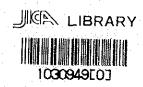
KINGDOM OF THAILAND MINISTRY OF AGRICULTURE AND COOPERATIVES ROYAL IRRIGATION DEPARTMENT


PRE-FEASIBILITY STUDY ON THE SAKAE KRANG RIVER BASIN IRRIGATION PROJECT

ANNEX

MARCH 1985

UAPAN INTERNATIONAL COOPERATION AGENCY

KINGDOM OF THAILAND MINISTRY OF AGRICULTURE AND COOPERATIVES ROYAL IRRIGATION DEPARTMENT

PRE-FEASIBILITY STUDY ON THE SAKAE KRANG RIVER BASIN IRRIGATION PROJECT

ANNEX

March 1985

JAPAN INTERNATIONAL COOPERATION AGENCY

ANNEX

TABLE OF CONTENTS

			PAGE
ANNEX	I.	HYDROLOGY	VI-1 - 80
ANNEX	II.	GEOLOGY	VII-1 - 9
ANNEX	III.	SOIL AND LAND CLASSIFICATION	VIII-1 - 20
ANNEX	IV .	AGRICULTURE	IV-1 - 47
ANNEX	v.	WATER BALANCE STUDY	V-1 - 42
		DAM AND RESERVOIR	·
ANNEX	VII.	IRRIGATION AND DRAINAGE	VII-1 - 40
ANNEX	VIII.	HYDROPOWER DEVELOPMENT POTENTIAL	VIII-1 - 29
ANNEX	IX.	CONSTRUCTION PLAN AND COST ESTIMATE	IX-1 - 22
ANNEX	х.	PROJECT EVALUATION	X-1 - 12
ANNEX	XI.	ENVIRONMENTAL CONSIDERATIONS	XI-1 - 45

ANNEX I HYDROLOGY

ANNEX - T

HYDROLOGY

TABLE OF CONTENTS

		受露受的 医牙术 电流电流 经产品的 医二角	PAGE
1.	SAKAE	KRANG BASIN HYDROLOGY	1-1
	1.1	Climate	1-1
	1.2	Rainfall	1-1
		1.2.1 Rainfall records	1-1
•• •		1.2.2 Rainfall characteristics	1-2
		1.2.3 Correlation	I-2
· .	:	1.2.4 Daily rainfall probability	I-3
	1.3	Streamflow	I-3
		1.3.1 Streamflow records	I-3
		1.3.2 Streamflow characteristics	1-4
	1.4	Sedimentation	1-5
	1.5	Water Quality	1-6
			-
2.	RUNOFI	F ANALYSIS	I-7
	2.1	Methodology for Analysis	I-7
* *	2.2	Runoff Model	I-8
	2.3	Streamflow Generation	I-8
3.	FI.OOD	ANALYSIS	I-9
	3.1	Methodology for Analysis	I-9
.	3.2	Design Flood for Dam	I-9
		3.2.1 Creager envelope	I-9
•		3.2.2 Flood probability	I-10
		3.2.3 Rational formula	I-11
		3.2.4 Unit hydrograph	I -1 2
		3.2.5 Design flood for dam	1-15
	3.3	Flood Control	I-18
• .		3.3.1 Flood damage	I-18
		3.3.2 Flood control	1-18

			PAGE
4.	WATER	RESOURCES	1-20
	4.1	Available Streamflow	1-20
	4.2	Groundwater	1-21
		4.2.1 Classification of groundwater zone	1-21
		4.2.2 Groundwater flow and potential productivity	I-21
		4.2.3 Groundwater quality	1-22
		LIST OF TABLES	
•			
Table	1-1	METEOROLOGICAL DATA FOR THE PERIOD 1951-1980 AT NAKHON SAWAN	1-23
	1-2	METEOROLOGICAL DATA AT CT-5A, CT-7 AND CT-9	1-24
	I-3	AVERAGE MONTHLY RAINFALL AND MAXIMUM DAILY RAINFALL	1-25
	1-4	CORRELATION COEFFICIENTS ON MONTHLY RAINFALL	1-28
	1-5	DAILY RAINFALL PROBABILITY BY IWAI METHOD	1-29
	I-6	MONTHLY RUNOFF RECORD	1-30
	1-7	RESULTS OF WATER QUALITY ANALYSIS	1-32
	1-8	RESULTS OF TANK MODEL ANALYSIS	1-33
	I-9	CALCULATED MONTHLY RAINFALL FOR RUNOFF ANALYSIS	I-34
	I-10	MONTHLY RIVER RUNOFF SIMULATED BY TANK MODEL	1-37
•	I-11	ANNUAL MAXIMUM RIVER DISCHARGE	1-40
	1-12	FLOOD PROBABILITY AT CT-7	I-43
	1-13	PROBABLE FLOOD BY RATIONAL FORMULA	I-44
	1-14	UNIT HYDROGRAPH SIMULATION	1-45
	I-15	UNIT HYDROGRAPH CALCULATION	I-46
	1-16	FLOOD DAMAGE TO AGRICULTURES IN LAT YAO DISTRICT, NAKHON SAWAN PROVINCE	1-52
-	I-17	FLOOD DAMAGE IN UTHAI THANI PROVINCE	I-53
	1-18	FLOOD CONTROL BY RESERVOIR	I-55
	т 10	MECH WELL AND DODE HOLD DECIL MC	τ_5Ω

LIST OF FIGURES

			PAGE
ig.	I-1	Location of Meteorological and Hydrological	·
: :		Stations	1-59
	I-2	Raingage Station and Period of Observation	1-60
	I-3	Stream Gaging Station and Period of Observation	1-62
	1-4	Double Mass Curve for Runoff and Rainfall	1-63
•	I-5	Sediment Load Distribution	1-66
•	1-6	Runoff Simulation by Tank Model	1-67
	1-7	Tank Model Dimension	I-73
	1-8	Creager Envelope	1-74
	1-9	Runoff Concentration Time and Rainfall Intensity	I-75
	1-10	Relation between R24 and N	I-76
	1-11	Unit Hydrograph Simulation	I-77
	1-12	Flood by Unit Hydrograph	I-78
	1-13	Groundwater General Map	1-80

HYDROLOGY

1. SAKAE KRANG BASIN HYDROLOGY

1.1 Climate

The Sakae Krang river basin is characterized by two pronounced seasons, one dry from November to April, the other wet during the rest of the year. Aerial rainfall distribution in the basin affected by the topography is relatively small. Average annual rainfall ranges from 1,300 mm in the western watershed to 1,000 mm in the eastern plain of the basin, of which about 90% is concentrated during wet season. September is generally the month of haviest precipitation during the prevailing southwest monsoon season.

The temperature differentials within the basin are relatively small. Based on the data at Nakhon Sawan, mean temperature is about 28.5°C. The coolest month is December with the mean monthly temperature of 25.2°C while the hottest one is April with 31.9°C.

The prevailing wind direction over the basin is south and relatively constant during the months of February through October. The average relative humidity varies from 61% to 82% at average annual value is 70% at Nakhon Sawan. Mean annual pan evaporation is 2,089 mm with monthly variations of 260 mm in April and 128 mm in September.

Meteorological station under the Ministry of Communications is located at Nakhon Sawan. Among hydrological gaging stations under the RID within the basin, the stations at Ct-5A, Ct-7 and Ct-9 furnish meteorological data of temperature, evaporation and wind speed. These data are summarized in Table I-1 and Table I-2.

1.2 Rainfall

1.2.1 Rainfall records

Rainfall data are collected from 50 gaging stations located between latitude from 15°-0' N to 16°-15' N and longitude from 99°-0' E to 100°-15' E to cover the whole Sakae Krang river basin. All these stations are operated by RID. Average monthly rainfall is listed in Table I-3. As shown in the Fig. I-1, the distribution of gaging stations is not even. Many stations are located along the Chao Phraya river and downstream of the Sakae Krang Basin. The rainfall stations located within the basin are only 12 in number.

periods of observation and code number of gaging station are shown in Fig. I-2. Rainfall records are available from 1920 to 1982. Generally speaking, raingage network is thin for the west half or upstream area of the basin and observation period for these stations are short. Hourly rainfall records are available at station 12081 (CT-5A).

1.2.2 Rainfall characteristics

(1) Average monthly rainfall

Average monthly rainfalls for the 12 stations located within the basin are as follows.

					(mm)
Apr. May	Jun.	Jul. Aug	. Sep. Oct.	Nov. Dec.	Jan. Feb. Mar.
67 169	142	130 171	279 159	48 7	8 14 32

Note: 12 stations are 12081, 26072, 26270, 26281, 69012, 69022, 69032, 69042, 69062, 69090, 69110, 69121.

Average annual rainfall of above stations is 1,226 mm. Seasonal fluctuation of rainfall is very large and average monthly rainfall ranges from 7 mm in December to 279 mm in September.

(2) Aerial distribution of rainfall

Aerial distribution of annual rainfall amount is not remarkable. Generally, it can be said that western area has greater amount of rainfall, about 1,300 mm/year and eastern area has about 1,000 mm/year or less.

Within the Sakae Krang basin, distribution is almost even varying from 1,150 mm/year at downstream to 1,350 mm/year at upstream area.

1.2.3 Correlation

Among 50 rainfall gaging stations, 22 stations are selected for the correlation analysis from the standpoint that the stations are located within or adjacent to the Sake Krang river basin and have longer observation period with shorter data missing period. Results of correlation calculation on the monthly rainfall are shown in Table I-4. Most of the stations show correlation rate between 70 to 80%. There is no station which shows extremely low or high correlation rate. It is considered that the rainfall pattern is sufficiently even and raingage record is highly reliable.

1.2.4 Daily rainfall probability

Selecting 19 rainfall gaging stations of having more than 30 years complete observation data, the maximum daily rainfall probability was calculated by the Iwai method and the results are shown in Table I-5 for each stations.

The maximum value of daily rainfall intensity is determined as follows.

Return Period (1/year)	Rainfall Intensity (mm/day)	Rainfall Station (Code No.)
1/5	141.7	69052
1/10	166.4	U
1/20	189.0	, H
1/50	217.3	
1/100	238.0	· · ·
1/200	260.4	12042
1/500	295.7	n
1/1000	323.0	u

Rainfall stations of 69052 and 12042 are located at southern and northern outside of the Sake Krang basin, respectively.

The maximum daily rainfall intensity of 303.3 mm/day was recorded at rainfall gaging station of 04170 on Sep. 28, 1956. This value corresponds to the return period of 1/500 years.

1.3 Streamflow

1.3.1 Streamflow records

There are seven gaging stations within the basin. The locations and periods of runoff observation are shown in Fig. I-1 and Fig. I-3. The station CT-5A on the Mae Wong river is equipped recently with the automatic water level recorder which is being operated by IRD. Other stations are equipped with the staff gages and operated by RID. All these stations are rated by current matter measurements, where river stage versus discharges are plotted to establish rating curves every year. These rating curves are used to convert daily gage height readings to daily discharges. Records of monthly runoff at CT-5A, CT-7 and CT-9 are summarized in Table I-6.

(1) Reliability of runoff records

Double mass curves of the recorded river runoff and rainfall are shown in Fig. I-4. The curves for the stations of CT-3, CT-4, CT-6 and CT-8 show large fluctuations of runoff rate, which indicates the disturbance of irrigation water intake at upstream of these stations. The curve of the CT-7 station shows minor fluctuation in the runoff rate over the observation period. The runoff data at stations of CT-5A and CT-9 are considered fairly accurate for the watershed runoff analysis since they show relatively constant runoff rate in the double mass curve over the observation period.

1.3.2 Streamflow characteristics

Streamflow in the Sakae Krang basin is characterized by large fluctuation of runoff amount between dry and wet seasons and by small runoff rates throughout the year. Runoff record of CT-7 gaging station at downstream of the proposed Khlong Pho dam shows often zero runoff in April. In an extremely dry year of 1977 water year, the CT-7 recorded zero runoff for successive 3 months from February until April.

The average annual runoff rates during observation period are about 15 to 27%.

Name of River	Observation Period	Average Annual Runoff Rate	Gaging Station
Mae Wong	1970/1982	0.271	CT-5A
Khlong Pho	1975/1982	0.212	CT-7
Thap Salao	1977/1982	0.151	CT-9

It is considered that the vegetation coverage and geological condition of watershed affect considerably to the average runoff rate of these rivers. Watershed of the Mae Wong river is covered by comparatively thick forest and alluvial or diluvial deposit is not formed within the drainage area of CT-5A. On the contrary, in the watersheds of CT-7 and CT-9, the forest cover is rough and thin and alluvial or diluvial sand layers are widely formed within the drainage area.

1.4 Sedimentation

Sediment load is one of the major factors to define the reservoir dimension. Sediment inflow is usually calculated from bed load and suspended load. As for the bed load inflow estimation, data on the gradation analysis on the river bed material are available at CT-5A of the Mae Wong river. Conditions and assumption for bed load calculations are as follows.

1. Analysis point : CT-5A

Drainage area : 936 km²

2. Gradiation analysis : 9 samples

Existing data : 8 samples

Additional analysis : 1 sample

3. River cross section : Rectangular shape, width 90 m

4. River roughness coefficient: n = 0.035

5. River discharge rating curve of 1983 is to be applied.

6. Specific gravity of bed load: 2.68

7. Average 65% grain size : 0.86 mm

8. Formula applied : Sato, Kikkawa, Ashida formula

$$q\beta \cdot (\frac{\sigma}{\rho} - 1) \cdot g = U \star^3 \cdot \phi \cdot f \cdot (\frac{\tau \rho}{\tau c})$$

where qB: bed load per unit river width per unit hour, expressed by volume $(m^3/\text{sec/m})$

τc: critical tractive force

$$\phi = 0.623 \left(\frac{1}{40n}\right)^{3.5}$$
 for $n \le 0.025$
 $\phi = 0.625$ for $n \ge 0.025$

Based on the gradation analysis and the calculation of qß (m 3 /sec/m), the relation between bed load Qß (t/day) and the corresponding average river discharge Q (m 3 /sec) is plotted in log-log scale as shown in Fig. I-5 and it is expressed by following formula.

$$OB = 2.02 \times 10^{-2} \times 0^{1.77}$$

where OB: Bed load t/day

Q: Average river discharge m³/sec

As for the suspended load, 49 samples of suspend load are available during June, October and November, 1983. Same procedures as applied for the bed load were taken and the relation between the suspended load and the river runoff discharge is expressed as follows.

$$Qs = 1.34 Q^{1.83}$$

where Qs: Suspended load t/day

Q: Average river discharge m³/sec

In order to calculate the average total sediment inflow, the year of 1978 is selected as the representative average year from 1969 to 1982. Applying daily discharge at CT-5A in 1978, the sediment inflow per year is calculated.

Bed load 2,026 t $0.8 \text{ m}^3/\text{km}^2/\text{yr}$ Suspended load 178,951 t $71.3 \text{ m}^3/\text{km}^2/\text{yr}$ Total $72.1 \text{ m}^3/\text{km}^2/\text{yr}$

Bed load is considered too small, which may be because of shortage of available data. In application of this result to the design of reservoir, appropriate safety measurement should be considered.

1.5 Water Quality

According to the "United State Department of Agriculture", the irrigation water quality is classified into four grades with respect to the sodium hazard (S1-S4) depending on the sodium-absorption ratio (SAR) and the salinity hazard (C1-C4) depending on the electric conductivity (EC). Results of water quality analysis on the samples taken from each dam sites are summarized in Table I-7. All samples are classified into C1-S1 class except the sample from the Khlong Pho dam site which is classified into C2-S1. Based on this quality analysis, the river waters are all within the tolerable limit and suitable for irrigation. In fact, no adverse effects have been reported by using the river water for irrigation during past years.

Among other items of quality analysis, high PH values for all rivers and high Ca contents for the Khlong Pho river are noted. It will be necessary to investigate the existence of lime stone within drainage areas of proposed dam sites.

2. RUNOFF ANALYSIS

2.1 Methodology for Analysis

Observation periods of river runoff are limited only for 6 to 13 years at CT-5A, CT-7 and CT-9 within the Sakae Krang river basin. Required runoff records for the water balance analysis are for about 30 years or more. Longterm runoff analysis is necessary to generate the streamflow from rainfall records.

(1) Runoff model

Correlation analysis was firstly tried between river runoff and rainfall records, but did not show applicable results. Because the analysis does not meet with the seasonal base flow fluctuation especially during dry season. Tank model analysis is then executed.

(2) Runoff record

The runoff records utilized for the analysis are at CT-5A, CT-7 and CT-9 for generation of runoff models at the Mae Wong, the Khlong Pho and the Thap Salao rivers, respectively. Because runoff records at these stations show high reliability based on the double mass curve analysis.

(3) Rainfall record

As for the rainfall to be applied for the model and to generate the longterm runoff, the Thiesen polygon method was used among 4 stations of 63042, 12081(CT-5A), 26281(CT-7) and 69121/19092(CT-9). The distances between these stations are so far that the polygon becomes too large to devide the drainage area. So that the polygon compornents are formed by only one or two rainfall stations.

Three tank models are analysed under the combination of following runoff and rainfall records. Basic unit period for analysis was selected at 10 days.

River	Runoff Record	Rainfall Record	Drainage Area	
Mae Wong	CT-5A	63042/12081	936 km ²	
Khlong Pho	CT-7	26281/12081	403 "	
Thap Salao	CT-9	69090/69121	541 "	

Note: Stations 69090 and 69121 are located at almost same location but observation period is different.

2.2 Runoff Model

Tank model is composed of a series of storage tanks and runoff outlets at each tanks. For the analysis of the said rivers, a model of four storage tanks is introduced. Second tank has no runoff outlets but works to give lag time in the runoff calculation.

Simulation calculations were conducted by computer until obtaining adequate accuracy between the observed streamflow records and calculated runoff. The results of calculations and determined models are shown in Table I-8, Fig. I-6 and Fig. I-7. It should be noted that the tank model determined for the Mae Wong river at CT-5A has no outlet in the basement of the forth tank. While other two models for the Khlong Pho and Thap Salao rivers have outlet holes in the basement of fourth tank. This indicates the existance of permeable layers in the drainage areas for these two rivers. In the course of tank model calculation, the evaporation data was adopted from the ovservation at Nakhon Sawan.

2.3 Streamflow Generation

(1) Rainfall generation

In the absence of longterm runoff records required for the reservoir operation study, it is necessary to generate the streamflow by applying tank models. Prior to the streamflow generation, the rainfalls have to be generated for the period of no rainfall observation. Based on the results of rainfall correlation analysis, following stations were selected to supplement the deficit of data. Simulated rainfalls are shown in Table I-9.

Rainfall Station	Supplemental Station	Correlation Rate	Tank Model		
63042	69022	0.68	Mae Wong River		
12081	12042	0.81	Mae Wong River		
26281	69022	0.78	Khlong Pho River		
69121	26072	0.78	Thap Salao River		
69092	26072	0.76	Thap Salao River		

(2) Streamflow generation

Streamflow generation was conducted for the period of 29 years from 1954 to 1982. The results of simulation are shown in Table I-10.

3. FLOOD ANALYSIS

3.1 Methodology for Analysis

Purposes of flood analysis is to define the design flood for dam spillway and to clarify the effect of flood control by reservoir.

A large volume of water behind a dam could cause considerable damage to property and loss of life, if the impounded water is suddenly released in case of failure of the dam. Flood studies therefore, particularly the selection of inflow design flood to size the spillway and surcharge storage is of importance in the design of large dams.

The derivation of the inflow design flood for the proposed dams consists of the determination of a design storm estimated from enveloping observed maximum flood for various drainage area, rational formula adopted for probable point rainfall in the region and from the unit hydrograph study. Comparing the amount of flood derived from the above three methods, the maximum flood value is applied as the spillway design flood.

3.2 Design Flood for Dam

3.2.1 Creager envelope

The annual maximum flood discharge records were collected from 8 gaging stations in the Sakae Krang river basin and 60 gaging stations in 6 river basins in the Central Chao Phraya Plain. These rivers are the Yom, the Nam, the Mae Klong, the Ping, the Pasak and the Chao Phraya rivers. The collected data are listed in Table I-11.

The specific discharges (m³/sec/km²) of the maximum floods for each station versus drainage area are plotted in log-log scale as shown in Fig. I-8. The envelope to cover the whole flood points gives the Creager's envelope expressed as follows.

$$q = C \times A^{(A^{-0.04} - 1)}$$

where q: Specific discharge (m³/sec/km²)

C: Coefficient 9.0

A: Drainage area (km²)

Evaluating from the range of floods collected as shown in Fig. I-8, the above curve will be adoptable for the drainage area between 300 $\rm km^2$ and 10,000 $\rm km^2$. The design floods calculated by this formula for proposed dam sites are as follows.

Dam	DA (km²)	q (m³/sec/km²)	Design Flood (m ³ /sec)
Upper Mae Wong	612	2.11	1,290
Lower Mae Wong	930	1.75	1,630
Khlong Pho	394	2.53	1,000
Huai Rang	76	4.52	340
Upper Huai Rang	41	5.39	220
Khun Kaew	162	3.53	570
Lower Khun Kaew	219	3.17	700

3.2.2 Flood probability

Flood probability was also analysed for annual maximum flood recorded in the Sakae Krang Basin. Among gaging stations in the basin, CT-7 gaging station having drainage area of 403 km² gives maximum flood scale for each return period. The number of samples utilized for probability calculation is only 7 at CT-7 and as many as 14 at CT-5A, therefore, the accuracy will be limited within for shorter return period. The results of probability calculations are shown in Table I-12. Taking the results on CT-7 from Table I-12, the calculated floods with different return periods are shown below.

		(Un	it: m³/sec)
Dam	1/10	Return Period 1/100	1/200
Upper Mae Wong	480	1,010	1,210
Lower Mae Wong	730	1,530	1,830
Khlong Pho	310	650	780
Huai Rang	60	130	150
Upper Huai Rang	30	70	80
Khun Kaew	130	270	320
Lower Khun Kaew	170	360	430
		· ·	

3.2.3 Rational formula

Rational formula was applied to derive a peak flood discharge from the rainfall intensity with different probability.

$$q = \frac{1}{3.6} \times f \times Re$$

where q: specific discharge (m³/sec/km²)

f : runoff rate 0.8

Re: rainfall intensity within concentration time (mm/hr)

$$Re = \frac{R24}{24} \times (\frac{24}{Tp})^n$$

where R24 : daily rainfall (mm/day)

Tp : flood concentration time (hr)

n : coefficient

$$Tp = C \times A^{0.22} \times Re^{-0.35}$$

where C: coefficient 800

A: drainage area (km²)

Daily rainfall intensity R24 with different probability was obtained from probability calculations of the 19 raingage stations having more than 30 years of records out of 50 gaging stations in and around the basin. The results are presented in Table I-5. Coefficients C and n are obtained from hourly and daily rainfall and river discharge records converted from automatic water level gagings at CT-5A, as shown in Fig. I-9 and Fig. I-10. Probable floods calculated by these formulae are summarized in Table I-13. Selecting several representative return periods from the Table I-13, the calculated floods by the rational formula are summarized as follows.

		(Un	it: m ³ /sec)
Dam	1/10	Return Period 1/100	1/200
Upper Mae Wong	857	1,334	1,481
Lower Mae Wong	1,237	1,962	2,167
Khlong Pho	587	894	989
Huai Rang	140	201	220
Upper Huai Rang	82	115	125
Khun Kaew	271	400	439
Lower Khun Kaew	355	526	578

3.2.4 Unit hydrograph

(1) Hourly data

Hourly rainfall and river runoff data are available from automatic gaging recorders equipped at CT-5A station. Analysing these hourly data, following 5 flood patterns are selected to choose greater rainfall intensity and larger total rainfall.

No.	:*	Flood	Peak Rainfall (mm/hr)	Total Rainfall (mm)	Runoff Height (mm)
1.	Jul.	7, 1980	43.4	43.6	0.5
2.	Jul.	31 - Aug. 1, 1980	58.0	63.1	1.6
3.	Aug.	8 - 9, 1981	40.0	72.2	0.5
4.	Nov.	7 - 8, 1981	29.0	164.7	112.0
5.	Oct.	11 - 12, 1983	23.6	82.8	139.0

Among these flood patterns, the flood on Nov. 7 - 8, 1981 shows good correlation between fainfall and runoff pattern and has the largest total rainfall. For the analysis of unit hydrograph, therefore, the representative flood pattern was selected to be of Nov. 7 - 8, 1981 flood.

(2) Formula

Following unit hydrograph formulae derived by Dr. Nakayasu are adopted for the analysis,

$$Qp = \frac{0.2778 \times A \times R0}{0.3 \times tp + tk}$$

$$\frac{Q}{Qp} = \left(\frac{t}{tp}\right)^{2 \cdot t_i} \qquad \text{for } t = 0 \text{ to } t = tp$$

$$\frac{Q}{Qp} = 0.3^{(t-tp)/tk}$$
 for $t = tp$ to $t = tp + tk$

$$\frac{Q}{0.3 \times 00} = 0.3 \{t - (tp + tk)\} / (1.5 + tk)$$

for t = tp + tk to t = tp + 2.5 = tk

$$\frac{Q}{0.32 \times QP} = 0.3 \{t - (tp + tk + 1.5xtk)\}/(2.0xtk)$$

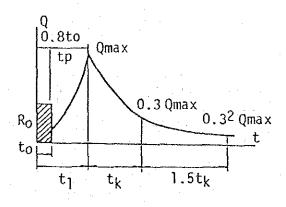
for more than t = tp + 2.5 x tk

 $tk = TG \times \alpha$

where, A: Drainage area (km²)

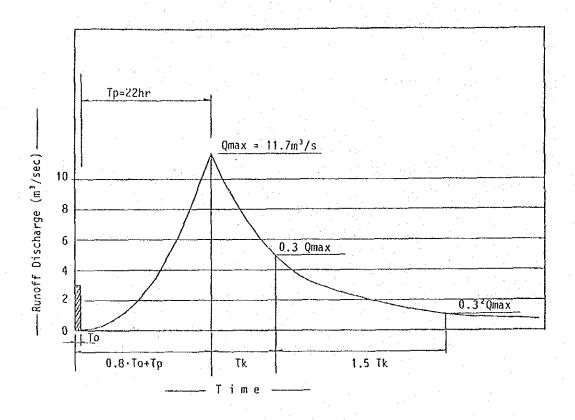
Ro : Unit rain (mm) for the unit duration (hr)

tp : Basic lag (hr) from the beginning of rain to the peak


of unit hydrograph

tk : Period (hr) from the peak to the time of

 $Q = 0.3 \times Qp$


TG : Lag time (hr)

 α : Coefficient

(3) Unit hydrograph

Based on the relations between peak flow and peak rainfall intensity on the hourly streamflow and rainfall data, the lag time TG is assumed at 22 hr and coefficient α is taken at 0.7. Calculated flood curve and recorded flood on Nov. 7 - 8, 1981 are shown in Fig. I-11 and Table I-14. The obtained unit hydrograph is as follows.

(4) Calculation of 200-year flood

For the calculation of 200-year flood by unit hydrograph, daily rainfall intensity of 260 mm/day is applied as it has 200-year probability as shown in Table I-5. The daily rainfall of 260 mm/day is then distributed into hourly intensity to form hourly rainfall pattern in accordance with the following 2 cases.

Case 1 Proportionally distributed to the recorded rainfall pattern on Nov. 7 - 8, 1981

Case 2 Hourly rainfall pattern having peak rainfall intensity at the end of rainfall.

Hourly Rainfall Distribution (mm/hr)

·		100	1000									
Case	1	2	3	4	5	6	7.	8	9	1,0	11	12
Nov. 7-8	9,2	4.8	11.4	0 .	0	1,2	3.0	0	0	0.	0	0
1	15.8	8.2	19.2	17.8	0	0	2.1	5.1	0	0	0	4.6
2	7.2	7.3	7.4	7.7	7.8	8.0	8.3	8.5	8.7	9.2	9.5	9.8
		14.,1								·		
Case	13	14	15	16	17	18	19	20	21	22	23	24
Nov.7-8	13.6	16.1	1.8	29.0	5.2	3.8	1.8	6.2	10.8	6.8	4.5	9.5
1	23.3	27.7	3.1	49.8	8.9	6.5	3.1	10,6	18.5	11.7	7.7	16.3
2	10.6	11.2	11.8	13.8	15.5	18.5	31.9	12.6	10.2	8.9	8.1	7.5

Flood calculations are shown in Table I-15 and Fig. I-12. The results are summarized as follows.

Case		Peak Flood (m ³ /sec/km ²)					
1	:	1.49					
2	4	1.50	1				

The peak specific flood discharge of 1.50 $\rm m^3/sec/km^2$ is applied for spillway design flood.

3.2.5 Design flood for dam

(1) Spillway design flood

Spillway design flood is determined by selecting maximum peak flood scale among several floods derived from various methods. As for the flood probability, 200-year return period is adopted. Comparison of flood scale is made in terms of specific discharge (m³/sec/km²) as follows. Flood derived from rational formula gives the maximum flood scale.

Dam	Drainage Area (km ²)	Peak	Flood (2)	(m ³ /sec,	/km ²) (4)
Upper Mae Wong	612	2.11	1.98	2.44	1.50
Lower Mae Wong	930	1.75	1.98	2.33	1.50
Khlong Pho	394	2.53	1.98	2.51	1.50
Huai Rang	76	*	1.98	2.89	1.50
Upper Huai Rang	41	*	1.98	3.04	1.50
Khun Kaew	162	*	1.98	2.71	1.50
Lower Khun Kaew	219	*	1.98	2.64	1.50

- (1) Creager envelope
- (2) Flood probability (200-year) at CT-7
- (3) Rational formula (200-year)
- (4) Unit hydrograph
- * Creager envelope is effective for drainage area of 300 to 10,000 $\,\mathrm{km}^2$

(a) Recorded maximum daily rainfall

The daily rainfall intensity applied for the calculation of 200-year flood by rational formula is 260 mm/day which is derived from probability calculation on the raingage station 12042. The recorded maximum daily rainfall intensity is 303 mm/day at raingage station 04170 which has 21 years of observation period and is located outside of the Sakae Krang basin, about 110 km and 64 km away from the Lower Mae Wong and Lower Khun Kaew dam sites, respectively. The value of 303 mm/day is equivalent to the rainfall probability scale of about 500-year return period. The flood derived from 303 mm/day rainfall intensity by rational formula is as follows.

Flood by Recorded Maximum Rainfall

Dam	A (km²)	Re (mm/hr)	q (m ³ /sec/km ²)
Upper Mae Wong	612	12.9	2.87
Lower Mae Wong	930	12.5	2.78
Khlong Pho	394	13.3	2.96
Huai Rang	76	14.9	3.31
Upper Huai Rang	41	15.6	3.47
Khun Kaew	162	14.1	3.13
Lower Khun Kaew	219	13.9	3.09

(b) Spillway design flood for concrete dam

Flood derived from the recorded maximum rainfall gives greater values of specific discharge than those derived from the 200-year rainfall intensity. The spillway design flood for concrete dam is determined as follows.

Dam	Drainage Area (km²)	Specific Discharge (m ³ /sec/km ²)	Spillway Design Flood (m ³ /sec)
Upper Mae Wong	612	2.87	1,760
Lower Mae Wong	930	2.78	2,590
Khlong Pho	394	2.96	1,170
Huai Rang	76	3.31	250
Upper Huai Rang	41	3.47	140
Khun Kaew	162	3,13	510
Lower Khun Kaew	219	3.09	680

(c) Spillway design flood for fill-type dam

In case of fill-type dam, the flood over topping from the dam crest is considered more serious than in case of concrete dam. The spillway design flood is taken to be 20% increased from the 200-year flood obtained by rational formula. The spillway design flood is then determined as follows.

Dam	Drainage Area (km ²)	(1)	fic Disc (2) ³ /sec/k	(3)	
Upper Mae Wong	612	2.87	2.44	2.90	1,770
Lower Mae Wong	930	2.78	2.33	2.80	2,600
Khlong Pho	394	2.96	2.51	3.01	1,190
Huai Rang	76	3.31	2.89	3.47	260
Upper Huai Rang	41	3.47	3.04	3.65	150
Khun Kaew	162	3.13	2.71	3.25	530
Lower Khun Kaew	219	3.09	2.64	3.17	69-

Where (1): Derived from 303 mm/day

(2): Derived from 260 mm/day

 $(3): (2) \times 1.2$

3.3 Flood Control

3.3.1 Flood damage

Data on the flood damages caused by the floods in 1981 and 1983 were obtained from provincial offices at Nakhon Sawan and Uthai Thani and are summarized in Tables I-16 and I-17. In Nakhon Sawan province, damaged sub-districts are Mae Lae, Huai Nam Horm, Wang Sarn and Muban Lat Yao in case of November, 1981 flood. Four persons were lost in Lan Sak and Muban Uthai Thani District in 1981. Five persons were lost in Sawang Arom, Lan Sak and Thap Than District in 1983. The number of damaged houses are 58 in 1981 and 134 in 1983.

In case of November, 1981 flood, 310,000 rais of farm lands (7% of the total area of Uthai Thani Province) were flooded and 70,000 rais of them were damaged. In case of 1983 floods, 151,000 rais of farm land were damaged. Public facilities such as roads, bridges, weirs, government offices, temples, etc. were also damaged.

Although every district gets flood damages, three districts (Lan Sak, Sawang Arom and Thap Than) seem to have heavier damages. They are surrounded by Khlong Pho and Thap Salao Rivers.

To repair the flood damages in 1983, the Uthai Thaini Provincial Office had, at first, spent about 1.2 million Baht from its temporary reserve and later spent about 18.0 million Baht, which was granted by the Local Administrative Department.

3.3.2 Flood control

Flood control is not primary purpose for the Project, however, it is realized that incidental flood control could be attained from the operation of the reservoir especially with such floods which occur in the early part of wet season. Based on the reservoir operation simulation discussed in Annex V, flood control effects were studied through the comparison of with reservoir and without reservoir conditions.

The results of study are summarized in Table I-18. In case of the Upper Mae Wong dam, simulation of reservoir operation from 1954 to 1981 shows that there is no spillout from the reservoir for 15 years out of 28 years except for irrigation purpose. When the reservoir is at full storage level, the spillout occurs, however, the annual peak flood scales are considerably reduced as it is shown in the comparison of the annual maximum and second maximum flood for the conditions of with and without reservoir.

In other expression, about 146 MCM/year, 74% of average total annual inflow of 196.3 MCM/year is regulated by the reservoir and the maximum flood scale will be reduced into 79% in case of the Upper Mae Wong dam. These are summarized as follows.

Dam	Ave. Annual Inflow (MCM/yr)	•	Regulated Percent (%)	Ave. Max. Flood (m ³ /sec)	Max. Flood with Dam (m ³ /sec)	Reduced Percent (%)
Under Mae Wong	196.3	146.0	74	38.4	30.4	21
Lower Mae Wong	298.3	229.0	77	58.3	45.8	21
Khlong Pho	87.3	46.3	53	19.7	18.1	8

4. WATER RESOURCES

4.1 Available streamflow

The average annual discharges at upstream watershed of the Mae Wong river (CT-5A), the Khlong Pho river (CT-7) and the Thap Salao river (CT-9), were estimated from the actual runoff records and generated streamflow by tank models. The runoff discharges are summarized as follows.

Results of Runoff Analysis (1954-1982)

River	Station	Average Basin Rainfall (mm)	Average Annual Discharge (MCM/km ²)	
Mae Wong River	CT-5A	1,294.6	0.316	24.4
Khlong Pho River	CT-7	1,283.5	0.217	16.9
Thap Salao & Khok Khwai Rivers	CT9	1,346.5	0.231	17.2

The Mae Wong river is known to be effluent streams which continues to flow even during extremely dry periods. The upper portion of the Mae Wong river watershed is extensively forested while the watershed forest of other rivers are relatively thin.

Monthly river runoff simulated by runoff models are summarized as follows.

Average Monthly River Runoff (1954-1982)

							· . · .	(Unit: $1,000 \text{ m}^3/\text{km}^2$)				
River	Apr.	Мау	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.
Mae Wong	2.4	9.6	18.7	18.0	31.8	73.3	103.2	36.2	11.2	5.8	3.5	2.7
Khlong Pho	0.6	3,0	12.7	16.1	19.4	51.3	70.7	29.9	5.9	3.4	2.3	1.6
Thap Salao	1.9	4.4	11.5	12.7	16.1	48.7	90.4	29.5	5.9	4.3	3.3	2.6

The river runoff is characterized by long low flow period from December to July. Reliable amount of water resource supplied by the river is limited only during four months from August to November. About 80% of total annual runoff occurs during these months.

4.2 Groundwater

Flat and low lying area at downstream of the basin is formed by the alluvial deposits consisting of loose to unconsolidated layers of sand, gravel, silt and clay. Average thickness of the alluvial deposits is approximately 50 m above foundation rocks. Of these, sand and gravel layers are potential aquifer of groundwater. At present, no data are available on the productive capacity of the groundwater in the whole basin, however, the preliminary study was conducted by the RID during 1973 to 1978. The study covers the area bounded latitude between N-15-15-00 and N-15-45-00, longitude between E-99-45-00 and E-100-15-00.

4.2.1 Classification of groundwater zone

Based on the results of test wells and experimental bore holes and assuming from the geological formation of the basin, the groundwater is approximately classified into four zones as shown in Fig. I-13. The data on test wells and bore holes are summarized in Table I-19.

- Zone I Unconsolidated aquifer in active flood plain located along right side of the Chao Phraya river and consists of sand and gravel. Groundwater yield tests show the yield of more than 2.3 cum/min.
- Zone II Low terrace of the Sakae Krang basin and unconsolidated aquifer, located adjacent to the Zone I.
- Zone III High terrace of the basin consists of sand lens interbedded with silty clay. Yield is about 0.1-0.2 cum/min. It is located along the right side of the Sakae Krang river.
- Zone IV Semi-consolidated rocky pediment consists of lateritic soil and clay. No groundwater potential.

4.2.2 Groundwater flow and potential productivity

The downstream area of the basin is a part of vast flood alluvial plain of the Chao Phraya river. The groundwater flows from north to south along the Chao Phraya river, supplemented by the flow from the western watershed. The groundwater flow is partly blocked by massive rocks of quartz feldspathic tuff rising in the plain. Figure I-13 shows the estimated flow directions of groundwater.

The potential productivity of the groundwater is roughly estimated from each zone assuming the effective void ratio of aquifer at 0.2 and average thickness from the data on test wells and experimental bore holes.

Zone	Average Thickness (m)	Unit Productivity (MCM/sq.km)				
ī	37	7.5				
ΙΙ	20	4.0				
III	14	2.8				

4.2.3 Groundwater quality

Chemical analysis on the samples obtained form the bore holes were conducted in the said study. It should be noted that 18 samples out of 53 were found unsuitable because of excessive of electric conductivity and sodium absorption ratio. Certain correlations or tendency on the depth or locations among these samples of unsuitable quality is not determinable as the number of samples are not sufficient. It is necessary to continue the observation on the seasonal variation of groundwater quality to clarify the potential productivity for irrigation.

Table I-1 METEOROLOGICAL DATA FOR THE PERIOD 1951-1980 AT NAKHON SAWAN

												Tet	
												Long	100-10 E
	Jan.	Feb.	Mar.	Apr.	Мау	Jun.	Jul.	Aug.	Sep.	00t.	Nov.	Dec.	Year
Temperature (°C)												:	
Mean	25.6	28.3	30.7	31.9	30.6	29.6	29.0	28.5	28.0		26.7	25.2	28.5
Mean Max	32.2	34.5	36.7	37.9	36.1	34.5	33.8	33.1	32.2		31.5	31.1	33.8
Mean Min	17.7	21.0	23.7	25.3	25.1	24.7	24.3	24.1	23.9		21.0	18.2	22.7
Ext Max	37.0	39.8	41.2	42.5	42 7	41.0	38.9	37.8	.36 .3	35.9	35.7	35.8	42.7
Ext Min	٦ 9	12.0	14.2	17.0	20.3	21.4	20.9	20.9	20.4		11.9	8 2	г! •
		٠.											
Relative Humidity (%)													
Mean	63.0	62.0	61.0	61.0	70.0	74.0	75.0	78.0	82.0	80.0	73.0	67.0	70.0
Mean Max	87.3	86.9	87.3	86.5	89.1	90.5	91.5	92.9	95.5	94.7	92.4	6.68	90.4
Mean Min	47.3	40.3	39.	40.8	51.2	56.6	58.4	62.0	66.4	63.3	53.9	45.9	51.6
						,							
Dew-Point (°C)												•	
Mean	17.1	19.3	21.2	22.7	23.8	23.9	23.8	24.0	24.4	23.7	20.8	17.9	21.9
												٠	
Evaporation (nm)													
Mean - Pan	150.6	174.9	232.8	260.3	218.9	184.1	174.3	153.2	127.7	138.8	132.8	140.5	2088.9
Wind (knots)								٠					
Previaling wind	ſεĵ	ω	w	ທຸ	ù	ທ	ທ	ທຸ	w	တ	ы	z	ļ
Mean wind speed	3.7	8.	6.3	6.4	N 4	ν, v,	0.0	4	3.2	0.	۵. 4.	ທ	i (
Max wind speed	333E	283	62N	N09	708	ა ა	528	45SSW	N 9	SANE E	27 NW.	57定	S0/
Sunshine Duration (hr)												٠	
		(·	6	C L		t.		0	1 0 1	0000	0 27.0	ה ה	2 2022
Mean	7 - 1 0 0 7	6.242	0.847	7 . 607	243.U	7.081	7.5/1			0 0 7 7	3		3
Cloundiness (0-8)													
Mean	3.0	т т	m m	4.0	0.	4.	6.7	6.9	6.6	بر 4	4.2	w. 4	4.9

and CT-9
CT-7
AT CT5-A
DATA
METEOROLOGICAL
tble I-2
2

	Jan.	Feb.	Mar.	Apr.	May.	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Year	
Temperature (° C)														1
Mean													·	
CT-5A(1969~1983)	20.6	22.3	24.9	27.0	26.9	26.1	26.3	25.9	25.5	24.8	22.9	21.0	24.5	
CT-7 (1975~1983)	21.5	24.3	27.8	29.0	30.3	28.0	27.8	27.3	26.9	25.6	22.7	20.8	26.0	
CT-9 (1977~1983)	22.1	24.2	26.4	29.1	28.3	27.5	27.5	27.1	26.4	24.9	23.3	21.2	25.7	
Wind (km/hr)							.1.5							
Mean Wind Speed														
CT-5A(1973~1983)	1.08	1.46	1.67	2.00	1.91	1,43	1.30	1.06	0.98	06.0	0.83	98.0	1.30	
CT-7 (1975~1983)	0.75	0.87	1.44	1.74	1.95	1.12	1.32	1.21	0.79	0.58	0.55	0.62	1.08	
CT-9 (1977~1983)	0.97	1.37	1.85	2.11	2.60	1.51	1.93	2.01	<u></u>	0.85	0.79	0.01	1.50	
					. ** .									
Evaporation (mm)														
Mean - Pan	v													
CT-5A(1973~1983)	83.7	89.5	117.3	130.8	120.3	93.4	91.8	75.4	80.7	79.8	75.6	79.2	1,117.5	
CT-7 (1975~1983)	77.8	89.0	120.8	136.4	127.9	107.8	122.1	103.5	91.8	88.2	76.6	73.8	1,215.7	
CT-9 (1977~1983)	60	0		101	6	6	i c		, (; ;	i	,	:	

Table I-3 (1) AVERAGE MONTHLY RAINFALL AND MAXIMUM DAILY RAINFALL

Maximum Daily Rainfall		144.1 (Oct. 3, 1959)	200.7 (May 5, 1954)	137.8 (Oct. 18, 1952)	242.5 (Apr. 8, 1946)	240.0 (Apr. 8, 1946)	195.9 (Apr. 27, 1979)	142.2 (Sep. 18, 1972)	142.5 (Oct. 6, 1966)	147.2 (Oct. 6, 1966)	174.6 (Sep. 18, 1972)	167.8 (Oct. 6, 1966)	155.6 (Oct. 6, 1966)	134.5 (Aug. 29, 1976)	216.4 (Aug. 23, 1971)	303.3 (Sep. 28, 1959)	150.8 (Jan. 11, 1974)	124.4 (Sep. 18, 1972)	145.3 (Oct. 13, 1970)	141.3 (Oct. 6, 1966)	98.6 (May 6, 1976)	182.0 (Sep. 4, 1959)
Total		1,088.9	1,007.2	1,003.3	1,017.9	1,003.2	1,073.3	7,131.7	996.5	1,050.5	1,076.7	1,041.9	1,021.5	941.1	1,207.4	1,083.6	928.0	773.3	1,022.4	975.0	963.1	1,066.1
Mar.	:	41.1	29.4	33.3	32.2	25.9	34.0	42.3	36.5	32.0	38.7	27.2	23.9	27.9	42.9	20.4	13.5	7.8	25.8	20.5	17.2	24.8
Feb.		η. Φ	رن س.	6.91	23.1	18.0	17.1	18.6	σ) σ)	ው መ.	13.5	13.1	10.1	7.6	18.8	12.9	8.4	5.7	11.0	10.9	۵. 4.	φ. φ.
Jan.	i.	4.2	4	4. 4	7.6	თ თ	9.2	9 11	6	0.8	7.1	14.2	5.1	8	8.1	<u>ი</u>	17.8	5.4	8.7	5.0	5.7	5.7
Dec.		9 9	٠ ٩	2.0	प फ	8.8	. თ . თ	4.	6.7	10.4	12.7	ω	6.5	S	7.1	6.5	9	۲ .5	3.7	φ 'α	7.6	0.0
Nov.		24.5	20.8	24.0	29.0	31.8	30.3	30.8	32.6	31.2	33.0	32.8	33.9	26.6	31.3	32.2	26.5	23.1	41.7	38.9	35.6	31.8
oct.		175.6	129.6	130.9	133.6	132.2	144.5	138-1	140.9	139.7	148.4	139.3	132.0	125.6	158.2	147.5	119.9	0.68	134.2	140.0	128.1	147.0
Sep.	-	278.3	250.7	250.8	243.0	255.0	261.6	281.5	279.6	288.8	298.6	279.9	284.1	257.1	309.2	305.3	261.8	226.2	238.7	239.4	233.3	253.5
Aug.		147.0	133.2	129.7	139.0	138.2	149.3	167.0	132.9	139.0	143.4	136.0	136.6	131.2	181.8	147.8	141.1	100.3	148.9	138.2	149.4	147.2
July		122.0	120.5	113.2	104.7	0.76	126.1	138.3	119.8	122.4	126.8	137.6	136.7	134.1	146.2	129.8	128.1	0.011	126.8	125.2	338.5	141.3
June		92.8	110.5	94.9	119.8	105.2	102.5	6. 10.	85.0	94.7	82.8	87.3	95.2	69.5	105.0	93.3	81.0	72.0	103.7	92.2	83.9	102.4
May		137.9	129.4	119.0	115.9	123.8	122.0	141.5	40	131.4	115.8	6.66	109.5	97.1	143.4	127.8	96.6	80.6	134.4	219	116.3	123.8
Apr.		56.3	53.6	66.4	68.2	53.6	68.8	68.0	49.2	45.6	99.0	59.6	48.2	56.6	67.0	59.2	41.8	48.7	44.8	39.7	38.1	50.3
Code		04012	04022	04032	04042	04052	04062	04080	04100	04110	04120	04130	04140	04150	04160	04170	04180	04200	04250	04260	04270	04290

Table I-3 (2) AVERAGE MONTHLY RAINFALL AND MAXIMUM DAILY RAINFALL

. !														
Code	Age.	May.	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Jan,	Feb.	Mar.	7otal	Maximum Daily Rainfall
04300	27.9	98.8	85.9	90.6	123.5	231.0	112.2	16.9	ပ _ု ဖ	0.4	8.7		784.1	167.2 (Sep.18 1972)
04310	31.0	107.6	102-8	100.6	133.6	233.6	89.2	27.5	. ო დ	o	18.7	8. 11.	814.3	163.8 (Sep. 18 1972)
04320	48.0	133.8	86.8	123.2	157.4	259.3	144.9	36.3	4.3	4, 0,	ω, ω,	32.6	1,042.6	175.0 (May 5 1976)
04330	57.9	133.8	102.7	114.5	157.1	255.1	130.6	38.5	7.7	7.2	16.2	29.8	1,051.0	150.4 (Oct.6 1986)
04340	28.9	125.4	85.2	154.0	120.9	255.3	126.5	22.6	æ ⊢l	0.3	5.1	8 2	920.3	207.2 (May 6 1976)
04361	38.5	125.4	80.2	309.5	125.6	232.7	130.2	32.3	æ	4 3	12.5	24.8	935.7	127.8 (Sep. 21 1965)
12022	8 9	134.1	136.1	126.5	142.8	239.0	129.8	28.7	면 m	6.5	11.9	12.9	931.4	150.7 (May 5 1976)
12042	66.1	169.4	162.2	166.9	178.1	168.0	138.1	35.6	4.2	9.9	13.0	23.7	1,222.7	209.4 (Sep. 29.1978)
12081	57.0	193.3	140.0	145.1	178.1	321.3	169.9	38.4	т ф	12.9	٥. ٢.	39.4	1,320.6	135.6 (Jul. 3 1970)
12091	48.2	177.5	168.8	149.8	139.5	275.2	95.3	69.7	0	. 0	10.4	12.4	1,164.7	178.0 (May 21.1980)
13112	111.9	200.4	97.7	102.9	161.9	220.6	144.5	33.0	3.9	4.6	20.9	54.2	1,044.5	141.5 (Nov. 12 1967)
26013	70.0	135.8	138.7	153.0	184.5	261.5	146.4	20.7	φ σ	ω ω	21.3	26.7	1,166.2	161.1 (Sep. 6 1931)
26042	52.1	112.9	102.5	127.6	173.1	239.2	140.2	24.2	2.6	8	12.9	23.6	1,123.4	176.4 (Sep. 16 1953)
26052	86.4	123.8	122.4	143.1	166.5	247.1	148.9	29.3	o. 5	0.0	17.0	26.5	1,089.9	186.0 (Apr. 28 1947)
26062	50.4	115.9	116.3	120.9	162.9	237.7	97.5	22.4	2.2	7.3	11.2	18,8	1,073.5	184.0 (Sep. 13 1938)
26072	67.4	149.3	126.5	139.7	172.0	247.1	171.9	31.9	ທ ທ	10.5	21.0	28.8	1,131.4	254.0 (Oct.24 1952)
26170	45.1	121.9	96.7	123.9	176.9	241.2	120.9	40.9	ი ი	ω ω	6.4	29.3	1,015.1	163.5 (Oct. 6 1966)

Table I-3 (3) AVERAGE MONTHLY RAINFALL AND MAXIMUM DAILY RAINFALL

Code	Apr.	May.	Jun.	Jul.	Aug.	S. S.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Total	Maximum Daily Rainfall
26270	91.5	171.3	117.8	107.4	184.6	211.0	107.2	49.1	e. e	4.6	٠ ١٠	7.6	1,063.0	88.7 (Nov. 7 1981)
26281	37.1	215.4	121.7	124.9	156.7	263.5	177.5	95.4	10.4	9.0	ω •	25.4	1,193.7	270.0 (Nov. 7 1981)
63042	78.0	142.9	177.7	240.1	251.1	244.9	115.5	27.9	6.7	9.0	12.4	36.7	1,378.6	123.0 (Mar. 31 1941)
69012	ហ ភ	129.6	125.0	135.3	164.2	279.9	165.6	35.2	ις O	4. R	12.5	27.7	1,154.0	208.7 (Oct. 6 1966)
69022	70.6	147.8	115.4	147.4	184.9	310.5	140.7	41.6	6.4	7.2	10.8	38.0	1,228.4	148.9 (oct. 20 1961)
28069	64.0	116.8	118.1	121.3	149.8	263.9	136.3	27.3	3.7	6.2	10.7	25.3	1,089.7	210.0 (Apr. 13 1928)
69042	70.5	154.8	149.5	148.2	196.8	317.7	191.6	38.3	ъ. 6	9.7	17.5	34.7	1,337.1	252.5 (Aug. 31 1924)
69052	141.9	214.5	193.9	191.1	176.5	397.2	248.4		21.5	9	14.2	68.5	1,814.5	190.0 (Oct. 1 1963)
69062	76.3	139.9	127.8	135.0	182.3	269.0	152.4	42.3	9.6	. S.	6	21.7	1,166.1	121.6 (Sep. 21 1978)
06069	71.8	205.9	189.2	108.0	165.8	349.0	226.1	50.7	14.6	26.0	23.7	.e. .e.	1,440.3	121.6 (May 15 1970)
01169	75.8	177.4	138.0	127.5	205.6	236.0	105.S	23.4	ы. В.	9,0	6.11		1,208.2	88.0 (Apr. 24 1977)
69121	50.8	223.8	231.6	125.2	115.2	276.1	167.7	1001	7-7		24.2	39.4	1,365.4	198.0 (Nov. 7 1981)

Table I-4 CORRELATION COEFFICIENTS ON MONTHLY RAINFALL

ſ										·							, ·					
69121	0.556	0.575	. 1	1	ı	0.540	0.663	0.543	0.487	0.626	0.523	0.671	•	0.480	0.468	0.643	0.608	365.0	0.463	0.572	0.831	
01169	0.804	0.790		1 1 1 1 1	1	0.722	0.865	0.746	0.755	0.633	0.765	0.705		0.784	0.769	0.875	0.805	0.561	0.124	0.815		0.867
06069	0.760	0.756	1	: 1	0,648	0,730	0.853	0.650	0.562	0.594	0.721	0.741	. T	0.224	0.644	0.760	0.716	0.736	0.647		ì	
69052	0.657	0.671	0.581	0.677	0.570	0,660	0.657	0.682	0,663	0.593	0.616	0.690	0.499	0.482	0.634	0.644	0.615	0.652		0.752	0.324	0.466
69042	0.810	0.810	0.662	6.721	0.694	0.716	0.656	0.765	0.821	0.774	0.728	0.762	0.637	0.593	0.825	0.847	0.835		0.866	0.792	0.762	0.695
69032	0.835	0.841	0.558	0.659	0.542	0.654	0.650	0.742	0.769	0.796	0.701	0.736	0.609	0.593	0.823	0.863		0.854	0.627	0.783	0.877	0.723
69022	0.847	0.839	0.682	0.452	0.607	0.693	0.738	0.793	0.840	0.805	0.759	0.786	0.707	6.5	0.845		0.881	0.865	0.653	0.791	0.913	0.731
69012	0.855	0.848	0.690	0.624	0.608	0.639	0.647	0.762	0 783	0.806	0.680	0 744	0.633	0.596		0.861	0.836	0.842	0.645	0.718	0.855	0.624
63042	0.600	665.0	ι	ŧ	0.480	0.654	0.574	0.665	0.626	0.568	0.369	0.542	0.518		0.650	0.677	0.652	0.646	0.533	0.482	0.854	0.626
26281	0.575	0.655	0.609	0.568	0.328	0.547	0.776	0.664	0.614	0.564	0.622	0.664		0.673	0.706	0.781	0.740	0.716	0.603	1		,
26072	0.755	0.755	1	,	0.576	0.704	0.724	0.749	0.761	0.743	0.277		0.757	0.602	0.755	0.816	0.770	0.794	0.700	0.781	0.796	0.755
25062	0.701	0.698	1	1	0.575	0.743	0.720	0.754	0.718	0.673	/	0.371	0.749	0.452	0.712	0.788	0.736	0.751	0.645	0.767	0.842	0.666
26052	0.784	0.799	1	1	0.536	969.0	.0.595	0.757	0.810		0.718	777.0	0.701	0.623	0.826	0.833	0.817	0.804	0.610	0.726	0.771	0.734
26042	0.779	0.774	1		0.598	0.710	0.697	0.839		0.827	0.748	0.788	0.731	0.670	0.805	0.856	0.796	0.800	0.657	0.751	0.818	0.619
26013	0.783	0.781	ì	, 1	9.894	0.734	0.712		0.851	0.781	0.781	0.779	0.749	0.706	0.735	0.819	0.767	0.798	0.668	0.700	0.806	0.648
12081	0.731	0.719	1	1	0.559	0.745		0.769	0.785	0.743	0.794	0.791	0.837	0.667	0.746	0.793	0.763	0.753	0.745	0.872	0.900	0.725
12042	0.664	0.684	•	•	1		0.806	0.761	0 741	0.732	0.776	0.741	0.682	0.627	669.0	0.728	0.698	0.749	0 694	0.784	0.788	0.652
12022	0.607	0.608	1	1		0.726	0.684	0.633	0.635	0.580	0.621	0.621	0.561	0.538	0.644	0.647	0.587	0.724	0.612	0.705	0.630	0.518
04200	1 .	0.694	0.800		. 1	,	.1	1	F	1	1	ı	0.713	1	907.0	0.599	0.759	0.790	0.747	•	1	1
04180	1	0.686		0.848	. ! .	. •			1	. 1	1	1	0.724		0.731	0.730	0.658	0.726	0.649	•		
04062	0,908	/	727.0	0.763	0.639	0.697	0.777	0.796	0.797	0.820	0.724	0.781	0.727	0.651	0.862	0.857	0.858	0.830	0.640	0.788	0.857	0.667
04032		0.915	•	1.	0.639	0.714	0.791	0.802	0.799	0.804	0.723	0.781	0.685	0.645	0.867	0.864	0.853	0.828	0.650	0.810	0.851	0.659
Code	04032	04062	04180	04200	12022	12042	12081	26013	26042	26052	26062	26072	26281	63042	69012	69022	69032	69042	59052	06069	69110	69121
/	-												···				<u></u>	<u> </u>				

Excluding no rainfall month

Note:

Using all data

Table I-5 DAILY RAINFALL PROBABILITY BY IWAI METHOD

			Ä	Return Period	ert.			Unit : mm/day
1/5	1/10	1/20	1/50	1/100	1/200	1/500	1/1000	No. of Sample
111.7	133.5	154.0	180.0	199.3	218.5	243.8	263.1	1921-1981 N=42
97.8	111.2	123.2	137.7	148.1	158.1	170.8	180.2	1921-1982 N=43
111.8	130.6	148.0	169.7	185.6	201.2	221.6	237.0	1921-1981 N=50
113.4	135.2	156.9	186.3	209.3	233.0	265.8	291.7	1921-1981 N=45
121.7	142.8	162.3	186.6	204.4	221.9	244.7	261.9	1921-1982 N=49
116.7	137.3	157.6	184.5	205.2	226.5	255.4	278.0	1933-1981 N=49
99.5	114.9	128.8	145.8	158.1	169.9	185.2	196.5	1921-1982 N=40
121.2	148.2	174.2	208.2	234.2	260.4	295.7	323.0	1921-1982 N=38
103.4	120.9	138.0	160.9	178.6	196.8	221.6	241.1	1921-1982 N=57
112.1	132.2	151.1	175.1	193.0	210.8	234.2	252.0	1921-1982 N=48
118.6	140.2	161.6	190.1	212.3	235.1	266.3	290.8	1921-1982 N=45
116.9	136.8	154.9	177.2	193.4	209.1	229.4	244.6	1920-1982 N=41
110.4	132.2	153.9	183.0	205.7	229.2	261.4	286.9	1931-1982 N=45
85.1	101.1	116.5	136.5	151.6	166.9	187.3	203.1	1923-1982 N=38
118.9	136.4	152.6	172.7	187.3	201.7	220.4	234.5	1920-1982 N=54
111.0	125.1	137.4	152.0	162.2	171.8	183.9	192.7	1921-1982 N=51
126.3	144.0	159.7	178.4	191.6	204.3	220.3	232.0.	1921-1982 N=44
117.0	142.1	167.0	200.5	226.7	253.7	290.8	320.1	1921-1982 N=48
141.7	166.4	189.0	217.3	238.0	258.3	284.7	304.6	1922-1982 N=33

Table I-6 (1) MONTHLY RUNOFF RECORD AT CT-5A, D.A. 936 km²

												(Unit:	cum/s)
Water Year	Apr.	May	June	July	Aug.	င် မ လ	Oct.	Nov.	Dec.	Jan.	લ મ	Mar.	Total
1969	14.89	20.86	45.02	60.82	246.08	760.50	591.00	670.28	117.26	46.59	19.89	14.86	2,608.05
1970	17.34	158:05	285.05	124.53	499.04	574.74	1456.00	666.84	608.41	137.32	61.96	40.48	4,629.76
1971	34.08	98.05	148.21	207.80	352.89	746.68	1181.60	547.60	126.33	70.24	35.09	26.02	3,574.59
1972	13.24	9.20	8.68	45.90	63.14	781.05	1683.00	942.69	509.24	165.29	74.70	63.84	4,359.97
1973	34.80	39.64	364.32	218.88	203.14	867.94	1390.00	461.88	214.60	120.38	69.56	61.98	4,101.12
1974	122.42	143.90	101.07	96.32	345.96	186.33	2406.00	1081.00	216.98	190.10	90.22	58.08	6,714.35
1975	44.04	169.93	253.98	150.93	163.88	861.00	1440.00	645.00	222.88	121.40	61.87	46.72	4,181.63
1976	32.70	177-42	51.17	56.75	249.63	955.00	1038.00	1167.89	120.06	60.56	24.29	15.09	3,948.56
1977	25.58	48.77	21.42	37.76	63.17	302.74	286.88	102.06	37.98	21.34	15.40	15.80	978.90
1978	15.45	94.83	68.46	389.37	288.42	973.82	1729.82	255.98	60.86	48.01	20.59	13.84	3,966.68
1979	16.05	54-93	311.04	77.99	85.51	1119.71	601.80	92.87	42.70	25.05	13.60	8.00	2,449.25
1980	14.20	831.37	ì	251.90	290.65	945.00	2386.59	329.80	101.45	59.70	43.75	36.75	i
1981	53.15	170.95	218.10	203.10	301.40	639.40	1044.25	ι	266.95	69.85	32.10	23.60	•
1982	25,28	104.10	178.69	148.64	199.05	292.00	06.699	158.94	85.75	59.05	40.79	38.67	2,000.86
Mean	33.02	155.43	158.09	147.91	239.43	834.49	1278.92	545.60	197.76	85.35	43.13	33.12	3,626.14

Table I-6 (2) MONTHLY RUNOFF RECORD AT CT-7 AND CT-9

												100	(COMP)
Water Year	Apr.	, Kay	Jun	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Jan.	Feb.	Yek.	Total
1975	6.58	13.85	34.89	39.51	47.48	234.78	625.84	250.63	34.39	13.40	6.67	3.82	1,311,84
1976	1.76	15.12	2.99	2.13	11.10	328.12	193,43	240.16	6.33	2.31	0.78	0.04	804,27
1977	2.87	3.32	2.91	0.99	0	6.45	13.09	7.94	2.40	0.18	o	0	39,49
1978	٥	75.31	32.30	141.15	30.22	208.48	826.36	57.54	16.24	7.30	3.42	0.28	1,399,11
1979	o	2.44	241.54	1.24	68.0	1157.91	149.64	27.71	15.78	10.59	7.81	8.41	1,624.06
1980		68.32	262.51	208.27	116.70	439.05	1072,66	182.85	62.19	40.50	29.97	28.44	2,511,46
1981	4.25	48,65	43.50	107.55	53.35	189.25	336.22	1.	124.95	66.20	43.40	39.30	·
1982	1.73	12.87	42.40	12.38	10.55	27.45	194.80	62.08	35.76	12.83	4.82	1-1	417.78
Mean	2.14	31.30	82.77	64.08	33.79	323.94	426.51	118.42	37.26	19.16	12.11	10.18	1,158,29
	CE-9 D.3	D.A. 541km ²											
Water Yeax	Apr.	Мау	Jun	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Total
	8.11	10.24	6.82	6,40	9.03	40.54	67.28	19.50	6.84	4 .33	4.10	5.56	186.74
1978	Z E	74 87	62.50	266.18	73.89	245.85	459.16	68.14	21.98	9.24	5.46	3.38	1293.79
1979	5.03	7.40	44.04	21.80	13.00	209.29	95.51	12.09	4.88	3.03	2.47	2.17	420.69
1980	2.10	133.62	394.79	73.50	97.73	271.99	1094.46	177.39	43.25	20.62	11.91	12.50	2333.86
1981	6,19	42.38	57.02	65.22	32.61	315.28	480.81	1237.77	169.38	61.38	29.89	25.75	2523.68
1982	17.67	32.64	44.50	20.22	20.24	51.11.	261.63	100.04	35,99	18.80	10.53	7.17	620.54
Mean	7.03	50.19	101.61	75.55	41.08	189.01	409.81	269.16	47.05	19.57	10.73	60.6	1229.88

Note :- Missiing Data

RESULTS OF WATER QUALITY ANALIYSIS

Table 1-7

Sample	Location	Date	ω	2 DK	꿆	EC×10 ⁶	Irrigation	Hilli	equiva	lent p	Williequivalent per litre (Lower figure in ppm	re (Lr	жет б	gure	add ni	_	83	SAR	8	Fe	(Iron)
No,			mdd.	ndd.			class	ය	35. 20	Ŗ.	Ж	- 8	8	5	8.	& Se			meg./1	Total	Dissolved
	Upper Mae Wong Dam	17,12 1984	0	0	7,9	52	เว - รา	0.41	0.03	0.25 K	<0.01	0	9.75	0.07	0.02 K(<0.01 0.24	33	0.5	0.25	< 0.01	0 0
2	Lower Mae Wong Dam	//	0	0	7.7	100	เร - เว	0.43	0.21	0.29	0.01	0	0.91 55	0.05	0.03	0.01	31	0.5	0.27	0.02	< 0.01 0.05
3	Khlong Pho Dam	#	0	0.77	2.7	260	C2 - S1	1.19	0.57	0.80	0.10	0	2.41	0.12	0.09 K	k0.01	31	9.8	0.65	0.02	0
4	Upper Huai Rang Dam	*	0	0.02	7.4	20	C1 - S1	0.16	0.06	0.40	0.04	0	0.52	33	0.08	0.01	64	1.2	0.30	0.02	0.01 0.15
ĸ	Lower Huai Rang Dam	"	0	0.01	7.7	75	C1 - S1	0.21	0.09	0.45	0.06	0	39	0.08	0.03	0.01	90	1.2	0.34	0.02	0.01
8	Upper Khun Keaw Dam	"	0	0	7.5	55	CI - SI	0.15	0.04	0,40	0.04	0	0.48	2	0.03 K	<pre>< 0.01</pre> 0.14	88	£:	0.29	< 0.01 0.05	00
7	Lower Khun Keaw Dam	~	0	0.01	7.5	140	CI - S1	0.56	0.40	9.40	0.04	0	1.32	0.07	0.02	0.01	23	0.6	0.36	0.04 0.88	0.02
8	Changwat NakhonSawan	<i>"</i>	0	10.0	7.1	170	CI - SI	0.62 12	0,39	0.68	0.08	0	1.70	0.12	0.03 <	<0.01 0.17	40	1.0	0.59	0.03	< 0.01 0.05
o	Sawang Arom	<i>,</i> , , , , , , , , , , , , , , , , , ,	0	0.01	7.5	160	IS - IO	0.60	0.32	0.70 15	0.15 6	0	85. 22	0.23	0.06 K	0.18	43	0	0.48	0.03 9.50	< 0.01 0.10
0 T	Nong Chang	*	0	0.27	7.2	170	C1 - S1	0.58	0.39	0.83 19	0.08	0	1.61	0.10 3	0.06	0.01	46	1.2	0.64	0.80	0.02

Table 1-8 RESULTS OF TANK MODEL ANALYSIS

	1977 1978 1979	975.8 1,329.9 1,111.0 978.9 3,966.68 2,449.25 0.093 0.275 0.203 ,736.21 4,278.16 3,147.04 1.77 1.08 1.28	a11 	of go mooff of go		1982 Mean	1,124.6 1,229.6 417.78 1,216.32 0.080 0,212 755.974 1,158.259 0.144 0,202 1.81 0.95			
	1976	1,332.9 3,948.56 0.273 4,174.38 1.06	Annual Rainf	Doselved Annual Runof: - Calculated Annual Runof: - Runoff Rate of Qc - Excluding Nov Excluding Jan.		1981	1,622.4 1,622.44 0.214 1,906.313 0.252		Mean	1,301.5 1,229.88 0.151 1,526.50
	1975	1,379.0 4,181.63 0.280 3,651.33 0.244 0.87	Where : R -	Note : 11		1980	1,364.8 2,511.46 0.395 1,500.493 0.236 0.500		1982	1,311.9 620.54 0.076 1,875.69
	1974	1,811.5 6,714.35 6,069.67 0.258 0.76				1979	932.1 1,624.06 0.374 1,096.847 0.252		1981	1,723.2 2,523.68 0.234 2,246.47
	1973	1,455.3 4,101.12 0.260 4,242.82 0.269 1.03	Mean	1,290.4 3,786.13 0.271 3,678.32 0.263 0.263		1978	1,189.0 1,399.11 0.253 937.105 0.169 0.67		1980	1,579.0 2,333.86 0.236 2,159.0
	1972	1,172.9 4,359.97 2,449.58 0.193	1982	1,138.4 2,000.86 0.162 2,998.52 0.243 1.50		1977	824.3 39.49 0.010 236.085 5.98	1.	1979	847.3 420.69 0.079 942.19
936 km	1971	1,093.1 3,574.59 0.302 2,580.06 0.218	7. 1981	2,176.51 2,176.51 0.74 0.72	403 km	1976	1,334.3 804.27 0.129 1,278.07 1.59	541 km	1978	1,302.8 1,293.79 0.159 1,405.73
station CT-54, D.A.	1970	1,707.5 4,629.76 0.250 6,226.27 0.337 1.34	71 1980	71,248.5 5,291.16 0.391 5,087.59 0.376 0.96	on CT-7, D.A.	1975	1,445.2 1,311.84 0.195 1,555.181 0.231	on CT-9, D.A.	1977	1,044.9 186.74 0.029 529.91
gage stati	Year	(a) (m) (a)	Year	(s/m)	gage station	Year	(s/m) (s/m)	gage station	Year	(m/s) (m/s) (m/s)
Stream	Water	ශලු පු පු පු වි වි	Water	945 95 8 80 94 8	Stream	Water	8929298 89298	Stream	Water	සපුළ පු

Table I-9(1) CALCULATED MONTHLY RAINFALL FOR RUNOFF ANALYSIS AT CT.5-A (Unit; mm)

Water		•111	•		1	0	not	Van	Dan	Inn	Eak	Wan	Total
Year	Apr.	. nay	Jun	July	Aug	sep.	UCI.	MUV.	Dec.	Jan.	rep.	ria i .	iotat
1954	21.9	254.4	195.2	196.8	234.9	275.4	106.1	2.0	0	1.7	0	76.6	1365.0
1955	164.2	161.9	210.5	185.8	197.4	268.8	76.1	48.1	0	0	85.9	55.9	1454.6
1956					e di il in	and the second	and the second		the state of the same	0		4 - 1	
1957	105.1	73.6	153.8	231.4	197.0	235.9	91.2	44.8	0	0.4	47.1	64.5	1244.8
1958	90.4	101.2	135.6	195.7	167.5	192.1	92.1	22.4	0	0	44.2	40.3	1081.5
1959	64.5	106.6	95.1	182.8	186.1	248.3	60.9	8.3	0	0.4	0	0	953.0
1960	33.2	124.3	205.1	130.7	146.2	163.6	134.5	40.8	0.4	0	86.7	111.2	1176.7
1961	129.8	307.3	150.9	189.8	267.0	223.7	248.9	2.5	5.6	5.1	25.5	5.1	1561.2
1962	27.8	142.4	163.3	183.9	183.6	279.8	136.3	26.6	2.9	0	28.4	32.4	1207.4
1963	81.1	106.1	145.1	165.0	106.7	221.4	238.0	100.1	0	50.0	26.4	46.5	1286.4
1964	85.1	214.8	128.9	156.9	181.2	291.8	279.3	57.8	31.2	0	69.6	29.3	1525.9
1965	41.2	166.7	187.1	152.5	193.5	193.7	157.6	74.2	0	81.2	34.2	36.1	1318.0
1966	49.0	205.4	205.9	165.3	205.8	181.7	166.5	73.0	53.4	30.9	24.1	0	1316.0
1967	101.4	142.2	156.6	127.7	219.3	202.1	134.7	50.9	0	0	80.1	22.6	1237.6
1968	84.4	111.5	142.1	179.4	176.8	161.1	61.1	0.8	0	53.5	0	53.7	1024.4
1969	47.8	116.8	164.1	173.9	179.9	274.1	179.6	34.3	0	0	26.0	45.0	1241.5
1970	54.4	232.9	177.3	252.9	335.2	316.6	235.1	40.3	25.0	0.4	5.3	32.1	1707.5
1971	74.5	196.0	127.4	109.9	216.0	222.8	130.2	5.6	0	0	9.2	1.5	1093.1
1972	22.1	136.7	145.8	100.6	151.0	237.8	199.3	62.2	44.3	0	0	73.0	1172.9
1973	39.4	285.1	252.6	214.7	138.3	247.4	94.4	14.5	0	3.0	1.4	137.2	1455.3
1974	133.1	179.4	106.1	180.5	154.1	400.6	302.2	65.6	15.6	128.3	62.0	84.1	1811.6
1975	66.1	194.5	128.2	167.0	201.1	224.8	198.6	100.4	18.2	0	25.7	54.4	1379.0
1976	36.8	285.5	106.8	107.6	248.4	286.8	168.8	44.9	5.5	16.0	0	25.8	1332.9
1977	111.8	153.4	62.8	128.3	133.3	224.7	83.6	8.9	14.5	0.3	44.2	0	975.8
1978	:			•	234.7					y *		0.3	
1979					124.5		A 1		4	0	1.7	22.6	1111.0
1980	86.1	114.1	207.7	216.1	177.6	446.1	187.0	7.4	0.6	0	0	13.5	1456.2
1981	75.0	102.0	143.7	152.8	261.8	155.9	128.4	197.5	0	0	0	0	1217.1
1982	*	100			176.3	interes.						22.2	1138.4
Mean	72.8	173.8	153, 1	168.9	193.0	256.6	147.7	40.5	7.5	13.3	27.0	38.8	1294.6

Table I-9(2) CALCULATED MONTHLY RAINFALL FOR RUNOFF ANALYSIS AT CT.7

(Unit; mm)

Water												. 11 1	
Year	Λpr.	May	Jun	July	Aug.	Sep.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Total
1954	36.7	208.7	214.7	168.5	226.7	223.4	97.1	17.5	0	0	0	128.8	1322.1
1955	93.8	173.4	186.3	235.8	221.1	282.5	98.1	76.2	0	\cdot 0	70.0	71.1	1508.3
1956	155.7	240.8	143.2	142.6	194.5	240.7	168.8	32.0	0	0	46.6	87.8	1452.7
1957	67.1	71.6	122.3	119.6	194,1	266.6	143.2	21.4	0	22.9	69.4	19.5	1117.7
1958	58.6	116.2	148.4	178.5	143.9	212.9	86.5	12,2	0	0	45.1	53.1	1055.4
1959	87.2	123.2	95.1	169.6	138.5	282.5	99.9	38.3	0	0	20.4	24.4	1079.1
1960	58.5	141.0	166.9	214.2	192.4	201.9	156.6	69.3	0	0	69.3	65.4	1335.4
1961	111.7	241.9	126.5	110.2	148.7	173.8	241.4	0	0	0 .	13.7	0	1167.9
1962	61.9	125.5	124.5	86.9	185.3	342.8	157.2	13.9	0	0	15.4	15.1	1128.5
1963	31.6	110,2	77.7	113.2	139.9	217.4	190.4	82.5	0	27.1	33.9	55.0	1078.9
1964	86.9	202.3	142.7	250.8	141.6	294.8	203.2	61.0	36.7	0	76.0	73.2	1569.2
1965	33.2	139.8	138.7	99.7	213.1	229.9	144.6	52.3	18.6	63.0	37.0	46.4	1216.3
1966	67.1	221.1	189.5	130.4	241.9	155.5	210.6	67.5	42.8	16.7	13.1	0	1356.2
1967	113.7	146.7	130.8	131.8	147.7	261.6	130.5	84.9	0	0	58.1	49.5	1255.3
1968	75.7	148.7	133.0	162.3	145.2	155.0	113.9	16.9	0	48.3	0	52.5	1051.5
1969	96.6	132.6	178.6	193.3	111.1	329.0	150.8	37.7	0	17.2	34.2	85.0	1366.1
1970	95.4	224.5	242.8	192.2	252.0	255.3	203.3	28.3	32.5	23.7	43.4	66.6	1660.0
1971	118.4	157.4	98.0	138.6	234.2	241.9	163,6	3.0	33.6	0	34.5	17.0	1240.2
1972	121.9	98.1	154.2	99.8	189.1	278.9	222.4	121.1	53.6	0.0	16.7	88.7	1444.5
1973	49.0	262.4	208.9	127.8	118.2	269.4	85.0	35.0	0	1.7	23.0	92.8	1273.2
1974	107.4	208.7	122.8	162.6	149.9	336.8	273.3	65.3	18.3	123.3	52.4	86.0	1706.8
1975	26.3	241.4	144.2	153.4	256.9	204.0	285.5	84.5	3.5	0	6.6	38.9	1445.2
1976	47.1	259.5	97.0	113.6	265.6	288.3	191.9	57.9	0	0	0	13.4	1334.3
1977	69.5	127.6	84.5	55.9	137.7	175.1	94.0	8.1	15.2	1.7	40.4	14.6	824.3
1978	54.1	214.8	128.3	247.8	127.8	248.8	162.5	0	0	3.0	1.9	0	1189.0
1979	11.3	155.5	142.5	53.5	68.9	464.4	11.6	0	0	0	8.0	23.6	932.1
1980	58.5	155.9	208.7	166.9	135.6	379.2	170.1	18.4	0	0	30.5	41.0	1364.8
1981	59.5	200.3	174.5	178.1	156.7	230.2	221.0	368.7	0	0	16.5	16.9	1622.4
1982	23.3	211.8	87.7	113.1	127.2	300.7	145.2	23.7	35.3	6.0	8	50.6	1124.6
					ż			1					
Mean 	71.6	174.5	145.3	148.6	172.6	260.1	159.4	51.6	10.0	12.2	30.0	47.5	1283.5

Table 1-9(3) CALCULATED MONTHLY RAINFALL FOR RUNOFF ANALYSIS AT CT.9

(Unit; mm)

Water										2° .			
Year		May	Jun	July	Aug.	Sep	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Total
1954	0	154.8	150.6	149.0	213.2	282.7	130.2	0	0	0	0	110.1	1190.6
1955	163.3	174.4	188.2	211.8	183,6	229.2	26.5	118.2	0	0	102.0	69.2	1466.4
1956	86.6	230.5	72.7	181.6	190.6	229.0	189.8	26.7	0	29.9	0	103.4	1340.8
1957	86.5	50.0	186.3	140.6	180.8	419.6	164.0	39.5	0 :	41.9	0	86.0	1395.2
1958	0	116.2	201.6	122.6	143.1	374.2	143.9	0	0	0	0	99.3	1200.9
1959	60.6	138.4	128.3	259.5	143.4	369.5	132.0	29.0	0	0	0	0	1260.7
1960	0												1182.2
1961													1240.3
1962	149.4	92.6	153.8	188.4	172.8	343.4	110.8	31.5	0	0	36.2	35.2	1314.1
1963	74.9	123.1	104.6	118.9	213.9	250.1	303.3	80.8	0	0	0	27.5	1297.1
1964	99.4	183.4	185.0	230.1	239.1	425.6	207.5	61.1	0	0	105.8	0	1737.0
1965	24.7	148.6	91.4	67.5	295.3	291.4	150.4	56.0	0	103.8	28.9	32.0	1290.0
1966	57.4	151.8	93.9	147.0	181.6	96.5	358.1	82.4	73.4	0	0	0	1242.1
1967	107.6	221.9	108.8	84.9	78.6	217.5	147.4	71.3	0	0	31.4	41.8	1111.2
1968	215.0	183.0	156.9	266.2	119.3	120.0	152.5	26.7	0	80.4	0	40.5	1360.5
1969	66.0	107.2	168.5	99.4	121.6	343.5	77.7	39.9	0	10.0	17.1	73.9	1124.8
1970	90.8	302.2	238.0	210.1	303.4	373.6	308.4	32.0	53.0	2.2	23.5	23.6	1960.8
1971	67.2	236.0	278.9	80.4	190.6	295.9	240.7	2.1	3.5	26.0	34.5	118.1	1573.9
1972	74.4	52.3	205.1	28.0	91.5	482.5	259.5	146.4	30.9	0	34.4	30.5	1435.5
1973	9.8	328.5	167.9	71.1	79.2	224.3	129.7	32.7	0	0	32.9	30.6	1106.7
1974	122.9	209.2	76.7	159.3	208.8	374.1	340.6	51.2	0	117.7	1.0	57.7	1718.2
1975	117.5	245.3	134.5	159.2	147.4	222.8	209.3	131.5	56.0	0	0	92.0	1515.5
1976	124.7	205.1	107.1	121.7	171.1	179.5	170.5	29.7	0	0	0	64.7	1174.1
1977								21.5					1044.9
1978	51.6	284.1	146.6	297.8	57.0	239.6	187.1	27.7	0	0	12.5	0	1302.8
1979	62.2	61.8	247.8	43.8	76.1	283.2	10.3	0	0	0	19.2	42.9	847.3
1980	41.1	233-2	320.0	143.1	216.2	224.3	277.3	36.9	0	0	58.6	28.3	1579.0
1981	91.0	288.9	123.7	162.1	54.7	350.0	141.3	404.4	0	. 0	0	107.1	1723.2
1982	8.0	251.0	320.0	23.5	129.8	325.5	138.6	37.5	38.2	6.8	0	33.0	1311.9
Mean	80.0	179.0	162.0	142.6	162.7	282.4	184.5	58.1	10.3	14.6	21.8	48.5	1346.5

Table I-10 (1) MONTHLY RIVER RUNOFF SIMULATED BY TANK MODEL (1,000 cum/sq.km) THE MAE WONG RIVER AT GAGING STATION : CT-5A

Water Year	Apr.	May	June	July	Aug.	Sep.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Total
1954	2.0	4.5	55.7	45.4	70.3	80.6	127.4	10.6	4.8	4.0	3.1	2.4	411
1955	2.2	6.3	26.4	41.9	51.6	86.1	91.6	13.7	5.2	4.4	4.0	3.5	337
1956	3.3	17.7	54.4	15.4	30.6	71.5	63.0	20.5	5.9	5.1	4.4	3.7	296
1957	3.3	2.8	7 4	25.8	68.5	93.6	78.7	8.1	5.1	4.4	3.6	3.2	304
1958	2.5	2.5	2.8	14.3	30.6	55.8	60.4	10.1	4.4	3.6	3.0	2.3	192
1959	1.5	1.2	2.9	4.4	28.1	73.0	79.7	6.0	3.0	2.2	1.3	0.4	204
1960	0.0	0.0	5.2	20.8	18.9	33.0	57.5	11.8	2.5	1.7	1.3	1.0	154
1961	0.7	10.6	79.4	21.8	70.6	104.9	119.5	39.8	4.6	3.9	3.1	2.2	461
1962	1.2	0.9	8.0	18.3	42.7	70.5	126.4	18.1	3.6	2.9	2.1	1.3	296
1963	0.6	0.5	1.7	10.9	17.6	31.4	114.6	53.4	3.8	3.0	2.3	1.5	241
1964	0.8	2,5	17.2	19.3	25.1	68.2	166.9	71.0	7.0	4.0	3.4	2.8	388
1965	1.9	1.6	14.8	24.2	30.4	69.4	81.7	26.7	4.7	4.0	3.8.	3.0	266
1966	2.3	3.0	28.5	35.9	50.2	90.6	55.3	23.3	5.9	5.2	4.5	3.6	308
1967	2.8	2.8	10.2	16.9	21.7	73.4	81.6	17.5	5.4	4.6	4.1	3.4	244
1968	2.7	2.5	3.5	16.7	55.3	44.0	36.0	5.2	4.0	3.5	2.8	2.2	178
1969	1.4	1.9	4.2	5.6	22.7	70.2	54.6	61.9	10.8	4.3	1.8	1.4	241
1970	1.6	14.6	26.3	11.5	46.1	53.1	134.4	61.6	56.2	12.7	5.7	3.7	427
1971	3.1	9.1	13.7	19.2	32.6	68.9	109.1	50.5	11.7	6.5	3.2	2.4	330
1972	1.2	0.8	8.0	4.2	5.8	72.1	155.4	87.0	47.0	15.3	6.9	5.9	402
1973	3.2	8.6	33.6	20.2	18.8	80.1	128.3	42.6	19.8	11.1	6.4	5.7	379
1974	11.2	13.3	9.3	8.9	31.9	172.0	222.1	99.8	20.0	17.5	8.3	5.4	. 620
1975	4.1	.15.8	23.4	14.0	15.2	79.8	133.0	59.4	20.5	11,2	5.7	3.9	386
1976	3.0	16.4	4.7	5.2	23.0	88.2	95.8	107.8	11.1	5.6	2.2	1.4	364
1977	2.4	4.5	2.0	3.5	5.8	27.9	26.5	9.4	3.5	2.0	1.4	1.5	90
1978	1.4	8.8	6.3	35.9	26.6	89.9	159.7	20,9	9.1	4.4	1.9	1.3	366
1979	1.5	5.1	28.7	7.2	7.9	103.4	55.6	8.6	3.9	2.3	1.3	0.7	226
1980	1.3	76.7	31.1	23.3	26.8	87.2	220.3	30.4	9.4	5.5	4.0	3.4	520
1981	4.9	15.8	23.9	18.8	27.8	59.0	96.4	59.4	24.6	6.4	3.0	2.2	342
1982	2.3	9.6	16.5	13.7	18.4	27.0	61.8	14.7	7.9	5.5	3.8	3.6	185
Mean	2.4	9.0	18.7	18.0	31.8	73.3	103.2	36.2	11.2	5.8	3.5	2.7	316

Note 1954 - 1968 : generate by tank model

1969 - 1982 : observed at CT-5A

Table I-10(2) MONTHLY RIVER RUNOFF SIMULATED BY TANK MODEL (1,000 cum/sq.km)

THE KHLONG PHO RIVER AT GAGING STATION CT-7

Water											na file. Nach file		
Year	Apr.	May	Jun	July	Aug.	Sep	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Total
1954	0.9	1.2	23.1	32.2	36.2	48.2	56.3	16.0	4.2	3.1	1.8	0.9	224.2
1955	0.7	0.8	14.3	26.1	50.9	71.4	70.3	27.0	5.0	3.8	2.9	2.3	275.5
1956	1.6	8.1	27.5	23.4	26.5	46.4	54.4	28.5	5.3	4.1	3.1	2.2	231.1
1957	1.7	1.0	0.9	1.9	17.7	41.4	61.5	21.5	3.6	2.5	1.9	0.9	156.7
1958	0 -	0	1.4	17.3	22.7	27.7	38.8	10.7	2.6	1.5	0.8	0	123.6
1959	0	0	0.1	2.3	15.7	33.0	55.5	19.3	2.9	1.8	0.8	0	131.6
1960	0	0	3.9	21.2	36.0	44.4	50.6	24.2	4.1	3.0	2.2	1.5	191.1
1961	0.6	6.1	23.7	14.5	15.8	25.5	44.4	28.8	3.9	2.8	1.6	0.4	168.3
1962	0	0	0.1	3.9	10.4	57.8	95.4	23.2	3.2	2.1	1.0	0.1	197.0
1963	0	0	0.1	0.2	6.2	22.7	45.0	37.3	2.9	2.2	1.2	0.3	118.1
1964	0 -	0.8	14.0	25.4	38.0	50.2	99.8	39.1	8.8	3.9	3.1	2.6	285.8
1965	1.3	0.9	3.5	8.6	14.0	39.3	50.9	26.9	4.1	3.1	2.5	1.5	156.6
1966	0.8	1.7	20.2	26.4	28.0	47.9	47.8	30.4	5.3	4.1	3.0	1.6	217.3
1967	0.6	0.6	5.6	7.7	15.2	36.0	53.3	25.9	4.1	2.9	2.0	1.2	155.0
1968	0.2	0.3	2.8	10.3	23.4	26.5	28.4	10.2	2.5	1.7	0.7	0	107.1
1969	0	0	5.0	23.5	23.9	40.7	76.2	28.1	3.9	2.9	2.0	0.8	207.1
1970	0.5	1.8	30.1	44.1	46.2	73.1	60.3	37.4	8.5	4.8	3.8	3.0	313.6
1971	2.4	2.1	2.4	10.2	19.5	65.8	52.8	23.6	4.9	3.9	2.8	1.6	191.9
1972	0.6	0.6	2.5	9.6	18.0		Service and	41.9	15.4	4.1	2.9	2.2	229.8
1973	1.1	4.7	32.0	35.7	20.9	29.7	47.5	16.1	4.2	3.0	2.0	1.1	198.0
1974	0.7	3.1	12.6	12.0	19.4	61.5	138.0	54.0	10.2	4.7	4.3	3.6	324.3
1975	1.4	3.0	7.5	8.5	10.2	50.3	134.2	53.7	7.4	2.8	1.4	0.8	281.2
1976	0.4	3.2	0.6	0.5	2.4	70.3	41.5	51.5	1.4	0.5	0.2	0	172.4
1977	0.6	0.7		0.1		1.4	2.8	1.7	0.5	0	0	0	8.5
1978	. 0			- 1				12.3		1.6	0.7	0.1	300.0
1979	0					1000	32.1			2.3			348.2
1980	0		**				230.0		1.00	8.5		6.1	537.2
1981	0.9			100				119.2	100	100		8.4	345.9
1982	0.4							13.3		2.8		0.2	89.6
Mean	0.6	3.0	12.7	16.1	19.4	51.3	70.7	29.9	5.9	3.4	2.3	1.6	216.8

Note 1954 - 1974: generated by tank model

1975 - 1982 : observed at CT-7

Table 1-10(3) MONTHLY RIVER RUNOFF SIMULATED BY TANK MODEL (1,000 cum/sq.km)

THE THAP SALAO RIVER AT GAGING STATION CT-9

Water													
Year	Apr.	May	Jun	July	Aug.	Sep.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Total
1954	0.1	0	1.4	5.0	11.2	52.9	84.6	5.7	3.2	2.4	1.5	0.9	168.8
1955	1.1	2.6	19.3	9.4	29.4	53.5	43.5	6.5	4.5	3.6	3.2	2.9	179.6
1956	2.2	3.4	6.7	4.7	20.5	54.9	62.1	16.9	5.2	4.4	3.6	3.1	187.6
1957	2.7	1.9	4.1	6.7	18.1	68.3	160.9	11.8	5.2	4.4	3.7	3.1	291.0
1958	2.1	1.4	4.6	8.9	7.1	49.5	122.3	10.2	4.5	3.7	2.7	2.0	218.
1959	1.5	1.3	2.6	7.5	31.9	66.2	121.5	13.9	4.7	3.8	2.8	1.8	259.
1960	0.6	0.2	1.7	5.3	9.1	20.9	82.2	23.8	3.9	3.2	2.4	1.5	154.
1961	0.7	1.7	4.7	1,5	6.7	40.0	90.4	25.7	3.8	3.1	2.2	1.3	181.
1962	0.9	0.9	1.1	5.4	16.9	72.6	95.1	6.5	3.9	3.1	2.3	1.5	210.
1963	0.8	0.7	0.8	1.0	6.2	45.3	129.0	47.9	4.2	3.4	2.4	1.5	243.
1964	0.8	1.7	7.6	29.6	48.1	105.8	153.8	43.7	5.6	4.8	4.1	3.5	409.
1965	2.5	2.0	3.3	2.4	8.0	76.3	91.1	18.0	4.9	4.7	3.9	3.1	220.
1966	2.4	2.7	2.5	4.2	8.1	25.5	49.3	58.4	6.2	5.1	4.1	3.0	171.
1967	2.3	3.5	6.6	4.1	3.6	8.5	49.2	8.2	4.5	3.7	2.8	2.0	99.
1968	3.3	11.5	11.8	25.1	47.9	9.8	15.9	8.2	5.0	4.6	3.8	3.0	149.
1969	2.2	1.9	3.0	5.2	4.2	45.5	69.3	6.8	4.2	3.4	2.5	1.7	150.
1970	1.5	5.4	53.2	55.5	87.3	101.6	124.3	74.0	8.2	6.4	5.4	4.3	527.
1971	3.6	4.9	15.0	64.5	9.3	84.0	73.9	29.3	7.1	6.2	5.5	4.9	308.
1972	4.4	4.0	5.7	5.8	4.3	63.4	163.9	50.7	10.1	6.7	5.8	4.9	329.
1973	3.8	9.6	48.9	13.7	5.4	12.6	60.5	8.1	5.7	4.9	4.1	3.1	180.
1974	2.4	5.3	6.3	5.2	27.0	84.2	176.2	72.9	6.4	6.8	5.5	4.7	402.
1975	1.4	6.7	16.8	17.2	9.6	53.3	181.2	36.2	9.2	7.2	6.1	5.4	350.
1976	4.8	7.7	9.2	7.2	9.0	37.1	27.6	12.9	7.1	6.2	5.2	4.5	138.
1977	1.3	1.6	1.1	1.0	1.4	6.5	10.8	3.1	1.0	0.6	0.7	0.6	29.
1978	0.5	11.5	10.0	42.5	11.8	39.3	73.3	10.9	3.5	1.1	0.9	0.5	205.
1979	0.8	1.2	7.0	3.5	2.1	33.4	15.3	1.9	0.7	0.5	0.4	0.4	67.
1980	0.3	21.3	63.0	11.7	15.6	43.4	174.8	28.3	6.9	3.3	1.9	2.0	372.
1981	0.9	6.8	9.1	10.4	5.2	50.4	76.8	197.7	27.1	9.4	4.8	4.0	402.
1982	2.8	5.2	7.1	3.2	3.2	8.2	41.8	16.0	5.7	3.0	1.7	1.1	99.
Kean	1.9	4.4	11.5	12.7	16.1	48.7	90.4	29.5	5.9	4.3	3.3	2.6	231.
			:										

Note 1954 - 1976 : generated by tank model

1977 - 1982 : observed at CT-9

Table I-11 (1) ANNUAL MAXIMUM RIVER DISCHARGE

akae Krang Rive			
Water Year	Date	Q (Ems)	SQ (L/s/k
CT. 5A (DA	$= 936 \text{ km}^2$)		
1969	Nov.5	117.0	125
1970	Oct.l	283.0	302
1971	Oct.29	367.0	392
1972	Oct.6	230.0	246
1973	Sep.30	141.0	151
1974	Sep.26	493.0	527
1975	Oct.15	162.0	173
1976	Nov.2	329.0	351
1977	Oct.30	55.0	59
1978	Oct.1	592.0	632
1979	Aug. 26	321.4	343
1980	May.22	403.7	431
1981	Nov.8	703.0	751 (max
1982	Oct.15	86.1	92
	930 km ²)		
1968	Mar.2	72	77.
1969	Nov.5	400	430 (max
1970	Oct.14	155	167
	588 km ²)	195	10,
1969	Nov.5	62.6	106
1970	Oct.31	213	362
1971	Oct.27	107	182
1972	0ct.6	196	333
1973	Sep.22	52.5	89
1974	Oct.12	363	617 (max
1975	Oct.16	219	372
CT. 7 (DA =	403 km ²)		
1975	Nov.11	67	166
1976	Sep.8	45	112
1977			-
1978	Oct.3	171.4	425
1979	Sep.26	203.0	504
1980	Oct.1	184.0	457
1981	Nov.8	304.9	757 (max
1982	Oct.21	25.4	63
CT. 4 (DA =	1,382 km ²)		
1975	Oct.19	81	59
1976	Nov.4	110	80
1977	Sep.23	35	25
1978	Oct.2	121	88
1979	Sep.28	107	77
1980	Oct.3	92.2	67
1981	Nov.9	260.6	189 (max
1982	Oct.18	46.8	34

Table I-11 (2) ANNUAL MAXIMUM RIVER DISCHARGE

CT. 3	(DA = 6)	70 km ²)			
1967		Oct.3	31.3	47	
1968	e teg	May.b	23.2	35	
1969		•	63.0	94	
1970		Oct.1	155.0.	231 (max)	
1971	*	Oct.28	68.0	101	
1972	:	Oct.6	135.0	201	
CT. 9	(DA = 5)	41 km ²)			
1977		Oct.8	7.3	13	
1978		Oct.2	· ·	108	
		Sep.26			
and the second second		0ct.1		· ·	
		Nov. 1			
1982		Oct.20	55.6	103	
CT. 8	(DA = 3,	256 km ²)			
1975		Oct.11	161.9	50	
1976		Nov.8	121	37	
1977		Sep.26	6.6	2 .	
1978	•	Oct.6	196.6	60 (max)	
ther Rive	er Basin	Water		Max	Specific
tation	DA	Year	Date	Q	. Q
:	(km ²)			(cms)	(1/s/km ²)
OM River	Basin				
Y.1	7,590	1939	Aug. 26	2,940	387
Y.2	5,512	1952			599
Y.3A		1974			121
Y.4		1980		576	32
Y.6	12,658	1961	· ·	3,112	246
Y.11	5,542	1957	*-	2,708	489
Y.13	382	1961	Aug. 22	832	2178
Y.14	12,131	1973	Sep.1	4,060	335
Y.20	5,410	1973	Aug.28	3,000	\$ \$5
Y.26 IAM River	785	1980	Sep.7	386	492
N.1	4.609	1963	Sep.12	2,800	608
			- · · -	4,050	240
				•	112
		The state of the s			399
					484
					1,594
					182
N.23	16,336	1970	Aug. 25	3,636	223
IV.ZI		# - A W		~ ,	
	1967 1968 1969 1970 1971 1972 CT. 9 1977 1978 1979 1980 1981 1982 CT. 8 1975 1976 1977 1978 Other River Y.1 Y.2 Y.3A Y.4 Y.6 Y.11 Y.13 Y.14 Y.20 Y.26	1967 1968 1969 1970 1971 1972 CT. 9 (DA = 56) 1977 1978 1979 1980 1981 1982 CT. 8 (DA = 3,2) 1975 1976 1977 1978 Other River Basin X.1 7,590 Y.2 5,512 Y.3A 13,583 Y.4 17,731 Y.6 12,658 Y.1 7,590 Y.2 5,512 Y.3A 13,583 Y.4 17,731 Y.6 12,658 Y.11 5,542 Y.13 382 Y.14 12,131 Y.20 5,410 Y.26 785 NAM River Basin N.1 4,609 N.2 16,862 N.4 19,384 N.6A 13,173 N.13 8,993 N.17 1,156	1967 Oct.3 1968 May.b 1969 Nov.5 1970 Oct.1 1971 Oct.28 1972 Oct.6 CT. 9 (DA = 541 km²) 1977 Oct.8 1978 Oct.2 1979 Sep.26 1980 Oct.1 1981 Nov.1 1982 Oct.20 CT. 8 (DA = 3,256 km²) 1975 Oct.11 1976 Nov.8 1977 Sep.26 1978 Oct.6 Other River Basin Station DA Year (km²) COM River Basin Y.1 7,590 1939 Y.2 5,512 1952 Y.3A 13,583 1974 Y.4 17,731 1980 Y.6 12,658 1961 Y.11 5,542 1957 Y.13 382 1961 Y.11 5,542 1957 Y.13 382 1961 Y.14 12,131 1973 Y.26 785 1980 NAM River Basin N.1 4,609 1963 N.2 16,862 1952 N.4 19,384 1961 N.6A 13,173 1963 N.13 8,993 1963 N.17 1,156 1973	1967 Oct. 3 31.3 1968 May.b 23.2 1969 Nov.5 63.0 1970 Oct.1 155.0 1971 Oct.28 68.0 1972 Oct.6 135.0 CT. 9 (DA = 541 km²) 1977 Oct.8 7.3 1978 Oct.2 56.3 1979 Sep.26 42.8 1980 Oct.1 129.8 1981 Nov.1 174.6 1982 Oct.20 55.6 CT. 8 (DA = 3,256 km²) 1975 Oct.11 161.9 1976 Nov.8 121 1977 Sep.26 6.6 1978 Oct.6 196.6 Other River Basin Water (km²) Other River Basin Water (km²) Y.1 7,590 1939 Aug.26 Y.2 5,512 1952 Sep.20 Y.3A 13,583 1974 Aug.19 Y.4 17,731 1980 Sep.10 Y.6 12,658 1961 Sep.12 Y.11 5,542 1957 Sep.1 Y.13 382 1961 Aug.22 Y.14 12,131 1973 Sep.1 Y.26 785 1980 Sep.1 Y.27 785 1980 Sep.1 Y.28 1961 Aug.22 Y.14 12,131 1973 Sep.1 Y.29 5,410 1973 Aug.28 Y.26 785 1980 Sep.7 V.27 1984 Nag.28 V.28 1984 Sep.1 N.1 4,609 1963 Sep.12 N.2 16,862 1952 Sep.22 N.4 19,384 1961 Sep.12 N.2 16,862 1952 Sep.22 N.4 19,384 1961 Sep.12 N.13 8,993 1963 Sep.14 N.13 8,993 1963 Sep.14 N.13 8,993 1963 Sep.13 N.17 1,156 1973 Aug.27	1967

Table I-11 (3) ANNUAL MAZIMUM RIVER DISCHARGE

		Water		Max	Specific
Station	DA	Year	Date	Q	Q
000000	(km ²)			(cms)	$(1/s/km^2)$
		1020	dum 26	2,645	152
N.26	17,350	1970	Aug. 26	1,592	81
N.27	19,549	1966	Aug. 27	580	1,218
N.28	476	1971	Jul.14	720	1,957
N.28A	368	1978	Aug. 13	2,196	892
N.33	2,463	1978	Aug. 13	1,020	484
N.42	2,107	1980	Ju1.24	1,020	701
MEA KLONG	River Basin				
K.4	26,441	1953	Aug.24	6,000	227
K.6	11,010	1962	Sep.20	2,746	249
к.8	26,421	1961	Aug.28	4,363	165
K.9	6,902	1974	Aug. 21	3,958	573
K.10	7,008	1974	Aug.21	3,294	470
K.11	26,449	1974	Aug.21	3,592	136
K.13	4,042	1966	Sep,10	3,146	778
K.17	1,355	1968	Oct,22	954	704
K.19	8,437	1972	Sep. 20	2,770	328
K.20	11,184	1972	Sep. 20	2,251	201
K.22A	321	1982	Jul.3	438	1,364
K.27	1,921	1974	Oct.13	438	228
K.28	183	1981	Nov.7	323	1,765
PiNG River	Basin				
P.1	6,355	1973	Aug. 25	729	115
P.4A	1,902	1973	Aug, 24	739	389
P.5	1,569	1973	Aug.26	376	240
P.13	1,765	1973	Aug.24	1,251	709
P.14	3,853	1960	Aug.21	1,030	267
P.14A	3,909	1962	Oct.2	647	166
P.19A	14,023	1973	Sep.21	1,888	135
P.21	515	1975	Sep.22	96	186
P.22	135	1963	Oct.27	63	467
P.23	1,777	1960	Dec.3	420	236
P.24	616	1964	Oct.4	421	683
P.28	1,261	1973	Aug. 24	503	399
P.29	1,970	1973	Sep.20	470	239
PASAK River		1773	0cp.20	470	2.33
		1007		1 510	105
S.2	14,522	1964		1,519	105
s.6	1,006	1956	Aug. 14	825	820
S.7	177	1972	Sep.18	167	2,034
s.9	14,374	1978	0ct.3	3,254	226
S.10	268	1980	Sep.7	444	1,657
S.12	471	1978	Sep.22	173	367
S.13	359	1978	Sep.30	287	799
CHAO PARAYA	River Basin				
C.1	118,816	1942	Sep.24	6,500	55
C.2	110,569	1961	Oct.13	4,721	43
	- ,			.•	· · ·

Table I-12 FLOOD PROBABILITY AT CT-7

Дат	1/10	1/20	1/100	1/200	1/500	1/500 1/1,000
Specific Discharge (cms/km^2)	0.78	1.02	1.65	1.97	2.43	2.82
Upper Mae Wong	480	630	010,1	1,210	1,490	1,730
Lower Mae Wong	730	950	1,530	1,830	2,260	2,620
Khlong Pho	310	400	059	780	096	1,110
Huai Rang	09	80	130	150	190	210
Upper Huai Rang	30.	040	70	80	100	120
Khun Kaew	130	170	270	320	390	460
Lower Khun Kaew	170	220	360	430	530	620

Specific discharge at CT.7 is applied

1/1,000	468	1,902	2,030	2,815	1,236	
1/500	422	1,679	1,760	2,429	1,063	
1/200	345	1,405	1,436	1,968	857	
1/100	292	1,210	1,213	1,651	716	
1/20	186	801	764	1,015	434	
1/10	147	640	965	778	330	
1/5	110	484	440	560	234	
zi	ω	14	7	7	v	
Station	CT.4	CT.5A	CT.6	CT.7	e. FO	
	N 1/5 1/10 1/20 1/100 1/200 1/500	$\frac{1}{5}$ $\frac{1}{10}$ $\frac{1}{20}$ $\frac{1}{100}$ $\frac{1}{200}$ $\frac{1}{200}$ $\frac{1}{500}$ $\frac{1}{500}$ 8 110 147 186 292 345 422	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	N 1/5 1/10 1/20 1/500 1/500 8 110 147 186 292 345 422 14 484 640 801 1,210 1,405 1,679 7 440 596 764 1,213 1,436 1,760	N 1/5 1/10 1/20 1/500 </td <td>M 1/5 1/10 1/20 1/500 1/500 8 110 147 186 292 345 422 14 484 640 801 1,210 1,405 1,679 7 440 596 764 1,213 1,436 1,760 7 560 778 1,015 1,651 1,968 2,429 6 234 330 434 716 857 1,063</td>	M 1/5 1/10 1/20 1/500 1/500 8 110 147 186 292 345 422 14 484 640 801 1,210 1,405 1,679 7 440 596 764 1,213 1,436 1,760 7 560 778 1,015 1,651 1,968 2,429 6 234 330 434 716 857 1,063

N : Number of samples Unit : 1/s/m²

Table I-13 PROBABLE FLOOD BY RATIONAL FORMULA

/11	fluor on	Mae Wong Dam	Drainago	Area 612 km	₁ 2			
(1)	opper	riae nong baik	1/10	1/20	1/100	1/200	1/500	1/1,00
	· • • • • • • • • • • • • • • • • • • •							
Ma	x.R24	mm/day	166	189	238	260	296	323
	\mathbf{n}_{\perp}		0.49	0.43	0.36	0.34	0.30	0.28
	$\mathbf{T}\mathbf{p}$	hr	28.7	27.0	24.6	23.7	22.6	21.8
	Re	nm/hr	6.3	7.5	9.8	10.9	12.6	13.8
	\mathbf{q}	cms/km²	1.40	1.67	2.18	2.42	2.80	3.07
2)	Lower	Mae Wong Dam	Drainage	Area 930 km	η ³			
Ма	x.R24	mm/day	166	.189	238	260	296	323
- 1	n	,	0.49	0.43	0.36	0.34	0.30	0.28
	Тр	hr	32.0	30.1	27.3	26.3	25.0	24.2
	Re	mm/hr	6.0	7.1	9.5	10.5	12.2	13.4
	q	cms/km²	1.33	1.58	2.11	2.33	2.71	2.98
 3)	Khlong	Pho Dam	Drainage	Area 394 kı	r ₀ 3			
			دمه	100	220	260	206	222
Ma	x.R24	mm/day	166	189	238	260	296	323
	n		0.49	0.43	0.36	0.34	0.30	0.28
	$\mathbf{T}\mathbf{p}$	hr	25.5	24.1	22.0	21.3	20.2	19.6
	.Re	mm/hr	6.7	7.9	10.2	11.3	13.0	14.2
	đ	cms/km²	1.49	1.76	2.27	2.51	2.89	3.16
4).	Huai R	ang Dam	Drainage	Area 76 km	·			
Ма	x.R24	ının/day	166	189	238	260	296	323
1100	n		0.49	0.43	0.36	0.34	0.30	0.28
	тр	hr	16.5	15.8	14.5	14.1	13.5	13.1
	Re	mm/hr	8.3	9.4	11.9	13.0	14.7	15.9
	d .	cms/km²	1.84	2.09	2.64	2.89	3.27	3.53
						· · · · · · · · · · · · · · · · · · ·	·	
5)	Upper 1	Huai Rang Dam	Drainage	Area 41 km	2	: .		٠
Mai	x.R24	mm/day	166	189	238	260	296	323
	n		0.49	0.43	0.36	0.34	0.30	0.28
	Тр	hr -	14.0	13.4	12.4	12.1	11.6	11.3
	Re	mm/hr	9.0	10.1	12.6	13.7	15.3	16.6
	q	cms/km²	2.00	2.24	2.80	3.04	3.40	3.69
 5)	Khun K	aew Dam	Drainage	Area 162 kr	ŋ²		,- ,	
Me	x.R24	mm/day	166	189	238	260	296	323
1 161	n	nun, way	0.49	0.43	0.36	0.34	0.30	0.28
:	Tp	hr	20.1	19.2	17.6	17.0	16.3	15.8
	Re	mm/hr	7.5	8.7	11.1	12.2	13.9	15.1
	q	cms/km²	1.67	1.93	2.47	2.71	3.09	3.36
 7)	Lower	Khun Kaew Dam	Drainage	Area 219 km	3			
M-	x.R24	mm/day	1.66	189	238	260	296	323
rid	n n	nany day	0.49	0.43	0.36	0.34	0.30	0.28
		1					,	
	Tp	hr	21.8	20.7	19.0	18.4	17.5	17.0
	-	/h->-	77 7	0 4	10.0			
	Re q	mm/hx cms/km²	7.3 1.62	8,4 1.87	10.8 2.40	$\begin{array}{c} 11.9 \\ 2.64 \end{array}$	13.6 3.02	14.8 3.29

METHOD	
NAKAYASU	
۲n	
ANALYSIS	
1000	

			. ~						٠.																٠.	÷			•																							
	DISCHARGE	3.65	37 - 1565 24 - 1505	7 4 4 9	4.51	7.57	70.07	9	0:16	8.77	7-74	6.31	00.	1 0	0 0		,,,	0	9	0.55	9.25	7.82	7+40	ر ا	4.65	4.22	20.0		7	. 0	0	0.25	0.0	10.0						T ATTOM	ਜ ਵ		:							٠		
	AIN. UNIT-HYD.	.0 0-140E+0		0 0-1256-0	.0 0.120E+0	0 0-1155+0	0 0 1717 0 0	0 10000	0 0-986E-0	0-0 0-	0	0	0	0						0.0	000	0.0	0.0-	0	0 0-	0	0	င် ဝ	် (၁ (20		0					-	VIDOCODADH STMIII												
	RAINFALL EFF.R		00																						.4			٠	٠	• •				•			=			VH TIMIL ALL	1715			-								
	D + HR	2	11 21	4 M	2	2	~ r	, ,	N	'n	2	2	(J)	7.	7 1	√ r	4.	4 -	4 17	10	2 .1	12	2	2	2	53	2 2	m	m. i	กห		٦ K) K	, M						Table T) - 3											
	DISCHARGE	58.71		99.53	83.10	68• 14 54. 65	42.25	30-69	19-78	00.42		ΛN + Ο Φ	70.77	, C	57.37	50.23	43.57	37.32	31,50	26-11	21.00	16-15	111.5	07.24	00.40	ň			9 1	2.5	*	1.7	5.1	700	v 0		'n	5	5.5	7.6	5.8	Ö,	, ,		1 4	2	69	3.5	2 2	0	9	
	AIN. UNIT-HYD.	0.0.133E+0	0.0 0.1266+01	.0 0-113E+0	.0 0.108E+0	0 0 103540	0 0.952E+0	.0 0.915E+0	.0.0.830E+0	0 0 8 6 E + 0	0 0 8145+0	0 + 12 4 12 4 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0000000000000000000000000000000000000	0+U Y O Y O O	0+10000 O	0 0 644E+0	0 0,619E+0	0 0.5955+0	0.0.5738-0	.0 0.551E+U	.0 0.529E+0	0+3605.0 0.	.0.0.490E+0	0 0 471E+0	0.475540	.0 0.435E+0	0 0 4 1 9 E + O O 4	0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0	0 + 10 C M 10 C C	0.0.353E+0	0 0 344E+0	.0 0.331E+C	.0 0.319E+0	.0 0.306E+0	* 0 0 * 295E+C	14000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 2525+0	.0 0.242E+(*0 0.233E+(.0 0.224E+(.0 0.215E+(*0 0*207E+0	1 H C C C C C C C C C C C C C C C C C C	1	0 0 1778+	10 0-170F+	-0 0.164E+	+0 0.159E+	.0 0.1525+	.0 0.146E+	
	RAINFALL EFF.R	0	ь с 0 с		0.		s p	0		0	0	o c	.	9 6	> 0			0	0	o	0	0	0	0	C 1	0	0 (٥,	> 0	> 0			0	0.	0.	> (÷ <	e c	0	0	0	0,	0,0	0	0.0			· •	0		0.	
	0 ##	~1	0 0 11 13	,	~			1 1	₹V)	N	C) I	~ ~	_	~	~	2	~ ^	ص د	~ O	~ .		~ ·	- 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	· ·			0	,,	~ .	-4 -	٠.		۱	-4	-	Н.	_		. ·	· ·	· -		٠.	٠.,	
1400	DISCHARGE	40.0	10-255	1.72	10 . C.	00 u	90.	7.8	5.76	5.06	. 77	40.0	^ .) ; ; ;	7. · · · · · · · · · · · · · · · · · · ·		4	5.80	5.	1.66	5.77	3.40	8 - 43	2 . 62	ν. γ.	ر د ت	5.30	5 to 5		0 0		2.29	8 55	3.48	2.27	4-62	5.78) ; c	4 C	90.0	1.63	5.37	9.38	3.45	7.72			 	, W	, ,		•
IS BY NAKAYASU ME	F.RAIN. UNIT-HYD.	-4 0-629E-0	3*4 0*352E-01 7-8 0*878F-01	-3 0-175E-0	-0 0.299E+3	0 0 466 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	.a 0.925E+0	+0 0-123E+0	-0 0-158E+0	*0 0-199E+0	-0 0-245E+0	9-3 0-296E+C	- 3 0 - 5 5 4 F + 0	1.5 0.414F+0	0. V . C . F & & & & & & & & & & & & & & & & & &	O+U#07 * O * 7	0.01/10/0 K	3.0.8348+0	0-325-0.9"	-8 0-105E+0	*1 0-117E+0	-6 0-108E+0	-6 0-997E+0	-7.0-922E+0	-9 0-853E+0	-0 0-789E+0	+0.0-729E+0	0.0.6758+0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.4368+0	0 0 4225	*0 0.390E+0	-0 0-361E+0	.0 0.339E+0	*0.0 322E+0	* 0 . 0 * 3 5 5 5 F * 0 . 0 * 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0	0+000/-0 0+ 0+00//-0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0-748F+0	-0 0.235E+0	-0 0-223E+0	-0 0-2125+0	0 0.2015+0	0 0 1 7 1 E + 0	0 0 12 12 12 1	0.02771000	0 - 11/1/1 = 0 0 0	0 1475	-0 0-140E+0)
LOGD ANALYS	RAINFALL EFF	2.6	, ·		ċ	٠				٠	ż.	٠	έ.	-1 (e Fl	•		, ,			٠					•		•	٠								•	٠	•					٠	•	٠	٠	•	•			,
' (L.	O RH		V 1			. •	-1'	ہے ہ	-	~-1	Η.	-1	٠,	- I	-4 (ų, c	4 0	i	Ġ	1		Len	ით	ì	gη				٠,	٠, ١	4.	4	4 -	ij	Н	~ 4	r-4	(7)	'nί	40	י י	ŀ								-	٠.	4

DISCHARGE		5-40	3.66	1.00	0-39	8.00	7.34	5.9		3.2	1.94	7.0	ς. Ο.	9 . i	85. Z	6.26	0 / C	4 7 1	ς. Υ	0 1	9 1	//-0	0	8 + 52	7.46	Š.	4 57	4 0 1	3. 4.8	2 87	2 1 5	1.69	1.74	8	0.19	8.79										0.736		•				
N. UNIT-HYD.		0 -3456+0	0 0-1415-0	0 0 1355 0 0	0 0 1306+0	0 0-1255-0	0 0-120E+0	0-1011-0		0 0 10 7 E + 0	0 0 1055-0	0-4165-0 0	0.0000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 00 00 00 00 00 00 00 00 00 00 00 00 0		こうしょくかもれき こくり しょうしょう	0 1 1 1 4 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0		0	D H C C C C C C C C C	0 0-6455-0	ت ن ن	0	0	0	с О	0	0 0	0	0.0	0	0 0	0.0	0 0	0 0	0.0	0.0	0	0	0	0	0		0.0						
ALL EFF.RAI		o .	0	٥	0	0	0.0	•	. ·		o (.) (• ·		0.0			.	> ¢) c	20	0.	о	0	0	0	0	0	0	0	0	0	0	0 . 0	0	0	0	0	0	0	0	0	0	0	0.0	o d	• · · · · · · · · · · · · · · · · · · ·			:	
D - HR RAINF		η.	c t	~ c	r: e	·	O =	- c	\1 M	۲,	± 4	1 4 4 c	1 0	- 0	3 6			4 6	770	, ,		٠ (7 1	. ·	3 7 (ν.	•	_	œ	C	10	11	12		14	15.	1.6	17	13	1.9	20.	21	22	23	24		. ~	, .				
																٠			.*													:								:		11								٠		
DISCHARGE	64 47	40.61	31,23	1 4 1 4 0		77.00	74.01	14.22	6-26	79.92	64.87	51.20	38.56	26.64	15.43	04.83	94.75	85.18	76.11	67-50	59.31	7.1.7	7	7. 20	7	* 0 0	0	07.6	15.93	20-60	04.37	96.66		6	0 M	98.	1.62	8 4 8	5-47	2.58	9.80	7.12	. 55	2.07	69.6	7.41	5.20	8.09	51-057	01.0	7.21	
L UNIT-HYD.	0.100.10	111111111111111111111111111111111111111	0+10/110	0 + 12 0 0	0 4 4 4 6 6	0.484.0	- Hand & & . C	C+48.0	0.7326+0	0.7426+0	0.704E+0	0.6735+0	0-6475+0	0.6225+0	0.5985+0	0.5755+0	0.553E+0	0.532E+0	0.512E+J	0.4925+0	0.473E+0	C+10000	0 + 13 % E + 10	0.49.04.0	0 + 1 4 0 4 0		0 + U + O + O + O + O + O + O + O + O + O	0 • 5 / 4 E • 0	0.5005+0	0-3465-0	0-355E+0	0.3208+0	0.3088+0	0.296E+0	0.235E+0	0.274E+0	0.253E+0	0.2536+0	0-244E+0	0+2346+0	0.225E+0	0-2175+0	0.2086+0	0.2005+U	0.1936+0	0-3561-0	0-178E+0	0-171E+0	0-165E	0-1585-0	0.1525+0	i. :.
EFF.RAIN											•				•			•							•	• ``	٠		•															•					0.0			
RAINFALL						•						•	4	•		•				٠					•		٠			•		•							•							0.0			0.0	0 0	0.0	
O HR								,		,-I	_	_	М	-	-	-		N	N	N	N	ŗ	J	1										- ∙	e~6	~			-		7	4	ત્ય	٠.	N	Ċ1	~		ري د			
DISCHARGE	40		4 60	0	ά	, ,	0.65	5.76	2.17	0000	9.29	0.17	2.80	4.49	4.58	77.7	37.61	54.48	95.30	30.65	70.61	2 4 4	,	4 6		70.00	****	10.00	15.17	47.40	15.42	11+17	53.72	33.11	59.39	18-11	61.08	83.93	10.52	95-56	78.64	51.94	48.59	30.50	99.42	61-75	21.19	68.98	620.590	75.74	34-28	
IN. UNIT-HYD.	0.4115-0	0-3716-0	0.574510	0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 + H + O C - O O) (C	0.430T+0	0+05050	0.0.3025+0	0 0 1035+0	0 0 1308+0	2 0-150E+0	3 0 194 F+0	4 0.232E+0	2 0.2735+0	9 0-3000	2 0.369E+0	5 0.4235+0	0-32840	4 0.5456+0	9 0-6136+0	100000000000000000000000000000000000000	0.000000000000000000000000000000000000	0.0000		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0.000	0 0.558E+0	0 0.516E+0	0 0:4775+0	0 +31540 0	0.0.4085+0	0 0.377E+0	0.3446.0	0 0.3236+0	0 0-2986+0	0 0-3922-0 0	0.0.2556+0	0.0.2366+0	0 0-222E+0	0.0.2:00.0	0.0.2006+0	0-0-1965+0	0 0.130E+0	0 0-1716-0	0-1625+0	0.1345+0	0 0 1 4 6 5 + 0	.0 0.139E+01	0 0.132E+0	0 0-125E+0	
EFF.RAI	,	4 15	, K	, ,) <) c		1 16	0	o	c	, KO	•	0	•	3.6	•0	-4	٠,			: 0	οч	٦.,	-i <	5 .6	э (ő	0	O	6	o.	0	0	0	0	c	O	ö	0	0	0	C	0	O	ó	o	Ö	o	0		
RAINFALL	ď	• • a		• •		•						. 4	, N				α	4	, ,	. 6	0	, . , .	• •	٠,	å.	• •	.																						0 4			
H.	-									_		ا	٠, ٦	-		4	•		-	١,٨	1 1	1 (vr	4 6	N										~	~	~	~4		- -1	-	~	-	~	N	2	1 7	N	24	1		

Case 1

PHO DAM-	
置	
-KHLONG	
HYDROGRAPH CALCULATION	
HYDROGRAPH	
LIND	
(e)	

•	-		-								
6: H •	RAINFALL	EFF.RAIN. UNIT-HYD.	DISCHARGE	D . HR	RAINFALL E	FF.RAIN. UNIT-HYD.	DISCHARGE	H.	RAINFALL EF	F.RAIN. UNIT-HYD.	DISCHARGE
	35.8	1 0.2	0.029			+0 0+764E+0	9 6			0-3256-0	9-23
	œ,	5.7 0.140E-0	~			-0 0-7255+0	97-69			0-3206-0 0-	1 1 1
	o	4 0 370E-0	~			0+3889-0 0-	77-62			0 0.8728-0	7 6
	17.8	2.5 0.737E-0	4		٠	0 0-653E+0	59.74			0-30830	00
	ó	0.0 0.1265+0	œ			-0.0-620E+0	43-68			0-3708-0-0-	0
	0 0	0 0.1955+3	W)		•	.0 0.53AE+0	28.83	4		.0 0.776E-0	70.7
	2. 1	5 0.282E+0	8			-0 0-559E+0	15.03	~1	•	-0 0-746E-0	3-12
	5.1	6 0.339E+0	† I	_		.0 0.530E+0	5.29	5 12	0.0	0.0 0.7176-01	22-235
	0.0	0 0.516E+0	?		٠	*0.0*203E+0	00.73		٠	0-3069-0 0*	3.38
-4	0.0	0 0.6558+0	9 6	٦,	•	-0 0-478E+0	90.21	,~1		-0 0-6636-0	0.56
	0.0	0 0.8365+0	7 1		•	0 0 455E+0	70.52	۲,	•	0-3889-0 0.	4-77
-		3.2 0.1036+0		-		0 0 0 0 0 5 5 5 5	61.72	_	٠	*0 0-614E-0	9.01
-4	m	6.3 0.125E+0	4 (-4 :	٠	0 0.4175-0	50 KG	, -1		-0 C-50CE-0	8.28
~	ζ.	9.4 0.149E+0	20	-	4	0 - 310 - 0 0	45.91		,	0-32920 0-	7.58
-4	3.1	2 0-176E+0	200		•	-0 0-385E+0	98 69	H	6	.0.0.546E-0	6.91
1	o	4-9 0-205E+0	o i	٠,	٠	0+30/5+0 0=	51.87	N	٠	-0.0-525E-0	6-26
-4	œ,	6-2 0-238E+0	χ. 	~		0 0.3565+0	25.38	€4,		.0 0.505E-0	5.64
	6.5	5 0.2735+0	5.84	2	•	.0 0.343E+U	19.22	N	٠	-0.0-435E-0	5.04
-1	ķ	2 0.3105+0	5.79	CI	٠	.0 0.329E+0	13,38	N	•	-0.0-467E-0	4-46
'n	ö	7.4 0.351E+0	9.49	2		.0 0-317E+0	07.83	N	٠	0-3644-0 0-	3.91
V.	8	2.9 0.3955+0	4.21	2	4	.0 0.3058+0	02.56		٠	.0 0.432E-0	3.37
N	ä	8.2 0.441E+0	3.23	N		*0 0*293E+0	7.55			0-3515-0	2.86
N	Ļ.	5.4 0.491E+0	5.79			0-3382-0	2.79		•	0.0.0	1.92
N	16.3	4 0.4545+0	2-21		٠	.0 0-271E-0	8.33		٠	00.	1.24
	۵	0.0 0.420E+0	7.4.7			-0 0-251E+0	4.18			000	0-27
	0 0	0 0 3886+0	74.75			-C 0-251E+0	0.28		٠	0.0	ν, 60
	0 0	0 0.3596+0	5.14			-0 0.24.16+0	6-67		•	0.0	.05
	0.0	0 0.332E+0	7 0			.0 0.232E+0	3.34		•	0.0	6
	0	0.0.3076+0	8 5		•	.0 0.223E+0	0-19	٠		0.0	28
	0	0 0 284E+0	7.0 4			.0 0.214E+0	7.19	-		0.0	82
	0.0	0 0.263E+C	4.80			0.0-2005+0	4,35	7		0.0	52
	0-0	.0 0.243E+C	20-86	~	٠	.0 0.198E+0	1-69		•	.0 0.	23
	0-0	.0 0.225E+C	52.6	~4		.0 0-191E+0	02.6	m	٠	0.0	
***	0,0	.0 0-208E+0	88.8	~	٠	.0 0.193E+0	6.85	М,		0 0	5
~1	0.	.0 0.192E+0	26.69	~*		-0 0-176E-0	4-63	-1		0.0	99.
***	0.0	0 0.178E+0	34.3	 1 .		.0 0.170E+0	7.24	ابہ	٠	0.0	.67
	0 • 0	.0 0.1645+1	0.00	~		.0 0.163E+0	0.52	e-4	٠	0.0	04.
~	0.0	.0 0.152E+0	86.18	ĭ		+0 0+157E+0	8.59	- 1	٠	0.0	8.4
-	0.0	0 0 1436+0	76.5	~	٠	0 0-151E-0	6 - 72			0.0	4.
-4	0.0	.0 0.135E+0	9.50			0 0-145E+0	4 93	~	٠	0	- 27
~	0.0	0 0.129E+(54.9	~		0 0-139E-0	3.21	2	•	0.0	40.
****	0-0	.0 0.122E+0	6.3	N		-0 0-134E+0	1.55	N		0.0	• 65
_	0.0	.0 0.116E+(9.4.6	N	٠	-0 0-129E-0	96.0	N		0.0	• 08
	0 0	0 0-110E+0	14.60	Ņ	4	.0 0.124E+0	8 43	N	٠	0.0	7.
"	0.0	0 0-104E+(00.4	~	٠	.0 0.119E+0	6.96		٠	0.0	47
17	0.0	0 0.091E+	04.31	~	•	0.041158+0	5.54	**		0.0	
14	0.0	.0 0.941E+(30.68		•	.0 0-110E+0	4.18				
2 24	0.0	93E+('n	Ω :	0	ul i	32.870				
	0.0	-0 0.847E+	70-6		٠	.0 0-102E+0	19-1		•		
	0.0	.0 0.804E+	o M		•	-0 0-9815-0	65.0				
				*	Ė						

-UPPER MAE WONG DAM-
HYDROGRAPH CALCULATION
UNIT HYDROGRAPH
Table I-15 (4)

Case 2

் ப்பட்	IN. UNIT-HYP.	DISCHARGE	O.HR	RAINFALL EF	F.RAIN. UNIT-HYD.	TO TAKE GE	۵ ب	RAINFALL EFF.	RAIN. UNIT-HYD.	DISCHARGE
r un uh u	•	6	'	•						
v vi v	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	120.0		000	0+3611-0 0.	11 to 12 to			D+4/ **** O O	7. FC
v	2 0 574E-0	4.2		0.0	0 04107540	28.07			-0 0-135E+0	100
•	4 0.1150+30	1.005		0.0	-0 0-101E+0	30.03			-0 0-130E+0	0.38
Ņί	5 0+135E+90:	0 1		0.0	0 0 0 063E+0	74.27	•	•	.0 0-125E+0	α r ω r
ሲ ሆ	10 01 20 10 10 0 10 01 20 11 10 0		u n		0.0 0.3338+30	330.281	7 (1 7 (2)	3 C	0.0 0.1268+00	35.040
. I V	9.0.505E+0	0.0	7	0.0	-0.0+355E+0	11.61	: t		+0:0-11E+0	4.53
•	1 0.802E+0	3.23	~	0.0	0.43267.0.0.	04.46	त्न		.0 0-107E+0	3.21
\$	4 0.1035+0	8.71	Α,	0.0	+0 0 ×7 4 2 E ± 3	78-55	1	•	.0 0.103E+0	1-94
•	5 C.150E+0	5.60	<u>ر</u> .	စ • ဝ	0-350/-0 0-	64.05	t -		0 0 0 0 0 15 0	0.77
ጥ ኮ	9 0*150E+0	7.0	~ <i>-</i>		0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 +	7.0.4 4.0.0.4 4.0.0.4	-4		0-14/20 0-0	ν. Υ
~ ^	プージャンドウ で の かんりょく こうかん かんしょく こうかん かんしょく こうかん しょう はんしょく こうかん しょう はんしょく かんしょく かんしゃ しんしゃ しんしゃ しんしゃ しんしゃ しんしゃ しんしゃ しんしゃ	4 4 7 4	- ·	2 6	40 0 40 VEH C	00.50	٠,	• .		1 11
- C	3 0.273F+0	7 74	4	0.0	(+38c5 0 0	14.58			0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	6.71
. C.	7 0 3 125+0	6.5		0.0	.0 0.575E+0	03.87	N		0-8125-0	5.25
O	R 0.357E+U	11-63	-	0.0	.0 0.553E+0	03.74	'n		.0 0.734E-U	4.79
12	9 0 423E+0	34.03	3	0-0	0 0.552€+0	34.17	N		+0 0.754E+0	3.36
2	3 0 442E+3	44.30	C)	0.0	-0 0.512£+0	75-13	Ú.	•	+0 0-725E-0	2.45
Œ	0+3575=0 b	96.96	~	0-0	-0 0-442E+0	06.58	₩	ė	0-3769-0 0.	1.50
۲.	N 0 8 3 3 5 + 0	34,30	רו נ	0.0	0.044735.40	in i			*0 0 570E-0	7.00
e v	7 C 45051140	77.04	Ų	, c	0+3884-0 0	4 4 4 5 4 4 5 4 4 5 4 4 5 4 5 4 5 4 5 4		•	0.00.00	0 C
· w	7 0 + 70 SE + 0	77.45		0 0	0+5125*0 0*	36.91			0	98.4
0	0 0.6926+0	18.77		0.0	.0.0.435E+U	30.51		•	.0 0.	5-85
0	0 0.6038+0	54.36		0.0	\$ 0 0.389E+0	54.49	٠		.0 0.	5.87
C	0.3868.0	21.00		0.0	0.3745+0	₩. ₩.			0.0	20.4
0	0 0.515E+0	53.11		c •	-0 0-360E+0	25 * S C		٠	, 0 0	
တင	0 - 4 / / 5 - 0	\ r 		۵. د			-	•	5 c	400
ଚଟ	0 0 0 to 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	200			10 0 0 3 20 0 4 E	0.5 0.5 0.0 0.0	4	٠,		7 • • • • • • • • • • • • • • • • • • •
0	0 0.3775+0	13.55		0	0 0-30AE+U	5.67	-		0.0	0.55
0	0.45648.0.0	56.11	7	0.0	0-2065-0 0-	1.97		•	• 6 ° 0 •	9.74
0	0 0.3236+0	91.51	-	0-0	.n 0.235E+0	2.27			0 0	40.
0.	0 0.2085.0	24.70	٦.	0.0	*0 0.274£+0	7	-4 -		0	
÷ c	0 + 40 / 0 = 0	70.44	-4 r		10 U. V. V. V. V. + C. V.	- 4 - 4 - 4 - 4	٠,			, v
c	0 0 2 5 5 5 7 + 8	00.13	٠.	20	0 0 0 0 4 H	5.47	4 1-4	, ,		60
0	0 0.222E+0	14,20	٠.		.0 0.2346+0	2.58		٠	000	90
O	0 0.2102+3	19.98	-	0.0	.0 0.225E+U	9.80	L1	•	.0 0.	80.
0	0-3002-0	13.09	,(0.0	.0 0.217E+0	7.12	N	٠	-0 0-	, 28
0	0 0.1708+3	43.20	N	0.0	•0 0•298€+0	4.55	N	•	0 0	Ž.
0	0 0.1305+0	96.59	N	0.0	.0 0.200E+0	2.07	N	•	0 0:	• 14
0	0 0-1715+0	04.25	W	0.0	.0 0.193E+0	6. 6.	~		0 0.	7.
ଦ ା	0 0-1525+0	52 0 I	ω,	C • C	*0 0*135E+3	7.41			0	ψ. M
0	0 0 1545+0	10.65	S	o-0	0-1746+0	5.20		٠	0	٠
0 +	0 0-1465+0	50.4]		o :	0 0 0 1 2 1 2 1 2 2	80.0				
G (0-3061-0-0	200		0.0	6+356T+1 0+	 				
0 (0 0 1 2 2 2 4 0			្ត	0 + H 2 O T + C O O T	7.				

T.	FLOOD AMALY RAINFALL E	YSIS BY NAKAYASU EFF.KAIN. UNIT-HY	METHOO N. DISCHARGE	HR	RAINFALL	EFF.RAIN. UNIT-HYD.	DISCHARGE	D + HR	RAINFALL EI	FF.RAIN. UNIT-HYD.	DISCHARGE
~ c	7.2	0 -	180-0	ところ	0.0	0.0 0.130E+01 0.0 0.171F+01	748.322	€ 10 m	0.0	.0 0.223E+0	0046
o tv		** 0*878E-0	* *			.0 0.162E+0	50.51			0.214	56+354 58-054
4	•	*4 0.174E+0	.52			0.0-1546+0	07.73			0+3661.0 0.	9 1
£0 -4	•	-5 0.2978+0				.0 0.145E+	0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	-	•	*0 0.1905+0	10.0
o r-		*8 0.667E+8	0 0			.0 0.132E+0	01.89	٦ ~		0 0 1335 H	ν. 1. γ. 1. γ.
än		0 0 0 10 5 + 0	3.69			.0 0.125E+J	73:52	ب ا		0-10-11-0-0-	2.4
۰.	•	*1 0 1225+0	1			.0 0.129E+0	74.47	٠,		-0 0-1035+0	0.47
) ·		0412/0140	3 C	٠ -		0.44666666	4 t t t t t t t t t t t t t t t t t t t	٠,	٠	+0 :0+157E+0	რე ს ი
1 5		*0 *0 *1 * E * E * E * E * E * E * E * E * E	7 T T	٠ ۱		*0 0*102E+0	30.72	٦-		0+0101011010	6.67
ነተ		4 0.235E+0	9.14	-		0 0.938€+0	61-45	4	• . •	C+3621-0 0 =	2 K C + C + C +
7.4		*8 0.352E+0	7.48	~4 .		0+3956.0 0.	43.29			.0 0.124F+0	
15	-	*3 0.415E+0	10.54	Α.		0+3606*0 0*	25.08		•	-0 0-129E+0	20.0
0 1	ığ ι	9.7 0.405E+0	37.75	- ·	•	0 0 0 0 0 0 0		ru (•	.0.0.124E+0	κ α
~ &	, a	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	04-04	10		0.000000	79.87	a v			7 C
	,	+3. 0 -732E+0	49.68	7		0 0 7795+0	66-12	1 (4		0 0 1 1 0 E + O	
50	, N	0-3626-0 8-6	99.28	2		-0 0-74RE+0	53.14	ĊĪ.	٠	-0 0 10 65+0	2.83
27.	ċ	-1 0.931E+0	56.18	C)		0 0-7195-0	40.87		•	-0 0-102E+0	1.57
55		-2 0-104E+0	20.99	2		+0 0 +632E+0	29,23			0-3086°D 0*	0.36
53		*7 0.115E+0	94. 29		٠	0+3C99*0 0*	50 C	٠	•	0	8.72
† -		0+47.01.00.00	86°59			0 + 11 to 10 + 10 + 10 + 10 + 10 + 10 + 10 + 10	000		ŧ		7 T
٠,		0+397670 0	00.000			0.0.5926+0					
ı m		0.0.8475+0	73.67			0.3652.0 0.	80.58			0	2 6
4	•	0 0 7348+0	40.51		•	.0 0.547E+U	72.50	٠.		0	(C)
ıń	- 4	.0 0.725E+0	60:90	•		.0 0.526E+J	64.95			0.0	3-05
v)		+0 0.670E+0	469.93		٠	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	76.75	,-L	٠	တ် ဝ	8.50
~ c		.0 0.620E+0	31.95		٠	0 43/54 0 0		٦ -	٠		7-31
c c		0 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	***********	*		0 - 305 4 0 0	39.61	- ·			# C
		0 0 0 0 0	202,700	-		.0 0 453E+0	34-14	4		0	0. 10
		0 0.4535+0	252.76	-		0-3915-0-0-	28.96	· ~		0 0	2.36
		.0.0.419E+0	297.62	H	•	0-3004-0 0-	24.02	,—1	٠	0.0	1-15
		0+3866-0 0-	336.33			.0 0.335E+0	19.27	-11	٠	0	76
		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	367 84	٦-		0 + H 0 / < = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 =	70.40		٠		V. C
		0+0/0040	20.7 EAG	4 ~		0 124210	0.5.07	10	•	; ; ;	ο α Ο α
		0 0 0 0 0 0 0	300.00			0+3025*0 0*	05.00	1 1/4		0	. 4
		-0 0-38E+0	342.12	7		0+391£*0 0*	98,09	.0		0.0	Š
		.0 0.273E+0	285,53	64		# 0 0 # 304 E+0	4.33	N		0.0	7.4
	-	.0 0.260E+3	222.16	~		0 0.2335+0	7.7	Ģi		.0.0.	6
		0 0.245€+0	153.40	<i>(</i> 2)		.0 0.291E+0	7 - 24		•	0 0	5
		0.2345-0 0.	079.92	7	•	0 0 2718+0	0 0 0 4			0	0
53		0 0 2222R+0	0022.05			0 0 2505+0	0 0				
		0.200740	4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5			0 0 2416+0	4 5				
4 VI		0.001000	30.6			0 0.232E+J	1.75		:		

⟨\J

Case

Table I-16 FLOOD DAMAGE TO AGRICULTURE IN LAT YAO DISTRICT, NAKHON SAWAN PROVINCE

No	Name of Sub- District	Village	Plant	100 100 100 100 100 100 100 100 100 100	ated Area re Flood	Dama	ge Area	145	Remarks
	(Tambon)		,	(rai)	(ha)	(rai)	(ha)	(%)	
1.	Lat Yao	14	rice	11,339	1,814	7,806	1,249	69	
2.	Nong Nom Wao	1	· n	205	33	131	21	64	•
3.	Nong Yao	9	11	9,971	1,595	6,534	1,045	66	
4.	Soi Lakosn	9	11	8,896	1,423	5,692	911	64	
5.	Wong Ma	11	11	4,257	681	2,831	453	67	
6.	Wang Nuang	8	ti	5,194	831	3,272	524	63	Nov. 7-25
7.	Nab Kae	6	tt	2,993	479	2,155	345	72	1981
8.	Huai Nam Horm	9	- 11	23,200	3,712	14,327	2,292	62	
9.	Mae Wong	5	и.,	7,532	1,205	3,039	486	.40	
10.	Wang Sarn	9	0	8,532	1,365	8,532	1,365	100	
11.	Mae Lae	8	**	17,951	2,872	14,688	2,350	82	
12.	Ban Sai	1	ı	859	137	547	88	64	
	Sub-Total	90		100,929	16,149	71,554	11,449	71	
1.	Mae Lae	4	*	11,000	1,760	5,500	880	50	
2.	Mae Wong	3	*	9,200	1,472	4,600	736	50	
3.	Wang Sarn	3	* ·	9,200	1,472	4,600	736	50	
4.	Wang Ma	3	*	9,000	1,440	4,500	720	50	÷ .
5.	Wang Muang	3	*	6,500	1,040	3,250	520	50	
6.	Nab Kae	4	*	6,600	1,056	3,300	528	50	
7.	Soi Lakom	4	*	5,800	928	2,900	464	50	
8.	Huai Nam Horm	4	* ,	16,300	2,608	8,100	1,296	50	Oct. 10-22
9.	Lat Yao	12	*	11,600	1,856	5,800	928	50	1983
LO.	Nong Nom Wao	5	*	7,500	1,200	3,750	600	50	
11.	Nong Yao	4	*	9,100	1,456	4,550	728	50	* rice,
L2.	Noen Kee Lek	2	*	3,200	512	1,600	256	50	mung bea
13.	Ban Sai	2	*	1,300	208	650	104	50	
	Sub-Total	-52		106,300	17,008	93,100	14,896	50	

Source: Agricultural Office of Lat Yao District, Nakhon Sawan Province

Table I-17 (1) FLOOD DAMAGES IN UTHAI THANI PROVINCE

			Nov. 8 ~	20, 1981			-			
District (Ampho)		Uthai Thani	Nong Kya Yang	Nong Chang	Thap Than	Sawang Arom	Ban Raz	Lan Sak	Highway	Total
Flooding Area	Sub-District (Tambon) Village (Ban)	13 65	9 49	10 46	83.0	28	32	3 3 26	j - 1	56 329
Damage to People	Total Household Total Population Dead Injured Missing	त्वताः		3,218	2,323 9,815 1	649 171, 1111	228 824 1 1 1	1,233 6,068 3	1 1 1 1 1	5,420 23,098 4 -
Number of Damaged Households	Totally Damaged Partially Damanged	et I	1 1	. 1 1	16	1 1	1 1	36	1 1	33
Flooded Farmland	Rice (Rai) Crop (Rai)	12,213 1,954 965 154	34,281 5,485	7,297 1,168 10	139,775 22,364 54,150 8,664	17,128 2,740 4,936 790	2,495 399 13,972 2,236	11,672 1,868 12,243 1,959	l I	224,861 35,978 86,276 13,804
Damaged Farmland	Rice (Rai) Crop (Rai)	12,213 1,954 965 154	3,100 496	7,297 1,168 10	5,814 930 2	9,856 1,577 3,136 502	1,578 252 9,530 1,525	8,080 1,293 8,418 1,347	1	47,938 7,670 22,061 3,530
	Road Number Distance (km) Bridge	62 69.3 2	28 14.4 1	52 137.8	66 156.8 16	88 7	37 93.3	39.1 25.2	29.3	316 627.9 59
Public Utility	Weir Government Office Temple Others	27 1 11	1111		on t t t	1111		אווט		ល្កែកស
Livestock (Cattle, etc.) Domestic Fowls (Chicken,	etc.) icken, etc.)	54,606	9,130	1 1	5,500	179,7	665	3,063		136

Data Source; Uthai Thani Provincial Office

Table I-17 (2) FLOOD DAMAGES IN UTHAI THANI PROVINCE

			Au. 15 - 1	Nov. 20, 1983						
District (Ampho)		Uthai Thani	Nong Kya Yang	Nong Chang	Thap Than	Sawang Arom	Ban Rai	Lan Sak	Total	
Flooding Area	Sub-District (Tambon) Village (Ban)	12 54	8 6 33	3.7	30 51	38	დ დ დ	3 28	54 313	
Damage to People (To be helped with consumer goods)	Total Household Total Population Dead Injured Missing	3,207	1.1.1	1,085	1,259 5,454 1	4,175 21,437 3	1 1 1	2,830 8,945	12,559 55,559 5	`. }
Number of Damanged Households		2	0	ιΩ	120	0	m	m	133	
Flooded Farmland	Rice (Rai) Crop (Rai)									
Damaged Farmland	Rice (Rai) Crop (Rai)	42,354	10,967	7,705	16,168	29,623	24,294	20,083	151,194	
	Road Number	44	010	21	35 17	27	68 04	26 71	251 370	
Public Utility	Bridge Weir Government Office Temple Others	ਜ ਜ	el	ਜ ਨ	8	M	ក្កាភ	જ ત	O @	
Livestock (Cattle, etc.) Domestic Fowls (Chicken,	etc.) loken, etc.)	3,017	00	00	00	62 9,042	323	1,842	91	
			<i>3</i> *		••••	٠.	•	•		

Source: See Ref. 3

Table I.18(1) FLOOD CONTROL BY RESERVOIR

Upper Mae Wong Dam C.A. 612 km²

1954 1955 1956 1957 1958 1959	Inflow (10 ³ m ³) 252,670 213,787 171,771 185,642 116,393 123,066 100,889	109,980	(10 ³ m ³) 174,013 106,137 24,248	(m³/s)	Without Reservoir (m³/s) 37.8 30.0 19.2	(m³/s) 27.7. 24.9	Without Reservoir (m³/s) 28.1 25.1
1955 1956 1957 1958	252,670 213,787 171,771 185,642 116,393 123,066	109,980 68,635 138,960 150,068 198,990	174,013 106,137 24,248 48,593	37.5 28.2 9.8	37.8 30.0	27.7. 24.9	28.1
1955 1956 1957 1958	213,787 171,771 185,642 116,393 123,066	68,635 138,960 150,068 198,990	106,137 24,248 48,593	28.2 9.8	30.0	24.9	
956 957 958 959	171,771 185,642 116,393 123,066	138,960 150,068 198,990	24,248 48,593	9.8			25,1
1957 1958 1959	185,642 116,393 123,066	150,068 198,990	48,593		19 2		
958 959	116,393 123,066	198,990		24.1	13.2	8.1	18.6
959	123,066	-	ń		25.8	20.7	24.3
		188 638	U	~	16.6	-	16.1
960	100.889	100,000	0		24.5	-	23.3
	100,005	103,462	0	· 	14.9		13.0
961	276,604	124,330	0	- -	30.0	-	26.9
962	180,551	185,143	0	_	35.0	-	28.5
963	149,092	151,817	0	<u>.</u> .	31.5		27.9
964	237,770	101,236	24,780	15.7	44.9	13.0	38.1
965	164,010	178,744	0.	. -	20.9	-	19.4
966	188,901	128,448	24,395	17.1	24.6	9.6	23.4
967	149,342	185,027	0	. ←	21.2	· _	21.1
968	108,018	241,579	0		15.3	-	14.5
969	155,223	109,138	• 0		29.0	-	16.9
970	259,107	132,502	0		34.6		32.6
971	195,739	127,781	17,379	20.1	46.9	~	24.1
972	252,292	100,071	114,720	39.7	43.3	22.0	42.2
973	239,413	173,510	48,410	8.7	42.6	7.9	41.8
974	376,447	108,432	251,336	93.4	93.8	31.7	80.7
975	236,001	114,837	104,533	23.9	43.3	17.4	30.1
976	215,392	126,271	84,675	59.2	59.6	13.6	29.4
977	57,336	265,041	0	-	11.3	~•	7.7
978	221,866	121,629	0		65.9	-	36.3
979	182,121	230,201	. 0	 .	64.5	-	26.3
980	282,827	95,263	0	~ ¹	108.8	- ,	40.5
981	204,074	127,815	57,411	18.3	38.8	14.1	29.4
lean	196,298	146,019	38,594			·	

Table I.18(2) FLOOD CONTROL BY RESERVOIR

Lower Mae Wong Dam C.A. 930 km²

						بران الحديد الأراني	num (Plane)
Year	•	Spillout fi		With	Maximum & So Without	econd Maxim With	um Flood Without
·	Inflow	Irrigation	Flood	Reservoir	Reservoir		
	(10^3m^3)	(10 ³ m ³)	(10 ³ m ³)	(m³/s)	(m³/s)	(m³/s)	(m³/s)
1954	383,959	225,009	196,869	43.6	57.5	26.7	37.0
1955	324,873	171,319	80,492	35.2	45.6	27.8	38.1
1956	261,026	218,694	0	_	29.1	-	28.2
1957	282,104	243,805	24,862	20.0	39.3	8.8	37.0
1958	176,872	281,073	0	· •	25.2		24.5
1959	187,012	274,675	0		37.2	<u> </u>	35.4
1960	153,313	140,621	. 0	-	22.6		19.8
1961	420,330	250,149	0		45.6		40.9
1962	274,367	281,533	0	. -	53.2	- · · · · · · · · · · · · · · · · · · ·	43.4
1963	226,561	231,910	. 0		47.8	_	42.4
1964	361,317	190,228	: 0	-	68.2	· · · · · · · · · · · · · · · · · · ·	57.9
1965	249,232	274,163	. 0	-	31.8		29.5
1966	287,056	234,890	0	-	37.3		35.6
1967	226,942	273,514	0	· -	32.2		32.1
1968	164,146	232,549	0-		23.3	Marie .	22.0
1969	235,878	170,945	0	- .	44.1	. ·	25.6
1970	393,741	233,218	0		52.6	-	49.5
1971	297,447	220,168	0	· .	71.2	•••	36.7
1972	383,385	166,338	63,716	21.3	65.9	17.6	64.1
1973	363,815	272,889	25,716	7.0	64.8	4.4	63.6
1974	572,052	176,230	341,013	141.4	142.5	55.4	122.6
1975	358,629	204,281	104,120	30.7	65.8	25.4	45.8
1976	327,313	212,026	97,130	89.3	90.5	12.9	44.7
1977	87,127	331,550	0		17.1		11.8
1978	337,149	223,608	0	44 ·	100.2	→	55.2
1979	276,753	301,683	0		98.0	•	40.0
1980	429,787	169,810	0	. -	165.4	Van	61.5
1981	310,113	206,232	38,632	23.8	58.9	12.3	44.7
Mean	298,296	229,039	34,733				

Table I.18(3) FLOOD CONTROL BY RESERVOIR

Khlong Pho Dam C.A. 394 km²

Vosas	Reservoir	Spillout fr	om Dam		Maximum & S		
Year	Inflow	Irrigation		With Reservoir	Without Reservoir	With Reservoir	Without Reservoir
	(10^3m^3)	(10^3m^3)	(10 ³ m ³)	(m³/s)	(m³/s)	(m³/s)	(m³/s)
1954	88,103	39 ,344	58,305	8.3	10.0	7.1	8.9
1955	111,793	32,309	46,959	14.2	15.5	13.1	13.5
1956	88,294	30,738	26,164	7.9	9,3	6.4	8.2
1957	60,673	71,246	0		11.2	-	9.9
1958	48,679	57,577	. 0	• •	6.3		6.0
1959	51,840	43,743	0		10.5		0.8
1960	77,915	36,976	0	_	8.1	•••	7.7
1961	63,690	60,016	0	· -	7.6	-	7.0
1962	77,602	54,354	0	he	19.3	, ma	15.8
1963	46,857	42,709	0	~	7.1	Mary .	6.8
1964	113,166	30,638	0	_	18.1	-	14.8
1965	61,844	61,368	. 0	-	8.3	-	8.0
1966	85,080	45,471	0		7.6	Mar	7.6
1967	60,849	52,724	. 0	_	8.9	· _	8.7
1968	42,013	60,292	0	-	4.4	-	4.4
1969	82,499	44,063	0		16.4	-	11.1
1970	124,431	36,251	17,222	5.8	13.6	5.2	11.9
1971	74,317	48,543	12,083	3.9	14.7	3.8	10.5
1972	92,363	41,252	16,924	5.5	14.9	5.4	13.5
1973	77,219	53,061	4,976	2.8	7.7	2.4	7.6
1974	127,976	30,979	51,971	18.2	22.4	16.8	21.4
1975	110,520	43,239	46,831	22.4	25.0	11.8	24.8
1976	67,029	72,910	0	-	18.6	-	13.6
1977	9,222	31,950	0	-	7.3	<u>-</u>	0.5
1978	111,985	57,877	0		55.0	→ .	20.0
1979	142,749	95,701	28,805	24.9	109.2	8.5	14.9
1980	211,686	23,192	114,191	67.8	68.1	18.5	28.6
1981	132,968	32,104	76,760	24.7	25.6	21.1	22.0
Mean	87,263	47,522	17,900				

Table I-19 TEST WELL AND BORE HOLE RESULTS

· ·	Aquifer		Aquifer Thickness	Deth to Bed Rock	Code No.
		<u> </u>	(m)	(m)	NO.
			(****)	(1117)	
e State of the state of the sta	maximum yield cum/min	(
	medium to coarse sand, gravel	(8.6	47.1	56.8	TW1
clay ler	fine to coarse sand, gravel with	(1.6	26.7	45.6	TW2
	medium to coarse sand, gravel	(2.7	24.9	42.5	TW3
	gravel and sand	(1.6	27.0	42.0	TW4
particle	coarse gravel, medium sand, rock	(8.2	37.9	63.8	TW5
	fine to coarse sand, gravel	(1.4	41.0	56.3	TW6
	dry well		· mue	43.0	EB1
	gravel and very coarse sand		20.0	50.0	EB2
	gravel and coarse sand		15.0	53.0	EB3
	dry well			30.5	EB3
•	dry well		:	67.5	EB5
	gravel and medium to coarse sand		34.5	58.0	EB6
	dry well		_	40.0	EB7
1	gravel and sand		4.5	46.3	EB8
	fine gravel and coarse sand		6.0	107.0	EB9
	medium to coarse sand and gravel		6.0	18.5	EB10
	gravel and coarse sand		13.8	20.8	EB11
	dry well			11.7	EB12
	dry well		-	15.0	EB13
	dry well		- ~	25.8	EB14
	gravel and medium to coarse sand		21.0	34.0	EB15
	dry well		~	31.0	EB16
	dry well			31.0	EB17
•	dry well	•	، مميا	76.5	EB18
	gravel and medium to coarse sand		7.5	24.0	EB19
	coarse sand		8.7	49.5	EB20
•	medium sand and gravel		8.7	48.0	EB2l
	coarse sand and gravel		35.0	60.0	EB22
	medium sand and corse gravel		37.0	57.0	EB23
	medium sand and fine gravel		14.0	36.0	EB24
1.0	coarse sand and gravel		30.0	48.0	EB25
•	dry well			24.0	EB26
	dry well		- .	_	EB27
			18.0	52.1	EB28
	coarse gravel, coarse sand		41.1	80.5	EB29
	gravel, coarse and fine sand		35.9	106.4	EB30
	gravel, coarse sand		55.7	97.3	EB31
	gravel, coarse sand		15.0	30.0	EB32
	gravel, coarse sand		1.5	27.0	EB33
	gravel, coarse and fine sand		19.5	39.5	EB34
	gravel, coarse and fine sand		27.0	42.5	EB35

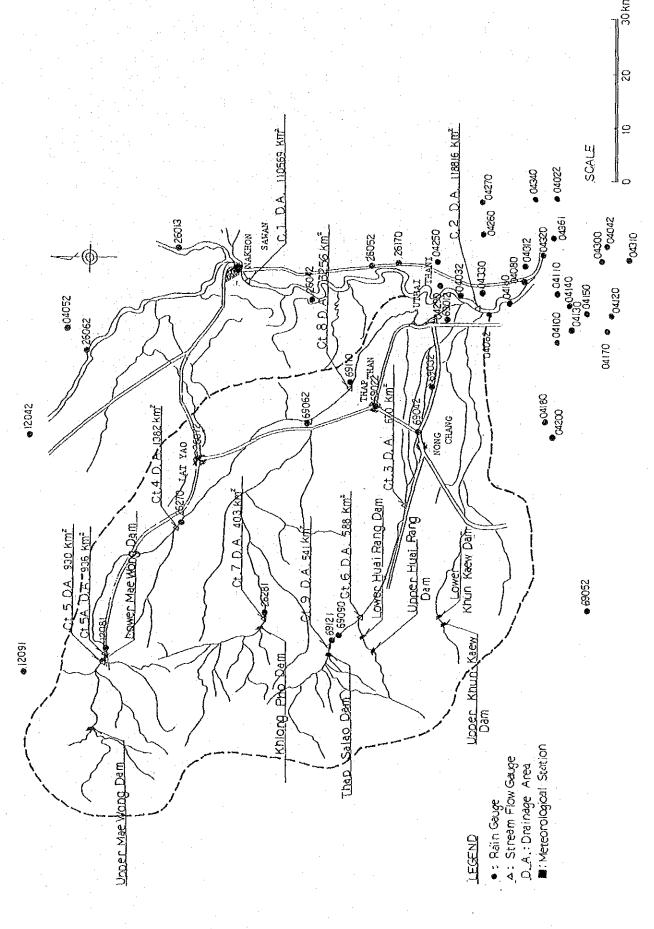


Fig. I-1 Location of Meteorological and Hydrological Stations

State Stat				-																						-		L
	Name of		1761	726 <u>1</u> 2761	9761 5761	1928	1630	1633	5861 7861	1633 1633 1638	0761 6861	7761	5761 7761	761 9761	0561 6761 8761	1621 1621	5561 5561	9561		1961	7961 E961	2961 9961 5961	8961	1461 0461	5/61 E/61	776 976	6261	1861
	ng Su]							13					 - 		-		-		_
	phaya		U.	-			-				-	-	18												-	and the same of th		Ţ
	lorom.				-							.#. T	П			1												
	iburi)				1].			 	ļ			OCH CHEST	COO THE STREET								I
	nkha	-]							-	Ĭ.		-			1			×	The Land Deliberton	-							I
	at Sing						1																					
	3.1	Guard	· 															<u></u>		 								
	anal Gua	rd Residence														-												
	tahan Can dence	al Guard																					7				-	
	R Canal	Guard																						-]				
	heck Reg	ulator						 								-												1
	Rahan Can Idence	tal Guard																					 		 	 	i 	_ _
	-2L. Cana idence	al Guard							•																·-	_ _		_ _
	nlathep H	lead Regulator						J. 			-														- -			
	Bor Regu	Lacor										_	_															
	M-U Canal idence	Guard																					_ -					_
	-1L. Cansidence	ıl Guard						,															-\ -\ -\ -\ -\ -\ -\ -\ -\ -\ -\ -\ -\ -					
	Canal Cu	nard Residence					· · ·								_													
	2 of Chai al Guard	. Nat Pasak Residence				, <u>is</u>																				-	-	_[_
	of Chai	Nat Pasak Residence		-1		· ·										· · · · · ·							-1-			_		_[-
	orom Read	i Regulator												_	-			JL 										
	-1R. Noi rd Reside	System Canal		: 																						- -		
	-1R.Noi S rd Resida	System Canal																										

: OBSERVATION WITH LACK OF DATA : OBSERVATION WITHOUT LACK OF DATA Fig. I-2(1) Raingage Station and Period of Observation

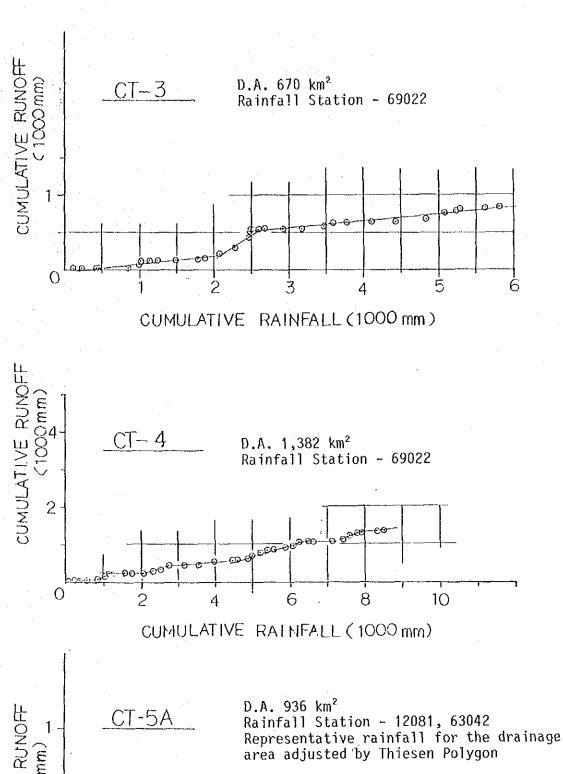

2861 1861 0861, 6261 8261 2261 9261 9261 9261																		1									
2.6l 2.6l 1.26l 0.6l 696l 896l 2.96l 996l 996l																											
2961 2961 1961 0961 6961 8961 2961 9961 1961																											
\$561 \$561 \$61 \$61 \$61 \$61 \$61 \$61 \$61 \$																											
1939 1940 1941 1945																											
1920 1920 1920 1920 1920 1920 1920 1920																											
Name of Station 1920	Borommathat Regulator	Cawal	non	a Dam	hlung	A. Khanu: Woralaksaburi	Pangmakha, A.Khanu Woralaksaburi (Ct.5A)	18	n, A.Si Sawant		ra	Khiri	Phisai		gulator	oug (Ct.4)	Rai (Ct.7)			U.	.vang	ing.	X	r.om	row T.Lan Rai	(Ct.8)	(Cr. 9)
Code	-	04330 Tharmanun Canal	04340 Ita Suk Siphon	04361 Chao Phraya Dam	12022 A. Khlong Khlung		12081 Pangmakha, A.Khanu Woralaksaburi (Ct.	H 12091 Ban Pang Wai	13112 Ban Na Suan, A.SI	l		26052 A. Phayuha Khiri	_	26072 A. Lat. Yao	26170 Ban Lek Regulator	26270 Huai Mae Wong (Ct.4)	2628] Ban hang Ri	63042 A. Umphang	69012 A.Muang	69022 A. Thap Than	_		69052 A.Ban Rai	69062 A Sawang Arom	യ്ഗ്	69110 Ban Kok Mo (Ct. 8)	Т

Fig. I-2(2) Raingage Station and Period of Observation

: OBSERVATION WITH LACK OF DATA

£1913	11	<u> </u>	<u>, , , , , , , , , , , , , , , , , , , </u>	·	, 	Γ-	 -	_		-	<u> 1985</u>		'n		1				T		()
2561		-	-	-	-	-					1861		Н				f				
เชอเ											0861							77			
0161											6761				Ш						
6261		L			<u>.</u>	L.,	Ш		_	111	87.6I	_		-	Ш	غــــــــــــــــــــــــــــــــــــ		1			-
8561	╽.	_	<u>.</u>	L.,							7761				1.				, ,	- -	1
55 <u>61</u>	∤ 	-			-		-		-		97.61 37.61	4	- 4		4			1		1	
3501	ŀŀ	Γ-	ļ			-	-				1761	-	-		1.	 -	-		T	ı	-
1934	-1-	-	-		-			-			5791		-		+	1.1		÷	-	-	
5591	1	-		-	-	-		-			1972			H	1	لننت	1	-			إبث
1932	1	-	-	÷	-	-					1261	3.1					-	1		7	
1561		-	_	:	-	Ė					026	-					1-	1	Ţ,	7	
0261											6961								1		
676					1						896					L					_
1928			<u> </u>	_					\Box		<u> </u>			L	_						
7 <u>5</u> 61	1.	_	L		<u>.</u>		<u> </u>	L	L_	_	9961	:		_						-	
9 <u>26</u> 1	ļ.		-	_	_	5	-			_	996	-		÷			L				
1925	-	Ļ	L_			-	_		-		5961 1961	-				_			• .		긕
1923 1924				-		-	\vdash	_	\vdash		296l			_					-		
1922	- -	<u> </u>	-				\vdash		\vdash	-	1961	: : <u></u>	-					Ļ,			
1921	- - -	-	\vdash		H	-	\vdash				0961	-									\dashv
0261	-		\vdash		-	\vdash	\vdash		\vdash		6961	-			-		-	-		-	
6161		-	-	-	-	-	-	_		~-~	8961			-	\vdash					-	\dashv
8161	f	H					\vdash	-	$ \cdot $		<u>7261</u>	-		-			-	-			\vdash
7191			-					_			9961	 		-			-				
9161					_			7			996l	1		- 1		i	70,				
9161			1								<i>1</i> ∕961										
bl6I			_								£56I					-					
5191											799l										
1912			<u> </u>			L				Ŀ	1961			اند							
1161	Į,	_			_	-41					<u>0</u> 961						_			-	
0161	- -	L	_	Ŀ				_			616l						-			_	
606L			-		-					_	7491 8481					\dashv					{
806l 206l	-	<u> </u>	<u> </u>				Н		Н		276l									Н	
906l			┝							H	5661	-	-		, -						
5061			-	\vdash			-	_i			1944			-		-				\vdash	
	1	┝	-	-				-				٠.		_				-			
Kear	816	569	670	382	20	936	588	0	256	541	Water 2 2	816	569	670	382	930	936	588	403	256	541
Water Ayeal m			9	ξ,	6	0	۷	4	3,2	Ŋ	27.63	118,	10		-					3,	
D. A.2 km	118,	110					-				Water D.A.year Km	Ξ					_ :	_			
<i></i>		7				П															
. E	ا_ا	34								an	Ę.		ig g	.					-		E
च	120	Tak	ید	ည		, a				뜅	170	2 am	1 2	ارق	의		g	,			
S.	Z	بده	Hal	aı,	บ	lok!	ă	a	0	٠ <u>-</u>	ង	ž	9	Hah	-0	ų	ak	nac	33	٥	
e e	ä	Chira Prawat	61	Α,	D.	E	1	8	=	Y.	ν u	S.	၂	12	\ 	O	ν»:	묫	2	Zi V	۲,
Name of Station	Wac Phikun Ngam	Ch.	Ban Prada Hak	Chao Kai	Hin Dac	Ban Pang Mokha	San Tha Manao	Ban Hang Rai	Ban Khok Mo	Bung Ai Chiam	Nam of Station	Phikun Ngam	Khai Chira Prawat	Ban Prada Hak	San Chao Kai To	San Hin Dar	Ban Pang Makha	Ban Tha Manao	Ban Hong Rai	Ban Khok Mo	Ban Bung Ai Chiam
Nam	ا د	Khai	다	9	E	Q, I		H	×	8	N. P. E.	E4	占	Part H	اد.	프	4	Ţ	E	×	8
~	3	Kh	Baı	San	Ban	Bat	Bar	Bar	Bar	Ban.		Vac	7	Bar	Sat	Sat	Ваг	831	Bar	Bac	Ваг
	\vdash	\vdash	⊢		-		-	-	\vdash	-		-		-	-			-		-	_
			Sakae Krang (Huai Thap Salao)				(Ruat Than Salaa)			Salao)	•			Sokae Krang (Huai Thap Salao)				(Huar Thap Salao)			(Huai Thap Salao)
			Sa	a)	1		3	_		Sal				Sal				[S	_		Sal
			ģ.	z.	2	2		ň	(8)	ď				2	Σ	2	~	اي	ho	<u></u>	اءِ
		:	Tha	(Nam Wang Ma)	(Mae Wong)	(Mae Wong)	冒	(Khlong Pho)	Mae Wong)	(Huai Thap	,			Tha	· (Nam Wang Ma)	(Mae Wong)	(Mae Wong)	E :	(Khiong Pho)	(Mae Wong)	T a
<u>.</u>			Ή	3	3	3	1,	o	ā	ם	·			- 설	3	3	. E	3	0	3	-53
River			꿆	Nan	Mae	Жае	Kua	K	Σ̈́	Hus	Li Di			Hus	200	Kae	Mae	HUS	Kh.	Мае	뭐
ĸ	_a	_) (00	ِ ب	Ÿ	٦	١٩	9)`	٦	River	-		٦	🖺	٦	ِ ت	۲		2	기
	a V	ay.	ű	. !		١. ١		. '				Š	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ans		=	- '		; =	-	· .
	Phr	Phraya	7	Ī	=	=	11	=	٦.	=		2hr	Phr.	Ϋ́							
	Chao Phraya	o o	8		_		1					Q		9							
	ទើ	Chao	Sag	١	٦	2	-	Ξ.	=	-		Chao Phraya	Chao Phrayo	Sak	=	=	آ		=	1	=
	1	Ľ.			-	a			-		<u></u>	Ĭ	\vdash	-			-	-		-	\vdash
	Γ	ı															. ч.				. 1
윉	-	Ŋ	'n	4	'n	5A	(0)	^	ω	ത	8		СI	m	4	ហ	S,	φ	۲.	∞	Q)
8	ر. ا	0,5	Ct.3	Ct.4	Ct.5	Ct	Ct.6	Ct.7	Ct.8	Ct 9	8	U	Ω Σ	Ct 3	Ct.4	CLS	Ct.5A	Ct.6	Ct.7	Ct.8	Ct.9

Fig. I-3 Stream Gaging Station and Period of Observation

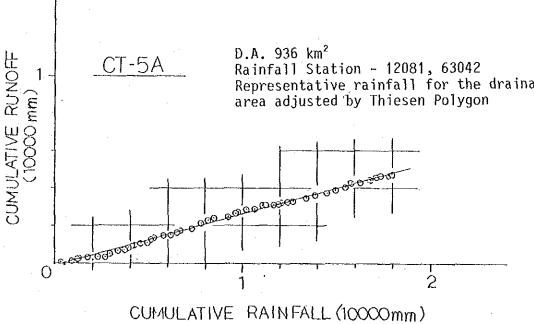
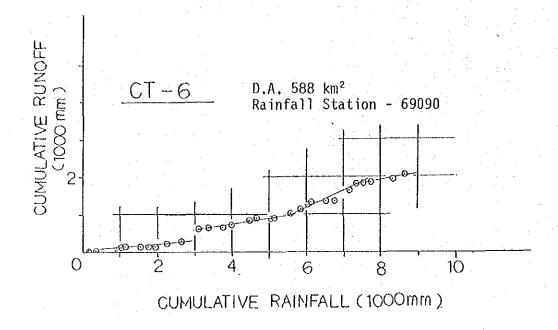



Fig. I-4(1) Double Mass Curve for Runoff and Rainfall

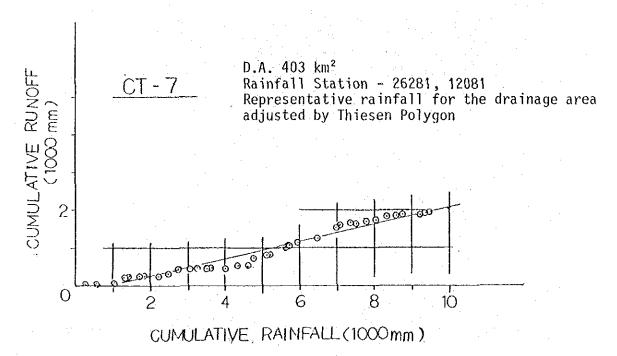
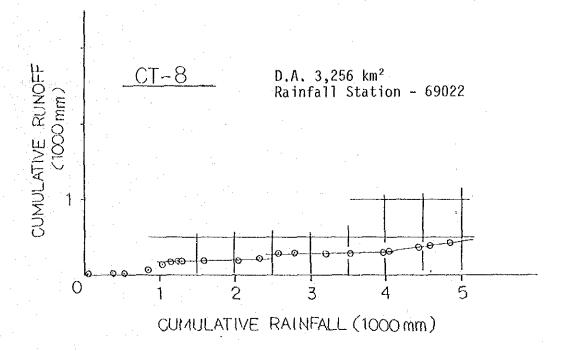



Fig. I-4(2) Double Mass Curve for Runoff and Rainfall

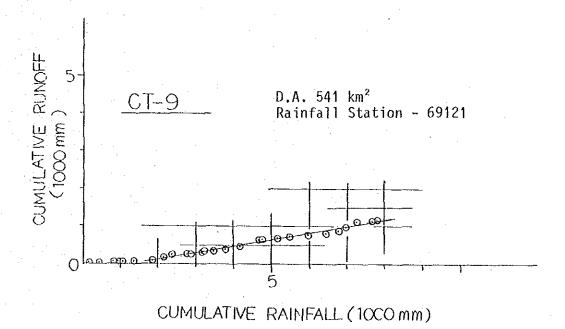


Fig. I-4(3) Double Mass Curve for Runoff and Rainfall

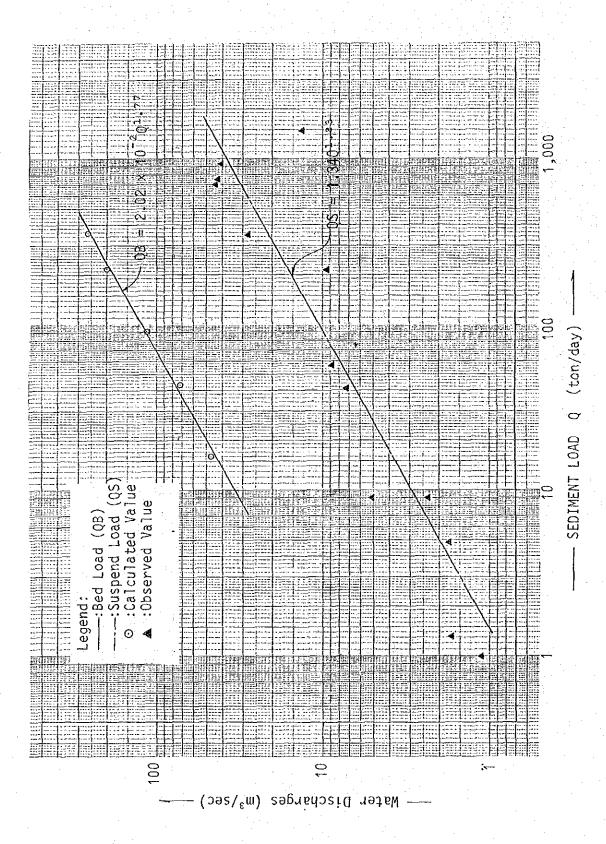


Fig. I-5 Sediment Load Distribution