ANNEX-III WATER BALANCE STUDY AND OPTIMIZATION STUDY

ANNEX - III

WATER BALANCE STUDY AND OPTIMIZATION STUDY

TABLE OF CONTENTS

P	aq	je	
_			•

1.	INTRO	DUCTION		III-l
2.	WATER	BALANCE	STUDY OF PRESENT CONDITION	III-l
	2.1	Procedu	res	III-1
		2.1.1	Layout of irrigation water supply system	III-l
		2,1.2	Definitions	III-2
	2.2	Basic Da	ata	III-3
		2.2.1	Runoff	III-3
		2.2.2	Irrigation water demand	III-3
		2.2.3	Rainfall	III-3
	2.3	Results	of Water Balance Calculation	III-3
		2.3.1	Verification of systematic diagram and assumption	III-3
		2.3.2	Present water use and deficit of irrigation water in the basin	III-3
		2.3.3	Actually irrigated area	III-3
		2.3.4	Overall water balance in the Mae Wong river basin	III-4
		2.3.5	Present observation network for water use of Mae Wong river	III-4
3.	WATER	BALANCE	STUDY OF WITH-PROJECT CONDITION	III-4
	3.1	Procedu	res	III-4
		3.1.1	Layout of irrigation water supply system	111-4
		3.1.2	Calculation step	III-4
		3.1.3	Definitions	111-5
	3.2	Basic D	ata	III-6
		3.2.1	Runoff	III-6
		3.2.2	Irrigation water demand	111-6
		3,2,3	Rainfall	III-6
		3.2.4	Evaporation	III-6
	3.3	Water U	se of Lower Mae Wong Area	III-6

.

			Page
	3.4	Alternative Development Plan	III-8
	3.5	Results of Water Balance Calculation	III-9
4.	OPTIM	IZATION STUDY OF DEVELOPMENT SCALE	III-10
	4.1	Alternative Plan	III-10
	4.2	Preliminary Estimate of Cost and Benefit	III-10
		4.2.1 Construction cost	III-10
		4.2.2 Other cost	III-10
		4.2.3 O&M cost and replacement cost	111-11
		4.2.4 Irrigation benefit	111-11
	4.3	Evaluation	111-12
	4.4	Selection of Optimum Development Plan	III-13

LIST OF TABLES

•			Page
Table	III-l	RIVER DISCHARGE AT CT-4 STATION	111-15
	III-2	ACTUALLY IRRIGATED AREA	III~16
	III-3	ESTIMATED EVAPORATION DEPTH	III-16
	III-4	ALTERNATIVES OF WATER BALANCE CALCULATION UNDER WITH-PROJECT CONDITION	III-17
	III-5	RESULTS OF WATER BALANCE CALCULATION UNDER WITH-PROJECT CONDITION	111-17
	III-6	IRRIGATION DEMAND (CASE 301)	111-18
	III-7	RESULTS OF WATER BALANCE CALCULATION (CASE 301)	111-19
	111-8	RIVER FLOW AT CT-5A BEFORE CONSTRUCTION OF UPPER MAE WONG DAM	III-20
	111-9	RIVER FLOW AT CT-5A AFTER CONSTRUCTION OF UPPER MAE WONG DAM	111-21
	111-10	CONSTRUCTION COST OF ALTERNATIVE PLAN	III-22
	III-11	ECONOMIC O & M COST AND REPLACEMENT COST	111-23
	III-12	IRRIGATION BENEFITS OF ALTERNATIVE CASES	III-23
	111-13	IRRIGATION BENEFIT ESTIMATES (1/11)-(11/11)	111-24
	111-14	ECONOMIC COMPARISON OF ALTERNATIVE CASES	TTT-29

LIST OF FIGURES

			Page
Fig.	111-l	Systematic Diagram of Mae Wong River Basin for Water Balance Study Under Present Condition	111-30
	111-2	Flow Chart of Water Balance Calculation	III-31
	III-3	Monthly Mean River Discharge at CT4 Station	III-32
•	III-4	Present Water Use in Mae Wong River Basin	III-33
	111-5	Deficit Ratio of Existing Irrigation Area	III-34
	111-6	Overall Present Water Balance of Mae Wong Basin	III-35
	III-7	Location Map of Water Level Observation Network	111-36
	111-8	Systematic Diagram of Mae Wong River Basin for Water Balance Study Under With-Project	
		Condition	III-37
	111-9	Flow Chart of Reservoir Operation	III-38
	111-10	Relationship between Gross Reservoir Capacity and Irrigable Area	111-39
	111-11	Relationship between Irrigable Area and Cropping Intensity	111-39
	III-12	Ratio of Water Supplied from Upper Mae Wong Dam in Irrigation Demand	111-40
	111-13	Storage Change of Upper Mae Wong Reservoir (1/2)-(2/2)	III-41
	III-14	Change of River Flow at CT-5A	111-43
·	111-15	Relationship between Gross Reservoir Capacity and Dam Construction Cost	111-45

III-iii

.

ANNEX - III

WATER BALANCE STUDY AND OPTIMIZATION STUDY

1. INTRODUCTION

The water balance study aims at clarifying the followings over the Mae Wong river basin:

- to clarify the present use of existing farmer's irrigation system in the basin and reveal the areas actually irrigated in the existing irrigation service areas under the water balance study of present condition, and

- to clarify the relationship among the proposed dam scale, irrigable area and cropping intensity for each alternative development plan under the water balance study of with-project condition and consequently get the useful results for determination of optimum development scale.

The alternative development plans on the relationship among dam scale, irrigable area and cropping intensity clarified through the water balance study are studied for determining the optimum development scale. The optimum development plan is selected through the evaluation on the basis of the criteria for selection.

2. WATER BALANCE STUDY OF PRESENT CONDITION

2.1 Procedures

2.1.1 Layout of irrigation water supply system

A systematic layout of irrigation water supply system of present condition is shown in Fig. III-1. In the water balance calculation, the existing irrigation service areas in the basin are divided into the following 7 blocks:

	and the second	· 이상 같은 것 같은			
			Acrea	age	
	Block	Name of Service Area	rai	ha	
	1	Ban Tha Ta Yu	105,000	16,800	
1.5	2	Khlong Saingu	10,000	1,600	
× .	3	Huai Hin Lab	3,000	480	
	4	Ban Wang Nam Khao	3,000	480	
۰.	5	Khun Lard Boriban	73,000	11,680	
	6	Khlong Nam Hom	10,000	1,600	
	7	Wang Ma	26,000	4,160	
			· · · · · · · · · · · · · · · · · · ·	<u> </u>	
		Total	230,000	36,800	

2.1.2 Definitions

(1) Simulation period and calculation interval

Calculation of water balance at each irrigation block is carried out for the period from 1954 to 1982 on the basis of runoff estimated in the hydrologic study and estimated irrigation water requirement of each block. The calculations are made on 10-day basis.

(2) Return flow

Generally, a part of irrigated water to the fields returns to rivers and can be reused for further downstream areas. According to the Chao Phraya-Meklong Basin Study, the return flow factor of 75% can be considered as effective return flow available for reuse. Rather conservative figure of 60% is used for the water balance study. The derivation of effective return flow is given as follows:

Overall irrigation efficiency: 45%Effective return flow = $(1 - 0.45) \times \text{Return Flow Factor}$ = $(1 - 0.45) \times 0.60$ = 0.33 of diversion requirement

(3) Excess water of rainfall from paddy field

The rainfall in the paddy field is effectively used as parts of irrigation water. Non-effective rainfall (excess water of rainfall) is drained into the river together with the return flow of irrigation water. The excess water of rainfall is assumed as follows:

Excess water of rainfall = 0.2 x (Rainfall - Effective Rainfall)

(4) Water balance calculation

A basic balance at an irrigation block is simply expressed as below:

If Runoff > Diversion Requirement

Surplus = Runoff - Diversion Requirement

If Runoff < Diversion Requirement

Deficit = Diversion Requirement - Runoff

where, Runoff

Natural runoff at the diversion point to irrigation block including return flow and excess water of rainfall from upstream

Diversion Requirement:

Irrigation requirement at the diversion point to irrigation block

A flow chart for the present water balance calculation is shown in Fig. III-2.

2.2 Basic Data

2.2.1 Runoff

The observed runoff and runoff generated by the Tank Model method at the CT 5A station in the hydrologic study are used for the water balance calculation (See ANNEX-I).

2.2.2 Irrigation water demand

Irrigation water requirements estimated on the present cropping patterns in the basin are used for the water balancd calculation (See ANNEX-V).

2.2.3 Rainfall

The rainfall data at the Lat Yao station are used for calculation on excess water of rainfall from the paddy field (See ANNEX-I).

2.3 Results of Water Balance Calculation

2.3.1 Verification of systematic diagram and assumption

d sejat da sus

There is a gauging station (CT 4) at the middlestream reach of the Mae Wong river. Rather long-term and recent discharge records are available at the station. The monthly mean river discharge simulated on the systematic diagram is compared with the observed river discharge at the CT 4 station as shown in Table III-1. The simulated river discharge is satisfactorily similar to the observed discharge as shown in Fig. III-3.

2.3.2 Present water use and deficit of irrigation water in the basin

Figure III-4 shows the present water use in the basin of the different years such as average year, drought year with 5-year return period and the droughtiest year. The deficit ratio of irrigation water in each block is shown in Fig. III-5. As shown in the figure, the deficit of irrigation water in the downstream reach is severer than that in the upstream reach.

2.3.3 Actually irrigated areas

The areas actually irrigated are estimated based on the ratio of deficit amount versus irrigation water demand in each irrigation block. Table III-2 shows the estimated areas actually irrigated on the results of water balance calculation. From the table, it can be said that the irrigation ratio of the Mae Wong river basin is about 60% in the drought year with 5-year return period.

2.3.4 Overall water balance in the Mae Wong river basin

The overall water balance in the Mae Wong river basin is shown in Fig. III-6. In the drought year, the water used for irrigation occupies about 60% of total surface water available in the basin.

2.3.5 Present observation network for water use of Mae Wong river

Since no actual records on diversion water to the existing irrigation areas were available, the JICA study team recommended to establish the observation network for water use of the Mae Wong river in the previous pre-feasibility study. In accordance with the recommendation, RID installed the staff gauges at six (6) main diversion points of the Mae Wong river to observe the water level (See Fig. III-7). The observation of water level was commenced from mid-April, 1985. The observed water level records are available from mid-April to August, 1985. As the records do not cover the full crop season, the continuous observation for at least two (2) crop seasons is expected.

3. WATER BALANCE STUDY OF WITH-PROJECT CONDITION

3.1 Procedures

3.1.1 Layout of irrigation water supply system

Figure III-8 shows the systematic layout of irrigation water supply system in the Mae Wong river basin under the with-project condition.

3.1.2 Calculation step

The water balance calculations of with-project condition are divided into the following two steps:

- Step 1: The water balance of irrigation area is calculated in accordance with the same procedures as water balance calculation of the present condition. Through this calculation, required water amount for irrigation to be released from the proposed storage dam is estimated.
- Step 2: The reservoir operation is carried out to determine the possible irrigable areas and reservoir capacity of the proposed dams by trial and error method based on the released water amount for irrigation estimated through Step 1 and given reservoir capacity.

In calculation of reservoir operation, a balance of inflow and outflow of a reservoir to be created at a proposed damsite is calculated for 29 years period on the basis of the runoff data from 1954 to 1982. The balance of a certain 10-day period of calculation is given as follows:

Se = Sb + I - Or - E - Os

where, Se: Reservoir storage of the end of the period

Sb: Reservoir storage of the beginning of the period

I: Inflow to the reservoir during the period

- Or: Outflow from the reservoir during the period, this is equal to the release water for irrigation estimated through the water balance calculation downstream of the proposed dam in Step 1.
- E: Evaporation from the reservoir surface during the period
- Os: Spillout discharge during the period, if any. Because the storage at the end of the period is limited to the storage at the full supply water level in the maximum, the excess water is defined as spillout discharge.

A flow chart of reservoir operation is shown in Fig. III-9.

3.1.3 Definitions

(1) Simulation period and calculation interval

Water balance and reservoir operation calculations are carried out for 29 years period from 1954 to 1982 on the basis of runoff data and irrigation water demand. The calculations are made on 10-day basis.

(2) Return flow

The derivation of effective return flow is given as follows:

Overall irrigation efficiency: 55%

Effective return flow = (1 - 0.55) x Return flow factor = $(1 - 0.55) \times 0.60$ = 0.27 of diversion requirement

(3) Excess water of rainfall from paddy field

Excess water of rainfall = 0.2 x (Rainfall - Effective rainfall)

(4) Determination of possible irrigable area

Possible irrigable area is determined through the reservoir operation calculation in Step 2 on conditions that reservoir is completely depleted five times at least for the 29 years period, or in other word, drought damage recurs by 5 years return.

3.2 Basic Data

3.2.1 Runoff

Runoff data used for the water balance study of with-project condition are the same ones for the present water balance study.

3.2.2 Irrigation water demand

Irrigation water requirements for with-project condition estimated on the basis of the proposed cropping pattern are used for calculation (See ANNEX-V).

3.2.3 Rainfall

The rainfall data at the Lat Yao Station are used for calculation on the excess water of rainfall from paddy field.

3.2.4 Evaporation

Evaporation from the proposed reservoir surface in the reservoir operation calculation is based on the evaporation data at Nakhon Sawan. The evaporation loss from reservoir surface is assumed to be the estimated evaporation depth shown in Table III-3 multiplied by the reservoir surface.

3.3 Water use of Lower Mae Wong Area

The water use for the people living in the Lower Mae Wong area is considered in the form of allowance in the water balance study. Through the discussion with RID, the following water balance methodology in the Lower Mae Wong area was mutually agreed.

$Q_3 = (Q_1 - Q_0) + Q_2 \times (100 - A)/100$

where, Q_3 : River flow at the proposed Lower Mae Wong dam (m^3)

 $\mathbb{Q}_0\colon$ Released water for water use of Lower Mae Wong area (\mathbb{m}^3)

 Q_1 : Released water from the Upper Mae Wong storage dam (m^3)

 Q_2 : Runoff from the Lower Mae Wong catchment area excluding the Upper Mae Wong catchment area (m^3)

A: Reduction rate (%) which is different in the wet and dry seasons

Basic figures are estimated as follows:

- Released water for water use of Lower Mae Wong area (Q_0)

Certain amount of water (Q_0) released from the Upper Mae Wong dam for the Lower Mae Wong area is estimated on the irrigation water use of potential paddy field along the main course of Mae Wong river: The potential paddy field is limited to 625 rai (100 ha) due to soil condition and topographic condition. Then, the released water (Q_0) is estimated as follows:

Wet season

 Q_0 = Irrigation water requirement x potential paddy field

 $= 1,000 \text{ mm} \times 10^{-3} \times 100 \text{ ha} \times 10^{4}$

 $= 1,000,000 \text{ m}^3/\text{season}$

= 0.06 m^3 /sec (June to December)

Dry season

 Q_0 = Irrigation water requirement x potential paddy field = 1,500 mm x 10⁻³ x 100 ha x 10⁴

 $= 1,500,000 \text{ m}^3/\text{season}$

= $0.12 \text{ m}^3/\text{sec}$ (January to May)

- Reduction rate (A) of runoff from the Lower Mae Wong area

The reduction rate of runoff from the Lower Mae Wong area is estimated on population, number of livestock, the extent of potential paddy field area, etc. in the Lower Mae Wong area.

Population = 24,000 persons Potential paddy field areas along the tributaries of Mae Wong river in the Lower Mae Wong area = 2,690 rai (430 ha) Number of livestock = not available The domestic water use in the area is estimated as follows:

Domestic water use (DW) = Water consumption per person x population = $100 \ 1/day \ x \ 24,000$ = $100 \ x \ 10^{-3} \ x \ 24,000$ = $2,400 \ m^3/day$

Finally, the domestic water use in the area is calculated below taking into account the water use of livestock which is assumed at 20% of human domestic water use.

$DW = 2,400 \times 1.2$	$= 2,800 \text{ m}^3/\text{day}$
- ·	$= 87,500 \text{ m}^3/\text{month}$

The irrigation water use from June to December in the Lower Mae Wong area is estimated as follows:

Irrigation water use (IW) = Irrigation requirement x area = 1,000 mm x 10^{-3} x 430 ha x 10^{4} = 4,300,000 m³/season

On the other hand, the runoff from the Lower Mae Wong area is estimated below:

Wet season (Jun. to Dec.) = $107.7 \times 10^6 \text{ m}^3$ Dry season (Jan. to May) = $7.5 \times 10^6 \text{ m}^3$

Then, the reduction rate (A) is calculated as shown below:

Reduction rate in the wet season

 $= \frac{4,300,000 \text{ m}^3 + 87,500 \text{ m}^3 \times 7 \text{ months}}{107.7 \times 106 \text{ m}^3}$ = 0.05 (5%)

Reduction rate in the dry season

 $= \frac{87,500 \text{ m}^3 \text{ x 5 months}}{7.5 \text{ x 10}^6 \text{ m}^3}$ = 0.06 (6%)

3.4 Alternative Development Plan

In order to determine the optimum development scale, the alternative development plans are made based on the combination of irrigation service area, reservoir capacity and cropping intensity. The alternative development plans for the project are shown in Table III-4.

The alternative plans are broadly divided into the following cases:

Case 101 to Case 104:

In these plans, the upgrading works for the existing farmer's irrigation system would not be carried out. To secure the delivery of irrigation water to the paddy fields, the small size pumps would be provided at certain places in the areas.

Case 201 to Case 302:

In these plans, the updating works for the existing farmer's irrigation system would be carried out to secure the delivery of irrigation water to the paddy fields by gravity.

3.5 Results of Water Balance Calculation

Through the water balance calculation, the relationship among the dam scale, irrigable area and cropping intensity is clarified as shown in Table III-5 and Figures III-10 to III-11. As shown in Fig. III-10, it is confirmed that the gross reservoir capacity of 250 MCM is the maximum capacity to be expected from the hydrologic viewpoint, because no more extension of irrigable area is expected even if the reservoir capacity increases more. Subsequently, the alternative plans of Case 104, Case 204 and Case 302 are deleted in the optimization study of development scale. The alternative plan of Case 203 is also deleted in the study, because the irrigable area of 48,300 ha exceeds the potential maximum development area of 46,700 ha in the Mae Wong river basin.

As stated hereafter, the alternative development plan of Case 301 is selected as the optimum scale of development. Table III-6 shows the irrigation demand for each irrigation block in Case 301. The results of water balance calculation for Case 301 are summarized in Table III-7. From Table III-6 and Table III-7, the ratio of water supplied from the Upper Mae Wong dam is derived as shown in Fig. III-12. The water amount of 66% out of total irrigation demand is released from the Upper Mae Wong reservoir to fill the deficit in the drought year with 5-year return period. The storage change of reservoir in Case 301 is shown in Fig. III-13.

The change of river flow pattern after construction of the Upper Mae Wong dam is examined based on the results of water balance calculation (Case 301). The river flow at CT 5A before and after construction of the Upper Mae Wong dam are shown in Table III-8 and Table III-9, respectively. As shown in Fig. III-14, it is expected that the river flow after construction of the Upper Mae Wong dam will become more steady than the present natural river flow, especially in the drought year.

4. OPTIMIZATION STUDY OF DEVELOPMENT SCALE

4.1 Alternative Plan

From the results of water balance calculation, the following ll cases of alternative plans are examined for the determination of optimum development scale:

Altornative	Irrigable	Gross Reservoir	Cropping
Alleinalive	Area	Capacity	Intensity
Case	(ha)	(MCM)	(%)
101	36.800	200	100
102	36,800	250	105
103	37,600	250	100
201	36,800	120	100
202	36,800	250	130
205	42,400	170	100
206	42,400	250	116
207	45,600	200	100
208	45,600	250	108
209	46,700	220	100
301	46,700	250	105

The upgrading works of existing farmer's irrigation system would not be done in the alternative plans of Cases 101 to 103. Only two intake weirs would be provided to assure the stable intake of irrigation water at the diversion places to the Ban Tha Ta Yu and Khlong Saingu irrigation service areas.

4.2 Preliminary Estimate of Cost and Benefit

4.2.1 Construction cost

The construction cost for each alternative dam scale is estimated as shown in Table III-10 by using the relationship curve between the dam scale and the direct construction cost in Fig. III-15. The construction cost of irrigation facilities for each alternative plan is also estimated as shown in Table III-10 based on the construction cost of Case 301 (Details are referred to ANNEX-IX).

4.2.2 Other costs

Such other costs as land acquisition, resettlement and compensation cost, O&M equipment cost, administration cost and engineering services cost are estimated as shown in Table III-10 based on the cost estimate results for Case 301 (Details are referred to ANNEX-IX).

4.2.3 O&M cost and replacement cost

The annual operation and maintenance cost are preliminarily estimated dividing into staff salaries and labor wages, office expenses and operation and maintenance cost, except for the alternative plans of Case 101 to Case 103. In case of the alternative plans of Case 101 to Case 103, the upgrading works of existing farmer's irrigation systems would not be executed under the project. As stated in ANNEX-V, the gravity irrigation to all existing irrigation areas is not expected by the farmer's irrigation systems, unless irrigation water is assured at the diversion points by the release water from the Upper Mae Wong reservoir. The irrigation by small pump is required for the areas where the irrigation is difficult. Taking the above situation into consideration, the annual operation and maintenance costs for pump irrigation are estimated as shown in Table III-11.

The replacement cost is also estimated as shown in Table III-11.

4.2.4 Irrigation benefit

Preliminary estimates of irrigation benefit are made on the following assumptions:

- (1) The proposed potential irrigation area is considerably matured for agricultural production, where numerous farmer's irrigation systems have been implemented and available water is fully utilized with almost fixed cropping system. Under such conditions, significant changes in agricultural production will not be expected unless new water resources are exploited. With this in view, agricultural economy under future condition without the project is considered same as that under present condition.
- (2) Crop yield under future condition without project is estimated as follows:

Wet season paddy

- Irrigated	:	450	kg/rai	(2.8]	tons/ha)
- Semi-irrigated	l:	250	kg/rai	(1.6	tons/ha)
- Rainfed	:	200	kg/rai	(1.3	tons/ha)
Dry season paddy	:	560	kg/rai	(3.5	tons/ha)
Mung beans					
(Paddy field)	:	100	kg/rai	(0.6	tons/ha)
Mung beans					на. 1
(Upland)	: .	. 80	kg/rai	(0.5	tons/ha)
Maize	:	350	kg/rai	(2.2	tons/ha)

(3) Crop yield under future conditions with the project is estimated as follows:

Wet season paddy

- H.Y.V. ~ Improved local	:	720 kg/rai (4.5 tons/ha) 640 kg/rai (4.0 tons/ha)
Mung beans	:	190 kg/rai (1.2 tons/ha)

(4) The economic prices of agricultural products are estimated as follows:

Paddy	:	B4,230/ton
Mung beans	:	86,920/ton
Maize	:	₿2,470/ton

(5) Crop production costs under future condition both with and without the project area estimated as follows:

Without project

- Wet season paddy

	Irrigated	:	ß4,270/ha
	Semi-irriga	ted:	Ø3,780/ha
	Rainfed	1	₿3,480/ha
-	Dry season pa	ddy:	#4,930/ha
	Mung beans (Paddy field)	:	₿2,250/ha
-	Mung beans (Upland)	· . :	ø2,250/ha
_	Maize	:	182,660/ha

With project

-	Paddy	:	₿5,680/ha

- Mung beans ; \$3,660/ha

The irrigation benefits for each case of alternative plans are summarized in Table III-12. Details of benefit calculation are given in Table III-13.

4.3 Evaluation

The evaluation for each alternative plan is made in terms of economic internal rate of return (EIRR) which has been calculated on the following assumptions:

- The economic useful life of the project facilities will be 50 years.

- Only agricultural benefit is counted in the evaluation, and any indirect or intangible benefits are not taken into account in calculation of IRR.
- The construction period will be seven (7) years including two (2) years for detailed design and preparatory works.

- The economic costs and benefits are used in the evaluation; the weighted conversion factors for cost components are used for converting the financial capital cost into the economic cost (See ANNEX-X).

- The annual fund requirements for each alternative plan are calculated on the basis of the construction schedule designed for each alternative.
- The benefits will initially accure from upgrading of existing farmer's irrigation systems in 6th year by 10% of full incremental benefit and 20% in 7th year, and after completion of dam construction, the annual benefit will increase gradually during the build-up period of 5 years from 60% in 8th year to 100% in 12th year.

Alternative	Reservoir	Irrigation	Cropping Intensity	IRR
Case	(МСМ)	(ha)	(%)	(%)
101	200	36,800	100	11.6
102	250	36,800	105	11.6
103	250	37,600	100	11.5
201	120	36,800	100	11.5
202	250	36,800	1.30	12.1
205	170	42,400	100	12.0
206	250	42,400	116	12.5
207	200	45,600	100	12.6
208	250	45,600	108	12.9
209	220	46,700	100	12.8
301	250	46,700	105	13.0

Using the costs and benefits estimated in the foregoing section, the economic internal rate of return (EIRR) are calculated as follows (for details, see Table III-14:

4.4 Selection of Optimum Development Plan

(1) Criteria for selection

Following the development concepts, the criteria for selection of optimum development plan are prepared as given below:

Criteria-1: The alternative plans with higher economic internal rate of return should be first selected.

Criteria-2: Higher priority should be given to the alternative plans with larger irrigation area because larger number of farmers could be benefited.

Criteria-3: Dry season cropping should be considered as a secondary importance so as to expand the irrigation area in the wet season.

Criteria-4: The alternative plan with the most sizable reservoir should be selected within economically reasonable range, in view of maximum exploitation of the endowed water resources.

Criteria-5: The alternative plan providing larger agricultural benefits should be selected in view of greater contribution to the regional economy.

(2) Assessment of alternative plans and selection of optimum development plan

The assessment of alternative plans is summarized as follows:

- All the alternative cases are economically feasible, with more than 11.5% of EIRR.
- The alternative plans from Case 101 to Case 103 show a bit lower economic viability. This means that upgrading of the existing farmer's irrigation systems will create greater benefit by saving enourmous operation and maintenance costs.
- The alternative plans with the reservoir capacity of 250 MCM show higher internal rates of return as compared with those of ones having other capacity of reservoirs. This indicates that the dam with a capacity of 250 MCM has the highest efficiency in irrigation area/effective storage and/or dam construction cost. The alternative plans with 250 MCM reservoir capacity should be put under further consideration and others be disregarded.
- Among four alternative plans, i.e., Cases 202, 206, 208 and 301 which have 250 MCM reservoir capacity, only the alternative Case 301 meets all the criteria given above.

Considering all these, it is recommended that the alternative Case 301 with the following features should be selected as the optimum development plan:

		and the second
Reservoir	Irrigation	Cropping
Capacity	Area	Intensity
250 MCM	291,900 rai (46,700 ha)	105%

Table III-1 RIVER DISCHARGE AT CT4 STATION

.

Observed River Discharge at CT4 Station

	a trave	1										(Unit	: MCM)
Year	JUN.	JUL.	AUG.	SEP.	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	Total
1975	14.0	12.3	16.9	70.7	103.2	51.2	11.1	6.6	2.7	0.8	0.7	13.8	304.0
1976	2.9	1.4	7.9	99.2	105.3	88.6	11.1	5.6	1.9	1.9	2.1	2.9	330.8
1977	0.5	0.0	0.2	18.3	17.3	6.1	1.6	0.7	0.0	0.0	0.1	8.9	53.9
1978	3.3	30.4	25.7	76.7	119.1	18.3	6.8	1.7	0.1	0.1	••		-
1979	—	_	-				-		-		0.4	37.2	-
1980	86.9	26.8	30.6	81.7	134.7	30.9	8.0	2.5	0.1	0.2	0.4	7.6	410.4
1981	8.0	6.1	20.3	36.3	63,6	164.5	32.8	10.0	1.6	0.6	1.7	5.4	350.9
Mean	19.3	12.8	16.9	63.8	90.5	59.9	11.9	4.5	1.1	0.6	0.9	12.6	294.8
		·	. <u></u>			· · · · ·							

Simulated River Flow at CT4 Station

						· · ·						(Unit	: MCM)
Year	JUN.	JUL.	AUG.	SEP.	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	Total
·								·					
1975	26.8	9.6	2.8	70.2	124.0	50.6	22.6	12.7	1.1	1.2	2.8	20.6	344.9
1976	5.4	1.0	8.8	75.3	78.0	115.3	11.5	5.4	0.4	0.4	2.3	5.6	309.3
1977	2.2	0.6	1.4	11.0	5.2	1.7	2.1	1.7	0.5	0.2	1.3	13.0	40.8
1978	8.2	20.1	6.0	79.4	147.6	6.7	8.8	4.7	0.6	0.2	0.8	7.5	290.6
1979	33.7	2.9	2.0	103.3	35.0	1.5	2.4	1.5	0.2	0,2	0.3	89.6	272,5
1980	35.8	16.1	5.9	80.2	202.8	14.7	8.9	5.3	0.7	1.4	4.1	19.2	395.0
1981	27.4	15.3	8.3	47.7	77.7	49.7	26.9	6.4	0.5	0.5	2.0	12.6	275.2
Mean	19.9	9.4	5.0	66.7	95.8	34.3	11.9	5.4	0.6	0.6	1.9	24.0	275.5
	·												

III-15

		-		(Unit : ral)
		Act	ually Irrigated Area	L
Irrigation Block	Irrigation Service Area	Average Year (1954 to 1982)	80% Dependable Year (1982)	Dryest Year (1977)
 Mw1	105,000	85,000	81,900	48,300
MW2	10,000	6,600	4,900	1,600
MW 3	3,000	2,800	2,900	2,100
MW4	3,000	1,800	1,200	300
M#5	73,000	44,500	30,000	11,000
MWG	10,000	9,200	9,700	7,000
MW 7	26,000	13,500	6,800	2,300
Total	230,000	163,400	137,400	72,600
		(71%)	(60%)	(32%)
Note ; BW1 BW2	: Ban Tha Ta Yu : Khlong Sainga	1	BW5 : Khun Lard Bo BW6 : Khlong Nam H	oriban iom
BW3 BW4	: Huai Hin Ləb : Ban Wang Nam	Khao	BW7 : Wang Ma	

Table III-3 ESTIMATED EVAPORATION DEPTH

			NUM	BER OF	RAINI	ESS DA	YATC	T-SA			1.1	
										(U	mit:	day)
Year	A	м	J	J	A	S	٥	N	D	J	F	M
1970	24	14	6	9	6	10	20	25	25	31	26	29
1971	24	13	21	18	16	11	17	28	31	31	29	31
1972	26	20	18	31	25	14	20	23	28	31	28	24
1973	29	8	12	18	15	13	20	26	31	30	27	22
1974	19	20	23	15	18	11	15	26	31	20	27	25
1975	28	15	23	19	16	14	13	25	30	31	28	58
1976	26	15	20	19	11	n	17	24	31	31	28	29
1977	23	20	- 24	22	20	11	21	30	30	31	24	31
1978	29	19	21	8	13	10	19	30	31	30	27	31
1979	28	23	17	21	22	11	27	30	31	. 31	28	29
1980	27	22	12	10	17	4	19	30	31	31	28	28
1981	26	23	13	15	10	12	17	25	· -	-	·	<u> </u>
1982	30	22	23	19	17	9	17	25	31	30	28	2 9
Average	26.1	18.0	17.9	17.2	15.9	10.9	18,6	26.7	30.1	29.8	27.3	28.0
Ratio	0.87	0.58	0.60	0.56	0.51	0.36	0.60	0.89	0.97	0.96	0.97	0.90

EVAPORATION DEPTH

	· ·						· · ·			(Unit: mm)		
	J	F	м	A	м	J	J	A	\$	0	N	D
Ep	4.9	6.2	7.5	B.7	7.1	6.1	5.6	4.9	4.3	4.5	4.4	4.5
Ed	3.06	3.91	4.39	4.92	2.68	2.38	2.04	1.62	1.01	1.76	2.55	2.84

Note: Ep = Mean monthly evaporation at Nakhon Sawan

Ed = Estimated evaporation depth

= Ep x Ratio of Rainless Day x 0.65

III-16

Table III-4 ALTERNATIVES OF WATER BALANCE CALCULATION UNDER WITH-PROJECT CONDITION

Alternative Case	Irrigable Area (ha)	Gross Reser- voir Capacity (MCM)	Cropping Intensity (%)	Remarks
101	36,800	estimated	100	without rehabilitation 1
102	36,800	250	estimated	- do -
103	estimated	250	100	- ob -
104	estimated	290	100	- do -
201	36,800	estimated	100	with renabilitation $\frac{2}{2}$
202	36,800	250	estimated	- do -
203	estimated	250	100	- do -
204	estimated	290	100	- do -
205	42,400	estimated	100	do
206	42,400	250	estimated	- do -
207	45,600	estimated	100	- do -
208	45,600	250	estimated	- do -
209	46,700	estimated	100	- do -
301	46,700	250	estimated	- do -
302	46,700	290	estimated	- do -

/1 : overall irrigation efficiency : paddy 45 %, Mung beans 40 %

/2 : overall irrigation efficiency : paddy 55 %, Mung beans 45 %

RESULTS OF WATER BALANCE Table III-5 CALCULATION UNDER WITH-PROJECT CONDITION

Alternative Case	Irrigable Area (ha)	Gross Reservoir Capacity (MCM)	Cropping Intensity (%)
			·
101	36,800	200	100
102	36,800	250	105
103	37,600	250	100
104	37,600	290	100
201	36,800	120	100
202	36,800	250	130
203	48,300	250	100
204	48,300	290	100
205	42,400	170	100
206	42,400	250	116
207	45,600	200	1.00
208	45,600	250	108
209	46,700	220	100
	a that a share a	(1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2	
301	46,700	250	105
302	46,700	290	105

Note : Existing Irrigation Area = 36,800 ha

Potential Maximum Development Area = 46,700 ha

IRRIGATION DEMAND (CASE 301)

Table	III~6
-------	-------

				(Unit : 10 ³ m ³)			
Year	B-1	в-2	B3	в4	в-5	Total	
· ·			25 (10	20 703	13 673	386.469	
1954	138,972	67,502	96,619	39,705	45,075	408 527	
1955	146,902	71,351	102,134	41,971	40,105	392 318	
1956	137,406	66,742	95,532	39,451	43,107	270 745	
1957	136,195	66,149	94,685	38,911	42,805	400 000	
1958	150,920	73,305	104,928	51,439	47,430	428,022	
1959	138,684	67,357	96,419	39,625	43,589	385,674	
1960	140,630	68,306	97,776	40,182	44,195	391,089	
1961	142,352	69,143	98,969	40,671	44,741	395,876	
1962	138,552	67,298	96,325	39,587	43,544	302,175	
1963	133,285	64,735	92,665	38,030	41,890	370,605	
1964	122,744	59,618	85,334	35,070	38,572	341 , 338	
1965	138,323	67,189	96,170	39,523	43,478	384,683	
1966	140,295	68,145	97,537	40,086	44,093	390,156	
1967	164,169	79,739	114,137	46,905	51,599	456,549	
1968	166,705	80,970	115,900	47,634	52,389	463,598	
1969	136,437	66,266	94,857	38,984	42,879	379,423	
1970	157,618	76,558	109,582	45,032	49,539	438,329	
1971	149,568	72,647	103,979	42,738	47,006	415,938	
1972	146,564	71,186	101,893	41,876	46,062	407,581	
1973	161,494	78,435	112,274	46,142	50,754	449,099	
1974	126,357	61,373	87,848	36,104	39,713	351,395	
1975	131,061	63,662	91,116	37,441	41,185	364,465	
1976	154,455	75,019	107,382	44,133	48,539	429,528	
1977	163,571	79,450	113,724	46,737	51,409	454,891	
1978	131,911	64,070	91,708	37,687	41,455	366,831	
1979	159,700	77,570	111,031	45,630	50,190	444,121	
1980	126,590	61,484	88,006	36,168	39,789	352,037	
1981	132,968	64,583	92,444	37,992	41,789	369,776	
1982	151,217	73,444	105,131	43,207	47,525	420,524	
Mean	143,643	69,769	99,866	41,333	45,144	399,755	

Note : Cropping Intensity = 105 % (Paddy + Mung Beans)

.

	·	÷	- ee	5	
ਾ ਸ਼	าโค่	11	1	1	Î
1.00	·		-	÷.,	

RESULTS OF WATER BALANCE CALCULATION (CASE 301)

	a an	and a second second Second second		(Uni	$t: 10^3 m^3$)
Year	Inflow	Release for Irrigation <u>/1</u>	Evaporation	Spillout	Deficit
1954	186,570	158,271	15,771	75,389	. 0
1955	180,776	193,279	14,075	2,072	0
1956	196,781	144,626	15,164	0	0
1957	275,353	96,354	16,122	151,228	0
1958	221,851	170,294	15,630	50,161	0
1959	230,936	120,083	15,744	96,106	0
1960	169,826	174,190	14,409	0	0
1961	232,091	120,114	15,761	68,411	0
1962	218,252	138,071	15,569	76,718	0
1963	230,919	115,113	16,435	56,839	0
1964	309,768	60,024	17,271	231,020	0
1965	195,743	152,539	16,401	44,942	0
1966	182,081	163,908	16,122	0	0
1967	123,339	301,460	6,459	0	0
1968	135,804	298,943	2,784	0	154,407
1969	155,223	201,911	5,009	0	87,876
1970	259,108	198,794	10,619	0	48,698
1971	195,740	188,611	12,644	0	0
1972	252,293	183,007	13,832	0	0
1973	239,414	213,530	15,730	0	0
1974	376,448	92,700	17,360	242,150	0
1975	236,002	137,644	17,379	80,978	. 0
1976	215,393	200,379	16,886	13,099	0
1977	57,336	361,315	4,065	0	98,042
1978	221,867	150,871	9,304	0	0
1979	182,122	316,153	2,855	0	93,852
1980	282,828	134,009	13,531	0	0
1981	204,075	165,131	16,019	0	0
1982	108,338	279,883	8,021	0	0
Mean	209,527	180,386	12,999	41,004	16,651

 $\underline{/1}$: Including the release water of 2,652 x 10³ m³ for the people living in the Lower Mae Wong area.

Year	- J	 J	A	S	0	N	D	J	F	M	A	M	Total
1954	8,332	17,036	37,722	77,783	120,561	8,424	3,336	2,716	1,592	936	844	5,804	285,306
1955	19,656	25,365	48,394	89,859	6,272	10,857	4,305	3,369	2,808	2,340	1,780	5,148	220,153
1956	16,756	12,356	58,782	101,184	77,315	14,509	5,241	4,400	3,464	2,808	2,433	1,780	301.028
1957	11,700	45,398	70,015	99,220	161,186	13,305	5,428	4,588	3,744	3,088	2,152	1,497	421,121
1958	13,573	36,598	36,973	98,191	126,645	10,952	4,773	3,837	2,808	1,965	1,497	1,404	339,216
1959	7,301	19,001	72,918	100,531	124,305	15,069	4,773	3,837	2,908	1,592	376	468	352,979
1960	8,144	14,789	34,258	58,222	102,684	25,741	3,837	2,996	2,060	1,216	468	5,428	259,843
1961	25,833	19,001	74,790	97,255	104,180	18,909	4,400	3,744	2,716	1,592	1,124	1,312	354,856
1962	5,148	20,500	53,634	108,580	120,468	11,513	4,492	3,556	2,620	1,684	844	748	333,787
1963	2,528	11,981	40,625	81,903	147,894	51,202	4,588	3,744	2,716	1,592	844	3,652	353,269
1964	30,797	38,845	51,390	114,384	164,650	52,230	5,616	4,680	3,837	3,184	2,060	2,060	473,733
1965	15,802	13,760	35,194	91,171	95,663	23,025	5,336	5,241	4,400	3,652	2,901	3.184	299,329
1966	11,608	13,573	43,433	80,124	66,178	36,973	6,177	5,709	4,680	3,369	2,716	3,932	278,472
1967	16,568	13,760	11,232	45,022	62,527	14,133	5,428	4,492	3,556	2,620	2,528	9,453	191,319
1968	17,504	34,633	65,242	32,105	29,765	10,204	4,868	4,400	3,464	2,433	1,312	1,780	207,710
1969	3,932	5,241	21,249	65,710	51,106	57,942	10,109	4,024	1,684	1,312	1,497	13,665	237,471
1970	24,617	10,764	43,150	49,702	125,804	57,659	52,606	11,888	5,336	3,464	2,901	8,517	396,408
1971	12,824	17,972	30,514	64,494	102,120	47,270	10,952	6,084	2,996	2,248	1,124	748	299,346
1972	748	3,932	5,428	67,487	145,461	81,143	43,994	14,321	6,460	5,524	2,996	8,049	385,835
1973	31,450	18,909	17,597	74,975	120,093	38,874	18,533	10,389	5,992	5,336	10,484	12,449	366,081
1974	8,705	8,332	29,861	160,998	207,892	93,416	18,721	16,381	7,769	5,056	3,837	14,789	575,757
1975	21,904	13,105	14,228	74,695	124,493	55,602	19,189	10,484	5,336	3,652	2,809	15,352	360,849
1976	4,400	4,868	21,529	82,559	89,672	100,904	10,389	5,241	2,060	1,312	2,248	4,212	329,394
1977	1,872	3,276	5,428	26,117	24,805	8,800	3,276	1,872	1,312	1,404	1,312	8,237	87,711
1978	5,896	33,605	24,897	84,151	149,486	19,564	8,517	4,120	1,780	1,216	1,404	4,773	339,409
1979	26,865	6,740	7,396	96,787	52,042	8,049	3,652	2,152	1,216	656	1,216	71,795	278,566
1980	29,110	21,809	25,085	81,623	206,208	28,457	8,800	5,148	3,744	3,184	4,588	14,789	432,545
1981	22,372	17,597	26,021	55,226	90,235	55,602	23,025	5,992	2,808	2,060	2,152	8,985	312,075
1982	15,445	12,824	17,224	25,273	57,846	13,760	7,396	5,148	3,556	3,369	560	3,464	165,865
													
Mean	14,531	17,778	35,318	78,805	105,433	33,972	10,758	5,674	3,425	2;547	2,173	8,189	an a

Table III-8 RIVER FLOW AT CT-5A BEFORE CONSTRUCTION OF UPPER MAE WONG DAM

Table III-9 RIVER FLOW AT CT-5A AFTER CONSTRUCTION OF UPPER MAE WONG DAM

Year	J	J	A	S	·' 0	N	D	J	F	м	λ	м	Total
1954	7,056	25,238	59,095	45,733	119,619	57,995	4,454	1,252	4,670	4,289	674	2,321	332,416
1955	6,960	10,112	61,102	41,018	106,201	29,292	4,205	1,478	2,552	5,503	1,038	2,094	271,555
1956	5,956	17,570	54,997	37,987	62,666	54,302	3,795	1,835	3,941	3,793	1,154	928	248,824
1957	4,206	21,938	53,242	89,077	160,212	48,719	3,722	1,900	3,854	4,363	1,287	830	393,350
1958	4,854	33,615	82,222	36,603	107,530	56,967	3,970	1,640	4,216	4,320	1,135	798	337,870
1959	2,683	9,163	56,779	70,763	126,402	52,855	3,960	1,640	4,391	7,303	1,955	474	338,368
1960	2,975	17,730	81,560	56,395	45,065	40,785	4,397	1,349	3,350	7,475	860	2,191	264,132
1961	9,098	34,846	44,955	48,059	103,208	53,756	3,478	1,608	4,257	6,624	701	766	311,356
1962	1,938	13,086	62,777	57,711	124,435	53,206	4,120	1,543	3,373	6,477	1,090	571	330,327
1963	1,031	45,958	57,675	35,775	79,497	54,761	4,056	1,608	4,458	7,028	809	1,576	294,232
1964	10,923	37,758	50,479	113,874	163,708	62,085	3,678	1,932	1,640	6,660	1,260	1,025	455,022
1965	5,632	47,674	38,816	43,146	99,956	48,096	3,794	2,126	3,206	5,921	1,316	1,414	301,097
1966	4,174	20,250	63,906	74,689	52,548	27,115	2,365	2,288	3,482	6,556	1,252	1,673	260,298
1967	5,891	53,332	101,172	55,542	80,742	44,506	3,707	1,867	3,536	5,613	1,187	3,584	366,679
1968	6,215	12,526	91,388	50,398	29,753	10,206	3,934	1,835	3,946	4,322	982	928	216,433
1969	1,517	7,966	21,257	30,192	86,215	29,288	3,769	1,705	4,525	3,894	963	5,042	196,233
1970	8,677	40,771	64,787	44,489	46,117	46,590	18,365	4,427	2,235	6,275	1,316	3,260	287,309
1971	4,595	55,803	49,733	44,331	77,955	43,205	4,147	2,418	3,674	5,294	701	571	292,427
1972	415	65,760	71,715	36,757	56,239	42,547	15,384	5,269	3,034	4,521	1,349	3,098	306,088
1973	11,042	68,056	62,757	48,227	82,841	41,866	6,571	3,908	2,965	3,450	3,941	4,621	340,245
1974	3,169	13,265	69,089	94,713	206,919	92,057	17,189	14,739	5,826	5,136	1,640	10,399	534,141
1975	20,658	23,819	68,130	42,454	68,914	54,283	17,667	8,807	3,917	3,901	1,284	9,693	343,527
1976	3,157	47,059	76,566	48,698	63,525	68,984	3,814	2,126	4,486	6,219	1,090	1,770	327,494
1977	804	71,961	85,926	66,459	48,294	8,811	3,197	960	1,896	1,379	782	3,163	293,632
1978	2,197	11,788	54,707	35,498	70,580	51,702	3,556	1,738	3,284	7,479	817	1,964	245,310
1979	9,455	29,017	76,550	54,918	102,292	8,033	3,590	1,057	1,970	678	1,072	25,091	318,723
1980	10,232	9,836	68,775	44,383	87,578	43,008	3,447	2,094	3,804	3,242	1,900	5,431	283,730
1981	7,900	18,557	66,961	59,130	75,843	19,553	8,126	2,386	4,240	5,978	1,057	3,422	273,153
1982	5,502	44,483	79,928	73,162	75,399	40,550	3,078	2,094	3,933	6,544	1,112	1,511	337,296
Mean	5,825	31,343	65,622	54,489	90,181	44,311	5,846	2,746	3,609	5,181	1,229	3,455	

111-21

Table III-10 CONSTRUCTION COST OF ALTERNATIVE PLAN

Work Item Construction Co (including over profit, tax)												
Construction Co (including over profit, tax)			102	103	201	202	205	206	207	208	209	301
	sst head,				· .				·			
1.1 Jam Constru tion	10-11,006	5.6 L,	. 051.0	1, ò51. o	824.6	1,051.0	955.4]	1,051.0	1,006.6 1	,051.0 I	,042.5]	,051.0
<pre>l.2 Irrigation Facilities</pre>	TC). 6	10.6	23.7	449.3	449.3	590.0	590.0	626.3	626.3	626.3	638 . 8
1.3 Office & Quarters	24		24.2	24.2	24.2	24.2	24.2	24.2	24.2	24.2	24.2	24.2
Sub-total	1,041	L.4 l,	085.8	1,098.9 I	,298.1	1,524.5	l,569.6	1,665.2	1,657.1 1	,701.5 1	.,705.5]	.,714.0
Land Acquisitio Resettlement &	, u											
Compensation	17	· .3	17.3	17.3	25.7	25.7	27.0	27.0	27.7	27.7	28.0	28.0
O & M Equipment	44	1.6	44.6	44.6	44.6	44.6	44.6	44.6	44.6	44.6	44.6	44.6
duma	47	7.7	47.7	47 7	ļ	ł	I	1	1	, t .	ł	I
Administration	26	0.0	27.1	27.5	32.5	38 . I	39.2	41.6	41.4	42.5	42.6	42.9
Physical Contine	gency 117	1.7	122.3	123.6	140.1	163.3	168.0	177.8	177.1	181.6	182.1	183.0
Engineering Ser	vices 117	7.7	117.7	119.7	210.4	210.4	224.5	224.5	235.3	230.4	230.4	235.3
Sub-total	371	0	376.7	380.4	453.3	482.1	503.3	515.5	526.1	526.8	527.7	533.8
Total	1,412	7.4.1.	462.5	1,479.3.1	,751.4	2,006.6	2,072.9	2,180.7	2,183.2	2,228.3.2	2,233.2	2,247.8

111-22

ECONOMIC O & M COST AND REPLACEMENT COST

		Replacement (Cost
Case	(10 ⁶ g)	O & M Equipment <u>/1</u> (106 岁)	Gate /2 (106 g)
101	48.1	44.2	27.3
102	48.4	44.2	27.3
103	48.7	44.2	27.5
201	13.4	44.2	40.9
202	14.4	44.2	40.9
205	16.7	44.2	42.9
206	17.2	44.2	42.9
207	17.7	44.2	44.1
208	17.9	44.2	44.1
209	18.1	44.2	44.6
301	18.1	44.2	44.6
Note: <u>/1</u> : <u>/2</u> :	Useful life 10 years Useful life 25 years		

Table III-12

IRRIGATION BENEFITS OF ALTERNATIVE CASES

	Gross			Ne	t Production	Value	
Case	Reservoir Capacity (FCM)	Area	Intensity	Without Project	With Project	Incremental Benefit	per ha
	(ricia)	(na)		(rip)	(11)//	(10)7	(p/na)
101	200	36,800	100	228.2	475.8	247.6	6,730
102	250	36,800	105	228.2	484.1	255.9	6,950
103	250	37,600	100	229.8	486.3	256.5	6,820
201	120	36,800	100	228.2	475.8	247.6	6,730
202	250	36,800	130	228.2	526.8	298.6	8,110
205	170	42,400	100	242.0	548.2	306.2	7,220
206	250	42,400	116	242.0	579.8	337.8	7,970
207	200	45,600	100	248.5	589.8	341.3	7,480
208	250	45,600	108	248.5	606.5	358.0	7,850
209	220	46,700	100	250.8	604.1	353.3	7,570
301	250	46,700	105	250.8	614.8	364.0	7,790

III-23

IRRIGATION BENEFIT ESTIMATES (1/11)

Case 101							ta a star	
(1) Without Project								
Crops	Cultivated Area	Unit Yield	Production	Unit Price	G.P.V	Unit Production Cost	Total Production Cost	N.P.V
	(ha)	(ton/ha)	(ton)	(#/ton)	(MB)	(B/ha)	(8/na)	(8)
Not Concon Baddy			2 . T	÷.,				
- Irrigated	22.000	2.8	61,600	4,230	260.6	4,270	93.9	166.7
- Semi-irrinated	14,800	1.6	23,690	4,230	100.2	3,780	55.9	44.3
- Sainfed	-	-			·	-		- 1997 - 1 9
Dry Season Paddy	1,100	3.5 -	3,850	4,230	16.3	4,930	5.4	10.9
Mung Beans (Paddy Field)	3,300	0,6	1,980	6,920	13.7	2,250	7.4	6.3
Mung Beans (Upland)	· -	÷	-	-	-	·		· · -
Maize	-	*	-	. –	·			
Total					390.8		162.6	288.2
						· · · · · · · · · · · · · · · · · · ·	······	
-			-					- 11-s.
(2) With Project	-				· · · · · ·			
	Cultivated	Unit		Unit	CDU	Unit	Total	N 12 17
Crops	Area	Yield	Production	Price	6. 9. v	Cost	riounction	
CIOPS	(ha)	(ton/ha)	(ton)	(Ø/ton)	(MB)	(B/ha)	(ø/ha)	(MB)
Wat Cooron Baddy		•			1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -		- 2	
- V V V	29,400	4.5	132,300	4,230	559.6	5,680	167.0	392.6
- Improved Local	7,400	4.0	29,600	4,230	125.2	5,680	42.0	83.2
Mung Beans	-	-	· · · ·	· - .	-	- .	· · · · · · ·	
 Total		~ · · · · · · · · · · · · · · · · ·			684.9		209.0	475.8

(3) Incremental Benefit

247.6

Table III-13 IRRIGATION BENEFIT ESTIMATES (2/11)

Case 102

(1) Without Project

Crops	Cultivated Area	Unit Yield	Production	Unit Price	G.P.V	Unit Production Cost	Total Production Cost	N.P.V
·	(ha)	(ton/ha)	(ton)	()/ton)	(MØ)	(B/ha)	(B/ha)	(MB)
Wet Season Paddy				· · ·	ana an			5 C
- Irrigated	22,000	2.8	61,600	4.230	260.6	4.270	93.9	166.7
- Semi-irrigated	14,800	1.6	23,680	4.230	100.2	3 780	55.9	44.3
- Rainfed			-0,		-	-	-	
Dry Season Paddy	1,100	3.5	3.850	4.230	16.3	4,930	5.4	10.9
Mung Beans (Paddy Field)	3.300	0.6	1,980	6.920	13.7	2,250	7.4	6.3
Mung Beans (Upland)	-	-			-	-,		
Maize		-	-	-		·		
Total		·····			390.8		162.6	228.2
				· · · · ·		· · · · · · · · · · · · · · · · · · ·		
						1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	1. A	
(2) With Project		N	1.	•				i an sea an an ta <u>ilt</u> a
Crops	Cultivated Area	Unit Yield	Production	Unit Price	G. P. V	Unit Production Cost	Total Production Cost	N. P. V
	(ha)	(ton/ha)	(ton)	(B/ton)	(MB)	(ø/ha)	(\$/ha)	(MØ)
Wet Season Paddy	:		- · ·		aren juz	-		1997
- H.Y.V.	29,400	4.5	132,300	4,230	559.6	5,680	167.0	392 6
- Improved Local	7,400	4.0	29,600	4,230	125.2	5.680	42:0	81.2
Mung Beans	1,800	1.2	2,200	6,920	14.9	3,660	6.6	8.3

(3) Incremental Benefit

Total

699.7

215.6

8,3

484.1

IRRIGATION BENEFIT ESTIMATES (3/11)

Case 103 Without Project (1)

Crops	Cultivated Area (ha)	Unit Yield (ton/ha)	Production (ton)	Unit Price (B/ton)	G.P.V (МВ)	Unit Production Cost (ß/ha)	Total Production Cost (B/ha)	N.P.V (MB)
Wet Season Paddy								
- Irrigated	22,000	2.8	61.600	4.230	260.6	4.270	93.9	166.7
- Semi-irrigated	14,800	1.6	23,680	4,230	100.2	3,780	55.9	44.3
- Rainfed	800	1.3	1,000	4,230	4,4	3,480	2.8	1.6
Dry Season Paddy	1,100	3.5	3,850	4,230	16.3	4,930	5.4	10.9
Mung Beans (Paddy Field)	3,300	0.6	1,980	6,920	13.7	2,250	7.4	6.3
Mung Beans (Upland)	in the second			. –	-	-	-	-
Maize		· ·		· · ·	-		~	-
Total					395.2		165.4	229.8

(2) With Project

	Crops	 Cultivated Area (ha)	Unit Yield (ton/ha)	Production (ton)	Unit Price (\$/ton)	G.P.V (MB)	Unit Production Cost (B/ha)	Total Production Cost (Ø/ha)	N.P.V (MB)
Wet Seas - H.Y. - Impr Mung Bea	on Paddy V. oved Local ms	30,100 7,500 -	4.5 4.0	135,500 30,000 -	4,230 4,230	573.0 126.9 -	5,680 5,680 -	171.0 42.6	402.0 84.3
	Total	 				699.9		213.6	486.3

(3) Incremental Benefit

256.5

Table III-13 IRRIGATION BENEFIT ESTIMATES (4/11)

Case 201

(1) Without Project

Cultivated Area	Unit Yield	Production	Unit Price	G. P. V	Unit Production Cost	Total Production Cost	N.P.V
(ha)	(ton/ha)	(ton)	(8/ton)	(NB)	(Ø/ha)	(Ø/ha)	(MB)
22,000	2.8	61.600	4,230	260.6	4,270	93.9	166.7
14,800	1.6	23,680	4,230	100.2	3,780	55.9	44.3
-	-	- i - i	-	-	. –	-	-
1,100	3.5	3,850	4,230	16.3	4,930	5.4	10.9
3,300	0.6	1,980	6,920	13.7	2,250	7.4	6.3
i 14 - 1	_	-	-	-	-	-	
-	·			-	-	-	-
an a				390.8		162.7	228.2
	Cultivated Area (ha) 22,000 14,800 1,100 3,300	Cultivated Unit Area Yield (ha) (ton/ha) 22,000 2.8 14,800 1.6 1,100 3.5 3,300 0.6	Cultivated Area Unit Yield Production (ha) (ton/ha) (ton) 22,000 2.8 61.600 14,800 1.6 23,680 1,100 3.5 3,850 3,300 0.6 1,980	Oultivated Area Unit Yield Production Unit Price (ha) (ton/ha) (ton) (\$/ton) 22,000 2.8 61.600 4,230 14,800 1.6 23,680 4,230 1,100 3.5 3,850 4,230 3,300 0.6 1,980 6,920	Cultivated Area Unit Yield Production Unit Price G.P.V (ha) (ton/ha) (ton) (B/ton) (MB) 22,000 2.8 61.600 4,230 260.6 14,800 1.6 23,680 4,230 100.2 1,100 3.5 3,850 4,230 16.3 3,300 0.6 1,980 6,920 13.7 - - - - - 390.8 - - - -	Cultivated Area Unit Yield Production Unit Price G.P.V Production Cost (ha) (ton/ha) (ton) (B/ton) (MB) (B/ha) 22,000 2.8 61.600 4,230 260.6 4,270 14,800 1.6 23,680 4,230 100.2 3,780 1,100 3.5 3,850 4,230 16.3 4,930 3,300 0.6 1,980 6,920 13.7 2,250 - - - - - - 390.8 390.8 390.8 390.8 390.8	Cultivated Area Unit Yield Production Unit Price G.P.V Production Unit Production Cost Total Production Cost (ha) (ton/ha) (ton) (\$/ton) (N\$) (\$/ton) Production Cost Cost Cost 22,000 2.8 61.600 4,230 260.6 4,270 93.9 14,800 1.6 23,680 4,230 100.2 3,780 55.9 1,100 3.5 3,850 4,230 16.3 4,930 5.4 3,300 0.6 1,980 6,920 13.7 2,250 7.4 - - - - - - - 390.8 162.7 - - - -

(2) With Project Unit Total Cultivated Unit Unit Production G.P.V Production Production N.P.V Price Crops Area Yield Cost Cost (ha) (ton/ha) (g/ton) (ton) (MØ) (B/ha) (Ø/ha) (MB) Wet Season Paddy - H.Y.V. - Improved Local 29,400 4.5 132,300 4,230 559.6 5,680 167.0 392.6 7,400 4.0 29,600 4,230 125.2 5,680 42.0 83.2 Mung Beans --_ _ ---Total 684.8 209.0 475.8

į

(3) Incremental Benefit

--

Case 202

(1) Without Project				100 A. 100 A.				
Crops	Cultivated Area (ha)	Unit Yield (ton/ha)	Production (ton)	Unit Price (B/ton)	G.P.V (MB)	Unit Production Cost (\$/ha)	Total Production Cost (B/ha)	N.P.V (NB)
Wet Season Paddy - Irrigated - Semi-irrigated - Rainfed Dry Season Paddy Nung Beans (Paddy Field) Mung Beans (Upland)	22,000 14,800 1,100 3,300	2.8 1.6 - 3.5 0.6	61,600 23,680 3,850 1,980	4,230 4,230 4,230 6,920	260.6 100.2 16.3 13.7	4,270 3,780 4,930 2,250	93.9 55.9 5.4 7.4	166.7 44.3 10.9 6.3
Maize	-	-	~	-				
Total					390.8		162.6	228.2
······································						. • *		

(2) With Project			ta de la companya de			5 ge		
Crops	Cultivated Area	Unit Yield	Production	Unit Price	G.P.V	Unit Production Cost	Total Production Cost	N.P.V
	(ha)	(ton/ha)	(ton)	(Ø/ton)	(MB)	(B/ha)	(Ø/ha)	(MB)
Wet Season Paddy - H.Y.V. - Improved Local Mung Beans	29,400 7,400 11,000	4.5 4.0 1,2	132,300 29,500 13,200	4,230 4,230 6,920	559.6 125.2 91.3	5,680 5,680 3,660	167.0 42.0 40.3	392.6 83.2 51.0
Total					776.1		249.3	526.8

(3) Incremental Benefit

298.6

Table III-13

IRRIGATION BENEFIT ESTIMATES (6/11)

Case 205

(1) Without Project

Cultivated Unit Yield Production Unit Price G.P.V Production Production N. Crops Area Yield (ton/ha) (ton) (B/ton) (NB) (B/ha) Production N. Wet Season Paddy - Irrigated 22,000 2.8 61,600 4,230 260.6 4,270 93.9 16 - Semi-irrigated 14,800 1.6 23,680 4,230 100.2 3,780 55.9 4 Dry Season Paddy 1,100 3.5 3,850 4,230 19.2 3,480 12.2 Mung Beans (Paddy Field) 3,300 0.6 1,980 6,920 2.8 2,250 1.8 Maize 2,100 2.2 4,620 2,470 11.4 2,660 5.6							, state state	* <u>* </u>
(ha) (ton/ha) (ton) (B/ton) (MA) (B/ha) (B/ha) Wet Season Paddy - Irrigated 22,000 2.8 61,600 4,230 260.6 4,270 93.9 16 - Semi-irrigated 14,800 1.6 23,680 4,230 100.2 3,780 55.9 4 '- Rainfed 3,500 1.3 4,550 4,230 19.2 3,480 12.2 Dry Season Paddy 1,100 3.5 3,850 4,230 16.3 4,930 5.4 1 Mung Beans (Paddy Field) 3,300 0.6 1,980 6,920 13.7 2,250 7.4 Mung Beans (Upland) 800 0.5 400 6,920 2.8 2,250 1.8 Maize 2,100 2.2 4,620 2,470 11.4 2,660 5.6	Crops	Cultivated Un Area Yie	nit Production	Unit Price	G.P.V	Unit Production Cost	Total Production Cost	N.P.V
Wet Season Paddy - Irrigated 22,000 2.8 61,600 4,230 260.6 4,270 93.9 16 - Semi-irrigated 14,800 1.6 23,680 4,230 100.2 3,780 55.9 4 - Rainfed 3,500 1.3 4,550 4,230 19.2 3,480 12.2 Dry Season Paddy 1,100 3.5 3,850 4,230 16.3 4,930 5.4 1 Mung Beans (Paddy Field) 3,300 0.6 1,980 6,920 13.7 2,250 7.4 Mung Beans (Upland) 800 0.5 400 6,920 2.8 2,250 1.8 Maize 2,100 2.2 4,620 2,470 11.4 2,660 5.6		(ha) (ton	1/ha) (ton)	(\$/ton)	(MB)	(2/ha)	(ß/ha)	(<u>M</u> B)
- Irrigated 22,000 2.8 61,600 4,230 260.6 4,270 93.9 16 - Semi-irrigated 14,800 1.6 23,680 4,230 100.2 3,780 55.9 4 - Rainfed 3,500 1.3 4,550 4,230 19.2 3,480 12.2 Dry Season Paddy 1,100 3.5 3,850 4,230 16.3 4,930 5.4 1 Mung Beans (Paddy Field) 3,300 0.6 1,980 6,920 13.7 2,250 7.4 Mung Beans (Upland) 800 0.5 400 6,920 2.8 2,250 1.8 Maize 2,100 2.2 4,620 2,470 11.4 2,660 5.6	Wet Season Paddy							
- Semi-irrigated 14,800 1,6 23,680 4,230 100.2 3,780 55.9 4 - Rainfed 3,500 1.3 4,550 4,230 19.2 3,480 12.2 Dry Season Paddy 1,100 3.5 3,850 4,230 16.3 4,930 5.4 1 Mung Beans (Paddy Field) 3,300 0.6 1,980 6.920 13.7 2,250 7.4 Mung Beans (Upland) 800 0.5 400 6,920 2.8 2,250 1.8 Maize 2,100 2.2 4,620 2,470 11.4 2,660 5.6	- Irrigated	22,000 2	2.8 61,600	4,230	260.6	4.270	93.9	166.7
- Rainfed 3,500 1.3 4,550 4,230 19.2 3,480 12.2 Dry Season Paddy 1,100 3.5 3,850 4,230 16.3 4,930 5.4 1 Mung Beans (Paddy Field) 3,300 0.6 1,980 6,920 13.7 2,250 7.4 Mung Beans (Upland) 800 0.5 400 6,920 2.8 2,250 1.8 Maize 2,100 2.2 4,620 2,470 11.4 2,660 5.6 Total 424.2 182,2 24	- Semi-irrigated	14.800 1	.6 23.680	4.230	100.2	3,780	55.9	44.3
Dry Season Paddy 1,100 3.5 3,850 4,230 16.3 4,930 5.4 J Mung Beans (Paddy Field) 3,300 0.6 1,980 6,920 13.7 2,250 7,4 Mung Beans (Upland) 800 0.5 400 6,920 2.8 2,250 1.8 Maize 2,100 2.2 4,620 2,470 11.4 2,660 5.6 Total 424.2 182,2 24	- Rainfed	3,500 1	4,550	4.230	19.2	3.480	12.2	7.0
Mung Beans (Paddy Field) 3,300 0.6 1,980 6,920 13.7 2,250 7.4 Mung Beans (Upland) 800 0.5 400 6,920 2.8 2,250 1.8 Maize 2,100 2.2 4,620 2,470 11.4 2,660 5.6 Total 424.2 182,2 24	Dry Season Paddy	1,100 3	3.5 3,850	4.230	16.3	4,930	5.4	10.9
Mung Beans (Upland) 800 0.5 400 6,920 2.8 2,250 1.8 Maize 2,100 2.2 4,620 2,470 11.4 2,660 5.6 Total 424.2 182,2 24	Mung Beans (Paddy Field)	3,300 0	0.6 1.980	6.920	13.7	2.250	7.4	6.3
Maize 2,100 2.2 4,620 2,470 11.4 2,660 5.6 Total 424.2 182.2 24	Mung Beans (Upland)	800 C	0.5 400	6.920	2.8	2,250	1.8	1.0
Total 424.2 182,2 24	Maize	2,100 2	2.2 4,620	2,470	11.4	2,660	5.6	5.8
	Total	<u></u>			424.2	· · · · ·	182,2	242.0
	······································							
	•						1	
(2) With Project	(2) With Project					1. A.	n in the states	
Oultivated Unit Unit Unit Total	· · · · · · · · · · · · · · · · · · ·	Oultivated W		linit		Unit	Total	
Crops Area Yield Production Price G.P.V Production Production N	Crops	Area Yi	eld Production	Price	G.P.V	Production	Production	N.P.V
(ha) (ton/ha) (ton) (B/ton) (BB) (B/ha) (B/ha)		(ha) (to	n/ha) (ton)	(Ø/ton)	(MB)	(g/ha)	(g/ha)	(MB)
Let Corpo Badar	Not Coscop Baddy	·····						
$\frac{1}{2} = \frac{1}{2} + \frac{1}$		13.900	4.5 .152.550	4 220	645 3	5 680	102.6	152.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- Improved Local	8.500	4.0 34.000	4 210	141 8	5,680	192.0	95.5
Mung Beans	Mung Beans			4,230	143.0	5,000	40.5	
Total 789 1 200 9 50	Total				789.1		240.9	548.2

(3) Incremental Benefit

Table III-13 IRRIGATION BENEFIT ESTIMATES (7/11)

Case 206

Case 206 (1) Without Project	· · · · ·	ана силона Пос						
Сторз	Cultivated Area	Unit Yield	Production	Unit Price	G.P.V	Unit Production Cost	Total Production Cost	N. P. V
	(ha)	(ton/ha)	(ton)	(ø/ton)	(MØ)	(ß/ha)	(B/ha)	(MB)
ush Concon Raddy			the Maria					
- Irrigated	22.000	2.8	61,600	4,230	260.6	4,270	93.9	166.7
- Semi-irrigated	14.800	1.6	23,680	4,230	100.2	3,780	55.9	44.3
- Rainfed	3,500	1.3	4,550	4,230	19.2	3,480	12.2	7.0
Dry Season Paddy	1,100	3.5	3,850	4,230	16.3	4,930	5.4	10.9
Mung Reans (Paddy Field)	3,300	0.6	1,980	6,920	13.7	2,250	7.4	6.3
Mung Beans (Upland)	800	0.5	400	6,920	2.8	2,250	1.8	1.0
Maize	2,100	2.2	4,620	2,470	11.4	2,660	5.6	5.8
Total			· · · ·		424.2		182.2	242.0
	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -							
(2) With Project			· .					·
						Unit	Total	-

Crops	Cultivated Area (ha)	Unit Yield (ton/ha)	Production (ton)	Unit Price (Ø/ton)	G.Р.V (МВ)	Unit Production Cost (B/ha)	Total Production Cost (Ø/ha)	N.P.V (MØ)
Wet Season Paddy - H.Y.V. - Improved Local Mung Beans	33,900 8,500 6,800	4.5 4.0 1.2	152,550 34,000 8,160	4,230 4,230 6,920	645.3 143.8 56.5	5,680 5,680 3,660	192.6 48.3 24.9	452.7 95.5 31.6
Total					845.6		265.8	579.8

(3) Incremental Benefit

337.8

Table III-13 IRRIGATION BENEFIT ESTIMATES (8/11)

Case 207

(1) Without Project

Crops	Cultivated Area (ha)	Unit Yield (ton/ha)	Production (ton)	Unit Price (g/ton)	G.P.V (NØ)	Unit Production Cost (B/ha)	Total Production Cost (B/ha)	N.P.V (MB)
Wah Orenan Daddu	······································		•					
- Irrigated	22.000	2.8	61.600	4.230	260.6	4,270	93.9	166.7
- Semi-irrinated	14.800	1.6	23,680	4,230	100.2	3,780	55.9	44.3
- Rainfed	6,700	1.3	8,710	4,230	36.8	3,480	23.3	13.5
Dry Season Paddy	1,100	3.5	3,850	4,230	15.3	4,930	5.4	10.9
Mung Beans (Paddy Field)	3,300	0.6	1,980	6,920	13.7	2,250	7.4	6.3
Mung Beans (Upland)	800	0.5	400	6,920	2.8	2,250	1.8	1.0
Maize	2,100	2.2	4,620	2,470	11.4	2,660	5.6	5.8
Total		······	·	· · ·	441.8	··	193.3	248.5

(2) With Project

Crops		Cultivated Area	Unit Yield	Production	Unit Price	G.P.V	Unit Production Cost	Total Production Cost	N.P.V
	. :	(ha)	(ton/ha)	(ton)	(B/ton)	(MB)	(\$/ha)	(B/ha)	(845)
Wet Season Paddy - H.Y.V. - Improved Local	 	36,500 9,100	4.5 4.0	164,250 36,400	4,230 4,230	694.8 154.0	5,680 5,680	207.3 51.7	487.5 102.3
mung Beans	· · · · ·					<u> </u>		. <u> </u>	
Total						848.8		259.0	589.8

Table III-13 IRRIGATION BENEFIT ESTIMATES (9/11)

Case 208

(1) Without Project		-		a de la com			<u>in de la server de la serv</u>	
Crops	Cultivated Area	Unit Yield	Production	Unit Price	G.P.V	Unit Production Cost	Total Production Cost	N. P. V
	(ha)	(ton/ha)	(ton)	(#/ton)	(118)	(8/ha)	(¤/ha)	(MB)
Wet Season Paddy	4 .		4	1. L			in district and a second s Second second	
~ Trrigated	22,000	2.8	61,600	4,230	260,6	4,270	93.9	166.7
- Semi-irrigated	14,800	1.6	23,680	4,230	100.2	3,780	55.9	44.3
- Rainfed	6,700	1.3	8,710	4,230	36.8	3,480	23.3	13.5
Dry Season Paddy	1,100	3.5	3,850	4,230	16.3	4,930	5.4	10.9
Nung Beans (Paddy Field)	3,300	0.6	1,980	6,920	13.7	2,250	7.4	6.3
Mung Beans (Upland)	800	0.5	400	6,920	2.8	2,250	1.8	1.0
Maize	2,100	2,2	4,620	2,470	11.4	2,660	5.6	5.8
Total	· · · · · · · · · · · · · · · · · · ·				441.8		193.3	248.5
			······································			· · · ·		
							· · · · · · · · · · · · · · · · · · ·	1. A. A.
(2) With Project	:1			1. A				
Crops	Cultivated Area	Unit Yield	Production	Unit Price	G.P.V	Unit Production Cost	Total Production Cost	N.P.V
	(ha)	(ton/ha)	(ton)	(Ø/ton)	(MB)	(8/ha)	(B/ha)	(мв)
Wet Season Paddy				÷	an a		e e statisticae	
- H.Y.V.	36,500	4.5	164,250	4,230	694.8	5,680	207.3	487.5
- Improved Local	9,100	4.0	36,400	4,230	154.0	5,680	51.7	102.3
Mung Beans	3,600	1.2	4,320	6,920	29.9	3,660	13.2	16.7
Total			· · · · · ·		878.7	· · · · · · · · · · · · · · · · · · ·	272.2	606.5

(3) Incremental Benefit

358.0

Table 111-13 IRRIGATION BENEFIT ESTIMATES (10/11)

Case 209

(1) Without Project

Crops	Cultivated Area (ha)	Unit Yìeld (ton/ha)	Production (ton)	Unit Price (B/ton)	G.Р.V _(МВ)	Unit Production Cost (B/ha)	Total Production Cost (Ø/ha)	N.P.V (MB)
Wet Season Paddy				1 m 1 1				
- Irrigated	22,000	2.8	61,600	4.230	260.6	4.270	93.9	166.7
- Semi-irrigated	14,800	1.6	23,680	4,230	100.2	3,780	55,9	44.3
- Rainfed	7,800	1.3	10,140	4,230	42.9	3.480	27.1	15.8
Dry Season Paddy	1,100	3.5	3,850	4.230	16.3	4.930	5.4	10.9
Mung Beans (Paddy Field)	3,300	0,6	1,980	6,920	13.7	2,250	7.4	6.3
Mung Beans (Upland)	800	0.5	400	6,920	2.8	2.250	1.8	1.0
Maize	2,100	2.2	4,620	2,470	11.4	2,660	5.6	5.8
Total			·····		447.9		197,1	250.8

(2) With Project

Crops	Cultivated Area (ha)	Unit Yield (ton/ha)	Production (ton)	Unit Price (ø/ton)	G.P.V (МВ)	Unit Production Cost (g/ha)	Total Production Cost (Ø/ha)	N.P.V (MB)
Wet Season Paddy - H.Y.V, - Improved Local Mung Beans	37,400 9,300	4.5 4.0	168,300 37,200	4,230 4,230 -	711.9 157.4	5,680 5,680 -	212.4 52.8	499.5 104.6
Total		······································			869.3		265.2	604.1

mada in a second

Table III-13 IRRIGATION BENEFIT ESTIMATES (11/11)

Case 301

Crops	Cultivated Area (ba)	Unit Yield (ton/ha)	Production (ton)	Unit Price (M/ton)	G.P.V (MB)	Unit Production Cost (Ø/ha)	Total Production Cost (g/ha)	N.P.V (MB)
		((1111)					
Wet Season Paddy - Irrigated	22,000	2.8	61,600	4,230	260.6	4,270	93.9	166.7
- Semi-irrigated	14,800	1.6	23,100	4,230	100,2	3,780	55.9	44.3
- Rainfed	7.800	1.3	9,800	4,230	42.9	3,480	27.1	15.8
nry Season Paddy	1,100	3.5	3,900	4,230	16.3	4,930	5.4	10,9
Mung Beans (Paddy Field)	3.300	0.6	2,000	6,920	13.7	2,250	7.4	6.3
Mung Beans (Upland)	800	0.5	400	6,920	2.8	2.250	1.8	1.0
Maize	2,100	2.2	4,600	2,470	11.4	2,660	5.6	5.8
Total			· · · · · · · · · · · · · · · · · · ·	· · ·	447.9		197.1	250.8

(2) With Project

Crops		Cultivated Area (ha)	Unit Yield (ton/ba)	Production (ton)	Unit Price (B/ton)	G.P.V (148)	Unit Production Cost (Ø/ha)	Total Production Cost (B/ha)	N.P.V (MB)
Wet Season Paddy	5	37 400	4'5	168.300	4.230	711.9	5,680	212.4	499.5
- H.Y.V.		9,300	4.0	37.200	4,230	157.4	5,680	52.8	104.5
Mung Beans		2,300	1.2	2,760	6,920	19.1	3,660	8.4	10.7
Total			· · · · · · · · · · · · · · · · · · ·	· ·		888.4		273.6	614.8
				· · ·		·····			

(3) Incremental Benefit

364.0

Table III-14 ECONOMIC COMPARISON OF ALTERNATIVE CASES

		Irrigation Area (ha)	Cropping Intensity (%)	Construction Cost (Economic)			0/M	Annual	100
Alternative Case	≥ G.R.C (NCM)			Dam (MB)	Irrigation (MB)	Total (MB)	Cost (전왕)	Benefit (MB)	(8)
101	200	36,800	100	1,132.8	109.4	1,242.2	48.1	247.6	11.6
102	250	36,800	105	1,176.6	109.4	1,286.0	48.4	255.9	11.6
103	250	37,600	100	1,176.6	123.8	1,300.4	48,7	256.5	11.5
201	120	36,800	100	954.3	575.8	1,530.1	13.4	247.6	11.5
202	250	36,800	130	1,176.6	575.8	1,752.4	14.4	293.6	12.1
205	170	42.400	100	1,082.7	724.7	1,807.4	16.7	306.2	12.0
206	250	42,400	116	1,176.6	724.7	1,901.3	17.2	339.8	12.5
207	200	45,600	100	1,142.3	761.4	1,903.7	17.7	341.3	12.6
208	250	45,600	108	1,176.6	761.4	1,938.0	17.9	358.0	12.9
209	220	46,700	100	1,164.4	782.4	1,946.8	18.1	353.3	12.8
301	250	46,700	105	1,176.6	782.4	1,959.0	18.1	364.0	13.0
	1 A A								

III-30

0----- Simulated (Average for 1975 to 1981)

Fig. III-3 Monthly Mean River Discharge at CT 4 Station

III-33

Fig. III-5 Deficit Ratio of Existing Irrigation Area

ITI-34

Fig. III-6 Overall Present Water Balance of Mae Wong Basin

Fig. III-8 Systematic Diagram of Mae Wong River Basin for Water Balance Study Under With-Project Condition

Fig. III-9 Flow Chart of Reservoir Operation

III-39

) : Supplied from the Upper Mae Wong Dam

2

Fig. III-12 Ratio of Water Supplied from Upper Mae Wong Dam in Irrigation Demand

Storage Change of Upper Mae Wong Reservoir (1/2) Fig. III-13

-: Release Water including Spillout Water

1

Fig. III-13 Storage Change of Upper Mae Wong Reservoir (2/2)

Fig. III-14 Change of River Flow at CT 5A (1/2)

Fig. III-14 Change of River Flow at CT 5A (2/2)

111-45

ANNEX-IV DAM AND RESERVOIR

ANNEX - IV

1

DAM AND RESERVOIR

TABLE OF CONTENTS

			Page
1,	GENER	AL CONDITION	IV-l
	1.1	Location and Accessibility	IV-1
	1.2	Investigations	IV-J
		1.2.1 Topography	IV1
		1.2.2 Geology and mechanical investigation	IV-2
		1.2.3 Hydrology	IV-2
2.	DAM T	YPE AND DAM AXIS	IV-2
	2.1	Selection of Dam Type	IV-2
	2.2	Selection of Dam Axis	IV-4
3.	EMBAN	KMENT MATERIALS AND DESIGN VALUE	1V-5
	3.1	Rock Materials	IV~5
		3.1.1 Design value	IV-6
	3.2	Impervious Materials (Core Zone)	IV-7
		3.2.1 Design value	IV-8
	3.3	Semi-Pervious Materials	IV-9
		3.3.1 Design value	IV-9
	3.4	Filter Material	IV-10
	3.5	Summary of Design Value	īV-11
4.	DESIG	N OF DAM	IV-11
	4.1	Basic Design Condition	IV-11
		4.1.1 Seismic force	IV~11
		4.1.2 Dam dimension	IV~12
		4.1.3 Allowable factors of safety	IV-13
	4.2	Embankment Design	IV-13
		4.2.1 Crest design	IV-13
		4.2.2 Zoning of dam	IV-14
		4.2.3 Stability analysis	IV-15

Page

4.3	Spillwa	ay	IV-16
	4.3.1	Design flood	IV-17
	4.3.2	Service spillway	IV-17
	4.3.3	Emergency spillway	IV-17
4.4	River 1	Diversion	IV-18
	4.4.1	Diversion requirement	IV-18
	4.4.2	Diversion tunnel	IV-19
	4.4.3	Coffer dam	IV-19
4.5	Intake	Structure	IV-19
	4.5.1	Design intake capacity	IV-19
	4.5.2	Intake structure	IV-20

LIST OF TABLES

		1	and the second second		Page
Table IV-l	SUMMARY OF RES	ERVOIR AND DA	м	• • • • • • • • • • • • •	IV-21
TV-2	CALCULATION OF	• к			IV-22

LIST OF FIGURES

Page

Fig.	IV-1	Area-Capacity Curve	IV-23
	IV-2	Site Map	IV-24
	IV-3	General Plan	IV-25
	IV-4	Cross Section of Dam	IV-26
	IV-5	Alternative Dam Axis	IV-27
	IA-2	Seismic Force Distribution	IV-28
	IV-7	Relation between Seismic Acceleration Force and Distance to Epicenter	IV-2 9
	IV-8	Wave Creep Height	IV-30
	IV-9	Standard Cross Section of Diversion Tunnel	IV-30

ANNEX - IV

DAM AND RESERVOIR

1. GENERAL CONDITION

A plan of the damsite and site map are shown on Fig. IV-2 and Fig. IV-3. The Upper Mae Wong dam is a center cored rockfill dam assuring water-tightness by founding the imprevious core entirely on sound rock with grout curtain beneath.

The dam has a crest length of about 800 m, width of 10 m and the maximum height of about 57 m above the base of impervious core. The impervious core is 4 m wide at crest elevation and about 22 m at base at the maximum dam section.

The upstream surface of the dam was designed with slope of 1.75 horizontal to 1 vertical. The downstream surface was designed with slope of 1.6 horizontal to 1 vertical. Total volume of earth and rock materials in the embankment is about $2,500,000 \text{ m}^3$.

The dam cross section is shown in Fig. IV-4 and major dimensions of dam are summarized in Table IV-1.

1.1 Location and Accessibility

The Upper Mae Wong damsite is located on the Mae Wong river and on the boundary of Kamphaeng Phet and Nakhon Sawan provinces, approximately at Latitude 15°55'N and Longitude 99°19'50"E. The nearest village is Ban Taling Sung, about 13 km downstream.

The damsite is easily accessible during dry season by 4WD vehicle through cart road from the village but not always during wet season. This road is about 20 km in length and would be widened, straightened and surfaced for use as an access road during the period of construction.

1.2 Investigations

1.2.1 Topography

A topographic map of 1:1,000 scale with 1-meter contour intervals covering about 10 km², a distance of 1.5 km upstream and 1.5 km downstream from the damsite, was completed in June 1985 and used in the design of the dam. Another map of 1:10,000 scale with 5-meter contour intervals covering about 60 km² was also made at the same period of time and used in designing the area-storage capacity curves for the proposed reservoir. An aerial topographic map of 1:50,000 with 20-meter contour intervals was used for general purposes. The first two basic maps were prepared by RID. The method used in the ground survey consisted of the horizontal control referred to RID grid system and the vertical control referred to the mean sea level.

1.2.2 Geology and soil mechanical investigation

A geological investigation of the damsite and the reservoir area was carried out to determine the soundness of the site and the watertight qualities of the reservoir. Twelve holes, including percolation tests and standard penetration tests, were drilled to a total depth of 297.95 m. Rock was drilled by diamond bits of Nwm and Bwm with double core tube.

Nineteen test pits of $2 \ge 2$ m were excavated, for a total depth of 37.7 m in order to investigate the embankment materials and to obtain the samples for soil mechanical tests. Twenty nine auger-hole drillings were conducted around dam axis for total depth of 26.8 m. All these geological investigations and soil mechanical laboratory tests were conducted by RID.

1.2.3 Hydrology

The catchment area of proposed damsite is 612 km^2 . The annual inflow to the reservoir varies from 55 MCM to 541 MCM with an average of 220 MCM. The effective storage capacity of 230 MCM is required to irrigate 46,700 ha. The reservoir capacity and the height of the dam was determined on the basis of optimization study. The area-capacity curve of the reservoir is shown in Fig. IV-1. The summary of reservoir hydrological data is as follows:

Total storage capacity	 250	MCM
Effective storage capacity	230	MCM
Dead storage capacity (100 year)	20	MCM
Water level at total storage (FWL)	 EL 204.5	m
Water level at dead storage (DWL)	EL 180.0	m
Flood water level (HWL)	El 207.5	m
Area at total storage	17.6	km ²
Area at flood water level	19.8	km ²

2. DAM TYPE AND DAM AXIS

2.1 Selection of Dam Type

Selection of dam type was based on the studies laying stress on the available materials near the damsite, foundation conditions and economical construction cost. During the initial phases of investigations of dam, concrete type, rockfill type and earthfill type were considered. Since the height of dam is expected to be about 57 m, the embankment materials, especially impervious materials for filltype dams, should have sufficient shearing strength against shear failure and should be uniform in quality. Well decomposed and deeply weathered granite and diluvial deposits, located along right side of the river about 2 km downstream, were found to satisfy such requirements for impervious materials of the filltype dam. However, the obtainable quantity will be limited at maximum about 1,000,000 m³ in gross. Rock materials such as granite, schist, calc-silicate and quartzite are predominant around damsite. These rocks are suitable for high embankment or sufficiently hard and solid for foundation of all types of dams. Surface coverages, soils and weathered portion of these rocks are very thin.

Earthfill type dam was not selected with the following reasons:

- (1) Sufficient volume of earth materials would not be obtainable in the vicinity of dam.

(2) Excavated materials from the appurtenant structures of dam, would not be balanced with the embankment, which would result high construction cost with plentiful disposals of excavated rocks.

The factors leading to the selection of a concrete dam were the savings assumed from river diversion and spillway over the dam body. The river diversion would be planned on the confinement of flows to one side of the river channel during initial stage, followed by diversion through partially completed blocks during the second stage. The spillway would be designed on the dam body. These designs would result generally considerable savings over construction cost through diversion tunnel and side spillway as would be required on the dam abutments with a filltype dam.

However, the valley shape of the damsite is so wide, about 400 m at the base of dam and about 800 m at the crest of dam, that total concrete volume of the dam would be excessively large, not less than 700,000 m³. Comparing with the embankment volume of about 2,500,000 m³ for rockfill dam, the construction cost of concrete dam would be more than 2 times of construction cost of rockfill dam.

As stated in the design of dam, the zoning of rockfill dam was so designed as to fully utilize the excavated rock materials from the appurtenant structures. Borrow area would be required for embankments of impervious and semi-pervious zones. All rock zones embankments would be supplied from the excavated materials from spillways and diversion canals.

It was therefore concluded that rockfill type dam was suitable in all aspects such as material availability, suitability for high dam and economic construction. 2.2 Selection of Dam Axis

Detailed study on available topographic maps and geologic conditions led to the comparison study on the alternative dam axes. The topographic conditions of damsite are relatively complicated; the directions of ridges on both abutments are in discord, the river course is crossing damsite in almost parallel with dam axis and a depression, small but deep and steep, is located at right abutment.

The surveyed dam axis, selected from the aerial topographic map of 1:50,000 scale, was considered unsuitable as it is located on the said depression and its crest length is considered too long. Three alternative dam axes were selected for comparison as shown in Fig. III-5.

Preliminary designs and cost estimates were conducted on the alternative dam axes. The results are summarized below and dam center line No. 2 was selected. In this comparison, the costs for intake and outlet facilities, foundation treatment, emergency spillway and temporary works are excluded since they are common for each dam axis and the cost of temporary works will be proportional to the direct cost.

		· · · · · · · · · · · · · · · · · · ·	Da	m Center Line	3
			No. 1	No. 2	No. 3
1.	River diversion				
	1-1 Diversion tunnel	(m)	370	230	390
	1-2 Diversion canal	(m ³)	152,300	138,300	66,000
	1-3 Diversion dam	(m ³)	75,600	78,700	213,500
2.	Dam	a de para			
	2-1 Excavation	(m ³)	126,000	108,000	99,000
	2-2 Embankment	(m ³)	2,654,000	2,388,000	2,769,000
3.	Service spillway				
	3-1 Earth works	(m ³)	463,000	659,000	304,000
	3-2 Concrete works	(m ³)	44,000	53,400	50,300

Work Quantity

n da San n		e e e e e e e e e e e e e e e e e e e	(Unit:	MCM B)
		Dam	Center Line	
	이 같아요. 아이지 않는 것이 가지?	No. 1	No. 2	No. 3
1.	River diversion			
	1-1 Diversion tunnel	74	46	78
• •	1-2 Diversion canal	8	7	3
	1~3 Diversion dam	3	4	9
	Sub-total	85	57	90
2.	Dam			
	2-1 Excavation	24	21	19
	2-2 Embankment	584	525	609
 	Sub-total	608	546	628
3.	Service spillway			n an
·	3-1 Earth work	69	99	46
1.	3-2 Concrete work	97	117	111
e st	Sub-total	166	216	157
	Total	859	819	875

Construction Cost

3. EMBANKMENT MATERIALS AND DESIGN VALUE

3.1 Rock Materials

The charactors of rocks from structural excavation for diversion canal, tunnel, service spillway and emergency spillway are based essentially on core borings and laboratory tests. It is expected that these excavations would yield a substantial amount of large rock suitable for use in the outer rockfill zone of embankment, as well as smaller sizes for transition zone. Structural excavation rocks would be quartzite, calc-silicate and schist.

During the course of investigation, additional quarry sites were also found. One is located at about 3.0 km upstream right side of the river. According to the boring No. 9, rock will be quartzite. The other is located at about 3.5 km upstream, left side of the river and will produce granite rocks. Characteristics of rocks are summarized as follows:

Rock	Gs	W (%)
Ouartzite	2.63 - 2.68	0.2 - 0.8
Calc-silicate	2.68 - 2.92	0.6 - 0.9
Schist	2.65 - 2.70	0.2 - 0.4
Schistose Granite	2.65 - 2.67	0.3 - 0.7
Mean	2.68	0.54

Specific gravity Note: Gs:

> Water absorption ratio w :

It is generally accepted in the dam engineering that the rock materials having characteristics of specific gravity more than 2.5 and water absorption ratio less than 1.0% are suitable for large dam embankment. Rock materials available in the vicinity of damsite are considered to have good quality for embankment.

3.1.1 Design value

(1) Embankment density

Density of embankment zone will depend on quality, shape and gradation of materials, spreading thickness and compaction method. Generally, large and boulder-size rocks are placed in outer rock zone and boulder to gravel size in transition zone. Both zones will form shell structure of dam embankment. Evaluating from the boring core and field investigations, the porosity (n) to calculate density was estimated as follows at the condition of applying vibration equipment for embankment:

Rock zone	1. A.	n =	30%
Transition	zone	n =	25%

Then, the density of embankment zones are calculated.

Rock zone (a)

Void ratio : $e = \frac{n}{1 - n} = 0.429$

Wet density: $\gamma t = \frac{Gs}{1 + e} \times \gamma w = 1.88 t/m^3$

where, Gs: Specific gravity at SSD condition GS = 2.68 (mean value)

Unit weight of water γw: $\Upsilon w = 1.0 \text{ t/m}^3$

Saturated density:
$$\gamma sat = \frac{Gs + e}{1 + e} \times \gamma w = 2.18 \text{ t/m}^3$$

TV-6

(b) Transition zone

$$e = \frac{n}{1 - n} = 0.333$$
$$\gamma t = \frac{Gs \cdot \gamma w}{1 + e} = 2.01 \text{ t/m}^3$$
$$\gamma sat = \frac{Gs + e}{1 + e} \times \gamma w = 2.26 \text{ t/m}^3$$

(2) Shear strength

Shear strength of material is expressed usually, by two components of internal friction angle ϕ and cohesion C. Tri-axial compression test for rock material was not conducted but the test results for weathered granite or semi-pervious materials are available. The internal friction angle obtained from the tri-axial test for the weathered granite of damsite is 40 degrees in effective strength at maximum density. Internal friction angle for hard rock material is usually larger than the value for weathered semi-pervious materials. Based on the tri-axial test results on the ordinary granite rocks in Japan as shown in ANNEX II, and considering the above value for weathered granite at damsite, the design values of the shear strength were determined as follows:

**.....

In case of rock material, the cohesion component of shear strength is neglected for stability analysis.

3.2 Impervious Materials (Core Zone)

The impervious materials for core zone of embankment will be obtained from the borrow area located at about 2 km downstream rightside of the river.

The impervious earth materials are fine to medium graded decomposed granite. This granite particles contain large amount of feldspar which will be easily decomposed and become clayey through weathering and stock piling. The groundwater level in the borrow area is low and decomposed thickness will be limited at 1.5 to 2.5 m below top soil cover. The borrow area is estimated about 100 ha, extending about 400 to 450 m in width and about 2.5 km in length.

Estimated maximum yield of impervious materials from this borrow area would be $1,000,000 \text{ m}^3$ in gross.

IV-7

3.2.1 Design value

(1) Embankment density

The results of standard Proctor compaction test on the representative core samples obtained from the test pits at the said borrow area are summarized as follows:

		· ·			
Test P	it No.	TP-2	тр3	TP-12	Average
Ydmax	t/m ³	1.995	1,980	1.900	1.958
Wopt	8	9.2	9.2	11.5	10.0

Note: Energy applied in the compaction test was $5.625 \text{ kg} \cdot \text{cm/cm}^3$.

Impervious materials to be utilized for core zone of high embankment should be required to have sufficient strength in addition to the impreviousness. Following density control for imperious materials will be necessary during construction.

Dry density (Yd) \geq Ydmax x 95%

Considering these conditions and based on the test results, design values for embankment design were determined as follows:

Dry density	:	γd =	$1.958 \times 0.95 = 1,860 \text{ t/m}^3$
Void ratio	:	e =	$\frac{\mathrm{Gs} \times \mathrm{\gamma} \mathrm{w}}{\mathrm{\gamma} \mathrm{d}} - 1 = 0.430$
Moisture content	:	w =	10.0% (= Wopt)
Wet density	:	γt =	$\gamma d x (1 + \frac{w}{100}) = 2.05 t/m^3$
Saturated density	7:	γsat =	$\frac{(Gs + e)\gamma w}{1 + e} = 2.16 \text{ t/m}^3$

(2) Shear strength

Design values for shear strength are determined from the results of tri-axial compression test (undrained and consolidated condition and expressed by effective stress).

		and the second	The state of the second second	and the second		
Test Pit		Shear S	trength	Sample Condition		
No.		ø(degree)	$C (t/m^2)$	Dry Densit	y Moisture Content	
TP-13	·	23.0	2.0	γdmax x 95	% Wopt	
TP-12		32.5	1.3	Ydmax x 95	% Dry side	
					and the second	

Samples from TP-12 show very high shear strength because of low moisture content. Permeability test on samples from TP-12 give greater value classified into semi-pervious. Samples from TP-13 give impervious values with condition of Wopt. Therefore, the results of TP-13 were applied for design values for impervious zone.

(3) Permeability

Most of results of permeability tests on core materials give permeability coefficient less than 1 x 10^{-6} cm/sec. Accordingly, the design values for construction is recommended to be 1 x 10⁻⁵ cm/sec which is guite common value for rockfill type dam.

3.3 Semi-Pervious Materials

The borrow area for semi-pervious materials are located in the reservoir area at about 2 km upstream of damsite. The material is decomposed and weathered granite graded medium to coarse and contains about 10% of silt particle. The groundwater level is low and materials are in dry side of embankment, having less plasticity.

3.3.1 Design value

(1) Embankment density

The results of standard proctor compaction tests (SPCT) on representative soil samples are as follows:

a shekara ka ka					· · · · ·
Test Pit No.	4	4	6	7	Average
Sample depth	0 - 2.2 m	2.2 - 3.6 m	0 - 2.4 m	0 - 1.8 m	
$\gamma dmax t/m^3$	2,026	1,975	2,020	2,050	2,018
Wopt %	8.5	9.5	8.6	8.2	8.7
Gs	2.67	2.67	2.63	2.65	2.66

Note: Ydmax: Maximum density of SPCT

Wopt: Optimum moisture content

Specific gravity of soil particles Gs:

Natural water content is estimated at about 3 to 4% from the field investigations on test pits. Moisture control by sprinkling water will be necessary during construction. Assuming the condition of being 95% of Ydmax for the density control, the design values are claculated as follows:

Dry density : $\gamma d = \gamma dmax \times 0.95 = 1,917 \text{ t/m}^3$ Void ratio : $e = \frac{Gs \times \gamma w}{\gamma d} - 1 = 0.388$ Moisture content : w = 8% (nearly equal to Wopt) Wet density : $\gamma t = \gamma d \times (1 + \frac{w}{100}) = 2.07 \text{ t/m}^3$ Saturated density: $\gamma sat = \frac{(Gs + e) \times \gamma w}{1 + e} = 2.20 \text{ t/m}^3$

(2) Shear strength

The tri-axial tests with conditions of consolidated and undrained was conducted for samples from TP-6 to determine the design values of shear strength.

		Shear Strength			Sample Condition		
Test	PIC	ø (degree)	C (t/m ²)		$\gamma d (t/m^3)$	W (%)	
TP-6	No. 1	40.0	3.0	•	2,020	8.0	
	No. 2	36.5	3.0	· .	1,919	8.0	

Note: No. 1: Initial sample condition is at Ydmax and Wopt. No. 2: Initial sample condition is at Ydmax x 0.95 and Wopt.

Taking safety measurement for design, smaller value was adopted.

Internal friction angle: $\phi = 36$ degrees Cohesion : $C = 3.0 \text{ t/m}^2$

3.4 Filter Material

Filter materials are obtained from the river deposit containing medium to coarse sand and less gravel and clay. Relatively coarse textured sand is deposited along left side of river course. Laboratory tests to determine the design values for embankment were not conducted. Common values were adopted for the study.

Wet density : $\gamma t = 1.90 \text{ t/m}^3$ Saturated density: $\gamma \text{sat} = 2.00 \text{ t/m}^3$ Shear strength : $\phi = 30.0 \text{ degree}$ C = 0 t/m²

3.5 Summary of Design Value

and the second		
2.18	44.0	0
2.26	42.0	0
2,20	36,0	3.0
2.]6	23.0	2.0
2.00	30.0	0
	2.18 2.26 2.20 2.]6 2.00	2.18 44.0 2.26 42.0 2.20 36.0 2.]6 23.0 2.00 30.0

DESIGN OF DAM 4.

4.1 Basic Design Condition

4.1.1 Seismic force

Seismic force is one of the major components in the design of large dam. Data on the distribution of epicenter locations and their magnitudes are available for the period from 1912 to 1981 in the Studies and Research Division of the Meteological Department and they are shown in Fig. IV-6. The most of epicenters are located along the Indian ocean plate which has arciform extending from Indonesia to Burma. Reliable epicenters of greater magnitude are not recorded within Thailand.

(1)Seismic acceleration force distribution

Along the epicenter arciform belt, the maximum magnitude of M = 8was recorded at two points but eastern area of arciform belt has relatively minor magnitude epicenters. Drawing the envelope line along the eastern edge of the recorded epicenter locations and assuming M = 7 to 8 magnitude on the envelope with depth of 40 km from the ground surface, the seismic acceleration force (gal) distribution was estimated. The results are shown in Fig. IV-7. In the calculation of relation between distance from the epicenter and seismic force (gal), the following formula were adopted.

(a) Seed (1968)

 $\log \text{Gmax} = 2.04 + 0.35 \text{ M} = 1.6 \log \text{ L}$

Okamoto (1979) (b)

Norse State (* 1

 $\log \left\{\frac{\text{Gmax}}{1,000}\right\} = \frac{\text{L} + 50}{100} \left(-4.93 + 0.89 \text{ M} - 0.043 \text{ M}^2\right)$

М: Magnitude where, Maximum acceleration (gal) Gmax: Distance from epicenter (km) L:

(2) Seismic force coefficient

The Upper Mae Wong damsite is located about 300 km away from the eastern edge of epicenter zone. The seismic acceleration force at damsite will be 5 to 10 gal according to the choice of magnitude at 7 to 8. The seismic coefficient Kh is then derived at 0.01 by 10 gal/980. Taking safety factor at 3, Kh will be 0.03. However, according to the information given by Dr. Suphon, Geology Div., the latest earthquake record in 1983 will result greater value of seismic coefficient of about 0.02. Taking same safety factor 3, the design value for Kh was then determined at 0.06. This will be reasonably conservative for a well-constructed dam on a sound rock foundation, in an area of historically limited earthquake activity.

4.1.2 Dam dimension

(1) Freeboard

Freeboard above flood surcharge water level is given as follows:

Freeboard = R + 1.0 m > 2.0 m

where, R: Wave creep height to the upstream slope

For estimation of R, the Fig. IV-8 is adopted. The minimum freeboard is 2.0 m.

(2) Crest detail

(a) Core zone crest elevation

Core crest elevation should not be less than (H.W.L + Freeboard), where H.W.L is flood surcharge water level.

(b) Dam crest elevation

Dam crest elevation = Core crest + Crest road thickness

(c) Dam crest width

Dam crest is often used as a part of local road and the crest width is determined as follows, taking a minimum width of 8 m:

 $B = 3.6^{3}/H - 3.0$ for earthfill dam

B = 0.05 H + 6.0 for rockfill dam

H: Dam height (m)

4.1.3 Allowable factors of safety

The following minimum allowable factors of safety against slope failure were adopted as critería in the design:

Operating Condition	Minimum Factor of Safety		
End of construction			
Static condition	1.40		
Rapid drawdown			
Static condition With seismic coefficient 0.03*	1.20 1.10		
Steady-state seepage			
With seismic coefficient 0.06	1.30		

Note: *: Rapid drawdown of water level is not expected frequently and probability of simultaneous occurrence of earthquake must be very low. Therefore, a half of seismic coefficient is adopted.

4.2 Embankment Design

4.2.1 Crest design

(1) Freeboard

The freeboard is designed at 3.0 m taking design factors as follows:

Distance to the opposite	e shore:	F = 6.2 km
Maximum wind velocity	:	V = 30 m/sec
Embankment slope	:	1:1.7
Slope surface	:	Rugged surface
Wave creep height	:	R = 1.7 m

Hf = 1.7 + 1.0 = 2.7 m, rounded at 3.0 m

(2) Crest of core zone

H.W.L. + Hf = E1. 207.5 + 3.0 = E1. 210.5 m

H.W.L.: Flood water surcharge level

(3) Dam crest

El. 210.5 + Crest road 0.5 m = El. 211 m

(4) Crest width

B = 6 + 0.05 H = 8.9 m

 $B = 3.6 \times {}^{3}H - 3 = 10.9 \text{ m}$

Taking average value, crest width is designed at 10 m.

4.2.2 Zoning of dam

Dam type and its zoning are always determined from mainly three factors, i.e. material availability at site, soil mechanical characteristics and construction cost. Sometime, the dam foundation condition will be added to these factors. In case of the Upper Mae Wong dam, as for material availability, rock materials of good quality will be produced from the structural excavations for service spillway, emergency spillway, foundation excavation and diversion tunnel. Besides these, quarry sites are located at both abutments and almost everywhere in the reservoir area. As for core material, the supply source is located at about 2 km downstream of damsite but available volume will be limited. Following five zones were designed by trial and error on the balance of material supply, economic comparison and stability analysis. Sloping of dam was determined at 1.75 horizontal to 1 vertical at upstream surface and 1.6 horizontal to 1 vertical at downstream surface.

(1) Impervious zone (Core zone)

Owing to the limited supply of impervious materials, relatively narrow center core was selected to keep reservoir seepage losses to a practical minimum. The core is 4 m wide at the crest, 22 m at the base and sloping of upstream and downstream at 0.16 horizontal to 1 vertical.

(2) Rock zone

Rock zone will work as a shell of embankment to control and improve total stability of embankment. Material sources for this zone are structural excavations at service spillway and emergency spillway.

(3) Transition zone

This zone is designed at inner zone of outer rock zone. The function of this is to form a shell of embankment same as outer rock zone but finner rocks will be placed to adjust grain size distribution between rock zone and semi-pervious zone. In the course of rock excavation at structural site, production of finner size rock are inevitable and supply sources for this zone are both spillways excavation and dam foundation excavation.

(4) Semi-pervious zone

This zone is designed between transition rock and filter zone. Sometimes it is called random zone. From the single point of dam stability, replacement of rock zone by this zone is not recommendable as the shear strength is usually lower. However, construction cost of rock zone is always high and production of random materials, not so impervious as core material but not so strong as rock, is inevitable in all damsite. Considering these conditions, this zone was also designed within the safety measurement of stability. Material sources are common soil at both spillway site, diversion canal excavation and borrow area at upstream of damsite.

(5) Filter zone

Reservoir seepage through the embankment and underlying foundation is controlled by 3.0 m wide filter zone along the downstream face of impervious core zone. Drainage blanket and finger drains are placed on the foundation downstream of the core to carry both under-seepage and water from the filter zone to the downstream toe.

The upstream filter zone was also designed to provide for relief of internal hydrostatic pressure and improved stability during rapid fluctuations in reservoir level.

Material sources for the filter zone will be diversion tunnel excavation and river sand.

4.2.3 Stability analysis

Stability of the dam against sliding was analyzed by means of sliced slip circle method. A safety factor obtained by the slip circle method is derived by the following formula:

D.e.	_	Σ {C'l + (N-Ne) · tan ϕ '}	
rs	-	$\Sigma(T + Te)$	

where, Fs:

Safety factor N : Normal effective force acting on sliced slip circle Tangent effective force acting on sliced slip circle T: Normal force by seismic load on sliced slip circle Ne: Tangent force by seismic load on sliced slip circle Te: Cohesion and internal friction angle of embankment C', ø': material

٤: Arc length of sliced slip circle

Operating conditions for stability analysis are as follows:

Case A: End of construction with static condition

Rapid drawdown of reservoir water level with seismic Case B: coefficient of 0.03

Steady-state seepage condition with seismic coefficient Case C: of 0.06

Surface sliding calculated by surface plate sliding method Case D:

As for cohesionless materials, the slip circle method has characteristics that the safety factor would become smaller when the slip circle becomes shallow. Therefore, the analysis for such case is made by surface plate sliding method as shown below:

 $F_{s} = \frac{(1 - m \cdot k \frac{\gamma sat}{\gamma'})}{m + \frac{\gamma sat}{\gamma'} \cdot k} \tan \phi'$ where, F_{s} : Safety factor m: Gradient of slope k: Seismic coefficient ϕ' : Angle of internal friction of materials γsat : Saturated density of material γ' : Submerged density of material

The above formula was applied to the slope under the water level of reservoir, and for the slope above the water level, the formula can be applied by substituting the wet density (γt) for both γsat and γ' .

The results of stability analysis are summarized as follows:

				A State of the second second	
Case	Reservoir Water Level	Slope	Seismic Coefficient	Safety Factor	Minimum Safety Factor
A	Empty	Upstream	0	1.60	1.40
A	Empty	Downstream	0.	1.44	1.40
В	El. 204.5 m				
	- El. 180 m	Upstream	0.03	1.42	1.10
С	E1. 204.5 m	Upstream	0,06	1.35	1.30
С	E1. 204.5 m	Downstream	0.06	1.39	1.30
С	El. 190.0 m	Upstream	0.06	1.38	1.30
D		Upstream	0.06	1.33	1.20
D		Downstream	0.06	1.36	1.20

Above results of analysis satisfy the stipulated safety factors and imply that the dam is reasonably safe against sliding.

4.3 Spillway

The Upper Mae Wong spillway consists of service spillway and emergency spillway to utilize topographic features of damsite. Service spillway is located at rightside abutment and an emergency spillway at about 1.5 km north where the topography is in saddle shape and ground elevation is about 210 m and lower than the dam crest elevation.
4.3.1 Design flood

An extensive hydrometeorological study was undertaken, concentrating on the climatology and hydrology of the Mae Wong river basin with due consideration on the overall hydrological conditions of the Sakae Krang river basin. The results of study are given in ANNEX I.

The spillway design flood was determined to be 20 percent increased value of flood which derived from one-day rainfall of 260 mm with 200-year return period, occurring uniformly over the entire basin. The design flood was determined at 1,770 m^3 /sec which coincides with the flood probability scale of about 600-year return period.

Flood routing study was conducted to clarify the function of flood retention capacity expected between the designed flood surcharge level of El. 207.5 m and spillway crest level of El. 204.5 m. The results of study are presented in ANNEX I. It was then confirmed that, within the designed surcharge water level, the reservoir will allow to control the flood inflow scale up to 2,000 m³/sec or flood probability of 1,500-year return period.

		the second se
	Peak	Max. Reservoir
F1000	Flood	Water Level
Scale	(m ³ /sec)	(m)
10-year	860	E1, 206.4
50-year	1,200	206.8
100-year	1,340	206.9
Design flood	1,770	207.3
1,500-year	2,000	207.5

4.3.2 Service spillway

Service spillway was designed to release the flood of 1,200 m^3/sec , corresponding to the flood scale of 50-year return period. Service spillway consists of un-gated side-flow intake crest, of 110 m in length and 3.0 m of overflow design depth, guide channel of 16 m in width, chute channel and stilling basin of 35 m in width, 21 m in height and 75 m in length. Total concrete volume required is estimated at about 50,000 m³.

The spillway alignment was selected to minimize the excavation volume and the area of excavated slope surface above the spillway.

4.3.3 Emergency spillway

Emergency spillway was designed to have several purposes.

- (1) to release flood water of 570 m^3/sec ,
- (2) to improve saddle shape topography of lower elevation than the dam crest elevation,

(3) to treat a geologic fault expected from boring No. 8, and

(4) to supply rock materials for dam embankment.

The emergency spillway was designed to be of un-gated chute type with crest length of 210 m, crest elevation at 206.0 m and overflow depth of 1.5 m. Concrete volume required would be about 19,000 m³. Excavated rock volume would be about 500,000 m³. Foundation grouting was also designed with 6 m depth and 2 lines under the spillway crest.

4.4 River Diversion

4.4.1 Diversion requirement

A diversion capability of $480 \text{ m}^3/\text{sec}$ was required from historical peak flow records. The design discharge of $480 \text{ m}^3/\text{sec}$ was determined from the probability analysis on the peak flow discharges recorded at gaging stations in the Sakae Krang river basin.

	Flood Scale (m ³ /sec/km ²)			
Gaging Station	5-year	10-year	20-year	
СТ-5	0.11	0.15	0.19	
CT-5A	0.48	0.64	0,80	
CT-6	0.44	0.60	0.76	
CT-7	0.56	0.78	1.02	
CT-9	0.23	0.33	0.43	
	· · · ·			

Flood scale of 10-year return period was adopted considering the required period of 5 years for dam construction works.

Specific discharge of $0.78 \text{ m}^3/\text{sec/km}^2$ at CT-7 was applied for the river diversion discharge, which corresponds to the maximum flow discharge recorded for past 14 years at CT-5A gaging station located at about 13 km downstream of damsite. Discharges derived from CT-7 probability calculation and from maximum flow record at CT-5A are compared as follows:

	CT	Ст-7 Ст-5А	
	10-year	20-year	Max. Ave. (14 years)
Specific Discharge			
$(m^3/s/km^2)$	0,78	1.02	0.75 0.33
Damsite (m ³ /s)	480	620	460 200

4.4.2 Diversion tunnel

The diversion of the Mae Wong river would be accomplished through a horseshoe-shaped tunnel of 7.6 m inside diameter, which bypass the damsite through left abutment. The design of diversion tunnel is shown in Fig. IV-9.

The tunnel was designed to accommodate a flow of 480 m^3/sec at water surface of elevation 173 m. The diversion tunnel, together with lead channel at upstream and diversion channel at downstream would be constructed while the river is flowing in its natural channel.

4.4.3 Coffer dam

Coffer dam was designed to protect over-topping of dam body during early stage of construction and to raise the flood water level giving necessary hydraulic head to pass the flood through diversion tunnel. Taking about 1.0 m of free-board above the flood water level at designed diversion flood, the crest of coffer dam was determined at El. 174.0 m. Major dimensions of coffer dam are as follows:

Height			15.0	m
Crest width			7.0	m
Crest elevation		El.	174.0	m
Crest length			330.0	m
Embankment slope	Upstream		1:2.0	
	Downstream	÷	1:1.5	

4.5 Intake Structure

4.5.1 Design intake capacity

Design intake capacity is determined from the water balance calculation applying following formula:

 $Qd = Kmax \times 2q \cdot Hmax$

where, Qd: Design intake capacity (m³/sec)
K: Variable (m²)
H: Available hydraulic head for intake (m)
g: Gravity acceleration coefficient, 9.8 m/sec²

Values of minimum H and maximum K are calculated for each year from water balance calculation for 30 years as shown in Table IV-2. Then the design intake capacity is determined at 43 m^3/sec .

 $Qd = 2.078 \times 2 \times 9.8 \times (180 - 158.23)$ = 43 m³/sec

In the above calculation, the value 158.23 means the elevation of outlet elevation at the end of outlet pipe.

4.5.2 Intake structure

Intake structure was designed as drop inlet type located at the entrance of diversion tunnel. The intake pipe is to be placed through the diversion tunnel. Major dimensions of intake structure are as follows:

Drop in	nlet	Diameter	5.0	m		· ·.	. •
Intake	pipe	Length	281	m		·	·
. '	1. ja 1.	Diameter	3.4	m	1911 г.		
Outlet	valves	Diameter	1.5	m	and	1.4	m

Table TV-1 SUMMARY OF RESERVOIR AND DAM

· · ·		
1.	Reservoir	
	Catchment area	612 km ²
	Total storage volume	, 250 MCM
	Effective storage volume	230 MCM
	Dead storage volume	20 MCM
	Water level	
-	Total storage level	El 204.5 m
	Flood surcharge level	E1 207.5 m
1.1	Dead storage level	El 180.0 m
	Reservoir area	
	Total storage area	17.6 km ²
	Flood surcharge area	19.8 km ²
	Dead storage area	3.0 km^2
-		
2.	Dam	
	Туре	Center-cored rockfill type
	Height	57 m
	Crest elevation	E1 211 m
	Crest length	794 m
	Crest width	10 m
	Slopes	upstream 1 : 1.75
		downstream 1 : 1.6
· · · ·	Embankment volume	2,500,000 m ³ .
-		
3.	Spillway	
- 1	Service spillway	Ungated side channel type
	Design discharge	1,200 m³/s
	Crest length	110 m
	Emergency spillway	Ungated chute type
÷.,	Design discharge	570 m ³ /s
11	Crest length	210 m
4.	River diversion	
	Approach canal	220 m
	Diversion tunnel	230 m
	Diameter	2R Horse shoe 7.6 m
· ·	Diversion canal	790 m
÷	Diversion dam	90,000 m ³
5.	Intake and outlet works	
	Intako degian discharge	43 m ³ /cc
	Intake structure	Drop inlet
	Outlet pine diameter	3.4 m
e te	outre labe arameter	

Table IV-2 CALCULATION OF K

Year	Intake for Irrigation (m ³ /sec)	Min. Reservoir Water Level (m)	ĸ
1954	22,503	201.11	0.776
1955	51.304	200.09	1.791
1956	21.547	201.23	0.742
1957	19.178	202.04	0.654
1958	26,998	199.07	0,954
1959	21.245	201.09	0.732
1960	30.289	199.00	1.071
1961	22.323	202.09	0.761
1962	21.740	204.17	0.724
1,963	21.256	196.71	0.774
1964	16.520	203,75	0.553
1965	19,366	202.39	0.658
1966	22.027	201.19	0.759
1967	39.104	195.05	1.456
1968	30.203	180.00	1.462
1969	29.630	184.90	1.296
1970	27.718	182.03	1.283
1971	24.741	193.31	0.944
1972	30.355	184,22	1.345
1973	29.335	201.28	1.010
1974	23.428	201.03	0.809
1975	31.639	198.51	1.126
1976	30.138	199.95	1.054
1977	31.867	194.34	1.198
1978	24.038	183.15	1.088
1979	47.728	185.14	2.078
1980	24.090	188.93	0.982
1981	26.188	197.87	0.940
1982	29.492	189.51	1.191

IV-23

Area-Capacity Curve

Fig. IV-l.

IV-24

V-25

Fig. IV-5 Alternative Dam Axis

Fig. IV-6 Seismic Force Distribution

IV-28

Relation between Seismic Acceleration Force and Distance to Epicenter j. th Eutenter (km) Fig. IV-7

IV-29

(-

Fig. IV-9 Standard Cross Section of Diversion Tunnel

Fig. IV-8 Wave Creep Height