APPENDIX D. IRRIGATION AND DRAINAGE

Samuel Mary Control

Appendix D-1

Table D 1-1 Monthly Mae Kuang River Discharge and Intaké Water

Appendix D-2

afilling to a

Table D 2-1

Monthly Peak Irrigation Water Requirement
(Alternative -1)

Monthly Peak Irrigation Water Requirement
(Alternative -2)

Table D 2-3

Monthly Peak Irrigation Water Requirement
(Alternative -3)

Table D 2-4

Monthly Cropping Area (Alternative -1)
Table D 2-5

Monthly Cropping Area (Alternative -2)

Monthly Cropping Area (Alternative -3)

Appendix D-3 Estimation of Irrigation Water Requirement

Table D 3-1 Average Irrigation Water Requirement (1952 - 1979)

Figure D 3-1 Alternative Cropping Pattern

Appendix D-4 Estimation of Reference Crop Potential Evapotranspiration (ETPc)

Table D 4-1 Estimated Reference Crop Potential Evapo-Jantain James . transpiration Table D 4-2 Procedure for the Estimation of ETPc Table D 4-3 Wind Velocity Table D 4-4 Clear Day Solar Radiation Table D 4-5 Total Daily Solar Radiation at the Top of the Atomosphere Table D 4-6 Vapor Pressure Saturation Vapor Pressure Table D 4-7

Appendix D-5 Measurements of Percolation Rate

Figure D 5-1 Location of Measuring Site of Percolation Rate

Appendix D-6

Table D 6-1 Water Requirement for Land Soaking and Preparation

Appendix D-7 Calculation of Irrigation Water Requirement

Table D 7-l	Crop Calendars, Cropped Area
Table D 7-2	Weighted Rainfall (mm)
Table D 7-3	Effective Rainfall (mm)
Table D 7-4	Diversion Demand (MCM)
Table D 7-5	Diversion Demand (cu.m/sec)
Table D 7-6	Accumulated Demand (MCM)
Table D 7-7	Diversion Demand - Right Bank Area (MCM)
Table D 7-8	Diversion Demand - Right Bank Area (cu.m/sec)
Table D 7-9	Diversion Demand - Existing Irrigated Area (MCM)
Table D 7-10	Diversion Demand - Existing Irrigated Area (cu.m/sec)
Table D 7-11	Diversion Demand - High and Downstream Area (MCM)
Table D 7-12	Diversion Demand - High and Downstream Area (cu.m/sec)

Appendix D-8 Study on Return Flow

Figure D 8-1 . Sampled Area for Measuring of Return Flow Table D 8-1 Calculation of Canal Discharge

Appendix D-9

Figure D 9-1 Calculation of Crop Water Requirement for Paddy Rice

Appendix D-10

Table D 10-1	Net Amount of Water	to be Replaced	for Crops
	(Corn, Groundnuts)		
Table D 10-2	Net Amount of Water	to be Replaced	for Crops
	(Garlic, Vegetable,	Soybeans)	
Table D 10-3	Net Amount of Water	to be Replaced	for Crops
	(Tobacco)	•	
Table D 10-4	Net Amount of Water	to be Replaced	for Crops
	(Corn Groundnuts)	•	
Table D 10-5	Net Amount of Water	to be Replaced	for Crops
	(Garlic Vegetable	<u>-</u>	_

Net Amount of Water to be Replaced for Table D 10-6 Corps (Tobacco) Physical Features of Soil (Existing Irri-Table D 10-7 gated Area, High and Downstream Area) Table D 10-8 Physical Features of Soil (Right Banks Area) Location of Measuring Site of Intake Rate Figure D 10-1 Figure D 10-2 Result of Cylinder Intake Rate (No.1) Figure D 10-3 Result of Cylinder Intake Rate (No.2) Result of Cylinder Intake Rate (No.3) Figure D 10-4 Result of Cylinder Intake Rate (No.4) Figure D 10-5 Figure D 10-6 Result of Sylinder Intake Rate (No.5)

Appendix D-11 Run-off Mechanism of Paddy Fields

Table D 11-1 Result of Run-off Routing in Paddy Fields
Figure D 11-1 Illustration of Run-off Mechanism of Paddy
Field
Figure D 11-2 Diagram of Run-off Capacity in Paddy Field

Figure D 11-3 Diagram of Run-off Routing in Paddy Field

Monthly Mae Kuang River Discharge and Intake Water Table D 1-1

(Unit: MCM)

	19	1975	. 19	1976	19	1977	1978	78	1979	. 62	1980	30	Ave	Average
Month	River Dis.	Intake Water	River Dis.	Intake	River Dis.	Intake Water	River Dis.	Intake Water	River Dis.	Intako Water	River Dis.	Intake Water	. River Dis.	Intake Water
Jan.	11.36	7.58	13.16	10.62	9.32	99.9	9.29	6.67	6.22	6.22	3.72	3.72	8.85	6.92
Feb.	6.38	6.38	9.22	9.22	5.40	5.40	8.44	06.9	4.62	4.62	2.23	2,23	6.05	5.79
Mar.	4.41	4.41	7.38	7.38	5.21	5.21	5.88	5.88	4.20	4.20	1.66	1.66	4.79	4.79
Apr.	3.46	3.46	6.62	6.62	6.05	6.05	5.42	5.42	3.63	3.42	2.49	2.49	4.61	3.58
May	3.59	3.41	12.44	5.26	9.20	99.9	8.58	68.9	15.75	5,65	1.62	1.62	8.53	4.92
Jun.	17.11	5.88	12.40	3.57	6.52	6.52	9.77	8.59	18.34	6.43	12.51	5.61	12.78	6.10
Jul.	42.73	11.66	8.99	8.99	15.11	11.36	59.05	13.68	11.02	8.47	19.90	5.37	26.13	9.92
Aug.	97.33	9.58	20.71	17.03	42.87	17.68	70.98	9.63	16.72	11.17	31.18	10.60	46.63	12.62
Sep.	98.68	0.70	46.31	19.57	70.77	11.16	71.13	9.39	20.15	12.40	52.96	, 9.32	00.09	10.42
Oct.	61.31	13.50	28.88	22.48	28.84	18.88	42.31	9.93	22.86	13.67	15.27	10.83	33.25	14.88
Nov.	37.96	4.95	18.50	8.87	15.73	6.73	18.42	5.17	7.35	6.29	12.12	2.80	18.35	5.80
Dec.	22.81	t	8.13	0.40	9.02	0.87	14.56	2.36	4.85	1.34	15.62	0.07	12.50	0
Total Wet Season	320.75	44.73	129.73	76.90	173.31	72.26	261.82	58.11	104.84	57.79	133.44	43.35	187.32	58.86
Dry Season <u>2</u> /	86.38 n2/	26.78	63.01	43.11	50.73	30.92	62.01	32.40	30.87	26.09	37.84	12.97	55.15	26.88
Year	407.13	407.13 71.51	192.74 120.01	120.01	224.04 103.18	103.18	525.83	90.51	135.71	85.88	171.28	56.32	242.47	85.74
	Source	: Opera	ation an	Source: Operation and Maintenance Office of Mae Kuang	mance 0	ffice of	Mae Kur	ang Project	cct					

2/ Dry Scason; November - April Wet Season; May - October

Table D 2-1 Monthly Peak Irrigation Mater Requirement (Alternative-1)

Note; 1/ Return period of 10-year 2/ Return period of 5-year

Table D 2.2 Monthly Peak Irrigation Water Requirement (Alternative-2)

Item	APr.	X _F _K	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Jan.	reb.	Mar.	Average
1. Mater Demand (cu.m/sec) 1-1. Design Year1/													
Right Bank Area	0.64	0.19	0.38	1.30	0.50	0.53	0.70	0.52	0.51	1.00	1.30	0.95	
Existing Irrigated Area	5,30	1.11	1.47	6.27	2.90	4.16	6.29	2.26	0.17	1,06	4.47	6.16	
High and Downstream Area	69.9	1.61	2.20	9.14	4.15	5.80	8.72	3.35	19.0	2.28	7.18	8.11	
Whole Project Area	12.61	2,92	3,48	15.61	7,55	10.48	15.75	6.14	1.36	4.34	12.81	15.16	
1-2. Normal Year 2/													
Right Bank Area	0.47	0.13	0.29	0.87	0.42	0.34	0.52	0.40	0.45	0.93	1.26	0.87	0.58
Existing Irrigated Area	4.20	0.88	1.15	4.56	2.14	2.38	4.61	1.96	0.15	0.94	4.35	5.79	2.75
High and Downstream Area	5.31	1.27	1.72	6.58	3.11	3.35	6.39	2.86	0.59	2.07	66,9	7.60	3.97
Whole Project	96'6	2.28	3.16	12.01	5.67	6.07	11,52	5.22	1.19	3.94	12.60	14.26	7.28
2. Irrigation Water Req. (R/sec/ha)											4-		
2-1. Design Year													
Right Bank Area	0.761	0.259	0.243	0.613	0.227	0.322	0.663	0.432	0.321	0.481	0.616	0.664	
Existing Irrigated Area	0.942	0.593	1,105	1,006	0,414	.0.594	0.943	0.922	0.245	0.222	0.674	0.980	
High and Downstream Area	0.952	0.573	0.744	0.938	0.384	0.560	0.920	0.812	0.265	0.284	0.704	0.936	
Whale Project Area	0.935	0.539	0.595	0.863	0.378	0.551	0.915	0.789	0.282	0.292	0.676	0.926	
2-2, Normal Year													
Right Bank Arca	0.561	0.183	0.188	0.408	0.190	0.207	0.493	0.533	0.280	0.447	0.599	0.606	0.375
Existing Irrigated Area	0.725	0.469	0.862	0.732	0.306	0.340	169.0	0.800	0.216	0.197	0.655	0.921	0.575
High and Downstream Area	0.756	0 451	0.580	0.676	0.287	0.523	0.674	0.692	0.234	0.259	0.686	0.878	0.541
Whole Project Area	0.740	0,421	0.540	0,664	0.284	0.319	0.670	0.671	0.247	0.265	999 0	0.871	0.530
	Not o	1/ retur	n period	1/ return period of 10-year.	nr.								

Note, 1/ return period of 10-year, 2/ return period of 2-year

Item	Apr.	X _D X	Jun.	Jul.	Aug.	Sep.	0ct.	Nov.	Dec.	Jan.	Feb.	Mar.	Ave.	Remarks
1. Mater Demand (cu.m/sec)														
1-1. Design Year														
Right Bank Area	0.64	0.19	0.38	1.30	0.50	0.53	0.70	0.52	0.51	1.00	1.30	0,95		
Existing Irrigated Area	9.48	2.06	2.92	12.31	59.8	7.99	12.05	4.48	0.62	2.58	9.08	11.48		
High and Downstream Area	2.36	0.51	0.74	3.10	1.41	1.97	2.86	1.14	0.23	0.78	2.42	2.72		
Whole Project Area	12.61	2.92	3.48	15.61	7.55	10.48	15.75	6.14	1.36	4.34	12.81	15.16		
1-2. Normal Year														
Right Bank Area	0.47	0.13	0.29	0.87	0,42	0.34	0.52	0.40	0.45	0.93	1.26	0.87	0.58	
Existing Irrigated Area	7.73	1.72	2.28	8.92	4.20	4.59	8.8	3.89	0.54	2.31	8.84	10.78	5.38	
High and Downstream Area	1.78	0.42	0.58	2.23	1.05	1.14	2.17	0.97	0.20	0,71	2,36	2,55	1.34	
Whole Project Area	9.98	2.28	3.16	12.01	5.67	6.07	11.52	5.22	1.19	3.94	12.60	14.26	7.28	
2. Irrigation Water Req. (£/sec/ha)														
2-1. Design Year														
Right Bank Area	0.761	0.259	0.243	0.613	0.227	0.322	0,665	0.432	0.321	0.481	0.616	0.664		
Existing Irrigated Area	0.921	0.550	0.885	0.970	0.399	0.577	0.932	0.865	0.263	0.256	0.678	0.955		•
High and Downstream Area	1.003	0.545	0.748	0.942	0.386	0.561	0.889	0.814	0,265	0.287	0.702	0.935		
Whole Project Area	0.935	0.539	0.595	0,863	0.378	0.551	0,915	0.789	0.282	0.292	0.676	0.926		
3-1. Normal Year														
Right Bank Area	0.561	0.183	0.188	0.408	0.190	0.207	0.493	0.333	0.280	0.447	0.599	0.606	0.375	
Existing Irrigated Area	0.751	0,459	0.691	0.703	0.297	0.331	0.683	0.751	0.229	0.229	0.660	0.896	0.557	
High and Pownstream Area	0.756	0.449	0.587	0.678	0.287	0.325	0.675	0.692	0.231	0.261	0.683	0.876	0.542	
Whole Project Area	0.740	0.421	0.540	0.664	0.284	0.319	0.670	0.671	0.247	0.265	0.665	0.871	0.530	

$\overline{}$
_
- 1
ري
- 5
-
بي
C)
_
1
ø
u
(Alternative-1
-<
_
Ď.
Area
z
n.n
~~
.=
c.
~
5
ō
Cro
Cropping
Monthly Crop
Monthly
Monthly
Monthly
2-4 Monthly
2-4 Monthly
D 2-4 Monthly
D 2-4 Monthly
D 2-4 Monthly
D 2-4 Monthly
D 2-4 Monthly
2-4 Monthly

Crops	APF.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	
Right Bank Area													
1. Rice-Soybean + Groundnuts	2,940	750	855	4,005	4,500	4,500	4,289	1,575	9	2,250	3,000	3,000	
2. Tobacco									125	200	445	15	
3. Garlic + Vegetable									200	1,000	1,000	200	
4. Soybeans		1,526	165'9	6,938	6,938	3,469							
5. Tobacco								915	1,563	1,563	1,047		
6. Groundnuts								3,118	5,375	5,375	5,375	3,118	
7. Longan	2,313	2,313	2,313	2,313	2,313	2,313	2,313	2,313	2,313	2,313	2,313	2,313	
Sub-total	5,253	4,589	9,759	13,256	13,751	10,282	6,602	7,522	9,936	13,001	13,180	8,946	
Existing Irrigated Area and Hihg & Downstream Areas	ig & Downst	ream Area	v:										
1. Rice - Rice	15,624	10,469	19,746	92,502	103,935	103,936	150,06	36,377			10,469	15,623	
2. Soybeans + Groundnuts	61,556	15,703							1,256	47,108	62,813	62,813	
3. Tobacco						•			1,156	4,625	4,116	139	
4. Corn									6,750	13,500	13,500	6,750	
S. Carlic + Vegetable									3,688	7,375	7,375	3,688	
6. Soybeans		1,196	5,166	5,438	5,458	2,719							
7. Groundnuts			-					2,465	4,250	4,250	4,250	2,465	
8. Tobacco								392	1,188	1,188	796		
9. Longan	1,875	1,875	1,875	1,875	1,875	1,875	1.875	1.875	1,875	1,875	1,875	1,875	
Sub-total	79,055	29,243	26,787	99,815	1111,248	108,530	100,926	41,109	20,163	79,921	105,194	93,353	
Total (ref) 84,308 33,832 36,510 113,071	84,308	33,832	36,540	113,071	124,999	118,812	107,528	18,631	30,099	92,922	118,374	102,299	
これをいてものはののでは、これできます。 というしょう しょうしょう しんけいき しゅうしょ	111111												

Crops	Apr.	May	Jun.	301.	Aug.	Sep.	Oct.	Nov.	Dec.	Jan.	reb.	Mar.
A. Right Bank Area												
1. Rice - Soybean + Groundnuts	2,940	750	855	4,005	4,500	4,500	4,289	1,575	9	2,250	3.000	3,000
2. Tobacco									125	200	445	15
3. Garlic + Vegetable									2005	1 000	-	
4. Soybeans		1,526	6,591	6,938	6,938	3,469			2			5
5. Tobacco								516	1.563	1.563	1.047	•
6. Groundnuts								3.118	5, 175	7 275	7 2 2	110
7. Longan	2,313	2,313	2,313	2,313	2,313	2,313	2,313	2.313	2,313	7 114	3 214	2116
Sub-total	5,253	4,589	9,759	13,256	13,751	10,282	6,602	7,522	9,936	13,001	13,180	8,946
B. Existing Irrigated Area												
1. Rice - Rice	6,563	4,397	8,313	38,938	43,750	43,750	41,694	15,313			4.397	563
2. Saybeans + Groundnuts	28,604	7,297							284	21,891	29,188	29,188
3. Tobacco									250	1,000	890	30
4. Corn									1,906	3,813	3,813	1,906
5. Garlic + Vegetable									1,594	3,188	3,188	1,594
Sub-total	35,167	11,694	8,313	38,938	43,750	43,750	41,694	15,313	4,334	29,892	41,476	39,281
C. High and Downsrream Area					٠							
1. Rice - Rice	090.6	6,072	11,433	53,564	60,185	981'09	57,357	21,064			6,072	9,063
2. Soybeans + Groundnuts	32,953	8,406							699	25,214	33,623	53.622
3. Tobacco									906	3,626	5,226	109
4. Corn									4,844	9,688	9,688	4.844
5. Garlic + Vegetable									2,094	4,188	4.188	2.094
6. Soybeans		1,196	5,166	5,438	5,438	2,719				•	•	
7. Groundnuts								2,465	4,250	4,250	4,250	2,465
8. Tobacco								392	1,188	1,188	796	
9. Longan	1,875	1,875	1,875	1,875	1,875	1.875	1,875	1,875	1,875	1,875	1,875	1,875
Sub-total	43,888	17,549	18,474	60,877	67,498	64,780	59,232	25,796	15,826	50,029	63,718	54,072
Total (raı)	84,308	33,832	36,546	113,071	124,999	118,812	107,528	48,631	30,099	92,922	118,374	102,299
(ha)	13,489	5,413	5,847	18,091	20,000	19,010	17,204	7,781	4,816	14,867	18,940	16,368

Tuble D 2-5 Monthly Cropping Area (Alternative-2)

1, 526 5, 51 6, 938 4, 500 4, 500 4, 589 1, 575 500 3, 500 4, 45 500 4, 580 5, 375	- 4	Table D 2-6	2-6 Mont	ıly Cropp	іпg Агеа	Monthly Cropping Area (Alternative-3)	(ve-3)						
Frable Frable 1,526 6,591 6,938 6,938 3,469 Frable 2,313	Crops	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.
1,526 6,591 6,938 6,938 3,469 516 1,575 60 1,000 1,000 1,000	A. Right Bank Area												
1,526 6,591 6,938 3,469 1,526 6,591 6,938 6,938 3,469 1,526 2,13 2,13 2,13 2,13 2,13 2,13 2,13 2,13	1. Rice - Soybean + Groundmu		750	855	4,005	4,500	4,500	4,289	1,575	09	2,250	3,000	3,000
1,526 6,591 6,938 5,469 2,313	. 2. Tobacco									125	200	445	15
1,526 6,531 6,938 6,938 3,469 2,313	3. Garlic + Vegetable									200	1,000	1,000	200
5,531 2,313 2,324 2,325	4. Soybeans		1,526	6,591	6,938	6,938	3,469						
2,313 2,313 <td< th=""><th>5. Tobacco</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>516</th><th>1,563</th><th>1,563</th><th>1,047</th><th></th></td<>	5. Tobacco								516	1,563	1,563	1,047	
2,313 2,313	6. Groundnuts	-							3,118	5,375	5,375	5,375	3,118
5,253 4,589 9,759 15,256 15,751 10,282 6,602 7,522 9,936 15,180 13,150 13,180 13,180 13,180 10,282 25,225 15,001 13,180 13,180 10,280 10,280 10,280 10,280 10,188 10,189 10,290 10,250	7. Longan	2,313	2,313	2,313	2,313	2,313	2,313	2,313	2,313	2,313	2,313	2,313	2,313
12,625 8,459 15,865 74,315 83,500 83,500 79,576 28,225 1,030 38,625 51,500 844 3,375 3,004 5,093 10,188 10,188 10,188 1,844 1,631 1,250 1,	Sub-total	5,253	4,589	9,759	13,256	13,751	10,282	6,602	7,522	9,936	13,001	13,180	8,946
12,625 8,459 15,865 74,315 83,500 85,500 79,576 28,225 1,030 38,625 51,500	B. Existing Irrigated Area												
1,030 12,875 1,500 1,250 1,2	1. Rice - Rice	12,625	8,459	15,865	74,315	83,500	83,500	79,576	28,225			8,459	12,625
844 3,375 3,004 811 3,503 3,688 3,688 1,844 1,631 2,812 2,812 2,812 2,969 5,938 5,938 1,1250 1,250 1,250 1,250 1,250 1,250 1,250 1,250 1,250 1,250 1,250 1,250 64,345 23,395 20,618 79,253 88,438 86,594 80,826 32,354 14,748 62,938 83,654 3,000 2,010 2,887 18,187 20,435 20,436 19,475 7,153 1,656 3,313 1,310 11,085 2,828 385 1,663 1,750 1,750 875 833 1,438 1,438 1,438 1,438 1,438 1,438 625 625 625 625 625 625 625 625 625 118,812 10,7528 48,631 20,099 92,922 118,877 10	2. Soybeans + Groundnuts	50,470	12,875							1,030	38,625	51,500	51,500
811 3,503 3,688 3,688 1,844 1,550 1,250 1	3. Tobacco									844	3,375	3,004	101
1,250 1,130 1,085 2,828 1,663 1,750 1,750 875 875 833 1,438 1,	4. Corn									5,093	10,188	10,188	5,093
1,250 1,130 1,360 1,065 2,828 1,458 1,458 1,43	5. Garlic + Vegetable									2,969	5,938	5,938	2,969
1,250 1,250	6. Soybeans		811	3,503	3,688	3,688	1,844						
1,250 1,2438 1,438	7 Groundnuts								1,631	2,812	2,812		1,631
1,250 1,250									248	750	750		
54,345 23,395 20,618 79,253 88,438 86,594 80,826 32,354 14,748 62,938 83,654 3,000 2,010 2,887 18,187 20,435 20,436 19,475 7,153 226 8,481 11,310 11,085 2,828 1,663 1,750 875 1,656 3,313 3,313 3,313 18,000 1,663 1,750 1,750 875 833 1,438 1,438 1,438 625 625 625 625 625 625 625 625 625 625 625 625 625 625 625 625 625 1,6983 21,540 1 44,736 33,832 36,546 113,071 124,990 118,812 107,528 48,631 30,099 92,922 118,374 10		1,250	1,250	1,250	1,250	1,250	1,250	1,250	1,250	1,250	1,250		1,250
3,000 2,010 2,887 18,187 20,435 20,436 19,475 7,153 226 8,481 11,310 11,085 2,828 11,663 1,750 1,750 1,750 875 833 1,438 1,438 1,438 14,710 5,848 6,175 20,562 22,810 21,936 20,100° 8,755 5,415 16,983 21,540 1 84,308 33,832 36,546 113,071 124,990 118,812 107,528 48,631 30,099 92,922 118,374 10	Sub-total	64,345	23,395	20,618	79,253	88,438	86,594	80,826	32,354	14,748	62,938	83,654	75,169
3,000 2,010 2,887 18,187 20,435 20,436 19,475 7,153 20,610 11,085 2,828 11,085 2,828 2,010 313 1,250 1,113 1,656 3,313 3,313 1,656 3,313 3,313 1,656 3,313 3,313 1,658 1,438 1,438 1,438 1,438 1,438 1,438 1,438 625 625 625 625 625 625 625 625 625 625	C. High and Downstream Area										-		,
11,085 2,828 11,085 2,828 11,085 2,828 11,050 1,113 11,656 3,313 3,313 11,656 3,313 3,313 11,438 1,438 1,438 1,438 11,438 1,438 1,438 1,438 14,710 5,848 6,175 20,562 22,810 21,936 20,100° 8,755 5,415 16,983 21,540 108,812 107,528 48,631 30,099 92,922 118,374 10	1. Rice - Rice	3,000	2,010	2,887	18,187	20,435	20,436	19,475	7,153			2,010	3,000
Tobacco Corn 318 1,663 1,750	2. Soybeans + Groundnuts	11,085	2,828							226	8,481	11,310	11,313
Corn. Corn. 1,663 1,750 1,750 875 1,438 293 Longan 625	3. Tobacco									313	1,250	1,113	38
Garlic + Vegetable 385 1,663 1,750 1,750 875 Soybeans 875 1,438 1,438 1,438 1,438 1,438 Groundmuts 144 438 1,438 1										1,656	3,313	3,313	1,656
Soybeans 385 1,663 1,750 1,750 875 833 1,438 1,438 1,438 1,438 1,438 1,438 1,438 1,438 1,438 1,438 1,438 1,438 1,438 1,438 1,438 293 Longan 625	5. Garlic + Vegetable									719	1,438	1,438	719
Groundmuts Tobacco Longan 625 625 625 625 625 625 625 625 625 62			385	1,663	1,750	1,750	875				. <u>.</u>		2
Tobacco Longan 625 625 625 625 625 625 625 625 625 62									833	1,438	1,438	1,438	833
Longan 625 625 625 625 625 625 625 625 625 625									144	438	438	293	
14,710 5.848 6,175 20,562 22,810 21,936 20,100° 8,755 5,415 16,983 21,540	9. Longan	625	625	625	625	625	625	625	625	625	625	625	625
84,308 33,832 36,546 113,071 124,999 118,812 107,528 48,631 30,099 92,922 118,374	Sub-total	14,710	5.848	6,175	20,562	22,810	21,936	20,100	8,755	5,415	16,983	21,540	18,184
44P 5.413 5.847 18,091 20,000 19,010 17,204 7,781 4,816 14,867 18,940	Total (rel) (he)	84,308	33,832 5,413	36,546	113,071		118,812	107,528	48,631	30,099	92,922	118,374	102,299

Estimation of Irrigation Water Requirement

In order to study an optimum reservoir capacity of the Mae Kuang reservoir, the irrigation water requirement in case of several alternative cropping pattern, which will be described hereinafter, has been estimated during the period of the First Stage survey (15th February to 31st March 1981) of the Project. In this stage, the Project Area is decided at 25,600 ha (160,000 rai), through the preliminary survey of the area.

The subsequent paragraph deads with descriptions of the estimation of irrigation water requirement under these conditions.

a) Tentative Cropping Pattern

Cropping Pattern

Following two alternative cropping patterns have been basically proposed tentatively in this stage, based on the collected data and field survey for present crop cultivation (See Figure D 3-1).

Alternative-1

Wet Season Dry Season	
Rice + Rice	30%
Rice + Tobacco + Melon	20%
Rice + Upland Crops	35%
Fruit and Vegetable (year round)	15%
Alternative-2	
Rice + Tobacco + Melon	20%
Rice + Upland Crops	65%
Fruit and Vegetable (year round)	15%

Both cropping patterns mentioned above show 200 percent of cropping intensity, however, taking into account the shortage of waters for second crops such as tobacco, melon, upland crops and etc. the cropping pattern with low cropping intensity during the dry season has been planned as alternatives, as shown below:

		Cropping	Intensity	(%)
Alternative	1-1]	100	
	1-2		80	
	1-3		75	
	1-4		70	
	1-5		60	
	1-6		55	
	1-7		50	
Altérnative	2-1]	100	
	2-2		90	
	2-3		80	
	2-4		75	
	2-5		70	

b) Irrigation Water Requirement

1) Potential Evapotranspiration

The reference crop potential evapotranspiration (ETPc) has been estimated by applying the modified Penman method, based on the climateological data observed at Chiang Mai station. The following table gives the result of the estimated ETPc for the project.

Potential Evapotranspiration

(Unit: mm/month)

 Jan. Feb. Mar. Apr. May
 Jun. Jul. Aug. Sep. Oct. Nov. Dec. Total

 ETPc 105 134 158 168 171 138 136 119 121 125 110 95 1,580

2) Consumptive Use

The consumptive use of crops (actual evapotranspiration, ETa) can be estimated by multiplying the estimated ETPc values by crop coefficients.

The following table gives the consumptive use of crops estimated by the above procedure on the daily basis.

Estimated Consumptive Use

(Unit: mm)

	Pad					
	Wet Season	Dry Season	Tobacco	Melon	Upland Crop	Vegetable/ Orchard
Month	(HYV)	(IIYV)	Tobacco	Meton	Crop	Ofcharu
		3.38	1.35		1.01	2.37
Jan .		4.94	3.36		2.40	3.36
Feb.		6.52	5.09		5.09	3.56
Mar.		7.07	5.05	1.68	4.49	3.93
Apr.		5.53		2.21		3.87
May				3.90		3.21
Jun.				3.06		3.06
Jul.	3.97					2.70
Aug.	4.57					2.83
Sep.	4.89					2.83
Oct.	3.68					2.58
Nov.	.),00					2.14
Dec. Averag	e 4.28	5.49	3.71	2.71	3.25	3.04

5) Crop Water Requirement

Crop water requirement on the monthly basis is estimated based on the proposed cropping pattern. In this estimation, the following values are accounted:

- ° Percolation rate in the Paddy fields: 1.5 mm/day
- Additional water supply for land soaking for nursery bed and land preparation:

Item	Wet Season Rice	Dry Season Rice
	(mm)	(mm)
Nursery bed	400	450
Land preparation	200	230

The estimated crop water requirement for each crop is shown as follow:

Rice,	Wet	season	rice:	827	mi
	Dry	season	rice:	1,036	mn
Tobac	со		:	395	
Melon			:	282	
Uplan	d		:	391	
Fruit	and	Vegetal	ble :	1,093	

4) Diversion Water Requirement

Diversion water requirement will be calculated by adding effective rainfall and water losses to the crop water requirement.

The criteria of the effective rainfall and irrigation efficiency used for the estimation are as follows:

Effective Rainfall

	Effective						
Rainfall (R)	Rainfall (ER)						
(mm)							
0 - 10	0						
11 - 100	$R \times 0.80$						
101 - 200	$R \times 0.70$						
201 - 250	$R \times 0.60$						
251 - 300	$R \times 0.55$						
301 - up	$R \times 0.50$						

Note: One of the method used for RID Projects.

Irrigation Efficiency

Application efficiency: 0.80
Canal efficiency: 0.81
- Conveyance losses: 0.10
- Operation losses: 0.10

Table D 3-1 indicates the estimated annual diversion water requirement in each alternative cropping pattern.

(proposed

- 1979]	
1	
7881	
) irrigation Water Requirements (
Water	
Irrigation	
Average	

Table D 3-1

(Unit: NCM)

*>	. १८ ना	,	7	; ; ; ; ; ;	86	99	69	27	35	*		26	86) 66	20	20
•	Annual		319.12	281.41	271.98	262.56	243.69	234.27	224.85			250.97	238.98	226.99	221.00	215.00
	Mar.		63.57	50.86	47.68	44.50	38.14	34.96	31.78			52,36	47.13	41.89	59.27	36.65
	Feb.		52.03	41.62	39.02	36.42 44.50	31.22	28.62	26.02		-	29.16	26.24	25.33	21.87	20.41
	Jan.		28.91	23.13	21.68	20.24	17.35	15.90	14.45			9.00	8.10	7.20	6.75	6.30
	Dec.		3.88	3.88	3.88	3.88	3.88	3.88	3.88			5.47	3.47	5.47	5.47	3.47
	Nov.		18.62	18.62	18.62	18.62	18.62	18.62	18.62			19.21	19.21	19.21	19.21	19.21
	Oct.		41.30	41.30	41.30	41.30	41.30	41.30	41.30			41.21	41.21	41.21	41.21	41.21
	Sep.		20.26	20.26	20.26	20.26	20.26	20.26	20.26			20.42	20.42	20.42	20.42	20.42
	Aug.		23.76	23.76	23.76	23.76	23.76	23.76	23.76			23.75	23.75	23.75	23.75	23.75
	Jul.		22.92	22.88	22.88	22.87	22.85	22.84	22.83			23.19	23.17	23.16	23.15	23.14
	Jun.		3.81	3.05	2.86	2.67	2.28	2.09	1.90			3.84	3.46	3.07	2.88	2.69
	May		4.07	3.25	3.05	2.85	2.44	2.24	2.03			4.20	3.78	5.36	5.15	2.94
	Apr.		35,99	28.79	26.99	25.19	21.59	19.79	17.99			21.17	19.05	16.93	15.88	14.82
	tive	tive-1	100)	(80)	(75)	(20)	(60)	(52)	(20)		tive-2	100)	(06)	(80)	(75)	(20)
	Alternative	Alternative-1	1-1 (100)	1-2 (80)	1-3	1-4	1-5		1-7		Alternative-2	2-1 (100)	2-2 (90)	2-3	2-4	2-5 (70)

FIGURE 3-1. ALTERNATIVE CROPPING PATTERN (100% FOR BOTH SEASONS)

	· · · · · · · · · · · · · · · · · · ·								·			
l tem		Apŗ.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Jan.	Feb Ma
1. Weather Elements	i)			We	t Seaso	'n	_				Dry Sea	son
	F 30	29	.4° C -			_	R = 30		n (max.			
	ature	Temperature										***
-	Temperature, T(°C)											<u> </u>
	E 20			Rainfa	all _	•		7				
	11			-					_			
2. Cropping Pattern			7						7	7	1	7
Alternative - 1		,	/ /			- /			/		/	
Rice — Rice (7,680 ha)		Í				/	Rice		1 1	/		/ Rice
(1,000 114)						/		/	/ /		/ /	
		/ /			/	/	-4.2.				L /	
Rice — Tobacco — Melon				. ,	//	_/					7	
(5,120 ha)			Melon			/	Rice	9	/ /	,		Tobacco /
		<u>/</u> ,		/	/	<u>/</u>		/				
	, ,	/		ļ		Ì			į		/	
Rice-Upland Crop		/		į					/ /	/		
(8,960 ha)		/				/	Ric	e	/ /			Upland Crop
		/	/		/	/		_ /	//	ļ	/	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Fruit/Vegetable		<u>i 1</u>		/								
(3,840 ha)						Fruit	/Vegeta	able				***************************************
		77			7/		I		7	7		
Alternative - 2	 			1					//	/	/ .	
Rice — Rice (5,120 ha)			Melon			/	Rice	/	′Λ			obacco
· :	 	/	/	/	'	'			4	7		/_
					- 1	į			į		1	
		- 1	-11			ĺ			ĺ		-	
Rice-Upland Crop (16,640 ha)		-	-11				Ric	e	!			Upland Crop
(10,000		1				į			1 1			Crop
		1	71	ľ	1	4						
	.	1	$ \cdot $	•		1		j				
		1		-				Ì				
	[i	! !				ĺ		į				History
	- V	. :]	,	Y				-				
Fruit/Vegetable		,		,								
(3,840 ha)	· ·		· .	: -	<u>-</u> _	Fri	ıit/V ⁱ eð	etable				

Estimation of Reference Crop Potential Evapotranspiration (ETPc) Modified Penman Method1/

penman has made the most complete theoretical approach, showing that consumptive use is inseparably connected to incoming solar energy.

His formula representing the potential evapo-transpiration (consumptive use) is as follows in the modified form:

$$Etp = \frac{\Delta}{\Delta + \gamma} (Rn + G) + \frac{\gamma}{\Delta + \gamma} 15.36 (w_1 + w_2 u_2) (es - ea)$$
 (7.1)

where Etp = reference crop potential evapo-transpiration, wellwatered alfalfa in cal/cm² per day (langleys/day)

 Δ = slope of saturation vapor pressure-temperature curve (de/dT) in mbar/°C

y = psychrometric constant

Rn = net radiation in cal/cm² per day

G = soil heat flux in cal/cm² per day

u₂ = wind movement in km/day at 2 m

es = saturation vapor pressure, mean of values obtained at daily maximum and daily minimum temperatures in mbar (This is a modification of the original Penman equation.)

ea = mean actual vapor pressure in mbar

 w_1 , w_2 = wind term coefficients, some empirically determined values are:

WI	W2	Location	Reference Crop
1.10	0.0106	Mitchell, Nebraska	alfalfa
0.75	0.0115	Kimberly, Ibaho	alfalfa
1.00	0.0062	Penman	short grass

$$\gamma = cp \frac{P}{(0.622\lambda)} \tag{7.2}$$

where cp = 0.240

$$P = 1013 - 0.1055$$
 EL, mbar, (EL is elevation in meters) (7.3)

$$\lambda$$
 = latent heat of water in cal/g; estimated by λ = 595.9 - 0.55 T, T in °C (7.4)

^{1/} quoted from the Book of "Irrigation Principals and Practices"
written by O.W. Israelsen and V.E. Hansen

$$\Delta = 33.86 [0.05904 (0.00738T + 0.8072)^7 - 0.0000342]$$
 (7.5)
for $T \ge 23^{\circ}C$, Δ in mbar/ $^{\circ}C$

$$Rn = 0.77 Rs - Rb$$
 (7.6)

where Rs = incident solar radiation in cal/cm² per day.

The 0.77 value is obtained by assuming a reflectivity of 0.23 for a green growing crop.

$$Rb = Rbo [(aRs/Rso) + b]$$
 (7.7)

where Rso = clear day solar radiation in langleys/day. If actual records are not available, Rso values may be estimated from Table D 4-5.

a,b = empirical constants, see table following equation 7.8.

Rbo =
$$(a_1 + b_1 \sqrt{ea}) 11.71 \times 10^{-8} (Ta^4 + Tb^4)/2$$
 (7.8)

where a_1 , b_1 = empirical constants, see following table

ea = mean actual vapor pressure in mbar

Ta = maximum daily temperature in °K

Tb = minimum daily temperature in °K

Values of a, b, a_1 and b_1 have been determined for various locations as:

a	<u>b</u>	a ₁	<u>b</u> 1	Location
0.90	0.10	0.37	-0.044	Mitchell, Nebraska ¹ /
1.35	-0.35	0.35	-0.046	Davis, California
1.22	-0.18	0.33	-0.044	Kimberly, Idaho
1.20	-0.20			Arid regions (suggested)
1.10	-0.10	-		Semihumid (suggested)
1.00	0.00			humid (suggested)
		0.39	-0.05	general

^{1/} The reported w₁, w₂, a, b, a₁, and b₁, valued for Mitchell, Neb. are adapted from Scheduling Irrigations Using a Programmable Calculator, D. C. Kincaid and D. F. Heerman, U.S.D.A., ARS-NC-12, February 1974. Reported values for other locations are adapted from the A.S.C.E. report.

An empirical equation for estimating the soil heat flux is:

$$G = [\overline{T}pr - \overline{T}] 9.1 \tag{7.9}$$

where $\overline{T}pr$ = mean air temperature for a previous time period, usually the previous three days when daily estimates of Etp are required

 \overline{T} = mean air temperature for the current time period, ie mean air temperature of the particular day for which Etp is required.

Estimation of ETPc

Reference crop potential evapotranspiration (ETPc) is estimated by applying the above mentioned method, based upon the observed meteorological data at Chiang Mai, and the results are tabulated in Table D 4-1. Table D 4-2 shows an actual procedure for the estimation.

Estimated Referance Crop Potential Evapotranspiration Table D 4-1

18 451)	
Latitude: N	
300m MSL,	
(Elevation:	
Chiang Mai	
Station:	

c inth)			**	~~		~	۰.۵	•		10		
ETPc (mm/month)	105	134	158	168	171	138	136	119	121	125	11(Ğ
ETPc mm/day)	3.38	4.80	5.09	5.61	5.53	4.59	4.37	3.85	4.04	4.04	3.68	3.05
Tmin (°C)	13.0	13.8	17.2	21.1	23.2	23.6	23.3	23.2	22.8	21.6	18.6	14.7
Tmax (°C)	29.0	32.1	34.9	36.2	34.1	32.2	31.4	30.7	31.0	30.9	29.8	28.5
T(°C)	20.0	22.2	25.6	28.3	28.0	27.1	26.7	26.2	26.2	25.5	23.4	20.6
ca (mbar)	16.6	16.2	17.6	22.1	26.4	28.6	27.8	28.1	27.8	26.3	22.4	18.1
cs (mbar)		31.9	37.8	42.6	41.0	38.6	37.3	36.3	36.4	55.3	31.7	27.9
Rs (cal/cm ² /day)	410	501	461	478	519	448	440	397	419	443	436	380
Rso (langleys/day)	511	644	657	718	721	753	723	694	684	604	548	485
$\frac{U_2}{(km/day)}$	56.4	71.3	86.2	107.0	104.0	91.9	80.2	71.3	71.3	65.3	53.3	50.4
	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.

U₂: Table D 4-3

Table D 4-4 Rso: Monthly mean solar radiation at Chiang Mai Rs:

es, ca: Table D 4-6 \overline{T} , Thax, Thin: Monthly mean, mean maximum and mean minimum temperatures at Chiang Mai

Table D 4-2 Procedure for the Estimation of ETPc (January)

Example, (Chiang Mai, Lat. 18°45', EL 300m MSL)

A. Data, January

, Data, Danies ,	
1. Air temperature	
mean maximum, Tmax (°C)	29.0
mean minimum, Tmin (°C)	13.0
2. Average dewpoint °C	14.6
3. Average wind movement, U2 (km/day)	54.6
 Average clear day solar radiation, Rso (langleys/day) 	511
Average solar radiation, Rs (langleys/day)	410

B. Modified Penman Equation

	$\gamma = Cp P/(0.622\lambda)$	Eq.7.2	
1.	Ср		0.24
2.	P = 1013 - 0.1055 EL	Eq.7.3	981
3.	$\lambda = 595.9 - 0.55 \text{ T(mean)}$	Eq.7.4	584
4.	1/(0.622λ)		0.00275
5.	$\gamma = Cp \cdot P/(0.622\lambda)$ Rbo = $(a_1+b_1\sqrt{ea})11.71x10^{-8}(Ta^4+Tb^4)/2$	Eq.7.3 Eq.7.8	0.647
6.	$Ta = {}^{\circ}C + 273 {}^{\circ}C, {}^{\circ}K(mean max.)$		302
7.	Tb = $^{\circ}$ C + 273 $^{\circ}$ C, $^{\circ}$ K(mean min.)		286
8.	a ₁		0.39
9.	b ₁		-0.05
10.	ea (at dew point) (mbar)		16.6
11.	Rbo = $(a_1+b_1\sqrt{ea})11.71x10^{-8}(Ta^4+Tb^4)/2$	Eq.7.8	164
12.			1.00
13.	b		0.00

14.	Rb = Rbo[(aRs/R)]	lso)+b]	%Eq.7.7 34	132
15.	$Rn = 0.77Rs - R$ $G = (\overline{T}pr - \overline{T}) x$		Eq.7.6 Eq.7.9	184
16.	Assume $G = 0$ $\Delta = 33.86[0.059]$	004(0.00738T+0.8072) ⁷ -0.00	000342] Eq.7.5	,
17.		$(3) + \frac{\gamma}{\Delta + \gamma} = 15.36(w_1 + w_2 - u_2)$ (es	Eq.7.5 s-ea)	1.53
18.	$\frac{\Delta}{\Delta + \gamma}$ (Rn + G)			129
19.	γ/(Δ+γ)			0.297
20.	W ₁		,	1.00
21.	W ₂			0.0062
22.	15.38 $(w_1 + w_2 u)$	2)		20.6
23.	es (mbar)			27.6
24.	(es - ea) (mbar)		11.0
25.	Etp			196
26.	Ксо			1.01
27.	Et crop (langle	ys/day)		198
28.	Et crop x $10/\lambda$	(mm/day)		3.38
29.	·	(mm/month)		105

Table D 4-3 Wind Velocity

 U_{15} : Mean Velocity U_2 : Mean Velocity $\frac{1}{2}$ at 2m Mean Velocity at 2m at 15m m/sec (km/hr) km/day (km/hr) 2.35 56.4 0.653 3.52 Jan. 71,3 2.97 0.825 4.44 Feb. 86.2 3.59 0.997 5.37 Mar. 107.0 4.45 1.24 6.66 Apr. 4.33 104.0 1.20 6.48 May 91.9 5.74 3.83 1.06 Jun. 80.2 5.00 3.34 0.928 Jul. 71.3 4.44 2.97 0.825 Aug. 4.44 2.97 71.3 0.825 Sep. 4.07 2.72 65.3 0.756 Oct. 53.3 2.22 0.617 3.33 Nov. 3.15 2.10 50.4 0.583 Dec.

Note: 1/ Converted to mean velocity at 2m above ground from 15m with the following equation.

$$u_2 = u_{15} \left(\frac{2}{H}\right)^{0.2} = u_{15} \left(\frac{2}{15}\right)^{0.2} = 0.668 u_{15}$$

Table D 4-4 Clear Day Solar Radiation

Latitude: 18°45' (Unit: langleys/day)

	R ₁₅ (N15°)	R ₂₀ (N20°)	Rs ₀ 2/ (N18°45')		R ₁₅ (N15°)	R ₂₀ (N20°)	Rs ₀ 2/ (N18°45')
Jan.	545	500	511	Jul.	706	729	723
Feb.	673	634	644	Aug.	684	697	694
Mar.	671	652	657	Sep.	697	680	684
λpr.	713	720	718	Oct.	623	597	604
May	706	726	721	Nov.	580	537	548
Jun.	733	760	753	Dec.	519	474	485

Note: $2/R_{15}$ and R_{20} are referred to Table D 4-5.

$$C = 18 + \frac{45}{60} = 18.75$$

Rso =
$$\frac{(18.75 - 15)}{5}$$
 x $(R_{20} - R_{15})$ + R_{15}
= 0.75 $(R_{20} - R_{15})$ + R_{15}

Table D 4-5 Total Daily Solar Radiation at the Top of the Atmosphare

Ć.	Dec.	35	74	126	190	248	313	371	423	474	519	265	909	619	677	710	739	761	777	793	. 908	813	813	806	794	
langlays/day]	Nov.	87	133	193	260	323	380	437	486	537	580	617	650	680	727	727	747	753	167	167	167	760	747	727	707	} }
	Oct.	197	252	313	371	426	474	519	561	297	623	648	999	684	069	069	687	677	999	, 849	629	603	571	535	497 455)]
(Unit:	Sep.	377	430	480	527	267	603	637	099	089	697	707	710	707	693	680	657	630	909	292	530	477	447	400	343 283)) 1
	Aug.	539	577	616	648	674	269	703	703	269	684	665	645	623	290	558	519	481	439	390	342	290	235	177	123 74	:
	Jul.	069	206	729	748	755	761	755	745	729	206	681	645	616	577	526	497	445	406	358	310	261	203	148	97 73	1
	Jun.	763	780	790	797	800	800	793	780	260	733	200	663	627	587	543	497	447	400	353	300	243	183	127	77	<u>}</u>
	May	671	069	716	729	742	742	742	742	726	206	684	652	623	290	571	516	474	419	384	335	281	229	174	123	
	Apr.	533	558	617	650	677	200	713	720	720	713	707	200	089	663	640	610	573	533	497	453	407	357	307	250	·)
	Mar.	319	377	429	477	529	268	009	629	652	671	681	069	694	069	681	665	645	626	009	568	529	490	445	397 348	1
	Feb.	152	219	290	265	432	496	549	595	634	673	701	722	740	758	772	179	779	779	772	754	729	704	699	630 588	;
	Jan.	28	100	155	216	284	345	403	455	200	545	584	623	652	648	710	729	748	761	771	774	774	774	761	748	1 1
Latitude	N _o	09 }	. 55	20	45	40	35	30	25	20	15	10	ស	0	5-	-10	-15	-20	-25	-30	-35	-40	-45	-50	-55	} !

Table D 4-6 Vapor Pressure

	ca: Mean	n Actual or Pressure	:so	mean of	values ob	tained at	mean of values obtained at daily maximum and daily minimum temperatures in what	
	Dew		Max.	Min.		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	emax + emin	
	Point	ea	- '	Tem.	ешах	cmin	es=2	(es - ea)
	(၁၂)	(mbar)	(၁)	(c) (c)	(mbar)	(mbar)	(mbar)	(mbar)
Jan.	14.6	16.6	29.0	15.0	40.1	15.0	27.6	11.0
Feb.	14.1	16.2	32.1	15.8	47.9	15.9	51.9	15.7
Mar.	15.5	17.6	34.9	17.2	55.9	19.6	57.8	20.2
Apr.	19.1	22.1	36.2	21.1	0.09	25.1	42.6	20.5
May	22.0	26.4	34.1	23.2	53.5	28.4	41.0	14.6
Jun.	23.3	28.6	32.2	23.6	48.1	29.1	58.6	10.0
յոյ,	22.8	27.8	31.4	23.3	46.0	28.6	37.3	9.5
Aug.	23.0	23.0 28.1	30.7	23.2	44.2	28.4	56.5	8.2
Sep.	22.8	27.8	31.0	22.8	44.9	27.9	56.4	9.8
Oct	21.9	26.3	30.9	21.6	44.7	25.8	55.3	9.0
Nov.	19.3	22.4	29.8	18.6	41.9	21,4	51.7	9.3
Dec.	15.9	18.1	28.5	14.7	39.0	16.7	27.9	9.8

Note: ea, emax, emin are computed with using Table D 4-7.

Table D 4-7 Saturation Vapor Pressure

(Unit: mbar)

Temperature (°C)	Saturation Vapour Pressure (mbar)	Temperature (°C)	Saturation Vapur Pressure (mbar)
0	6.1	-20	23.4
1	6.6	21	24.9
2	7.1	22	26.4
3	7.6	23	28.1
4	8.1	24	29.8
5	8.7	25	31.7
6	9.3	26	33.6
7	10.0	27	35.7
8	10.7	28	37.8
9	11.5	29	40.1
10	12.3	30	42.4
11	13.1	31	44.9
12	14.0	32	47.6
13	15.0	33	50.3
14	16.1	34	53.2
15	17.0	35	56.2
16	18.2	36	59.4
17	19.4	37	62.8
18	20.6	38	66.3
19	22.0	39	69.9

Measurements of Percolation Rate

The measurements of percolation rate have been made at 11 sites in the existing paddy fields by means of portable measuring equipments. The location of the measuring sites are given in Figure D 5-1. and the following table shows the results of them.

Results of Percolation Tests

<u>%o.</u>	Location	Rate (mm/day)	Soil Texture
1.	Ban Phae	3.4	Coarse textured soil
2.	Ban Luang Nua	0.2	- do -
3.	Ban Phayak Luang	1.8	Medium textured soil
4.	Ban Mae Ka Nua	2.4	- do -
5.	Ban Nam Cham	0.2	- do -
6.	Ban Bo Sang	3.1	Coarse textured soil
7.	Ban Tha Ton Kwao	0.8	Fine textured soil
8.	Ban Huai Sai Thai	0.5	Coarse textured soil
9.	Ban Cheng Pham	1.3	Medium textured soil
10.	Ban Rim Pong	2.8	Coarse textured soil
11.	Ban San Pa Fai	0.8	Medium textured soil

Note: Areas of each soil texture are as follows;

Coarse textured soil: 8,220 ha (40.0%)

Medium textured soil: 10,370 (50.5%)

Fine textured soil: 1,950 (9.5%)

Total 20,540 (100.0%)

An average percolation rate for the whole Project Area is estimated at 1.53 mm/day in this stage, by using the proportion of soil texture distribution as shown below;

Coarse textured soil: 2.00 mm/day x 40%

Medium textured soil: 1.30 mm/day x 50.5%

Fine textured soil: 0.80 mm/day x 9.5%

Weighted average rate = 1.53 mm/day

Table D 6-1 Water Requirement for Land Soaking and Preparation

Wet Season Paddy Field

l. First irrigation

150 mm

Top soil saturation depth 150 mm, porosity 50%, soil moisture 35%

 $150mm \times 0.50 \times 0.65 = 50$

Percolation (1.5mm/day); $1.5mm \times 30days = 40$

Standing water; $3.7mm \times 16days = 60$

2. Second irrigation

50 mm

Evaporation in 14days; 3.7mm x 14days = 50

Total

200 mm

Dry Season Paddy Field

1. First irrigation

180 mm

Top soil saturation depth 150 mm, porosity 65%, soil moisture 25%

 $150mm \times 0.65 \times 0.75 = 80$

Percolation (1.5mm/day); $1.5mm \times 30days = 50$

Standing water; $3.2mm \times 16days = 50$

2. Second irrigation

50 mm

Evaporation in 14days; $3.2mm \times 14days = 50$

Total

230 mm

Calculation of Irrigation Water Requirement

- 1. Calculation of irrigation water requirement for whole Project Area
 - Crop calenders, croped area (rai)
 - Weighted rainfall (mm)
 - Effective rainfall (mm)
 - Diversion demand (MCM)
 - Diversion demand (cu.m/sec)
 - Accumulated demand (cu.m/sec)
- 2. Irrigation water requirement for Right Bank Area
 - Diversion demand (MCM)
 - Diversion demand (cu.m/sec)
- 3. Irrigation water requirement for Existing Irrigated Area
 - Diversion demand (MCM)
 - Diversion demand (cu.m/sec)
- 4. Irrigation water requirement for High and Downstream Area
 - Diversion demand (MCM)
 - Diversion demand (cu.m/sec)

0.00 0.80 0.00 0.00

0.00

0.00 0.80 0.81 0.00

0.00

0.00

0.00 0.80 0.81 0.00

0.00

0.00

D. 20603. 75906. 11928. D. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	ROYAL IRRIGATION DEPARTMENT, THR MAE KUANG PROJECT, CASE-4 Mail to to to to
20603. 75906. 11928. 0. 0. 0. 0. 0. 0. 0. 0. 230 20601. 7591. 1193. 0. 0. 0. 0. 0. 0. 0. 0. 230 20601. 7591. 1193. 0. 0. 0. 0. 0. 0. 0. 0. 10459. 0. 20603. 96509. 108437. 103341. 37953. 0. 0. 0. 4550. 0. 182. 170. 182. 198. 155. 0. 0. 0. 0. 29. 42. 1477. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 29. 42. 1477. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1281. 5125. 4561. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1346. 49359. 65813. 69. 1356. 1	APR
20603. 75906. 1928. 0.	
2060. 7591. 1193. 0. 0. 0. 0. 0. 450. 460. </td <td>ů o</td>	ů o
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 O
0. 0. 0. 0. 6781. 13563. 13563. 678 0. 0. 0. 0. 0. 42. 42. 147. 147. 0. 0. 0. 0. 0. 4156. 8313. 6153. 4157. 0. 0. 0. 0. 0. 0. 96. 131. 65. 134. 134. 148.	15625, 10 MM 260.
0. 0. 0. 0. 4156. 5313. 6313. 4156. 0. 0. 0. 0. 0. 74. 74. 74. 11 0. 0. 0. 0. 0. 74. 134. 11 0. 0. 0. 0. 0. 1281. 5125. 4561. 14 0. 0. 0. 0. 0. 0. 275. 4561. 13 11756. 12375. 12375. 6188. 0	
0. 0. 0. 0. 0. 74, 134, 14 0. 0. 0. 0. 0. 74, 134, 14 0. 0. 0. 0. 0. 1316, 49359, 65813, 6581 11756. 12375. 1288. 0.	9 0 0
0. 0. 0. 0. 0. 1316. 49359. 65813. 65813. 65813. 65813. 65813. 65813. 65813. 65813. 65813. 65813. 65813. 65813. 65813. 65813. 65813. 677. 15	AH .00.
17756. 12375. 12375. 6188. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	SOY BEANS + GROUNDNUT(U 64496. 16 VAPOTRANSPIRATION, MM 135.
0. 0. 0. 0. 0. 0. 408, 2750, 2750, 1843. 0. 0. 0. 0. 0. 0. 5583. 9625, 9625. 9625. 558 0. 0. 0. 0. 0. 33. 47. 105. 107. 77. 4187.	MH .0.2
0. 0. 0. 0. 0. 0. 5583. 9625. 9625. 9625. 9625. 0. 0. 0. 0. 33. 47. 105. 107. 4187. 4187. 4187. 4187. 4187. 4187. 4187. 4187. 4187. 4187. 4187. 4187.	.0 O.
4187. 4187. 4187. 4187. 4187. 4187. 4187. 4187. 4187. 4187. 4187. 4187. 4187. 4187. 4187. 4187. 4187. 4187.	MM 0.
	4187. MM 118.

 EFFECTIVE RAIN FACTOR
 0.00
 0.00
 0.00
 0.00

 FARM EFFICIENCY
 0.80
 0.80
 0.80
 0.80

 CANAL EFFICIENCY
 0.81
 0.81
 0.81
 0.81

 RETURN FLOW FACTOR
 0.00
 0.00
 0.00
 0.00

 UNCROPPED AREA ETP, MM
 0.
 0.
 0.
 0.

 MINIMUM DEFRAND
 0.25
 0.
 0.
 0.

 PROJECT AREA, RRI
 125000.
 0.
 0.

 EFFECTIVE RRINFALL COMDUTATION BPTION
 2

ROYAL IRRIGATION DEPARTMENT MAE KUANG PROJECT, CASE-4	ON DEPAR		THAILAND									COMOUT	COMOUTER CENTER DEMAND MODEL 2
Table_ D_7-2	* #	!		. WE	WEIGHTED RA	RAINFALL	IN MILLIMETERS	ETERS					
WATER YEAR	RPR	МЯҮ	JUN	JUL.	AUG	SEP	DCT	S C C	DEC	JAN	R B	MAR	ANNUAL
	1 1 5 1 1	11111111				1 1 1 1 1 1 1 1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1		1
1952	2,50	80.40	224.50	204, 10	269.40	217.60	84.40	21.00	0.00	22. 60	37.60	00.0	1164.10
23	96.60	71.80	230.40	157.60	177.30	364.70	148.40	66.30	6.40	0.10	4.70	58.60	1382,90
1954	43,70	232.20	91.80	52.80	309.50	199, 30	165.20	4.30	1.80	0.20	, i	21.50	1127.30
750	74.50	103.00	74.40	117.00		100.40	104.20	20,00	34	36	,		1087
1957	62, 40	47.40	235, 90	90.60	220, 90	228.70	41.40		1.30	0 0	3 C	20, 30	960.80
1.958	87,10	61.40	'n	123.00	202, 10	192, 60	162.90	5.20	0F :1	10,30	25.3	13.00	1007.30
1959	30,50	116.00	56	179.60	237.40	261.20	72.90	1.40	1.30	22, 30	1.30	4.60	985.40
1960	3, 70	116.30	105.80	250.20	237.00	358,00	110.90	29, 30	63.80	5, 10	10.00	37,30	1327, 40
1961	59,30	215.60	156.70	78.70	426.60	327.40	146.20	4.50	59.80	0.00	0.00	12, 20	1487.00
1962	5.80	91.00	119.00	213.40	257.40	211.70	138.50	0.00	0.00	0.00	6.70	15.20	1058, 70
1963	17.40	18.90	165.20	84.10	179.20	153.40	182.40	101.20	2.30	1.90	3.50	17.00	926.50
1964	66.10	185.10	88.90	228.90	149.20	278,30	164.40	38.20	0.70	0.00	9.30	6.20	1215.30
1965	0.0	68, 90	93.70	61.40	206.10	186.60	157.70	77. 10	7.10	7.90	5.60	0: 30	872, 40
1966	7.70	162.40	38.90	154.60	290.90	250.20	144.90	25.40	00.0	1.00	0.00	6.40	1082,40
1967	46,90	159.80	120,70	145.00	159, 30	361.10	28.50	33, 20	0.00	0,40	1.10	4.70	1060, 70
1968	120.60	109.00	96. 10	29. 60	122.30	115.30	65.50	11.30	00.0	4.10	0.00	0.00	673, 80
1969	13.90	172.50	62.00	105.30	179,30	99. 70	43.00	43.90	a. 30	0.00	0.00	30.60	753.50
1970	82.60	180.00	147.00	102.30	339, 60	215.90	71.00	7.30	45.90	0.30	0.00	10.80	1202, 70
1/41	21.10	184.00	145.80	200. 40	295, 50	117.60	103.20	22.80	. J.	9:00	a. aa	1.70	1096,40
2761	89.80	70.20	119.60	73.70	161.50	216.10	60.40	87.00	7.10	0.00	0.20	33.80	919.40
2741	i i	102.70	:	103.10	334.00	231.70	47.60	78.40		4.40	4.	21.20	1071.80
17.6	63.80	107.70	<u> </u>	86.00	144, 50	222. 60	122.60	54.7		52. 70	0,60	, i	טיי בנטו
2/61	16.30	100.20	218.30	203.20	365, 50	172.40	175.80	36.40	41.10	4.40	10.50	13, 00	13// 40
1976	18.60	86.50	16.	102.70	217.10	171.10	142.10	16.50	5.80	37.80	4.90	28.10	947.20
1977	78, 40		74.10		219.50	297.90	85.40	8.30	77.30	29, 70	36.20	0.00	1190.60
1978	13.50	:	93, 10	٠	218.20	279.50	75. 60	8.90	4.40	3, 90	14.10	0.90	1228. 40
1979	56.70	181.40	133.00	93.40	162.40	132.10	66.50	4.40	4.40	00	0.00	23.50	857.80
		1 1 1 1								1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	#		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
AVERAGE	42.49	126.31	124.43	140.14	235, 57	227.00	107, 30	28.30	12.77	8.87	6.03	13.84	1073.25

ROYAL IRRIGATION DEPARTMENT, MAE KUANG PROJECT, CASE-4 M	PARTHENT, CASE-4	THAILAND			•		-			* •	COMBUTE DEMAND	COMBUTER CENTER DEMAND MODEL 3
5-,	ŀ	-	EFF	EFFECTIVE RAINFALL	AINFALL	IN MICEL	MILLIMETERS		•			- ·
ď	ярк и	MAY JUN	Jul	AUG	SEP	DCT .	NOV	DBC	NG.	FEB	MAR	ANNUAL
ā	9	134.	122.	148,17		67.52	16,80		16.08		0.00	
77.	8	138.	110.	124, 11		103,88	53.04		00.0		46.88	893.54
34.		73.	42	154, 75		115.64	00.00		0.0		17.20	
23.		84.	83,	164.89		72.16	17.44		00.0		00.0	644.87
40.	32 106.33	59.	136.	125.70		73.43	0.00		00.0		0.00	702, 61
49.92		141.	72.	132.54		33, 12	0.00		0.00		16.24	620.98
69		102.	86.	121.26		114.03	0.00		8,24		10.40	696, 62
24.	i	45	125.	142.44		58,32	0.00		17.84		00.00	639, 10
9.0 D.1		74,	137.	142,20		77.63	23.44		0.00		29.84	796.23
		109.	62.	213, 30		102,34	0.00		0.00		9.76	886.39
		63	128,	141.57		96.95	0.00		0.00		12, 16	661.84
		115	67.	125.44		127.68	70.84		0.00		13.60	656,90
1964 52.88	88 129,57	57 71.12	137, 34	104.44	153,06	115.08	30.56	0.00	0.00	0.00	0.00	794.05
		74.	67	123,66		110.39	61.68		0.00		0.00	605.55
		Ë	108.	159.99		101.43	20, 32		0.00		0.00	672.37
		84.	101	111.51		22.80	26.56		0.00		0.00	676-79
		76.	23	85, 61		52.40	9.04		00.00		00.0	489.04
		49	5.	125.51		34.40	35, 12		0.00		24.48	554.45
970 66.		102	71,	169.80		56.80	0.00		0.00		8.64	768.09
		102	120.	162.52		72.24	18.24		0.00		0.00	703, 30
972 71.84	4 :	, 100	200	113.05		48.32	69.60		0.00		27.04	658.35
	2	7.5	107.	169,50		39.68	22, 72		0.00		16.96	641.B1
51.	7	70.	69.	101.15		85,82	51.76		66.16		0.00	704.83
i.	7	130.	122	182, 75		123.06	45.12		0.00		10.40	859.55
14.		81.	71.	130,26		99.47	13.20		30.24		22.48	652, 59
62.	72 100.17	59.	98.	131.70	163.84	68.32	0.00	61.84	23, 76		0.00	799.08
978 10.1	80 133,1	74.	161	130.92		60.48	0.00		0.00		0.00	736.74
45.	_	0	74.72	113.68		53,20	0.00		00.0		18.80	618.31
		! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !			1 	1		****		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
AVERAGE 32.85	80	30 86.60	93.75	137.59	134.25	78.09	20, 91	8, 23	5.87	2.81	10,17	699.42

MAE KUANG PROJECT.	•	CASE-4											DEMAND MODEL 4
Table D_7-4	!	, F	•	DIVERSION	IN DEMAND		IN MILLION CUBIC	C METERS					
WATER YEAR	APR	МАҰ	JUN	JUL	AUG	e d d	TOO	NOV VOX	DEC	JAN	F B B	МАВ	ANNUAL
		; 		 	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	[]] ! !) 	 		1		
1952	32.72	99.9	5.42	24.05	13, 33	14,25	33,51	13.90	3.63	7.48	22, 12	40.60	217.67
	16.63	7.18	່ທ່	27.17	14.90	12.64	24.23	9.98	3.63	11.63	30.99	28.70	
1954	25.44	4.45	8,85	46.80	13.26	12.64	21, 23	15.92	3.63	11.63	30,99	36.24	231.07
1955	27.84	6.36	8,23	34.57	13.23	15.43	32, 33	13.82	3.63	11.63	30,99	40.60	238, 66
1956	24.32	5.31	9.76	20,51	14.47	12.64	32.00	15.92	3,63	11.63	30.99	40.60	221.79
1957	22, 32	8,69	5,04	37.80	13.84	12.64	42.52	15.92	3, 63	11.63	30,99	36.48	241.49
1958	18.21	7.82	7.20	33.88	15.67	13, 11	21.64	15.92	3.63	9.74	30, 99	37.96	215.78
-	27.64	6.05	10.87	23.21	13, 52	12.64	35.86	15,92	3.63	7.53	30.99	40.60	228.46
1960	32.72	6.04	8.81	20, 21	13, 53	12.64	30.93	13.10	0.91	11.63	30,99	33.03	214.53
1961	22.84	4.71	6.82	40.62	13.09	12.64	24. 62	15, 92	96.0	11.63	30,99	38.13	222, 97
1962	32.72	6.35	8.30	22.61	13,55	15.20	26.00	15.92	3.63	11.63	30,99	37,52	224.41
1963	29.B2	10.59	6.49	39, 34	14.54	20.46	18, 16	8.26	3.63	11.63	30,99	37.15	231.06
1964	21.71	4.71	8.99	20.27	20.23	12.64	21.37	12, 33	3.63	11.63	30.99	40.60	209, 09
1965	32, 72	7.36	8.76	44.75	15.02	14.23	22.57	9.12	3.63	11.63	30,99	40.60	241.39
1966	32.72	5.12	12.24	27.71	13.24	12.64	24.86	13.48	3.63	11.63	30.99	40.60	228.86
1967	24.91	5. 16	8.23	29.45	18.31	12.64	45.26	12,75	3.63	11.63	30.99	40.60	243.57
1968	15.14	6.22	8.66	52, 33	25.32	27.40	37.40	14.83	3.63	11.63	30.99	40.60	274.35
6961	30.40	4.93	10.48	37,45	14.52	27.85	42.18	11.85	3.63	11.63	30.99	34.39	260, 30
1970	18.96	4.80	7,20	38, 05	13.22	14.52	36.24	15.92	1.27	11.63	30.99	38.41	231, 20
_	29.20	4.73	7, 25	24.62	13.24	27.17	32, 31	13.73	3.63	11.63	30.99	40.60	239, 08
1972	17.76	7.28	8.27	41.81	17.90	14.49	38.48	8, 38	3.63	11.63	30,99	33.74	234.37
. 1973	32, 72	6.38	8.74	27.98	13, 22	12.64	40,77	13, 19	3.63	11.63	30,99	36,30	238, 18
1974	22.09	6.25	9,03	38.76	21.12	13,42	28.84	10.12	3.63	3.29	30.99	40.60	228.15
1975	30.00	6.45	5, 63	24.14	13, 18	16.90	19.34	10.81	1.44	11.63	28.51	37.96	205, 98
1976	29.62	6.48	8.41	37.97	13.91	17.14	25, 36	14.33	3.63	5.51		34.90	228.26
1977	19.66	5.47	9.78	30, 32	13.87	12.64	33, 31	15, 72	0.91	6.21	22, 45	40.60	211.12
1978	30.47	4.61	8.79	17.43	13,89	12.64	35, 31	15.92	3.63	11.63	27.66	40.60	222, 59
1979			7.75	37.16	17.73	24.45	37, 19	15.92	3.63	11.63		35, 83	250.31
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1		!				***************************************			[
AVERABE	25. 88	6.10	8.19	32.18	15.17	15, 73	30.85	13.54	3.18	10, 36	30, 16	30.02	229.56

ROYAL IRRIGATION DEPARTMENT, MAE KUANG PROJECT, CASE-4 Table D 7-5
APR MAY JUN
22 2.484 2
15 2.681 2.
314 1.663 3.414
739 2.373 3.177
184 1.981 3.765
3.243 1.944
126 2.920 2.776
20 2 255 4.193
1.759 2.631
2.371 3.201
104 3.954 2.503
375 1.757 3.468
622 2.748 3.381
12.622 1.910 4.723 10. 9.609 1.928 3.125 10.
842 2.324 3.340
729 1.842 4.043
1.791 2.778
266 1.764 2.796
192
622 2.383 3.370
523 2.334 3.485
575 2.407 2.172
427 2.420 3.246
.585 2.041 3.771 1
1.722 3.391 6.
.979 1.782 2.990 1
9.983 2.279 3.158 12.

ROYAL IRRIGATION DEPARTMENT, MAE KUANG PROJECT, CASE-4	TION DEPART	IMENT, THA] 3E-4	ILAND								COMOUTER CENTER DEMAND MODEL 6	CENTER ODEL 6
	! إب	:	DH .	ассими <mark>с</mark> ятер	DEMAND IN	N MILLION	CUBIC METERS	TERS				
WATER YEAR	APR	МАΥ	JUN	JUL	AUG	SEP	OCT	202	DEC	JAN	FEB	MAR
	32.7	39. 4	44.8	68.8	82.2	96.4	129.9	143.8	147.5	154.9	177.1	217.7
	234.3	241.5	246.7	273.9	288.8	301.4	325.6	335. 6	339.3	350.9	381.9	410.6
1954	436.0	440.5	449.3	496.1	509.4	522.0	543.3	559.2	562.8	574.4	605.4	641.7
1955	669.5	675.8	684.1	718.7	731.9	747.3	779.6	793.5	797.1	808.7	839.7	880.3
1956	904.6	909.9	919.7	940.2	954.7	767.3	999.3	1015.2		1030.5	1061.5	1102.1
1957	1124.4	1133.1	1138.2	1176.0	1189.8	1202.4	1244.9	1260.9	1264.5	1276.1	1307.1	1343.6
1958	1361.8	1369.6	1376.8	1410.7	1426.4	1439.5	1461.1	1477.0	1480.7	1490.4	1521.4	1559.4
-	1587.0	1593.1	1603.9	1627.1	1640,7	1653.3	1689.1	1705.1	1708.7	1716.2	1747.2	1787.8
1960	1820,5	1826.6	1835.4	1855. 6	1869.1	1881.8	1912.7	1925.8	1926.7	1938.3	1969.3	2002, 4
1961	2025.2	2029.9	2036.7	2077.4	2090.4	2103.1	2127.7	2143.6	2144.6	2156, 2		2225.3
1962	2258.0	2264.4	2272.7	2295.3	2308.9	2324.0	2350.0	2366.0	2369.6	2381.2	2412.2	2449.7
1963	2479.6	2490.1	2496.6	2536.0	2550.5	2571.0	2589.1	2597.4	2601.0	2612.6	2643.6	2680.8
		2707.2	2716.2	2736.5	2756.7	2769.3	2790.7	2803.0	2806.7	2818.3	2849.3	2889.9
1965	2922. 6	2930.0	2938.7	2983.5	2998.5	3012.7	3035.3	3044.4	3048.1	3059.7	3090.7	3131.3
. 1966	3164.0	3169, 1	3181.3	3209.1	3222.3	3234,9	3259.8	3273.3	3276.9	3288.5	3319.5	3360.1
1967	3385.0	3390.2	3398.4	3427.9	3446.2	3458.8	3504.1	3516.8	3520. 5	3532, 1	3563. 1	3603.7
1968	3618.8	3625, 1	3633.7	3686.0	3711.4	3739.0	3776.4	3791.2	3794.B	3806.5	3837.4	3878.0
1969	3908. 4	3913.4	3923.9	3961.3	3975.8	4003.7	4045.9	4057.7	4061.3	4073.0	4104.0	4138.3
1970	4157.3	4162, 1	4169.3		4220. 6	4235.1	4271.3	4287,2	4288.5	4300, 1	4331.1	4369.5
1971	4398.7	4403.4	4410.7	4435.3	4448.5	4475.7	4508.0	4521.7	4525.4	4537.0	4568.0	4608.6
1972	4626.3	4633.6	4641.9		4701.6	4716.1	4754.6	4762.9	4766.6	4778.2	4809.2	4842.9
1973	4875.4	4882.0	4870.8	4918.7	4931.9	4944.6	4985.4	4998.5	5002.2		5044.8	5081.1
1974	5103.2	5109.4		5157.2	5178.3	5191.8	5220.6	5230.7	5234.3	5237. 6	5268.6	5309. 2
1975	5339.2	5345.7	5351.3	5375.4	5388.6	5405.5	5424.8	5435.6	5437.1	5448.7		5515.2
1976	5544.B	5551.3	5559, 7	5597.7	5611.6	5628.7	5654.1	5668.4	5672.0	5677.5	5708.5	5743.4
1977	5763.1	5768.5	5778.3	5808.6	5822.5	5835.1	5868.4	5884 7	5885, 3	5891.5	5913.9	5954.5
1978	5985.0	5989.6	5998.4	6015.8	6029.7	6042,3		6093. o	6097.2	6108.8	6136.5	6177.1
1979	6200.3	6205.1	6212.9	6250.0	6267.7	6292.2	6329.4	6345.3	6348.9	6360, 5	6391.5	6427.4
•												

ROYAL IRRIGATION DEPARTMENT, MAE KUANG PROJECT, CASE 4-1	N DEPARTME ECT, CASE	MENT, THAIL(E 4-1(RIGH	AILAND IGHT BANK	K AREA)	-					r.		COMBUTE!	COMOUTER CENTER DEMAND MODEL 4
Table D 7-7			,	DIVERSION	V DEMAND	IN MILL	MILLION CUBIC METERS	HETERS					
WATER YEAR	APR	МАУ	NII	JUL	AUG	SEP		20	DEC	JAN	FE EB	MAR	ANNUAL
			1 1 1 1 1 1 1										I I I I I I I I I I I I I I I I I I I
1952	1.65	0.41	0.61		1.04	0.82	1.49	1.04	1.36			-	
1953	0.65	0.46	0, 60	1.79	1.11	0.76	1.10	0.61	1.36	2.67	a. 15	1.51	15.78
1954	1.20		0, 75		1.04	0.76	0,98	1.36	1.36				
1955	1.35		0, 73		1.04	0.87	1.44	1.03	1.36				
1956	1.13		0.86		1.09	0.76	1.43	1.36	1.36				
1957	1.00		0, 60		1.06	0.76	1.98	1.36	1.36				
1958	0.75		0.69		1.14	0.78	1.00	1.36	1.36				
	1.33		1.07		1.05	0.76	1.59	1.36	1.36				
1960	1.65		0,75		1.05	0.76	1.38	0.92	0,34				
1961	1.04		29.0		1.03	0.76	1.12	1.36	0.36				
1962	1.65		0, 73		1.05	0.86	1.18	1.36	1.36				
1963	1.47		0.66		1,09	1.08	0.85	0.52	1.36				
1964	0.97		0.77		1.33	92.0	0.98	0.83	1.36				
	1.65		0,75		1.11	0.82	1.03	0.55	1.36			-	
1966	1.65	0.26	1,42		1.04	0.76	1.13	0.98	1.36			_	
1967	1.16		0.73		1.25	0.76	2.15	0.88	1.36				
1968	0.56		0.75		1.54	1.38	1.66	1.19	1.36				
1969	1.51		0.97		1.09	1.39	1.96	0.79	1.36				
1970	0.79		69.0		1.04	0.83	1.60	1.36	0.48				
	1.43		0.69		1.04	1.36	1.44	1.02	1.36			-	
1972	0.72		0.73		1.23	0.83	1.73	0.52	1.36			_	
1973	1.65		0,75		1.04	0.76	1.87	0.93	1.36				
1974	0.99		0.77		1.36	0.79	1.29	0.63	1.36				
1975	1.48		0.62		1.04	0.93	0.90	0.69	0.56				
1976	1.46		0.74		1.07	0.94	1.15	1.11	1.36				
1977	0.84		0.86		1.06	0.76	1.48	1.36	0.34				
1978	1.51		0, 75		1.06	0.76	1.56	1.36	 m				18.01
1979	1.04		0.71		1.22	1.25	1.65	1.36	1.36			-	
# # # # # # # # # # # # # # # # # # #	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1 1 1		1	1 1	1 1 1	1 1 2 2 1	i i i i i			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			_	; ;	,			č		(
HVERHGE	1.23	C. 36	0.76	2.32	1.12	U. 87	1.40	1.04	1.19	2.44	3.06	ĭ. 33	16.18

COMOUTER CENTER DEMAND MODEL S		FEB MAR ANNUAL		0.952 0.	302 0.565 0.500	0.810 0.	0.952 0.	0.952 0.	0.818 0.	866	0.952 0.	0.706 0.	0.872 0.	0.852 0.	0.840 0.	0.952 0.	0.952 0.	0.952 0.	0.952 0.	0.952 0.	0.750 0.	0.881 0.	0.952 0.	0.729 0.	0.812 0.	952 0.	0.866 0.	0.767 0.	0.952 0.	752	0.797		54 0.868 0.577
		JAN		779 0.	0.995 1.	995 1.	995	995	995	897	782	995	995	995	995	266	266	995	995 1	995 1	995	995	995	995	995	330	995	647	711 0.	995 1.	995 1.		0.930 1.264
	ΩN	DEC		0.509	0.509	0, 509	0. 509	0.509	0.509	0.509	0.509	0.127	0.135	0.509	0.509	0.509	0.509	0.509	0.509	0.509	0.509	0.180	0.509	0.509	0.509	0.509	0,209	0.509	0.127	0.509	0.509	 	0.446
	pen secono	S _B	<u> </u>	0.403	0.237	0.523	0.398	0.523	0.523	0, 523	0.523	0.355	0.523	0.523	0.199	0.322	0.213	0.378	0.338	0.459	0.304	0.523	0.393	0.201	0.361	0.242	0.267	0.429	0.523	0.523	0.523	1	0.402
	METERS	BCT		0.556	0.412	0.365	0.537	ö	ď		ö	ċ	ö	ď	ġ.	Ġ	ö	Ġ	Ġ	ö	ċ	ö	ö	ö	ö	ö	ď	0.429	0.552	0.583	0.617	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0. 322
	IN CUBIC	SEP		0,318	0.292	0,292	0.337	o	ó		ċ	ó	ö	ö	ö	ó	ċ	Ġ	ö	o	ö	ď	ó	a	o	ö	ö	0	ö	ċ	0.481	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.342
^	N DEMAND	AUG			0.413	ö	o	ó	ö		Ġ	ò	á	ó	ö	ö	ö	å	ö	Ġ	ö	å	Ö	ď	ċ		Ö	o	ċ	á		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.417
ANK AREA	DIVERSION	JUL			0.669																								0.739	0.518	0.986		0.867
THAILAND RIGHT BANK	<u>.</u>	JUN		0, 236	0,233	0.291	0.281	0.331	0.230	0.264	ö	0.290	0.258	ó	ö	ó	,c	ö	ö	ó	ö	o	Ö	ċ	ö	ö	Ċ	Ö	-		ö		292
· •	-	НΑΥ	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.152	0.171	0.097	0.134	0.097	0.228	0, 195	0.116	0.115	0.097	0.134	0.324	0.097	0.178	0.097	0.097	0, 126				0.175					0.097	0.097	0.097		0.134
ATION DEPAF PROJECT, CA	7-8	APR	; ; ; ; ; ; ; ; ; ;	0.637	0.250					0.288		0.637	0.400		0.567		0.637	0.637	0.449	0.215	0.581	0.306		0.278		0.382	0.572	0.563		0.583			0.473
ROYAL IRRIGATION DEPARTMENT, MAE KUANG PROJECT, CASE 4-1	Table D 7	WATER YEAR	1 - 1 - 1 - 1 - 1 - 1 - 1	1952	1953	1954	1955	1956	1957	1958	1959	1960	1961	1962	1963		1962	1966	1967	1968	1,469	1970	1441	1972	1973	1974	1975	1976	1977	1978	1979		AVERAGE

ROYAL IRRIGATION DEPARTMENT, MAE KUANG PROJECT, CASE 4-2	ATION DEPARTME PROJECT, CASE	MENT, THAII	AILAND XISTING	IRRIGATED	AREA)							COMBUTER CENTEL DEMAND MODEL 1	CENTER
Table D 7-9	;	,		DIVERSION	DEMAND	IN HILL	IN MILLION CUBIC	: METERS					
WATER YEAR	APR	МАУ	J.C.	JUL	AUG	SEP	פכז	20	DEC	JAN	FEB	MAR	HUNNE
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	: : : : : : : : : : : : : : : : : : : :		1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!		1	1	1	÷	
1952	13.73	2,54	1.88	9.18		4					7.68	16.51	82,75
1953	7.02	2, 73	1.80	10.44	5.63	4.92	9.70	3.87	0.46	2.85	10.82	11.92	72.16
1954	10. 70	1.72	3.27	17.50							10.82	14.82	86.39
1955	11.70	2.45	3.02	13.20							10.82	16.51	90.18
1956	10.23	2.08	3.58	7.76							10.82	16.51	83.37
1957	9.40	3.30	1.73	14.37							10.82	14.92	90.81
1958	7.68	2.97	2.60	12.96							10.82	15.49	80.80
1959	11.61	2,35	3.90	8.85							10.82	16.51	86.28
1960	13. 73	2, 35	3.25	7.64							10.82	13.58	81.72
1961	9.61	1.83	2.45	15.36							10.82	15,55	84,14
1962	13, 73	2, 45	3,05	8.61		•					10.82	15,31	84.59
1963	12.52	3.96	2, 32	14.91							10.82	15.17	87.01
1964	9.14	1.83	3.32	7.66							10,82	16.51	78, 54
1965	13.73	2.80	3, 23	16.79							10.82	16.51	91.00
1966	13, 73	2.00	4.22	10.66							10.82	16.51	86.19
1961	10.48	2.05	3.02	11.35							10.82	16.51	92,35
1968	6.40	2.41	3.19	19.43							10.82	16.51	103, 38
1969	12, 77	1.93	3.81	14.24							10.82	14.11	98.91
1970	9,00	1.87	2.60	14.46							10.82	15.66	87.46
1971	12.27	1.84	2.62	9.41							10.82	16.51	90.45
1972	7.50	2, 77	3.04	15.77							10.82	13.86	88,22
1973	13.73	2.46	3, 22	10, 77		•					10.82	14.84	90.34
1974	9.30	2.42	3. 33	14.71		•					10.82	16.51	87.10
1975	12.60	2.48	1.97	9.22							9.64	15.49	78.19
1976	12,44	2.49	3.09	14.43							10.82	14.30	86.51
	8.29	2	3, 59	11.67							7.80	16.51	80.59
1978	12.80	1.79	3.24	6.52							9.64	16.51	83, 48
1979	9.79	1.86	2,82	14.14					0.46		10.82	14.66	94.65
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1			1	
50083/10	88	, ,	0		, ,	1.1	ָר ני	0	ç		0		i
	J				:		14.33	2.07		70.7	70.07	10.01	27.00

COMBUTER CENTER DEMAND MODEL S	ANNUAL	2. 624 2. 624 2. 624 2. 624 2. 644 2. 668 3.
COMBUTE!	A R	6. 162 6.
*	FE38	3. 175 4. 471 4. 471 4. 471 4. 471 6. 471 7. 471 6. 471 6. 471 7. 471 7. 471 7. 471 7. 471 7. 471 7. 471 7. 471 7. 471
	JAN	0.564 1.063
•	o DEC	0.172 0.172
	PEK SECOND NOV	2. 022 1. 493 2. 267 2. 267 2. 267 2. 267 2. 267 1. 253 1. 367 1. 353 1. 755 1.
	חביבאט א מכד	5. 019 6. 841 6. 841 6. 341 6. 341 7. 792 7. 792 7. 793 7. 716 6. 292 7. 716 7. 716
- 5	SEP	2. 148 1. 897 1. 897 1. 897 1. 897 1. 897 1. 897 1. 897 1. 897 1. 897 1. 897 2. 191 2. 158 2. 191 2. 158 2.
AREA	DEMAND IN	1. 866 1. 855 1. 855 1. 855 1. 855 1. 854 1.
	, utversion	429 429 429 429 429 429 420 430 430 430 430 430 430 430 43
1LA 1571	in '	0.727 0.696 1.261 1.382 0.668 1.0668 1.0668 1.253 1.263 1.2647 1.2647 1.2647 1.1648 1.2647 1.1648 1.
CASE 4-2(EX	ÄAY	0.948 1.021 0.644 0.777 1.231 1.231 1.111 1.111 0.878 0.684 0.748
N DEPART JECT, CAS	APR	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2
RRIGG ANG 1	WATER YEAR	1952 1953 1953 1954 1956 1956 1961 1961 1962 1963 1964 1965 1970 1971 1972 1973 1974 1975 1976 1977 1977

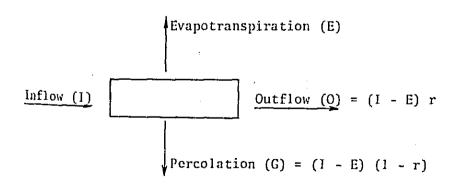
COMBUTER CENTER DEMAND MODEL 4		FEB MAR ANNUAL		37 21.72 110.	9 20	36 21.72 130.	36 21,72 120.	36 19.54 131.	36 20,32 117.	36 21,72 124.	36 17,71 116.	36 20.41 121.	36 20.08 122.	36 19.89 125.	36 21.72 113.	36 21.72 131.	36 21.72 124.	36 21.72 132.	36 21.72 150.	36 18, 43 142.	36 20.56 126.	36 21.72 130.	36 18.09 128.	36 19.44 129.		36 21.72 124.	36 21.72 124. 03 20.32 112.	36 21.72 124. 03 20.32 112. 36 18.70 124.	36 21.72 124. 03 20.32 112. 36 18.70 124. 76 21.72 115.	36 21.72 03 20.32 36 18.70 76 21.72 57 21.72
		JAN			1 2	2	12	12	0	25	2	7	입	12	12	22	21	12	ᄗ	21	12	51	17	걸	107		15	12 1	12 81 20	6, 12 16, 2, 81 17, 3, 20 12, 6, 12 15,
		DEC		 	1.82	1.83	1.82	1.82	1.82	1.82	0.45	0.48	1.82	1.82	1.82	1.82	1.82	1.82	1.82	1.82	0.62	1.82	1.82	1.82	1.82	בר כר	2	1.82	1.82 0.45	1.82 0.45 1.82
	C METERS	202		יע: מיני	69.0	7.57	8-68	8.48	8.68	8,68	7.19	8.68	8.68	4.55	6.77	5.02	7.39	2.00	8.11	6.51	8.68	7.52	4.61	7.24	5.57	5,95		7.84	7.84	7.84 8.68 8.68
	MILLIGN CUBIC	BCT		2.0	11.76	17.92	17.74	23, 55	11.99	19.88	17.15	13.65	14.41	10,06	11.84	12.51	13,78	25.06	20,73	23, 37	20.10	17.91	21.33	22, 59	15.99	10.71		14.05	14.05 18.47	14.05 18.47 19.58
^	Z	SEP	, 0 ,	7.07	6.97	8,52	6.97	6.97	7, 23	6.97	6.97	6.97	8.39	11.30	26.9	7.85	6.97	6.97	15.27	15.41	8.01	15.03	7.99	6.97	7.40	9.33		7.40	7.40 6.97	4.46 6.97 6.97
DOWNSTREAM AREA	IN DEMAND	AUG	000	A 1 A	7.25	7.24	7.92	7.57	8.59	7.40	7.40	7.16	7.41	7.96	11.12	8.23	7.24	10.06	13.95	7.95	7.23	7.24	9.83	7, 23	11.61	7.21	,	10.	7.59	7.59
	DIVERSION	JUL		70.0	25, 58	18.97	11.24	20, 73	18.60	12.74	11.07	22.22	12.40	21.56	11.10	24.48	15.23	16,20	28.57	20, 54	20.86	13,52	22.90	15, 38	21, 25	13.25	20.83	1	16.67	16.67
THAILAND C HIGH AND		SUN		10	4.63	4. 49	5, 32	2,71	3.91	5.90	4.81	3, 70	4.52	3, 52	4.90	4.78	6.59	4.48	4,72	5.70	3.91	3,94	4.51	4.76	4.93	3.04	05.7	•	, 33 33	5, 33
		МЯУ	76.5	0	2.47	3.55	2.96	4.78	4.32	•	3, 38	2, 62	3.55	5.77	2.62	4.08	2,85	2.88	3, 48	2,75	2.67	2.63	4.04	3, 56	3.49	3.60	3.62		3.06	3.06 2.56
rion bepar	11	APR	12 2	96.8	13,54	14.79	12,96	11.92		69	17.33	12, 19	17, 33	15.82	11.60	17.	17.33	13, 27	8.18	16, 13	10.17	15.50	9,55	17.33	11.80	15.92	15, 72		10,53	10.53
ROYAL IRRIGATION DEPARTMENT, MAE KUANG PROJECT, CASE 4-3	Table D 7-1	WATER YEAR	2000	1 953	1954	1955	1956	1957	1958	1959	1960	1961	1962	1963	1964		1966	1961	1968	1969	1970	_	1972	1973	1974	1975	1976		1977	1977

RGYAL IRRIGATION DE MAE KUANG PROJECT,	ц.		THAILAND HIGH AND	DOWNSTREAM	ан ввея	^						COMBUTE	COMBUTER CENTER DEMAND MODEL S
Table_D 7-1	<u> </u>		[Q ",	DIVERSION	DEMAND	IN CUBIC	METERS	PER SECOND	Đ				
WATER YEAR	APR	MAY	S LIN	JUL	AUG	SEP	DOCT	>0V	DEC	JAN	FEB	MAR	BUNNUBL
, CA0,	787 7	781. 1	900	000			71.0 7			4	t .	9	1,000
7574	000	000	777.	177.1			07.0			- C	200	100	ייי יייי ייייי
1954	5,225	1,467	1.862	, o	2, 708	2.687	4.392	3, 350	0.070	2, 285	7.178	7.746	1.080
1955	5, 706	1.325	1.731	7.084			6.691			2,285	7, 178	8, 108	4.124
1956	5.001	1.107	2.052	4.196			6.624			2,285	7, 178	8.108	3.831
1957	4.599	1.784	1.046	7.739			8.794			2,285	7,178	7.294	4.178
1958	'n	1.614	1.508	6.945			4.477			1.905	7,178	7.587	3, 733
1959		1,263	2,275	4.755			7.423			1.462	7.178	8,108	3.946
1960	6.686	1.261	1.855	4.133			6.402			2,285	7.178	6.612	3, 708
1961	4.703	0.978	1.428	8.308			5.095			2,285	7,178	7.619	3, 855
1962	6.686	1.324	1.744	4.631			5, 380			2, 285	7, 178	7.499	3,871
1963	6.104	2, 153	1.357	8.049			3, 755			2,285	7.178	7.426	3.987
1961	4.476	0.977	1.892	4,145			4.422			2, 285	7.178	8.108	3,613
1965	6.686	1.524	1.844	9.138			4.670			2,285	7.178	8.108	4.163
1966		1.066	2.544	5.687			5, 143			2,285	7.178	8.108	3,945
. 1967	5.118	1.076	1.730	6.048			9,357			2,285	7,178	8. 108	4,215
1968	3.157	1.298	1.821	10, 665			7.741			2,285	7.178	8.108	4,757
1969	6.221	1.026	2, 199	7.667			8.724			2,285	7.178	6.881	4.505
1970	3.924	0.997	1.509	7.790			7,503			2,285	7.178	7.675	4.005
1971	5.981	0.981	1.519	5.047			6.687			2,285	7.178	8.108	4, 132
1972	3, 683	1.508	1.739	8.548			7.964			2, 285	7.178	6.753	4.063
1973	6. 686	1.331	1.838	5,743			8, 435			2, 285	7.178	7,258	4.116
1974	4,552	1.304	1.901	7.934			5.969			0.635	7.178	8.108	3,952
1975	6.141	1.344	1.173	4.948			4.000			2,285	6.626	7.587	3.557
1976	÷	1.350	1.769	7,773			5,247			1.048	7.178	6.981	3.945
	4,064		2,055	6.223			5.894			1.196	5, 276	8,108	3.660
1978	6.235	0.957	1.850	3.558			7.309			2,285	6.437	8.108	3.840
1979	4.790	0.991	1.627	7. 608			7.697			2,285	7.178	7.166	4. 335
		1			1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					1 1 1 1 1	1	* * * * * * * * * * * * * * * * * * * *
AVERAGE	. a.u.	1.267	1.717	6.586	3.104	3. 350	6. 384	2.859	0.593	2.070	266 *9	7. 59B	3.969

Study on Return Flow

The survey of return flow in the irrigated paddy field has been carried out during the period of the Second Stage Survey started from June to August 1981, in order to find out the potential discharges to be utilized as the return flow in the downstream area.

For the purpose of the above study, the study area having the areas of about 1,090 ha has been selected at the most downstream area served by the Pha Teak main irrigation canal in the Existing Irrigated Area, as shown in Figure D 8-1. The present land categories in the area are given below;


Gross area : 1,092 ha

Net area : 602 (55.1% of gross area)

Cultivate land : 587
Road and canal : 15

As shown in Figure D 8-1, the sampled area has 21 inflows, mainly diverted from the Pha Teak main canal and two outflows from the area, and each inflow and outflow discharge of these facilities has been measured simultaneously at two times on 21th to 22 th July 1981, by means of current meters, and each measurement and computation of discharges are tabulated in Table D 8-1.

The water balance, in general, in the vast irrigated area is explained in the following diagram;

and the water balance in the area is expressed as shown below, in the short periods of time, under the stabilized well-water management and no rainfall.

$$D = I - O = (G_2 - G_1) + E$$
 -----(1)

where; G₁: ground water inflow

G2: ground water outflow

However, at the flat paddy fields in the alluvial plain such as Chiang Mai Plain, the groundwater flow is considered to be negligible small, so the above equation can be expressed as follows;

0 = (I - E) r ----- (2)
so, r (return flow ratio) =
$$\frac{0}{I - E}$$
 ----- (4)
P (outflow ratio) = $\frac{0}{I}$ ----- (4)

Based upon the above relations, the outflow ratio (P) has been estimated by using the measured data, and the results are summarized as follows;

Item			1st Measurement	2nd Measurement
Total inflow,	I	(cu.m/sec)	3.631	2.100
Total outflow,	0	(cu.m/sec)	2.816	1.710
Outflow ratio,	P	(%)	77.6	81.4

Note: detail estimation is given in Table D 8-1.

As is seen in the above table, the value of outflow ratio (P) is estimated at about 80 percent on average, so that it can be expected that 24 percent of the intaked water has a potential to be utilized as irrigation water in the terms of return flow in the irrigated paddy fields, when an actual using ratio of water out of the outflow water is assumed at 30 percent in the irrigated paddy fields.

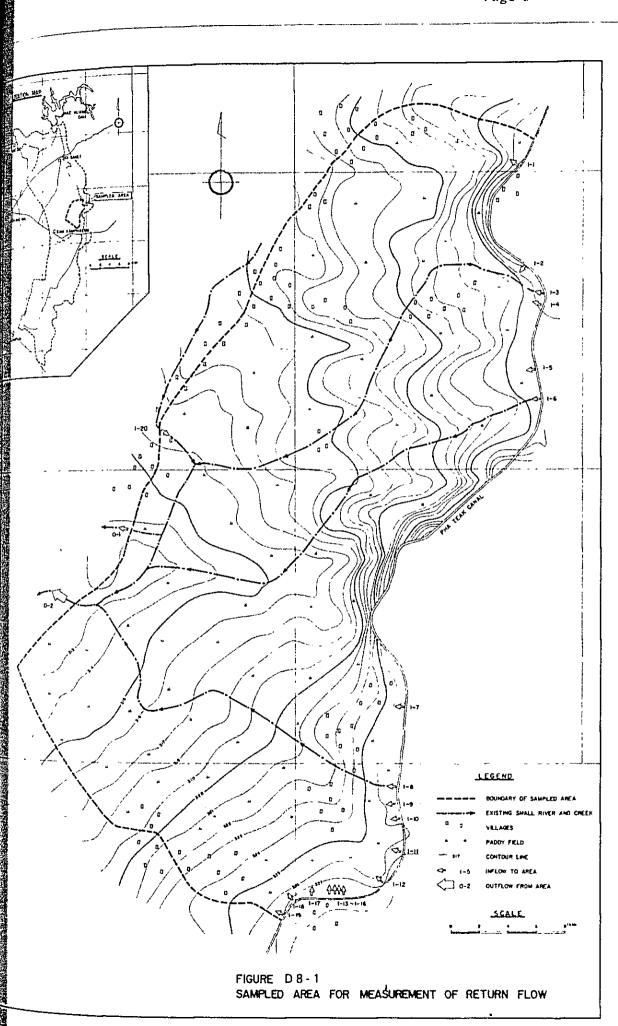


Table D 8-1 Calculation of Canal Discharge

	Kemarks	Intake Canal			Intake Canal			Small river	(under bridge)	-	Intake Canal	*	M (Flume	S	- 1	Intake Canal		
Canal Canal	(cu.m/sec)	0,083 I	0.054		0	0		0.296	0.105	٤	0	0		0.016			0.378	0.179	
Velocity (V)	(m/sec)	0.36	0.32		0	0		1.41	1.17		0	0		0.13	0.10		1.22	0.94	
ectional Area	Area (A) (m ²)	0.23	0.17		0	0		0.21	0.09		0	0		0.12	0.03		0.31	0.19	
Canal Cross Sectional Area	Water Depth(II) (m)	h = 0.39	h = 0.30		h = 0	h = 0		h = 0.35	h = 0.20		h = 0	h = 0		h = 0.39	h = 0.10		h=0.51	h = 0.19	
-	Canal Cross Section	1.0	01/10	1.5	1 41	(6.7)	1.6	/25	1.5	10.5	(1.0	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	-1,4 -1,4 -1,4	-	+0	0.3	10 65 L 1.0	. Ц	3.0
	Station	0 +18	(19 + 300)			(20 + 750)			(20 + 800)	,-	C C	(20 + 850)						(21 + 400)	
	. ov		I-1			I-2			I-3		 -	1-4			I-5			9-1	

~ ~			·		\ - '											, 1			
Remarks		Intake canal	,	:	Small river	(under bridge)		Intake canal			Flume			Flume			Flume		
Canal Discharge(Q)	(ca.m/sec)	0.046	0		0.079	0.054		0	0	٠	600.0	0.008		0.005	0.001		0.067	0.051	
Velocity (V)	(m/sec)	0.19	0		0.24	0.18		0	0		0.30	0.27		0.25	0.09		0.67		
Sectional Area	Area (A) (m ²)	0.24	0		0.33	0.30		0	0		0.03	0.03		0.02	0.01	7 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0.01	0.01	
Canal Cross So	Water Depth(II) (m)	h = 0.40	h = 0		h=0.10 - 0.50	h=0.07 - 0.40		h = 0	h = 0		h = 0.10	h = 0.11		h = 0.10	h = 0.05		h = 0.06	h = 0.07	The second secon
	Canal Cross Section	1,0	- 65			97	9	1.4	0.7			ν.0	03	-	2	002	_	92 C	- Tel
	Starton	-	NO.10			•			(24 + 500)										
	00	-	ĭ I			I-8			6-I			I-10			1-11	- 		1-12	

,							
-1.			Canal Cross Sectional Area	ctional Area	Velocity (V)	Canal	Domon
% %	Station	Canal Cross Section	Water Depth(H) (m)	Area (A) (m²)	(m/scc)	(cu.m/sec)	Nelligi No
	-	<u> </u>	h = 0.18	0.05	0.88	0.044	Flume
1-13		<i>b</i> 0	h = 0	0	0	0	
		0.3					-
-		<u></u>	h = 0.34	0.46	5.17	1.460	Flume
I-14		987	h = 0.27	0.36	2.61	0.940	
		1.35					
-		\alpha \begin{array}{c} \alpha \cdot \\ -\end{array}	h = 0	0	0	0	Intake canal
1-15			h = 0	0	0	0	
		98					
		-	h = 0.16	0.05	0.68	0.034	Flume
1-16		70	h = 0.12	0.04	0.49	0.020	
		833					
		-	h = 0.14	0.042	0.76	0.032	Flume
1-17	-	> 0	h = 0.12	0.036	0.32	0.012	
		-	h = 0.40	0.34	1.78	0.605	Flume
1-18		590	h=0.44	0.37	1.1	0.411	
		580					

	Flume			Irrigation canal			Irrigation canal			Drainage canal			Ų	Ų				
(cu.m/sec)	0.027	0.012		0.450	0.250		0.114	0.082		2.702	1.628			= 1,710 cu.m/sc				
(m/sec)	0.54			0.45	0.38		1.14	1.02		0.59	0.41		l cu.m/sec, ΣQ	O cu.m/sec, ΣQ _O				
Arca (A) (m ²)	0.08		. !	1.00	0.65		0.10	0.08		4.58	5.97				* * * * * * * * * * * * * * * * * * * *			
Mater Depth(II)	h = 0.25	h = 0.14		h = 0.62	h = 0.45		h = 0.20	h = 0.18		h = 1.45	h = 1.24		1st measuremen	2nd measureme	Andrew Community and the second secon			
Canal Cross Section		P.C	03			1.0		(8) (8)			09'L	320		Total				
o. Station		19			30			Post			13							
	Canal Cross Section Water Depth(II) Area (A) (m/sec) (cu.m/sec) (cu.m/sec)	Station Ganal Cross Section (Mater Depth(11) Area (A) (m/sec) (cu.m/sec) (cu.m/sec) (cu.m/sec) (cu.m/sec) (F	Station Ginal Gross Section Water Depth(II) Area (A) (m/sec) (cu.m/sec) (cu.m/sec) (cu.m/sec) (n.m/sec) (n	Station Ginal Gross Section Water Depth(11) Area (A) (m/sec) (cu.m/sec) (cu.m/sec) (cu.m/sec) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m	Station Gunal Cross Section Water Depth(II) Area (A) (m/sec) (cu.m/sec) (cu.m/sec) (m^2) $($	Station Gaund Gross Section Water Depth(II) Area (A) (m/sec) (cu.m/sec) (cu.m/sec) (cu.m/sec) $h = 0.25$ 0.08 0.34 0.027 II $\frac{1}{100}$ $h = 0.14$ 0.04 0.50 0.012 0.012 $h = 0.62$ 1.00 0.45 0.450	Station Ganal Cross Section Water Depth(1) Area (A) (m/sec) (cu.m/sec) (cu.m/sec) (cu.m/sec) (cu.m/sec) $h = 0.25$ 0.08 0.54 0.027 1 $h = 0.14$ 0.04 0.50 0.012 $h = 0.62$ 1.00 0.45 0.450 0.250 $h = 0.45$ 0.65 0.58 0.250	Station Ganal Cross Section Water Depth(11) Area (A) (m/sec) (cu.m/sec) (cu.m	Station Gaust Gross Section Water Depth(II) Area (A) (m/sec) (cu.m/sec) (cu.	Station Caual Cross Section Water Depth(II) Area (A) (m/sec) (cu.m/sec)	9 100 100 100 100 100 100 100 1	Station Canad Cross Section Water Depth(11) Area (A) (m/sec) (cu.m/sec) 1	Station Gauss Section Water Depth(11) Area (A) (m/sec) (cu.m/sec)	Station Ginnal Gross Section where Depth(11) $\binom{nn}{n}$ $\binom{n}{n}$ $\binom{nn}{n}$ $\binom{nn}{n}$ section where Depth(11) $\binom{nn}{n}$ $\binom{nn}{n}$ $\binom{nn}{n}$ $\binom{nn}{n}$ section $\binom{nn}{n}$	Sint long Gross Section water bopth(11) $A_{\text{res}}^{\text{res}}(A)$ (m/s_{oC}) $(cu.m/s_{\text{oC}})$ (m/s_{oC}) $(cu.m/s_{\text{oC}})$ $(cu.m/s_{$	Nation Canal Cross Section Nater Depth(11) (m ²) (11/sec) (cu.m/sec)	Station Canal Cross Section Water Depth(II) Area (A) (m/sec) (cu.m/sec)	Station Gaund Cross Section Witter Depth(11) Avea (A) (m/sec) (cu.m/sec) (cu.m/sec) (m²) (m²) (m²) (m²) (m²) (m²) (m²) (m²

FIGURE D 9-1 CALCULATION OF CROP WATER REQUIREME & FOR PADDY RICE

ful	Aug.	Sep.	Oct.	Nov.	Dec.	Jan	Feb.	Mar	Apr.	Мау
Jun 351		11 111 1	11 111 1	11 111	1 11 111	1 11 111 1	11 111	1 11 111	1 11 111	1 11 111
W1 = 58.7	W2 = 54.7	/a = 60.7	V4 = 63.9	W5 = 5 .8		P=-100	Des 50mm	W1 - 67 4	W2 = 86 B	$W_3 = 84.7$
p = 150mm P = 50mm l1 l2	13 14 15 16	17 ls l9	l10			F2-160)mm P1=50mm	l1 l2 l3	l4 15 16	l7 l8 l9
	Wet Season Ric	*						Dry 5	Season Rice	

lt.	·m	Wet Season Rice				tem	Dry Season Rice		
Month		Equation for 10-day Weighted Irrigation	Water Requirement	(mm/day)	Month		Equation for 10-day W	eighted Irrigation Water REquirement	(mm/day)
Pinini	\rightarrow				,		Wr = P2 × 10/20	= P) x 10'20	9.00
June		$Wr = P_2 \times 10/35$	= P ₂ x 10/35	4.28	February	11		= 110P2 + 4P1)/20	10 00
Joine	111	$Wr = P_2 \times 10/35 + P_1 \times 4/35$	$= (10P_2 + 4P_1)/35$	4.86	1	111	Wr = P1 x 8/20	= 8P1 20	2.00
		Wr = P2 x 10/35 + P1 x 10/35	= (P ₂ + P ₁) 10/35	5 71		ī	Wr = P1 x 8/20 + I1 x 10/20	= (8P1 + 10W1)/20	5.37
July	11	$Wr = P_2 \times 5/35 + P_1 \times 10/35 + I_1 \times 10/351$	= (5P2 + 10P1 + 10W1)/35	5 25	March	11	Wr = 11 x 10/20 + 12 x 10/20	= (20W ₁)/20	6 74
331,	111	Wr = P1 x 11/35 + I1 x 11/35 + I2 x 11/35	= (11P1 + 22W1)/35	5.26		111	10 X 10/20 10 X 1//42	= 21W1/20	7.08
		Wr = l1 x 10/35 + l2 x 10/35 + l3 x 10/35	= (20W1 + 10W2)/35	4.92		1	141 13 X 8/20 1 14 K 18/20	$= (9W_1 + 10W_2)/20$	7.37
August	11	$Wr = 11 \times 4/35 + 12 \times 10/35 + 13 \times 10/35 + 14 \times 10/35$	= (14W1 + 20W2)/35	5.47	April	11	Wr = 14 x 10/20 + 15 x 10/20	$= 20W_2/20$	8.68
Cman.	111	$Wr = 12 \times 4/35 + 13 \times 11/35 + 14 \times 11/35 + 15 \times 11/35$	= (4W1 + 33W2)/35	5 83	•	111	VVI = 15 X 10/20 1 10 X 10/20	= 20W2/20	8 68
<u> </u>		Wr = 13 x 4/35 + 14 x 10/35 + 15 x 10/35 + 16 x 10/35	= (24W ₂ + 10W ₃)/35	5 49	}	<u> </u>	Wr = 16 x 10/20 + 17 x 10/20	= (10W2 + 10W3)/20	8 58
September	11	$Wr = 14 \times 4/35 + 15 \times 10/35 + 16 \times 10/35 + 17 \times 10/35$	= (14W ₂ + 20W ₃)/35	5.66	May	Ħ	Wr = 17 x 10/20	= 10W3/20	4.24
ochtember		$Wr = 15 \times 4/35 + 16 \times 10/35 + 17 \times 10/35 + 18 \times 10/35$ $Wr = 15 \times 4/35 + 16 \times 10/35 + 17 \times 10/35 + 18 \times 10/35$	= (4W2 + 30W3)/35	5.83		[‡]			
<u> </u>	<u></u>	Wr = $16 \times 4/35 + 17 \times 10/35 + 18 \times 10/35 + 19 \times 10/35$	= (24W3 + 10W4)/35	5.99	1	ı			
October	- 11	$Wr = 17 \times 4/35 + 18 \times 10/35 + 19 \times 10/35 + 110 \times 10/35$	= (14W3 + 20W4)/35	6.08	June	11			
	111		= (4W3 + 22W4)/35	4.71	1	111			
	1	Wi = 19 x 4/35 + 110 x 10/35	= (14W4)/35	2.56		F	P1	(1) First irrigation for land soaking	
November	11	Wr = 110 x 4/35	= 4Wa/35	0 73_	_		1 1 1 1 1 1 1 1 1	•	
	111				_		(1) (2) (3) (4) (5) 8a 8a 7a 7a	(2) Land Plowing	-1
1					-			(3) First harrowing and second irriga	ition
December	11				1			(4) Second harrowing	
	111				1			(5) Transplanting	
					}				
		Note: P; Additional water supply for land soakii	and land preparation (mm)	•	_		30 days		
		Note: P; Additional water supply for land soakii W; Water requirement (mm/10-day)	ig and juris proparation mini				35 days 30 days		
		y, yater requirement time, to day;					35 days 30 days		

ILLUSTRATION OF WORKING SCHEDULE FOR LAND SOAKING AND PREPARATION

Net Amount of Water to be Replaced for Crops (Corn, Groundnuts) -Existing Irrigated Area and High and Downstream Area-Table D 10-1

(7)	Net Amount of Water to be Replaced (mm)	71.3			
(9)	TRAM <u>2/</u> (mm)	71.3			
(5)	Restricting Layer of Moisture	*			
(4)	(2)/(3) (mm)	71.3	97.3	157.0	337.0
(3)	Ratio of Moisture Extraction	0.4	0.3	0.2	0.1
(2)	Available ¹ / Moisture (AM) (mm)	28.5	29.2	31.4	33.7
(1)	Depth (cm)	0 - 12.5	12.5 - 25.0	25.0 - 37.5	37.5 - 50.0

Note: 1/: AN = 1/100 (Fc - Wp)·Sa·D Fc: Field Capacity (%) Wp: Wilting Point (%) Sa: Aparent Specific Gravity (g/cm³)

2/: TRAM: Total Readily Available Moisture

D: Depth (mm)

Net Amount of Water to be Replaced for Crops (Garlic, Vegetable, Soybeans) -Existing Irrigated Area and Hihg and Downstream Area-Table D 10-2

(7)	Net Amount of Water to	be Replaced (mm)	57.0			-
9)	č	TRAME/ (mm)	57.0			
(5)	Restricting Layer of	Moisture	*			
(4)		$\frac{(2)/(5)}{(mm)}$	57.0	78.0	123.0	251.0
(3)	Ratio of Moisture	Extraction	0.4	0.3	0.2	0.1
(2)	Available <u>l</u> / Moisture	(AM) (mm)	22.8	23.4	24.6	25.1
(1)		Depth (cm)	0 - 10	:	20 - 30	30 - 40

Note: $1/: AM = \frac{1}{100} (Fc - Wp).Sa.D$

Fc: Field Capacity (%)
Wp: Wilting Point (%)

Sa: Aparent Specific Gravity (g/cm³)

D: Depth (mm)

Table D 10-3 Net Amount of Water to be Replaced for Crops (Tobacco) -Existing Irrigated Area and High and Downstream Area-

(2)	Net Amount of Water to be Replaced	(mm)	86.5				
(9)	TRAM2/	(mm)	86.5				
(5)	Restricting Layer of Noisture		*				
(4)	(2)/(3)	(mm)	86.5	120.0	186.5	391.0	
(3)	Ratio of Moisture Extraction		0.4	0.3	0.2	0.1	
(2)	Available ^{1/} Moisture (AM)	(mm)	34.6	36.0	37.3	39.1	
(1)	Depth	(ma)	0 - 15	15 - 30	30 - 45	45 - 60	

Note: $1/: AN = \frac{1}{100} (Fc - Np) \cdot Sa \cdot D$

Field Capacity (%) Wilting Point (%)

Wp: Wilting Point (%)
Sa: Aparent Specific Gravity (g/cm³)

D: Depth (mm)

Net Amount of Water to be Replaced for Crops (Tobacco) -Right Bank Area-Table D 10-4

(2)	Net Amount of Water to be Replaced (mm)	32.8		·	
(9)	TRAM2/ (mm)	32.8			
(5)	Restricting Layer of Moisture	*			
(4)	(2)/(3) (mm)	32.8	43.7	60.5	113.0
(3)	Ratio of Moisture Extraction	0.4	0.3	0.2	0.1
(2)	Available 1/Noisture (AM)	13.1	13.1	12.1	11.3
(1)	Depth (cm)	0 - 12.5	12.5 - 25.0	25.0 - 37.5	37.5 - 50.0

Note: 1/: AM = $\frac{1}{100}$ (Fc - Wp)·Sa·D

Fc: Field Capacity (%)

Wp: Wilting Point (%)

Sa: Aparent Specific Gravity (g/cm³)

D: Depth (mm)

Table D 10-5 Net Amount of Water to be Replaced for Crops (Garlie, Vegetable, Soybeans) -Right Bank Area-

(7)	Net Amount of Water to be Replaced (mm)	26.3			
(9)	TRAM2/(mm)	26.3			
(5)	Restricting Layer of Moisture	*			
(4)	(2)/(5) (mm)	26.3	35.0	48.5	90.0
(3)	Ratio of Moisture Extraction	0.4	0.3	0.2	0.1
(2)	Available ¹ /Moisture (AM) (mm)	10.5	10.5	9.7	9.0
(1)	Depth (cm)	0 - 10	10 - 20	20 - 30	30 - 40

Note:
$$1/: AM = \frac{1}{100} (Fc - Wp) \cdot Sa \cdot D$$

Fc: Field Capacity (%)

Wp: Wilting Point (%) Sa: Aparent Specific Gravity (g/cm³)

D: Depth (mm)

Net Amount of Water to be Replaced for Crops (Corn, Groundnuts) -Right Bank Area-Table D 10-6

(2)	Net Amount of Water to be Replaced (mm)	32.8			
(9)	TRAM2/ (mm)	32.8			
(5)	Restricting Layer of Moisture	*			
(4)	(2)/(3) (mm)	32.8	43.7	58.0	113.0
(3)	Ratio of Moisture Extraction	0.4	.0.3	0.2	0.1
(2)	Available1/ Moisture (AM) (mm)	13.1	13.1	11.6	11.3
(1)	Depth (cm)	0 - 12.5	12.5 - 25.0	25.0 - 37.5	37.5 - 50.0

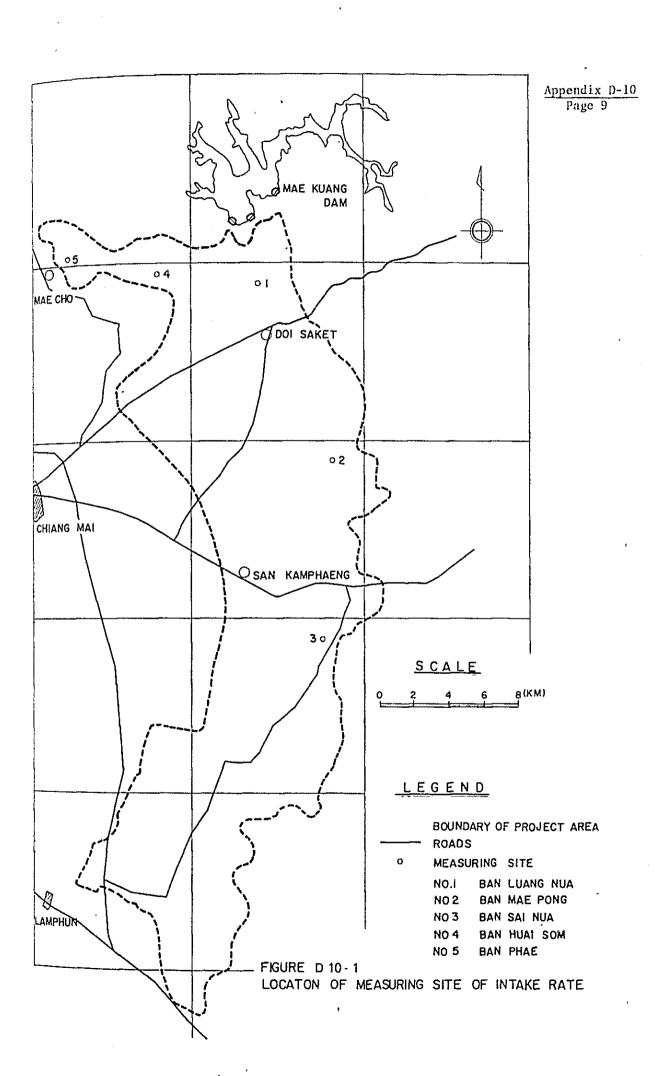
Note: $1/: AM = \frac{1}{100} (Fc - Wp) \cdot Sa \cdot D$

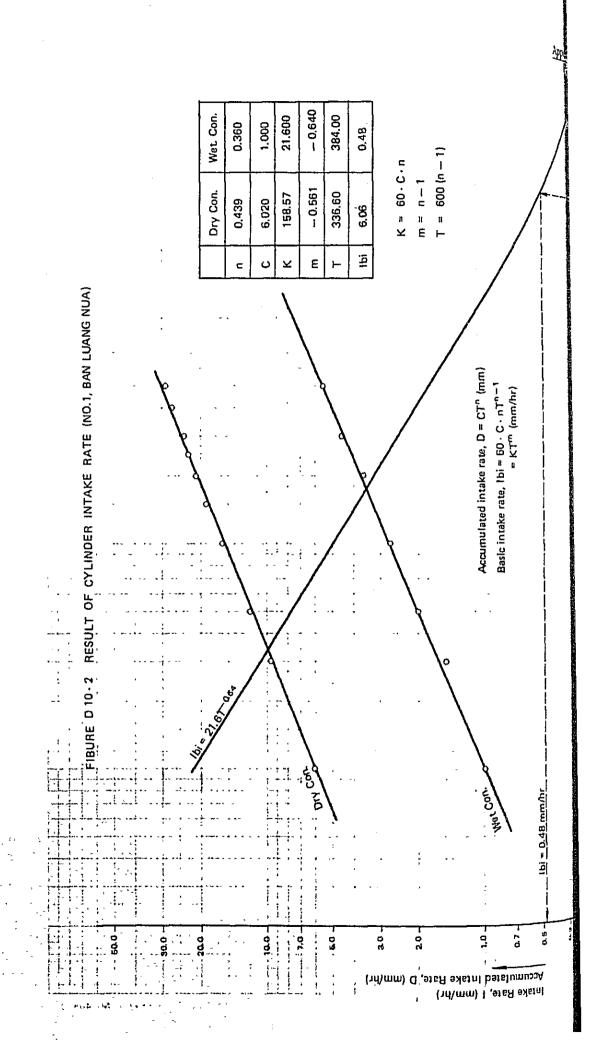
Wp: Wilting Point (%)

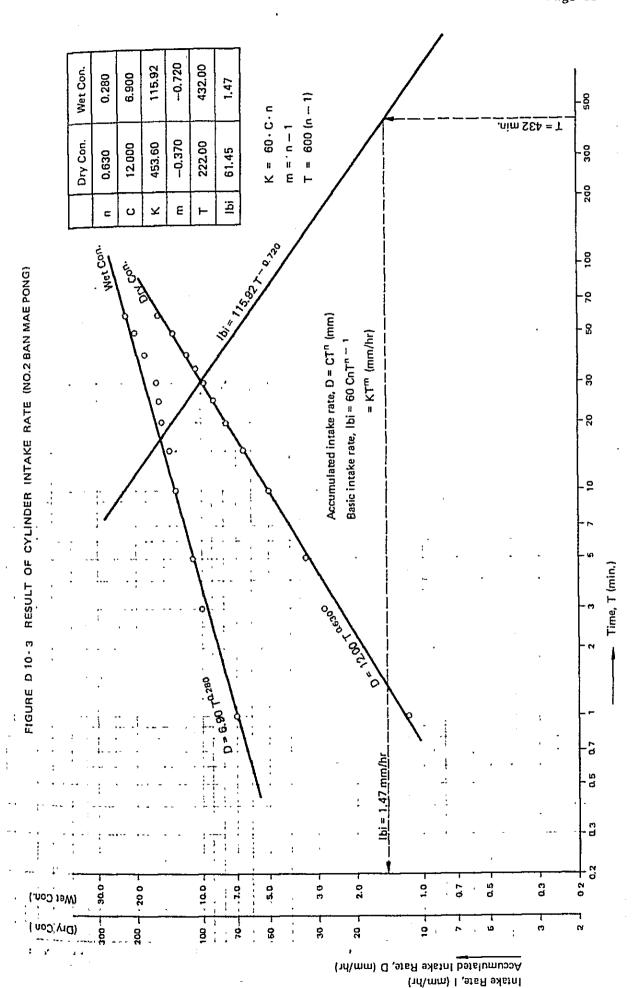
Fc: Field Capacity (%)

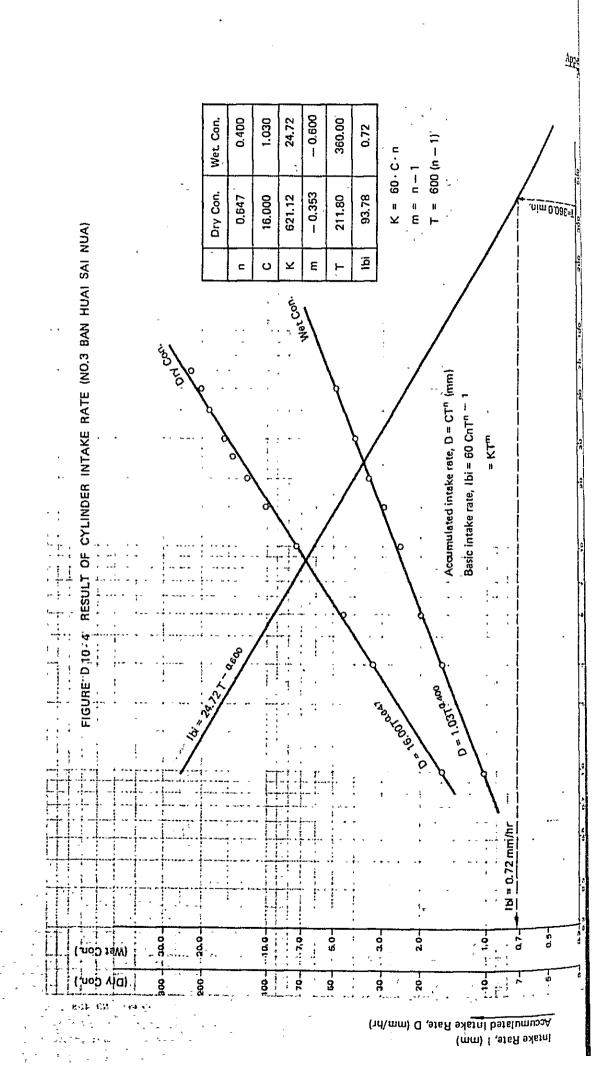
Sa: Aparent Specific Gravity (g/cm³)

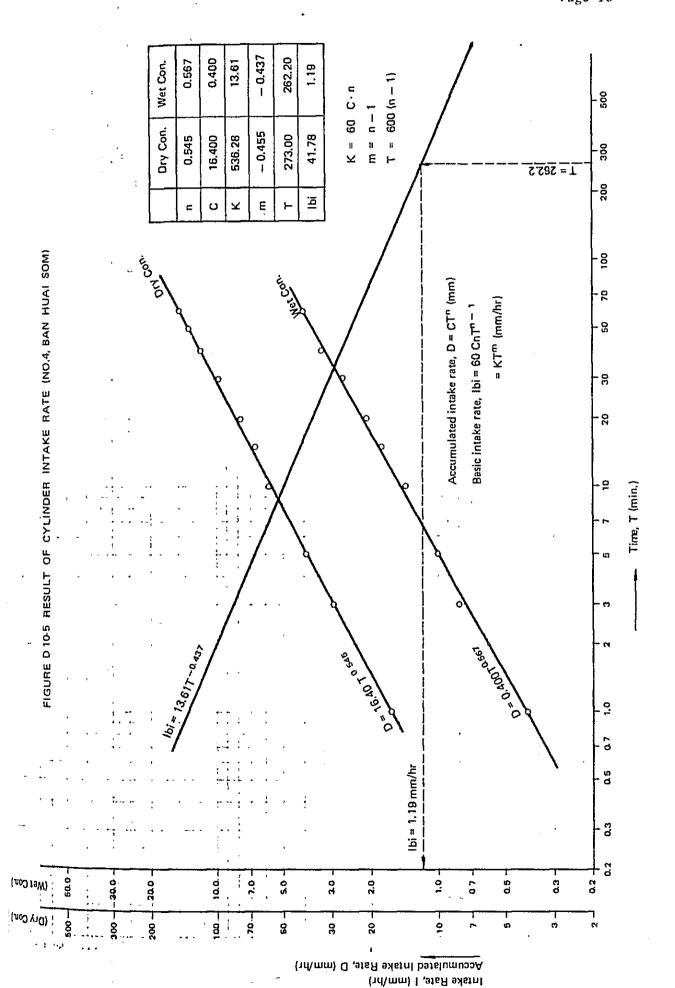
D: Depth (mm)

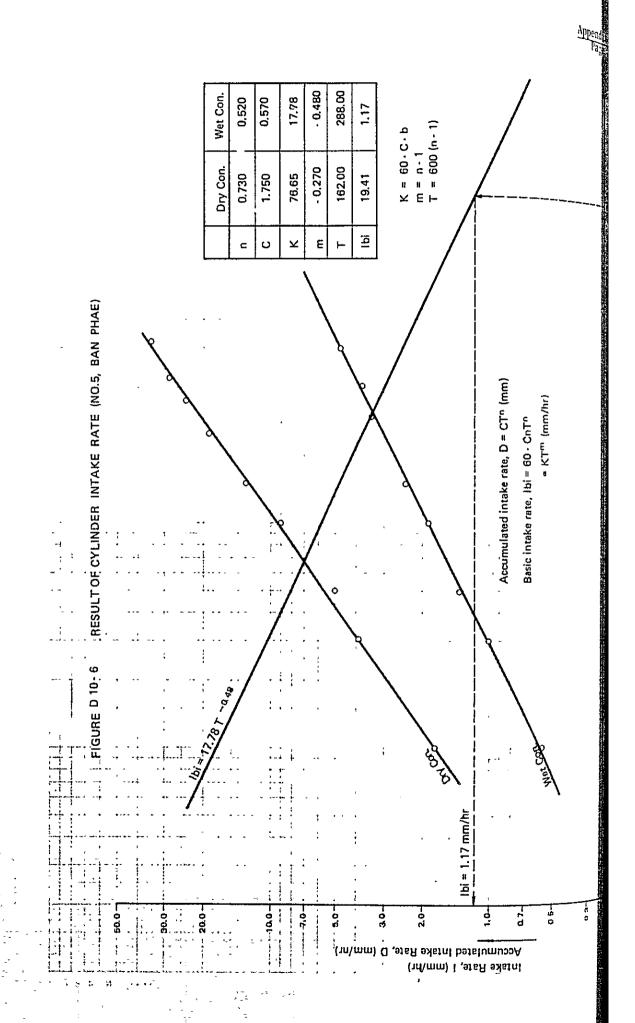

Note: $\frac{1}{2}$ P = (Sr - Sa) x 100/Sr (*) $\frac{2}{2}$ Wp = 0.36 Fc^{1.08}

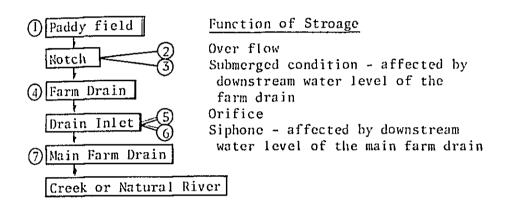

.


Wilting 2/ Point (Mp)	18.6 16.2 16.6 15.1 14.2	17.7 15.4 14.3 15.5 15.5	17.8 18.3 17.9 17.6 8,71	18.0 18.0 17.4 17.4 18.7	13.0 16.6, 18.7 19.6 20.5	0.00 10.00 16.50 16.8	16.2 15.1 16.1 16.3 17.9
Field Capacity (Fc)	38.5 34.0 54.8 31.8	3,00 3,00 3,00 3,00 3,00 3,00 3,00 3,00	37.0 37.8 38.1 37.2	37.4 36.5 36.5 37.1	22.7 38.7 58.7 40.5	27.5 25.9 24.5 40.5	55.9 3.1.9 5.4.7 5.4.1 8.5
Prosity (P) 1/	56.6 58.8 58.8 58.7 1.8	2 4 4 4 8 8 4 4 4 8 8 4 4 4 8 8 4 4 4 8 8 4 8	57.3 58.4 50.3 51.5	58.6 56.1 50.9 50.4	4.6.6 4.4.8 4.9.3.3 50.0	45.6 59.2 46.6 47.2	50.8 47.8 47.5 47.6 48.0
Gravity (Sa)	1.12 1.20 1.08 1.07 1.07	1.34 1.37 1.45 1.45	1.21	1.20 1.17 1.33 1.35 1.35	1.40 1.49 1.37 1.35	1.63 1.43 1.43 1.38	1.29 1.39 1.40 1.41
Real Specific Gravity (Sr)	2.58 2.61 2.62 2.65	2.59 2.61 2.64 2.64 2.65	2.67 2.69 2.70 2.71 2.72	2.66 2.57 2.73 2.73		2.68 2.68 2.69 2.69	2,63 2.65 2.65 2.67 2.68
So 11 Depth	10 30 40 50	10 20 30 40 50	10 20 30 40 50	10 20 30 40 50	10 30 40 50	10 20 30 40 50	10 20 30 40 50
Condition	bry Condition	Wet Condition	Dry Condition	Wet Condition	Ory Condition	Mct Condition	iditions)
Location	Mo.1, Ban Luang Nua		No.2, Ban Mac Pong		Mo.3, Ban Ihaai Sai Nua		Average (Net Conditions)


Table D 10-8 Physical Features of Soil (Right Bank Area)


Location	Condition	Soli Depth (cm)	Real Specific Gravity (Sr) (g/cm ¹)	Aparent Specific Gravity (Sa)	$\frac{Prosity(P)^{1/2}}{(\$)}$	Field Capacity (Fc)	Willing 2/ point (Wp) (%)
No.4, Ban Huai Som	Dry Condition	10	2.62	3.	41.2	12.6	5.55
		20	2.63	1.51	42.6	11.8	5.17
		30	2.62	1,49	43.1	11.4	4.99
		40	2.62	1.52	42.0	11.0	4.80
		20	2.68	1.56	41.8	11.6	5.08
	Wet Condition	10	2.62	1.51	42.3	10.1	4.37
		20	2.63	1.57	40.3	10.3	4.47
		30	2.60	1.57	39.6	10.3	. 4.47
		40	2.61	1.55	40.6	9.6	4.14
		20	2.65	1.56	41.1	10.8	4.70
No.5, Ban Phae	Ory Condition	10	2,61	1.32	49.4	13.1	5.79
		20	2.62	1.40	46.6	14.3	6.37
		30	2.68	1.41	47.4	13.5	5.98
		40	2.62	1.48	43.5	11.6	5.08
		20	2.59	1.53	40.9	10.3	4,47
	Wet Condition	01	. 2.56	1.50	41.4	14.6	6.51
		20	2.58	1.48	42.6	14.0	6.22
		30	2.59	1.47	43.2	12.3	5.41
		40	2.59	1.51	41.7	11.4	4.99
-		20	2.62	1,53	41.6	9.6	4.23
Average	Wet Condition	10	2.59	1.51	41.9	12.4	5.44
		20	2.61	1.53	41.5	12.2	5.35
		30	2.60	1.52	41.4	11.3	4.94
		40	2.60	1.51	41.2	10.5	4.57
		20	2.64	1.55	4.14	10.3	4.47
	Note: 1/ P - (Sr		- Sa) x 100/Sr (4)	2/ Wp = 0.30 Fc 1.34	FC 1 . 0 .		





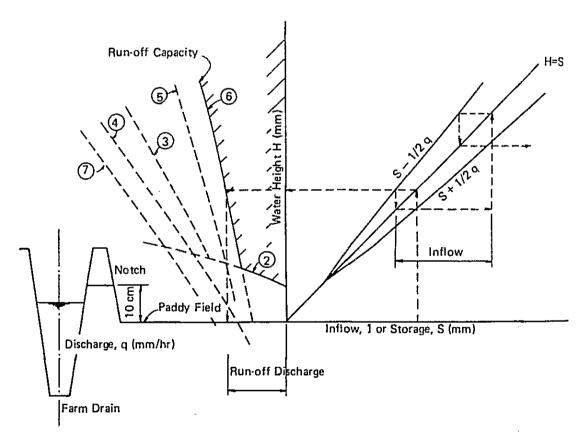
Run-off Mechanism of Paddy Fields

Normally, paddy field has a function of storage of rainfall. The stored water in the paddy field is discharged through a notches provided at each plot to a terminal drainage canal of farm drain. The farm drain is connected to a main farm drain by drain inlet which is facilitated by means of pipes. The notch can control the drainage discharge from the Paddy fields, and the drain inlet at the end of farm drain can control the discharge to the main farm drain. Considering these drainage mechanism, the drainage system can be illustrated as below and Figure D 11-1.

In the above drainage mechanism in the paddy fields, the most critical capacity is caused by the notch under the over flow condition and the drain inlet in syphone conditions which are affected by the water level in the main farm drain.

In a given time interval, the difference between inflow and outflow is equal to the change in storage of the Paddy fields;

$$I - O = \Delta S$$


or if expressed in definite time intervals,

$$\begin{split} 1/2(I_1 + I_2)\Delta t &- 1/2(O_1 + O_2)\Delta t = S_2 - S_1 \\ 1/2(I_1 + I_2)\Delta t &= (S_2 - S_1) + 1/2(O_2 + O_1)\Delta t \\ &= (S_2 + \frac{1}{2}O_2\Delta t) - (S_1 - \frac{1}{2}O_1)\Delta t \end{split}$$

where, the subscripts indicate the routing periods of paddy storage, and I, O, and S are instantaneous values of inflow, outflow, and storage respectively, at the beginning of the routing periods indicated. In the case of unit area of paddy fields, the storage, S should be equal to water depth, II and unit time, t equals to one (1) hour, inflow, I equals to hourly rainfall (mm/hr) and the outflow, O equals to discharge from paddy field, q (mm/hr) which are considered as run-off capacity controled by notches and drain inlets mentioned previously.

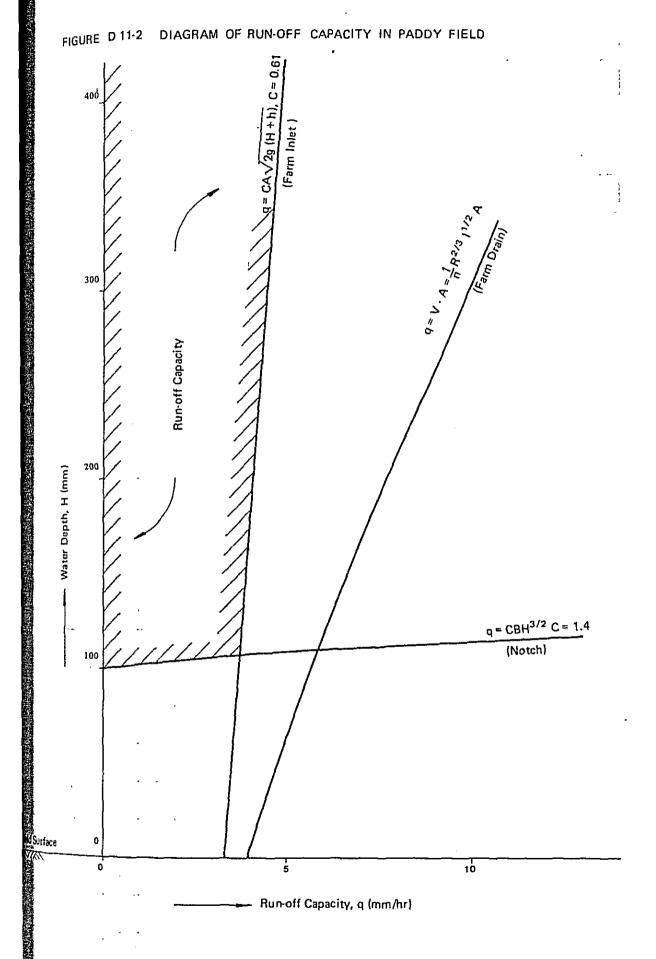
From the above equations, the following figure can be drawn to estimate the q and S by using the obtained hourly rainfall.

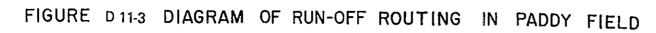
FIGURE D 11-1 ILLUSTRATION OF RUN-OFF MECHANISM OF PADDY FIELD

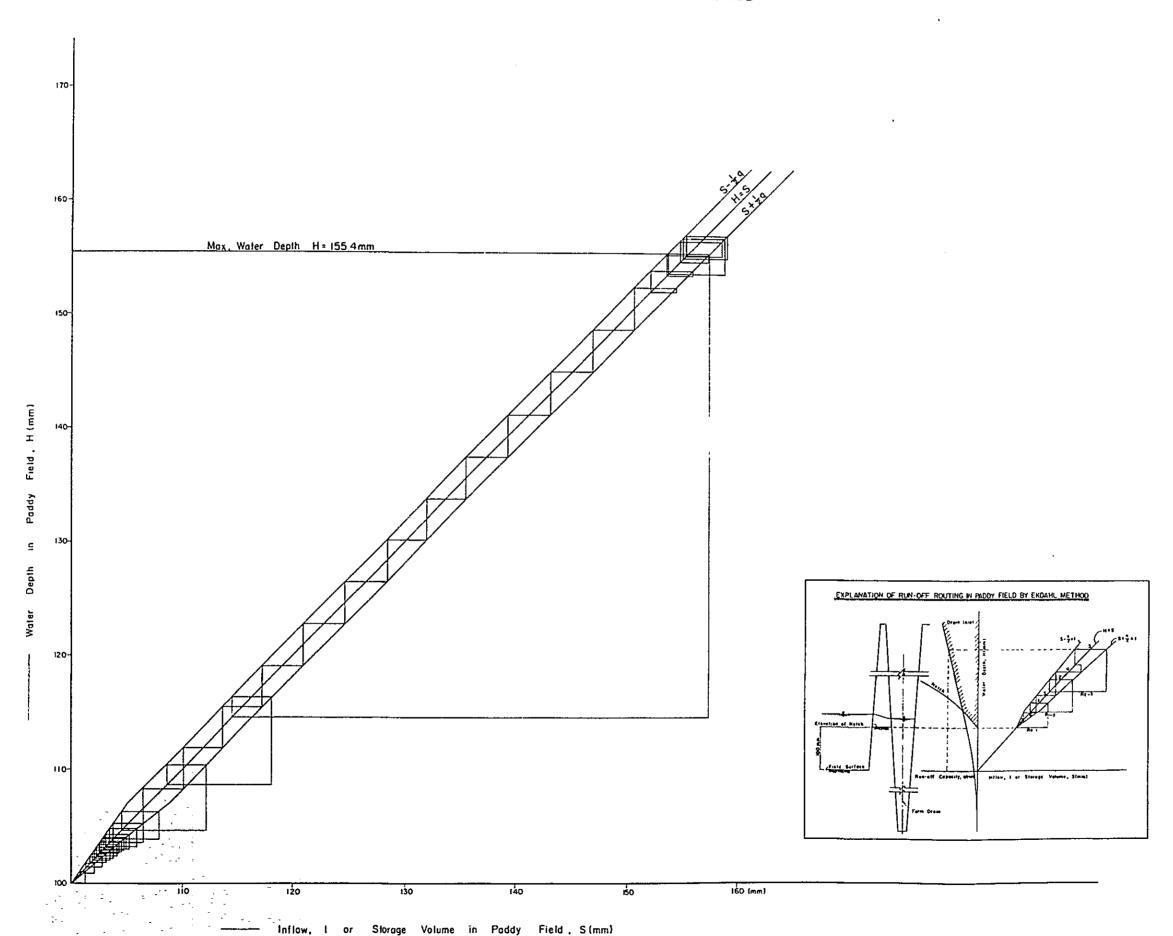
According to the field survey, the average height of farm dike $_{15\ 30\ cm}$, and the size of notch is 30 cm width and 20 cm depth $_{10\ cated}$ at 10 cm height above field surface.

Run-off discharge in the Paddy field was calculated by applying the above mentioned procedures. Figure D 11-2 indicates run-off capacity controled by notches and drain inlets provided in fields, and the diagram of run-off routing by using the obtained run-off capacity and design rainfall is shown in Figure D 11-3.

As the results of studies on the run-off discharge, the maximum run-off discharge, which is caused by the maximum spot one day rainfall of 108 mm, corresponding to the return period of 5-year, is estimated at 1.102 cu.m/sec/100ha, equivalent to 95.2 mm/24 hr. Table D 11-1 and Figure D 11-3 show the result of these studies.


Table D 11-1 Results of Run-off Routing in Paddy Fields


Rainfall (III) 1.3 1.3 1.4 1.4 1.6	in Paddy Field (mm)	(H	(1001/2001)	Tine	Dain 6211	th Dadda Coold		m) (cu.m/sec/100ha)
			(cu.m/sec/100na)		(<u>III</u>)	(mm)		
	100.9	0.45	0.1351/	_	•	147.0	3.89	1,091
	101.6	0.70	0.204	7	•	143.2	3.88	1.088
	102.0	96.0	0.282	м	•	139.5	3.86	1.082
	102.2	1.15	0.329	7	•	135.7	3.84	1.077
	102.4	1.22	0.349	Ŋ	•	131.9	3.81	1.068
	102.7	1.28	0.366	¢		128.0	3.80	1.066
	102.8	1.35	0.385	7		124.3	3,78	1.060
	103.0	1.38	0.393	80		120.6	3.77	1.057
	103.1	1.39	0.396	6	•	116.8	3.76	1.054
	103.3	1.41	0.402	1.0	,	109.3	3.74	1.049
	103.4	1.43	0.407	11	ı	105.8	2.80	0.787
	103.6	1.48	0.421	12	•	103.3	1,43	0,407
	104.2	1.90	0.538	13	•	9.101	0.98	0.282
	104.7	2.20	0.621	7	•	101.1	0.70	0.204
	105.3	2.50	0.704	15	•	100.6	0.50	0.149
	108.7	3.69	1.035	16	•	100.3	0.30	0.093
	114.3	3.75	1.052		•			
	153.6	3.90	1.093		•			
	155.0	3.92	1.099					
20 3.7	155.4	3,93	1.102					
	155.2	3,92	1.098					
	153.9	5.91	1.096					
	152.5	3.91	1.096					
	150.8	5.90	1,093					


Note: 1/: inclusive of the following base flow;

 $(4.4 \text{nm} + 1.5 \text{nm}) \times 10^{-3} \times 100 \text{ha} \times 10^{\circ} \times 0.1 \approx 0.010 \text{ cu.m/sec/100ha} = 86.400 (1-0.2)(1-0.1)(1-0.1)$

where; 4.4mm; Average evapotranspiration during wet season 1.5mm, Average percolation rate per day

.

APPENDIX E. RESERVOIR PLAN, HYDRO-POWER GENERATION AND FLOOD CONTROL

APPENDIX E. RESERVOIR PLAN, HYDROPOWER GENERATION AND FLOOD CONTROL

Appendix E-1 Reservoir Plan

- Table E 1-1 Preliminary Water Balance Study for Reservoir during First Stage Survey
- Table E 1-2 Result of Final Water Balance Study (Reservoir Elevation)
- Table E 1-3 Result of Final Water Balance Study (Reservoir Volume)
- Table E 1-4 Result of Final Water Balance Study (Evapolation Loss)
- Table E 1-5 Result of Final Water Balance Study (Spillage)
- Table E 1-6 Result of Final Water Balance Study (Shortage)

Appendix E-2 Hydropower Generation

- Table E 2-1 Dimensions of Hydropower Plants
- Table E 2-2 Monthly Power Production at Right Saddle
 Dam Plant
- Table E 2-3 Monthly Power Production at Left Saddle Dam Plant (Alternative-1)
- Table E 2-4 Monthly Power Production at Main Dam Plant (Alternative-2)
- Table E 2-5 Monthly Power Production at Left Saddle Dam Plant (Alternative-2)
- Table E 2-6 Monthly Power Production at Main Dam Plant (Alternative-3)
- Table E 2-7 Monthly Power Production at Left Saddle Dam Plant (Alternative-3)

Appendix E-3 Flood Control

- Table E 3-1(1) Flood Control Simulation for Before Project on 1 to 2 Years
- Table E 3-1(2) Flood Control Simulation for After Project on 1 to 2 Years
- Table E 3-2(1) Flood Control Simulation for Before Project on 1 to 5 Years
- Table E 3-2(2) Flood Control Simulation for After Project on 1 to 5 Years

Table	E	3-3(1)	Flood Control Simulation for Before Project on 1 to 10 Years
Table	E	3-3(2)	Flood Control Simulation for After Project on 1 to 10 Years
Table	E	3-4(1)	Flood Control Simulation for Before Project on 1 to 20 Years
Table	E	3-4(2)	Flood Control Simulation for After Project on 1 to 20 Years
Table	E	3-5(1)	Flood Control Simulation for Before Project on 1 to 50 Years
Table	E	3-5(2)	Flood Control Simulation for After Project on 1 to 50 Years
Table	E	3-6(1)	Flood Control Simulation for Before Project on 1 to 100 Years
Table	E	3-6(2)	Flood Control Simulation for After Project on 1 to 100 Years

	Rese	rvoir		Demand	Sho	Shortage	Spl	1380	Years	Power	Power Generation	lon	•
Study	Cap. (HCN)	Cap. Power Cap. (HCN) (KM)	Penand (NOK)	Grop intensity in Dry S. (1)	Years (vrs)	Annual Shortage (MCH)	Years (vrs)	Annual Irs Spillage (RCH)	in FSL (vrs)	Average Read (m)	Average Power (KN)	Annual Production (AMI)	Acceptable ?
	396	5,900		100	١.			,	,	,	'	,	*
1-1-2	: :	:	282	80	•	•	•		,	•	•	•	×
7 - 7	: =	: :	272	2 Z	, .	٠;		' ;	٠.			1000	# 1
5-1-1	: #		25.5	209	5 17	, c		7 8	n =	27.0	1,000	15.700.000	××
9-1-1	z	ε	2	i ka	, _* 0	£.	1 -7	7 73	, . 5	3.5	2,090	18,310,000	. 0
1-1-7	<u>:</u>	:	222	20	F-1	10	**	47	~	36.0	2,220	19,400,000	٥
1-2-1	396	5,900	251	100	'n	99	e;	"	ທ	27.3	1,790	15,680,000	×
C - 2 - 1	: :	: :	239	C	PFS I	62	₩ 3 ·	:S:	us 1	31.3	2,010	17,570,000	o
7-2-1	: :	: :	227	S 1	c.i	54	7	7	1	35.2	2,180	000'080'61	0 (
5-2-1	: 1	: :	17.6	? ?		• 1		• 1	٠,			. 1	9 0
7	•	. ,	?	2		•	•	•	•				:
2-1-1	325	5,200	319	001	•	•	•	1	•	•	•	•	×
7-1-2	: :	: :	187	5 ×		•		•	•		• 1	4	×ı
2-1-2	2	=	263	2 2	· <u>c</u>	. 0	ı r.	, 00	٠	20.6	1, 440	12.580 000	« »
2-1-5	=	•	253	9	œ	90	· **	, n.t.	רטז	60,	1,530	13,390,000	: ×
7-1-6-7	•	ŧ	234	55	150	80.5	· **	77	\$	28.2	1,790	15,700,000	•
7-1-2	ı	=	225	20	rt	32	47	છ	1	31.4	1,940	16,980,000	٥
2-2-1	325	5,200	251	100	9	5.5	m	17	'n	23.0	1,530	13,340,050	×
2-2-2	:	£	239	06	٣	7.7	7	45	ð.	26.3	1,700	14,850,000	٥
2-2-3	: :	z :	227	2 :	~1	3.	-7	83	*	30.6	1,900	16,620,000	0 0
2-2-4	: :	: :		2 5	•	• 1			٠ ،	. ,	۴ ,	. ,	
			3	2 ;	•	•	•	;			1		; ', ;
	263	7,600	319	201		Þ	* 1	,					~ }-
7-1-5	: =	: :	187	5 2	• 1								< ×
7-1-7	:	=	26.3	2 2	7	60	м	- 20 -1	**	17.6	1,230	10,720,000	: *
3-1-5	=	:	253	09	9	5.7	1.73	6.7	гv	19 3	1,300	11,410,000	×
3-1-6	:	Ξ	234	55	12	70	-7	09	1	23,3	1,510	13,180,000	٥
	=	=	225	20	••	34	Ş	47	œ	26.8	1,670	14,620,000	o
111 3-2-1	263	9,600	251	100	9	47	٠	5	עז	19,5	1,300	11,370,000	×
3-2-2	2 :	:	239	8	us i	ייי	च (22	r 1	71.7	1,410	12,380,000	×
3-2-3	= =	: :	777	2 U	•	7	Λ.	7	c	ć.	000'1	20.	.
2-7-5	: =	:	212	2 2		• •	٠,			•	•	. 1	. 0
		1 900	1012	100			: 	,				:	
2-1-4	;=	; ;	281	808	•	•	•	,	,	•	•	•	: ×
4-1-3	=	ŧ	272	75	• ;	* ;	• •	• !	* 1	1 1	1 4	• ;	
4-1-4	= :	: :	263	2.5	- :	£ ÷	- , -	7 4	יט י	8 4	000	8,980,000	
4-1-5	: :	: :	457	2 2	7	; <u>-</u>	, n	'n	o or	. «	1 230	000,025,01	
4-1-7		=	225	205	'n	60		in 4	6	21.6	1,360	11,940,000	. 0
ΛI	101	1	120	001	-	44	4	7	٠	7 91	000	0 500 000	
4-2-1) = -	005.4	230	96	6	07	run) w	5 ~	17.8	1,170	10.220.000	< ×
4-2-3	=	=	227	80	m	55	9	49	80	20.8	1,320	11,580,000	-
4-2-4	=	=	221	75	•	,	•	•	,	•	1	•	c
4-2-5	=	z	215	ይ	•	•	•	•		•	•	•	٥
						•		dable Case	for deca	ding the Re	Reservair	and James Costs	<u>.</u>
	Note:		100 X	t acceptable)		Reservoir Capacity = 325 MCM	testy = 3	25 MCH			
		: not simulated		•			Dep	Demind Scale	* 2	34 - 239 K	HCH/annum		

(Simulution Period: 28 years 1952 - 79)

Tablo E 1-1 Preliminary Water Sulance Study for Reservoir (Arring lirat Stage Survey

Table E 1-2 Result of Final Water Balance Study (Reservoir Elevation)

	Annua 1	0.6	~	5.6	3	7.2	7	7.7	378.50	'n	ζ.	378.00	_:	_	~:		~:	~:		_	~:	-:	585.47	1.2	9.	9.	379.24	•	378.27	379.13	390.00 350.00	
MSL, m)	Mar.	386.34	386.77	384.18	385,14	385.12	381.50	376.37	377.78	372.43	379.07	373.82	376.86	380.55	378.65	371.99	369.24	350.00	350.00	370.16	382.22	380.68	0	380.46	386.51	c_1	377.09			377.23	386.77	Case 4
(Unit:	Feb.	φ.	388.13	386.89	ç.	O.	384.52	$\vec{}$	381.34	4	Ci.	377.63		α	7	13	7	ব	350.00	374.21	385.46		4		9	383.11	580.39	385.35	375.14	580.44	388.89 350.00	4.
	Jan.	390.00	390.00	388.90	∞	S	r.	5.	383.53	•		380.24										385.48	390.00		0	4	81.4		377.07	582.74	350.00	; (1 0
	Dec.			389.17			ø.	382.63	383.43			380.71			384.48	379.58	376.99	362.90	356.29	377.17	387.56		0.		390.00	385.39	381.05		377.73	582.95	350.00 356.29	
	Nov.	90.	390.00	388.64	89.5	390.00	πi	10	382.82	3	383.22	380.41	7	140	C1			361.96				584.42	0	385.63	0	Ç	Ø	386.44	^	582,32	390.00 355.13	9 2 8
	Oct.	-0.00		588.84	389.01	389.59	386.90		382.34	9	382.40		1.3	ø.				362.37				383.07		384.84		384.56	380.11	386.60	378.65	581.65	390.00 353.64	ž
	Sep.	~0.00	390.00	387.95	389.13	390.00	387,99	383.17	382.11	379.34	380.72	380,18	373.38	382.97	379.56	580,18	377.29	363.44	357.62	376.18	584.80	383.39	390.00	385.70	390.00	Η.	81,1	386.35	379.67	381.70	390.00	i ii
	Aug.	-0.00	390.00	585.23	385.96	388.94	384.04	380.66	375.86	375.97	373.65	378.80	371,04	378.93	376.60	376.31	369.16	563.03	357.19	370.99	580.98	380.97	389.75	383.03	390.00	381.77	377.64	381.92	379.80	378.82	590.00 557.19	ne r
	Jul.	-0.00	86.6	83.1	82.2	84.7	81.7	78.0	372.45	3.0	8.0	5.5	5.0	6.6	3.	2.7	5.2	ç	0.0		3.6	7.	3.0	8.	2.6	. 2	5.3	7.6	2	374.87	586.66 350.00	T.
	Jun.	ö	6.9	Ġ	3.5	0.	∞.	0.0	373.29	4.	5.	S.	9.9	80	7.8	0.5			ુ.	.2	8		0.5	5.	د		~		7.	376.12	386.94 351.96	
	May	0.0	5.4	5.5	2.1	3.8	3.0	9.9	373.60	4.6	0.3	6.0	9.9	5.4	7.4	5.7	9.4	8.5	2.1	2.0	6.9	0.7	7.7	.5	7.0	4	8.8	4.5	1.1	375.61	385.55 352.07	lote:
	Apr.	o.	85.	84.	81.	83.	83.	80.	373,44	74.	69.	75.	70.	74.	77.	75.	69.	67.	50.	50.	66.	81.	77.	S4.	77.	84.	78.	74.	80.	375,26	585.32	
Water	Year	S	Ç	Ç	S	1956	S	C	1959	C)	S	1962	S	5	S	S	Ç	1968	Ç	1970	1971	S	S	1974	S	1976	1977	Ç	0	Average	Max imum Minimum	

	_
	۲.
	Z
	ί
	7
	-
	4
	+
	`.
	Ĺ
	4:55
	5
	ū
_	
,	
•	
2	
4	
2	
,	
٠	
•	
,	
,	
•	
•	
,	
•	
,	
•	
٤	
;	
:	
•	
•	
`	
١	
•	
ì	
:	
4	
4	
:	
)	
•	
-	
3	
ı	
3	
:	
:	
•	
}	
ĺ	
i	
1	
-	

	Annua1	-	9	d.	CA	•	_	٠:	7	`	٠.	` ;	~:	٠.	~	~~		٧;	٠,	٠:	~	252.80	~~		~:	٠:		32.	91	209.69	325.00	
(Unit: MCM)	Mar.	Ö.	285.00	255.89	264.79	264.55	223.81	172.15	185.69	137.46	198.16	149.11	176.89	213.22	194.06	153.78	111.88	14.00	14.00	118.36	231.97	214.66	276.60	212.17	281.83	209.78	179.08	232.50	9	191.20	Š	14.00
3	Feb.	311.30	a	N)	00	6	257.67	10	\neg	0	0	tO.	9	250.11	∞		S	₹	0	143	5		CC	C.I	9	တ	10	267.57		223.05	\$11.30	14.00
	Jan.	5.0	32.0	11.4	23.6	23.9	4	33.6	16.5	3.96	56.2	7.60	32.5	74.5	55.3	-3	74.4	∹.	C.	77.6	3.56		25.0	79.0	25.0	5.89	23	285.24	78.8	246.08	5.0	29.99
	Dec.	ı,	ر ا	7	<u>ج</u>	35.		36.	45	25	8	4.	10 10	77.	57.	8	8.			79.	94	270,07	25.0	73.	325.00	267.77	218,77	284.94	185.24	247.86	S.	35.74
· · · · · · · · · · · · · · · · · · ·	Nov.	Ü	0	_	!~	0	282.17	9	0	!~	***	9	œ	S	C1	١٠,	1.3	¢	9	9	8	256.59	0	œ		262.17	_	280.94	185.00	241.23	5.	29.69
	Oct.	325.00	Ċ.	Ļ	α	Đ.	•	4	2	Q.	Q.	တ	C.	ব.	$\overline{}$	ο,	σ.	53	Q.	οò	S	241.45	0.	1.3	٥.	٦.	Ċİ	φ.	194.07	257.50	ıv.	24.93
	Sep.	-0.00	o.	~	Ç.	o.	~	ι,	9.	9.	***	0.	4	1.3	α.	0	0.	ιŞ	r.	ĸį	∞.	245.07	ο.	! ~	0	∞	Ç	ø	203.83	235.70	r.	39.54
	Aug.	-0.00	٠.	∞.	۲.	φ.	ľ	r.	1.3	10	9.	ŝ	ø.	\sim	17	9	14	٥.	7.	14	ς.	217.89	О.	0.	0	∞	117	28.5	05.1	204.08	325.00	
	Jul.	0.0-	83.6	S.	1.3	59.6	226.66	ω	137.65	142.27	.6	164,57	90.16	174.63	149.44	139.91	1.6	65.93	٥.	29.76	7.7	182.06	7.9	227.97	6.2	221.02	1.7	184.57	199.84	166.49	283.64	14.00
	Jun.	-0.00	87	75	46.	52.		07.	44	54	•						•	08.	19,90	ô.	ġ.	218.06	8	5.8	5.6	255.21	89.	52.	7.1	178.37	287.06	
	May	0	ສຸ	ď		က်		Š	~	56.	20.	69.	16.	•	•		113.30	2	S.	20.21	5.5	15.6		58.2	6:	S	95.	154.84	219,44	174,45	269.86	20.21
	Apr.		67.	62.	28	£3.		07.	ž.	54	6.	67.	20.	57.	\$2.	•			₹.	٥.	ci.	19.4	∞	58.2	82.5	6.1	93,4	9.1	211.51	172.50	267.01	14,00
Ruter	Year	1952	1953	1954	1955	1956	1957	1958	1959	1960	1961	1962	1963	1964	1965	1966	1961	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	Average	Maximum	Minimum

Note: This table shows the result of study on the Reservoir Case 2 and the Demand Case 4.

· ,	#		Table	E 1-4 R	esult of	Final	Water Balance	ance Study	dy (Evap	(Evaporation	Loss)		
Water	,											(Unit:	NCM)
Year	Apr	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Annua 1
1952	-0.00	-0.0	-0.00	0.	-0.00	-0.00	-0.00	1.09	0.92	96.0	1.18	1.62	5.80
1953	7.5	1.6	1.33	1.27	1.22	1.32	1.33	1.09	0.92	0.96	1.17	1.62	15.67
1954	.75.	1.6	1.32	1.19	1.09	1.21	1.28	1.06	0.89	0.94	1.14	1.54	15.09
1955.	.63	1:4	1.22	1	1.09	1.24	1.30	1.07	0.91	96.0	1.17	1.58	14.86
1956	œ	1.5	1.25	1.19	1.07	1.30	1.33	1.09	0.92	0.96	1.17	1.58	15.24
1957	•	1.54	1.24	1.14	1.05	1.19	1.25	1.01	0.84	0.88	1.07	1.45	•
1958	1.52	1.41	1.12	0.	0.95	1.07	1.11	06.0	0.75	0.79	0.95	1.26	12.92
∴1959	•	1.18	0.94	∞.	0.83	0.99	1.09	06.0	0.77	0.81	0.98	1.31	12.00
1960	•	1.22	0.97	α.	0.83	0.95	0.99	0.80	0.68	0.72	0.86	1.13	11.44
1961	•	1.06	0.86	0.78	0.75	0.94	1.07	06.0	0.78	0.83	1.01	1.34	
1962	•	1.27	1.01	Q.	0.90	1.00	1.04	0.85	0.71	0.74	0.89	1.17	11.97
1963	•	1.06	0.84	7	0.69	0.81	0.89	0.81	0.73	0.78	0.95	1.27	10.83
1964	1.33	1.23	1.00	0.95	0.91	1.04	1.14	96.0	0.82	0.87	1.05	1.40	12.77
1965	•	1.32	1.05	Q.	0.85	•	1.03	0.89	0.78	0.83	1.00	1.34	12.51
1966	•	.2	0.99	∞.	0.83	0.97	1.02	0.83	69.0	0.72	0.86	1.12	11.61
1961	•	0.	0.82	7	0.67	0.84	0.93	0.75	0.64	0.67	0.81	1.04	10.13
1968	•	Ċ,	08.0	9.	0.55	0.59	0.59	0.46	0.39	0.41	0.44	0.43	7.44
1969	0.37	ij	0.34	2	0.33	0.43	0.39	0.30	0.27	0.29	0.29	0.32	4.04
1970	•	ij	0.42	7	0.56	0.85	0.91	0.74	0.64	0.68	0.81	1.06	7.90
1971	1.06	ς.	0.78	∞.	0.91	1.10	1.18	0.99	0.85	0.90	1.10	1.47	12.15
1972	•	4	1.15	0	0.95	1.07	1.12	0.93	0.81	0.85	1.04	1.39	13.41
1973	•	i	1.06	0.	1.09	1.32	1.33	1.09	0.92	96.0	1.18	1.60	14.40
1974	1.73	1.60	1.27	Τ.	1.04	1.14	1.18	0.97	0.82	0.87	1.06	1.40	14.27
1975	1.45	1.31	1.06	1.08	1.16	1.32	1.33	1.09	0.92	0.96	1.18	1.62	14.55
1976	1.73	1.59	1.26	1.13	1.01	1.10	1.15	0.95	0.81	0.85	1.03	1.38	14.06
1977	1.47	1.36	1.08	0.98	0.89	1.00	1.04	0.84	0.71	0.76	0.94	1.28	12.41
1978	1.33	1.21	96.0	0.94	0.97	1.13	1.22	1.00	0.84	0.88		1.47	
1979	1.55	1.44	1.17	0	•	1.00	1.00	08.0	0.66	9.	0.83	1.09	w
Average	3 1.36	1.25	1.01	0.93	0.90	1.03	1.08	06.0	0.77	0.80	0.97	1.29	12.37
)													

Note: This table shows the result of study on the Reservoir Case 2 and the Demand Case 4.

This table shows the result of study on the Reservoir Case 2 and the Demand Case

Note:

(Unit: MCN) Tob. 1900 00.00 00 Average

Result of Final Water Balance Study (Spillage) rable E 1-5

		Annua1	00.00	0.00	00.0	00.00	00.0	00.0	00.0	00.0	00.0	0.00	00.0	00.0	00.0	0.00	00.0	0.00	16.22	88.68	15.37	0.00	0.00	0.00	0.00	0.00	0.00	00.0	0.00	00.00	4.37	
	NCM.)	Mar.	0.00	0.00	0.00	0.00	0.00	00.0	00.0	00.0	0.00	00.0	0.00	0.00	0.00	0.00	0.00	0.00	16.22	31.31	0.00	0.00	0.00	0.00	0.00	0.00	00.0	0.00	0.00	0.00	1.69	,
_	(Unit:	Feb.	0.00	00.0	00.0	00.00	00.0	00.0	00.0	00.0	00.0	00.0	00.0	00.0	00.0	00.00	00.0	00.0	00.0	11.34	00.00	00.0	0.00	00.0	00.00	00.00	00.0	0.00	0.00	00.0	0.40	
(Shortage)		Jan.	00.0	0.00	0.00	0.00	0.00	0.00	00.0	0.00	00.0	0.00	0.00	00.0	00.0	00.0	0.00	00.0	00.0	0.00	00.0	0.00	0.00	0.00	00.0	00.0	0.00	0.00	00.0	0.00	00.00	•
e Study		Dec.	0.00	0.00	00.0	00.00	0.00	00.0	00.0	00.0	0.00	00.0	0.00	0.00	00.00	0.00	00.00	00.00	0.00	0.00	00.0	0.00	00.0	0.00	00.0	0.00	0.00	0.00	0.00	00.00	0.00	1
r Balance		Nov.	00.00	00.0	00.0	00.00	0.00	00.00	0.00	0.00	00.0	0.00	00.0	00.00	0.00	00.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.0	0.00	0.00	0.00	00.0	0.00	00.0	00.0	;
Final Water		Oct.	-0.00	00.0	00.00	00.0	00.0	0.00	0.00	00.0	00.0	0.00	00.0	00.0	00.0	00.0	0.00	0.00	00.0	00.0	0.00	00.00	0.00	00.0	00.0	00.00	0.00	00.00	0.00	0.00	0.00	
Result of Fi		Sep.	-0.00	00.0	00.0	00.0	00.0	00.0	0.00	00.0	00.0	0.00	00.0	00.0	00.0	00.0	00.0	0.00	00.0	00.0	0.00	00.00	00.0	00.0	00.0	00.0	00.00	00.00	0.00	0.00	0.00	
-6 Resu		Aug.	-0.00	00.0	00.0	00.0	00.0	00.0	0.00	00.0	0.00	0.00	00.0	00.00	00.0	00.0	0.00	00.0	00.0	00.0	0.00	00.0	0.00	0.00	00.0	0.00	0.00	0.00	0.00	0.00	0.00	
Table E 1		Jul.	-0.00	00.0	00.0	00.0	00.0	00.0	0.00	00.0	00.0	0.00	00.0	00.0	00.0	00.0	00.00	0.00	00.0	15.97	0.00	00.0	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.59	•
Ţ		Jun.	-0.00	00.0	00.0	00.0	00.0	00.0	0.00	00.00	00.0	0.00	00.0	00.0	00.0	00.0	00.00	0.00	00.0	0.00	0.00	0.00	0.00	0.00	00.0	0.00	0.00	0.00	0.00	0.00	00.00	hs
		May	-0.00	00.0	00.0	00.0	0.00	0.00	0.00	0.00	00.0	0.00	00.0	0.00	0.00	0.00	0.00	0.00	0.00	00.0	0.00	00.0	00.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	00.00	e 6 months
		Apr.	-0.00	0.00	00.00	0.00	•	0.00	0.00	•	00.0	0.00	00.00	00.0	0.00	0.00	0.00	0.00	0.00	30.05	15.37	0.00	0.00	0.00	0.00	0.00	0.00	0.00	•	00.0	c 1.68	Demand shortage
•	Water	Year	1952	1953	1954	1955	1956	1957	1958	1959								1967											1978	1979	Average 1	Demand

Note: This table shows the result of study on the Reservoir Case 2 and the Demand Case 4.

Table E 2-1 Dimensions of Hydropower Plants

			llvd	ropower Plan	its	
Alternative Plan			Left Saddle		Right Saddle	Total
Uternative-I						
n tention Water Level (NUL)		(MSL)	390m	-	390m	
Marmin Generating Water Level	(MGL)	(")	356m	-	356m	
Minimum Water Level (MWL)		(")	350m	-	350m	
Congrator Llevation		(")	350m	-	350m	
Total hater Level (TWL)		(")	350m	- '	350m	
Havimim Head (II max)			40m	-	4 () m	
pated Head (H=Hmax & 2/3)			27m	-	27m	
uarimum Discharge (Qmax)			15.41cms	-	1.30cms	16.71cms
pared Discharge (Q)			12.5 cms	-	1.0 cms	13.5 cms
Minimum Discharge (Qmin) Generator			0.21cms	-	0.13cms	0.34cms
Installed Capacity (n=86%)			2,840ku	-	230kw	3,070kw
Firm Capacity			- k w	-	-ku	-kw
Annual Production Average Head (Have)			29.0m	_	39.0m	
Annual Average Power			1,466 kw	-	122 kw	1,588kw
Annual Production			12,837 MWh	-	1.068 MWh	13,905MWh
Annual Production			12,007 PINI	_	1,000	15,505,411
Uternative-2		4401 -	5 0.0	7445	50 0	
Retention Nater Level (RWL)	Zu roza N	(MSL)	300m	390m	390m	
Minimum Generating Water Level	(,101*)	(")	356m	356m	35(m	
Minimum Water Level (MWL)		(")	350m	350m	350m	
henerator Elevation		(")	350m	338m	350m	
Tail Mater Level (IML)		(,)	550m 40m	338m 52m	350m 40m	
Maximum Head (Hmax)			27m	39m*	27m	
Rated Head (H=Hmax X 2/3) Maximum Discharge (Qmax)			9.14cms	6.29cms	1.30cms	16.73cms
Rated Discharge (Q)			8 0 cms	5.0 cms	1.0 cms	14.0 cms
Minimum Discharge (Qmin)			0.17cms	0.04cms	0.13cms	0.34cms
Generator						(* 1 to 1 E III.)
Installed Capacity (n=86%)			1,820kw	1,640ks	230kw	3,690ks
Firm Capacity			-kn	-kw	-ku	-kw
Annual Production			20. 0	4.0	5	
Average Head			29.0m	40.6m	29.0m	
Annual Average Power			896 kw	843 km	122 kw	1,861kk
Annual Production			7,846 MWh	7,385 MWh	1,068 MWh	16,299MWh
Alternative-3						
Retention Water Level (RWL)		(MSL)	390m	390m	390m	
Minimum Generating Water Level	(MGL)	(")	356m	356m	356m	
Winimum Water Level (MWL)		(")	350m	350m	350m	
Generator Elevation		(")	350m	338m	350m	
Tail Water Level (TWL)		(")	350m	338m	350m	
Maximum Head (Hmax)			40m	52m	40m	÷
Rated Head (H=Hmax X 2/3)			27m	39m*	27m	
Maximum Discharge (Qmax) Rated Discharge (Q)			3.10cms 2.3 cms	12.31cms 10.5 cms	1.30cms 1.0 cms	16.71cms 13.8 cms
Minimum Discharge (Qmin)			0.06cms	0.15cms	0.13cms	0.34cms
Generator					a	
Installed Capacity (n=86%) Firm Capacity			520kn -kn	3,450kw -kw	250kw -kn	4,200kw -kn
Annual Production						•
Average Head			29.0m	40.6m	29.0m	
Annual Average Power			282 kw	1,706 kw	122 kw	
Annual Production			2,468 MWh	14,946 MWh	1,068 MWh	18,482MWh

Note) * (Hmax - MWL) $\times 2/3 + (MWL - TWL) = (390 - 350) \times 2/3 + (350 - 338) = 39m$

Monthly Power Production at Right Saddle Dam Plant Table E 2-2

	Total			1,293	•	•			•	926	1,009	•	988	1,089	•	•	943	461	58	734	1,172	•	1,318	•	, - 1		.01	, 20	1,174	1,068	122 29.0
	Mar.	171	129	168	171	171	155	142	163	94	156	123	1 38	171	167	1 29	112	0	0	109	171	136	171	171	171	141	158	~	103	137	185 27.2
	Feb.	155	 	155	155	155	155	155	155	155	155	155	155	155	155	155	155	46	0	155	155	155	155	155	155	155	155		155	145	216 30.4
	Jan.	171	171	171		171		171	157	171	171	171	171	171	171	171	162	72	0	164	171	171	171	89	171	141	140	171	164	154	207 32.6
Plant	(MWh) Dec.	122	122	119	122	122	112	66	102	21	25	94	98	110	105	06	82	39	19	25	115	109	122	109	47	108	22	112	84	87	117
e Da	on Nov.	94	26	117	93	122	111	66	100	09	101	93	36	99	39	62	49	31	0	77	86	40	84	20	26	06	91	111	84	74	104 52.1
ght Sad	Producti Oct.	'	103	82	128	129	164	20	114	87	83	80	49	74	73	77	127	46	0	94	118	132	169	86	7.5	89	66	129	107	96	129 31.5
	Sep.	,	99	62	73	99	62	54	53	48	20	27	52	54	52	20	45	41	22	49	106	63	99	58	84	72	51	09	84	59	82 31.7
duction	Monthly Aug.	1	103	83	84	92	80	79	09	61	52	68	49	88	89	62	54	46	17	49	72	87	93	100	94	74	65	74	84	71	96 28.8
Power Production at	Jul.	1	146	171	171	122	171	151	84	81	126	96	105	94	171	96	89	121	0	0	83	171	118	171	122	171	117	84	171	118	158 24.5
Monthly Po	Jun.	1	\$2	59	55	64	40	42	13	40	30	42	28	42	45	82	31	3]	0	12	27	51	46	26	40	26	53	40	52	41	58 26
-2 Mor	May	J	33	16	22	16	46	35	16	17	10	19	37	12	56	12	6	13	0	0	œ	29	19	22	19	24	13	11	15	18	25 25.5
Table E 2-	Apr.	ı	20	06	26	86	78	49	71	91	47	6	29	25	103	92	49	21	0	0	24	2]	104	73	90	113	53	82	71	89	94 25.3
Ta	Year		. 53	54	52	56	57	58		1960	. 61	62	63	64	65	99	29	89		1970	7.1	72	73	74	75	92	7.7	78	79	Production (NWh)	Power(kw) Head (m)
	,	\$				***			- - -,	~ ,																				Average	: F
							-		_		-																				

This table shows the power production based on the data which are the diversion demand in the Right Bank Area (see Table D 7-8), the reservoir elevation (see Table E 1-2) and the hydropower elements of the Right Saddle Plant (see E 2-1). This power production is immutable through the all alternatives Note)

	Total		14,81	15,34	5 15,81	5 15,28	3 15,12	3 13,68	3 12,89	3 11,89	73	3 13,10	11,6	12,8	14,0	12,6	10,9	6,2	9	8,3	13,9	14,5	15,1	14,8	14,4	15,0	12,6	15,6	14,3	8 12,837	7 1.466
3	Mar.	2,11	2,11	2,11	2,11	2,11	2,11	2,1]	2,1]	1,63	2,1	1,9(2,1]	2,1	2,1	1,9	1,7			1,69	2,1	2,1	2,11	2,1	2,1	2,1	2,1	2,1	1,6	1,888	2.537
	Feb.	81	90	8	6	1,908	9	1,908	1,908	7	1,908	1,798	1,908	1,908	ŏ	~	ŭ	419	0		6	8	ŏ	_		\sim	4	6	9	1,714	2.551
	Jan.	496	833	810	831	832	762	554	424	603	716	630	673	748	715	604	554	246	0	561	781	740	833	204	833	307	317	766	564	604	813
4 ~	Dec.	206	206	202	206	206	190	168	172	34	48	158	167	186	178	153	139	99	33	45	193	183	206	185	75	182	36	189	143	148	199
	Nov		87	, 31	,17	35	,24		,11	80	1,128		5.5						0	\mathbf{v}	1,086	62	$\overline{\mathbf{v}}$	78	ব	1~	0	L. 3	6	934	1.298
Product	Oct.	1	, 11	,83	, 11	,11	,11	5.59	, 11	,97	1,783	79	90,	,65	,57	,65	,11	,03		,04	2,113	,11	,11	,11	,72	.95	,11	, 11	,11	1,821	7 447
	scb.	•	,10	+	, 32	,10	,05	LO.	α		849	,01	05	91	\sim	IO.	10	O.	10	ĸ	o,	90,	10	,05	ĊΩ	28	S	1,004	61	1,045	1 452
Month1	Aug.	1	C3	ď	Ċ,	ς,	0	o,	751	754	664	836	099	1,273	865	751	763	723	225	594	878	1,204	1,126	τč	1,	952	828	957	1,151	932	1 253
	. Tur.		, 11	, 11	, 11	5.3	,11	90,	13	90,	1,588	25	,36	, 16	, 11	, 37	04	34		0	9	11	71,	, 11	71	, 11	,74	, 03	, 11	1,531	2 050
	Jun.	1	6	7	∞	0	4	S	2	S	303	ı.C	7	6	\sim	1	10	4	0	C1	287	ব		9	3	0	8	5	C1	450	569
	Mary	ı	557	341	444	396	618	504	315	329	210	359	453	263	437	289	223	252	0	0	175	490	390	478	380	490	Ŋ	247	CI	345	463
	Apr	1	.,	C,	C)	ω,	9	Ci	4	~	1,017	∞	1.3	∠i	οž	œ	0	604	С	0	1,064	•	•	~	1,832	•	•	•	•	1,425	1.979
X		1952	53	54	52	56	57	58	59	1960	61	62	63	64	65	99	49	68	69	1970	71	72	73	74	75	76	77	78	79	Average Production	" Power (kw)

This table shows the power production for the Alternative-1 based on the data which are the total diversion demand in the Existing Irrigated Area and the High and Downstream Area, the reservoir elevation (see Table E 1-2) and the hydropower elements of the Left Saddle Plant (se E 2-1). However, the diversion demand is shown only as the representative one in the design and normal years in Table D 2-1. Note)

Monthly Power Production at Main Dam Plant (Alternative-2) Table E 2-4

This table shows the power production for the Alternative-2 based on the data which are the diversion demand in the Existing Irrigated Area (see Table D 7-10), the reservoir elevation (see Table E 1-2) and the tiveropower elements of the Main Dam Plan (see E 2-1). Note

			. 23	01	01	10	11	16	65	7.1	91	10	89	61	94	01	54	0.2	53	85	29	87	. 23	53	57	75	91	55	721	16	96 29.0
	Tota		C	4	00	'ব	٧.	. ` :				. ~				:			. `	٠,	, –	•				, .,	Ψ,	, 7,		7;84	2 85
	Mar.	3.5	32	[4]	S	150	33	.25	10	6	15	, 11	24	55	53	Ί,	97		0	9	ູ່ທ	1,293	.35	3.5	.35	,31	.35	LA	93	1,170	1,575
	reb.	1.3	22	22	2,	,22	,2	2	, c,	,ŏ,	, 23	Ξ	, C.	2	2	,0	96			∞	CI		C1	22	,23	22,	90	57		1,090	1,622 30.4
	Jan.	365	571	556	569	570	522	386	306	413	491	432	461	513	490	414	380	168	0	385	536	507	571	144	571	233	236	525	387	417	561 32.6
(MWh)	Dec.	169	169	165	169	ು	ഗ	M.)	マ	_	L.)	\sim	136	ഹ	7	CI	_	54	27	58	158	150	169	151	57	149	29	155	117	140	188 35
. r.	No.V	711	505	778	695	806	736	652	661	471	699	612	325	555	389	200	429	227	0	511	642	371	674	459	552	638	909	734	558	552	767 52.1
Producti	Oct.	ı	10	90,	35	35	10	\circ	10	, 14	03	,04	618	. ^	_	10	10	9	0	1,184	1,354	1,354	1,354	1,297	1,002	1,132	1,297	1,354	1,354	1,109	1,491
	ı	i	7	_	1~		_	L 2	_		rл	(X)	_	L* 3	_	ന	_	_	10	$\overline{}$	~1	618	_		7		_	~~		611 1	849 J
ch 1 y	Aug	1	759	594	909	720	297	610	442	450	393	499	389	751	510	443	449	424	133	354	522	7111	670	897	674	265	485	268	677	551	741 28.8
	Jul	1	1,279	1,354	1,354		1,354		299	265	937	743	808	269	1,354	803	613	798	0	0	748	1,354	1,004	1,354	1,007	1,354	1,023	615	1,554	936	1,259 24.5
	Jun.	ı	242	405	345	423	214	274	316	274	184	272	163	297	306	382	197	206	0	92	172	326	309	394	202	359	349	266	512	269	373 26
	Mary	1	524	199	263	230	363	301	182	190	124	214	266	155	257	169	127	148	0	0	103	288	228	275	222	289	202	144	190	201	271 25.5
	Apr.	1	736	1,105	1,100	1,005	926	682	801	991		1,048	757		1,111		290	338	0	0	595	692	1,121		1,022	•	703	606	883	800	1,111 25.3
))	LOGIL	1952	53	5.5 4.1	ა .	26	27	58		1960	61	62	65	64	65	99	29	89		1970	7.1	72	73	74	75	92	7.7	8/	79	age Production (MWh)	Power(kw) Head (m)
																														Average	= =

This table shows the power production for the Alternative-2 based on the data which are the diversion demand in the High and Downstream Area (see Table D 7-12), the reservoir elevation (see Table E 1-2) and the hydropower elements of the Left Saddle Plant (see E 2-1). Note)

1,706

3,105 58.4

5,029

44.1 841

19*7* 45

Monthly Power Production at Main Dam Plant (Alternative-3) Table E 2-6

t to to the
, ,
7 484
92

This table shows the power production for the Alternative-3 based on the data which are the diversion demand in the Existing Irrigated Area, the reservoir elevation (see E.1). However, the diversion demand is shown only as the reservoir representative one in the diversion demand is shown only as the

717 2,497 1,427 1,632 2,854 1,412 57.6 55.6 40.8 43.7 45.1 45.7

553 36.6

2,354 36.4

Power(kw) Head (m)

: :

This table shows the power production for the Alternative-3 based on the data which are the diversion demand in the High and Downstream Area, the reservoir elevation (see Table E 1-2) and the hydropower elements of the Left Saddle Plant (see E 2-1). However, the diversion demand is shown only as the representative one in the design and normal years in Table D 2-3. Note)

	Table E	3-1 (1)		to 2 Ye		ation +	or Befo	re Proje	ect
		nar		TO Z ie	ars				
	CT STATUS — N PERIOD ——		PROJECT 2 YRS				RUN DAT	 F/TIME	ren • 14
		*		*	·	•	A		36.1 6 130
TIME	INFLOW AT	SPILLAGE FROM DAM	INFLOW TO INT.POINT	OUTFLOW INT.POINT	BALANCE INT.POINT	BALANCE INT.PDINT	INUNDATED VOLUME	INUNDATED DEPTH	INUNDATED
DAY HR		[CU4/S]	(CUM/S)	(CUH/S)	(CUM/S)	(MCH)	(HCH)	(H) nebili	*
1 0-	3 20-		59.	59.	0.	0-000	0-001	0.01	(EL.M)
1 3-	6 20.	-	59.	58.	0-	0.005	0.006	0.03	289.21 289.21
	9 22. 12 25.	,= -	64. 73.	73.	-0. -0.	-0.000 -0.000	0.006	0.03 0.03	289.23 289.23
	15 29. 18 41-		120-	85. 120.		-0.000	0-006 0-006	0.03 0.03	289.23
1 18- 2	21 84.		246.	246-	-0-	-0.000	0.006	0.03	289.23 289.23
	27 188.		454. 550.	· 320. 320.	134. 230.	1-443 2-486	1.450 3.936	0.39	269.59 289.83
2 27- 2 30-		-	377. 334.	320 <u>-</u> 320.	57. 14.	0.621 0.147	4.558 4.706	0.68 0.69	289.88
2 30- 3 2 33-		~······ <u>-</u> -	328.	320.	6.	0.084	~~~790°	0.70	289.89 289.90
2 36- 2	42 118.		339. 345.	320. 320.	19. 25.	0.210	5.001 5.275	0.71	289.91 289.93
2 42- 4			357. 360.	320. 320.	37. 40.	0.400	5-676 6-108	0.76	289.96
3 48- 51-	51 124.		363 <u>.</u> 363.	320.	43.	0.463	6.572	0.82	289.99 290.02
3 54- 9	57 121.		354.	320-	34.	0.463 0.368	7-035 7-404	0-84 0-87	290.04 290.01
3 57- (3 60- (-	339. 339.	320. 320.	19. 19.	0.210 0.210	7-615 7-826	0.88 0.89	290.0
3 63-	66 116.		339.	320.	19.	0.210	8.037	0.90	290.09 290.10
3 66- 6 3 69-	72 110.		342. 345.	320. 320.	<u>22.</u> 25.	0-242	8-280	0.91	290.11 290.11
4 72- 4 75-			342. 331.	320. 320.	22.	0.242	8.796 8.912	0.94	290.19 290.19
4 78-	81 101.		296.	320.	-24.	-0.264	8.649	0.94	290.13
4 B1-	87 84.	-	258. 246.	320. 320.	-62. -74.	-0.801	7.975 7.175	0.90 0.85	290.ll 290.0
4 90-			234° 228°	320. 320.	-86. -92.	-0.927 -0.990	6.248 5.258	0.80 0.73	290.00 289.00
4 93-	96 74.	-	217.	320.	-103.	-1.117	4.142	0.65	289.8
5 96-10 5 99-10			208.	320. 320.	-112. -118.	-1.212 -1.275	2.931 1.656		289.79 289.61
5 102-10 5 105-10		<u>-</u>	193. 187.	320. 213.	-127. -26.	-1.370 -0.261	0.287	0.17 0.03	289.37
5 108-11	11 61.		178.	179.	-0-	-0.001	0-006	0.03	289.23 289.23
5 111-1 5 114-11		-	173. 167.	173. 167.	-0. -0.	-0.000 -0.000	0.006	0-03 0-03	289.23 289.23
5 117-1; 6 120-1;			164. 158.	164. 158.	-0. -0.	-0.000	0.006	0.03	289.23 289.23
6 123-17	26 52.	-	152.	152.	-0-	-0.000	0-006	0.03	289.23
6 126-12		-	146.	146.	-0.	-0-000	0.006	0.03	289.23 289.23
6 132-13 6 135-13		_ _	138. 135.	138. 135.	-0. -0.	-0.000	0.006	0 <u>-03</u>	289.23 289.23
6 138-14	41 44.		129.	129.	-0.	-0.000	0.006	0.03	289.23
6 141-14 7 144-14		-	126. 123.	126. 123.	-0. -0.	-0.000 -0.000	0.006 0.006	0.03 0.03	289.21 289.21
7 147-1			117- 114-	117- 114-	-0.	-0.000	0.006	0-03 0-03	289.21 289.21
7 153-1	56 38.	<u>-</u>	111.	111-	0 <u>.</u>	-0-000	0.006	0.03	289.2
7 156-11 7 159-1		<u>-</u> -	108. 105.	108.		-0.000 -0.000	0.006	0.03	289.23 289.23
7 162-10 7 165-10	65 34.		99. 97.	100- 97-	-0. -0.	-0.000	0.006	0.03	289.2
8 168-1	71 32.	-	94.	94.	-0-	-0-000	0.006	0.03	289.23
8 171-1 8 174-1		-	94. 91.	94. 91.	-0. -0.	-0.000 -0.000	0.006 0.006	0.03 0.03	289.23 289.23
8 150-11	80 29.	_	85. 82.	85. 82.	-0. -0.	-0.000	0.006	0.03 0.03	289.23 289.23
8 183-1	86 28.	_	82.	82.	-0.	-0.000	0.006	0.03	289.2
8 186-19			79. 76.	79.	-0. -0.	-0.000	0.006	0.03	289.23 289.23
9 192-19	95 26		76. 73.	76. 73.	-0. -0.	-0.000 -0.000	0-006	0.03	289.23 289.23
9 198-20	01 24.		70.	70.	-0.	-0.000	0-006	0.03	289.2
9 201-20		=	67. 67.	67. 67.	-0. -0.	-0.000 -0.000	0.006 300.0	0.03 0.03	289.2 289.2
9 207-2 9 210-2	10 22-		64. 64.	64.	-0. -0.	-0.000	0.006	0.03	289.2 289.2
9 213-2	16 22.		64.	64.	-0.	-0.000	0.006	0.03	289.2
10 216-21 10 219-2			61.	62.	-0. -0.	-0-000	0-006	0.03	289.2 289.2
10 222-23	25 21.		61.	62.	-0.	-0-000	0.006	0.03	789.23 209.2
10 225-2 10 226-2	31 20.		61. 59.	62- 59-	-0. -0.	-0.000 -0.000	0.004	0.03	289.2
10 231-2: 10 234-2:			59. 59.	59. 59.	-0- -0-	-0.000 -0.000	0.006	0.03	289.2
10 237-2			59.	59.	-0.	-0.000	0.004	0.03	289.2

Page 2

Table E 3-1(2) Flood Control Simulation for After Project on 1 to 2 Years

PROJECT STATUS --- AFTER PROJECT

** RUN DATE/TIME --- SEP. 8-1981/AM 9-30

TIME	INFLOW AT	SPILLAGE FROM DAM	INFLOW TO	OUTFLOW INT.POINT	BALANCE INT.POINT	BALANCE INT.PDINT	INUNDATED VOLUME	INUNDATED DEPTH	INUNDATED STAGE	INUNDATED AREA
DAY HRS		(CON/S)	(CUH/S)	(CUH/S)	(CÜM\Z)	(HCH)	(MCH)	*	(EL.M)	(HA)
, 0- 3	20.	0.	39.	39.	0.	0.000	0.001	0.01	289.21	14.
1 3- 6	20+	0.	39. 42.	38. 42.	0. -0.	0.005 -0.000	0.006 0.006	0.03	289.23 289.23	43.
i 6- 9	22.	0.	48.	48.	-ŏ.	-0.000	0.006	0.03 0.03	289.23	43. 43.
1 12- 15	29.	0.	56.	56-	-0.	-0.000	0.006	0.03	289.23	43.
1 15- 15	47.	. 0.	. 79. 162.	79. 162.	-0. -0.	-0.000 -0.000	0.006 0.006	0-03 0-03	289.23 289.23	43. 43.
1 18- 21		0.	299.	299.	-0.	-0-000	0.006	0.03	289.23	43.
24- 21	188.	- 0.	362. 248.	3 <u>20</u> . 291.	42. -42.	0.455	0.462	0.22	289-42	421.
2 27- 30 2 30- 33) 129. 114.	0.	220.	220.	-0.	-0.456 -0.001	0.006 0.006	0.03 0.03	289.23 289.23	43. 43.
33- 36	112.	0.	216-	216.	-0.	-0.000	0.006	0-03	289.23	43.
7 36- 39	116.	<u>0.</u>	223. 227.	274-	-0. -0.	-0.000	0.006	0.03	289.23	43.
2 39- 42		o.	235.	235.	-o.	-0.000	0.006	0.03	289.23 289.23	43. 43.
ž 45- 48	123.	0.	237-	237.	-0.	-0.000	0.006	0.03	289.23	43.
3 48- 51	124 - 124 -	.0.	239. 239.	239. 239.	-0. -0.	-0.000 -0.000	0.006 0.006	0.03 0.03	289.23 289.23	43.
3 51- 54 3 54- 57		0.	233.	233.	-0.	-0.000	0.006	0.03	289.23	43. 43.
3 57- 60	116.	0.	223.	224.	-0.	-0-000	0.006	0.03	289.23	43.
3 60- 63 3 63- 66		0. 0.	223. 223.	274. 224.	-0. -0.	-0.000 -0.000	0.006 0.006	0.03 0.03	289.23 289.23	43. 43.
3 66- 69	117.	0.	225.	225.	-0-	-0.000	0.006	0-03	289.23	43.
3 69- 72	118-	0.	277.° 225.	227. 225.	-0. -0.	-0.000	0.006	0-03	289.23	43.
4 72- 75 4 75- 78		0.	218.	218.	-0.	-0.000	0.006	0.03	289-23 289-23	43.
4 78- 81	101-	0.	195.	195.	-0.	-0.000	0.006	0.03	289.23	43.
4 81- 84		0. ·	170. 162.	170.	-0.	-0.000	0.006	0.03	289.23	43.
4 84- 87 4 87- 90		0.	154.	162. 154.	-0. -0.	-0.000 -0.000	0.006 0.006	0.03 0.03	289-23 289-23	43. 43.
4 90- 93	78.	0.	150.	150.	-0-	-0.000	0.006	0.03	289.23	43.
93- 96		0.	143. 137.	143-	-0.	-0.000	0.006	0.03	289-23	43.
5 96- 99 5 99-102		0.	133.	137. 133.	-0. -0.	-0.000 -0.000	0.006 0.006	0.03 0.03	289-23 289-23	43. 43.
5 102-105	66.	0.	127.	127.	-0.	-0.000	0.006	0.03	289.23	43-
5 105-108 5 108-111	64. 61.	0. 0.	123.	123. 118.	-0. -0.	-0-000	0.006	0.03	289.23	43.
5 111-114		0.	114.	114.	-0-	-0.000	0.006	0.03	289.23 289.23	43.
5 114-117	57.	g.	110.	110.	-0.	-0.000	0.006	0.03	289.23	43.
5 117-120 6 120-123		`` 0.	~ 108. 104.	108. 104.	-0. -0.	-0.000	0.006	0.03	289-23	43.
5 123-126		0,	100.	100	-0-	-0.000 -0.000	0.006 0.006	0.03 0.03	289.23 289.23	43. 43.
126-129	50.	0.	96	96.	-0.	-0.000	0-006	0.03	289.23	43.
5 129-132 5 132-135		0. 0.	94. 91.	94. 91.	-0. -0.	-0.000	0.006	0.03	289-23	43.
135-138	46.	Ŏ.	89.	89.	-0.	-0.000 -0.000	0-006 0-006	0.03 0.03	289+23 289+23	43. 43.
6 138-141	44.		85.	85.	-0.	-0.000	0.006	0.03	289.23	43.
5 141-144 7 144-147	43. 42.	0.	83. 81.	83. 81.	-0. -0.	-0.000 -0.000	0.006 0.006	0.03 0.03	289.23	43.
7 147-150	40.	0.	77-	77.	-0.	-0.000	0.006	0.03	289.23 289.23	43.
/ 150-153 / 153-156		0.	75.	75.	-0.	-0.000	0.006	0.03	289.23	1 43-
156-159	38. 37.	0. 0.	73. 71.	73. 71.	-0. -0.	-0.000 -0.000	0.006 0.006	0.03 0.03	289.23 289.23	43.
159-162	36.	0.	69.	69.	-0.	-0.000	0.006	0.03	289.23	43. 43.
162-165 165-168	34.		65.	66.	-0.	-0.000	0.006	0.03	289.23	43.
168-171	32.	0. 0.	64. 62.	64. 62.	-0. -0.	-0.000 -0.000	0.006 0.006	0-03 0-03	289.23 289.23	43- 43-
171-174 174-177	32.	0.	62.	62.	-0.	~0.000	0.006	0.03	289.23	43.
174-177 177-180		- 0. - 0.	<u>60.</u> -	60. 56.	0.	-0.000	0.006	0.03	289-23	43.
180-183	28.	0.	70+ 54_	54.	-0.	-0.000 -0.000	0.006 0.006	0.03 0.03	289.23 289.23	43. 43.
183-186 186-189	28.	0.	54.	54.	-0.	-0.000	0.006	0.03	289-23	43.
189-192	27. 26.	0 <u>.</u> 0 <u>.</u>	57 · 50 •	52. 50.	-0.	-0 <u>-</u> 000 -0-000	0.006 0.006	0.03	269.23	43.
192-195	26.	. 0.	50.	50.	-0.	-0.000	0.006	0-03 0-03	289.23 289.23	43- 43-
195-198 198-201	25.	` n.	46.	- 4B.	-0.	-0.000	0.006	0.03	289.23	43.
201-204	24.	0.	46-	46.	-0.	-0.000	0.006	0.03	289.23	43.
204-207	23.	- 0.	44.	44.	-0.	-0.000	0-006	0.03 0.03	289.23 289.23	43. 43.
207-210 210-213	22.		47.	42.	-0-	-0.000	0.006	0.03	289.23	43.
213-216	22 <u>.</u> 22.	0.	42. 42.	42.	-0. -0.	-0 <u>-</u> 000 -0-000	0.006 300.0	_ 0.03 0.03	289.23	43.
216-219	21.	0.	40.	41.	-0.	-0.000	0.006 0.006	0-03 0-03	289.23 289.23	43. 43.
219-222	21.	0.	40.	41.	-0-	-0.000	0.006	0.03	289-23	43-
225-228	21. 21.		40.	· - 41-	-0. -0.	-0.000 -0.000	0.006 0.006	0.03 0.03	289.23	13 -
228-231 231-234	20.	0.	39.	39.	-0.	-0.000	0.006	0-03	289-23 289-23	43. 43.
231-234	20.	Ω.	39.	39.	-0.	-0.000	0.006	0.03	289-23	43.
237-240	20. 20.	0.	39. 39.	39. 39.	-0. -0.	-0.000	0.006	0.03	289-23 289-23	43.

Table E 3-2(1)	Flood Control	Simulation	for	Before	Project on	1 to 5 Years
						- reary

** PROJECT STATUS ---- BEFORE PROJECT .. RETURN PERIOD -- SEP. 8-1901/AN PAR ** RUN DATE/TIME ---- 1 TO 5 YRS INUNDATED INUNDATED INJUNDATED INJUNDATED INJUNDATED THELOW AT SPILLAGE INFLOW TO OUTFLOW BALANCE BALANCE DAN SITE FROM DAM INT.POINT INT.POINT INT-POINT INT.POINT STAGE HEI DAY HR S (CUM/S) (CUN/S) (CUM/S) (CUM/S) (CUM/S) (MCH) (MCH1 CHI (EL. H) J[¥]J 0.000 0.001 0.01 ۸ī, 71. 61. ō. 0-005 269.23 6-67. 0.006 0.03 67. -0. -0-000 289.23 289.23 12 28. 82. 82--0. 0.006 12-15 34. 99. 100. -0-000 0.03 289.23 13- 18 58. 170. -0-0.000 0.03 209.23 18- 21 137. 401. 330. 71 0.766 0.7730.28 289. 330. 4.906 5.680 0.74 141 329. 218. 963. 638. 330. 633. 308. 6.834 3.326 12.514 210.32 1-12 1.26 290.46 2351 30-186-2.315 1.872 290,59 33- 36 2115. 2121. 172-503. 330-173 20-028 290.45 509. 330. 21.964 1.49 290.69 39- AZ 174-515. 330. 185 1.400 24 07 1 290.75 101 42- 45 330. 26.088 1.68 3221, 45- 4A 178-521. 330. 101 2.062 20.151 290. RA 48- 51 51- 54 518. 114 2-030 1.74 1.80 330. 188. 30-161 3465. 3513. 177. 518. 330. 188. 2.030 32.212 291.00 512. 330. 182. 1.967 34...180 1.85 291.05 3611. 3711. 57- 60 172 503. 1.872 36.052 291.17 330. 330. 1.904 1.935 60-63 173. 506. 176. 37.956 3817. 3713. 39.892 2.00 291.20 182 66- 69 175. 512. 330. 330. 1.967 2.030 41.860 43.890 2.05 291.25 188 177. 2-10 291.10 (11) 330. 72- 75 174 185 1.999 45.890 169. 1.777 75- 78 495. 330. 165-47-667 7.10 201:10 1111 76-51-150. 129. 109 81 439. 1.177 48.845 291.41 -84 377 330 2.23 29[.43 4411.3 0.324 49.683 291-41 441. 87-90 117. 342. 330. 12. 0.134 49.817 49.825 330. 0.008 291.44 4451, 93-47 107. 313 338. 0.182 49-644 1117. 96- 99 99-102 49.304 48.838 102. Ξ 330. -32. -43. 0.340 2.23 2.21 291.43 291.41 4)[, 96 287. 330. -0-466 ŒIJ. 102-105 93. 272. -58 611 731. 330. -0.624 48-214 2.20 291.40 91. 266. 330. -64 -0.688 47.527 291-39 5 108-111 86. 252. 330. -78 -0.846 46.682 2.11 291.37 RZ. 111-114 240. =97 -0.972 291.34 (21) 5 114-117 -1.067 -1.130 44.644 43.514 2.12 2.09 79. 231. 330. -99 330-105. 291.29 un: -1.225 -1.320 42.290 40.971 2.06 2.03 6 120-123 74. 217 330. -113. 291.26 4103. 4839. 123-126 330. -122 -1.415 39.55 1.99 6 126-129 AR_ 199. 330. -131 129-132 66. 193. 330. -137. 38-079 291.16 un. 107-64. 62. -1.541 -1.604 1.92 6 132-135 330. -143. -149. 1011. 1724. 135-138 181. 330. 34.915 291.01 59. 6 138-141 1.83 6 141-144 57. -163. 1511. 167. 330. -17762 31.475 1.78 246.48 7 144-147 7 147-150 3636 55. 330. -169. 1.825 29.650 1.73 53. T55-330. -175 -T_NEU 27.762 1.67 790.11 7 150-153 7 153-156 51. -1.952 -2.015 3204. 3574. 330. -181. -187. 290.81 25.811 1.61 TAR 23.797 330. 796.TS -190. -198. 2543. 279]. 48. 140. 290.68 330. 1.46 -2.047 159-167 45. 1322 330. 290.61 7 162-165 42. 123. 330. -207. -2-236 17-374 1.32 290.5 т. 244 165-168 120. 330. -210. 290.43 8 168-171 8 171-174 290.34 290.23 240,18 40. 117. 330. 330. -2.299 -2.331 12.808 10.477 1.14 39. 1111. 8 174-177 8 177-180 37. 35. 330. 330. -222. -228. -2.394 -2.457 0.76 108. 8.064 102. 5.627 3.101 330. 8 180-183 33. 97. -233 0.54 789.76 183-186 -236. -2-552 0.24 0-555 186-189 31. 31. 0.03 289.23 209.23 91. -51. -0. -0.549 0,006 0.006 192-195 195-198 0.03 289.23 289.23 30. 88. -0. -0.000 0.006 85. 79. 73. 29. 85 -0. -0-000 0.006 0.03 9 198-201 9 201-204 27. 289.2 -0. 0.03 0.006 -0.000 73. -0.000 0.006 25. 24. 204-207 289.23 0.006 0.03 73 . 70 . 73. 70. -0. -0-000 -c. -0.000 0.006 0.03 289.23 289.23 23. 23. 210-213 67. 67. -0--0.000 0.006 0-03 213-216 57. 0.03 289.23 10 216-219 64. <u>22.</u> -G -0-000 0.006 0.03 0.006 0.03 289.23 64. 62. -0.000 -0.000 0.004 0.03 10 222-225 10 225-228 22. -a. -0-10 228-231 10 231-234 61. 62. 62. -0. -0.000 -0.000 0.006 0.03 21. 289.23 -0. -0. 10 234-237 20. 59. 59. 59. -0.000 -0.000 0.006 0.03

O RETURN PI	STATUS	AFTER 1 TO	PROJECT							
TTHE II			5 YRS				* RUN DATE	/TIME	SEP. 8.198	1/AM 9-30
ş		SPILLAGE FROM DAM _	INFLOW TO INT.POINT	OUTFLOW INT.POINT	BALANCE INT.POINT	BALANCE INT. POINT	INUNDATED VOLUME	INUNDATED DEPTH	INUNDATED STAGE	INUNDATED AREA
UTA HK2	(CUM/S)	(CUM/S)	(CUH/S)	(CUM/S)	(CUM/S)	(MCH)	(HCH)	(M)	(EL.M)	(IA)
	20+	0.	39.	39.	0.	0.000	0.001	0.01	289.21	14.
1 0- 3	21.	0.	40-	40. 44.	0. -0.	0.005 -0.000	0.006	0.03 0.03	289.23 289.23	43. 43.
6- 9 - 12	23.	0.	54.	54.	-0.	-0.000	0.006	0.03	289-23	43
12- 15	<u>34.</u> 	0.	65. 112.	112.	-0. -0.	-0.000 -0.000	0.006	0.03	289.23 289.23	43. 43.
1 18- 21	137.	0.	264。	264. 330.	-0. 186.	-0.000 2.012	0.006 2.019	0.03 0.45	289.23 289.65	43.
21- 24	268- 329-	0.	516. 634.	330.	304-	3.201	5.300	0.73	289.93	1447.
7 77- 30	218.	0. D.	420. 358.	330. 330.	90. 28.	0.972	6.272 6.578	0.80 0.82	290.00 290.02	1574. 1613.
2 30- 33 2 33- 36	172.	ō.	331. 335.	330. 330.	1. 5.	0.015 0.056	6.593 6.650	0.82 0.82	290.02 290.02	1615. 1621.
2 36- 39 2 39- 42	174.	D.,	339。	330.	9.	0.098	6.748	0.63	290-03	1633.
2 42- 45 -2 45- 48	180.		347. 343.	330. 330.	$-\frac{17.}{13.}$	0.181	6.930 7.069	0.84	290.04 290.05	1655. 1672.
3 48-51	177.	0.	341.	330.	- 11. 11.	0.119	7-189	0.85	290.05 290.06	-1686. 1700.
3 54- 57	177.	0. 0.	341. 337.	330. 330.	7.	0.077	7.385	0.86	290-'06	1709.
3 57- 60	172.	0. 0.	331. 333.	330. 330.	3.	0.015 0.035	7.400 7.436	0-87 0-87	290-07 290-07	1711.
3 60- 63	174.	0.	335.	330.	5.	0.056	7-493	0.87	290-07	1722. 1731.
3 66- 69 3 69- 72	175.	0.	337. 341.	330. 330.	7.	0.077	7.570	0.88 0.88	290.07 290.08	1744.
4 72- 75	176-	- 0.	339. 326.	330. 330.	9.	0.098 -0.048	7.788 7.740	0.89	290.09 290.08	1756. 1750.
4 75- 78 4 78- 81	150.	0.	289.	330.	-41.	-0.443	7.298	0.86	290.06	1699.
4 BI- 84 4 84- 87	129.	0.	248. 237.	330. 330.	-82. -93.	-0.880 -1.005	6.418 5.414	0.81 0.74	290.01 289.94	1593. 1462.
4 87- 90	117.	0.	225. 218.	330.	-105. -112.	-1-130 -1-213	4.285 3.073	0.66 0.56	2 89. 86 289 . 76	1300. 1099.
4 90- 93 4 93- 96	113.	0.	206.	330.	-124.	-1.338	1.736	0.42	289.62	624.
5 96- 99	102.	0.	196. 189.	330. 216.	-134.		0-294 0-006	0.18 0.03	289 <u>-38</u> 289-23	334. '43.
5 102-105	93.	0.	179.	179.	-0.	-0.001	0.006	0.03 0.03	289.23	43- 43-
5 105-108 5 108-111	91. 86.	0.	175. 166.	175. 166.	-0. -0.	-0-000	0.006 0.006	0.03	289.23	43-
3 (II-II4)	79.	0. 0.	158. 152.	158. 152.	-0. -0.	-0.000	0.006 0.006	0.03	289.23 289.23	43. 43.
5 114-117 5 717-120	777	0.	148.	140.	-0.	-0.000	0-006	0.03	289-23	43-
6 120-123 6 123-126	74. 71.	₀ .	143. 137.	143. 137.	 0.		0.006	0-03 0-03	289-23	43.
6 126-129	68.	0.	131.	131-	-0.		0.006	0.03		43.
6 132-132 6 132-135	64-	0.	123.	123.	-0-	-0.000	0.006	0.03	289.23	43.
4 135-138 6 138-141	62°	0. 0.	119. 114.	120. 114.	~0. -0.			0.03		43. 43.
~ 6 14I-144"	57.	0.	110.	~110.	-0. -0.			0.03 0.03		43. 43.
7 144-147 7 147-150	55 a	0.		106.	-0.	-0.000	0.006	0.03	289.23	43.
7 150-153 7 753-156	51. 49.	- 0.		98. 794.	-0. -0.			0.03 0.03		43. 43.
7 [56-159	48.	0.	92.	93.	-0.	~0.000	0.006	0.03		43. 43.
7 159-162 7 162-165	45. 42.	0.		87. 81.	-0. -0.	-0.000	0.006	0-03	289,23	43.
7 165-168 8 168-171	40.	0.		79. 77.	-0. -0.			0.03		43.
8 171-174	39.		75.	75.	-0.	-0.000	0.006	0.03	289.23	43.
8 174-177	37. 35.	0. 0.		71. 68.	-0.			0-03 0-03		43. 43.
8 180-183 8 183-186	33.	0. 0.	64.	64. 62.	<u>-0.</u>			0.03		43.
8 186-189	31.	0.	60.	60.	-0.	-0.000	0.006	0.03	289.23	43.
8 189-192 9 192-195	31. 30.	0. 0.	60.	60. 50.	-0. -0.			0-03 0-03		43. 43.
9 195-198 9 198-201	29. 27.	ó. 0.	56.	56. 52.	-0.	-0.000	0.006	0.03 0.03		43. 43.
9 201-204	25.	0.	48.	48.	-0.	-0.000	0.006	0.03	289.23	43.
9 204-201	25. 24.	0 <u>.</u>	46.		0.		0.006 0.00 <u>6</u>	0-03 0-03		43.
9 210-213 9 213-216	23.		44.		-0.	_0,000	0.006	0.03 0.03	289.23	43. 43.
10 216-219	22.	0.	42.	44.	-0. -0.	-0.000	0.006	0.03	289.23	43.
10 219-222 10 222-225	22. 22.	0.		42. 42.	-0- -0-			0.03		43. 43.
10 225-226 10 228-231	21.	0.	40.	41.	~o.	~~~~0 . 000	0.006	0.03	289.23	43. 43.
10 231-316		0.	40.	41. 41.	-o.	-0.000	0.006	0.03	289.23	43.
10 234-237 10 237-240	20	0.	39.	39.	-0.			0.03	209-23	43.
			, 27•							

		BEFORE	IO_YRS		*****	!	P RUN DATE	TIME	ZEb. 9'fd	
TIME	INFLOW AT	SPILLAGE FROM DAM	INFLOW TO	OUTFLOW INT.POINT	BALANCE INT-POINT	BALANCE INT_POINT	INUNDATED VOLUME	INUNDATED DEPTH	INUNDATED	
DAY HRS	- \$	(CUX/S)	(CUM/S)	(CUM/5)	(CUM/S)	(MCH)	(MCH)	(H)	*	- 9
1 0-	3 20.		59.	59.	0.	0.000	0.001	,	(EL.N)	
1 3-	6 21.	_	61.	61.	0.	0.005	D+006	0.01	289.21 289.23	
1 6- 1 9- 1	9 <u>24.</u> 2 31.	<u>-</u> -	70. 91.	70. 91.	-0.	-0.000	0.006 0.006	0 <u>-</u> 03 0-03	209.23	
1 12- 1 1 15- 1			120. 67.	120.	-0. -0.	-0.000	0.006	0.03	289.23 289.23	
1 18- 2	t 183.		535.	340.	195.	-0.000 2.112	0.006 2.119	0.03 0.47	289.23 289.67	
2 24- 2		_	1077. 1334.	340. 340.	737. 994.	7958 10.739	10.078 20.817	1.01	290.21	_
2 27- 3	0 299.		875.	340.	535.	5.778	26.596	- 1.45 1.64	290.65 290.84	-
2 30- 3 2 33- 3			714. 626.	340. 340.	374. 286.	4-040 3-091	30.636 33.728	1.76 1.84	290.96	
2 36-3	9 213.	- _	623.	340.	283.	3.060	36.788	1.92	291.04 291.12	
2 39- 4 2 42- 4		_	623. 626.	340. 340.	283. 286.	3.060 3.091	39.848 42.940	2-00 2-05	291.20	
2 45- 4 3 48- 5	8 209.	·	612.	340.	272.	2.933	45.874	2.15	291-28 291-35	
3 51- 5	4 204-	===	- 6 <u>00-</u> 597+	340. 340.	260 _•	2.8 <u>07</u> 2.775	48.682 51.458	2.21 2.27	291.41 291.47	
3 54- 5 3 57- 6	7 204.		597。 597。	340. 340.	257. 257.	2.775 2.775	54.234 57.010	2.33	291.53	_
3 60- 6	3 204.	-	597.	340.	257.	2 <u>.</u> 775	59.786	2.39 2.45	291.59 291.65	
3 63-6 3 66-6		_	600. 603.	340. 340.	260. 263.	2.807 2.839	62.593 65.432	2.51	291.71	
3 69- 7	2 209.	· · · · - ·	612.	340.	272.	2.933	68.366	2 <u>.5</u> 6	291.76 291.82	
4 72- 7 4 75- 7			609 . 582 •	340. 340.	269. 242.	2.902 2.617	71.269 73.887	2.67 2.72	Z91.87	
4 78- 8	1 177.		518.	340.	178.	1.922	75.809	2.76	291.96	
4 81- 8 4 84- 8		_	445. 424.	340. 340.	105. 84.	1-132 0-911	76.942 77.853	2.78 2.80		
4 87- 9	ŭ 137.		401.	340.	61.	0.658	78 - 512	2.81	292.01	
4 93- 9	6 126.		389. 369.	340.	49. 29.	0.532 0.310	79.044	2-62	292.02 292.02	
5 96- 9 5 99-10		<u>_</u>	348. 334.	340.		0.089	79.445	2-82	292.02	
5 102-10	5 109-	<u>.</u>	319.	340.	-21.	-0.069 -0.227	79-376 79-150	2.82 2.82	292.02 292.02	
5 105-10 5 108-11			310. 293.	340. 340.	-30° -47°	-0.322 -0.511	78.829 78.318	2.81	292.01	
5 111-11	4 95.		278.	340.	-62.	-0.669	77-650	Z-80 2-79	292.00 291.99	
5 114-11 5 117-12		<u>-</u> -	$-\frac{269}{260}$	340.		-0.764 -0.859	76.886 76.028	Z.78 Z.76	291.98 291.96	
6 120-12	3 85.		249.	340.	-91-	-0.985	75.043	2-74	291-94	
6 123-12 6 126-12		-	240. 228.	340. 340.	-100. -112.	-1.080 -1.206	73.963 72.757	2.72 2.70	291.92 291.90	
6 129-13	2 75.		219.	340.	-121.	-1.301	71.456	2.68	291.00	
6 132-13 6 135-13		-	214. 208.	340.	-126. -132.	-1.364 -1.428	70.092 68.665	-2.65 -2.63		
6 138-14 6 141-14		<u>.</u> .	196.	340. 340.	-144. -150.	-1.554 -1.617	67.112	2.60	291.80	
7 144-14	7 63.		184.	340.	-156.	-1.681	63.495	2.56 2.53	291.73	
7 147-15 7 150-15		=	173. 167.	340. 340.	-167. -173.	-1.807 -1.870	62.00B 60.139	2-50 2-46		
7 153-15	56.		164.	340.	~176.	-1.902	58.237	2.42	291.62	_
7 156-15 7 159-16			158- 149-	340.	-182. -191.	-1-965 -2-060	56.273 54.214	2.38 2.33		
7 162-16	5 47.	_	138.	340.	-202-	-2.186	52.026	2-29	291.49	
7 165-16 8 166-17	1 43.	-	132. 126.	340. 340.	-206. -214.	-2.249 -2.313	49.779	2-24	291,44 291,38	
8 171-17 8 174-17	4 42.		123. 120.	340.	-217.	-2.344	45.123	2.13	291.33 291.27	
8 177-18	0 37.		108.	340. 340.	-220. -232.	-2.376 -2.502	42.748	2.07	291.21	-
8 160-18 8 183-18			105 <u>-</u>	340. 340.	-235. -241.	-2.534 -2.597	37.713 35.116	1.88	291.15 291.06	
8 186-18	9 33.	_	97.	340	-243.	-2,629	32.488	1.61	291.01	
8 189-19 9 192-19		-	94. 91.	340. 340.	-246. -249.	-2.660 -2.692	29.828 27.137	1.73 1.65	290.93 290.85	
9 195-19	d 31.		91.	340.	-249.	-2.692	24-446	1.57	290.77	
9 198-20 9 201-20	4 26.		76.	340. 340.	-258. -264.	-2.767 -2.850	21.660 18.810	1-48	290.68 290.58	
9 204-20		· · · · · · · · · · · · · · · · · · ·	- 73. 73.	340. 340.	-267. -267.	-2.881	15.929	1.27	298.47 296.35	
9 210-21	3 24.		70-	340.	-270.	-2.881 -2.913	13-048 10-136	1-15 1-01	290.21	
9 213-21 10 216-21			67. 67.	340. 340.	-273. -273.	-2-945 -2-945	7.192 4.248	0.65	290.05 289.86	
0 219-22	2 22.	-	64.	340.	-276-	-2.976	1.272	0.36	209-56	_
10 222-22 10 225-2 <i>2</i>			61.	162. 62.	-117. -0.	-1.266 -0.001	0.006	0-03	289.23 289.23	
0 228-23	1 21.		61.	- 62-	-0-	-0.000	0.006	0-03	249.23	
0 231-23 0 234-23	7. 21.	-	61. 61.	. 62. 62.	0. -0.	-0.000 -0.000	0.006 0.006	0.03	280.23 289.23	
0 237-24			59.	59.	-0.	-0.000	0.006	0.03	285.23	

PROJEC	T STATUS -	AFTER 1 TO 1	PROJECT O YRS				* RUN DATE	/TIME	SEP. 8,198	1/AM 9.30
THE	INFLOW AT	SPILLAGE FROM DAM	INFLOW TO	OUTFLOW INT-POINT	BALANCE INT-POINT	BALANCE INT-POINT	INUNDATED VOLUME	INUNDATED DEPTH	INUNDATED STAGE	INUNDATED AREA
y HR	*	(CUH/S)	{CUM/S}	(CUM/S)	(CUH/S)	(HCH)	(HCH)	(H)	(EL.M)	(14)
_	3 20.	0.	39. 40.	39. 40.	0. Q.	0.000	0.001	0.01	289.21	14.
3- 6-	6 21. 9 24.	0.	46.	46-	-0.	-0.000	0.006	0.03	289.23	43.
9-	2 31.		60. 79.	60. 79.	-0.	-0.000 -0.000	0.006	0.03 0.03	269.23 289.23	43. 43.
12- 15-	23.		44. 352.	44. 340.	~0. 12.	-0-000 0-135	0.006 0.142	0.03 0.12	289.23 289.32	43. 229.
18- 21-	<u> 368</u> .	0.	709.	340.	369. 538.	3.984 5.815	4.127 9.942	0.65	289.85 290.20	1275. 1985.
24-	27 456	0.	878. 576.	340 _* 340•	236.	2-549	12.491	1-12	290.32	2226.
30-	33 244.		470.	340 <u>.</u> 340.	130.		13.896 14.677	1 <u>-18</u> 1-22	290-36 290-42	2348. 2413.
33- 36-	39 213.	0+	410-	340- 340-	70. 70.	0.759 0.759	15.437	1.25	290.45 290.48	2475. 2536.
39- 42-	45 214.	. 0.	412.	340.	72.	0.780 0.676	16 <u>-</u> 977 17-654	1 <u>.31</u> 1.33	290.51 290.53	2596. 2648.
45~			403. 395.	340. 340.	55.	0.593	18.248	1.36	290.56	2692-
51-		0.	393. 393.	340. 340.	53. 53.	0.572 0.572	18.820 19.393	1.3B 1.40	290.58 290.60	2734. 2776.
51-	60 204	. 0.	393. 393.	340. 340.	53. 53.	0.572 0.572	19-966 20-539	1.42	290.62 290.64	2817. 2857.
63-	66 205.	0.	395	340.	55.	0.593	21.132	1.46	290-66	2898. 2940.
69-	69 206		397. 403.	340. 340.	57. 63.	D-614 D-676	21.747	1.48 1.50	290.68 290.70	2985
72-	75 208.	0.	401. 383.	340°	61. 43.	0-655 0-468	23.079 23.548	1.52	290.72 290.74	3029. 3060.
75- 76-	81 177.	. 0.	341.	340	1.	0.011	23.559	1.54 1.52	290.74 290.72	3060. 3027.
81- 84-			293. 279.	340. 340-	-47. -61.	-0.509 -0.655	23.050 22.395	1-50	290.70	2984.
87-	90 137	0.	264. 256.	340. 340.	-76. -84.	-0.822 -0.905	21.574 20.670	1.47	290.67 290.64	2928. 2866.
90-	96 126	. 0.	243.	340.	-97. -111.	-1.050 -1.196	19.620 18.425	1.41 1.36	290.61 290.56	2792. 2705.
96- 99-1	02 114			340.	-120.	-1-300	17-125	1.31	290-51	2608
102-1 105-1			210- 204-	340. 340.	-130. -136.	-1-404 -1-466	15.722 14.256	1.26 1.20	290-46 290-40	2498 2379
toa-t	ll <u>100</u> .		193. 183.	340. 340.	-147. -157.	-1.591 -1.695	12.665	1.13	290.33 290.25	2241. 2085
111-1 114-1	17 92	. 0.	177.	340-	-163.	-1.758	9-213	0.96	290-16	1910
117-1 120-1			171. 164.	340• 340•	-169. -176.	-1-820 -1-903	7.394 5.491	0.86 0.75	290.06 289.95	1710. 1473.
123-1 126-1	26 82			340. 340.	-182. -190.	-1.966 -2.049	3.526 1.478	0.60 0.39	289.80 289.59	11.78. 759
129-1	32 75	. 0.	144.	281.	-136. -0.	-1.472 -0.001	0.006	0.03	289.23	43 43
132-1 135-1	36 71	. 0.	137-		-0-	-0.000	0.006	0.03	289.23	43.
130-1 - 11					-0. -0.	-0 <u>-00</u> 0		0.03	289.23	43 43
144-1	47 63	. 0.	121.	121-	<u>~</u> 0 <u>.</u>	-0.000	0.006	0.03		43 43
150-1	53 57	. 0.	110.	110.	-0.	-0-000	0.006	0.03	289.23	43 43
753-1 156-1	59 54	. 0.	104.		-0.	-0.000	0.006	0.03 0.03	289.23	43
159-1 162-1		. 0.	90.		-0.			0.03 0.03		43 43
165-1 168-1	68 45	. 0.	87.	87.	-0.	-0.000	0.006	0.03 0.03	289-23	43. 43.
17[-]	74 42	. 0.	81.	81.	-0.	-0.000	0.006	0.03	289.23	43
-174 -177		<u> </u>				-0.000	0.006	0.03	289-23	
180-1 183-1	83 36	. 0.	69.	69.	-0-	-0-000	0.006	0.03	289-23	43
186-1	89 33	. 0.	64.	64-	-0.	-0.000	0.006	0.03	269.Z3	43
192-1	95 31	. 0.	60.	60-	-0.	-0.000	0.006	0.03	289.23	43
195-1 198-2	OL 20							0.03	289-23	43 43
201-2	04 26 107 25	. 0.	50.	50.	-0.	-0.000	0.006	0.03	289-23	45
707-2	10 25	- 0-	48.	48-	-0.	-0.000	0.006	0.03	289.23	43
210-2 213-2	16 31			44.	-0.	-0.000	0.006	0.03	269-23	43 43
216-2 219-2	19 23 22 22	. 0.	. 44.	44.	-0.	-0-000	0.006	0.03	289.23	43
222-2 225-2	25 Z2	. 0.	42-	42-	-0.	-0.000	0.004	0.03	289.23	43
228-2	31 21			41.	-0.	-0-000	0.006	0.03	269.23	43 43
231-2 234-2	21	. 0.	40.	41-	-0.					43 43
237-7	40 20									43

	Table E 3-4(1)	Flood	Control	Simulation	for	Before	Project	on 1 to	20 v.	~
-									~o leare	

** PROJECT STATUS --- BEFORE PROJECT ** RUN DATE/TIME -- SEP. 8-1981/AR 9-1 ** RETURN PERIOD ---- 1 TO 20 YRS INUNDATED INUNDATED INUNDATED INUNCTION INFLOW TO CUTFLOW YTHE THEON AT SPILLAGE BALANCE BALANCE FRON DAM INT-POINT INT-POINT INT.POINT INT.POINT STAGE AREA DAY HRS (CUR/S) (CUMZS) CCUM/S1 (CUH/S) (CUH/S) (MCM) (MCH) 181 IEL.N traj 0.000 0-001 0.01 61. 21. 61. ō. 0.005 0.006 26. 76. 6-76. -0. -0-000 0..006 0.03 'n 289.23 289.23 102. 103. -0. -0.000 0.006 0.03 141. 269. 0.006 12-AA. 140. -na -0.000 0.03 289.23 92 ~ŏ• -0.000 0.03 289.23 355. 3.837 18- 21 21- 24 241 705 350. 3-844 0.62 289.82 492. 1440. 350. 11.769 1.25 24- 27 27- 30 612. 397. 1791. 1162. 350. 350. 15.561 8.767 7111 31.175 1.77 290.97 3522 A17. 39.947 2.00 291.20 33 350. 46.055 nii 2.15 291.35 31-36 263 776. 350. 420. 4.532 50.588 4243 291-43 4 i i i 39 259. 350. 36-408. 4.406 54.994 2.35 746. ш. 19- 47 255. 350 396 59.273 291-63 4.279 3.963 111 42- 45 255. 746. 350. 396. 63.553 67.5[7 2.53 291.71 45- 48 245. 717 350. 291.80 Sili 48- 51 3.710 344. 332. 71.228 237. 694. 350-2.67 291.87 233. 3.584 5375 350. 74.812 2.74 291.94 177 54- 57 232. 679. 350. 329. 3.552 78.365 292.00 57- 60 676. 3.521 231. 350. 326. 81-886 7.87 292.07 1717 673. 3.489 3.426 60- 63 230 350. 323. 85.376 2.93 292-11 5834 63- 66 ZZ8. 567. 350. 292.18 14th 66- 69 69- 72 227. 229. 350. 3.394 664. 92-197 3-04 292.24 6063 670. 350. 320. 3.458 95-655 3.10 292.30 350. 99.050 292.35 6245 75- 7R 716. 732. 350. 707 3.047 102-097 3.20 292.40 2.351 1.561 76- 8L 194. 104-449 106-011 568. 350. 3.24 3.26 292.44 292.46 218. 6454 Ž15 RI- R4 TK9: 350. 145. 1502 84- 87 87- 90 161. <u>-</u> 471. 350. 121. 98. 1.309 107-320 3.28 3.30 292-48 6547 153. 350. 108.376 292-50 90- 93 148. 433. 350. 83. 0.898 109-276 93- 96 140. 410. 350. 60. 0.645 109.920 3.32 202.53 K() -= 133. 128. 389. 375. 350. 350. 39. 25. 0-424 110.344 110.610 96- 99 3.33 292.53 6616 99-102 3.31 292-51 121. 118. 354. 345. 0.044 102-105 350. 4. -5. 3.33 = 110.655 292.53 6643 105-108 -0.050 350. 110.605 3.33 292.53 5 108-111 325. 3.33 350. -0.272 110.334 6616 105. -41. 777=774 307 350. -0.461 109-873 3.32 292.53 -54. -60. 5 114-117 5 117-120 101. -0.588 -0.651 350. 109.286 3.31 292.51 -- = 290. 350. 108.636 3.30 292.50 94. 120-123 350. -75. -84. -0.809 107-827 3.29 292.49 4551 266. 350 -0.904 106-924 292.47 249. -101-3.26 126-129 85. 350. -1.093 105-831 292.48 6497 **ят**. 6 179-117 243. 350. -107. 6 132-135 6 135-138 -116. -122. -1-251 -1-314 103-424 80. = 234-350-3.22 292.42 6427 78. 228. 3.20 35Ò. 6 138-141 6 141-144 214. -136. -142. -1.472 -1.536 100-638 99-103 3.18 3.15 73. 350. 292.18 4115 350. 292.35 7 144-147 -1.599 69. 202 350 97.505 3.13 292.13 1716 350. 147-150 64. 167. 292.30 -163. -1.757 95.748 7 150-153 7 153-156 62. 60. 181. -169. -174. -1.820 -1.883 93.929 350. 3.07 292.27 292.24 6121 350. 92.046 3.04 5995 59. 156-159 159-162 350. -177. 3.01 292.21 90.131 54. 3925 3157 -192. -207. 2.97 2.93 1582 350. -2.073 88.059 292-17 292.13 292.09 350. 85.628 165-168 47. 118. 350. -212 -2.264 A1:515 2.90 8 168-171 8 171-174 45. 132. 2.85 2.81 2.77 1117 1117 1117 -2.357 -2.389 -2.421 292.05 350. -218. -221. Ξ 81.178 78.789 350. 292.01 8 174-177 8 177-180 350. 350. 5311 43. 126. 291.97 -224. -236. 76.369 39. 114. -2.547 2.72 291.42 73.823 512 2.67 2.62 2.57 2.52 180-108. 350. 350. -242<u>-</u> -248--2.610 -2.673 8 183-186 35. 102. 291.17 8 186-189 8 189-192 34. 33. 99. 350. 350. -251. -253. -2.705 -2.737 65.836 63.100 291.71 291.77 190 9 192-195 9 195-198 -256. -259. 60.332 57.532 Z-46 291.66 32. 94. 350. -2.768 31. 291.60 91. 350. -2.000 9 198-201 9 201-204 82. 76. -268. -274. 28. 350. 2.895 54.638 51.681 w 291.48 350. -2-956 HH 9 204-207 9 207-210 25. 24. 73. 70. 350. 350. -2.989 48-692 45-672 2.21 2.14 291.41 -277. -280. 291.34 111 70. 350. 350. 9 210-213 9 213-216 24. 23. -280. -283. 42-651 2.07 291.27 -3.021 291.19 67. -3.053 1112 10 216-219 10 219-222 22. 350. 350. 1.92 -286. -3.084 36.515 291.01 64 -286 13_411 1675 10 222-225 10 225-228 22. 350. 350. 1.66 290.95 -3.084 -3.116 30.348 210.15 -280 61. 21. 21. 61. 61. 59. 350. 350. 1.56 290.76 -3.116 -289 24-117 290.65 10 231-234 -289. -3.116 21.001 24 290.54 350. -291. -291. -3.147 -3.147 10 234-237 10 237-240 17-655 240.42 70. 34 350. 14.708 1.22 . 3

0.03

0.03

789.23

289.23

43.

Table E 3-4(2) Flood Control Simulation for After Project on 1 to 20 Years

24.454.84

10, 531-540

20.

OF PROJECT STATUS --- AFTER PROJECT
OF RETURN PERIOD ---- 1 TO 20 YRS ** RUN DATE/TIME --- SEP. 8-1981/AM 9-30 INFLOW TO OUTFLOW BALANCE BALANCE INT.POINT INT.POINT INT.POINT INT.POINT INFLOW AT SPILLAGE INUNDATED INUNDATED INUNDATED INUNDATED DEPTH DAM SITE FROM DAM STAGE VOLUME AREA DAY HRS ICUM/SI EHCH1 (CUM/S) (CUM/S) ICUM/ST ICUM/ST (MCM) (#1 (EL.M) (54) 39. 0.01 0.000 0.001 289.21 289.23 n. 40à. 0.005 43. 50. 26. 0. 50. -0. -0.000 0.006 0-03 289.23 43. 43. 6-67. 92. 68. 93. o-0.03 9- 12 289.23 -0. -0. 12- 15 48. 0. -0-000 0.006 0.03 289.23 43. 92 -0.000 0.006 0-03 289-23 350. 114. 598. n. 464. 1.234 7.697 0.36 18- ZL 289.56 Ö. 948. 0.88 290.08 1745. 829. 415. 8-952 612. 397. n. 1179. 350. 16.649 24- 27 1.30 290.50 2571. 2898. o. 350. 1.46 21-129 290.66 313. ō. 603. 507. 350. 253. 157. 2.732 23.861 10- 33 290-75 BORD. 33- 36 ō. 243. 350. 1.692 25.553 1.60 290-80 3188. 499 36- 39 39- 42 1.608 290.85 3287. 755 0. 49T. 350. 141. 1.525 240.90 255 42- 45 45- 48 491. 350. 141. 30.214 31.531 1.74 1.78 1.525 290.94 ٥. 272 350 1.317 290-98 3542. 457. 237. 350. 48- 51 107. 1.151 32-682 1.81 291.01 3606-51-"54 233. 0. 350. 1.068 33.750 1.84 291-04 3665. 0. 350. 97 34.798 35.824 232. 1.047 σ. 445. 350. 1.026 57- 60 1.90 291.10 3776 230. 228. 443. 1.005 60- 63 0. 350. 93-36-830 37-794 1.92 291.12 3829. ٥. 89. 291-15 3879. 227. 229. 87. 66- 69 0. 437. 350. 0.943 38.737 291-17 3927. ٥. 0.984 0.943 0.714 350. 91. 39.722 2.00 291.20 3977. 350. 72- 75 227 Λ. 437 40.665 291.22 291.24 2-02 4024 216. 416. 350. 75-78 **7**6. 41.379 2.04 4059. 0. 78- 61 81- 84 194. 169. 350. 350. 24. 0.256 2.05 2.04 291.25 291.24 4072. 4059. 41.636 126--24--0.264 41.373 o. 350. 310. -40. -0.430 -0.597 40.943 2.03 291-23 4037. 87--90 153. 0. 295 350. -55. 40.347 2.01 291-21 4008-350. -65. -80. -0.701 39-647 2.00 3973. 91- 96 140n. 270. 350. -0.867 291-17 256. 247. 96- 99 99-102 133. 0. 0. 350. -94. -103. ~1.013 -1.117 37.768 36.651 1.95 291.15 3877. 350. 291-12 3819. ō. 102-105 233. 350--117. -123. -1.262 -1.325 35.390 1.89 291-09 3753. 105-108 1182 0. 227. 350. 34.065 1.85 291-05 3682. 111. -1.470 -1.595 108-111 0. 714. 350. -136 291-01 3601. 111-114 105. 202. 350. -148. 31.001 1.77 290.97 3512. 5 114-117 5 117-120 tot. ٥. 195. 350. 350. -155. -159. -1.678 -1.720 29.323 1.72 290.92 3415. 99. 27-603 290-87 181. 6 120-123 94. ۸. 350--1.824 25.780 1.61 290.81 3202. 123-126 0-175. 350--175. -1.886 23-894 1.55 3082. 6 176-129 85. n. -186. -2.011 21.883 1.48 290.68 2949 83. 160. 0. 350.. -190 -2.053 19.831 290-61 2807. 6 132-135 6 135-138 80. ٥. 350. **-196**. -2.115 17.716 15.559 1.34 290.54 2653. 78. n. 150. 350. -200. 290.45 2485. 6 138-141 73. 141. 350. -2-261 -Z09. 13.299 1.16 290.36 2297. 141-144 71. ñ. 137. 350. 10.997 1.05 -2-302 290.25 2088-7 144-147 8-653 0.79 290.14 350. -217. -2-344 147-150 64. n. 123. 350--227 1566. 7 150-153 7 153-156 62. 0. 119-350. -231. -234. -2.490 -2.531 3.716 0.61 289.81 1210ñ. 350. 1.186 289.55 0.35 679. 7 156-159 59. 0. 114. 223. -109. -1-180 0.006 0.03 289.23 43-104. 54. ٥. -0.001 104. -0-0.006 0.03 289.23 7 162-165 7 165-168 ο. 94. ō. नाः -0. -0.000 0.006 0.03 289.23 8 16B-171 8 171-174 45. 87. 85. 0. 87. -0 -0 -0.000 0.006 289-23 289-23 0.03 43. ũ. 85. -0.000 0.006 0.03 8 174-177 43. 0. 83. -0.000 0.006 0-03 289.23 43. 177-13a 0. 75. 75. -0--0.000 0.006 0.03 37, 71. 67. -0.000 -0.000 289.23 -0. 0.006 0.03 8 183-186 ō. 68. 0.006 8 186-189 34. ٥. 65. -0--0.000 289-23 289-23 66. 0.006 0.03 189-192 33. 64. 62. 0. 64. -0--0.000 0.006 0.03 43. 192-195 32. 0. 62. -0--0.000 0.006 0.03 289-23 289-23 195-198 31. ٥. 6Ō. 60. 9 198-201 9 201-204 -0.000 0.006 0.03 43. 28. 26. -0. -0 -0.000 0.006 289.23 289.23 0.03 n. 50. 0-03 9 204-207 9 207-210 25. 24. 0. -0. 0.03 46. 48. -0.000 0.006 43. 9 210-213 9 213-216 o. 46. -0.000 0.006 249-23 43 24. 0. -0. 46. 46. -0.000 0.006 0.03 43. 0. 44. 10 216-219 10 219-222 -0.000 -0. 400.0 0.03 289-23 ۸. -0. -0. -0.000 0.006 0-03 43. ō. 10 222-225 10 225-228 0.03 0.006 289-23 22. 42. 40. 0. -0. -0.000 0.006 0.03 289.23 43. 43. 0. 0. 10 228-231 10 231-234 41. -0-0.00 Å 0.03 289.23 21. 41. 40--0. 0.006 -0.000 0.03 289.23 43. 21. 40. 41. 10 234-237 -0--0.000 0.004 0.03 289-23 20. Ô. -0.000 0-006

39.

-0.000

0.006

٠._

									Append Page	1x E-3
Table E	3-5('1) F16	ood Con	trol Si	imulati	on for	Before	Projec		to 50 γ _e
•										10 30 Ye
o retyry pe			PROJECT SO YRS			1	M RUN DATE	/TIME	56P, 8,19	1/AR 9,30
	FLOW AT	SPILLAGE FROM BAM	IMPLOW TO INT. POINT	OUTPLOW INT. POINT	BALANCE INT-POINT	BALANCE	•	INCHOLYES	PERSONTED	
	CUM/S)	(CURVS)	(CUR/S)	(CUVS)	(CUN/S)	(MCH)	(MCH)	THI	1 PL.H)	INA)
1 0- 3	20. 22.		59. 64.	57. 64.	0 <u>-</u>	0.000	0.001	0.01	209.21	
i	<u> </u>	-	85.	85. 123.	-0. -0.	-0.000	0.004	0.03	201.23 201.23	43.
1 12- 15 1 15- 14	124.		174. 343.	174. 363.	-0. -0.	-0.000 -0.000	0.004	0.03	209,23 209,23	43. 43.
1 10- 21 1 21- 24	341. 698.		2042.	370. 370.	628. 1672.	18.043	24-852	1.58	290.03 290.78	1638. 3143.
<u>2 24- 27</u> 2 27- 30 2 30- 33	841. 558. 409.		2519. 1574. 1197.	370. 370. 370.	2149. 1204. 827.	23.214 13.007 8.930	48.047 41.074 70.004	2.20 2.48 2.65	291.40 291.48	4375.
2 33- 34 2 34- 39	331.		949. 933.	370. 370.	599. 563.	6-445 4-046	76.470 82.556	2.77 2.88	291.05 291.05 292.08	5262. 5521.
2 39- 42 2 42- 45	309. 303.		904. 887.	370. 370.	534. 517.	5.770 5.580	58.326 93.907	2.98 3.07	242.21	5737. 5734. 6114.
2 45-48 3 48-51	285. 248.	-	834. 784.	376. 370.	464. 414.	5-0[1 4-474	103.373	3.13	242.35 242.42	428] 6421.
3 51- 54 3 54- 57 3 57- 60	260. 255. 251.	. <u>-</u>	761. 744. 734.	370. 370. 370.	391. 376. 364.	4.221 4.063 3.937	107.415 111.679 115.614	3.29 3.35 3.41	292.49 292.55 292.60	6531. 6674.
3 60- 63 3 63- 66	246. 241.	-	720. 705.	370. 370.	350.	3.779 3.421	119.395	3.46	292.66 292.71	6791. 6901. 7005.
3 66- 69 3 69- 72	237. 237.	-	694. 694.	370. 370.	324. 324.	3.494	130.004	3.54 3.61	292.76	7104. 7202.
4 72- 75 4 75- 78 4 78- 81	232.		679. 647. 591.	370. 370.	309. 277.	3.336 2.569	133.343	3.46	212.86	7294. 7375.
4 81- 84 4 64- 87	202- 180. 179.		527. 506.	370. 370. 370.	221. 157. 136.	2.386 1.493 1.472	136.721 146.415 141.887	3.75 3.77 3.77	292.93 292.95 292.97	7440. 7485.
4 87- 90 4 90- 93	165. 160,		483. 468.	370. 370.	113. 98.	1.219	143.104	3.79 3.80	292.99 293.00	7524. 7556. 7584.
4 93- 96 5 94- 99	152. 143.	-	445.	370. 370.	75. 48.	0.808 0.524	144.974	3.81 3.82	293.01 293.02	7606. 7619.
3 99-102 5 102-105 3 105-108	135.	.	404. 383.	370. 370. 370.	34. 13.	0.366 0.144	145.867	3.82 3.83	293.02 293.03	7629. 7633.
5 108-111 5 111-114	127. 119. 112.	-	372. 348. 328.	370. 370.	-22. -42.	0.018 -0.235 -0.456	146-030 145-796 145-340	3.83 3.82 3.82	293.03 293.02 293.02	7633. 7627. 7615.
5 114-117 3 117-120	108.	-	316. 310.	370. 370.	-54. -60.	-0.582 -0.646	144.758	3.81	293.01 293.00	7400. 1583.
6 120-123 6 123-126	100 <u>-</u> 97.		293. 284.	370. 370.	-77. -86.	-0.835 -0.930	143.279 142.349	3.79 3.78	292.99 292.98	7561. 7534.
6 126-129 6 129-132 6 132-135	90. 86.	-	263. 258. 252.	370. 370. 370.	-107. -112. -118.	-1.151 -1.214 -1.276	141-198 139-984 138-707	3.76 3.75 3.73	292.96	7506.
6 135-138 6 138-141.	54. 78.		246. 228.	370. 370.	-124. -124.	-1.341 -1.530	137.367 135.637	3.71 3.69	292.93 292.91 292.89	7439. 7403. 7362.
6 141-144 7 144-147	75. 73.		219. 214.	370. 370.	-151. -156.	-1.625 -1.688	134.212	3.67 3.65	292.87 292.85	7318. 7271.
7 147-150 7 150-153	67.		196-	370. 370.	-174. -180.	-1.878 -1.941	130.646 128.705	3.62	292.82 292.79	7220. 7144.
7 155-156 7 156-159 7 155-162	63. 62. 56.	<u> </u>	154. 151. 164.	370. 370. 370.	-186. -189. -204.	-2.005 -2.036 -2.226	126.701 124.466 122.440	3.56 3.54 3.50	292.76 292.74 292.70	7110. 7052. 4989.
7 142-145 7 165-148	50.		144.	370. 370.	-224. -232.	-2.415 -2.510	120.026	3.47	292.67 292.63	4719. 6847.
8 140-171 8 171-174	44.	-	135. 132.	370. 376.	-235. -236.	-2.542 -2.573	114-975	3.40	292.60 292.36	6772 <u>.</u> 6696.
# 174-177 8 177-190	38.		129.	370. 370.	-241. -259.	-2.605 -2.795	107.003	3.32	292.92 292.48	4410. 4533.
8 180-183 8 183-186 8 184-189	34. 34. 34.	-	105. 95. 99.	370. 370. 370.	-265. -271. -271.	-2.858 -2.921 -2.921	104-144 101-225 98-305	3.23 3.19 . 3.14	292.43 292.39 292.34	6354. 6261.
8 184-192 9 192-195	33. 32.		97. 94.	370. 370.	-275. -276.	-2.953 -2.984	95.353 92.369	3.09	292.29 292.24	6166.
9 195-198 9 198-201	31. 26.	<u> </u>	91. 76.	370. 370.	-279. -294.	-3-014 -3-174	89.354 84.180	2.99 2.94	292-19 292-14	5641. 5842.
9 201-204 9 204-207	25. 24.	, <u> </u>	73.	370. 370.	-297. -300. -303.	-3.205 -3.237	82.975 79.739	2.69	292.69	5752. 9430. 9521.
9 207-210 9 210-213 9 213-216	23. 23. 22.	, <u> </u>	67. 67.	376. 376. 376.	-303. -303.	-3.269 -3.269 -3.300	76.471 73.202 64.463	2.77 2.71 2.65	291.97 291.91 291.83	5402. 5276.
0 214-219 0 214-222	22. 21.		44.	370. 370.	-304. -304.	-3.300	43.272	2.99	291.79	5192. 5021.
0 222-225 0 225-220	21. 21.		41.	370. 370.		-3.332 -3.332	59.940 54.609	2-45 2-36	291.45	4697.
0 220-231 0 231-234 0 234-237	21. 20. 20.	,	61. 55.	370. 370.	-30%- -311.	-3,332 -3,363	53.276 49.415		291.91 291.44	4407. 4459. 4304.
# 237-240 1 240-243	20. 20.		59. 59. 59.	370. 370. 370.	-311. -311. -311.	-3,363 -3,363 -1,363	46.352 43.181 39.826	7.14 7.68 2.00	291.34 291.28 291.20	4147. 1942.
1 245-246 1 246-249			59. 59.	370. 370.	-311. -311.	-3.343 -3.363	35,100	1.02	291.02	~
1 249-252 1 252-255	20. 20.	-	59. 59.	376. 370.	-311. -311.	-3.363 -3.363	25-757 26-374	1-43	295.93 290.63	3234.
1 255-258 1 258-261 1 261-264	20. 20.		57. 51.		-311. -311. -311.	-1.343 -1.343 -1.343	23.011 19.649 16.283	1,92	290.72 290.41 290.41	27% 27%
2 264-267 2 264-267	20. 20.	, –	99. 99.		-111. -111.	-5.343 -3.343	12-455	1.78 1.14 0.93	290.34 290.34	2264.
Z 270-273 Z 273-276	20. 20.	=======================================	59.	319. 316.	-311.	-5,M1 -5,M1	6.194 2.833	5,79 0,94	289.99 289.74	1555.
2 276-279 2 279-282	20.		59.	- 320. 37.	-263.	-2.827 -8.901	0.094 0.008	\$-03 \$-03	229.23	43. 43. 49.

Table E 3-5(2) Flood Control Simulation for After Project on 1 to 50 Years

	E 3-31										
in senset	T STATUS -	AFTER	PROJECT			٠.	RUN DATE	/TIME	 SEP. 8.198	31/AH 9.30	
RETUR	Å bEKTUD	1 TQ	-	. 4	. •		*******			******	
11 HE	INFLOW AT	SPILLAGE	INFLOW TO	DUTFLOW	BALANCE INV-POINT		THUNDATED			IMUNDATED AREA	
		FROM DAM		*****	- •	(HCH)	THCH1	(H)	(EL.M)	thal	. <u>.</u>
DAY RR	i (CON/S)	(CUM/S)			". (Čή¥\\21 "	-					
1 0-	3 20.	0.	42.	39. 42.	<u>0.</u>	0.000	0.001	0.01	289.21 289.23	43.	
3-	* **	0.		56. 81.	-0. -0.	-0.000 -0.000	0.006 0.006	0.03 0.03	289.23 289.23	43. 43.	
1 12-	15 604	0.	116.	116. 239.	0. -0.	-0.000 -0.000	0-006 400-0	0.03	269-23 289-23	43. 43.	
1 15-	18 2	0.	657.	370.	287.	3.098	3.105	0.56	289.76	1105.	
	24 696.		1658.	370. 370.	974. 1288.	10.525 13.916	13.631 27.547	1.17 1.66	290.37 290.86	2326. 3310.	
7 77-	30 538-	G.		370. 370.	666. 418.	7.196 4.513	34.744 39.257	1.87 1.99	291-07 291-19	3718. 3953.	
2 30- 2 33-	36 331.	0.	638-	370. 370.		2.890 2.641	42-148 44-789	2.06 2.12	291.26 291.32	4097- 4223-	
2 36-	47 3 09.		597.	370.	227.	2.454	47-243	2.18	291.36	4336.	
2 12- 2 15-	45 303.			370. 370.	- 216. 166.	2.351 2.009	49.595 51.604	2.23 2.28	291-43 291-48	'4445. 4534.	
3 48-	51 268.	. 14.		370. 370.	160. 159.	1.731	53.335 55.052	2.31 2.35	291.51 291.55	4609. 4683.	
3 51- 3 54-	57 255.	42 .	533.	370. 370.	163.	1.763	56.815 58.797	2.19	291.59 291.63	4758. 4840.	
3 57-	63 246.	105.	579-	170.	163. 209.	2-256	61-054	2.46	291-66	4932.	
3 63- 3 66-	66 Z41.			370. 370.	220. 227.	2 -3 79 2 -4 47	63.433 65.880	2.52 2.57	291.72 291.77	5028. 5124.	
- 3- 44	72" 237-	147-	604.	370. 370.	234. 225.	2.527 2.429	68.403 70.833	2.62 2.61	291.82 291.87	5221. 5313.	
	78221.	147.	573.	370.	203.	2.190	73.023	2.71	291-91	5395.	
4 TB-	al 202 <u>.</u>	143.	490	370. 370.	120.	1.773 1-293	74.796 76.090	2-74 2-76	291.94 291.96	5460. 5507.	
1 -81-	87 173.	141.	474-	370. 370.	104. 87.	1.126 0.938	77.216 78.155	2.78 2.80	291.98 292.00	5548. 5582.	
4 90-	93 [60.	137-	445.	370.	75.	0.813	78-968 79-582	2.82 2.83	292.01 292.03	5611. 5633.	
5 96-		132.	407.	370. 370.	37.	0-614 0-405	79.988	2.83	292-03	5647-	
5 102-1	02 138.			370. 370.	76. 10.	0.279 0.112	80.768 80.380	2.84 2.84	292.04 292.04	5657. 5661.	
5 105-l	08 127.	. 126.	371.	370. 370.	-17.	0.007 -0.161	60.388 80.208	2.84 2.84	292-04 292-04	5661. 5655.	
5 108-1 5 111-1	14 112.	122.	330.	370.	-32.	-0.34B	79.860	2.83	292.03	5642-	
5 [[4-] 5 [17-]			320	370.		-0.453 -0.538	79.408 78.871	2.82 2.81	292.02 292.01	5626. 5607.	
6 120-l 6 123-l	23 100.			370. 370.	-65. -75.	-0.706 -0.81 L	78.165 77.355	2.80 2.79	292.00 291.99	5582 - 5553-	
6 126-1	29 90.	98.	271.	370. 370.	-99.	-1-065	- 76.290 75.152	2.77	291.97 291.95	5515. 5473.	
6 129-1 6 132-1	35 86.	92.	258.	370.	-112.	-1-139 -1-213	73.940	2.72	291.92	5429.	
6 135-1 6 136-1				370. 370.		-1.276 -1.498	72.664 71.166	2.70 2.67	291.90 291.87	5382 . 5326.	
6 141-1 7 144-1	.44 75.	. 77.	. 221.	370. 370.		-1-604 -1-678	69.563 67.886	2.64 2.61	291-84 291-81	5265. 5202.	
7 147-1	50 67.	66.	195.	370.	-175.	-1.889	65.998	2.57	291-77	5129.	
7 150-1 7 153-1	56 63.				-189.	-1.963 -2.037	64.035 61.999	2.54 2.49	291.74 291.69	5052. 4970.	
7 156-1 7 159-1						-2-069 -2-291	59.931 57.641	Z-45 Z-41	291.65 291.61	4887. 4792.	
7 162-1	45 50.	42.	138.	370-	-232.	-2.502 -2.607	55.139 52.532	2.35	291.55 291.50	4687.	
E 168-1	71 46.	36.	175.	370.	-245.	-2-650	49.583	2.24	291-44	4457-	
8 171-1 1 174-1	.77 44.			370. 370.		-2.681 -2.713	47.202 44.490	2-18 2-11	291.38 291.31	4336. 4209.	
8 177-1 1-0-1			. 9A.	370. 370.		-2.935 -3.009	41.555 38.547	2.04 1.97	291-24 291-17	4068. 3917.	
8 (8)-1 1 16-1	86]4.	20.	85.	370.	-285.	-3.072	35.475 32.403	1.89	291-09 291-00	3757. 3591.	
8 ÎP9-1	92 33.	. 18.	. A2.	370.	-288.	-3.072 -3.115	29-289	1.72	290.92	3413.	-
9 192-l 9 195-l	98 31.	. 12.	. 72.			-3.157 -3.221	26-133 22-912	1.62 1.52	290,82 290,72	3224. 3018.	
9 201-2	01 26.	. 9.	. 59.	370.	-311.	-3.357 -3.400	19.555	1.40	290-60 290-48		
9 204-2 9 207-2	ST 24.	6.	. 52.	370,	-318.	-3.431	12.725	1.13	290.33	2247.	
9 210-2	13 23.	. 4.	- 48.	370.	-322.	-3.474 -3.474	9-252 5-778	0.97 0.77	290-17 289-97	1914. 1511.	_
9 213-2 10 216-2	19 22	3.	. 45.		~325.	-3.505 -2.267	2-273 0-006	0.46	289.68 289.23	944. 43.	
10 279-2	22 21.		42.	43.	-0.	-0.001	900*0 900*0	0.03	289.23		
10 225-2 10 228-2	20 21	. 1.	. 41.	42.	-0.	-0.000	0-006	0.03	289.23	43.	
10-231-2	34 20.		. ` ` 39.	39.	-0.	-0.000	400-0 400-0	0.03 0.03	289.23 289.23	43 <u>.</u>	• •
10 234~2 10 737=7	137 20.	. 0.	39.	39.	-0.	~0.000	0.006	0.03	289.23 289.23	43.	
li 240~2 li 243~2	43 20	. 0	. 39.	. 39.	-0-	-0.000	0.006	0.03	289.23	43.	
11 246-2 11 249-2	49 20.		. 39.	39. 39.	-0-	-0.000	0.006	0-03	269.23	43.	
11 252-2	55 20	. 0	. ^ ~^39 39.	. 39.	-0-	-0-000 -0-000		0.03	289.23	43.	
11 259-2 21 258-2	61 20	. 0	392	39.	-0-	-0.000	0.006	0.03	289.23	, 43.	
11 261=2 12 264=2	64 20		. 39.	39.	-0.	-0.000	0.006	0.03	289.23	43.	
12"267-2	70 20	0	. 39.			-0.000 -0.000	0.006	0.03		- 43. 43.	• •
12 270-2	76 20	. 0	. 39.	39.	-0-	-0.000	0.006	0.03	289.23 289.23	43.	
12 279-2	79 20. 82 30	• 0	. 39.	39.	-0-	-0.000	0.006	0.03	269.23	' 43.	·
12 282-2 12 785-2	85 20	• 0.	. 39.	. 39.	-0.	-0.000	0-006	0.03	289-23	43.	
	70	6	799.	39;	-0.	-0.000		0103	289223		
	-								·		

Table E 3-6(1) Flood Control Simulation for Before Project on 1 to 100 head

** PROJECT STATUS ---- BEFORE PROJECT ** RUN DATE/TIME --- SEP, 8,1981/AM 9,30 .. RETURN PERIOD ----- 1 TO 100 YRS INFLOW TO DUTFLOW BALANCE BALANCE INT-POINT INT-POINT INT-POINT INT-POINT INFLOW AT SPILLAGE DAM SITE FROM DAM INUNDATED INUNDATED INUNDATED INUNDATED VOLUME DEPTH DAY HRS (CUM/S) (CUM/S) (CUH/S) (CUM/S) (CUH/S) [HCH] ____[EL.H] 0.000 0.003 -0.000 0.001 0.006 0.006 0.006 0.01 59. 64. 91. 138. 64. 91. 136. 6- 9 9- 12 31. -0. -0. -0. 0.03 0.03 0.03 0.22 289.23 289.23 70. 151. 205. 205. -0-000 0.006 43. 43. 289.21 420. 866. 1065. 655. 400. 400. 400. 9.416 32.463 61.801 78.181 290-18 16-21- 24 24- 27 27- 30 2716. 1517. 2.49 2.80 2.99 3.12 3116. 29.337 16.380 291.69 292.00 4942 400. 5583. 5967. 30- 33 33- 36 488. 382. 400. 11-103 89.284 97.038 292-19 292.32 6221. 400. 400. 400. 668. 624. 595. 519. 104.254 110.996 117.422 123.026 36- 39 39- 42 365. 1068. 3.23 292.43 292.54 1024. 995. 340. 3.43 3.51 3.60 292-63 292-71 293-00 6.425 6944. 314. 7006. 143.705 164.004 168.250 172.274 791<u>.</u> 779. 779. 48- 51 51- 54 400. 1915. 1879. 20.678 7572. 4.05 293.29 £390. 4.245 54- 57 57- 60 400. 393. 373. 293.31 293.36 244 775 400-AJO T 256. 249. 60- 63 749. 729. 400. 349. 293.40 293.44 293.48 176.045 3.771 4.24 8382. 6466. 66-- 69 69-- 72 400. 182.956 186.253 4.28 311. 6545 305. 3.297 293.52 72- 75 234. 685. 400. 3-076 189.329 2.728 2.191 1.622 777 400. 253, 192.057 8755. 78- 81 81- 84 603. 550. 4.41 4.43 4.45 4.46 4.47 400. 203. 194-248 8805. 8842. Tas. 293.63 197.303 198.452 199.473 2007179 84- 87 87- 90 90- 93 533. 506. 400. 400. 133. 293.65 8874. 6405. 169. 495 400. 95. 1-021 8939. 0.705 0.421 0.263 445 ¥00. 96- 99 99-102 150. 145. 439. 400. 400. 39. 200-601 4.48 293.68 8954. 102-105 401. 392. 0.010 200.875 293.69 293.69 137-400-8954. 105-108 108-111 111-114 400-4.48 8944. 8930. 366. 342. 400. -34. -58. -0.369 200.422 1997800 291.48 -0.627 -0.748 -0.843 117. 400. 331. 372. 4.47 113. 199.052 198.210 293.67 2914. 400. -78. 8895. 6 120-123 6 123-126 6 126-129 6 129-132 4.45 4.43 4.42 293.65 293.63 293.62 104 304-400. -96. -104. -1-033 -1-128 197.177 101. 296. 275. 400. 196.050 8846. -1.349 -1.444 -1.507 -1.538 194.702 193.259 191.752 190.214 400. -125. -136. E816. 91. 766. ann. 260. 258. 237. 400. 400. -140. -142. 4-37 B9. 293.58 8745. 6711. -1.760 -1.760 -1.654 -1.918 -2.139 -2.202 -2.265 4.35 4.32 8671. 8630. 138-146 AL. 400-188.455 400. 186.601 144-147 147-150 222. 702. 400. -178. -148. 184.684 182.546 4.30 4.28 esas. 69. 300T 1516. 150-153 153-156 196. 400-4.25 -204. -210. 180.344 293.45 293.42 8484. 8430. 54. 58. 50. -213. -230. -254. -262. -2.297 -2.487 -2.739 -2.834 175.783 173.297 170.558 293.40 293.17 293.33 293.30 4.20 4.17 8376. 8316. 156-159 187-400. 159-162 162-165 165-168 400. 400. 170. 4.13 4.10 8250. 47. 138 400. 147.774 168-171 171-174 135. 132. 400. 293.27 293.23 -265. -268. -2.866 -2.897 164.859 4.07 8 174-177 8 177-180 44. -271. -292. -2.929 -3.150 129. 400-159.033 3.99 293-19 7946. 109. 400. 155.854 7887. 97. 400. -298. -303. 152.671 3.91 293.11 293.07 7805. 186-189 189-192 192-195 195-198 293.03 292.98 292.94 33. 32. 97. 400. 400. -3.277 -3.308 146.118 3.83 3.78 3.74 -306. -3.306 -3.340 -3.529 -3.593 94. 32. 400. -306. 139.503 7441. 7371. 400. 400. 31. 91. -309. 3.70 198-201 201-204 1274. 1115. 1011. 132.635 -327. -333. 3.65 292.85 292.80 3.55 3.49 3.44 -336. -336. -336. 9 204-207 64. 400. -3.624 -3.624 125.419 22. 6970. 6866. 9 210-213 22. 21. 64. 400. -3.624 292.64 400. 400. -339. 3.39 292.51 10 216-219 21. 21. 21. -339. -339. -3.656 -3.656 110-861 3.33 3.28 10 222-225 10 225-228 400. 400. 400. -339. -341. -341. -341. -3.656 -3.687 -3.687 103.550 99.863 96.176 3.22 6i. 292-42 6426. 59. 59. 20. 10 225-228 10 228-231 10 231-234 10 234-237 10 237-240 20. 92.489 88.802 85.115 -3.687 3.05 292.25 -3.68 -3.68 5950. 5125. 5478. 5567. 5433. 20. 20. 20. 20. 59. 59. 59. 400. 400. 400. -341. -341. -341. -341. 81.428 77.741 74.054 70.367 2.86 2.79 2.73 11 240-243 11 243-246 -3.607 292.06 -3.687 -3.687 -3.687 291.99 291.93 291.86 4794. 2.66 400. 11 252-255 11 255-258 39. 11 258-261 4461. -341. -341. -341. 20. 20. 59. 59. 400. 400. -3-667 59.307 2.44 291.64 -3.687 -3.687 -3.687 55.620 51.933 48.246 4701. 20. 20. 400. 400. 2.28 4364. 12 270-273 17 273-276 -341. -341. 20. 59. 400. 50. Ann. 2.03 3847. 3651. 3444. 3223. 12 276-279 12 279-282 12 282-285 59. 59. -3.687 -3.687 -3.687 -3.687 291.13 291.04 20. 20. 400. 400. 1.93 -341. -341. 37.185 29.811 26.124 1.73 70. 12 265-266 59. -341.

able E 3-6(2) Flood Control Simulation for After Project on 1 to 100 Years

PROJECT STATUS AFTER PROJECY PROJECT STATUS 1 TO 100 YRS ** RUN DATE/TIME SEP, 8,1981/AM 9.30											
7			INFLOW TO	OUTFLOW	BALANCE	BALANCE			INUNDATED	•	
	AN SITE	SPILLAGE FROM DAM	INT.POINT	INT.POINT	INT. POINT	INT.POINT	AOLUNE	DEPTH	STAGE	AREA	
hR5	ICUM/S1	(CUM/S)	(CUM/S) 39.	(CUX/S) 39.	(CUM/S)	(MCM) 0.000	(MCM) 0.001	(M) 0.01	(EL.M) 289.21	(HA)	-,
00 3 1- 6	- 20. 22.	0. 0. 0.	42.	42. 60.	0. -0.	0.005	0-006	0-03	289-23	14. 43. 43.	
<u>.</u> ,	31. 70.	0. 0.	9[. 135.	91. 135.	-0. -0.	-0.000	0.006	0.03	269.23 289.23	43. 43.	• • • • • • • • • • • • • • • • • • • •
12-15	151. 420.	0.	291 809.	291. 400.	-0. 409.	-0.000 4.418	0.006 4.425	0.03	289.23 289.87	1321-	
71-24	866. 1065.	0. 0.	1668. 2051. 1262.	400. 400.	1268. 1651. 862.	13.696 17.835 9.306	18.121 35.957 45.264	1.35	290.55	2683. 3783.	
	655. 488.	0.	940.	400.	540. 336.	5.832 3.627	51.096 54.724	2.13 2.27 2.34	291-33 291-47 291-54	4246. 4511. 4669.	~ -
13- 33 13- 36 36- 39	382. 365. 350.	- <u>0.</u> 2.	703. 676.	400-	303. 276.	3.274 2.963	57.998 60.982	2.41 2.47	291.61 291.67	4807. 4929.	
12- 45 -76- 48	- 340. 314.	10.	615.	400.	260. 215.	2.807 2.321	63.789 66.111	· 2.53	- 291.73 291.78	- 5042. 5133.	
18- 51 -51- 54	79L-		1544 1540	400 <u>.</u> 400. 400.	1144 <u>.</u> 1140.	12.352	78-462 90-781	2.81 3.02	292-01 292-22	5593. 6016.	
51- 57 57- 60	271.	100. 150.	582. 609. 643.	400. 400.	182. 209. 243.	1.966 2.252 2.626	92.747 95.000 97.627	3.05	797-25 292-29	6081.	
48-51 51-54 51-57 51-60 10-63 65-64	256. 249. 243.	180.	660.	400.	260. 268.	2.804 2.896	100.432 103.328	3.13 3.17 3.22	292.33 292.31 292.42	6240. 6329. 6419.	•
66- 69 69- 72 12- 75	241. 234.	210. 212.	674. 663.	400. 400.	274. 263.	2.962 2.838	106.290 109.129	3.27 3.31	292.47 292.51	6511- 6597-	
16- 81 18- 81	773. 706.	210. 207.	640. 604.	400.	240. 204.	2.588 2.201	111.717	3.35 3.38	292-55	6675. 6741.	
84- 83 61- 04	160. 162.	201. 201.	566. 552.	400.	166- 152-	1.795 1.637	115.714 117.352	3.41° 3.43	292.61 292.63	6794. 6842.	
47- 40 40- 45	173.	198. 195.	531. 521.	400. 400.	131-	1.418	118.770 120.072	3.45	292.65 292.67	6883. 6921.	
95- 96 96- 99	159. 150. 145.	189.	478. 478.	400.	78. - 65.	1-062 0-842 0-706	121.135 121.977 122.684	3.49 3.50 3.51	292.69 292.70 292.71	6951- 6976- 6996-	
99-102 102-105 105-108 108-111	137.	183.	447-	400. 400.	47. 38.	0-507 0-412	123.191	3.51 3.52	292.71 292.72	7010. 7022.	
108-111 111-114	125.	177.	418. 399.	400. 400.	18.	0.192 -0.006	123.796 123.790	3.52 3.52	292.72 292.72	7027.	
111-114 114-117 117-120 120-123	- 113. - 110.	171- 166.	389. 376.	400. 400.	-11. -22.	-0.122 -0.238	123.669 123.431	3.52 3.52	292.72 292.72	7024. 7017.	-
120-123 123-126 12 6- 129	101.	154.	360.	400- 400-	-40. -51.	-0.428 -0.555	123.004 122.449	3.51 3.50	292.71 292.70	7005. 6989.	
126-129 179-132	96.	140.	321. 311. 303.	400. 400.	-79. -89.	-0.852 -0.958	121.597	3.49	292.69 292.68	6965.	
179-132 132-135 135-138 139-141 141-144 144-147	89. 86. 81.	132. 128. 116.	298. 272.	400. 400.	-97. -102. -128.	-1.042 -1.106 -1.382	119.598 118.492 117.111	3.46 3.45 3.43	292.66 292.65 292.63	6907. 6875.	
4 -145 44-147	78. 76.	110. 106.	260. 252.	400. 400.	-140. -148.	-1.509 -1.594	115.603 114.009	3.41	292.60 292.55	6835. 6791. 6744.	
150-153	67.	94. 90.	227. 219.	400.	-173. -181.	-1.869 -1.954	112.141 110.188	3.35 3.32	292.55 292.52	6688.	
153-15& ⁻ 156-159	65.	86 - 84 -	211. 207.	400. 400.	-189. -193.	-2.039 -2.081	10A. 150 106.069	3.29 3.26	292.49 292.46	6568. 6504.	
\$9- 62 62-165 *******	56.	72. 60.	184. 156.	400.	-216. -244.	-2.335 -2.631	103.734	3.23 3.18	292.43 292.38	6432- 6350-	
165-168 168-171 171-174 -	47. 46. 45.	54. 57. 50.	145. 141. 137.	400. 400. 400.	-255. -259. -263	-2.759 -2.801	98.345 95.545 92.702	3.14 3.10	292.34 292.30	6263. 6173.	
174-17 <i>1</i> 177-100	44. 37.	48. 36.	133. 107.	400. 400.	-263- -267. -293.	-2.843 -2.886 -3.161	92.702 89.817 86.656	3.05 3.00 2.95	292.25 292.20 292.15	6080. 5984. 5878.	
183-183 183-166 186-189	35.	32.	99.	400.	-301. -301.	-3.246 -3.331	83.411	2.89 2.83	292.09 292.03	5767. 5650.	
196-189 189-192 192-195	33. 32.	28. 26.	92. 88.	400. 400.	-308. -312.	-3.331 -3.373	76.751 73.378	2.78 2.71	291.98 291.91	5531. 5408.	
192-195 195-198 196-201	- 32. 31.	24. 22.	86. 82.	400	-314. -318.	-3.395 -3.437	69.984 66.547	2.65 2.58	291.85 291.78	'5281. \$150.	
191-204 194-207	25.	12.	60. 54.	400.	-340. -346.	-3.670 -3.733	62.878 59.146	2.51 2.44	291.71 291.64	5006. 4854.	
107-210 110-213	27. 22.	- 8- 6. 6.	50. 48. 48.	400. 400. 400.	-350. -352. -352.	-3.775 -3.797 -3.797	55.371 51.574	2.36 2.28	291.36 291.48	4697. 4533.	
113-216 116-210	21. 21.	4.	44. 44.	400. 400.	-356. -356.	-3.839 -3.839	47.777 43.939 40.100	2.19 2.10 2.01	291.39 291.30 291.21	4362. 4183. 3996.	
19-727 122-225 125-225	21. 21.	?. 2.	42. 42.	400. 400.	-35H. -35H.	-3.861 -3.861	36.239 32.378	1-91	291-11 291-00	3796. 3789.	
(25-234 (11-234	70.	2. 2.	41. 41.	400. 400.	-359. -359.	~3.882 -3.882	28.497 24.616	1.69	290-89 290-77	3367. 3128.	
34-237 31-240	20. 20. 20.	0. 0.	39.	400.	-361. -361.	-3.903 -3.903	20.713 16.810	1-44 1-30	290.64 290.50	2869. 2584.	
40-243	20. 20.	0. 0. 0.	39. 39.	400. 400.	-361. -361.	-3.903 -3.903	12-907	1.14	290.34 290,15	2263- 1000-	• -
46-249 49-252	20.	_0.	39. -39 <u>.</u> -39.	400- 400- 149-	-361. -361. -110.	-3.903 -3.903 -1-192	5.101 1.198 0.006	0-72 0-35 0-03	289_92 289_55 289_23	1419.	
32-255 35-258	20. 20.	0.	39.	39.	-0. -0.	-0.001 -0.000	0.006	0.03	289.23 289.23 289.23	1 43. 43. 43.	
444-16	. 20.	O.	39 39	· 39.	~ -0. -0.	-0.000	0.006	0.03 0.03	289.23 289.23	43. 43.	·
64-267 67-210 70-273	20.	0 <u>.</u>	39. 39.	39°. 39°,	-0.	-0.000	0.006	0.03 0.03	209.23	-43. -43.	
13-276	20. 20. 20.	0.	39.	39. 39.	-o. -o.	-0.000	0.006	0.03	289.23	43.	
195282		0. 0.	39. 39.	39. 39.	-0-	-0.000	0.006 0.006	0.03		= 43. 43.	
12-511	20.	0 <u>-</u>	39.	39. 39.	-0.	-0-000	0.006	0.03	289.23 289.23	· — 43:	

APPENDIX F. AGRICULTURE AND SUPPORTING SERVICES

AGRICULTURE AND SUPPORTING SERVICES APPENDIX F

Appendix F-1 Present Land Use Map in hte Existing Irrigated Area

> Figure F 1-1 Distribution of Dry Season Crop (1978)

> Distribution of Dry Season Crop (1979) Figure F 1-2

> Figure F 1-3 Distribution of Dry Season Crop (1980)

Appendix F-2

Table F 2-1 Cultivation Method of Rice and Other Crops

Appendix F-3 Marketing Flow of Agricultural Products

Appendix F-4 Northern Region Agricultural Extension Office

Figure F 4-1 Agricultural Extension System in Thailand

Appendix F-5 Agricultural Cooperative in Thailand

Figure F 5-1 Government Strucutre for Cooperative

Administration

Structural Relationship Cooperative Move-Figure F 5-2

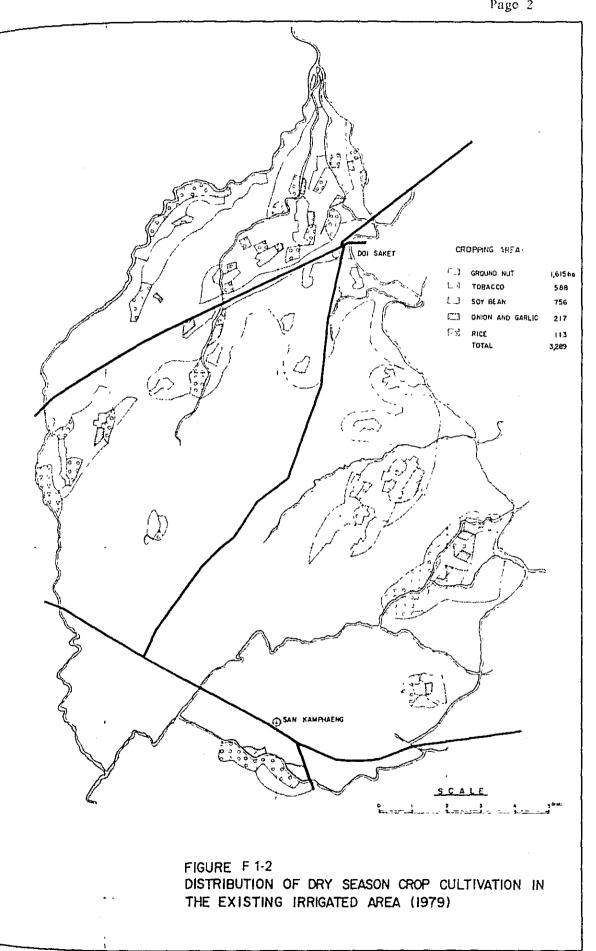
ment

Appendix F-6

Table F 6-1 Money Lenders to Farmers before Establish-

ment of BAAC

Interest Rate by Region and Money Lender Table F 6-2


before Establishment of BAAC

Appendix F-7

Table F 7-1 Yield of Rice Varieties by Water Use and

Cropping Season

Appendix F-8 Institutional Finance

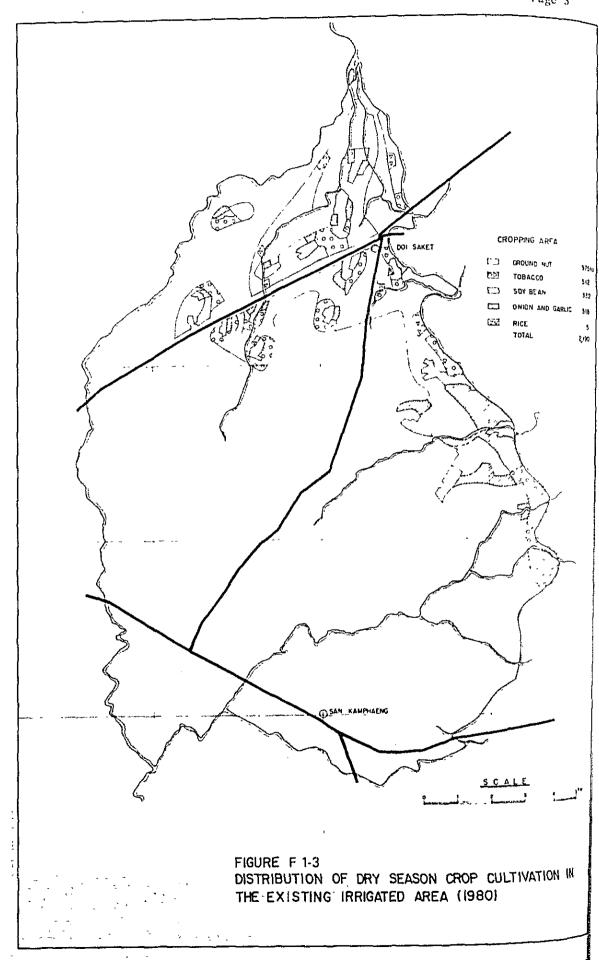


Table F 2-1 Cultivition Method of Rice (Wet and Dry Season) and Other Crops (Dry Season)

				, , , , , ,		, peason,	
Crops	Rice (Wet Season)	Rice (Dry Season)	Soybeans	Groundnuts	Sweet Corn	Tobacco (Virginia)	Garlic
Varieties	Niaw Sampatong (gl.) RD-4 (gl.)	RD-4 (gl.) Grow pai 15 (non-gl.) Dawk mali 3 (non-gl.)	SJ-1 SJ-2 SJ-4	Tainan 9, Sukotai 38, Lampang	DMR Super sweet corn Hawaiian	Corker 411, Corker 347 Corker 187	Native
Seeds	Almost self supplied except new varieties.	Same as wet season	Bought 50%, self supplied	Same as soybeans	Same as soybeans		
Nursery	1 rai/field 15 rai Amount of seeds to be sown 10-12 kg/rai seeding Seeding Jul. — Aug.	Amount of seeds/rai 10-15 kg seeding Jan.	-	-	-		
Land preparation	Buffalo or small type of machine plowing 2 times, harrowing 1 time	Same as wet season.	-	Plowing and harrowing	Plowing and harrowing	Plowing and harrowing	
Planting Or transplan ting	25-30 days after sowing 20x20cm or 20x25cm	Feb. 20-25 days after sowing	Sowing in row 50cm row or make hole for seed after rice harvest 20-25cm x 25cm end of Decmid of Jan.	Sowing in rows 20x30cm Time same as soybeans	Planting Dec. — Jan. Planting into row 60x80cm	30-50 days after sowing Seedlings are supplied by Tobaccs Monopoly Office	Nov - Dec. after planting cover with straw
Fertilization	Most farmers use no fertilizer and manure. Recommended method is: 16-20-0 15-20 kg/rai (local recommended var.) 20-25 kg/rai (new var.) Applying time. 1st month after planting 50'2nd flowing stage 50%		Most of the farmers use no fertilizers. In extension program: 12-24-12 25-30 kg/rai	Same as soybeans	12-24-12 50 kg/rai after germination 50% 20 days after germination 50%	6-15-30, 100-120 gr/rai divided into 2-3 times to apply, 3-5 days after transplanting Manure, no use	13-13-21 or 15-15-15 100 kg/rai after planting
Irrigation	Plot to plot about 10cm depth	Same as wet season	Done when drought	Same as soybeans	Same as soybeans	3 weeks after transplanting not irrigation to let plants tolerance afterwards irrigation is done between 7 - 10 days	Done
Diseases and Pests control	Rice blast. Bacterial leaf blight. Damages are not so serious Crab, rats, when widely damaged systematically controlled by chemicals	Same as wet season	Rat, bean fly, leaf worm Dimethioate, Sevin, Azodrın, Zymigydrın	Same as soybeans	Śtem borer Dimetate, Azodrin Downy mildew Ridomił	Wilt (bacteria), leaf curl, streak leaf (virus) nothing can be used. Damping off, Fusarium wilt chemical is nursery insecticide furadan etc.	Purple block, rotten white fly. Fungicide, aldrex
Weeding	Deep water control and pick off by hand	Same as wet season	-	Cultivating	Cultivating		by hand
Harvesting	Early Nov. — Beginning of Dec. by hand	Jun. by hand	End of Apr. – mid. of May	Same as soy beans	Feb. — Mar.	1st time 50 - 80 days after transplanting up to types of tobacco and after the 1st time about 7 days each for 5 times. Pick up by han the optimum leaf.	By hand Feb Mar. 90 - 120 days after planting d
Yield	580 kg/rai Niaw Sampatong some times got 1,000 kg/rai by new var.	516 kg/rai	180 - 200 kg/rai	236 kg/rai (with hull)	149 kg/rai (dry)	60 - 200 kg/rai (dry weight)	1,800 kg/rai (fresh)
Processing and Marketing	Mainly for home use. Rice mill in Chiang mai. Waste products: strow for mashroom bed, cow and buffaloes feed, covering garlic and onions.	Same as wet season	Sell all	Seli ali	Sell all	Cured about 80 - 120 hours at 32°C - 75°C - 80°C Marketing private curing - fresh leaves Monopoly Exporter) dry leaves	

Marketing Flow of Agricultural Products

1. Peanuts

a) From Farmers

	Merchants in village	15.6%
•	Merchants in Tambol	6.3%
Farmers	Merchants in Amphoe	37.4%
	Merchants in other Amphoe	9.4%
	Merchants in city	25%
	Buyers from other Changwat	-
	Others	6.3%

b) From Merchants

	Merchants in Tambol	6.3%
Merchants	Merchants in Amphoe	12.5%
METCHAILS	Merchants in city	62.5%
	Buyers from other Changwat	18.7%

Remarks: 1. About 60% of peanut sales from farmers is purchased by merchants in same Amphoe.

2. About 60% of peanut: purchased by merchants goes to merchants in city.

Source: Study of Farm to Whole Sale Marketing in the Chiang Mai Valley, Chiang Mai Univ. 1979.

2. Mungbean

a) From Farmers

1	· · · · · · · · · · · · · · · · · · ·	•
	Merchants in village	68.7%
	Merchants in Tambol	12.5%
	Merchants in Amphoe	-
Farmers —	Merchants in other Amphoe	
	Merchants in city	9.4%
	Local Miller	9.4%
	Merchants from other Changwat	-
•		•

b) From Merchants

	Merchants in Tambol	16.7%
Manahaata	Merchants in Amphoe	25.0%
Merchants ——	Merchants in city	25.0%
	Merchants from other Changwat	

Remarks: 1. Almost all production of mungbean is estimated sold from farmers.

2. A little more than 80% is purchased within Tambol.

5. Soybean

a) From Farmers

	Merchants in village	48.8%
	Merchants in Tambol	9.3%
	Merchants in Amphoe	14.0%
Farmers	Merchants in other Amphoe	-
	Merchants in city	27.9%
	Merchants from other Changwat	-
	Others	
		,

b) From Merchants

Remarks: 1. Almost 95% of production is estimated to be sold to merchants after threshing and 70% of them purchased within Amphoe.

- 2. From primary merchants, 24% moves to Bangkok and other 12% moves to other Changwats. 35.3% of Chiang Mai soy bean, then, moved out of Changwat.
- 3. A little more than 50% is retained in City use.

4. Garlic

a) From Farmers

		_
	Merchants in village	31.6%
	Merchants in Tambol	13.1%
Farmers	Merchants in Amphoe	13.2%
	Merchants in other Amphoe	5.3%
	Merchants in city	18.4%
	Others	18.4%
	L	

b) From Merchants

		1
	Merchants in Tambol	12.5%
	Merchants in Amphoe	16.7%
Merchants	Merchants in other Amphoe	-
	Merchant in city	20.8%
	Merchants in Bangkok	29.2%
	Merchants in other Changwat	20.8%

Remarks: 1. Almost 60% of farmers sales is purchased by merchants in the same Amphoe.

2. From primary merchants, 30% moves to Bangkok and another 20% moves other Changwats and then almost 50% of primary merchants sales moved out of Chiang Mai.

5. Vegetables (Tomato, Chinese Cabbage)

a) From Farmer

		
,	Merchants in village	45.4%
	Merchants in Tambol	9.1%
Farmers —	Merchants in Amphoe	9.1%
	Merchants in other Amphoe	9.1%
	Merchants in city	18.2%
	Others	9.1%
•		

b) From Merchants

	Merchants in Tambol	-
	Merchants in Amphoe	_
Herchants -	Merchant in other Amphoe	-
	Merchants in city	75.0%
	Others	25.0%

Remarks: 1. About 60% of farmers sales is purchased by merchants within same Amphoe.

2. 75% of sales of merchants moved to city and 25% moves to hospitals and other institutions.

6. Sweet Corn

a) From Farmers

	Merchants in village	45,4%
		-
Farmers	Merchants in Tambol	27.2%
	Merchants in Amphoe	18.2%
	Merchants in city	9.2%
	<u>'</u>	

b) From Merchants

Not available

Remarks: 1. Almost all sweet corn purchased by merchants within same Amphoe and only a little less than 10% is sold to merchants in city.

2. It is presumed that most of sweet corns are consumed, because sweet corn is boiled or streamed before being handled further by merchants.