THE KINGDOM OF THAILAND

FEASIBILITY STUDY ON THE BANG NARA IRRIGATION AND DRAINAGE PROJECT

APPENDICES

DECEMBER 1986

JAPAN INTERNATIONAL COOPERATION AGENCY

No.==

2

国際協力事業団 業社 87.2.02 /22 月日 査録 15964 87.2 AFT

国際協力等	《業团
受入 '87.2.02 月日	122
全绿 15964 No.	AFT

CONTENTS of APPENDICES

(Supporting Data)

· ·				Page
	APPENDIX	I	TOPOGRAPHY AND GEOLOGY	I-0
	APPENDIX	II	METEOROLOGY, HYDROLOGY AND OCEANOGRAPHY	11-0
	APPENDIX	III	BANG NARA WATER STORAGE	TTT0
:	APPENDIX	IV	SOILS	IV-0
	APPENDIX	V	LAND USE AND AGRICULTURE	V-0
	APPENDIX	VI	AGRO-ECONOMY AND RURAL SOCIOLOGY	VI-0
	APPENDIX	VII	EXISTING FLOODING, DRAINAGE AND IRRIGATION	VII-0
	APPENDIX	VIII	WATER QUALITY, IRRIGATION AND DRAINAGE	VIII-0
	APPENDIX	IX	PRELIMINARY DESIGN OF CIVIL WORK	IX-0
	APPENDIX	Х	PROJECT COST	X-0
	APPENDIX	XI	PROJECT ECONOMIC AND FINANCIAL ANALYSIS	XI0
	APPENDIX	XII	PRESENT POSITION OF THE TO DAENG SWAMP	XII-0

APPENDIX I. TOPOGRAPHY AND GEOLOGY

			Page
I-1.	Topography		11
	Table I-1-1.	Topographical Maps and Other	
•		Information	I-1
· .	Table I-1-2.	Catalogue of Survey Field Books	12
1-2.	Geology		1-3
	I-2-1. Area	a Topography and Geology	I3
	Figure I-2-1	Outline of Topography	15
	1-2-2. Subs	surface Geology	I-5
	Figure I-2-2	2 Geology Map	1-6
	Figure I-2-3	Geological Cross-Section	I-7

I-1 Topography

Table I-1-1 Topographical Maps and Other Information

Classification	Scale	Number of Sheets	Description
Topographical	1:250,000	3	Maps produced by US Army / RTSD
Maps			in 1976, SERIES 1501S
	1:50,000	21	Maps produced by US Army / RTSD
and a second second Second second		patri de la construcción de la cons La construcción de la construcción d	in 1972, SERIES L7017
	1+25_000	11	Mans produced by US Army / RTSD
	1129,000	11	in 1983. SERIES L8019
	1 10 000		
	1:10,000	.28	Maps produced by RID in 1976
			for use on Mu No Project
	1:10,000	28	Maps produced by RID in 1975
			for use on Bacho Project
	1:1,000	13	Maps produced by RID in 1982
		en andre en transformer en ser	for use on Bang Nara Project
			(Upper Regulator Site)
	1:1,000	· · · · 9	the second ditto
			(Lower Regulator Site)
	1:4,000	17	Plan / Profile of Mae Nam Bang
			Nara produced by RID in 1984
	¥1.100	25	Cross Costions of Mac Nam Rang Name
	VI:100	2 . 	Closs Sections of Mae wait bang wara
	n11,000	an a	Populator and Canal drawings
			used for Nam Baeno Project
			Regulator and other drawings
			used for Pi Leng Project
	1:10,000	randr∞ 7 27	Plan of Mae Nam Ya Kang
	1:20,000	2	Profile of Mae Nam Ya Kang
	V1:100	22	Cross Sections of Mae Nam Ya Kang
	H1:200		produced by RID upon the Study
· · ·			Team's request

Classification	Scale	Number of Sheets	Description
Topographical Maps	1;4,000 V1:100 H1:200	5	Plan/Plofile of Khlong To Che Cross Sections of Khlong To Che produced by RID upon the Study Team's request
	1:2,000	6	Plan of three sample areas produced by RID upon the Study Team's request
Orthophotomaps	1:10,000	58	Orthophotomaps produced by RTSD in 1984 from photography of June 1982 for use on GRBDS
Aerial Photographs	1:15,000	54	Photographs taken by RTSD in 1984 for use on DLD Projects

Table I-1-2 Catalogue of Survey Field Books

Field Book	Contents	Page
1	Leveling BM 2778 C - RID 018	1
2	Leveling BM RID 018 - MUNO 02	5
3	Leveling BM MUNO 02 - MUNO 04	9
4	Leveling BM MUNO O4 - CH P 1781	12
5	Leveling BM CH P1781 - Intersection	16
6	Leveling BM N6 - CH P244478 (BM 🕎)	21
7	Leveling BM Intersection - BM 2 (Taba)	23
8	Leveling BM Intersection BM 3 (Nam Baeng)	30
9	Leveling BM 3 - BM 3 (Bang Nara Bridge)	35
10	Leveling BM 3 (Bang Nara Bridge) – BM 🐺	43
11	Leveling BN 3 (Bang Nara Bridge) - ARMY P722	45
12	Leveling BM ARMY P722 - BM (5) (Bangkok Bank)	47
13	Leveling BM 3 (Pasemas Bridge) - T.P (Pa Ye)	49
14	Leveling BM TP (Pa Ye) - TP 26	52
15	Leveling - BM 2 (Pa Ye) - HYDRO (3)	55
16	Leveling BM ARMY P722 - BM (4) (Ya Kang X 73)	59
17	Leveling for Cross Section of Ya Kang at X 73	66
18	Leveling BM () (Ya Kang X 73) - BM P	69
19	Leveling - BM P - BM X 73A (BO NGO X 73A)	75
20	Leveling for Cross Section of Bo Ngo at X 73A	80
21	Leveling TBM l (Sala Mai) - ARMY CH3	83
22	Leveling BM ARMY CH3 - CH P244507 (BM 🦅)	85
23	Leveling - TP 105 - BM 4 (Upper Regulator)	88
24	Leveling BM N6 - CH P571542 (Lower Regulator)	90
25	Leveling PREMARK 004 ~ ARMY 21	92
26	Leveling for water Levels on Station $\sqrt{\sqrt{2}}$	94

I-2 Geology

I-2-1 Area Topography and Geology

(1) Topography

The Study area is situated at Lat. 6°30'N and Long. 120°E along the border with Malaysia on the Thai Peninsula. The topography in the area and its vicinity consists of the coastal plain, foothills, mountainous areas and monadnocks. As for rivers, there are Mae Nam Bang Nara with estuaries at Narathiwat and Tak Bai, Mae Nam Yakang with its catchment area in the mountains of Rangae which flows into Mae Nam Bang Nara near its estuary, and Mae Nam Kolok which forms the border with Malaysia.

The coastal plain is a so-called ridged beach plain and is characterized by development of the beach ridges along the coast and the swamps. The topography within the plain is classified into beach ridge (old beach ridge) and lagoon (old lagoon), delta and flood plain, and swamp (old swamp). (Refer to Figure I-2-1)

Beach ridges exhibit a flat surface of 2 - 6 m in elevation and are developed in three strips parallel to the coast with a combined width of as much as 6 km.

A lagoon is developed at Tak Bai, and old lagoons which have changed into swamps are seen between beach ridges. The elevation of these old lagoons is approximately 0 - 2 m.

Swamps are most widely distributed in this area, the most representative being the To Daeng swamp. They are approximately 2 m or so in elevation. They are almost flat but are sputtered with slightly higher spots consisting of beach-sand which are probably the traces of the old beach ridges. As development is in progress currently, the only on which shows the appearance of a swamp is the To Daeng swamp, but the distrubution of peat suggests their former

I-3

state.

Deltas are seen along Mae Nam Kolok, and flood plains in the watershed of Mae Nam Yakang. The delta between Sg. Kolok and Tak Bai indicates an elevation of 1 - 3 m. Slightly higher places, presumably natural levees, can be observed here and there.

The flood plains indicate an elevation of around 13 m near Mae Nam Ya Kang bridge and become lower in elevation toward Narathiwat, being around 9 m in the vicinity of the intersection of National Highways 4055 and 4056, and about 3 m in the neighborhood of Wat Khao Kong. In terms of microtopography, valleys of very minor scale are generally developed in the direction of the watercourse of Mae Nam Ya Kang an also toward the old swamp.

As for monadnocks, there are conically shaped ones represented by Khao Tanyong (EL 294 m), and hilly shaped ones mainly seen in the north of Narathiwat. The former is presumed to consist mainly of relatively fresh granite, and the latter of colluvium or residual soil.

Foothills consist of colluvium and residual soil. Dissections are fairly well - deveoloped, but in general, these foothills are gently inclined toward the coastal plain. Major distributions are seen in the environs of Rangae and Sg. Padi. They are 20 - 30 m in elevation in the town of Rangae and around 20 m in the town of Sg. Padi.

The mountainous area consists of mountains such as Khao Ni Beng (705 m), etc., located west of Bacho, mountains located west of Rangae of which Kao Ko Lubi (916 m) is the principal peak, and mountains located west of Sg. Padi of which Khao Ta We (1,182 m) is the highest. Every one of these is steep in appearance and has waterfalls.

I-4

(2) Geology

The geology of the Study area has been inferred from the field survey, the GRBDS geology report and preliminary DMR report. Geology Map is shown in Figure I-2-2.

I-2-2 Subsurface Geology

The geological profile of the Study area has been inferred from the boring logs of existing wells and other data.

Geological cross-sections are shown in Figure I-2-3.

Figure I-2-3 Geological Cross-Section

--120

-140

Gravel Collutium (++) Granite

Ę

-120-

Clay

E - E*

APPENDIX II. METEOROLOGY, HYDROLOGY AND OCEANOGRAPHY

11-1. Meteorology		
	지수는 물건을 제 물건물건을 통해 있는 것을 하는 것이 없다.	Page
Figure II-1-1.	Location Map of Southern Thailand	11-1
Figure II-1-2.	Climatological Conditions at the Narathiwat	
	Station (1) (Pattani, Songkhla, X45)	II-2
Figure II-1-3.	Climatological Conditions at the Narathiwat	1. 4. ⁴ 1
	Station (2)	II-3
Figure II-1-4.	Tracks of Tropical Cyclones Over South	
	Thailand (1)	
	(During 33 years, Period from 1951 - 1983)	11-4
Figure II-1-5.	Tracks of Tropical Cyclones Over South	
	Thailand (2)	
	(During 2 years, Period from 1984 - 1985)	II-5
Figure II-1-6.	Observation for the Monthly Wind Speed and the	
	Direction of the Wind at Narathiwat	II-6
Figure II-1-7.	Location of Rainfall and Water Level Station	II-7
Figure II-1-8.	Daily Rainfall Records	II-8
Figure II-1-9.	Isohyetal Map of Mean Annual Rainfall	II-9
Figure II-1-10.	Annual Rainfall and Moving Average	
	(Narathiwat, Yi-Ngo, Tak Bai, Rangae)	II-10
Figure II-1-11.	Monthly Distribution of Rainfall	11-11
Figure II-1-12.	Probability Analysis	· .
	Consecutive Rainfall at Narathiwat	
	(Iwai Method)	II-1 2
Figure II-1-13.	Daily Rainfall distribution at Each Station	
	(Duration 19 - 25 Dec. 1984)	1 I-1 3
Figure II-1-14.	Daily Rainfall Distribution at Each Station	:
	(Duration 10 - 23 Dec. 1985)	11-14
Figure II-1-15.	Variation of Hourly Rainfall	: -
	(A. Muang, Narathiwat)	11-15
Figure II-1-16.	Variation of Hourly Rainfall	
	(JICA Provided Stations)	II-16
Figure II-1-17.	Thiessen Method and Network	11-17

II - 0(1)

II-2. Hydrology

			rage
	Table II-2-1.	Stream Gauging Stations	11-18
	Table II-2-2.	Catchment Area and River Length of Mae Nam	
		Bang Nara	II-19
	Figure II-2-1.	Catchment Area and Boundary	11-20
	Figure II-2-2.	Longitudinal Profile of Stream	11-21
	Figure 11-2-3.	Water Level Records	11-22
	Figure 11-2-4.	Hydrograph (X45) (1) (2)	11-23
	Figure II-2-5.	Hydrograph (X45) (3) (4) (5)	11-24
	Figure II-2-6.	Relation of Rainfall and Direct Run-off(X45)	11-25
	Figure 11-2-7.	Catchment Area of Mae Nam Bang Nara	
		(Typical Map for Run-off Analysis)	II-26
	Figure 11-2-8.	Flood Run-off (1) (20 - 24 Dec. 1984)	II →27
	Figure 11-2-9.	- do - (2)	11-28
	Figure II-2-10.	- do - (3)	11-29
	Figure II-2-11.	Verification of Parameters, Run-off Analysis by	
		Nakayasu (Mae Nam Yakang, X73)	II-30
	Figure 11-2-12.	Flood Run-off (1) (10 - 19 Dec 1985)	11-31
	Figure II-2-13.	- do - (2)	II-32
•	Figure II-2-14.	- do - (3)	II- 33
	Figure II-2-15.	Accumulated Discharge Curve by Nakayasu Method	
		(10 - 19 Dec. 1985)	11-34
•	Figure II-2-16.	Series Tank Model for Run-off Analysis and	
		Dimensions of Tanks	11-35
	Figure II-2-17.	Verification of Tank Model (1983, 1984)	11-36
	Figure II-2-18.	Discharge - Duration Curve	11-37
1	Figure II-2-19.	Discharge of Mae Nam Yakang for 30 years	II-38
	Figure II-2-20.	Discharge of Mae Nam Bang Nara's Tributaries	
		for 30 years	11-39
2	Figure II-2-21.	Suspended Sediment Rating Curve of Kolok River	11-40
	Figure II-2-22.	Suspended Sediment Load of Mae Nam Yakang	11-41
	Figure II-2-23.	Grain Size Accumulation Curve	11-42
			1. 1. 1. 1.

ъ

			i						· . ·	Page
Figure	II-2-24.	Sediment	Deposi	tion	in Ma	e Nam	Bang	Nara		11-43
Figure	II-2-25.	Rating Co	urve at	X73,	Mae	Nam Y	akang			II-44

11-3. Hydrogeology

II-3-1.	Introduc	tion	11-45
Figure	II-3-1.	Location Map of Tube Wells	11-47
Figure	11-3-2.	Location Map of Investigated Hand-Dug Wells	II-48
Figure	11-3-3.	Hydrogeology Map	II-49
Figure	11-3-4.	Shallow Groundwater Level Observed	11-50
II-3-2.	Groundwat	ter Resources	11-51
Figure	11-3-5.	Groundwater Quality Observed	II-54
Figure	11-3-6.	EC of Deep Groundwater	II-59
II-3-3.	Present (Groundwater Development	II-60
Table	II-3-1. Wa	ater Need and Water Resources in Sample Muban	11-62
II-3-4.	Groundwat	ter Development Potential	II-63
Figure	II-3-7.	Hydrogeology and EC	11-67

II-4. Oceanography

Table	11-4-1.	Frequency	of Ocean	Waves by	Vísual	Heights	
		from Ship	Observat:	ions			II-68

Figure	II-4-1,	Proposed Breakwater Arrangement at Kolok
		River Mouth II-69
Figure	II-4-2.	RID-Nam Baeng Tidal Regulator (1) II-70
Fígure	II-4-3.	RID-Nam Baeng Tidal Regulator (2) II-71
Figure	II-4-4.	Entrance of Mae Nam Bang Nara at Narathiwat with
		Target Channel Alignment for Maintenance Dredging II-72
Figure	11-4-5.	Proposed River Mouth Improvement at Narathiwat II-73

÷	Figure	IT-4-6.	Observed Daily High and Low Tide at Narathiwat	
•	TEarc	· · ·	Harbor and Daily Rainfall at Muang Narathiwat in	
			1000	74
			1903	74
	Figure	11-4-7.	Observed Daily High and Low Tide at Narathiwat	
			Harbor and Daily Rainfall at Muang Narathiwat in	. * *
			1984 II-	75
	Figure	11-4-8.	Observed Daily High and Low Tide at Taba (X100)	
		· .	and Daily Rainfall at Waeng in 1983 II-	76
	Figure	II-4-9.	Observed Daily High and Low Tide at Taba (X100)	
			and Daily Rainfall at Waeng in 1984 II-	77
	Figure	11-4-10.	Water Level along Mae Nam Bang Nara	•
			(JICA Provided Stations)	
÷	•		5 - 18 September, 1985 II-	78
	Figure	II-4-11.	Water Level along Mae Nam Bang Nara	
			(JICA Provided Stations)	
			10 - 23 December, 1985 II-	79
	Figure	11-4-12.	Water Level along Mae Nam Bang Nara in Spring and	
			Neap Tide (JICA Provided Stations) II-	80

Page

÷

II-0(4)

(1)CLIMATOLOGICAL CONDITIONS AT THE NARATHIWAT STATION Figure II-1-2

Figure II-1-3 CLIMATOLOGICAL CONDITIONS AT THE NARATHIWAT STATION (2)

: 31 MAY-2 JUN '84 WARREN: 22 OCT- 3 NOV. IKE : 27 AUG- 7 SEP. : 10-12 OCT.'85 BETTY : 4-10 JULY '84 ÷ 5 . GERALD: 11-12 AUG. GORDON: 21-26 NOV. IRVING: 16-22 DEC. SUSAN : 10-14 OCT. : LYNN : 24-29 SEP. AGNES : 1-9 NOV. : 1-3 OCT : 13-18 D2 : 20-22 : 11-12 CECIL : 11-17 WYNNE : 19-26 VERNON: 8-12 10 D10 DOT C3 D4 DOT AGNES WYNNE 3ETT 띥 (DURING 2 YEARS, PERIOD FROM 1984-1985) Source : Meteorological Dept. XLYNN X DNT/NU X-X XXX DID X GORDON °011 - Project Area × 100° 0 ·1 R . LEGEND 20°. . 0

TRACKS OF TROPICAL CYCLONES OVER SOUTH THAILAND (2)

Figure 11-1-5

× Location at 7:00

Tropical Storms Depressions Typhoons

II-6

Figure 11-1-8 DAILY RAINFALL RECORDS

		·····									<u> </u>			đ	- <u>C</u>)	
185			- -	. .			- -								-	
1							-	_]•	, <u> </u>]	-	П	-				\sim
					Π_				8	$-\overline{\Pi}$						No
18(-		- -		╞╎╎╶		- -							- 4 . 1		19 [1
-									-	.			-	ŗ		1 X 0
_									·							1
175			·		-				-			-		• +	· ·	Va Za
-			ţЦ.						- - - -						• •	5 V .I.
1									- -	-		- 		-	·	<
170				-												VC a ti
- -				<pre>+ - + - </pre>						<u>ם</u>						100
1	- 										 				· -	
165			 -			- 1		-	. [] -			, t	-	_		100
-			† <mark> </mark> -	t - - - -	 			- " 		 						(1)
-								-			-		-			U I U
160					-			-			-		-			ć
-				+ - ↓		 -					+ -					0.011
-		- -			4 <u>4</u>			. · -			-		-		· ·	0.0
- 22 -				- -	· · -	-	-				-		-			
) - 	Į Ī	-					 -						
SI.	U.		-								-			-	• •	0000
-	<u> </u>															0000
					en det				· .					ICA	IICA	017
AME	TAWI			an e							DNOL	JIC		3	<u> </u>	
N	ATH				10	NOX.		t			(KUL	J. (100L		
TION	(NAF	i i i i i i			PAI	Ю. ХО		RJ			E G	PR.		SC		
STA	ANG	K BA	NGAE	-NGO	NGAI	NGAI	ENG	A ON	CHO	00	L.D.	LENG	1 .	VGAE	КIТ	
	MU	TAI	RN	Ϋ́	SUR	SUI	WAI	MUN	BA(RUS	D	Id	x45	L D	BUì	1000
ш	12	52	22	62	12	02	47	31	72	52						Í
COD	290	290	290	290	291	162	290	291	290	290	<u> </u>		:			

11-8

.

II-12

II-15

IJ

		• • •	able IIZ	-I SINEAM GAGE	ING STATIONS		
							Changwat Narathiwat
	Code	River	Stream	At or Near	Amphoe	Approx Lat. N Long. E	Type of gage
	X 43	Khlong Sungai Padi		A. Sungai Padi	Sungai Padi	6 08 50" 101 54 52"	Vertical Staff gage
	x 73	Khlong Bang Nara	Khlong Tan Yong Mat	Highway Bridge	Rangae	6 17 • - 44" 101 • - 44 • - 04"	Vertical Staff gage
	X73A	Khlong Tan Yong Mat	Khlong Bo Ngo	Ban Bo Ngo	Bangae	61010" 10142"-59"	Recorder, Float gage
	001X	Kolok	1	Ban Che He	Tak Bai	6 - 13 - 55" 102 - 05 - 28"	Recorder, Float gage
II	X119	Kolok		A. Sungai Kolok	Sungai Kolok	60409" 10202"-22"	Vertical Staff gage
-18	X 35	Sai Buri]	Tha Kham	Ruso	6 - 21 - 02" 101 - 29 - 50"	Vertical Staff gage
	X 45 55	Sai Buri	1	Wat Na On Ban Ba Kong	Ruso	619 ²⁵ "	Vertical & Recorder, Bubble gage
	X121	Kolok	Khlong Waeng	A. Waeng	Waeng	555'-26" 101'-53'-14"	Vertical
	X120	Khlong Pu Yu	Khlong Khok Yong	Ban Khok Yong	Tak Bai	611'-54" 102'-02'-22"	Vertical
		Nam Baeng Regulator	Canal	Nam Baeng			
		(A. Muang) Bai Chao Regulator	Canal	Bai Chao	Muang		
	*	A. Muang (Narathiwat)		A. Muang	Muang		
		0					

STREAM GAGING STATIONS

Table II-2-1

Note * Belongs to Harbor Department Source: RID Hydrolary Division

· ·	River Name	<u>*</u> / Simbol	River Length (km)	Catchment Area (sq.km)	
1.	Mae Nam Yakang	A + B	75. 5	724	
2.	(X73)	(B)		(336)	
3,		<u>د</u>	15. 5	50 (96)	
4.	Khlong To Che	D		46	
5.	Chang Canal	B	16.0	89	
6.	Khlong Chuap	F	23.0	108	
7.	Khlong Ai Rong	G	5.0	16	
8.	Khlong Sungai Padi	ĸ	10.0	164	
9.			5.0		·
10.		L	5. 0 _		
11.		м	10.0	44	
12.	Khlong Pu Cho Ya Mu	N	-	36	
13.		0	10.0	31	
14.		P		13	
15.		R		5	-
	îotal			1, 401	: '
16.		û		5	
17.	Khlong Pu Yu	J	10.0	72	
18.	Khlong To Daeng	К		219	
	Total			1, 697	

Table II-2-2 CATCHMENT AREA AND RIVER LENGTH OF MAE NAM BANG NARA

*/---- Refer to Figure II-2-7.

Figure 11-2-3 WATER LEVEL RECORDS

CODE	RIVER NAME [61 .	65	185	Rating , , Çurve
X43	KHLONG SUNGAI PADI		STOP	1982
X73	KHLONG BANG NARA			1985
X73A	KHLONG TAN YONG MAT		STOP	
00TX				
6IIX	KOLOK			1983,84
X35			STOP	
X45	SAI BURI			1983,84
X121	XOLOK			1983,84
X120	KHTONG PU YU			
	NAM BAENG REGULATOR (UDPEr)			
	(A. MUANG) BAI CHAO REGULATOR			
	MUANG (NARATHIWAT)			
X160	JICA PROVIDED STATION			
X161 <	- op			
X162	- op -			

Figure 11-2-7 CATCHMENT AREA OF MAE NAM BANG NARA (TYPICAL MAP FOR RUNOFF ANALYSIS)

11-27

FL00D RUN - 0FF (1)

FLOOD RUN-OFF (1) Figure 11-2-12

Figure 11-2-13 FLOOD RUN - OFF (2) (10-19 DEC. 1985)

NOV 2.9 0CT 5.8 JAN FEB MAR APR MAY JUN JUL AUG SEP 3.1 3.7 4.5 5.2 4.4 3.8 4.4 4.0 4.1 In case of a rainy day; multiplied by 0.5 120 50 x0.07.25 ; Evapo-transpiration (mm) FEB MAR APR MAY JUN JUL 3.7 4.5 5.2 4.4 3.8 4.4 DIMENSION OF TANKS x0.002 x0.004 x0-: 25 x0.008 x0.002 x0.10 _x0.04 x0.05 x0.30 II x0.20 "x0.01 NOTE ; Areal rainfall by Thiessen Method Precipitation (Areal Rainfall) monthly average of 3 years corresponds to river canal Outflow from Tanks which Evapo-transpiration (1983-1985) at x45 RIVER CANAL SERIES TANK MODEL FOR RUNOFF ANALYSIS Deep percolation inflow (Runoff) for 31 years. Figure 11-2-16 LOW FLOW ANALYSIS \odot ≺ O Ω മ E <u>(</u> Yakang) ms N Nam Yakang) 96M oeM) idooxo)

DEC 2.3

Ţ

Figure II-2-22

SUSPENDED SEDIMENT LOAD OF MAE NAM YAKANG

	TOTAL	100092.	42883.	26738.	56326.	.26749	34070.	50952.	101614.	44549 -	36085.	257463.	279213.	349108.	77415.	122722.	54323.	151622.	33834.	113354.	135055-	272373.	176128-	139419.	107696-	149308	102603.	110293.	120653-	184698.	207733.	164452-	125728-
	DEC	12090.	12502.	8145.	7166.	22498.	7073.	23826.	56448.	13759.	- 20421	122039.	139927.	14957.	40581.	35394.	26917.	80750.	13605.	89400.	41134	68127.	51036.	49554.	44500	29332	57986.	57295.	69095.	122243.	62381.	32466-	46014.
	NON	17633.	7653.	- 7671	36949	61102.	12160.	14265.	13333.	7496	3001.	95087.	33754.	15329.	. 8584.	55804.	5063.	35839.	3391.	9924.	73258.	52277.	76933	9952	27416.	87855.	18692.	20657	10706.	16371	7329.	14059.	27528.
	001	5685.	3880.	2236.	2287.	4439.	2335.	3798.	5980.	1940.	892.	13822.	16418.	4438.	10946.	1640.	1392.	2534.	1437.	3597.	3256.	-9476	9171-	11708-	5509.	2840.	6821	2599.	9669	6693.	8590.	25202.	6169.
	С П Р	2926.	710.	3279.	1384.	1272.	1108.	2021.	11029.	2086.	641.	2913.	7476.	5763.	-679-	2036.	1417.	8372.	1644.	3074	1287.	14370.	2870.	2074.	7711	12186	1929.	5572.	6228	9972	3434 -	10547.	4591.
***	AUG	5145.	943.	1126.	2668.	881.	1122.	838.	3376.	1172-	1099.	11053.	9022.	3739.	510.	3058.	1091.	2256.	597.	1195.	1265.	3156.	- 2000	9293.	1231.	1370.	4451.	801.	3742	6803.	3083.	11921-	3485.
ULT TOND -	JUL	3977	1175.	767	1067.	839.	387.	568.	679.	1127.	985.	2086.	5497.	2934.	3546.	3815.	1702.	626.	671.	-276	3258.	4339	1725.	8476	1513	2839.	2577	898.	4231	4019.	8326.	2115.	2498.
MENT CUN	NUL	2782	1268.	866.	1200.	532.	706.	589.	542.	405.	1181.	5005.	2467.	2087.	1564.	2636.	1154.	448.	579.	1107.	1536.	3308.	3806.	2864.	856.	3888.	2309.	2436.	9282.	2259.	12188.	7748-	2568.
ENDED SEDI	7 A M	1636.	3666.	945.	383.	412.	- 709	261.	560.	. 212.	833.	1397.	1329.	3189.	2379.	2219.	1294.	1958.	1386.	286.	701.	6911	7241-	869.	1:09-	1803.	2448.	- 6066	2129	799.	12289.	16513-	2846.
THE SUSP	A 9.8	1976.	2463.	637.	- 772	335.	- 207	276.	308.	432.	453.	1181.	1130.	1290.	587.	519.	1850.	378.	546.	315.	729.	1895.	894.	871	1142.	860.	610-	958.	1385.	293.	7540.	2524 -	1130.
AMOUNT OF	AAR	2518.	2195.	1419.	383.	362.	357.	257.	624.	459.	4132.	261.	1921.	5440.	659.	626.	939.	3290.	542.	1030.	689.	4314.	766	1403.	1507.	861.	1065.	669.	249.	959.	9903.	27015.	2485.
H #	6) 11 11	6981.	1431.	859.	553.	352.	1715.	708.	1693.	1413.	5499.	666.	6381.	13570.	709.	2225.	2:55.	1760.	1673.	485.	1588. 1588.	8443.	1828.	3680.	2737.	1509.	- 266	1670.	758.	2195.	45480.	2814.	- 2107
	NAU	36494.	.593.	5238.	2042.	1771.	6102.	3498.	7042.	13744.	2959.	1953.	53891.	276372.	2372.	12750.	9340.	13412.	7763.	1998.	6354.	95755.	9631.	38675.	12665.	3966.	2718	6828-	3179.	12092.	27191.	11526.	22397.
	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1955	1956	1957	1958	1959	1960	1961	1962	1963	7961	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	626°	1980	1981	1982	1983	1984	1985	2 4 1 1 2 1 1 2

* NOTE ; These figures are obtained from the following formula

Qs = 0.459 Qw1.694

(Refer to the figure of SUSPENDED SEDIMENT RATING CURVE.)

Where, The figures obtained from the results of Tank Model are applied to \mathbb{Q}^{M} .

No date on bed load is available, however, the total sediment load is assumed to be equal to the suspended sediment load.

* REFERENCE *

MONTHLY AVERAGE SUSPENDED SEDIMENT LOAD IN TONS

SOURCE ; RID HYDROLOGY DIVISION

553220.

123366. DEC

44196. NON

25444.

11473.

8242.

7727.

8921.

11402.

5804.

7515.

11808. FE3

89522. NAU

MEAN

ocr

SEP

AUG

າກຕ

NUL

МΑΥ

APR

MAR

TOTAL

835370.

365695.

138574.

75854.

MAE NAM PATTANI, X78A 1968-1975 (C.A = 2,044km²)

13497. 25549

7305.

13585.

21879.

S076.

12057.

i3060.

142199.

N.F.B.C

MAE NAM PATTANI, X40 1964-1975 (C.A = 3,295 km²)

Figure II-2-25 Rating Curve at X73, Mae Nam Yakang (1985, RID)

II-3 Hydrogeology

II-3-1 Introduction

The stratum mainly consists of alluvium which belongs to the Chao Phraya aquifer according to the hydrogeological map (1:1,000,000) of DMR. A beach-sand aquifer is also seen. The possibility of developing groundwater in this area has been studied by grasping the storage condition of groundwater and the influence of the proposed Bang Nara water storage.

Shallow groundwater refers to the unconfined groundwater which can be taken by hand-dug well. Deep groundwater refers to the confined groundwater to be taken by tube well. The purpose fo groundwater investigation in this Study lies in grasping the potential of groundwater irrigation. Contents of the Study are as follows:

- * Present groundwater development
- * Subsurface geology
- * Hydrogeology and its features
- * Groundwater throughflow and total yield potential
- * Groundwater quality and problems
- * Effect of the proposed Bang Nara water storage
- * Groundwater development potential

(1) Data collection

Data were obtained in the way such as collection and compilation of existing well data, existing reports, existing boring logs, etc.

(2) Field survey

Present conditions of existing shallow and deep wells were surveyed. The number of wells investigated are 70 shallow wells and 54 deep wells. (Refer to Figures II-3-1 and II-3-2)

(3) <u>Water quality and water level observation</u>

Observation points were selected at 15 wells from existing wells. Observation term was July 1985 to February 1986 (1 time/2 months), and water quality items are EC, PH, temperature, acidity, sulfate, total N, total P, total Fe and BOD. Groundwater sampling was carried out by the staff of RID Narathiwat Office, and chemical analysis was made by PSU.

Hydrogeology Map is shown in Figure II-3-3, and shallow groundwater level observed is shown in Figure II-3-4.

weld sont other and

II-3-2 Groundwater resources

(1) Groundwter Quality

Groundwater quality observed is shown in Figure II-3-5, and EC of deep groundwater is in Figure II-3-6.

(2) Effects of the Proposed Water Storage

(a) Fluctuation of groundwater by water storage

In the case of the proposed maximum water level of 0.4 m above MSL in the Bang Nara water storage, it is supposed that the proposed water level would mainly affect the shallow groundwater table which is observed in the swamp and old swamp area of Chao Phraya aquifer. According to the observed records of groundwater table, however, the seasonal fluctuation is not remarkable and groundwater level is observed at 0.5 m above MSL. Therefore, the fluctuation of groundwater table would not be expected by the proposed impounding water level in the Bang Nara water storage.

Other groundwater shows higher water level than that of the Bang Nara water storage based on the actual observed data. So, it would not affect the groundwater table.

(b) Influence of dry season irrigation on groundwater table

Groundwater table with dry season irrigation may be affected by a characteristic of an aquifer such as porosity and permeability and by an amount of irrigation water. During the dry season, the amount of irrigation water would be estimated at about 5 mm/day including various losses. When all losses of irrigation infiltrate into the soil, the percorated water would be 2 mm/day. The irrigation period of 4 months from April to July is taken and the acreage of 25 percent of the total irrigable area is planned to irrigate during the dry season.

Infiltrated water would be used to first supplement moisture of an unsaturated soil layer and the remainder of water would be through-flown as groundwater. In this section,fluctuation of groundwater table in the beach-sand aquifer which might show most remarkable movement of groundwater table, would be estimated by following estimation.

The geological profile of the aquifer, porosity(e) and saturation ratio (Sr) is assumed below:

	Ground surface
Clay	Sr=50% 0.5m
e=50%	Sr=75% 0.5m
Sand	Groundwater table

The remaining water in the unsaturated soil layer is generally called a field capacity and is considered equal to approximately half the water which fills the voids of the soil. Therefore, in the upper 0.5 m, field capacity = layer thickness x e x $(100-\text{Sr})/2 = 500 \times 0.5 \times (1-0.5)/2 =$ 62.5 mm and in the lower 0.5 m, likewise 31.2 mm, totalling a field capacity of 93.7 mm. On the other hand, as the amount of seepage water for 4 months is considered to be 240 mm, groundwater recharge would be 240 (seepage water) - 93.7 (field capacity) = 146.3 mm/4 months. and, as e of beach-sand aquifer is 30 percent, the groundwater level would be 146.3/0.3 = 487 mm/4 months. However, as the irrigable area is 25 percent of the rainy season irrigation, the groundwater is dispersed in horizontal
direction. For this reason, an actual elevation of the groundwater will be less than half the value. The average water level of the total beach-sand aquifer as of July 1985 is approximately EL - 2 m, and it could equal approximately 1.8 m (1.5 - 2.0 m) by irrigation in the dry season.

eigu

Beach-sand aquifer
 Chao Phraya aquifer
 (Shallow Groundwater)
 Chao Phraya aquifer
 (Deep Groundwater)

11-3-3 Present Groundwater Development

Water resources in the Study area primarily resorts to water works, wells, rivers, ponds and rainfall. The towns of Narathiwat, Yi Ngo, and Sg. Padi have their own water works, but the others depend on shallow wells for water supply. In each Muban, an overwhelming majority of the supply sources are the shallow wells as can be seen from the survey of ARD. (Refer to Table II-3-1) Altogether about 80 deep wells have been drilled in amphoes of Narathiwat, Yi-Ngo, Rangae, Sg. Padi and Tak Bai.

(1) Shallow Groundwater

Shallow wells take shallow groundwater. In areas where water can be drawn, personal shallow wells are dug at raito of one well per one or two houses. The yield of these is presumed to be 1 m^3/day or less. Wells are hand-dug with around 1 m in diameter and 3 m in depth, and are mostly lined with concrete or bricks. Most of the personal wells are drawn by bucket and rope. Wells installed at schools, health stations, temples and mosques are slightly larger in scale than the personal wells, and some of them serve as community wells when other wells in the neighborhood become dry. In many instances, these wells are equipped with electric pumps and storage tanks.

(2) Deep Groundwater

Deep wells primarily take deep groundwater from the Chao Phraya aquifer and the colluvial aquifer. These deep wells are primarily installed at schools, health stations, hospitals, temples and mosques. Also, a number of them are drilled by the Pileng Project to serve as community wells which are not utilized for irrigation nor for large scale factories. These wells are tube wells of about 10 to 20 cm in diameter and generally equipped with hand pump, but pumps operated by windmills are also observed here and there. Most of these deep

wells were constructed by DMR, ARD, RID and MOPH.

As for usage, most of the wells are not for dringking, and a few of them are totally unused because of high iron contents and coloring. At Tak Bai Hospital and other locations, water treatment by simple aeration is being practiced but it is not adequate. As above, the use of deep groundwater by means of deep well may be claimed to be extremely rare. Table II-3-I Water Need and Water Resources in Sample Muban

	LOC		LOCI		SS B DESCRIPTION				WATER RESOURCES				TOT	
AQUIFER	Атрое	ATION Tambon	Ban	POPULATION	CATTLE	DId	DUCK CHICKEN	DTAL OF WATER (ED m ³ /yr	POND	SHALLOW WELL	DEEP WELL	BARRACE	TAL PRODUCTION m ³ /yr	
Colluvial aquifer Chao Phraya aquifer	Rang	Kalisa	Ka Nua	600	1,200	1	1,800	27,228		30	r	1	7,238	
	3ae	Tan Yong Mat	Tan Yong Mat	8,000	600	300	4,000	98,039	1	700	1	1	700	
	YI Ngo	La Han	Pu Ta	800	350	ł.	1,000	25,108	1	60	F	1	2,700	
	Sunga	Pa La Ru	Ta Se Tai	640	I,580	ŀ	2,220	33,737		32	ł.	r	4,825	
	Padi	Padi	Pa La Ru	Khok Saya	950	50	1	1,500	14,188	\$	80	ł	L.	1
	Миалд		Manang Ta Yo	800	300	ŧ	1,200	15,968	1	-1	1		52.3	
	Sunga1 Pad1	raai Pa La Ru	Pa Yo	1,050	300	300	1,000	21,340	1	230	1	ŀ	16,200	
	Muang	Bang Nak		2,000	450	1	500	35,123		ł	1		720	
Beach-sand aquifer	Muang	Khok Kian	-	1,000	350	400	450	22,017	, met	1		F	720	

Source: Narathiwat office, ARD, Record of well usage in Narathiwat, 1982-84 11-3-4 Groundwater Development Potential

(1) Groundwater Irrigation

In the Study area, the aquifers which can be utilized for groundwater irrigation development are considered to be the Chao Phraya aquifer (deep groundwater) and the beach-sand aquifer (shallow groundwater), on which the available volume of water and other factors are reviewed below.

(a) Chao Phraya Aquifer

The average yield per one deep well is considered to be 170 l/min, as in para (3) of 3.3.4. "Water Resources" of Main Report. The influence radius of a well would be 500 - 700 m in the case of confined groundwater, and when it is assumed to be 600 m, one well can be drilled per every 1.44 sq.km.

Based on the foregoing conditions, the potential total yield from this aquifer becomes $3.8 \times 10^7 \text{ m}^3/\text{yr}$ since the area where this aquifer is distributed (Mae Nam Ya Kang - Mae Nam Kolok) is about 610 sq.km.

The groundwater throughflow, on the other hand, is estimated to be 1.75 x 10^8 m³/yr for the entire watershed. As for existing yield, there are about 80 wells throughout the entire watershed and most of these are hardly used, but if al of them are assumed to be operated and the average yield per well to be 170 1/min, the total yield would come to 5.0 x 10^6 m³/yr, and when subtracting this, the groundwater throughflow would be about 1.70 x 10^8 m³/yr. Accordingly, the total yield is equivalent to around 22 percent of the throughflow which is a reasonable yield plan.

The geological profile of this aquifer is converted into a model as shown below. The principal geological components of

the aquifer are assumed to be fine sand to coarse sand, and the yield per well is calculated according to the hydrological formula. $r_0 = 100$ mm

$$Q = \frac{2\pi \text{Kbc}'(\text{H-ho})}{2.3 \log (\text{R/r}_0)} (1 + 7 \sqrt{\frac{r_0}{2bc'} \cos \frac{\pi c'}{2}})$$
(Kozeny's formula)

Wherein k : Coefficient of permeability

- H : Height from the bottom end of aquifer to the initial water surface
- ro: Radius of well
- h_0 : Height from the bottom end of aquifer to the water surface in well
- b : Thickness of confined aquifer
- R : Influence radius
- c': c/b
 - c: Length of well wall penetrating into aquifer

$$Q = \frac{2 \times \pi \times 0.0005 \times 20 \times 0.3 \times (49-39)}{2.3 \times \log (600/0.1)} \times$$

$$(1 + 7 \times \sqrt{\frac{0.1}{2 \times 20 \times 0.3}} \cos \frac{\pi \times 0.3}{2}) = 3.5 \times 10^{-3} \text{ m}^3/\text{sec} \doteq 2132/\text{min}$$

When the well efficiency is assumed to be 20 percent, the yield becomes 175 1/min.

The calculated result would be identical with the foregoing yield, so that the yield is assumed to be 170 1/min/well.

The area in which water can be drawn from these wells basically extends over the entire Chao Phraya aquifer between Mae Nam Ya Kang and Mae Nam Kolok, but since the coastal zone is salinized as shown in Figure II-3-6, there is a limit to its use in view of the relationship between salinity and crop. And, pumping of a large volume of groundwater from the area which indicates a high EC value of 1,000 µmho/cm results in promoting salinization. Because of this, irrigation of only a

II-64

small scale at certain spots would be possible in this area. (Refer to Figure II-3-7)

On the other hand, since this stratum contains a lot of Fe, the relationship between Fe contents and crops must be confirmed in advance. And, although it was not confirmed during the survey, some places have produced brackish water, so that the aquifer must be selected with care and preparations made for grouting.

The cost of constructing one well is preliminarily estimated assuming a well diameter of 200 mm, depth of 40 m and the use of electric submersible pump:

Item		Quantity	<u>Unit</u>	$\frac{\text{Rate}}{(\beta)}$	$\frac{\text{Amount}}{(\cancel{B})}$
Drilling	¢350 mm	40	m	2,300	92,000
Steel Casing	¢200 mm	34	m	750	25,500
Screen	Wire wounded ǿ200 mm	2	.3m	15,000	30,000
Well Development					22,000
Cement grout					300
Gravel pack					400
Clay plug					100
Electric- Submersible Pump	ø50mm 1.5 kw				45,000
Generator	ЗНР				12,000
Total	·····				227,300

Note: RID price, Aug. 1985

(b) Beach-sand Aquifer

Salinization is the key to determine whether or not water can be pumped from this aquifer. The model as shown below patternalizes the distribution of groundwater within this aquifer. Fresh water lies on top of saline water in lenticular form with an estimated average thickness of around 4 m.

Accordingly, taking of this fresh water in a large volume would not be possible with an ordinary tube well because of the drawdown in existing wells which ranges between 6.3 - 15.3 m.

 $1 \leq 2 \leq n \leq n$

GWL=2.5(average=1.5)m Beach ridge Ocean Fresh water EL-2.5m Ž. Saline water

Table II-4-1 FREQUENCY OF OCEAN WAVES BY VISUAL HEIGHTS FROM SHIP OBSERVATIONS -South China Sea; Lat 5 to 9 N & Long 101 to 106 E (1949-82)---

<u>د</u>
Ē
•••
+
ì
- 0
<u>۶</u>
-
<i>C</i>

I · ·		1	· · · · · · · · · · · · · · · · · · ·			
320to340 [°]	6901411	29	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	376	135 120 12 12 12 12	243
290to310 ⁻	N 4 4 1 1 1 1	29	223 238 1238 1238 1238 1238 1238 1238 12	763	4120 414 4180 417 4180 417 4180 4180 4180 4180 4180 4180 4180 4180	337
260to280	0001H11	32	1 2 2 8 6 6 4 6 6 4 6 6 4 6 6 4 6 6 4 6 4 6 4	1,561	128 1288 1288 1288 1288 1288 1288 1288	478
230to250	30	37	8921 84718 840818	1,910	133 134 150 166 186 19	558
200¢0220.	4 19001110	65	1 7 7 5 5 5 7 7 7 7 7 5 7 5 7 7 5 7 5 7	1,470	206 101 10 10 10 22 22 22 22	455
170to190	1 1 1 2 3 8	126	Х 4 И Ю 0 8 1 2 2 2 2 4 2 4 2 2 4 2 4 2 4 2 4 4 4 4 4	1,203	413 114 30 17 1 17	578
140to160	223 62 4 4 1	317	311 799 76 16	608	2 1 2 8 1 8 3 3 3 2 9 1 8 9 1	708
110to130'	418 254 124 13 5 5 5	862	44 4521 2012 2012 2012	213	167 167 58 17 17	783
80to100.	725 777 450 202 82 43	2,296	0 년 10 년 4 년 년 1 년	106	726 367 167 82 21 21 3 3	1,376
50to70	624 624 691 691 471 250 137 91	3,204	111 P 28 P	67	526 518 303 126 126 11	560
20to40'	244 2592 2592 1952 105 68 68	1,222	41 0844171	58	270 176 142 822 222 144	, 730
350to10.	64 11 31 31 31	144	い で よ て ら ・ ・ エ	80	132 132 190 190 190 190 190 190 190 190 190 190	238
Wave Height	(m) 1.0 2.0 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	Total	0.5 11.0 2.5 3.0 2.5 3.5 3.5	Total	<pre><0.5 2.0 >3.5 >3.5</pre>	Total
Season	N-E Monsoon (Dec. to Mar.	-	S-W Monsoon (Jun.to Sept.		Transition (Apr.to May & Oct.to Nov.	

Source \neq Meteorological office , England through GRBDS Report.

II-68

Figure 11-4-1 Proposed Breakwater Arrangement at Kolok River Mouth Source : GRBDS

Figure II - 4 - 4

Entrance of Mae Nam Bang Nara at Narathiwat with Target Channel Alignment for Maintenance Dredging

Source : Harbour Department

I I - 74

11-75

II~77

II-78

December, 1985)

- 23

10

(PERIDD

II-80

Page APPENDIX III. BANG NARA WATER STORAGE: HYDRAULIC SIMULATIONS Flood Simulation for General Cases . . 111-1 III-l. (5yr-Return Period) Case-P Figures $3-1-1 - 3-1-2 \dots III-1.2$ Case-W/O Figures 3-1-3 - 3-1-4 ... III-3.4 Case-W, ALT U-1, 180 + N,24 + L,24 Figures 3-1-5 - 3-1-6... III-5.6 Case-W, ALT U-1, 120 + N,24 + L.24 Figures 3-1-7 - 3-1-8... III-7.8 Case-W, ALT U-2, 60 + N, 24 + L, 24Figures 3-1-9 - 3-1-10... III-9.10 Flood Simulation for General Cases with Fixed Weir 111-2. III-11 (5yr-Return Period) Case-W, ALT: U-1, G-120 with W-600 + L, G-24 with W-500 + N,24 Figures 3-2-1 - 3-2-2 ... III-11.12 Case-W, ALT: U-1, G-100 with W-620 + L, G-24 with W-500 + N,24 Figures 3-2-3 - 3-2-4 ... III-13.14 Case-W, ALT' U-1, G-80 with W-640 + L, G-24 with W-500 + N,24 Figures 3-2-5 - 3-2-6 ... III-15.16 Case-W, ALT: U-1, G-100 with W-200 + L, G-24 with W-500 + N,24 Figures 3-2-7 - 3-2-8 ... III-17.18 Flood Simulation for Exclusion of LTR .. 111-3. . . . III-19 (5yr-Return Period) Case-W, ALT: U-1, 120 + N,24 + L,0 Figures 3-3-1 - 3-3-2 ... III-19.20 III-4 Flood Simulation for Special Cases , III-21 (5yr-Return Period) Case-W/O, Case-P + RMI Figures $3-4-1 - 3-4-2 \dots 111-21.22$ Case-W/O, Case-P + RCI, H28-16 Figures 3-4-3 - 3-4-4 ... III-23.24 Case-W/O, Case-P + RMI + RCI, H28-16 Figures 3-4-5 - 3-4-6 ... III-25.26 Case-W, ALT: U-1, 120 + N,24 + L,24 + RMT + RCI, H28-16 Figures 3-4-7 - 3-4-8 ... III-27.28 Case-W, ALT: U-1, 150 + N,24 + L,24 + RMI + RCI, H28-16 Figures 3-4-9 - 3-4-10...111-29.30 Case-W, ALT: U-1, 180 + N,24 + L,24 + RMI + RCI, H28-16 Figures 3-4-11 - 3-4-12.. III-31.32 111-0(1)

Page III-5. (3yr-Return Period) Case-P (Runoff During the Rainy season) Figures 3-5-1 = 3-5-2...111-33.34Case-W, ALT: U-1, 120 + N,24 + L,24 (Runoff During the Rainy Season) Figures 3-5-3 - 3-5-4... III. 35, 36 Case-P (Runoff During the Dry Season Figures 3-5-5 - 3-5-6... III-37.38 Case-W, ALT: U-1, 120 + N, 24 + L, 24(Runoff During the Dry Season) Figures 3-5-7 - 3-5-8... III-39.40 (50yr-Return Period) Case-P Figures 3-6-1 - 3-6-2... III-41.42 Case-W, ALT: U-1, 120 + N,24 + L,24 Figures $3-6-3 - 3-6-4 \dots III - 43.44$ Case-W, ALT: U-1, G-100 with W-200 + L, G-24 with W-500 + N,24 Figures $3-6-5 - 3-6-6 \dots 111-45.46$ (50yr-Return Period: Including the Kolok River's Flood) Case-W, ALT: U-1, G-100 with W-200 + L,G-24 with W-500 + N,24 Figures 3-6-7 - 3-6-8... III-47.48 (100yr - Return Period) Case-P Figures 3-6-9 - 3-6-10... III-49.50 Case-W, ALT: U-1, 120 + N,24 + L,24 Figures $3-6-11 - 3-6-12 \cdot .111-51.52$ (200yr - Return Period) Case-P Figures $3-6-13 - 3-6-14 \dots III - 53.54$. Case-W, ALT: U-1, 120 + N,24 + L,24 Figures 3-6-15 - 3-6-16 .. III-55.56 Note: For the abbreviations used, reference is made to (4) "Hydraulic Simulation Options", para. 4.2.2. of Chapter 4.

(5 yr-Return Period)

I**II-1.**

Flood Simulation for General Cases

111-3

III - 7

III-8