONAL AIRPO	ORT
9.1	General	
9.2	Airside Infrastructures	
9.3	Obstacle Limitation Surface	9-24
9.4	Site Preparation	0-21
9.5	Air Navigation Aids	0-30 7-31
9.6	Passenger & Cargo Terminal Facilities and Other Buildings	
		·

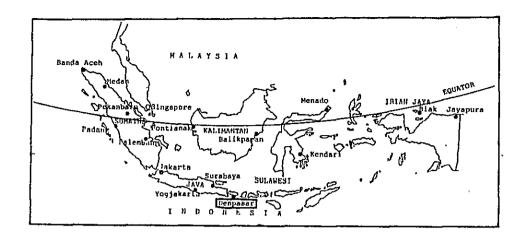
	Administration and Operational Facilities	9-57
9.8	Service Facilities	
9.9	Access Road and Car Parking	9-67
9.10	Comparison between Development Plan and 75's Master Plan	9-68
CHAPTER 10	SUBSIDIARY STUDIES	
10.1	Environmental Studies	10-1
10.2	Aircraft Noise	10-2
10.3	Birds Hazard - Flying Birds	10-10
10.4	Consideration of Future Land Use	10-14
10.5	Airport Organization	10-22
CHAPTER 11	CONSTRUCTION SCHEDULE AND COST ESTIMATES	
11.1	Construction Conditions	11-1
11.2	Civil Works	11-1
11.3	Architectural Works	11-3
11.4	Construction Schedule	11-4
11.5	Construction Cost	11-6
CHAPTER 12	ECONOMIC AND FINANCIAL ANALYSIS	
12.1	Outline of Economic Analysis	12-1
12.2	Construction, Operation and Maintenance Costs	12-2
12.3	Estimation of Benefits	12-5
12.4	Cost-Benefit Analysis	12-13
12.5	Sensitivity Analysis	
12.6	Indirect Benefits	
12.7	Outline of Financial Analysis	12-15
12.8	Present Financial Status of BIA	12-16
12.9	Financial Forecast	
12.10	Financial Analysis	12-25
	Financial Evaluation	
12.11	Financial Evaluation	12-2

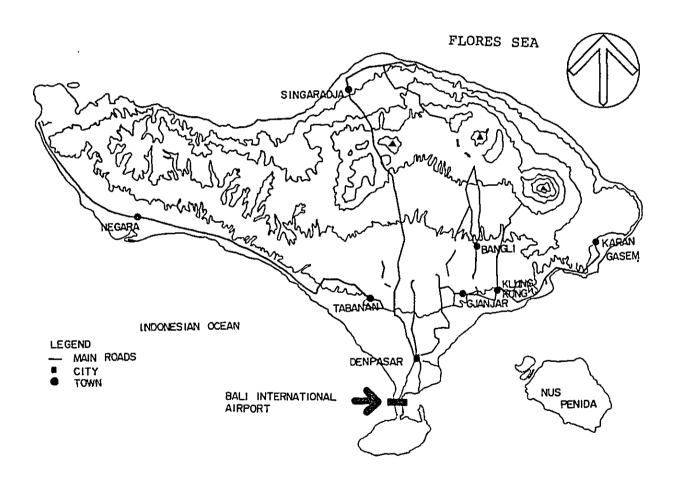
CONCLUSION

LIST OF APPENDICES Page APPENDIX TO CHAPTER 3 DATA OF MONTHLY PASSENGER'S APPENDIX 3.7.1 NUMBER (INCLUDING TRANSIT) BREAKDOWN OF DOM. AIR TRAFFIC APPENDIX 3.7.2 2 VOLUME BREAKDOWN OF INT'L AIR TRAFFIC APPENDIX 3.7.3 3 VOLUME BREAKDOWN OF TOTAL OF INT'L APPENDIX 3.7.4 AND DOM. AIR TRAFFIC VOLUME ... DEMAND FORECAST OF PASSENGER APPENDIX 3.7.5 BY DOMESTIC ROUTE DEMAND FORECAST OF PASSENGER APPENDIX 3.7.6 11 BY INTERNATIONAL ROUTE APPENDIX 3.7.7 AIRCRAFT MIX PROJECTION 14 DOMESTIC ROUTE FORECAST OF ASSIGNED AIRCRAFT APPENDIX 3.7.8 15 BY DOMESTIC ROUTE APPENDIX TO CHAPTER 5 RUNWAY REQUIREMENTS (B-747 APPENDIX 5.2.1 17 TAKE-OFF) RUNWAY REQUIREMENTS (DC-10 APPENDIX 5.2.2 19 TAKE-OFF) 21 APPENDIX 5.2.3 DATA OF UTILIZATION ON APRON .. 22 DATA OF OCCUPY TIME ON APRON .. APPENDIX 5.2.4 APPENDIX 5.2.5 CALCULATION TABLE OF AIRCRAFT MOVEMENTS (1) 23 CALCULATION TABLE OF AIRCRAFT APPENDIX 5.2.6 MOVEMENTS (2) 24 CALCULATION TABLE OF AIRCRAFT APPENDIX 5.2.7 25 MOVEMENTS (3) CALCULATION TABLE OF AIRCRAFT APPENDIX 5.2.8 26 MOVEMENTS (4) APPENDIX 5.2.9 CALCULATION TABLE OF AIRCRAFT MOVEMENTS (5) 27 CALCULATION TABLE OF AIRCRAFT APPENDIX 5.2.10 MOVEMENTS (6) 28 CALCULATION TABLE OF A/C STAND APPENDIX 5.2.11

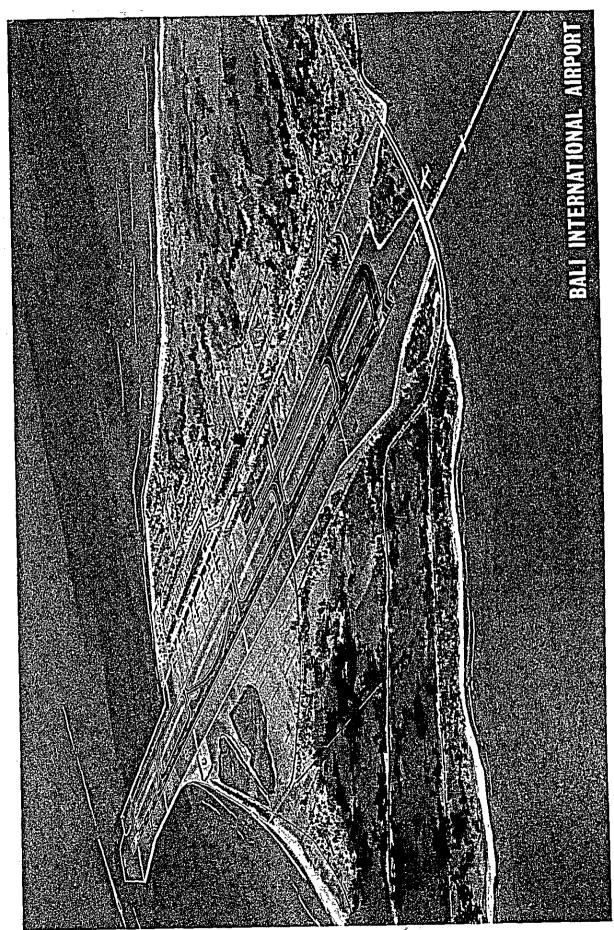
REQUIREMENT ON APRON INT'L

29

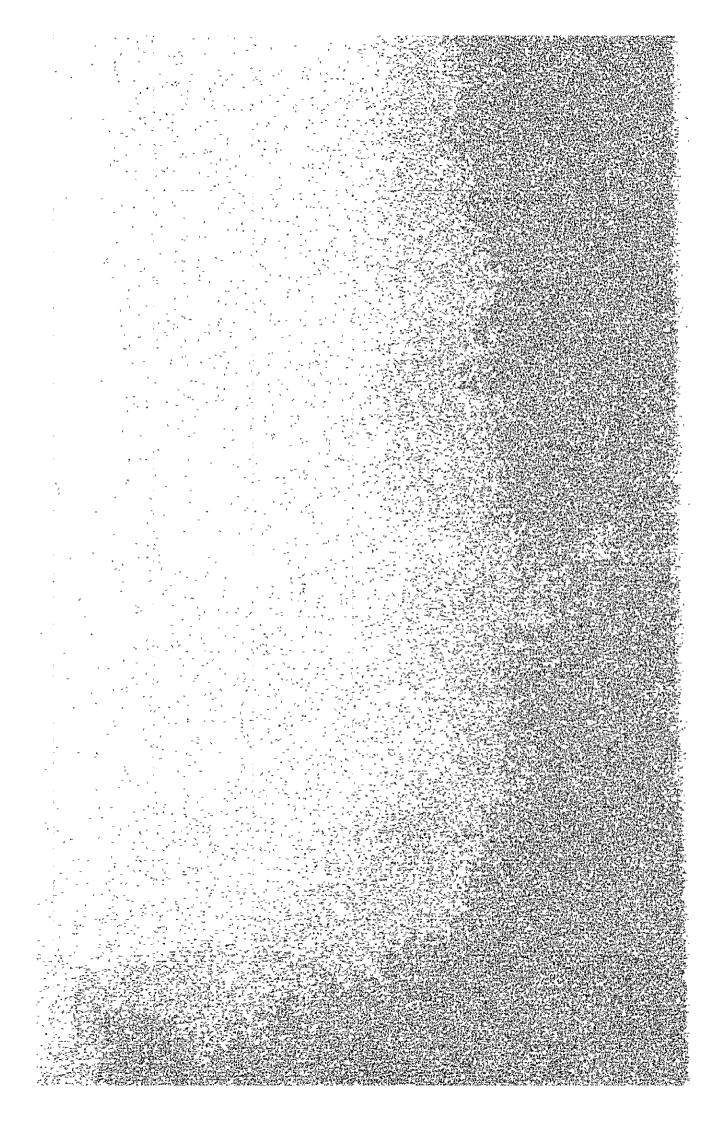

APPENDIX	5.2.12	CALCULATION TABLE OF A/C STAND REQUIREMENT ON APRON DOM	31
APPENDIX	5.5.1	INTERNATIONAL PASSENGER TERMINAL BUILDING (FACILITY REQUIREMENT)	33
APPENDIX	5.5.2	WAITING LOUNGE AND CONCESSION AREA	34
APPENDIX	5.5.3	CHECK-IN LOBBY	35
APPENDIX	5.5.4	NO: OF CLOSETS AND LAVATORIES FOR MEN AND WOMEN	36
APPENDIX	5.5.5	GATE LOUNGE AREA	37
APPENDIX	5.5.6	LINEAR CHECK-IN COUNTER	38
APPENDIX	5.5.7	EXAMPLES OF TYPICAL OUTBOUND/ INBOUND IMMIGRATION DESK LAYOUTS	39
APPENDIX	5.5.8	SECURITY LAYOUT	40
APPENDIX	5.5.9	EXAMPLE OF RELATIONSHIP OF AIRCRAFT HEIGHTS TO BUILD-ING LEVEL	41
APPENDIX	5.5.10	INPOUND BAGGAGE, CIRCULATING TYPE	42
APPENDIX	5.5.11	CALCULATION FOR LENGTH OF CONVEYOR	43
APPENDIX	5.5.12	DOMESTIC PASSENGER TERMINAL BUILDING (FACILITY REQUIRE- MENT)	47
APPENDIX TO	CHAPTER	6	
APPENDIX	6.2.1	THE AIRCRAFT STANDS IN THE EXISTING APRON	48
APPENDIX	6.3.1	CONTROL DIAGRAM OF AIRFIELD LIGHTING	49
APPENDIX	6.3.2	EXISTING EQUIPMENT LIST OF AIR NAVIGATIONAL AIDS	50
APPENDIX	6.3.3	EXISTING EQUIPMENT LIST OF AIR TRAFFIC INFORMATION SERVICE	51
APPENDIX	6.3.4	EXISTING EQUIPMENT LIST OF AIR TELECOMMUNICATION SYSTEM	52
APPENDIX	6.3.5	TELEPHONE SYSTEM	54
APPENDIX	6.3.6	EXISTING EQUIPMENT LIST OF AIRFIELD LIGHTING SYSTEM	56


APPENDIA	6.3.7	EXISTING EQUIPMENT LIST OF POWER SUPPLY & GENERATOR SYSTEM	57
APPENDIX	6.4.1	INTL. PAX TERMINAL BLDG. 1981 RENOVATION PLAN DESIGNED BY BIA	58
APPENDIX	6.4.2	EXISTING INTL. PAX TERMINAL BUILDING (ELEVATION) AND INTL. PAX TERMINAL BLDG. 1981 RENOVATION PLAN DESIGNED BY BIA	59
APPENDIX	6.4.3	INTL. PAX TERMINAL BLDG. 1981 EXISTING PLAN	60
APPENDIX	6.4.4	DOM. PAX TERMINAL BLDG. 1981 RENOVATION PLAN DESIGNED BY BIA	61
APPENDIX	6.4.5	DOM. PAX TERMINAL BLDG. 1981 EXISTING PLAN	62
APPENDIX	6.5.6	EXISTING CARGO TERMINAL BLDG. 1ST FLOOR PLAN	63
APPENDIX	6.5.7	NEW FIRE STATION BLDG	64
APPENDIX TO	CHAPTER	7	
APPENDIX	7.5.1	FUNDAMENTAL LAYOUT OF TERMINAL	65
		AREA	
APPENDIX TO	CHAPTER		
APPENDIX TO		9	66
	9.2.1	9 EVALUATION OF EXISTING PAVE-	66 75
APPENDIX	9.2.1	9 EVALUATION OF EXISTING PAVE- MENT STRUCTURES DATA FOR CONSOLIDATION SETTLE-	
APPENDIX APPENDIX	9.2.1 9.4.1 9.4.2	9 EVALUATION OF EXISTING PAVE- MENT STRUCTURES DATA FOR CONSOLIDATION SETTLE- MENT DUE TO EMBANKMENT EVALUATION OF EXISTING STORM	75
APPENDIX APPENDIX APPENDIX	9.2.1 9.4.1 9.4.2 9.4.3	EVALUATION OF EXISTING PAVE- MENT STRUCTURES DATA FOR CONSOLIDATION SETTLE- MENT DUE TO EMBANKMENT EVALUATION OF EXISTING STORM WATER DRAINAGE SYSTEM DESIGN CRITERIA FOR STORM	75 78
APPENDIX APPENDIX APPENDIX	9.2.1 9.4.1 9.4.2 9.4.3	EVALUATION OF EXISTING PAVE- MENT STRUCTURES DATA FOR CONSOLIDATION SETTLE- MENT DUE TO EMBANKMENT EVALUATION OF EXISTING STORM WATER DRAINAGE SYSTEM DESIGN CRITERIA FOR STORM WATER DRAINAGE SYSTEM THE CURRENT STAR FOR BALI INT'L AIRPORT	75 78 80

APPENDIX		ONE OF THE RECOMMENDED STAR FOR BALI INT'L AIRPORT	88
APPENDIX		THE RECOMMENDABLE SID AT BALI INT'L AIRPORT	92
APPENDIX		ONE OF THE RECOMMENDABLE IAP AT BALI INT'L AIRPORT	94
APPENDIX		THE RELOCATION OF THE V.A.S.I'S UNIT	100
APPENDIX		LAYOUT PLAN OF AIRFIELD LIGHT- ING SYSTEM FOR THE SHORT TERM PLAN (1990)	1.01
APPENDIX	9.6.1	BOARDING BRIDGE INSTALLATION	103
APPENDIX		SKELETON DIAGRAM OF POWER SUPPLY SYSTEM DEVELOPMENT PLAN.	105
APPENDIX	9.8.2	STANDARD OF WATER QUALITY	106
APPENDIX	9.8.3	SEWAGE TREATMENT SYSTEM	107
APPENDIX	9.10.1	75 MASTER PLAN 2.0 MILLION ANNUAL PAX. (+1985)	108
APPENDIX	9.10.2	75 MASTER PLAN 3.5 MILLION ANNUAL PAX. (+1990)	109
APPENDIX	9.10.3	75 MASTER PLAN 5.0 MILLION ANNUAL PAX. (±1992)	110
APPENDIX	9.10.4	75 MASTER PLAN 6.5 MILLION ANNUAL PAX. (+1996)	111
APPENDIX	9.10.5	75 MASTER PLAN 6.5 MILLION ANNUAL PAX. LAYOUT OF TERMINAL BLDGS. (+1996)	112
APPENDIX TO	CHAPTER	10	
APPENDIX	10.5.1	AIRPORT ORGANIZATION	113
APPENDIX TO	CHAPTER	11	
APPENDIX	11.1.1	LOCATION OF SOIL INVESTIGA- TION CARRIED OUT	115
APPENDIX	11.1.2	BORING PROFILE AT TUKAO KUTA	116
APPENDIX	11.1.3	BORING PROFILE AT TUKAO JIMBARAN - I	117
APPENDIX	11.1.4	BORING PROFILE AT TUKAO JIMBARAN - II	118


APPENDIX	11.3.1	PROPOSED CONSTRUCTION METHOD FOR 1990 DEVELOPMENT PLAN	119
APPENDIX	11.3.2	INT'L PAX TERMINAL BLDG	120
APPENDIX		DOM. PAX TERMINAL BLDG	121
APPENDIX	11.3.4	EXISTING CARGO TERMINAL BLDG.	122
APPENDIX	11.3.5	EXISTING CARGO TERMINAL BLDG. STEP-3	123
APPENDIX	11.3.6	DOM. PAX TERMINAL BLDG. STEP-4	124
APPENDIX		BREAK-DOWN OF MAJOR ARCH. CONSTRUCTION COST OF INT'L AND DOM. PAX. TERMINAL BUILDINGS IN THE YEAR 1990 DEVELOPMENT PLAN	125
APPENDIX TO	CHAPTER	12	•
APPENDIX	12.5.1	ECONOMIC ANALYSIS: CONSTRUC- TION COST UP 0%	126
APPENDIX	12.5.2	ECONOMIC ANALYSIS: CONSTRUCTION COST UP 10%	128
APPENDIX	12.5.3	ECONOMIC ANALYSIS: CONSTRUC- TION COST UP 20%	130
APPENDIX	12.10.1	FINANCIAL ANALYSIS: REVENUE UP 0%	132
APPENDIX	12.10.2	FINANCIAL ANALYSIS: REVENUE UP 30%	133
G = 1 = 1		FINANCIAL ANALYSIS: REVENUE UP 40%	134
APPENDIX	12.10.4	FINANCIAL ANALYSIS: REVENUE UP 50%	135
APPENDIX	12.12.1	ECONOMIC AND FINANCIAL ANALYSIS ON ALTERNATIVE CONSTRUCTION SCHEDULES: TWO CASES	136
APPENDIX	12.12.2	ECONOMIC ANALYSIS: (CASE-1) TABLE 1.1 CONSTRUCTION COST UP 0%	139
APPENDIX	12.12.3	ECONOMIC ANALYSIS: (CASE-2) TABLE 1.2 CONSTRUCTION COST UP 0%	140

APPENDIX	12.12.4	ANALYSIS: REVENUE UP	141
APPENDIX	12.12.5	ANALYSIS: REVENUE UP	142
APPENDIX	12.12.6	ANALYSIS: REVENUE UP	143
APPENDIX	12.12.7	ANALYSIS: REVENUE UP	144
APPENDIX	12.12.8	ANALYSIS: REVENUE UP	145
APPENDIX	12.12.9	ANALYSIS: REVENUE UP	146



PROJECT LOCATION MAP

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION

1.1 General

The Indonesian archipelago consists of more than 3,000 inhabited islands which are spread over an area of 9 million square kilometers: 5,100 kilometers from west to east and 1,800 kilometers from south to north covering an area larger than United States.

The mountainous terrain of the archipelago consisting of many volcanos obstructs the development of surface transportation. Therefore, air transport performs a major role in promoting economic activities, national communication and unity, regional development and economic balance, etc. The growth of air traffic at the Bali International Airport on Bali island, a wellknown tourist resort, has increased at the high average rate of 15 percent per annum during the period 1972 In 1981, passenger traffic reached a total to 1980. of about one million passengers. It is forecast that this growth trend will continue and passenger traffic will surpass 2.4 million per annum by 1990. existing Balı International Airport, however, has many serious problems even for the present air traffic volume in terms of size and system of facilities, especially in the service of jumbo aircraft.

Bali International Airport also plays an important role in Indonesian aviation as the eastern gateway for international air traffic and as the most advanced base for domestic air routes to solitary eastern islands.

If the development works of the airport are not implemented immediately to meet the increasing air traffic demand, the airport will constitute a serious barrier to the economic development of the eastern region of Indonesia and expansion of international trade and cultural exchange. Therefore, the Government of Indonesia recognizes the importance of the development

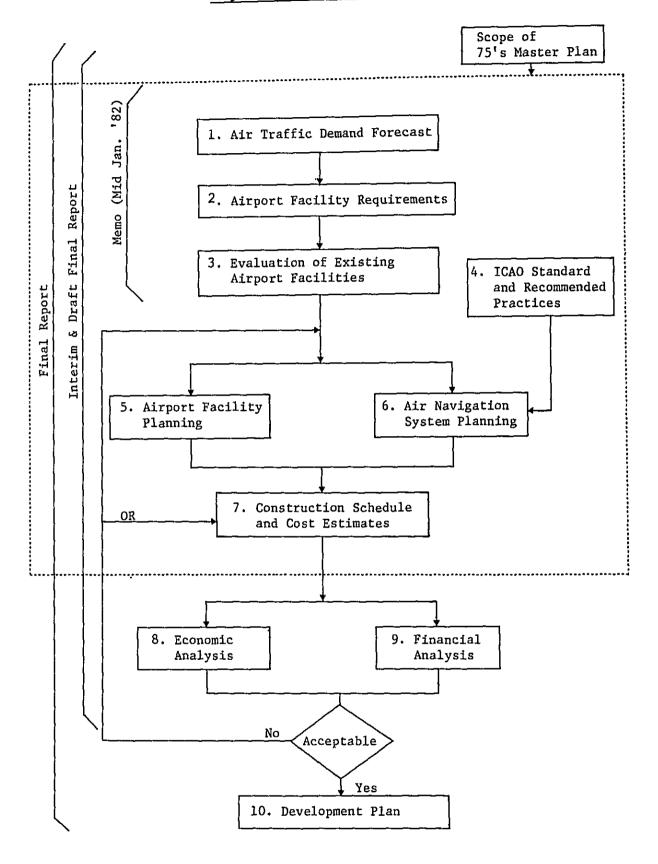
of the Bali International Airport in order to solve its prevent problems and to meet the growth in aviation activities.

The Government of Indonesia requested and the Government of Japan agreed that the Japanese Government would render technical assistance for a Feasibility Study for the development of the Bali International Airport.

The purpose of Bali International Airport Development Plan is to secure the safe operation of wide-bodied large aircraft and to provide comfortable services for passengers as an international airport and the eastern gateway of Indonesia, with development of suitable and efficient airport facilities to be utilized to cope with the rapidly growing air traffic demand.

The Scope of Work for the Feasibility Study was agreed upon by both Governments on 6th December 1981. The Government of Japan, according to this agreement, has assigned the Japan International Cooperation Agency (JICA) to carry out the Study. JICA organized the Study Team and officially commenced the Study in December, 1981.

1.2 Objective and Scope of Work


The objectives of this study are, together with a review of the works of the master plan made in 1975, to examine the technical and economical feasibility of the development plan of Bali International Airport so as to contribute to optimum airport development planning.

The study consists of the following eleven major work items performed in accordance with the work flow chart indicated in Fig. 1.2.1.

- 1) Collection of relevant data and information
- 2) Air traffic demand forecast
- 3) Airport facility requirement analysis
- 4) Evaluation of existing airport facilities
- 5) Airport layout plan

- 6) Airport facility planning
- 7) Air navigation aids planning
- 8) Construction schedule and cost estimates
- 9) Economic analysis
- 10) Financial analysis
- 11) Social, environmental and other aspects

Fig. 1.2.1 WORK FLOW CHART

Note: Each activity includes data collection and site reconnaissance

1.3 Study Method and Reporting System

The Study was conducted in accordance with the procedures outlined in the Inception Report accepted in December 1981.

The Study Team organized by JICA immediately proceeded with data collection, interviews with various related organizations after the acceptance of the Inception Report by the Directrate General of Air Communications of Indonesia (DGAC). The air traffic demand forecast, study of facility requirements, study on the expansibility of the existing airport facilities were carried out in Indonesia by the JICA Study Team with ample discussions and the close cooperation of Indonesian counterparts. The discussions and cooperation continued for one and half months until the concept of the airport development plan was accepted for further study by the Indonesian Steering Committee in January, 1982.

The master planning for the airport development scheme was carried out based on the factors discussed in Indonesia and various basic assumptions under the supervision of the Japanese supervisory Committee, after the return of the Study Team to Japan.

The Interim and Draft Final Report, containing the comprehensive results of the Study, was submitted to DGAC and accepted.

This Final Report was prepared for the completion of the Study after incorporating the DGAC comments on the Interim and Draft Final Report.

1.4 Study Organization

The Study was carried out by the Study Team organized by JICA under the supervision of the Japanese Supervisory Committee and with the close cooperation of the Indonesian Counterpart Team which was under the Indonesian Steering Committee. The relationship of these committee and teams is shown in Fig. 1.4.1.

The members of both committee and Counterparts and

The members of both committee, the Counterparts and Study Teams are presented in Tables 1.4.1 - 1.4.4.

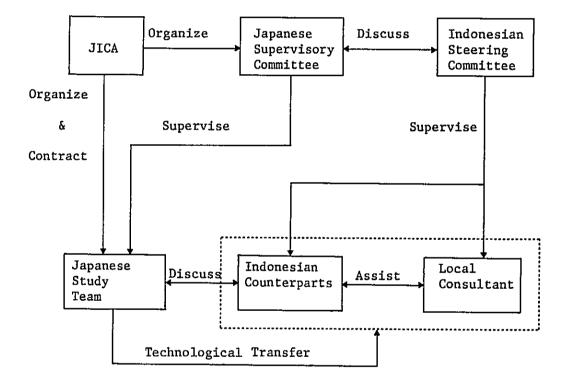


Fig. 1.4.1 ORGANIZATION CHART

TABLE 1.4.1 LIST OF INDONESIAN COMMITTEE MEMBERS

Mr. WASITO Secretary of the Directorate General

of Air Communications

Mr. KUSNO WAGIMAN Planning Division

Mr. SUPARTOLO Directorate of Air Safety

Mr. SUBADIO WIRYOWIGUNO Directorate of Telecommunication,

Air Navigation & Electricity

Mr. IMAN HERTOTO Directorate of Airport Engineering

Mr. G. RISSAKOTA Directorate of Air Transport

Mr. PFL. MASPAITELA Planning Bureau

Mr. H. SUBRATA Research and Development Centre DGAC

Mr. ARIF BUDIMAN Planning Division

Mr. WIDJOJO Bureau of National Development

Planning

Mr. SUGIARTO SUMOBROTO Directorate General of Budgeting

Department of Finance

Mr. SUDJARWO Perum Angkasa Pura

TABLE 1.4.2 LIST OF INDONESIAN COUNTERPARTS

Mr. SAMOEDRO Directorate of Air Engineering

Mr. R.A. NUR ROSADI Planning Division
Mr. IBRAHIM DAHLAN Planning Division

Mr. YAYOEN WAHYOE Directorate of Airport Engineering
Mr. M. FUSCHAD Directorate of Airport Engineering

Miss S. AGUSTINI Directorate of Airport Engineering

Mr. ATE LIANDO Directorate of Air Safety

Mr. MADIYONO Directorate of Airport Engineering

Mr. MUCHTAR USMAN Directorate of Air Transport

Mr. DOLY A. SIHOMBING Research and Development Centre DGAC

Mr. DAMEN SEBAYANG Planning Bureau

Mr. ASRUL RAPANI Perum Angkasa Pura Mr. FACHRI ZAINUDIN Perum Angkasa Pura

Mr. HADI RACHIM Directorate of Telecommunication,

Air Navigation & Electricity

Mr. SUNARYO Perum Angkasa Pura

TABLE 1.4.3 LIST OF JAPANESE SUPERVISORY COMMITTEE

Mr.	MASAAKI KAMIMURA	Director of Construction Division Aerodrome Department, Civil Aviation Bureau, Ministry of Transport
Mr.	SHINICHI HASEGAWA	Special Assistant to the Director, Flight Standard Division, Technical Department, Civil Aviation Bureau, Ministry of Transport
Mr.	KAZUO YOKOTA	Special Assistant to the Director, Construction Division, Aerodrome Department, Civil Aviation Bureau, Ministry of Transport
Mr.	SHUNICHI MIZUOCHI	Development Survey Division, Social Development Cooperation Dept.
Mr.	TAKESHI NAGAI	Traffic Forecast and Economic/ Financial Analysis Specialist

TABLE 1.4.4 LIST OF JICA STUDY TEAM MEMBERS

Mr.	MAKOTO TANAKA	Project Manager
Mr.	RYUJI TAGUCHI	Airport Planner (General/Civil)
Mr.	TADAMITSU ITO	Aircraft Operation and Naviaids Planner
Mr.	MOTOYOSHI YAMADA	Traffic Forecast and Economic/ Financial Analyst
Mr.	MASASHI ISHIZAKA	Airport Planner (Architecture)
Mr.	YOSHIYA NIINOMI	Airport Planner (Utilities)
Mr.	HIDEO OHMORI	Airport Planner (Construction)