

KINGDOM OF THAILAND MINISTRY OF AGRICULTURE AND COOPERATIVES ROYAL IRRIGATION DEPARTMENT

PREFEASIBILITY STUDY ON THE UPPER PASAK MEDIUM SCALE IRIGATION PROJECT

FINAL REPORT ANNEX VOL1

- II. HYDROLOGY III. DAM AND RESERVOIR IV. RESERVOIR OPERATION

MARCH 1982

JAPAN INTERNATIONAL COOPERATION AGENCY

JICA LIBRARY

030917[7]

KINGDOM OF THAILAND
MINISTRY OF AGRICULTURE AND COOPERATIVES
ROYAL IRRIGATION DEPARTMENT

PRE-FEASIBILITY STUDY ON THE UPPER PASAK MEDIUM SCALE IRRIGATION PROJECT

FINAL REPORT ANNEX VOL.1

I. GEOLOGY

II. HYDROLOGY

III. DAM AND RESERVOIR
IV. RESERVOIR OPERATION

MARCH 1982

JAPAN INTERNATIONAL COOPERATION AGENCY

国際協力事業団 第4.79.20 =122 全銀No.1 09274 AFT

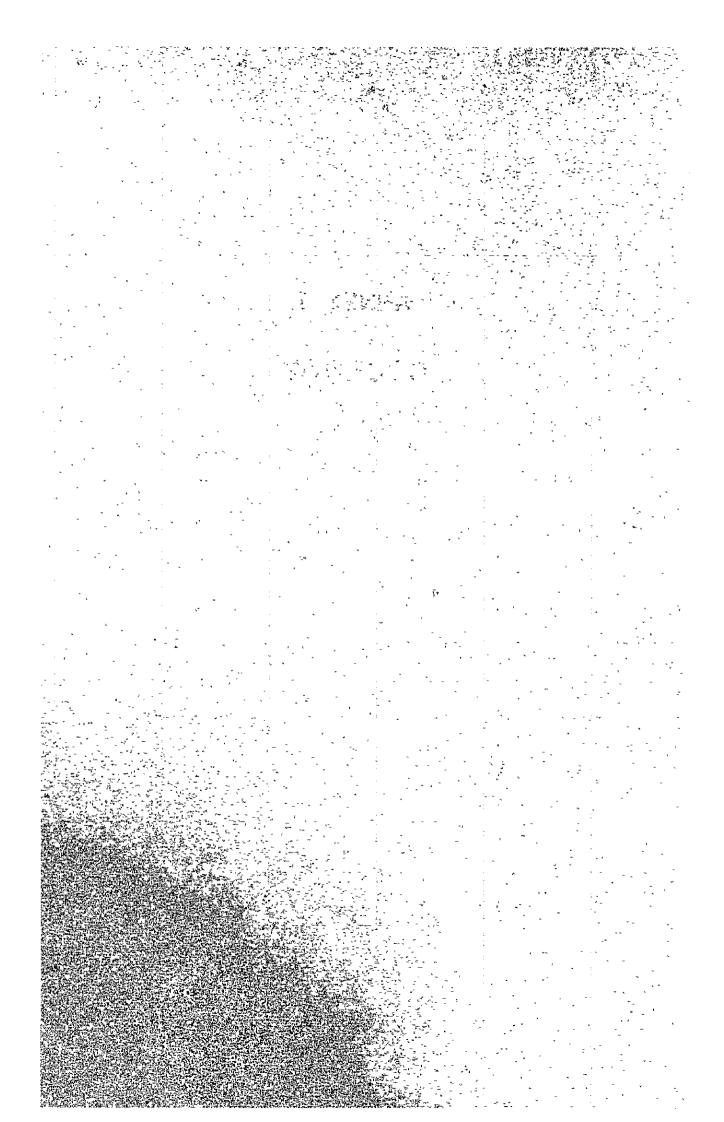

ANNEX - VOL. 1

TABLE OF CONTENTS

			Page
ANNEX	ı.	GEOLOGY	1-1 - 30
ANNEX	II.	HYDROLOGY	II-1 - 84
ANNEX	III.	DAM AND RESERVOIR	III-1 - 34
ANNEX	IV.	RESERVOIR OPERATION	IV-1 - 80

ANNEX I GEOLOGY

ANNEX I GEOLOGY

TABLE OF CONTENTS

			Page
1.1	GENERAL (GEOLOGY	1-1
1.2	GEOLOGICA	AL INVESTIGATION	I-2
	1.2.1	Previous Investigation	I-2
	1.2.2	Geological Investigation in Pre-Feasibility Study	I-3
1.3		OF RESPECTIVE DAM SITES AND R AREAS	I-3
	1.3.1	Huai Saduang Yai Dam	I-3
	1.3.2	Huai Khon Kaen Dam	I-5
	1.3.3	Huai Yai Dam	I-8
	1.3.4	Khlong Chaliang Lab Dam	1-13
1.4	DAM EMBAI	NKMENT MATERIALS	I - 15

LIST OF TABLES

		Page
Table 1.1	Stratigraphical Table	I-17
Table 1.2	Volume of Borrow Materials	I-18
	LIST OF FIGURES	
		Page
Fig. 1.1	Geological Map	I-19
Fig. 1.2	Distribution Chart of Lugeon Value (1) Huai Saduang Yai, Huai Khon Kaen (2) Huai Yai, Khlong Chaliang Lab	I-20 I-21
Fig. 1.3	Distribution Chart of RQD	I-22
Fig. 1.4	Location Map of Borrow Area of Huai Saduang Yai Dam and Huai Khon Kaen Dam	I-23
Fig. 1.5	Sketch Map of Borrow Area (A) of Huai Saduang Yai Dam	I-24
Fig. 1.6	Sketch Map of Borrow Area (B) of Huai Saduang Yai Dam	I-25
Fig. 1.7	Sketch Map of Borrow Area (A) of Huai Khon Kaen Dam	. 1-26
Fig. 1.8	Sketch Map of Borrow Area (B) of Huai Khon Kaen Dam	, I-27
Fig. 1.9	Location Map of Borrow Area of Huai Yai Dam	. I-28
Fig. 1.10	Location Map of Borrow Area of Khlong Chaliang Lab Dam	. 1 - 29
Fig. 1.11	Sketch Map of Borrow Area (A) of Khlong Chaliang	- 0-

1.1 GENERAL GEOLOGY

As indicated in the geological map (Fig. 1.1) and the stratigraphical table (Table 1.1), the baserock within the Upper Pasak Medium Scale Irrigation Project area is composed essentially of Paleozoic Permian, Mesozoic Triassic and Cenozoic Tertiary sedimentary rock covered by Quarternary diluvial and alluvial deposit. Strata of sedimentary rock formed during different geological periods are mutually unconformable in structure. Igneous rock appears sporadically within the Permian formation as stock.

On the left bank of the Pasak River within the dam site area, a 20 - 30 km strip of Nam Duk formation of the Paleozic Middle Permian period extends north to south, with Khorat Group formation of the Mesozoic Triassic period distributed in higher mountainous sectors. However, said formations have no direct bearing on the dam site itself. The Nam Duk formation consists primarily of interbedded shale and sandstone, exhibiting folding along a north to south axis.

At the base of the mountainous area on either bank of the Pasak River, Pha Nok Khao formation composed mainly of Lower - Middle Permian limestone extends about 20 km north to south in a 500 - 700 m wide belt, within which zone a single quarry is currently in operation. A formation of identical structure is located approximately 15 km south of Phetchabun (said formation lies outside the project area and is not indicated on the geological map).

The geological map indicates Tertiary formation only in the vicinity of 1 km downstream from the Khlong Chaliang Lab Dam site. However, exploratory drilling at Huai Yai Dam site reveals that Tertiary formation is widely distributed about 7 - 10 m below Quaternary deposits in level sections of the project area. The results of said test drilling strongly suggest that Tertiary formation is generally present beneath Quaternary deposits in the area.

Intrusions of igneous rock (granite, diorite and gabbroic diorite) in the form of small stock are found within Paleozoic strata. This type of formation is particularly evident within the catchment area of the Huai Yai.

Nam Duk formation in the vicinity of the dam site exhibits extensive and extremely pronounced folding. The axis of folding is primarily north to south, and the formation appears to be interrupted at its western extremity by a fault running north to south.

1.2 GEOLOGICAL INVESTIGATIONS

1.2.1 Previous Investigations

Previous investigations for the Upper Pasak Medium Scale
Irrigation Project were carried out by RID between 1980 and 1981.
These investigations, including drillings, hand augers and test pits, were performed at four dam sites.

Drillings performed at each dam site are as follows.

Dam Site	Area	No. of Holes
Huai Saduang Yai	Right Abutment	2
	Left Abutment	2 1
	River Bed	1
	(Sub-total)	(5)
Huai Khon Kaen	Right Abutment	· 1
	Saddle	3
	Left Abutment	1
	River Bed	2
	(Sub-total)	(7)
Huai Yai	Right Abutment	24
	Left Abutment	6
	River Bed	1
	Spillway	1 3
1 3 m	Outlet	3
	(Sub-total)	(37)
Khlong Chaliang Lab	Right Abutment	2
	Left Abutment	1
	River Bed	1
	(Sub-total)	(4)
	Grand Total	53

1.2.2 Geological Investigation in Pre-Feasibility Study

Geological investigations for the project in Pre-Feasibility Study were carried out by the Study team between Sep. 15 and Oct. 14, 1981.

The field investigations carried out at this study stage are as follows.

- (a) Collection and review on the general geology of the project area and vicinity,
- (b) Collection and review of the existing data obtained by the previous investigations, including drilling core logs, records of permeability test and R.Q.D.,
- (c) Collection and review of the results of the investigations on the borrow areas by RID,
- (d) Geological investigation at each dam site and reconnaissance at each reservoir area.
- (e) Investigation on the vicinity of the borrow area, and
- (f) Examination of drilling cores at the storehouse in Pa Daeng Project Office.

1.3 GEOLOGY OF RESPECTIVE DAM SITES AND RESERVOIR AREAS

1.3.1 Huai Saduang Yai Dam

(1) Geology of Reservoir Area

The geological structure of the area to be inundated by the Huai Saduang Yai Dam consists of interbedded sandstone and shale belonging to the Nam Duk Formation of the Paleozoic middle Permian period, with sandstone as the predominant component. Said sandstone is hard, gray to brown gray in color, with a grain size ranging from fine to intermediate. In contrast, the shale is dark gray to black in color and relatively softer than the sandstone, exhibiting a tendency to strip readily from the bedding plane. Preliminary investigation indicates that the strata is striking N3°E to N22°E and dipping to the west at 30° - 50°.

There might exist the identical strata dominated by folding on a north to south axis in the area.

The river meanders in a southeastern direction, with terrace deposits of 400 m maximum width distributed along both banks. Based on findings from test drilling at the dam site, stratal thickness is approximately 5 m, comprised of interbedded clayey sand of reddish brown color and weathered gravel. Terrace deposits along the base of mountainous portions are covered by talus consisting of clayey soil intermixed with rock fragments. The thickness of the overlaying talus cover varys from location to location.

In the area covered by terrace deposits mentioned above, portions in which fine grain materials and talus are distributed, are under consideration as borrow areas for embankment material.

(2) Geology of Dam Site

The slope at the dam site is 25° - 26° on the right bank and 20° or less on the left bank, respectively. The gorge at the site is relatively symmetric and the site is blessed with favourable topographic condition for construction of fill dam. However, a saddle exists on the southern side of the left bank abutment, the ramifications of which requires further investigation.

Base rock at the dam site consists of interbedded sandstone and shale of the Nam Duk formation of the middle Permian period. The predominant component of the abuttal formations on either side of the river is sandstone, while shale is preponderant in the vicinity of the riverbed. This situation clearly shows the difference in resistivity to erosion between the two materials.

Terrace deposits extend over about 90 m from the river on the left bank of the Huai Saduang Yai, and about 140 m on the right bank. Stratal thickness is approximately 7 m.

The strike of baserock is N3°E - N22°E and dip is 34° - 50°W. On the left bank, dip is in the direction of the slope.

Rock of the left bank abutment and the riverbed exhibits weathering of 7 - 8 m, and 10 - 14 m, respectively. The right bank abutment comprises a highly weathered zone with a depth of 22 m.

According to the permeability test, Lugeon value of 20 or more which shows relatively high permeability, is observed to a depth of 16.5 m on the left bank, 13.5 m on the riverbed and 19.0 m on the right bank. However, since said permeability is the result of cracks in the rock structure, it would be improved by grouting.

On the basis of drilling cores, existence of zones of rock fracture and/or clay deposits which suggest fault presence is not found.

Joints are most developed at 9 m or below in DH-3, having a gentle slop of 30° - 35°, and apertures are filled with clay and/or quartz stringer.

1.3.2 Huai Khon Kaen Dam

(1) Geology of Reservoir Area

The area to be inundated by the Huai Khon Kaen Dam consists of hilly terrain dissected by the Huai Khon Kaen River and circumscribed by rolling foothills. The downstream portion of the area is relatively open in topographical character, while the upstream portion of the river has a long and narrow topography.

The altitude of the riverbed along the dam axis is 172 m, and hilly sections of the area consist of ranges of 300 - 500 m in height.

The Huai Khon Kaen meanders in a southwestern direction. Although the normal river width is 20 - 25 m, during flooding in 1978 the water level of river rose to its terrace top achieving a width in excess of 150 m.

River meandering is mainly due to the difference in resistance to erosion of the harder sandstone formations and softer shale formations which dominate the geology of the area. This fact shows the relationship between river bending and geological structure.

The structure of a sharp ridge running north to south through the area is dominated by hard sandstone constituting an anticlinal formation.

The geological composition of the reservoir area consists of shale belonging to the Num Duk formation of the Paleozoic Permian period interbedded with sandstone. Said sandstone is gray - dark gray in color, with grain size ranging from fine to intermediate. Interspersed fragments of mudstone are seen within sandstone strata. External appearance indicates sandstone formations which are massive in texture and also formations where bedding is clearly evident, when interbedded with shale.

Shale in the area is black - black gray in color and exhibits developed bedding. In highly weathered zones, it shows a propensity for exfoliation. Although said shale displays greater tendency to exfoliate from bedding than the sandstone, it is strong in structure and features low permeability.

The overall geological structure of the area is dominated by a north-south folding axis. Stratal strike is $N15^\circ W$ - $N30^\circ E$, dipping about 60° - 80° to west or east.

egita ji ki dita ta ka ta s

The topography of the inundation area in characterized by gentle sloping. Since tectonic lines or noticeable faulting, coupled with the presence of firmly structured base rock, are not found, collapsible geological formations are non-existent in the area. Furthermore, limestone deposits, a source of potential cavitation, are not in evidence.

(2) Geology of Dam Site

At the proposed dam site, there exist two humps, caused by erosion along the course of the current river and the old river course.

The geologic structure of the dam site consists of base rock formed from interbedded hard sandstone and shale of the Permian Period Nam Duk Formation. In and around the riverbed with a 150 m wide stretch, the base rock is covered by terrace deposits with 6.5 - 9.5 m thick consisting of gravel strata.

The structure of said base rock and the composition of the covering layer is discussed in detail hereunder.

Base rock strike is N10° - 15°W, dipping about 70° - 80°E. In highly weathered zones of the left bank abutment, riverbed and flat area on the right bank, the depth of weathering is 8 - 12 m in maximum. The depth of weathering along the right bank is only 3 - 6 m. As base rock conditions are generally good at the site, a large amount of excavation works would not be required for construction of fill dam, assuming to be 2 - 9.5 m in depth.

The depth of groundwater level in the vicinity of the river bed ranges from 0 - 7.2 m. Along hill ridges, the depth is 14 - 30 m. Groundwater distribution is accordingly estimated to be in generally normal conformity with topographical profile. Faulting and zones of fractured rock are not found, and the results of permeability indicates a normal permeability pattern that the permeability below 22 m depth gradually decrease from values of 14 Lugeon to 6 Lugeon. Therefore, no complications for dam construction can be found at the site.

Although permeability test results show 50 Lugeon value at the depth of 16.5 m on the left bank, the value under the above depth drops to 5 Lugeon or less. On the river bed, values of 20 - 50 Lugeon are achieved at the surface portion of 4 - 5 m in depth, but deeper portion more than 5 m in depth has low permeability of 5 Lugeon or less.

In the central portion of the dam site, values of 20 - 50 Lugeon obtained at 6 - 10 m in depth from the surface stratum of both valley and ridge sections. At deeper levels, the permeability decreases to 10 - 5 Lugeon. In DH-7 on the right bank, zones of high permeability of 20 Lugeon or more are recorded at the depth of 14.5 - 17.5 m and 20.5 - 22.0 m. However, this high permeability is caused by partial variations in degree of weathering of the rock constituting ridge sections of the area, not due to the fault or fractured rock zone. Grouting in the course of dam construction would adequately relieve the above situations.

1.3.3 Huai Yai Dam

(1) Geology of Reservoir Area

The reservoir area consists of hilly terrain of 200 - 250 m elevation. The Huai Yai, like other rivers in the vicinity, meanders considerably, and as a result, terrace deposits are distributed along both banks.

The geology of the area is comprised interbedded sandy shale and slightly metamorphic sandstone belonging to the middle Permian Nam Duk formation. On the left bank an intrusion of gabbroic diorite running in a north-southern direction is found in the vicinity of EL 226 m. The exact extent of said intrusion is unclear at present.

In terms of geologic structure, the strike of bedding is generally north to south (N7°W - N15°E), with a 70° - 80°E dip at the downstream portion and 60° - 65°W dip at the upstream. This suggests the possibility of a dominant folding structure throughout the area. The distribution of intrusive rock appears to be conformable with the sedimentary rock structure. Judging from visual inspection of outcrops, such intrusions are generally massive in texture and would appear to useful for appropriate riprap material. However, further investigation is necessary to confirm this assessment.

On the basis of aerial photograph, a linearment is in evidence running in the direction of N20°W - S20°E through the saddle located on the right bank approximately 800 m upstream from the debouchment of the river. In the upper area, the strike of bedding changes to a east-west configuration. From the above, it is suspected that a zone of fractured rock maight be existed along the linearment. Special attention to this point should be given in the coming geological survey of the area.

Existence of rock failure is not apparent within the area. Sloping therein is gentle, and no loose formations of sedimentary materials in the surface stratum, which would be a source of structural collapse at the time of inundation, are encountered in the area.

(2) Geology of Dam Site

Investigation results at the original dam site located at the debouchment of the river, where drilling was intensively undertaken, are presented hereinunder.

The originally proposed dam has a long crest length of about 2 km and then, the geological conposition of rock along the dam axis exhibits considerable variation. On the southern side of DH-8 near the left bank of the river, interbedded sandstone and sandy shale belonging to Nam Duk formation of the Permian period

are founded. On the other hand, the dam foundation in the vicinity of the right bank consists of Tertiary silty mudstone covered in an unconformable manner by an unconsolidated Quaternary diluvium - recent gravel layer. Consequently, the original dam must be constructed on the heterogeneous foundation, comprising Paleozoic, Tertiary, and Quaternary diluvial formations. Such a geological condition is disadvantageous for dam construction in due consideration of non-uniform subsidence leading to deformation of the structure.

The Middle Permian Nam Duk formation distributed on the left bank consists of yellow gray - dark gray, fine grained sandstone and shale - sandy shale with an interbedded configuration.

(Sandstone is predominant with a 5 m bed of sandstone for every 1 m of shale layer.) However, in DH-5 - DH-8, shale is the dominant component. Sporadically, as in DH-1 and DH-5, a thin bed (2 - 4 m) of tuffaceous shale exists. Although rock structure is generally hard, there are some differences between the strength of sandstone, shale, and tuffaceous shale formations. A highly weathered zone reaches to 5 - 7 m in depth, and moderate weathered zone to 10 - 15 m in depth.

On the basis of drilling core inspection, no conspicous fault exists. Permeability of the rock structure shows values of 20 Lugeon or more at the depth of 10 - 17 m from the surface stratum. This situation is due to the existence of joint apertures caused by weathering.

The geological structure of the flat area of the original dam site comprises Tertiary (Chaliang Lab formation) mudstone. Said mudstone layer is covered by unconformable Quaternary deposit. The thickness of Quaternary deposits varies from 8 to 15 m and the boundary between the mudstone and Quaternary formations is irregular. The base of the Tertiary bedding is confirmed to a maximum depth of 36 m. Based on the results of drilling, the flat area mainly consists of mudstone, excepting the northern

area of DH-22, where argillaceous sandstone is predominant. However, the precise nature of bedding and geological structure can not be clarified only by use of the drilling results.

Although drilling cores are retrieved as the bar, they are collapsed by submerging in water. This fact indicates that core materials have a low degree of consolidation. Judging from the consolidative nature of the said rock structure, it appears to be sedimentary rock formed during the latter Tertiary - initial Quaternary period. In DH-12 and DH-15, N values are obtained near the bottom of the drilling hole. N values at the upper portion of the layer (7 - 9 m in depth) are N = 20 - 30, indicating fluctuation caused by the effects of weathering, while values below that level shows more than 50, revealing a good state of compaction.

Regarding the permeability of the Tertiary layer (Chaliang Lab formation), out of 37 holes, 5 test holes (DH-9 - DH-13) drilled in the vicinity of the river indicate particularly high values of 4×10^{-4} - 10^{-3} cm/sec at the depth of 2 - 6 m from the Tertiary surface stratum. However, most drilling holes show the low permeability with the range of 10^{-5} - 10^{-6} cm/sec.

Quaternary deposits are composed of sandy clay, clayey sand, silty sand, silty gravel and loose block of rock. The loose block of rock is located at the base of the Quaternary deposit layer and is distributed in the vicinity of the right bank of the Huai Yai (DH-7 - DH-9) with thickness of 4 - 7 m. As thickness of the loose block of rock increases nearby the river, it appears to be of sedimentary deposit caused by flooding. The present riverbed of the Huai Yai consists of an approximately 3 m layer of gravel sediment on this loose block of rock. At the upper portion and northern side of said loose block of rock, sandy clay can be mainly found. At the northward of DH-12, clayey sand is predominant. In DH-30 - DH-31, the gravel is deposited with 3 - 4 m of thickness. Although the permeability of surface strata is

small, the lower portion of the Quaternary deposit formation shows high permeability. In particular, large values of 10^{-3} cm/sec - 2 - 4 x 10^{-4} cm/sec are achieved for the loose gravel and clayey sand in DH-6 to DH-12. In DH-17 - DH-20 located at the northern part, clayey sand is distributed with approximately 5 m thick layer and features high permeability of around 10^{-3} cm/sec. At further northern part, in DH-23 - DH-24 and DH-30 - DH-31, values of approximately 10^{-3} cm/sec are obtained for deposits of silty sand and loose block of rocks.

Permeability in the dam site is generally high to the depth of 12 - 14 m. The groundwater level is recorded to be 10 - 16 m in depth in the hilly area on the left bank of the river and 0.3 - 5 m in the flat area, indicating normal distribution in conformity with topographical profile.

The proposed shifted dam site is located about 450 m upstream from the original dam site. The shifted site has narrow gorge with about 100 m wide, and is topographically more advantageous for construction of fill dam.

In terms of geological composition, the dam site has the base rock consisting of interbedded sandstone and shale and/or gabbroic diorite, belonging to the Nam Duk formation of the Permian period. Base rock is covered by an approximately 6 m thick layer of silt and/or sandy gravel. Outcrops of rock are partly existed on the left bank. The slope is more than 25° and the topsoil layer is relatively thin. On the right bank, the slope is generally about 15° with a thick top soil layer partly. However, based on the fact that a large number of loose sandstone boulders are visible on the upper portion of slopes, the base rock is assumed to be found at the shallow portion.

From the factors described above, the sifted site is more advantageous than the original site in terms of topographical and geological conditions. Nevertheless, prior to the next study, the following points should be further investigated.

- a) A topographical survey is required to be conducted for for reservoir area of the proposed dam. In particular, the elevations of saddles on both sides of the river should be confirmed.
- b) A geological survey is required to be implemented using the new topographical maps. The emphasis of said survey should be put on the confirmation of geological conditions at the dam site and reservoir area including the precise distribution of gabbroic diorite within the dam site area and riprap material in the vicinity of a site. Also, the fractured zones of rock along the linearment running NW20° SE20° from the saddle on the left bank upstream from the site should be investigated whether exist or not.

1.3.4 Khlong Chaliang Lab Dam

(1) Geology of Reservoir Area

The area to be inundated by the proposed dam is long and narrow in configuration, being circumscribed by foothills. Sloping on the left and right banks is dissymmetrical in nature, that of the left bank being 30° or more and that of the right bank consisting of a gradual grade of 25° or less. There scarcely exist the cultivated land in the reservoir area, almost consisting of forest.

Due to the existence of no outcrops, the precise geology of surface strata remains unclear. Based on visual inspection of the site, as well as the results of drilling test, the geological structure at the left bank consists of interbedded sandstone and shale of the Nam Duk formation, and that of the right bank mainly

comprises gray-green, fine grained sandstone. The strike of strata is N30°W - N50°W, dipping 40 - 60°NE. No unstable formations which would cause to collapse slopes in the area, are encountered.

The long and narrow configuration of terrace deposits along the riverbed indicates that sufficient quantities of embankment materials are not available in the upstream area from the dam site.

(2) Geology of Dam Site

The proposed dam site is situated at the narrow neck where the river debouches from the mountains, and is topographically V-shaped. The slope of the right bank is about 25° and that of the left bank is 30° or more.

The geological structure of the site consists of sandstone and shale belonging to Nam Duk formation of the middle Permian period. Based on the results of drilling, interbedded gray sandstone and dark gray shale is distributed in DH-1 on the left bank. Said formation exhibits heavy weathering to 6.0 m in depth and is slightly argillized. Such argillization suggests that there might exist the fault in the site. The riverbed portion of DH-2 consists of a 5 - 6 m layer of river sedimentation deposits, with the surface stratum consisting of an approximately 2 m thick bed of clayey sand - silty sand, below which lies approximately 4 m thick of gravel bed. The gravel is composed of stones with 3 - 10 cm in diameter. A base rock of hard shale - sandstone is distributed below the gravel bed (at a depth below 6.0 m).

In DH-3 and DH-4 on the right bank, weathering is observed to 3 - 4.5 m in depth and geological formations exhibit considerable deterioration. Below said zone of weathering, however, base rock suitable for fill dam foundation can be found.

The groundwater level at both abutments is recorded to be 12 m in depth, and said level continues to the riverbed showing distribution in conformity with topography.

Test drilling indicates to be high permeability for the base rock. At the left bank, riverbed and right bank, zones of 20 Lugeon or more are registered to a depth of 15.0 m, 9.0 m and 10.5 m, respectively. These high degrees of permeability are due to cracks in the rock structure caused by weathering.

1.4 DAM EMBANKMENT MATERIALS

The preliminary investigation for embankment materials are carried out by hand auger borings and test pittings at each dam site and its surroundings. The locations of the borrow areas surveyed at four dam sites are shown in Fig. 1.4 to 1.11 and the volumes of borrow materials are roughly estimated as summarized in Table 1.2.

As shown in Table 1.2, the borrow materials mainly comprise various fine soils, such as silty sand, clayey sand, sandy clay, silty clay, etc. The percentage of these fine soils for the total volume is estimated as follows.

Dam Site	Total Volume	Fine Soils	Percentage
Huai Saduang Yai	533,000 ^{m3}	340,000 ^{m3}	64 %
Huai Khon Kaen	1,175,250	907,250	77
Huai Yai	3,278,850	3,274,630	99
Khlong Chaliang Lab	366,000	305,000	83

These fine materials are much suitable for the impervious zone. Needless to say, however, the laboratory tests are required for the precise qualitative analysis.

From the above, it can be said that fine materials for the impervious zone are sufficient and readily obtainable around the proposed dam sites, but coarse materials, essencial for zoned type of earthfill dam, are insufficient in the vicinity of each site. Such coarse materials might be scattered hillside and foot of hill, and exist in deep soil layers. More detailed investigations together with the laboratory tests are required to assure the volume and quality of the borrow materials for the next study.

The rip-rap materials for protection of the upstream slope are proposed to be obtained from the limestone quarry site being located at Tham Kao Phra about 15 km southwest of the Lom Sak Municipality at the present study. However, this quarry site is far from each dam site. Further investigations should be made at the next stage to quarry out rip-rap materials in the vicinity of the dam site.

Table 1.1 Stratigraphical Table

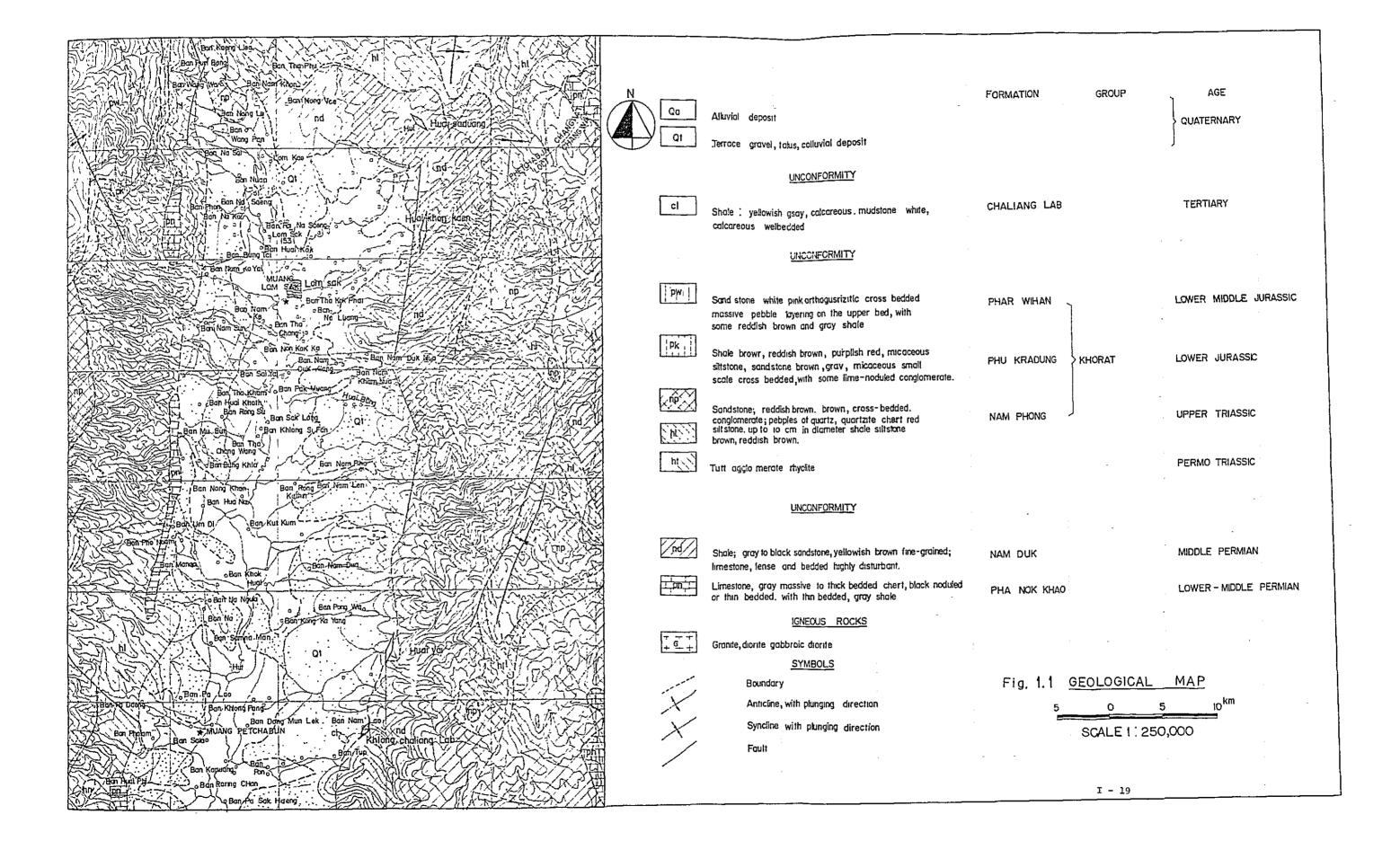
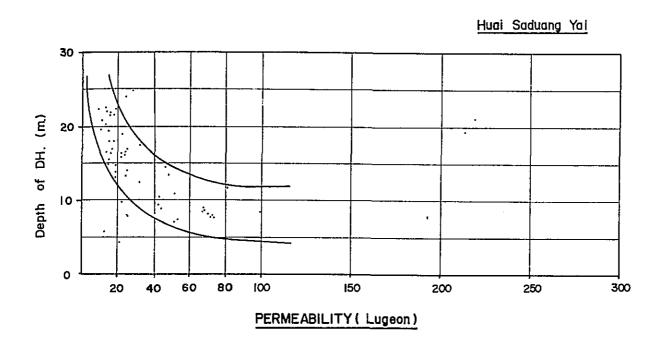

Age	Group	Formation	Symbol	Geological Aspect
Quaternary			Qa	Alluvial deposit
		~~~~~	Qt	Terrace gravel, talus, delluvial deposit
Tertiary		Chaliang Lab	Cl	Shale, yellowish gray Calcareous mudstone
Lower- Middle Jurassic		Phra Wihan	Pw	Sandstone with shale
Lower Jurassic	Khorat	Phu Kradung	Pk	Shale Sandstone
Upper Triassic	·	Nam Phong	np	Sandstone Conglomerate Shale
Permo Triassic		Huai Hin Lat	ht	Tuff Agglomerate
Middle Permian		Nam Duk	nđ	Shale Sandstone Limestone
Lower- Middle Permian		Pha Nok Khao	pn	Limestone Chart Shale
I	gneous Roc	rks	G	Granite diorite, gabbroic diorite

Table 1.2 Volume of Borrow Materials


:	Borrow				10100				(Unit: m3)
Dam Site				1		Classification			# 1 1 1
	Area	ည	æ	SP	SM	SC	ML	CL	IOCAL
Huai Saduang Yai	Ą	131,000	5,000	1	15,000	000'06		105,000	346,000
-	щ	57,000	ı	ı	t	40,000	1	90,000	187,000
	Total	188,000	2,000	ſ	15,000	130,000	ı	195,000	533,000
Huai Khon Kaen	æ	88,000	ì	ı	ι	5,000	í	232,000	325,000
	Ð	180,000	1	ı	17,750	94,500	1	558,000	850,250
	Total	268,000	1	ı	17,750	005,66	١	790,000	1,175,250
Huai Yai	¥	ı	1	4,220	2,530	1	313,820	900,440	1,221,010
	æ	1	1	ı	ì	1	126,050	524,950	651,000
	U	ı	i	t	1	1	1,310	150,410	151,720
	۵	ſ	ì	ı	1	ı	11,860	727,260	739,120
		ı	ı	ı	1	1	i	516,000	516,000
	Total	ľ	1 -	4,220	2,530	1	453,040	2,819,060	3,278,850
Khlong Chaliang Lab	A	61,000		1	7,000	41,500	1	256,500	366,000

GC - Clayey gravel, GM - Silty gravel, SP - Poorly graded, gravelly sand, SM - Silty sand SC - Clayey sand, ML - Inorganic site and very fine sand, CL - Sandy clay, Sılty clay Note:

STATIFFULLY AND MILLIANT ROPING LIEGAL AND	
DV III IVE Bond Aur Bond III Years The Bull III III III III III III III III III	
Bon Tho Phu San Tho Phu	
POINT NON THE WORK WAS THOSE PROPRIES TO THE PROPRIES OF THE P	
BOD WORKS THOSE TO THE STATE OF	
WOW STORY (O) WITH Y (OP) YOU Bon (Nong Voe )	
PSINGUNUMENT COMMING IN THE COMMING THE PROPERTY OF THE PROPER	
Hudraduang The Hudraduang	
- 「ひんはけいかつかいとうないという。 をおものよく プログランス・アンス・ストストン ストストン・ストストンストンストンストンストンストンストンストンストンストンストンストンスト	
Wang Pan V Caralla Car	
Bon No Sol No.	
Bon No Sal Colom Kao	
Market Control Bon Nilon 100 100 100 100 100 100 100 100 100 10	
Ban Phon Ban Na Saleng	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Ban Fai Na Scena Con Lom Sak Con Con Lom Sak Con	
Calling Control of the Control of th	
Ban Huntwick	
Bari Bung Ici	
Ban Norin ko Yal	
TACASTA A CONTROL TO LOW SAME LANGUAGE TO THE TACASTA TO THE TACAS	
Bar Tha Kok Phar	
Box Nam S Box	
Bag Nam & Bar Tha Kok Phar & Ban	
Ban Nom Survey & Change to	
TANDING SAFERING SOLVEN STATE OF THE SAFERING SOLVEN SOLVE	
Ban Nan Kok Ka	
Ban Sai Yol o Ouk Hang Ban Norm	
Per Britalium	
Ban Than Kham Joadh Tua Ban Huai Ban	
Ban Rong Stu Ban Sak Long Ot	
Ban Mir Burt OBan Khlong Sir Gin	
Chang Wang	
Ban Nam Pho Carlo All All All All All All All All All A	
Ban eling Khia San Nam Pho	
Ban Nong Khon Ban Rong Ban Nam Leni	
Ban Nong Khon Ban Rong Ban Nam Len Kgihn	
Ban Nong Khon Ban Rong Ban Nam Leni	
Ban Nong Khon Ban Rong Ban Nam Len Kgihiri Ban Hua Nac Rong Ban Kur Kum	
Ban Nong Khon Ban Rong Ban Nam Len Kgihn	
Ban Nong Khon Ban Rong Ban Nam Len Kginn Ban Hua Na Kginn Ban Kut Kum	
Ban Nong Khon  Ban Rong Ban Nam Len  Kdinn  Ban Kur Kum  Ban Manas  Ban Manas  Ban Manas	
Ban Nong Khen  Ban Rong Ban Nam Len  Kalinn  Ban Manas  Ban Manas  Ban Kur Kum  Ban Manas  Ban Khok  Ban Khok	
Ban Nong Khon Ban Rong Ban Nam Len Kgihm  Ban Pita Nam San Ban Kut Kum  Ban Pita Nam San Ban Khok Ban Khok Ban Khok Ban Khok	
Ban Nong Khon Ban Rong Ban Nam Len Kgihm  Ban Pita Nam Ban Kut Kum  Ban Pita Nam San Ban Khok Hugi a Ban Nam Dia  Ban Manas    Ban Manas    Ban Manas    Ban Manas    Ban Nong Ban Nam Len    Kgihm  Ban Pita Nam Dia  Ban Manas    Ban Nong Ban Nam Len    Kgihm  Ban Pita Nam Dia  Ban Manas    Ban Nong Ban Nam Len    Kgihm  Ban Nam Dia  Ban Manas    Ban Nong Ban Nam Len    Kgihm  Ban Nam Dia  Ban Nam	
Ban Nong Khok Ban Rong Ban Nam Len Kgihin  Ban Manasa O Ban Khok Hud/o  Ban Manasa O Ban Khok Hud/o  Ban Pong Waa	
Ban Nong Khoh  Ban Nong Khoh  Ban Rong Ban Nam Len  Kgihri  Ban Manaca  Ban Kut Kum  Ban Manaca  Ban Khok  Huglo  Ban Nong Khoh  Ban Kut Kum  Ban Manaca  Ban Khok  Ban Rong Ban Nam Len  Kgihri  Ban Namaca  Ban Khok  Ban Rong Manaca  Ban Rong Ma	
Ban Nong Khoh  Ban Nong Khoh  Ban Rong Ban Nam Len  Kgihri  Ban Manaca  Ban Kut Kum  Ban Manaca  Ban Khok  Huglo  Ban Nong Khoh  Ban Kut Kum  Ban Manaca  Ban Khok  Ban Rong Ban Nam Len  Kgihri  Ban Namaca  Ban Khok  Ban Rong Manaca  Ban Rong Ma	
Ban Norg Khork Ban Rong Ban Num Len Kainn  Ban Hua Na Ban Kut Kum  Ban Manac  Ban Khok Huako  Ban Samina Man  Ban Samina Man  Ban Samina Man	
Ban Norg Khofe Ban Rong Ban Num Len Kainn Ban Hud Nac Kainn Ban Kut Kum  Ban Manac Ban Khok Ban Kut Kum  Ban Manac Ban Khok Ban Rong Ban Khok Hud/o  Ban Manac Ban Khok Ban Rong Ban Khok Ban Rong Ban Khok Ban Rong Wa Ban Samina Man Ban Samina Man	
Ban Norg Khork Ban Rong Ban Num Len Kainn  Ban Hua Na Ban Kut Kum  Ban Manac  Ban Khok Huako  Ban Samina Man  Ban Samina Man  Ban Samina Man	
Ban Norg Khefn Ban Rong Bar Nram Len Kainr  Ban Hua Na  Ban Kut Kum  Ban Manasa  Ban Manasa  Ban Khok  Hugh  Ban Pang Waa  Ban Sarrina Man  Ban Sarrina Man  Ban Sarrina Man  Q1  Huar Yai	
Ban Norg Khen Ban Rong Bon Nam Len Kaihin  Ban Hua Nao Ban Kuk Kum  Ban Prio Namro Ban Mange  Ban Rong Bon Nam Len Kaihin  Ban Prio Namro Ban Mange  Ban Rong Bon Nam Len Kaihin  Ban Prio Namro Ban Mange  Ban Rong Bon Nam Len Kaihin  Ban Prio Namro Ban Rong Wa  Ba	
Ban Norg Khon Ban Rong Bor Jam Len Kgihir Ban Hud Nav Kgihir Ban Hud Nav Kgihir Ban Hud Nav Kgihir Ban Manas Ban Khok Hud/a Ban Khok Ban Khok Ban Kong Ka Yang Ban Sarrina Man	
Ban Norg Khorn Ban Norg Khorn Ban Pong Bon Jiam Len Kgihir  Ban Hua Na  Ban Hua Na  Ban Khok  p Ban Khok  p Ban Khok  p Ban Knok  p Ban Khok  p Ban Khorn  Ban Na	
Ban Nong Khorn  Ban Nong Khorn  Ban Rong Ban Nam Len  Kgihri  Ban Hud Nao  Ban Khok  Hugh  Ban Na Nguća  Ban Pong Maa  Ban Rong Ban Nam Len  Ban Na Nguća  Ban Pong Maa  Ban Pong Maa  Ban Na Nguća  Ban Pong Maa  Ban Pong Maa  Ban Na Nguća  Ban Pong Maa  Ban Na Na Nam Lab	
Ban Nong Khein  Ban Rong Ban Nam Len  Rgihm  Ban Manes  Ban Man  Ban Khorg Pong  Ban Khorg Pong  Ban Man  Ban Man	
Ban Nong Khong Ban Nong Ban Norm Len Kaihir  Ban Hua Nas Kaihir  Ban Manael Ban Khok Ban Norm-Bisa  Ban Manael Ban Khok Ban Norm-Bisa  Ban Manael Ban Sarrya Man  Ban Sarrya Man  Ban Ra Lao  Ban Khok Ban Norm-Bisa  Ban Para Wa Indiana  Ban Sarrya Man  Ban Ra Lao  Ban Khok Ban Norm Jao  Ban Sarrya Man  Ban Sarrya Man  Ban Sarrya Man  Ban Sarrya Man Lak Ban Norm Jao  Ran Ray Man Lak Ban Norm Jao	
Ban Norg Khein Ban Norg Khein Ban Hua No Ban Norg Ban	
Ban Norg Khoth Ban Norg Khoth Ban Norg Khoth Ban Hua Nor Ban Hua Nor Ban Hua Nor Ban Hua Nor Ban Hone Ban Manea  Ban Mane	
Ban Norg'Rhorn Ban No	
Ban Norg Khoth Ban Norg Khoth Ban Norg Khoth Ban Hua Nor Ban Hua Nor Ban Hua Nor Ban Hua Nor Ban Hone Ban Manea  Ban Mane	
Ban Norg Khon Ban Rong Bai Norm Len Kahiri Ban Hua Nas Ban Kut Kum  Ban Hua Nas Ban Kut Kum  Ban Khok Huaya  Ban Khok Huaya  Ban Norg Khon Ban Khok Huaya  Ban Khok Huaya  Ban Samira Man Ban Samira Man Ban Sama Ban Norm Ban Samira Man Ban Sama Ban Norm Ban Samira Man Ban Sama Ban Norm Ban Samira Man Ban Sama Ban Rhati Pal Ban Rang Chan Ban Sama Ban Rang Chan  Ban Rangading Ban Ban Sama Ban Rang Chan  Ban Rangading Ban Ban Ban Sama Ban Rang Chan  Ban Rangading Ban	







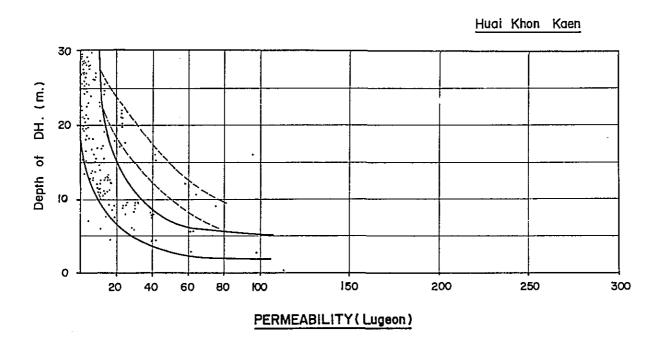
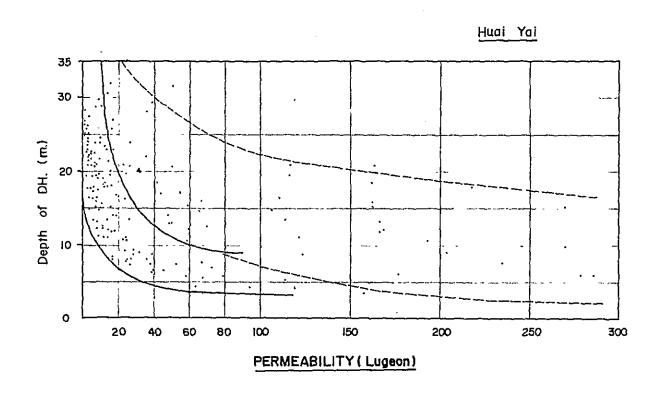




Fig. 1.2.(1) DISTRIBUTION CHART OF LUGEON VALUE



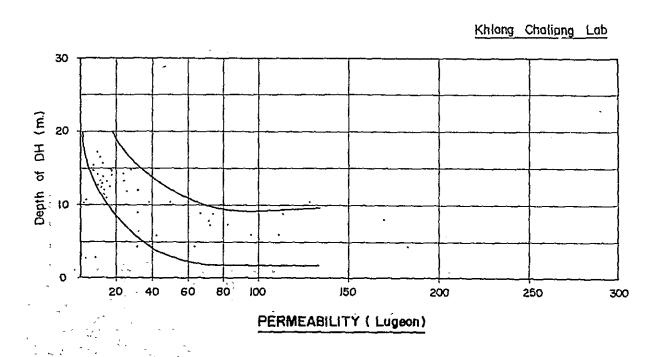
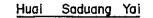
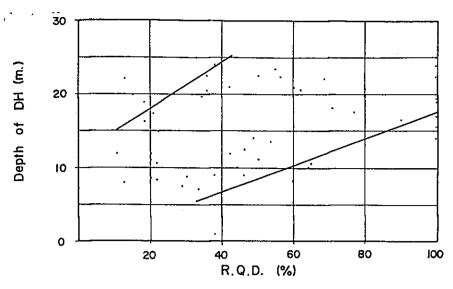
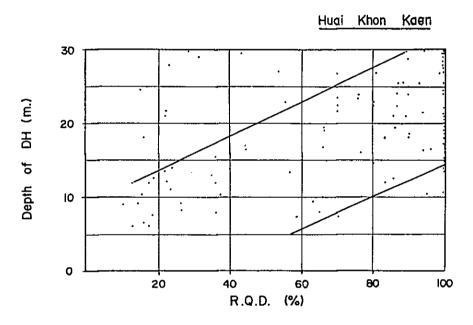






Fig. 1.2 (2) DISTRIBUTION CHART OF LUGEON VALUE







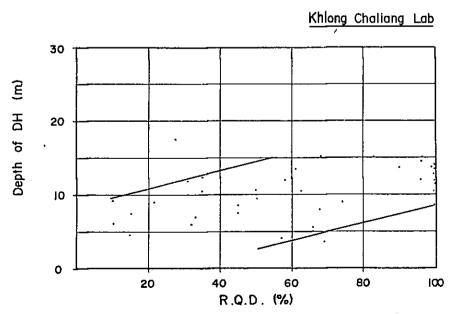



Fig. 1.3 DISTRIBUTION CHART OF R.Q.D

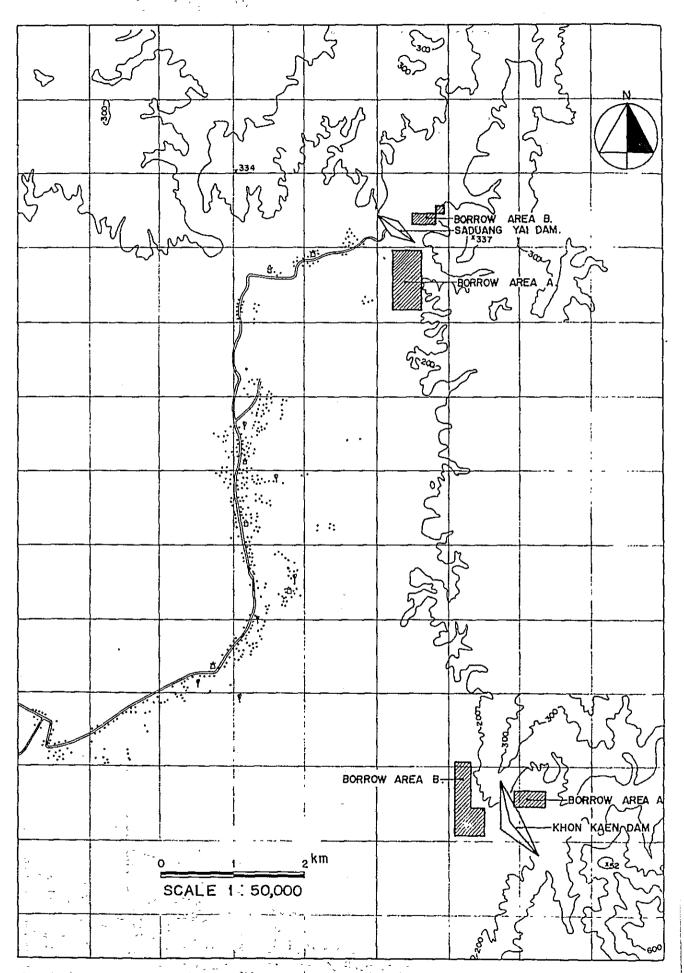



Fig. 1.4 LOCATION MAP OF BORROW AREA OF HUA! SADUANG
YAI DAM AND HUA! KHON KAEN DAM

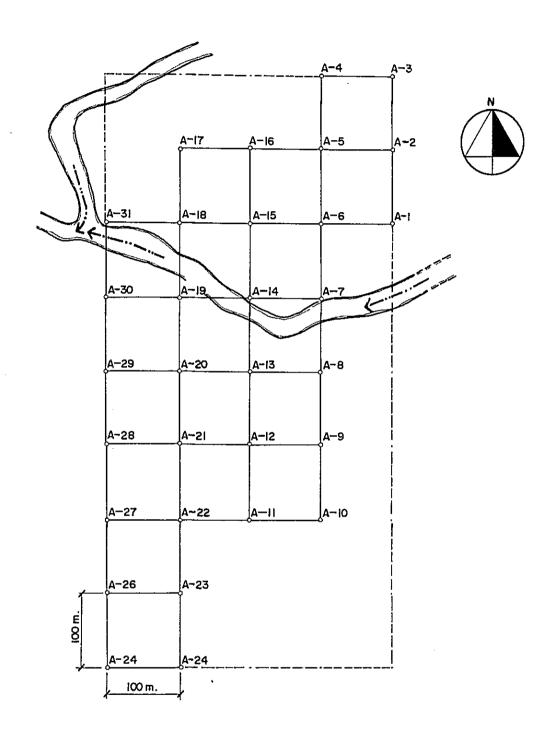



Fig. 1.5 <u>SKETCH MAP OF BORROW AREA (A)</u>
OF HUAI SADUANG YAI DAM
O 100 200 300^m

SCALE 1:5,000

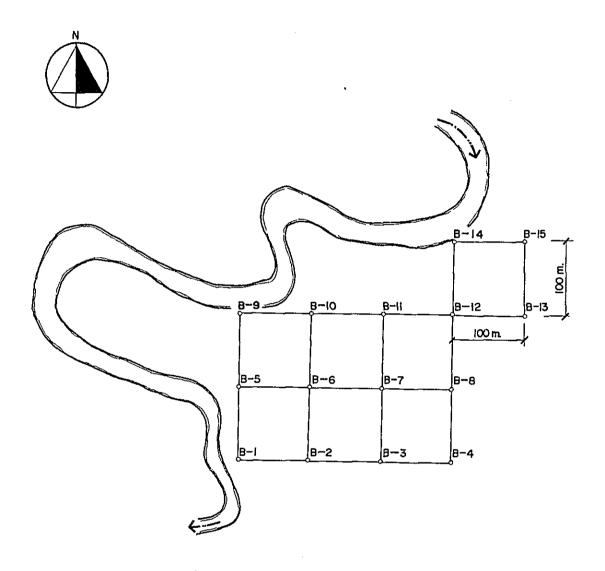
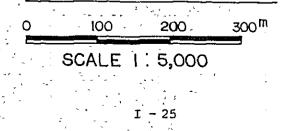




Fig. 1.6 SKETCH MAP OF BORROW AREA (B) OF HUAL SADUANG YAL DAM





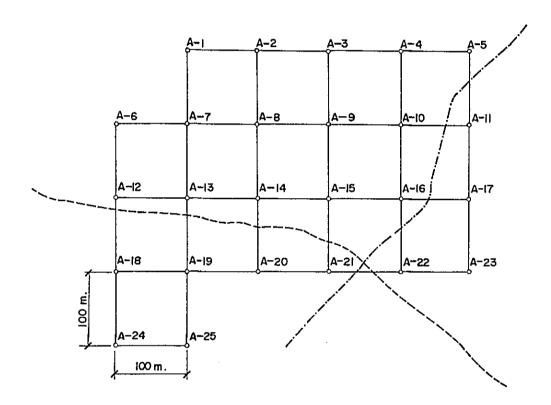



Fig. 1.7 SKETCH MAP OF BORROW AREA (A)

OF HUA! KHON KAEN DAM

0 100 200 300^m SCALE 1:5,000

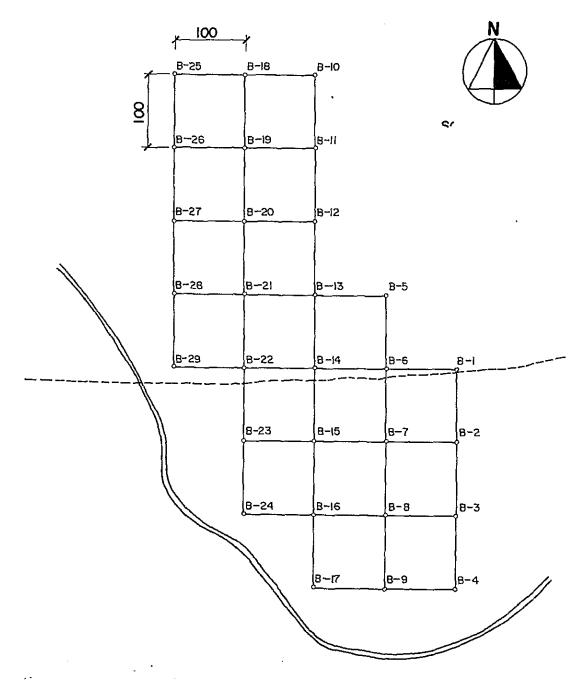



Fig. 1.8 SKETCH MAP OF BORROW AREA (B)

OF HUAI KHON KAEN DAM

O 150 300 450^m SCALE 1:7,500

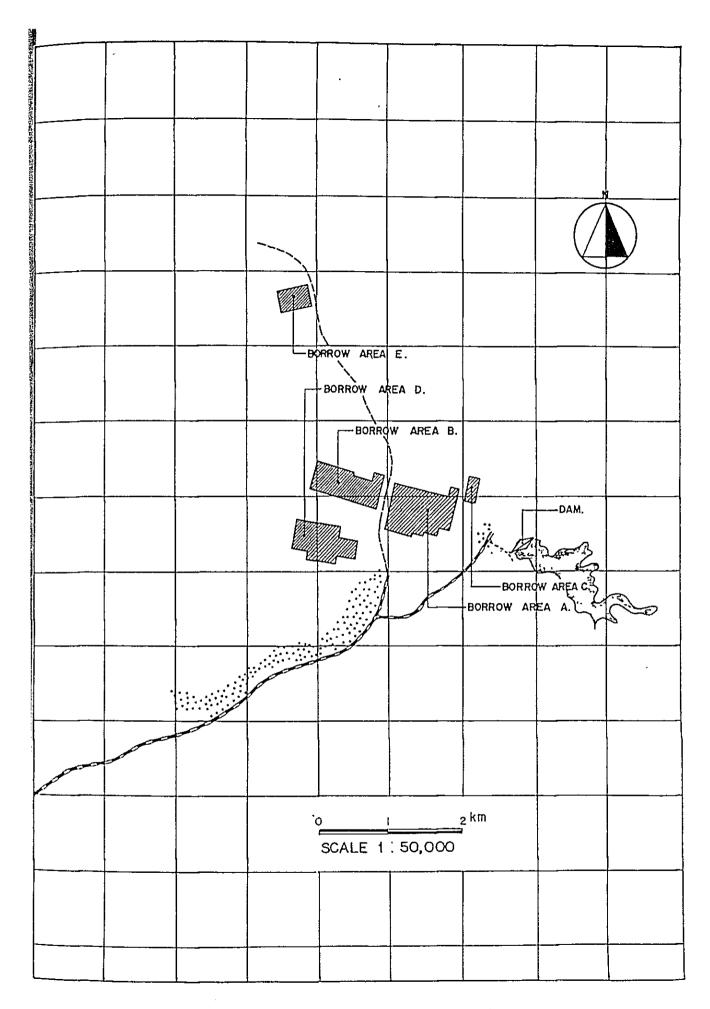



Fig. 1.9 LOCATION MAP OF BORROW AREA
OF HUAI YAI DAM

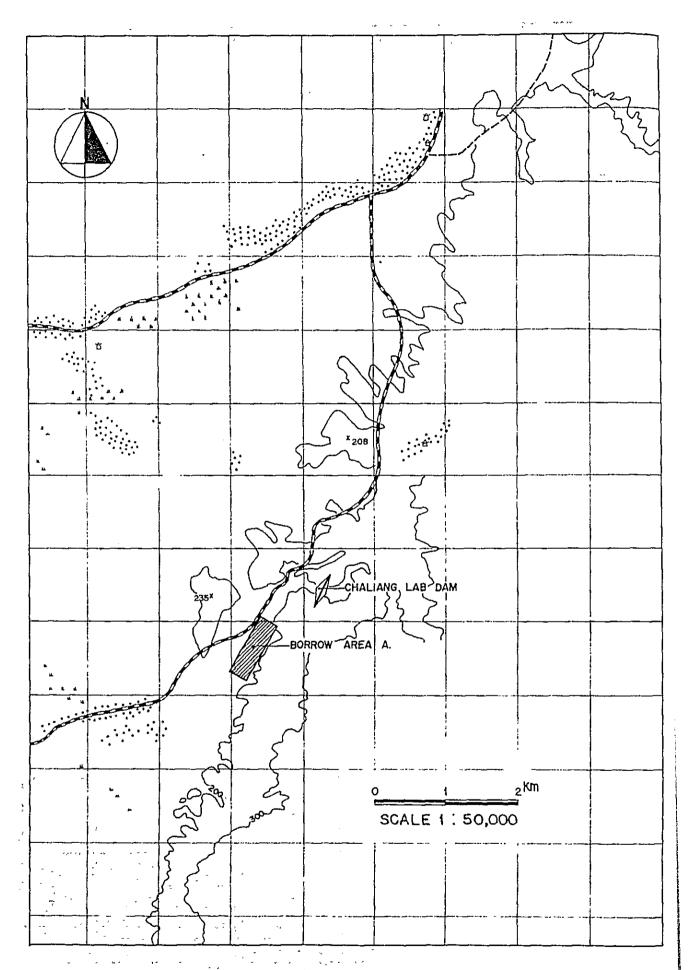



Fig. 1. 10 LOCATION MAP OF BORROW AREA
OF KHLONG CHALIANG LAB DAM

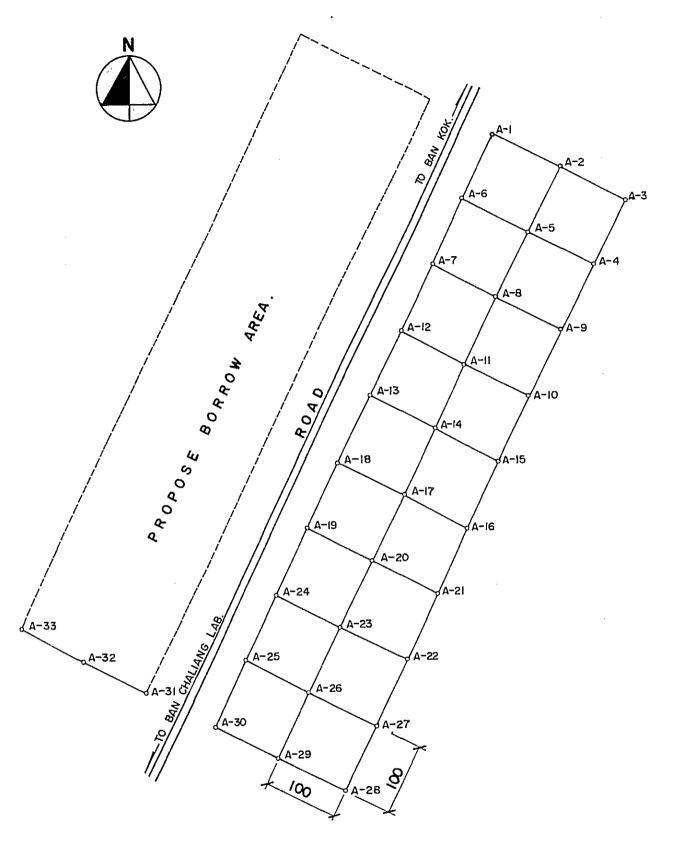
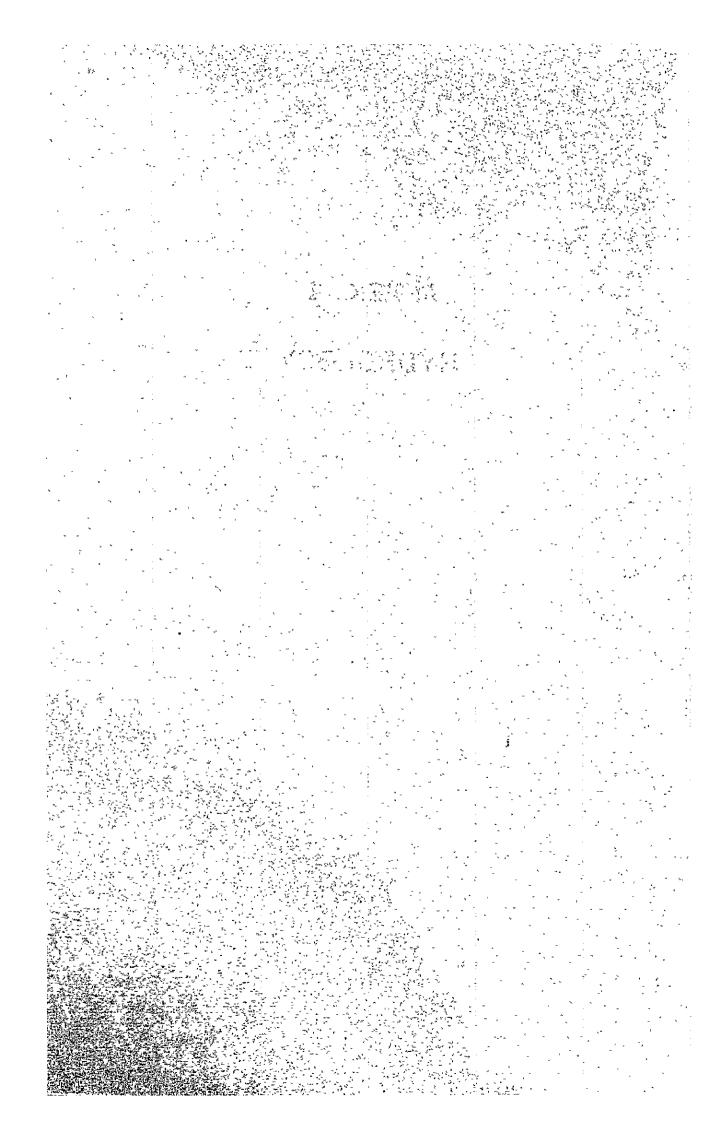




Fig. 1.11 <u>SKETCH MAP OF BORROW AREA (A)</u> OF KHLONG CHALIANG LAB DAM





# ANNEX II HYDROLOGY



## ANNEX II HYDROLOGY

1200

## TABLE OF CONTENTS

et 2	•		Page
2,1	DATA AV	AILABLE	II-l
	2.1.1	Rainfall Data	II-l
	2.1.2	Meteorological Data	II-1
	2.1.3	Runoff Data	II-2
2.2	WATER R	ESOURCES	II-2
•	2.2.1	Water Sources	II-2
	2.2.2	Characteristics of Rainfall in the Project	II-4
•	2.2.3	Assessment of Endowed Water Resources	II-6
2.3	FLOOD		II-10
	2.3.1	Probable Maximum Daily Rainfall	11-10
	2.3.2	Rainfall Intensity	II-10
	2.3.3	Flood in 100-year Return Period	11-11
	2.3.4	Flood in 500-year Return Period	II-13
	2.3.5	Cross-Check by Design Discharge of Existing Projects	II-14
	2.3.6	Flood Control	II <b>-</b> 15

## LIST OF TABLES

			Page
Table	2.1.(1)	Monthly Rainfall Record of Ban Sila Rainfall Station	11-17
Table	2.1.(2)	Monthly Rainfall Record of Kaeng Sida Rainfall Station	II-18
Table	2.1.(3)	Monthly Rainfall Record of Lom Sak Rainfall Station	11-19
Table	2.1.(4)	Monthly Rainfall Record of Phetchabun Rainfall Station	II-21
Table	2.2	Meteorological Data	II-23
Table	2.3	Observed Annual Runoff	II-24
Table	2.4	Observed Monthly Runoff	II-25
Table	2.5	Probable Annual Rainfall	11-26
Table	2.6	Monthly Rainfall Distribution of Droughty Year	II-27
Table	2.7	Monthly Rainfall Distribution of Pluvious Year	II-28
Table	2.8	Annual Rainfall Distribution for Each Probability	II-29
Table	2.9	Monthly Runoff at Each Damsite	
		(1) Lom Sak Area, Non-Excess Probability 10%	11-30
		(2) ", "20%	11-31
		(3) " , " 50%	11-32
		(4) " , Excess Probability 10%	II-33
		(5) " , " 20%	II-34
		(6) Phetchabun Area, Non-Excess Probability 10%	II-35
		(7) " , " 20%	II-36
		(8) ", "50%	II-37
		(9) " , Excess Probability 10%	11-38
		(10) " , " 20%	II-39
Table	2.10	Summary of Annual Runoff	II-40
Table	2.11	Observed Annual Runoff	II-41

		Page
Table 2.12	Daily Rainfall of Each Probability	II-42
Table 2.13	Estimated Rainfall Intensity	II-43
Table 2.14	Dimension of Unit Hydrograph	II-44
Table 2.15	Discharge of Unit Hydrograph	II-45
Table 2.16.(1)	Calculation of Hourly Rainfall of Lom Sak	II <b>-4</b> 6
Table 2.16.(2)	" of Phetchabun	II-47
Table 2.17	Effective Rainfall for Runoff	II <b>-</b> 48
Table 2.18	Probable Base Flow	II-49
Table 2.19	Runoff Coefficient of the Flood in 100-year	
	Return Period	II <b>-5</b> 0
Table 2.20	Peak Discharge of the Flood in 500-year Return Period	II-50
Table 2.21	Flood Control Study	
	(1) Huai Saduang Yai Dam, Return Period 10 Years	11-51
	(2) " , " 30 Years	11-52
	(3) " , " 50 Years	II-53
	(4) Huai Khon Kaen Dam, Return Period 10 Years	II-54
	(5) " , " 30 Years	II-55
	(6) " , " 50 Years	11-56
	(7) Huai Yai Dam, Return Period 10 Years	11-57
	(8) " , " 30 Years	11-58
	(9) " , " 50 Years	II-59
	(10) Khlong Chaliang Lab Dam, Return Period 10 Years	II-60
	(11) " , " 30 Years	II-61
	(12) " , " 50 Years	11-62

# LIST OF FIGURES

			Page
Fig.	2.1	Location of Gauging Station	11-63
Fig.	2.2	Watershed of Each Tributary	II-64
Fig.	2.3	Monthly Rainfall Distribution	
		(1) Droughty Year, Lom Sak	II <b>~</b> 65
		(2) " , Phetchabun	II-66
		(3) Pluvious Year, Lom Sak	II-67
		(4) " , Phetchabun	II-68
Fig.	2.4	Estimate of Runoff Coefficient	II-69
Fig.	2.5	Average Yield of Runoff	II-70
Fig.	2.6	Intensity-Duration Curve of Maximum Daily Rainfall	II- <b>7</b> 1
Fig.	2.7	Unit-Hydrograph at Each Site	
		(1) Huai Saduang Yai, Huai Khon Kaen	11-72
		(2) Huai Yai, Khlong Chaliang Lab	II <b>-7</b> 3
Fig.	2.8	Hourly Rainfall Distribution	II-74
Fig.	2.9	Runoff Coefficient Curve	II-75
Fig.	2.10	Base Flow in Flood Time	II-76
Fig.	2.11	Hydrograph	
		(1) Huai Saduang Yai	II-77
		(2) Huai Khon Kaen	II-78
		(3) Huai Yai	II-79
		(4) Khlong Chaliang Lab	II-80
Fig.	2.12	Probable Flood for Flood Control	
		(1) Huai Saduang Yai	11-81
		(2) Huai Khon Kaen	II-82
		(3) Huai Yai	II-83
		(4) Khlong Chaliang Lab	II-84

#### 2.1 DATA AVAILABLE

#### 2.1.1 Rainfall Data

Rainfall stations in upper Pasak Valley are located at Ban Sila, Kaeng Sida, Lom Sak and Phetchabun, as shown in Fig. 2.1. Ban Sila and Kaeng Sida rainfall stations are operated by NEA, and Lom San and Phetchabun stations are managed by RID. The location and observation period of each station are summarized as shown below.

Name of Station	Location			
Name of Station	Latitude	Longitude	Observation Period	
Ban Sila	17°01'	101°19'	1963, Apr 1978, Dec.	
Kaeng Sida	16°54'	101°20′	1963, Feb 1978, Dec.	
Lom Sak	16°47'	101°15'	1952, Apr 1978, Mar.	
Phetchabun	16°25'	101°09'	1952, Apr 1978, Mar.	

As illustrated in Fig. 2.1, four rainfall stations are located at relatively lowlying plain of the Pasak river. No rainfall data are available in the mountainous ranges of watersheds. These rainfall stations have monthly or daily rainfall records. But, no hourly rainfall data are available in and around projects areas.

Monthly rainfall records of each station are given in Table 2.1. Daily rainfall records of Lom Sak and Phetchabun stations are attached in Data Book.

## 2.1.2 Meteorological Data

As meteorological data other than rainfall, Phetchabun meteorological station is applied for the study, which station is located at the Phetchabun Municipality, in latitude 16°26' north and longitude 101°09'E. This station provides meteorological data, i.e. temperature, relative humidity, dew point, evaporation, cloudiness, wind velocity, sunshine duration, and so on. These data are obtained from Meteorological Department and summarized in Table 2.2.

## 2.1.3 Runoff Data

No runoff data are available at all in the tributaries relevant to the projects. But, in the mainstream of the Pasak, there exist two water gauging sites; one is located at Kaeng Sida covering the drainage area of 836 km² and operated by NEA, and the other is located at the diversion weir of Pasak Left Bank Irrigation Project, which covers the drainage area of 1,007 km² and is operated by RID. These water gauging sites are illustrated in Fig. 2.1.

Annual runoff records of the two gauging sites are given in Table 2.3.

#### 2.2 WATER RESOURCES

#### 2.2.1 Water Sources

Four proposed projects would depend their water resources on the tributaries of the Pasak which is one of the major tributaries of the Chao Phraya. The water sources and the characteristics of the drainage areas are as follows.

#### Huai Saduang Yai

The Huai Saduang Yai, a small tributary of the Pasak river, originates in the Mt. Phykok, Pnu and Bukpaen of about 700 m or so in altitude, and drifts down about 30 km from east to west to join the main reach of the Pasak river at about 1.5 km upstream from the confluence of the Pasak river in the vicinity of the Fung Dorn village.

The total watershed of this tributary extends over about 96 km² at the proposed dam site which is located at about 1.5 km upstream from the confluence of the mainstream of the Pasak river. The river channel totals about 28.5 km stretching from its origin to dam site. The river-bed gradient is relatively steep in the vicinity of the proposed dam site. No water gauging station has been installed so far in the watershed. No data are available on runoff at all.

#### Huai Khon Kaen

The Huai Khon Kaen, the largest tributary among the four selected water sources, originates in the ranges of Mt. Huai Koh, Huai Hi, Pu Mok, Pu Nam Rin, Pa Lob, etc., 900 m above MSL, locating in due east of the Lom Sak municipality. It meanders about 72 km westward to join the mainstream of the Pasak river at the left bank, at about 24 km downstream from the Upper Pasak diversion weir.

The watershed of the tributary is located at due south of the Huai Saduang Yai watershed, extending to about 322 km² at the proposed dam site which is proposed at about 19.5 km upstream from the confluence of the Pasak river. The river channel totals about 53 km stretching out from its origin to the proposed dam site. The river-bed gradient is relatively steep in the vicinity of the proposed dam site. The watershed is relatively better reserved even though sporadic land reclamation has been recently made by farmers for shifting farming in the hillside. No water gauging station has been installed so far in the watershed and no data are available on runoff at the dam site.

#### Huai Yai

The Huai Yai originates in the ranges of Mt. Hingumn, Ponthong, Suiroi, Saliang Tatard, etc. of about 1,200 m in altitude and drifts down about 47 km from northeast to southwestward joining many small rivulets, and debounches into the main reach of the Pasak river in the vicinity of the Phetchabun municipality.

The watershed of the tributary is located at due east of the Phetchabun municipality, extend over about 78 km² at the dam site which is proposed at about 25 km upstream from the confluence of the Pasak river. The river channel totals about 47 km stretching from its origin to the confluence of the Pasak river. The river-bed gradient is rather steep in the vicinity of the proposed dam site. Water and soils in the watershed are likely to be relatively better reserved.

### Khlong Chaliang Lab

The Khlong Chaliang Lab originates in the ranges of Mt. None Yang, Huai Rong, None Sra, Ta Boh, etc. of about 1,300 m in altitude and meanders about 54 km from southeast to northwest joining many small rivulets and debouches into flat fan. Then, it splits into many distributaries developed across the fan.

The watershed of this tributary is located in due south of the Huai Yai watershed, extending to about 77 km² at the dam site which would be proposed at about 27.5 km upstream from the confluence with the Pasak river. The river channel of about 54 km stretches out its origin to the said confluence; about 26 km from its origin to the proposed dam site. The river-bed gradient is rather steep in the vicinity of the proposed dam site.

The water sources and the drainage areas of respective projects are as tabulated below.

Name of Project	Water Source	Drainage Area
Huai Saduang Yai Project	Huai Saduang Yai	96 km ²
Huai Khon Kaen Project	Huai Khon Kaen	$322 \text{ km}^2$
Huai Yai Project	Huai Yai	78 km ²
Khlong Chaliang Lab Project	Khlong Chaliang Lab	77 km ²

The watershed of each tributary is illustrated in Fig. 2.2.

## 2.2.2 Characteristics of Rainfall in the Project Area

There exist four rainfall stations, namely Ban Sila, Kaeng Sida, Lom Sak and Phetchabun, as mentioned before. Among four rainfall records, Lom Sak rainfall records would be applied for the rainfall analysis in the Huai Saduang Yai and the Huai Khon Kaen watersheds, since no rainfall records have been obtained in these watersheds. For a similar reason, Phetchabun rainfall records would be applied in the Huai Yai and the Khlong Chaliang Lab watershed as tabulated below.

Project	Applied Rainfall Station
Huai Saduang Yai Project	Lom Sak Station
Huai Khon Kaen Project	u
Huai Yai Project	Phetchabun Station
Khlong Chaliang Lab Project	n

These applied rainfall data surely bring about conservative results for water resources development and irrigation planning since the basin rainfall in the hilly watershed is generally greater than that in the lowlying plain.

#### (1) Probable Annual Rainfall

To obtain probable rainfall in both drought year and pluvious year, two theoretical methods, i.e. Gumbel and Iwai, are applied and then, the results are cross-checked by the Thomas platting. The estimated annual rainfalls of respective recurrences are as follows.

## Non-Excess Probability (Drought Year)

Recurrences (%)	Probable Annual Rainfall at Lom Sak	Probable Annual Rainfall at Phetchabun
10	<b>7</b> 87	868
20	885	938
50	1,040	1,040

## Excess Probability (Pluvious Year)

Recurrences (%)	Probable Annual Rainfall at Lom Sak	Probable Annual Rainfall at Phetchabun
10	1,494	1,388
20	1,340	1,276

Calculation results of respective methods are given in Table 2.5.

#### (2) Rainfall Distribution

Monthly rainfall distributions of droughty years are estimated from "Rainfall and Evaporation Analysis of Thailand" issued by The Asian Institute of Technology (AIT), as given in Table 2.6. The distribution pattern of each probability is cross-checked by Gumbel and Iwai methods based on the rainfall records for 26 years. Comparing these two distributions, there is almost no difference as illustrated in Fig. 2.3.

Monthly rainfall distributions of pluvious years are estimated by Gumbel and Iwai methods. Monthly distributions of respective probabilities are given in Table 2.7 and Fig. 2.3.

Probable monthly rainfalls are estimated based on the probable annual rainfall and rainfall distribution, and the results are shown in Table 2.8. About 90% of the annual rainfall concentrates in rainy season from May to October, and in September monthly rainfall indicates a peak to be 20%.

#### 2.2.3 Assessment of Endowed Water Resources

Monthly runoffs of respective tributaries are estimated based on the monthly rainfalls since no runoff data are available in tributaries. The estimates are made as follows.

- (a) Estimate monthly runoff coefficients
- (b) Calculate monthly runoff by multiplying monthly rainfalls by monthly runoff coefficient
- (c) Calculate annual runoffs and annual runoff coefficients
- (d) Cross-check by annual runoff coefficient and average yield of runoff of the Pasak at Kaeng Sida and the weir site of the Pasak Left Bank Irrigation Project
- (e) Cross-check by use of the runoff yield map prepared by RID

The details for the above are explained hereinafter.

#### (1) Monthly Runoff Coefficient

Monthly runoff coefficient in this analysis is defined as the following equation:

$$Cm = \frac{Rfm}{Rnm}$$

where, Cm : Monthly runoff coefficient

Rfm: Monthly runoff
Rnm: Monthly rainfall

Monthly runoff coefficients are estimated by applying "Estimate of Runoff Coefficient Chart" authorized by RID. This chart has been made based on the observations of runoffs and rainfalls in various kinds of terrain conditions in Thailand, as shown in Fig. 2.4. In this chart there are five types of terrain conditions. In selecting the type, B type is chosen in due consideration of the terrain conditions of the respective watersheds.

#### (2) Monthly Runoff

Monthly runoffs at respective dam sites are estimated based on the monthly rainfalls and monthly runoff coefficients. Monthly rainfall record of Lom Sak rainfall station is applied to Huai Saduang Yai and Huai Khon Kaen areas, and that of Phetchabun rainfall station is applied to Huai Yai and Khlong Chaliang Lab areas.

Respective monthly runoffs are calculated by multiplying monthly rainfalls by runoff coefficients, and the results are given in Table 2.9 for each probability.

#### (3) Annual Runoff and Annual Runoff Coefficient

Annual runoffs at respective dam sites are calculated by summing up monthly runoffs and are summarized in Table 2.10. Annual runoff coefficients and average yield of runoff are tabulated as follows.

	Huai Sadı	ang Yai &	Huai Yai	&
Probability	Huai Khon Kaen		Khlong Chaliang Lab	
Propability	Runoff	Average Yield	Runoff	Average Yield
	Coefficient	of Runoff	Coefficient	of Runoff
	(%)	(l/s/km²)	(%)	(l/s/km ² )
Non-Excess				
10%	23.3	5.8	26.3	7.2
20%	24.9	7.0	26.1	7.8
50%	26.0	8.6	26.3	8.7
Excess				
10%	30.7	14.5	28.4	12.5
20%	29.1	12.3	27.7	11.2

As shown in the above table in an ordinary year (probability: 50%), runoff coefficient and average yield of runoff are about 26.2% and 8.7  $\ell/s/km^2$ .

## (4) Cross-Check by Observed Annual Runoff

There exist two stream gauging stations in the Pasak river.

One is Kaen Sida and the other is Pasak Left Bank Weir. Annual runoff coefficients at the two gauging stations are calculated based on the rainfalls of Ban Sila station and Kaeng Sida station, applying the following Thiessen weight.

Gauging Station	Rainfall Station	Thiessen Weight
Kaeng Sida	Ban Sila	100 (%)
Pasak Left Bank Weir	Ban Sila	75
	Kaeng Sida	25

Calculation results are given in Table 2.11. Annual runoff coefficients at Kaeng Sida gauging station vary from 9% to 25% and the average is 20%. While, annual runoff coefficients at Pasak Left Bank Weir vary from 13% to 36% and the average is 27%.

Annual average yield of runoff at Kaeng Sida station vary from 3.9  $\ell/s/km^2$  to 11.0  $\ell/s/km^2$  and the average is 7.7  $\ell/s/km^2$ . While, annual average yield of runoff at Pasak Left Bank Weir vary from 4.8  $\ell/s/km^2$  to 17.4  $\ell/s/km^2$  and the average is 9.8  $\ell/s/km^2$  as shown in Table 2.11.

Estimated runoff coefficients (26.2%) is in this range between 20% and 27% and estimated average yield of runoff (8.7  $\ell/s/km^2$ ) is also in this range between 7.7  $\ell/s/km^2$  and 9.7  $\ell/s/km^2$ .

## (5) Cross-Check by "Average Yield of Runoff Map"

"Average Yield of Runoff Map" is developed by RID as shown in Fig. 2.5. According to this map, average yield of runoff of four watersheds is in range between 10  $\ell$ /s/km² and 5  $\ell$ /s/km². Estimated average yield of runoff (8.7  $\ell$ /s/km²) is in this range.

## 2.3 FLOOD

## 2.3.1 Probable Maximum Daily Rainfall

Annual maximum daily rainfall data picked out from Lom Sak and Phetchabun stations are applied to the estimate of probable daily rainfalls, which are made by Gumbel, Iwai and Thomas-plotting method. Calculation results are given in Table 2.12 and are summarized as follows.

Return Period	Probable Daily Rainfall		
(year)	Lom Sak St.	Phetchabun St.	
500	275 ^{mm}	197 ^{mm}	
100	218	164	
50	196	150	
30	182	140	
10	146	116	

#### 2.3.2 Rainfall Intensity

Rainfall Intensity within a certain time is estimated by the following empirical formula.

It = 
$$\frac{R_{24}}{24} \left(\frac{24}{t}\right)^n$$

where, It: Rainfall intensity (mm/hour)

R₂₄: Daily rainfall (mm/day)

t : Rainfall duration (hour)

n : Coefficient (n = 0.815)

Coefficient (n) is estimated to be 0.815 by "Intensity-Duration Curve of Maximum Daily Rainfall" prepared by the Meteorological Department, illustrated in Fig. 2.6. Estimated intensity of 100-year return period are given in Table 2.13 with derived intensity from "Intensity-Duration Curve".

## 2.3.3 Flood in 100-Year Return Period

Synthesis hydrograph method by Snyder is adopted to estimate the flood. The Synder method is as follows.

- (a) Estimate concentration time
- (b) Estimate peak discharge of unit hydrograph
- (c) Estimate runoff duration of unit hydrograph
- (d) Estimate hourly rainfall distribution
- (e) Estimate base flow of flood
- (f) Estimate the flood

The details for the above are explained hereinafter.

(1) Concentration Time

Concentration time is determined by the condition of watersheds. Synder explains it as follows.

$$Tp = 0.75 Ct(L \cdot Lc)^{0.3}$$

where, Tp : Concentration time (hour)

L : River length from origin (km)

Lc : River length from the center of watershed (km)

Ct : Snyder's coefficient (Ct = 1.8)

Unit time of rainfall in unit hydrograph is explained by following formula.

$$Tr = Tp/5.5$$

where, Tr : Unit time (hour)

(2) Peak Discharge of Unit Hydrograph

Peak discharge for 1.0  $\mbox{mm}$  of excess rainfall is expressed as follows.

$$q_p = 0.275 \text{ Cp} \cdot \text{A/Tp}$$

where,  $q_p$ : Peak discharge ( $m^3/sec$ )

A : Drainage area (km²)

Cp : Snyder's coefficient (Cp = 0.56)

## (3) Runoff Duration of Unit Hydrograph

Runoff duration is expressed as follows.

Tb = 
$$2 \cdot A/3.6 \cdot q_p$$

where, Tb: Runoff duration (hour)

Calculation results, i.e. concentration time (Tp), unit time of rainfall (Tr), peak discharge ( $q_p$ ) and runoff duration (Tb) of unit hydrograph, are shown in Table 2.14. Based on the above results, unit hydrographs at respective dam sites are illustrated in Fig. 2.7 and are tabulated in Table 2.15.

#### (4) Hourly Rainfall Distribution

Hourly rainfall distributions are estimated as a central concentrated pattern, shown in Fig. 2.8. Hourly rainfalls are calculated in Table 2.16, based on the rainfall intensity formula abovementioned.

Effective rainfall for runoff is calculated by multiplying rainfall by runoff coefficient. Runoff coefficients are calculated by the following formula, and shown in Fig. 2.9.

$$C = 3.6 \times 10^{-2} R^{1.5}, R \le 100 mm$$

$$C = [(R-64)/R] \times 100, R > 100 mm$$

where, C : Accumulated runoff coefficient (%)

R : Accumulated rainfall (mm)

Calculation results are given in Table 2.17.

#### (5) Base Flow in Flood

Floods in the upper Pasak Valley happen generally in August and September. Base flow is considered to be the average discharge in these two months for the safety side. Specific discharges in these months are calculated, based on the estimated runoffs in the previous section.

Specific discharges for respective probabilities are plotted in Fig. 2.10. Probable base flow at each dam site is given in Table 2.18.

## (6) Flood in 100-Year Return Period

Hydrograph of the flood is made by the unit hydrograph, effective rainfall and base flow, and the result is illustrated in Fig. 2.11. Peak discharges and specific discharges of respective probabilities are summarized as follows.

Area	Huai Saduang Yai	Huai Khon Kaen	Huai Yai	Khlong Chaliang Lab
Peak Discharge (m ³ /s)	268.4	697.4	168.4	149.9
Specific Discharge (m ³ /s/km ² )	2.8	2.2	2.2	1.9

#### 2.3.4 Flood in 500-Year Return Period

Rational formula as presented below is applied for estimate of the peak discharge.

$$Q = \frac{1}{3.6} \cdot C \cdot I \cdot A$$

where, Q: Peak discharge ( $m^3/sec$ )

C : Coefficient of runoff

A : Drainage area (km²)

In the above formula, flood concentration time and rainfall intensity are calculated by the same method of the estimate of the flood in 100-year return period and summarized as follows.

	Huai Saduang Yai	Huai Khon Kaen	Huai Yai	Khlong Chaliang Lab
Daily rainfall (mm/day)	275	275	197	197
Concentration Time (hour)	9	12	7	8
Rainfall Intensity (mm/hour)	25.5	20.2	22.4	20.1

Coefficients of runoff is variable according to magnitude of flooding, rainfall intensity and concentration time. In this case the coefficient is assumed at 1.1 times as that of the flood in 100-year return period. Peak runoff coefficients of the floods in 100-year return period are mentioned in Table 2.19.

Calculation results are given in Table 2.20 and summarized as follows.

	Huai Saduang Yai	Huai Khon Kaen	Huai Yai	Khlong Chaliang Lab
Area (km²)	96	322	78	77
Peak Discharge (m ³ /s)	354	940	218	193
Specific Discharge (m ³ /s/km ² )	3.7	2.9	2.8	2.5

## 2.3.5 Cross-Check by Design Discharge of Existing Projects

The estimated specific discharges are cross-checked by those of the existing dams constructed in Thailand as tabulated below.

Project	Drainage Area	Specific I	Discharge Period	Location
	(km ² )	100-Year	500-Year	Docacion
		$(m^3/s/km^2)$		
		Existing	Projects	
Me Kuang	565	2.6	4.1	Chiang Mai
Huay Me Moh	296	2.7	-	Lampang
Lam Nam Oon	1,100	1.3	1.6	Sakon Nakhon
Padaeng	81	2.0	2.6	Phetchabun
		Proposed	Projects	
Huai Saduang Yai	96	2.8	3.7	Lom Sak
Huai Khon Kaen	322	2.2	2.9	Lom Sak
Huai Yai	78	2.2	2.8	Phetchabun
Khlong Chaliang Lab	77	1.9	2.5	Phetchabun

Specific peak discharge is generally variable, depending on the shape of watershed and topo-condition, rainfall intensity and so on. But, estimated specific discharges are almost in the range of those of existing projects.

## 2.3.6 Flood Control

Flood control effects of respective dams are estimated, though the dams are proposed mainly for irrigation purpose. Calculation process in as follows.

$$S_t = S_{t-1} + Q_{tave} \cdot t - O_t \cdot t$$

$$O_t = C \cdot B \cdot (H_{t-1})^{3/2}$$

where,  $S_{\mathsf{t}}$ : Dam storage at time (t)

 $S_{t-1}$ : Dam storage at time (t-1)

 $Q_{tave}$ :  $(Q_t + Q_{t-1})/2$ 

 $Q_{\mathsf{t}}$  : Inflow discharge at time (t)

 $Q_{t-1}$ : Inflow discharge at time (t-1)

t : Unit time

Ot : Out-spill discharge at time (t-1)

C : Over-flow coefficient (C = 1.84)

B : Crest length of spillway

Ht-1: Over-flow depth of time (t-1)

Dimensions of spillways and mass curves of respective dams are mentioned in Annex III. Floods of 10-year, 30-year and 50-year return period are applied to the calculations abovementioned. Inflow discharge of each probability is estimated by the Snyder's method, as well as the flood of 100-year return period, and hydrographs are illustrated in Fig. 2.12. Computed results are given in Table 2.21 and summarized as tabulated below.

Dam	Return	Peak	Peak	Outflow/Inflow
	Period	Inflow	Outflow	
	(year)	$(m^3/s)$	(m ³ /s)	(%)
Huai Saduang Yai	10	139	131	94.3
	30	202	192	95.4
	50	226	217	95.9
Huai Khon Kaen	10	370	367	99.2
	30	534	531	99.6
	50	598	596	99.8
Huai Yai	10	84	76	91.0
	30	126	114	91.1
	50	144	131	91.1
Khlong Chaliang Lab	10	75	75	99.7
	30	113	112	99.7
	50	129	128	99.7

Flood control effects of Huai Khon Kaen and Khlong Chaliang Lab dam are negligible small, indicating 0.2-0.8% decrease of peak discharge. While, the effects of Huai Saduang Yai and Huai Yai dam are comparatively bigger than the above two dams, but only 4.1-9.0% of peak inflows would be mitigated and cut-off discharges are to be  $7.6-12.7~\text{m}^3/\text{sec}$ .

Table 2.1.(1) Monthly Rainfall Record of Ban Sila Rainfall Station

												(Ur	(Unit: mm)
Year	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Total
1963	ı	ı	÷1	128.2	64.1	174.5	242.4	280.6	139.9	112.7	2.2	10.2	t
1964	0.0	0.0	20.3	59.5	189.1	122.0	154.0	225.0	341.0	220.0	4.0	1.3	1,336.2
1965	0.0	29.0	26.0	0.09	248.0	256.0	44.0	275.0	290.0	120.0	72.0	0.0	1,450.0
1966	18.5	12.3	5.4	5.0	301.9	205.1	175.8	461.7	134.0	88.3	12.0	68.7	1,488.7
1967	7.0	31.ņ	1.2	116.1	90.7	132.6	129.9	247.0	474.1	21.6	0.6	0.0	1,260.2
1968	0.0	0.0	28.0	181.0	245.8	239.8	161.7	125.1	180.7	17.0	0.0	0.0	1,179.1
1969	33.0	0.0	36.3	59.2	94.2	164.5	148.0	158.3	310.0	74.0	0.0	0.0	1,077.5
1970	0.0	12.7	72.0	45.2	133.7	274.2	128.3	396.1	228.0	65.4	2.0	3.2	1,360.8
1971	0.0	0.0	28.0	74.0	161.1	199.1	128.1	136.0	116.0	140.1	25.0	0.0	1,007.4
1972	0.0	0.0	41.0	62.0	91.3	153.1	96.4	236.9	175.7	109.2	22.0	32.5	1,020.1
1973	0.0	0.0	80.5	20.5	133.8	170.0	140.1	156.0	188.6	4.0	0.0	0.0	893.5
1974	1.5	32.3	69.2	76.2	248.5	79.7	182.9	335.8	245.5	39.0	0.0	0.0	1,310.6
1975	38.8	13.0	45.2	34.0	188.8	88.0	197.8	354.6	141.0	93.9	10.0	0.0	1,205.1
1976	0.0	77.5	23.3	100.5	161.1	194.3	317.1	296.6	293.1	88.1	10.5	0.0	1,562.1
1977	0.0	0.0	36.3	36.9	105.8	122.8	103.4	247.8	353.1	28.3	0.0	13.3	1,047.7
1978	0.0	17.5	5.0	45.8	195.0	174.0	262.5	321.4	462.6	53.8	1.1	0.0	1,538.7
Average	đì												1,249.2

Table 2.1.(2) Monthly Rainfall Record of Kaeng Sida Rainfall Station

			(	į			i					(Un	(Unit: mm)
Year	Jan	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Tota1
1963	l	2.61	53.6	56.2	66.8	151.0	195.8	128.1	207.6	231.4	27.8	3.7	J
1964	5.5	2.8	20.6	60.2	176.2	64.4	206.2	257.7	317.1	218.9	4.5	2.8	1,366.9
1965	0.0	18.0	22.9	115.7	235.8	144.6	154.7	218.4	174.3	57.6	24.2	0.0	1,166.2
1966	11.9	14.7	11.5	11.9	197.2	95.0	136.8	255,1	215.8	69.2	16.0	41.4	1,076.5
1961	2.5	0.8	12.8	102.3	51.7	84.1	221.2	133,1	396.5	37.9	6.4	0.0	1,049.3
1968	0.0	10.4	20,8	154.6	246.9	255.4	161.5	88.1	131.0	37.0	19.2	0.0	1,124.9
1969	36.5	1.1	106.8	38.9	111.7	118.1	169.1	152,6	230,6	73.2	29.0	0.0	1,067.6
1970	0.0	0.9	63.6	6.66	110.6	160.6	71.5	285.0	211.5	109.6	32.8	3,6	1,154.7
1971	0.0	2.6	1.6	15.9	168.0	123.1	ı	219.0	121.1	156.1	, 1.8	4.2	t
1972	0.0	26.6	43.9	116.5	74.9	174.1	118.5	185.8	244.9	80.8	22.5	12.1	1,100.6
1973	0.0	0.0	73.3	27.9	155.0	124.7	186.5	111.3	176.0	18.5	2.7	0.0	875.9
1974	10.9	10.2	20.4	71.0	226.7	137.5	106.9	168.3	131.3	86.1	26.1	0.0	995.4
1975	44.7	16.3	49.1	6.5	192.9	155.7	157.2	327.9	248.0	76.2	28.0	0.0	1,302.5
1976	0.0	79.0	24.3	35.3	188.7	167.3	245.9	314.4	201.3	113.4	8.8	0.0	1,378.4
1977	2.0	0.0	6.7	92.5	98.1	121.6	87.5	197.0	336.4	78.0	0.0	10.7	1,030.5
1978	3.9	34.4	6.2	35.8	200.9	138.2	325.6	217.5	401.8	48.7	0.0	0.0	1,413.0
Average	ē												1,150.2

Table 2.1.(3)-(1) Monthly Rainfall Record of Lom Sak Rainfall Station

				1								Œ.	(Unit: mm)
Year	Apr.	Мау	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Total
1977	66.7	134.8	70.0	127.4	126.9	180.6	43.9	2.6	43.9	2.5	28.0	7.4	834.7
1976	46.6	194.1	135.3	215.3	229.5	183.9	126.5	7.0	0.0	0.4	0.0	57.6	1,196.2
1975	1.9	101.2	124.9	159.9	187.0	178.1	110.8	54.8	0.0	0.0	77.0	<b>4.</b> 8	1,000.4
1974	74.8	184.4	137.8	132.1	180.8	101.6	87.3	40.1	0.0	51.9	51.7	39.3	1,081.8
1973	64.1	135.6	136.4	141.8	96.6	138.2	10.1	8.4	0.0	1.0	2.5	57.3	792.0
1972	57.5	81.3	161.4	80.5	211.2	170.8	83.8	16.5	6.7	0.0	0.9	55,2	925.8
1971	9.9	169.5	167.0	108.5	217.5	148.2	84.6	0.3	3.0	0.0	31.6	41.7	978.5
1970	35.1	100.3	245.3	40.5	245.4	184.2	92.9	2.8	18.2	0.4	25.7	43.0	1,041.8
1969	50.3	130.1	69.2	91.2	96.5	296.8	55.7	17.7	0.0	0.3	1.0	126.0	934.8
1968	115.0	300.5	163.4	177.9	115.5	73.2	70.0	0.4	0.0	28.3	3.6	100.4	1,148.2
1967	100.4	68.7	86.2	115.6	114.4	0.0	0.0	0.0	0.0	0.0	0.0	34.7	520.0
1966	22.1	131.7	64.0	49.8	104.2	52.9	82.2	15.9	26.0	0.5	0.0	3.0	552.3
1965	0.0	165.8	173.9	66.8	244.4	193.0	ı	0.0	0.0	0.0	0.0	7.6	ı
1964	82.7	313.5	98.9	159.8	184.0	244.1	194.4	7.3	. 0.0	0.0	32.0	16.7	1,333.4
1963	57.0	59.4	268.7	220.6	202.1	212.5	198.8	43.3	21.2	0.0	0.0	0.0	1,283.6
1962	87.0	95.5	122.2	191.5	150.2	371.3	64.6	0.0	0.0	0.0	11.8	133.0	1,227.1
1961	91.2	177.9	155.7	219.0	158.2	327.4	120.1	0.0	3.8	0.0	0.0	1.1	1,254.4

(to be continued)

Table 2.1. (3)-(2) Monthly Rainfall Record of Lom Sak Rainfall Station

- ` ]	-											(Ur	(Unit: mm)
Year	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Total
1960	14.4	269.4	156.0	84.9	269.6	182.5	81.8	0.0	0.0	0.0	23.8	64.4	1,146.8
1959	87.7	105.6	96.1	197.2	176.2	483.2	0.0	0.0	0.0	2.9	8.6	43.3	1,202.0
1958	76.4	63.1	192.7	164.1	305.6	235.3	100.0	0.0	0.0	0.0	10.3	43.4	1,190.9
1957	78.1	125.9	245.8	263.6	223.8	431.7	81.1	0.0	0.0	31.1	3.5	0.0	1,484.6
1956	171.9	235.0	101.0	200.3	230.7	310.9	75.6	0.0	0.0	0.0	20.3	186.1	1,531.8
1955	151.8	113.2	478.6	89.0	325.9	244.1	14.9	0.0	0.0	0.0	65.6	63.5	1,546.6
1954	3.8	98.8	211.1	126.8	181.1	450.1	83.8	3.6	115.0	0.0	12.3	30.4	1,213.3
1953	105.8	203.0	211.5	166.7	136.2	272.8	51.8	45.9	0.0	0.0	0.0	80.7	1,274.4
1952	36.1	89.4	147.1	177.4	183.6	300.2	124.9	2.0	0.0	28.5	67.7	16.8	1,173.7
Average	ø										•		1,114.8

Table 2.1.(4)-(1) Monthly Rainfall Record of Phetchabun Rainfall Station

	į							3				ID)	(Unit: mm)
Year	Apr.	Мау	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Total
1977	36.6	160.8	108.8	133.1	167.0	189.0	90.4	0.3	17.3	0.0	2.3	38.0	943.6
1976	37.4	230.7	110.3	236.6	300.1	309.0	173.9	16.9	0.0	0.2	0.0	3.2	1,418.3
1975	0.1	152.0	87.9	118.9	213.3	187.2	107.7	6.4	0.0	0.0	17.2	36.3	927.0
1974	57.9	79.2	76.7	136.8	157.0	108.7	135.3	11.5	0.0	58.7	43.7	116.2	981.7
1973	37.7	127.9	139.7	155.8	154.0	331.5	34.1	0.2	0.0	0.3	28.7	2.6	1,012.5
1972	63.3	60.0	228.3	165.5	192.4	115.1	109.4	22.6	3.3	0.0	6.1	65.0	1,031.0
1971	108.2	210.3	65.8	117.0	180.5	123.0	27.7	2.4	2.7	0.0	30.2	18.3	886.1
1970	80.6	142.8	274.1	213.4	252.3	231.8	50.3	3.0	13.0	6.0	24.7	12.3	1,299.2
1969	58.5	92.0	145.0	123.6	165.6	280.7	179.6	0.8	0.0	0.0	0.2	60.1	1,106.1
1968	113.0	182.3	134.1	215.4	55.9	178.9	62.1	17.8	0.0	6.99	0.0	24.7	1,051.1
1961	185.0	199.9	74.4	151.9	149.0	226.5	17.1	16.4	0.0	0.0	10.2	18.3	1,048.7
1966	45.1	214.4	82.6	268.7	260.3	117.7	106.7	26.9	10.4	0.5	5.1	0.3	1,138.7
1965	6.79	83.9	226.6	99.3	255.4	234.4	37.4	19.5	3.4	9.4	13.2	14.0	1,064.4
1964	47.9	284.4	157.0	200.3	282.5	367.3	123.4	12.0	2.0	0.0	25.8	86.2	1,588.8
1963	142.4	142.6	159.5	290.9	343.0	276.9	257.7	63.5	19.1	0.7	0.2	12.9	1,709.4
1962	124.6	124.3	61.7	190.6	248.4	276.3	54.0	23.1	2.1	0.0	7.4	40.8	1,153.3
1961	62.5	197.6	177.5	251.8	243.1	152.9	67.0	0.0	0.0	6.6	0.0	21.0	1,180.0

(to be continued)

Table 2.1. (4)-(2) Monthly Rainfall Record of Phetchabun Rainfall Station

	~ ]											(Ur	(Unit: mm)
Year	Apr.	May	Jun.	Jul.	Aug.	Sep.	oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Total
1,960	9.0	130.4	63.7	134.9	187.3	105.5	109.3	8.6	0.0	8.1	23.0	28.4	808.2
1959	83.0	239.8	109.3	220.4	108.2	442.3	34.4	23.4	0.0	3.0	0.3	42.7	1,306.8
1958	36.4	86.3	156.3	255.7	186.7	209.3	55.4	0.0	0.0	0.0	33.1	78.3	1,097.5
1957	74.1	91.6	144.2	96.2	215.1	227.7	112.1	0.0	0.0	102.9	23.6	43.7	1,131.2
1956	38.8	152.7	141.5	219.7	154.5	291.5	52.5	2.5	0.0	0.0	12.9	125.3	1,191.9
1955	67.1	85.4	113.0	78.6	127.5	288.8	15.1	0.0	0.0	0.0	37.1	2.8	815.4
1954	25.0	217.3	143.2	64.5	348.9	324.1	81.8	17.6	0.0	0.0	10.4	48.4	1,281.2
1953	93.4	96.5	175.9	173.1	77.0	161.3	114.2	24.1	0.0	0.7	0.0	39.2	955.4
1952	18.2	192.3	237.2	77.0	172.1	128.4	70.0	2.0	0.0	21.1	77.2	30.9	1,026.4
Average	נח			:		;	:				•		1,121.3

Table 2.2 Meteorological Data

Station PHETCHABUN Index Station 48 379 Latitude 16°26' N. Longitude 101°09' E. Elevation of station above MSL. Height of varometer above MSL. Height of thermometer above ground
1.40 meters
Height of wind vane above ground
11.43 meters

Height of raingauge

119.24 meters 1.25 meters

117.93 meters

	Jan.	Feb.	Mar.	Apr.	May 1	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Year
Pressure (+1,000 o	<u>r</u>			·									
900 mbs.)													
(1953 - 1975)													
Mean	13.50	11.46	09.78	08.09	06.44	05.55	05.91	05.75	07.09	10.28	12.83	13.76	09.19
Ext. Max.							-	14.80					28.84
Ext. Min.								96.53					93.89
Mean daily range	5.63	6.01	6.08	5.76	4.97	4.13	3.96	4.08	4.57	4.94	4.78	5.15	5.01
Temperature (°C)													
(1951 - 1975)													
Mean	24.7	27.3	28.2	30.9	29.8	28.7	28.0	27.5	27.4	27.4	26.1	24.5	27.6
Mean Max.	32.0	34.2	36.2	37.3	35.2	33.0	32.0	31.5	31.8	32.4	31.9	31.3	33.2
Mean Min.	14.7	17.9	21.0	23.2	24.0	23.8	23.4	23.4	23.3	22.0	18.8	15.5	21.0
Ext. Max.	38.9	39.1	40.6	43.0.		40.0	36.5	36.7	36.3	36.5	36.4	36.0	43.0
Ext. Min.	2.0	9.5	11.0	13.5	20.7	21.4	20.6	21.0	18.3	15.4	7.5	5.1	2.0
Relative Humidity	(%)												
(1951 - 1975)													
Mean	62.0	60.0	60.0	62.0	72.0			83.0		78.0	71.0		71.0
Mean Max.	91.0	88.7	87.5	87.0	91.7	94.2	95.3	96.2	96.7	95.3	92.8	92.3	92.4
Mean Min.	41.6	39.7	40.3	42.5	55.1	64.3	67.5	70.3	70.1	61.7	52.4	44.3	54.2
Ext. Min.	16.0	17.0	19.0	21.0	29.0	40.0	46.0	46.0	41.0	35.0	19.0	17.0	16.0
Dew Point (°C)													
(1951 - 1975)													
Mean	16.0	17.8	20.2	22.0	23.8	24.3	24.2	24.2	24.3	23.3	20.0	16.6	21.4
Evaporation (mm)								,					
(1957 - 1975)													
Mean-Piche	92.4	95.9	117.5	115.7	82.3	58.1	49.7	42.3	36.7	51.0	66.2	82.1	889.9
Cloudiness (0 - 8)													
(1951 - 1975)	•												
Mean	3.0	3.2	3.4	4.0	5.9	6.9	7.1	7.3	6.9	5.2	3.9	3.0	5.0
Wind (Knots)													
(1951 - 1975)													
Prevailing Wind	N	S	s	S	s	5	\$	S	S	N	N	N	-
Mean Wind Speed	3.6	3.5	4.1	4.6	4.2	4.4	4.4	4.2	3.2	3.7	4.1	4.1	-
Max. Wind Speed	18N,NV	7 30SW	50N	46N	45S,W	22S	245	228	20S	25NE	20N	18N	-
Sunshine Duration													
(1976-1981)													
Mean	8.00	7.44	7.99	7.92	6.62	4.98	4.28	3.45	4.22	6.89	8.54	8.24	6.54
Number of Days wit	<u>h</u>												
(1951 - 1975)	•			•							_		
Haze	17.4	21.6	23.1	13.8	1.2	0.7	0.1	0.3	0.6	3.6	7.0	11.5	100.9
Fog	10.6	8.6	5.2	2.9	0.8	0.6	0.8	1.2	2.3	6.6	8.1	8.7	56.4
Hail	0.0	0.0	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2
Thunderstorm	0.5	1.4	5.6	11.4	13.4	6.9	5.6	5.9	7.8	6.4	1.3	0.1	66.3
Squall	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Table 2.3 Observed Annual Runoff

		(Unit: 10 ³ m ³ )
Year	Annual Runoff	Annual Runoff
	at Kaeng Sida	at Pasak Left Bank
1964	254,478	-
65	271,282	-
66	246,871	-
67	123,477	-
68	141,535	-
69	210,338	-
70	275,462	<b>-</b>
71	191,026	302,756
72	182,917	226,486
73	117,040	152,551
74	104,082	158,580
75	200,724	420,232
76	273,456	552,138
77	215,270	356,820
78	-	928,203
79	- '	261,399
80	-	357,544

Table 2.4 Observed Monthly Runoff (Pasak Left Bank Weir Site)

Year Jan.										(Unit: TO-M-)	10-UT
	. Feb.	Mar.	Apr.	Мау	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
1970 -	I	I	l	489	7,737	30,482	182,779	115,928	29,990	9,708	0
1971 1,639	9 1,410	0	465	596	21,085	32,334	37,239	116,203	76,055	9,994	5,736
1972 2,751	1 294	550	3,461	252	18,421	11,675	36,565	53,606	85,629	9,021	4,262
1973 7,772	2 1,327	2,838	534	3,757	15,287	22,066	15,226	53,767	22,090	6,446	1,441
1974 1,324	4 459	0	687	10,638	953	1,842	56,708	51,138	25,464	6,367	0
1975 1,430	0 112	0	0	0	22,254	29,554	128,120	168,702	61,788	8,272	0
1976 5,688	8 3,656	0	0	9,196	18,188	11,253	144,028	211,632	124,241	24,258	0
1977	0 0	0	3,343	5,287	5,711	5,219	26,928	297,406	12,925	0	0
1978	0 0	0	0	0	0	64,821	339,453	414,459	109,471	0	0
1979 3,330	0 1,942	0	0	0	67,961	12,791	138,053	24,858	8,830	3,634	0
1980	0 0	0	0	0	68,220	30,542	63,213	162,463	33,107	0	0
1981	0 0	0	0	0	13,686	84,129	158,849	ı	1	I	ı

Table 2.5 Probable Annual Rainfall

				(Unit:	mm/year)
		Gumbel	Iwai	Thomas .	Average Rainfall
Lom S	Sak				
1.	Non-Excess Probability				
	10%	796	763	803	787
	20%	880	860	914	885
	50%	905	1,080	1,137	1,040
2.	Excess Probability		-		
	10%	1,516	1,528	1,438	1,494
	20%	1,341	1,356	1,322	1,340
Pheto	chabun				
1.	Non-Excess Probability				
	10%	858	883	863	868
	20%	927	946	942	938
	50%	948	1,091	1,093	1,044
2.	Excess Probability				
	10%	1,453	1,399	1,312	1,388
	20%	1,308	1,280	1,239	1,276

Table 2.6 Monthly Rainfall Distribution of Droughty Year
(By AIT)

(Unit: %) Lom Sak Phetchabun Non-excess Probability Non-excess Probability 50% 20% 10% 50% 20% 10% 0.4 0.05 0.0 0.0 0.5 0.1 Jan. 0.7 Feb. 0.2 0.1 1.1 0.7 0.4 3.5 2.1 Mar. 1.5 2.8 1.8 1.3 Apr. 5.3 4.2 3.4 5.1 4.0 3.3 14.8 15.2 May 15.9 13.3 13.1 12.7 15.8 17.1 Jun. 18.1 11.9 11.9 11.4 Jul. 12.9 13.5 16.5 18.8 13.8 17.7 Aug. 19.9 24.0 26.0 17.6 18.2 17.6 20.4 17.7 25.3 27.7 Sep. 19.0 22.7 5.8 4.5 3.5 7.5 6.7 6.5 Oct. 0.3 Nov. 0.3 0.1 0.0 0.8 0.5 Dec. 0.2 0.05 0.0 0.2 0.0 0.0 100.0 Total 100.0 100.0 100.0 100.0 100.0

Table 2.7 Monthly Rainfall Distribution of Pluvious Year

				(Unit: %)
	Lor	m Sak	Phe	etchabun .
	Excess P	robability	Non-exces	s Probability
<del></del>	20%	10%	, 20%	10%
Jan.	0.60	0.80	1.25	1.75
Feb.	2.10	2.85	1.90	2.50
Mar.	5.10	5.95	4.20	4.75
Apr.	6.50	6.80	6.60	7.05
May	12.85	12.45	13.10	12.70
Jun.	14.30	13.85	11.95	11.65
Jul.	12.20	11.35	14.40	13.75
Aug.	15.75	14.70	16.95	16.10
Sep.	21.05	20.85	19.40	18.65
Oct.	7.85	8.05	8.50	8.90
Nov.	1.15	1.60	1.40	1.75
Dec.	0.55	0.75	0.35	0.45
Total	100.00	100.00	100.00	100.00

Table 2.8 Annual Rainfall Distribution for Each Probability

												(Unit:	(mm:
	Jan.	Feb.	Mar.	Apr.	Мау	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Total
Lom Sak													
l. Non-Excess Probability (Droughty Year)	位												
10%	0.0	1.0	12.0	27.0	125.0	142.0	109.0	204.0	139.0	28.0	0.0	0.0	787
. \$05	4.0		36.0	55.0	153.0	164.0	134.0	207.0	212.0	0.09	3.0	2.0	1,040
2. Excess Probability (Pluvious Year)													
10%	12.0	43.0	89.0	102.0	186.0	207.0	169.0	220.0	311.0		•	11.0	1,494
2,0%	8.0	28.0	68.0	87.0	172.0	192.0	164.0	211.0	282.0	105.0	15.0	8.0	1,340
Phetchabun													
1. Non-Excess Probability (Droughty Year)	ţ												
*0I	0.0	3.0	11.0	29.0	110.0	0.66	163.0	153.0	241.0	56.0	3.0	0.0	898
20%	1.0	6.0	17.0	37.0	123.0	112.0	166.0	171.0	237.0	63.0	5.0	0.0	938
50%	5.0	12.0	29.0	53.0	139.0	124.0	172.0	184.0	237.0	78.0	0.6	2.0	1,044
2. Excess Probability (Pluvious Year)													
10%	24.0	35.0	0.99	0.86	176.0	162.0	191.0	224.0	259.0	123.0	24.0	0.9	1,388
20%	16.0	24.0	54.0	84.0	167.0	153.0	184.0	216.0	247.0	109.0	18.0	4.0	1,276

Table 2.9.(1) Monthly Runoff at Each Damsite (Non-Excess Probability 10%)

	<del></del>	Runoff	Runo	
Month	Rainfall	Coefficient	Huai Saduang Yai	
	(mm)	(%)	(96 km ² )	(322 km ² )
Jan.	0	0.0	. О	0
Feb.	1	5.7	5,472	18,354
Mar.	12	7.2	82,944	278,208
Apr.	27	5.1	132,192	443,394
May	125	17.8	2,136,000	7,164,500
Jun.	142	20.0	2,726,400	9,144,800
Jul.	109	19.8	2,071,872	6,949,404
Aug.	204	32.1	6,286,464	21,085,848
Sep.	139	28.7	3,829,728	12,845,546
Oct.	28	14.2	381,696	1,280,272
Nov.	0	0.0	0	o
Dec.	0	0.0	0	0
Total	787	-	17,652,768	59,210,326

(184 mm)

Annual runoff coefficient (23.3%)

Average unit runoff

 $(5.8 \text{ l/s/km}^2)$ 

Table 2.9.(2) Monthly Runoff at Each Damsite (Non-Excess Probability 20%)

		Runoff	Runoí	
Month	Rainfall (mm)	Coefficient (%)	Huai Saduang Yai (96 km ² )	Huai Khon Kaen (322 km ² )
Jan.	0.5	5.6	2,688	9,016
Feb.	2.0	6.0	11,520	38,640
Mar.	19.0	8.1	147,744	495,558
Apr.	37.0	10.1	358,752	1,203,314
May	135.0	22.1	2,864,160	9,606,870
Jun.	151.0	24.2	3,508,032	11,766,524
Jul.	119.0	21.0	2,399,040	8,046,780
Aug.	212.0	33.2	6,756,864	22,663,648
Sep.	168.0	28.9	4,660,992	15,633,744
Oct.	40.0	11.4	437,760	1,468,320
Nov.	1.0	5.8	5,568	18,676
Dec.	0.5	5.6	2,688	9,016
Total	885.0	-	21,155,808	70,960,106
	Annual ru	noff	(220 mm)	
	Annual ru	noff coefficient	(24.9%)	
	Average u	nit runoff	$(7.0 \ l/s/km^2)$	

Average unit runoff (7.0 ½/s/km²)

Table 2.9.(3) Monthly Runoff at Each Damsite
(Non-Excess Probability 50%)

		Runoff	Runo	
Month	Rainfall	Coefficient	Huai Saduang Yai	
···	(mm)	(%)	(96 km ² )	(322 km ² )
Jan.	4	6.1	23,424	78,568
Feb.	7	6.5	43,680	146,510
Mar.	36	10.3	355,968	1,193,976
Apr.	55	18.8	464,640	1,558,480
May	153	21.5	3,157,920	10,592,190
Jun.	164	22.9	3,605,376	12,093,032
Jul.	134	23.0	2,958,720	9,924,040
Aug.	207	32.5	6,458,400	21,662,550
Sep.	212	38.1	7,754,112	26,008,584
Oct.	60	18.4	1,059,840	3,554,880
Nov.	3	6.0	17,280	57,960
Dec.	2	5.9	11,328	37,996
Total	1,040	_	25,910,688	86,908,766
	Annual runc	off	(270 mm)	
	Annual rund	off coefficient	(26.0%)	
	Average uni	it runoff	(8.6 //s/km ² )	

Table 2.9.(4) Monthly Runoff at Each Damsite (Excess Probability 10%)

		Runoff	Runo	
Month	Rainfall	Coefficient	Huai Saduang Yai	
-	(mm)	(%)	(96 km ² )	(322 km ² )
Jan.	. 12	7.2	82,944	278,208
Feb.	43	11.2	462,336	1,550,752
Mar.	89	17.2	1,469,568	4,929,176
Apr.	102	14.9	1,459,008	4,893,756
May	186	25.8	4,606,848	15,452,136
Jun.	207	28.5	5,663,520	18,996,390
Jul.	169	27.6	4,477,824	15,019,368
Aug.	220	34.2	7,223,040	24,227,280
Sep.	311	51.0	15,226,560	51,072,420
Oct.	120	26.2	3,018,240	10,123,680
Nov.	24	8.7	200,448	672,336
Dec.	11	7.0	73,920	247,940
Total	1,494	-	43,964,256	147,463,442
	Annual rund	off	(458 mm)	
	Annual rund	off coefficient	(30.7%)	

Average unit runoff  $(14.5 \mbox{/s/km}^2)$ 

Total 2.9.(5) Monthly Runoff at Each Damsite (Excess Probability 20%)

		Runoff	Runo	
Month	Rainfall	Coefficient	Huai Saduang Yai	Huai Khon Kaen
	(mm)	(%)	(96 km ² )	(322 km ² )
Jan.	8	6.7	51,456	172,592
Feb.	28	9.2	247,296	829,472
Mar.	68	14.4	940,032	3,153,024
Apr.	87	12.9	1,077,408	3,613,806
May	172	23.9	3,946,368	13,236,776
Jun.	192	26.5	4,884,480	16,383,360
Jul.	164	26.9	4,235,136	14,205,352
Aug.	211	33.0	6,684,480	22,420,860
Sep.	282	47.2	12,777,984	42,859,488
Oct.	105	24.2	2,439,360	8,182,020
Nov.	15	7.6	109,440	367,080
Dec.	8	6.7	51,456	172,592
Total	1,340	_	37,444,896	125,596,422
	7		(200	

(390 mm)

Annual runoff coefficient

(29.1%)

Average unit runoff

 $(12.3 \ l/s/km^2)$ 

Table 2.9.(6) Monthly Runoff at Each Damsite
(Non-Excess Probability 10%)

		Runoff	Runoff (m ³ )			
Month	Rainfall	Coefficient	Huai Yai	Khlong Chaliang Lab		
	(mm)	(%)	(78 km ² )	(77 km ² )		
Jan.	0	0.0	0	0		
Feb.	3	6.0	14,040	13,860		
Mar.	11	7.0	60,060	59,290		
Apr.	29	5.4	122,148	120,582		
May	110	15.9	1,364,220	1,346,730		
Jun.	99	14.4	1,111,968	1,097,712		
Jul.	163	26.8	3,407,352	3,363,668		
Aug.	153	25.5	3,043,170	3,004,155		
Sep.	241	41.9	7,876,362	7,775,383		
Oct.	56	17.9	781,872	771,848		
Nov.	3	6.0	14,040	13,860		
Dec.	0	0.0	0	0		
Total	868	<del>-</del>	17,795,232	17,567,088		
<u></u>	Annual ru	ınoff	(228 mm)			

Annual runoff (228 mm)

Annual runoff coefficient (26.3%)

Average unit runoff (7.2 \( \ell / \s/km^2 \))

Monthly Runoff at Each Damsite Table 2.9.(7) (Non-Excess Probability 20%)

	· <del></del>	Runoff	R	unoff (m ³ )
Month	Rainfall (mm)	Coefficient (%)	Huai Yai (78 km²)	Khlong Chaliang Lab (77 km ² )
Jan.	1	5.8	4,524	4,466
Feb.	6	6.5	30,420	30,030
Mar.	17	7.9	104,754	103,411
Apr.	37	10.1	291,486	287,749
May	123	29.7	1,985,958	1,960,497
Jun.	112	19.4	1,694,784	1,673,056
Jul.	166	27.2	3,521,856	3,476,704
Aug.	171	27.8	3,707,964	3,660,426
Sep.	237	38.2	7,061,652	6,971,118
Oct.	63	14.5	712,530	703,395
Nov.	5	6.3	24,570	24,255
Dec.	Ò	0.0	0	0
Total	938	_	19,140,498	18,895,107

(245 mm)

Annual runoff coefficient (26.1%)

Average unit runoff  $(7.8 \ \ell/s/km^2)$ 

Table 2.9.(8) Monthly Runoff at Each Damsite
(Non-Excess Probability 50%)

		Runoff		unoff (m ³ )
Month	Rainfall	Coefficient	Huai Yai	Khlong Chaliang Lab
	(mm)	(%)	(78 km ² )	(77 km ² )
Jan.	5	6.3	24,570	24,255
Feb.	12	7.2	67,392	66,528
Mar.	29	9.4	212,628	209,902
Apr.	53	8.5	351,390	346,885
May	139	19.7	2,135,874	2,108,491
Jun.	124	17.7	1,711,944	1,689,996
Jul.	172	27.9	3,743,064	3,695,076
Aug.	184	29.5	4,233,840	4,179,560
Sep.	237	41.4	7,653,204	7,555,086
Oct.	78	20.7	1,259,388	1,243,242
Nov.	_ 9	6.8	47,736	47,124
Dec.	2	5.9	9,204	9,086
Total	1,044		21,450,234	21,175,231

(275 mm)

Annual runoff coefficient

(26.3%)

Average unit runoff

 $(8.7 \ l/s/km^2)$ 

Table 2.9.(9) Monthly Runoff at Each Damsite
(Excess Probability 10%)

	Runoff Runoff (m ³ )			
Month	Rainfall (mm)	Coefficient (%)	Huai Yai (78 km ² )	Khlong Chaliang Lab (77 km ² )
Jan.	24	8.7	162,864	160,776
Feb.	35	10.2	278,460	274,890
Mar.	66	14.2	731,016	721,644
Apr.	98	14.3	1,093,092	1,079,078
May	176	24.4	3,349,632	3,306,688
Jun.	162	22.6	2,855,736	2,819,124
Jul.	191	30.4	4,528,992	4,470,928
Aug.	224	34.7	6,062,784	5,985,056
Sep.	259	44.2	8,929,284	8,814,006
Oct.	123	26.6	2,552,004	2,519,286
Nov.	24	8.7	162,864	160,776
Dec.	6	6.4	29,952	29,568
Total		-	30,736,680	30,342,620

(394.1 mm)

Annual runoff coefficient

(28.4%)

Average unit runoff

 $(12.5 \ \ell/s/km^2)$ 

Table 2.9.(10) Monthly Runoff at Each Damsite (Excess Probability 20%)

		Runoff	Runoff (m ³ )		
Month	Rainfall	Coefficient	Huai Yai	Khlong Chaliang Lab	
	(mm)	( % )	(78 km ² )	(77 km ² )	
Jan.	16	7.7	96,096	94,864	
Feb.	24	8.7	162,864	160,776	
Mar.	54	12.6	530,712	523,908	
Apr.	84	12.5	819,000	808,500	
May	167	23.3	3,035,058	2,996,147	
Jun.	153	21.5	2,565,810	2,532,915	
Jul.	184	29.4	4,219,488	4,165,392	
Aug.	216	33.7	5,677,776	5,604,984	
Sep.	247	42.7	8,226,582	8,121,113	
Oct.	109	24.8	2,108,496	2,081,464	
Nov.	18	8.0	112,320	110,880	
Dec.	4	6.1	19,032	18,788	
Total	1,276	_	27,573,234	27,219,731	

(353.5 mm)

Annual runoff coefficient (27.7%)

Average unit runoff (11.2  $\ell/s/km^2$ )

Table 2.10 Summary of Annual Runoff

		Huai Saduang Yai	Huai Khon Kaen	Huai Yai	Khlong Chaliang Lab
Drainage Area (km²)		96	322	78	77
Non-Excess	Rainfall (mm)	787	787	868	868
Probability	Runoff $(10^3 \text{m}^3)$	17,653	59,210	11,795	11,567
	Ave. Yield R. (1/s/km²)	5.8	5.8	7.2	7.2
	R.O. Co. (%)	23.3	23.3	26.3	26.3
Non-Excess	Rainfall (mm)	885	885	938	938
Probability 20%	Runoff $(10^3 m^3)$	21,156	70,960	19,140	18,895
20%	Ave. Yield R. $(\ell/s/km^2)$	7.0	7.0	7.8	7.8
	R.O. Co. (%)	24.9	24.9	26.1	26.1
Non-Excess Probability 50%	Rainfall (mm)	1,040	1,040	1,044	1,044
	Runoff (10 ³ m ³ )	25,911	86,909	21,450	21,175
	Ave. Yield R. (l/s/km²)	8.6	8.6	8.7	8.7
	R.O. Co. (%)	26.0	26.0	26.3	26.3
Excess	Rainfall (mm)	1,494	1,494	1,388	1,388
Probability 10%	Runoff $(10^3 m^3)$	43,964	147,463	30,737	30,343
	Ave. Yield R. (1/s/km²)	14.5	14.5	12.5	12.5
	R.O. Co. (%)	30.7	30.7	28.4	28.4
Excess	Rainfall (mm)	1,340	1,340	1,276	1,276
Probability 20%	Runoff $(10^3 m^3)$	37,445	125,596	27,573	27,219
	Ave. Yield R. (l/s/km²)	12.3	12.3	11.2	11.2
	R.O. Co. (%)	29.1	29.1	27.7	27.7

Note: R.O. Co. means Runoff Coefficient

Ave. Yield R. means Average Yield of Runoff

Table 2.11 Observed Annual Runoff

1) At Kaeng Sida (1964 - 1977) D.A = 836  $km^2$ 

	Annual	Annual Rair	fall (mm)	Adopted	Runoff	Average Yield
Year	Runoff (mm)	At Ban Sila	-	Rainfall (mm)	Coefficient	of Runoff (L/s/km ² )
1964	304.4	1,336.2	-	1,336.2	0.23	9.7
65	324.5	1,450.0	-	1,450.0	0.22	10.3
66	295.3	1,488.7	-	1,488.7	0.20	9.4
67	147.7	1,260.2	-	1,260.2	0.12	4.7
68	169.3	1,179.1	-	1,179.1	0.14	5.4
69	251.6	1,077.5	•	1,077.5	0.23	8.0
70	329.5	1,360.8	-	1,360.8	0.24	10.4
71	228.5	1,007.4	-	1,007.4	0.23	7.2
72	218.8	1,020.1	-	1,020.1	0.21	6.9
73	140.0	893.5	been	893.5	0.16	4.4
74	124.5	1,310.6	***	1,310.6	0.09	3.9
75	240.1	1,205.1	-	1,205.1	0.20	7.6
76	347.1	1,562.1	•••	1,562.1	0.22	11.0
77	257.5	1,047.7	<b>-</b>	1,047.7	0.25	8.2
Average	241.3	1,228.5	-	1,228.5	0.20	7.7

2) At Pasak Left Bank Weir (1971 - 1977) D.A = 1,007  $\rm km^2$ 

	Annual	Annual Ra	infall (mm)	Adopted/1	Runoff	Average Yield
Year	Runoff	At	At	Rainfall	Coefficient	of Runoff
	(mm)	Ban Sila	Kaeng Sida	(mm)		( <i>l</i> /s/km ² )
1971	300.7	1,007.4	-	1,007.4	0.30	9.5
72	224.9	1,020.1	1,100.6	1,040.2	0.22	7.1
73	151.3	893.5	875.9	889.1	0.17	4.8
74	157.5	1,310.6	995.4	1,231.8	0.13	5.0
75	417.3	1,205.1	1,302.5	1,229.5	0.34	13.2
76	548.2	1,562.1	1,378.4	1,516.2	0.36	17.4
77	354.3	1,047.7	1,030.5	1,043.4	0.34	11.2
Average	307.7	-	<u>-</u>	1,136.8	0.27	9.8

Adopted rainfall is calculated by Thiessen Method.
Thiessen Weight

Ban Sila : Kaeng Side = 3 : 1

Table 2.12 Daily Rainfall of Each Probability

Return Period	Station	Gumbel	Iwai	Thomas	Adopted Rainfall
(years)		(mm/day)	(mm/day)	(mm/day)	(mm/day)
10	Lom Sak	151.0	145.8	142.5	146
· -	Phetchabun	117.8	113.8	117.4	116
,					
30	Lom Sak	187.9	179.4	178.6	182
	Phetchabun	143.2	134.5	142.7	140
					•
50	Lom Sak	204.8	194.6	190.0	196
	Phetchabun	154.9	143.6	152.2	150
				•	
100	Lom Sak	227.6	215.2	210.0	218
	Phetchabun	170.5	155.7	166.5	164
200	Lom Sak	280.2	263.5	280.0	275
	Phetchabun	206.7	183.0	202.2	197

Table 2.13 Estimated Rainfall Intensity
(Return Period: 1/100 Yrs.)

Duration	Derived Intensity	Estimated Intensity			
	from I.D.C.	from Formula: It			
(hr)	(mm/hr)	(mm/hr)			
ı	82	82.6			
2	46	47.0			
3	32	33.8			
4	25	26.7			
5	21.5	22.3			
6	18.3	19.2			
7	16	16.9			
8	15	15.2			
9	14	13.8			
10	13	12.7			
11	12	11.7			
12	11	10.9			
13	10.5	10.2			
14	9.8	9.6			
15	9.3	9.1			
16	8.8	8.6			
17	8.3	8.2			
18	7.9	7.8			
19	7.6	7.5			
20	7.2	7.2			
21	7.0	6.9			
22	6.6	6.7			
23	6.3	6.4			
24	6.2	6.2			

Note: I.D.C. means Intensity-Duration Curve

It =  $\frac{R_{24}}{24} \left(\frac{24}{t}\right)^{0.815}$ 

 $R_{24} = 148.8 \text{ mm/day}$ 

t means Duration of rainfall

Table 2.14 Dimension of Unit Hydrograph

Area	Huai Saduang Yai	Huai Khon Kaen	Huai Yai	Khlong Chaliang Lab
Drainage Area: A (km ² )	96	322	78	77
River Length from Origin: L (km)	28.5	52.1	22.3	26.4
River Length from Center of Basin: LC (km)	17.1	28.7	12.5	16.2
Flood Concentration Time: tp (hr)	9	12	7	8
Unit Time of Rainfall: tr (hr)	(1.64)	(2.2)	(1.27) 1.5	(1.45) 1.5
Peak Discharge of Unit Hydrograph: q (m ³ /s) p	2.024	5.092	2.114	1.826
Runoff Duration: Tb (hr)	26.4	35.1	20.5	23.4

Table 2.15 Discharge of Unit Hydrograph

Hua: Sad	i uang Yai	Huai k	Chon Kaen	Hua	ai Yai	Khlo Chal:	ng iang Lab
Time	Discharge	Time	Discharge	Time	Discharge	Time	Discharge
(hour)	(cms)	(hour)	(cms)	(hour)	(cms)	(hour)	(cms)
1.5	0.34	2	0.85	1.5	0.46	1.5	0.34
3.0	0.67	4	1.70	3.0	0.90	3.0	0.68
4.5	1.01	6	2.55	4.5	1.38	4.5	1.03
6.0	1.35	8	3.39	6.0	1.83	6.0	1.37
7.5	1.69	10	4.24	7.5	2.03	7.5	1.71
9.0	2.02	12	5.09	9.0	1.80	9.0	1.71
10.5	1.85	14	4.65	10.5	1.50	10.5	1.53
12.0	1.68	16	4.21	12.0	1.33	12.0	1.35
13.5	1.50	18	3.77	13.5	1.10	13.5	1.17
15.0	1.33	20	3.33	15.0	0.87	15.0	1.00
16.5	1.15	22	2.88	16.5	0.64	16.5	0.82
18.0	0.98	24	2.45	18.0	0.40	18.0	0.64
19.5	0.80	26	2.01	19.5	0.17	19.0	0.46
21.0	0.63	28	1.57	21.0	0.00	21.0	0.28
22.5	0.45	30	1.12			22.5	0.11
24.0	0.28	32	0.68			24.0	0.00
25.5	0.10	34	0.24				
27.0	0.00	36	0.00				

Table 2.16.(1) Calculation of Hourly Rainfall of Lom Sak
(Return Period: 1/100)

t	It	Rt	
(hour)	(mm/hour)	(mm/t.hour)	(mm/hour)
1	121.1	121.1	121.1
2	68.9	i37.7	16.6
3	49.5	148.4	10.7
4	39.1	156.5	8.1
5	32.6	163.1	6.6
6	28.1	168.7	5.6
7	24.8	173.6	4.9
8	22.2	177.9	4.3
9	20.2	181.8	3.9
10	18.5	185.4	3.4
11	17.2	188.7	3.4
12	16.0	191.8	3.2
13	15.0	194.6	2.8
14	14.1	197.3	2.7
15	13.3	199.8	2.5
16	12.6	202.2	2.4
17	12.0	204.5	2.3
18	11.5	206.7	2.2
19	11.0	208.8	2.1
20	10.5	210.8	2.0
21	10.1	212.7	1.9
22	9.8	214.5	1.8
23	9.4	216.3	1.8
24	9.1	218.0	1.7

Note: It  $= \frac{R_{24}}{24} \left(\frac{24}{t}\right)^{0.815}$ 

 $R_{24} = 218 \text{ mm/day}$ 

Rt = It x t

R = Rt - R(t - 1)

Table 2.16:(2) Calculation of Hourly Rainfall of Phetchabun
(Return Period: 1/100)

t (hour)	It (mm/hour)	Rt (mm/t.hour)	R (mm/hour)
1	91.1	91.1	91.1
2	51.8	103.6	12.5
3	37.2	111.6	8.0
4	29.4	117.7	6.1
5	24.5	122.7	5.0
6	21.2	126.9	4.2
7	18.65	130.6	3.7
8	16.7	133.8	3.2
9	15.2	136.8	3.0
10	13.9	139.5	2.7
11	12.9	142.0	2.5
12	12.0	144.3	2.3
13	11.3	146.4	2.1
14	10.6	148.4	2.0
15	10.0	150.3	1.9
16	9.5	152.1	1.8
17	9.1	153.9	1.8
18	8.6	155.5	1.6
19	8.3	157.1	1.6
20	7.9	158.6	1.5
21	7.6	160.0	1.4
22	7.3	161.4	1.4
23	7.0	162.7	1.3
24	6.83	164.0	1.3

Note: It =  $\frac{R_{24}}{24} (\frac{24}{t})^{0.815}$ 

 $R_{24} = 164 \text{ mm/day}$ 

Rt = It x t

R = Rt - P(t-1)

Table 2.17 Effective Rainfall for Runoff

Hua: Sad	i uang Yai	Huai	Khon Kaen	Hu	ai Yai	Khlo Chal	ng iang Lab
Unit	Effective	Unit	Effective	Unit	Effective	Unit	Effective
Time	Rainfall	Time	Rainfall	Time	Rainfall	Time	Rainfall
(hour)	(mm)	(hour)	(mm)	(hour)	(mm)	(hour)	(mm)
1.5	0	2	0	1.5	0	1.5	0
3.0	0	4	0.1	3.0	0	3.0	0
4.5	0.1	6	0.1	4.5	0	4.5	0
6.0	0.1	8	0.5	6.0	0.1	6.0	0.1
7.5	0.3	10	1.4	7.5	0.2	7.5	0.2
9.0	0.7	12	97.9	9.0	0.3	9.0	0.3
10.5	1.9	14	24.7	10.5	0.9	10.5	0.9
12.0	98.1	16	9.9	12.0	57.8	12.0	57.8
13.5	20.6	18	6.6	13.5	15.8	13.5	15.8
15.0	9.7	20	5.1	15.0	7.0	15.0	7.0
16.5	6.0	22	4.2	16.5	4.6	16.5	4.6
18.0	4.9	24	3.5	18.0	3.6	18.0	3.6
19.0	4.1			19.0	3.1	19.0	3.1
21.0	3.2			21.0	2.3	21.0	2.3
22.5	2.9			22.5	2.3	22.5	2.3
24:0	2.6			24.0	2.0	24.0	2.0

Table 2.18 Probable Base Flow

	Lom Sak Area							
Return Period	Probable Specific Discharge	Huai Saduang Yai	Huai Khon Kaen					
(year)	$(1/s/km^2)$	(m ³ /s)	(m ³ /s)					
10	44	4.2	14.1					
30	54	5.2	17.4					
50	58	5.6	18.7					
100	64	6.1	20.6					

Phetchabun Area							
Return Period	Probable Specific Discharge	Huai Yai	Khlong Chaliang Lab				
(year)	$(1/s/km^2)$	(m ³ /s)	(m ³ /s)				
10	41	3.2	3.2				
30	47	3.7	3.6				
50	50	3.9	3.9				
100	54	4.2	4.2				

Table 2.19 Runoff Coefficient of the Flood in 100-year Return Period

Area	Huai Saduang Yai	Huai . Khon Kaen	Huai Yai	Khlong Chaliang Lab
Daily Rainfall (mm/day)	218	218	164	164
Concentration Time (hour)	9	12 ,	7	8
Rainfall Intensity (mm/hour)	20.2	16.0	18.7	16.7
Drainage Area (km²)	96	322	78	77
Peak Direct Discharge (m ³ /sec)	262.3	676.8	164.2	145.7
Runoff Coefficient (%)	47.5	47.2	40.5	40.8

Table 2.20 Peak Discharge of the Flood in 500-year Return Period

Area	Huai Saduang Yai	Huai Khon Kaen	Huai Yai	Khlong Chaliang Lab
Runoff Coefficient (%)	52	52	45	45
Daily Rainfall (mm/day)	275	275	197	197
Concentration Time (hour)	9	12	7	8
Rainfall Intensity (mm/hour)	25.5	20.2	22.4	20.1
Drainage Area (km ² )	96	322	78	77
Peak Discharge (m ³ /sec)	354	940	218	193

Table 2.21 Flood Control Study

(1) Huai Saduang Yai Dam (Return Period 10 Years)

Tine (br)	G1n (#3/s)	Q16 ave (m3/s)	Qout E.5 (m3/s)	tiout 3,5 (m3/s)	uout Total (m3/s)	Storase (m3)	ўер. (в)	H.(. (MSL n)
ů.75	4.2	4.20	0.660	0,000	6.50	LU3005	6.663	137 663
1.50	4.2	4,20	0.000	0.684	Ŭ.Ŭ∌Ì Ŭ.(Æ4	14631465 14642579	800.0 310.0	187.503 187.516
2.25	4.2	4.20	0.000	0.233	0.233	14653233	0.024	187.524
3.00	4.2	4.20	0.000	0.419	0.419	14663497	0.032	187.532
3.75 4.50	4.2 4.2	4,20 4,20	0.000 0.600	v.627	9.627	14673144	0.039	187.539
5.25	4.2	4,20	0.000	0.847 1.073	0.847 1.073	14682197 14690639	0,046 0,052	187.546
٥.00	4.2	4,20	0.000	1.299	1.299	14698471	0.057	187.552 187.557
6.75	4.2	4.21	0.000	1.522	1.522	14705725	U.063	187.563
7.50	4.2	4,23	0.660	1.738	1.738	14712441	0.068	167,568
9.25	4.3	4.25	0.000	1.247	1,947	14718662	0.072	187.572
9.00 9.75	4,3 4.4	4. <i>2</i> 8 4.33	0.000 0.000	2,147 2,333	2.147	14724434	0.077	187.577
10.50	4.4	4,40	0.000	2,521	2,333 2,521	14727925 14734901	0,030 0,084	187.520 167.584
11.25	4.6	4.54	0.000	2.698	2.693	11739863	0.033	187,538
12.00	4.8	4.74	0.000	2,875	2.875	14744697	0.092	187.592
12.75	12.6	3.74	0.000	3.057	3.059	14760223	0.103	187,603
13.50 14.25	20.4 30.3	16.52 25.37	0.000 0.000	3,639 5,075	3.639	14795010	0,128	187.628
15.00	40.2	35,26	0.000	7.638	5, 075 7, 638	14949791 14924373	0.169 0.223	137,669
15,75	51.3	45,75	6.000	11.646	11.646	15016454	0.223	187.723 187.791
16.50	62.4	54.83	0.000	17.315	17.315	15123154	0.369	187,869
17.25	74.2	69.29	0.000	24.759	24,757	15240674	0.455	187.955
18.66 13.75	86.0 93.3	60.11 92.18	0.000 0.000	33,924	33.924	15365362	0.547	188,047
19.50	110.7	104.51	0.000	44.646 50.662	44.646 50.662	15473700 15622880	0.641 0.736	158,141
20.25	123.1	116.87	0.000	69,695	67.635	15750269	0.736	183,236 183,329
21.00	135.4	129,25	0.00	83,377	83.377	15974138	0,920	169.420
21.75	137.0	136,23	0.000	17.454	37.454	15978833	0.997	188,437
22.50	138,6	137.80	0.000	109,910	109.910	16054130	1.052	169.552
24.25 24.00	136, <i>?</i> 135,3	137.75 136.16	0.000 0.000	117,171 125,479	119,171	16104296	1,639	185,537
24.75	132,1	133.69	0.000	129,132	125.479 129.132	16132965 16145284	1.110 1.119	188.610 133.617
25.50	129.0	130.54	0.000	130.713	130,713	16144829	1.119	189,619
25.25	124.9	126.78	0.000	130.654	130.654	16134352	1.112	185,612
27.00	120.9	122.54	0.000	129.374	127.374	16117476	1.099	188.599
27.75 28.50	115.9 110.9	118,42 113,40	0.000 0.000	127,154	127.154	16093894	1.031	189.591
29.25	105.3	163.11	0.000	124, 162 120, 510	124.162 120.510	16064847 16031367	1.060 1.036	188,560 188,536
30.60	99.7	102.54	0.000	116.345	116.345	15994082	1.006	188.508
30.75	93.4	96.59	v.000	111.765	111.765	15953106	0.578	183,478
31.56	87.1	90.27	0.000	106.602	104.802	15908460	0.945	183,445
12.25	30.5	83.80	0.000	101.432	Io1,492	15360717	0.910	188.410
33.66 33.75	73.9 66.5	77.19 70.26	0.000 0.000	<b>∀5.8∀3</b> 90,097	75,893 70,097	15810207 15756648	0.573 0.534	168,373
34.50	59.4	63.02	0.666	84.084	84.084	15699783	0.792	189, 334 169, 272
35.25	52.4	55.69	0.000	77.353	77.653	15640467	0.749	189,249
36.00	45.3	48.84	0.000	71,526	71.526	15579224	0.704	166, 204
35.75	33.1	41.73	0.000	65.134	65.184	15515938	0.657	163,157
37.50 38.25	31.0 25.5	34.54 28.25	0.000 0.009	58.836 53.493	58,836 53,433	15450308	0.609	189, 109
39.00	20.1	22.84	0.000	52,493 45,408	52,473 46,469	15384844 15321216	0.5 ₀ 1 0.514	189.061 188,014
37,75	17.5	18.91	0.000	40,239	40.759	15262016	0.471	137.971
40.50	14.8	16.16	0.660	35.689	35.689	15209285	0.432	167.932
41.25	13.1	13.77	0.ŭv0	31,323	31.333	15162273	0.393	137.573
47.00	11.4	12.26	0.000	27.703	27.763	15120568	0.367	197,867
42.75 43.50	10.1 8.9	10.77 9.52	0.000 0.000	24,563 21,677	24.569 21.877	15083316 15049957	0.340 0.315	187,940 187,915
44,25	8.0	3.44	0.000	17.557	17.557	15019934	0.293	187.753
45.0v	7.1	7.52	0.000	17.544	17.544	14992862	0.274	187.774
45.75	5.4	6.73	<b>0.000</b>	15.772	15.7%	14763371	v.256	187.758
48.50	5.7	6.07	0. (kd)	14,253	14.263	14946278	0,239	187.737
47.25 40.60	5,3 4,9	5.53	0.000	12,926	12.926	14926318 14909371	0,225 0,112	197,725
43.75	4.5	5.11 4.77	0,000 0,000	11,756 19,749	11.758 19.740	14908371	0.200	167.712 187.700
49.50	4.4	4.52	0.000	9.652	9.852	14977654	0.189	187.669
50.25	4.3	4.34	0.000	1,400	2.00	14365061	0.180	187,630
51.00	4.2	4.25	0.000	8.412	8.412	14853815	0.171	187.671
51.75	1.2	4.20	0.000 0.000	7.840 2.350	7.840	14843787	0.164 0.185	187,664
52,50	4,2	4.20	0.00	7.350	7.350	14635481	0.158	187, 658

E.S means Emergency Spallway. S.S means Service Spallway. Dep. means Overflow Depth on Frest or 3.5 .

Table 2.21 Flood Control Study

(2) Huai Saduang Yai Dam (Return Period 30 Years)

ītae	Qin	Gin ave	doet E.3	Gout 5.5	yout Total	Storase	Dep.	W.L
thr)	(#3/5)	(e3/5)	(m3/s)	143/51	183/5)	(Ea)	(4)	office as
ù.75	5.2	5.20	ü.wv	v.čuú	v <b>,00</b> 0	14634165	0.010	187.51
1,50	5.2	5.20	0.000	v.115	0,115 0,321	14647893 14661066	0.020 0.030	187.526 187.530
2,25 3,00	5.2 5.2	5.20 5.20	0.000 0.000	0.321 0.575	0.5/5	14673554	0.039	187.539
3.75	5.2	5.20	0.000	0.357	v, 357	14695280	0.648	197.543
4,50	5.2	5.20	0.000	1.154	1, 154	14696204	0.058	187.554
5.15	5.2	5.20	0.000	1.456	1.456 1.756	14706312 14715611	0.063 6.070	197.553 187.570
6.00 6.75	5.2 5.2	5,20 5,21	0,600 0,600	1.756 2.043	2.043	14724145	0.076	107.576
7,50	5.2	5,23	0.000	. 2.326	2,328	14731968	0.082	167.562
5,25	5.3	5, 26	0,000	2.5%	2,5%	14739159	0.067	197.587
7,(N)	5.3 5.5	5.31 5.39	0.000 0.000	2.650 3.692	2,850 3,092	14745801 1475 <i>2</i> 016	0.092 0.097	197.592 187.597
9.75 10.50	5.6	5,51	0.000 0.00a	3.324	3,924	14757921	0.101	167.601
11.25	5,9	5.74	0.000	3,550	3,550	14763631	v. 105	137.605
12.00	6.2	6.06	0.000	3.761	3.791	14770030	0.110	167.610
12.75	13.6	12.44 24.82	0.000 0.000	4.02a 4.977	4,028 4,977	14792733 14846327	0,127 0,166	167.627 167.666
13.50 14.25	31.0 46.0	33.43	0.000 0.000	7.460	7.400	14930078	ŷ. 227	187.727
15.60	60.9	53.42	0,000	11.975	11,975	15041974	0.310	187.816
15.15	17.4	69.12	0.000	17.014	17,014	15177264	0,409	187.207
16.50	73.8	85.60	0.660	28.860	23.660	15330453	0.521	188.021
17.25 18.60	111.2 128.6	102.53 119.91	0,000 0,000	41.546 56.79¢	41.54 <u>6</u> 56.796	15495096 15665499	0.642 0.767	183.142 186.167
18,75	146.6	137.59	0.000	74.174	74,174	15336731	0,873	189.373
19.50	164.6	155.57	0.660	93.126	93.126	16005341	1,016	189,514
20.25	132.5	173.51	0.003	113.141	113.141	16168343	1.136	188.636
21,60	200.4	191.41 200.65	0.660	133.66A	133,688	16324191 16449125	1,250	189.750 183.942
21.75 22.50	200.9 201.5	201.22	0.000 0.000	154,374 171,659	154.374 171.659	16528946	1,342 1,401	185.7ul
23.25	198.1	199.31	0.000	133.013	133.018	16574285	1,434	183.934
24,60	194.7	196.41	0.000	189.577	189.577	16592731	1,448	168.948
24.75	187.3	192.03	0.000	192,267	172.267	16592683	1,447	183.947
25,56 26,25	184.0 177.6	166.67 186.81	0,600 0,000	192.173 190.604	192,173 170.004	16577217 16552383	1,436 1,418	166.936 183.918
27.00	171.3	174.45	0.000	186.399	186.379	16520109	1.394	188.674
27,75	163.6	167.42	0.660	131.743	181,743	16451430	1,366	183.866
28.50	155.9	159.74	0.(0)	176.226	176.226	16436910	1.333	188.833
29.25 30.66	147.6 139.3	151.75	0,009 5,665	169.742	169,942	16387784	1.297	188,777
30.75	130.0	143.45 134.67	0.000 0.000	163.096 155.dlv	183.096 155,316	16334743 16277654	1.258 1.216	183.758 163.716
31.50	120.8	125.39	0.000	148.094	148,094	16216359	1.171	168.671
32.75	111.1	115.73	0.000	109,955	139,955	16151502	1,124	186.624
33.00	101.5	106.29	0.000	131.513	131.513	16093408	1.074	189.574
33,75 34, <b>5</b> 0	91.1 80.4	96.26 85.85	0.000 0.000	122.839 113.916	122.83y 113.916	16011655 15935872	1.021 0.566	133.521 133.466
35.25	10.7	75.67	0,000	104.733	104.739	15857378	0,703	lav. lus
26,00	60.7	65.72	6.000	95.506	95,50t	15776947	0.849	189.349
36.75	50.3	55.51	0.000	36.346	30.346	15693697	0.769	188.238
37,50 39,25	39.8 32.3	45.05 36.09	0.0cc 0.0cc	77.196 63.026	77,196 63.423	15606920 15520677	0.724 v.661	188.224 186.151
39.00	24.9	28,61	0.000	59.307	59.307	15437781	0.600	188.100
39.75	21.6	23,22	0.000	51.310	51,310	15361943	0.544	133.644
40.50	18.3	19.93	0.000	44.339	44, 339	15296049	0.476	187.976
41.25 42.00	16.2 14.0	17.23 15.10	0.000 0.000	33,585 33,741	39.565	15233439	0,454	197. 454
42.75	12.5	13.27	0.000	21,707	33.741 29.707	15189112 15143722	0,417 0,364	187.917 137.834
43.50	11.0	11.72	0.00	16.293	26.293	15104390	0.355	187.855
44,25	7.3	10.33	0.600	23,326	23, 3%	15069267	6,330	137.339
45.00 45.75	8.7 1.9	9,25 8,26	0.000 0.000	20,889	20.889	15037830	0.307	167.897
46.50	7.1	7.47	6.600	1 5. <b>7.5</b> 16.817	13.735 16.867	15607507 14984221	0.286 0.267	187.736 187.767
47.25	6.5	6.31	0,000	15.246	15.246	14961439	v.250	187.750
48.00	6.0	6.27	0.000	13.82	13.839	14741049	0.235	
48.75	5,7	5.87	0.600	12.617	12.617	14922036	V.222	187.722
49,50 50,25	5.4 5.3	5.56 5.36	0.000 0.000	11.559 10.644	11.558	14906649	0.210	167.710
51.60	5.2	5.25	0.000	9.858	10.644 9.658	14872375 14879939	0,200 6,171	187.700 187.691
51.75	5,2	5,20	0.000	9.19⊎	7.170	14369164	0.163	197,633
52.50	5.2	5.20	0.00	8.625	8.625	14659918	0.176	167.676

E.S means Energency Spallway. S.S means Service Spallway. Dep. means Overflow Depth on Crest of S.S .

Table 2.21 Flood Control Study

(3) Huai Saduang Yai Dam (Return Period 50 Years)

Tiae (hr.)	(110 (m3/s)	01A 4ve (m3/s)	Gout E.S (m3/s)	Hout 5.5 (85/4)	wout fotal (m3/s)	Storese (n3)	Ūép. (m)	H.L IKSL et
. 7L	5.6	5.60						
0.75 1.56	5.6	5.60	0.000 0.600	0.000 0.129	0.000 0.127	14635245 14650017	0.011 0.022	167.511 187.522
7.25	5.6	5.60	0.000	0.357	0.357	14604168	0.032	187.532
3.00	5.6	5.60	0. (A)Ú	v. č41	0.641	14677556	0.042	187,541
3.75	5,6	5.60	0.000	9. 158 - 565	0.755	14570097	0.051	137,551
4.50 5.25	5.6 5.6	5,60 5,61	0.000 0.000	1.255 1.613	1.265 1.418	14701749	0.000	187.560
6.60	5.6	5.63	0.000	1.94	1.949	14712523 14722449	0.063 v.075	147.528 187.575
6.75	5.7	5.65	0.000	2.271	2.271	14731573	v, vs2	137,532
7,51	5.7	5.68	0.099	1.582	2,502	14739949	0.038	187,586
3.25 9.(0	5,8 5,8	5.73 5.80	0,000 0,000	2.818	2.873	14747666	0.094	137,574
7,75	6.6	5.71	0.000 0.000	3.161 3.424	9.161 3.4 <i>2</i> 7	14754790 14761490	0.099 0.164	187.599
10.50	6,1	6,06	0,000	3.687	3.489	14767901	0.100	167,694 187,696
11.25	5.5	6.34	0.000	3,742	5,942	14774373	0.113	107.613
12.00 12.75	8.9	6.75	0.000	4.204	4.264	14781240	6.118	187.418
13,50	21.1 35.3	14.03 28.20	0.666 6.668	4.433 5.607	4.483 5.607	14307003	0.137	197.637
14,25	52.1	43.70	0.000	3.565	3.565	14868009 14962832	0.182 0.252	187,482 187,752
15.00	69.0	60.54	0.000	13.926	13.926	15068750	0.344	187.844
15.75	67.5	73.23	0.00	22.263	22.263	15239870	u. 455	137.955
16.50 17.25	105.6 125.6	96.77 115.82	9.(N)	30.859	33.858	15409734	0.579	186,079
18,60	145.2	135.38	0.000 0.000	43.63s 66.38o	43.693 66,386	15590979 15777267	0.712 0.849	185,212 185,349
13.75	185.3	155.25	0.000	36.302	85.332	15963197	U.786	133, 136
19.56	185.5	175.41	0.600	168.017	168.617	16145159	1.119	189.619
20.25	2(5.5	175.50	0.000	130.697	130.697	16320131	1.247	169.747
21.00 21.75	225.5 225.7	215.52 225.63	0.000 0.000	153.823 176.975	153,823 176,975	16486700	1.370	188,870
22.50	226.0	225.86	0.000	195.985	195,585	16613079 16693736	1.466 1.525	138,966 189,025
23.25	221.9	223.94	0.000	207.772	207.972	16741346	1.557	189,057
24.00	217.8	219.87	0.000	214,475	214.475	16756419	1.568	189,668
74.75 25.50	211,6 205,4	214.74 200.55	0.000 0.000	216.669 215.690	216.637	16751164	1.564	137,664
26.25	193.1	201.50	0.000	212,334	215.870 212.334	16731338 16701409	1.549 1.527	189,049 159,027
27.w	190.8	194.50	u.000	206.373	26.373	16663949	1,560	189.000
27.75	182.1	196.47	0.000	202,773	202.773	16619977	1.469	133, 943
28.50	173.4	177.76	0.000	196.264	196, 264	16570023	1.431	189,931
29.15 30.60	164.1 154.7	168.73 159.39	0.000 0.000	183,757 181,675	133.957 161.075	16515415 16456875	1.391 1.348	185,891 183,849
30.75	144.3	147.51	0.900	172.751	172.751	16374114	1.302	188,902
31.50	133.9	135.07	0.000	163.973	163,973	16326877	1.252	186,752
32.25	123.0	123,45	0,000	154,737	154.73)	162558)3	1.200	133,700
33.00 33.75	112.2 100.6	117-64 106.44	0.600 0.000	145.187 135. sv	145. 187 135. 377	16161522 16103322	1.146 1.063	168.646 139.537
34.50	89.0	94.83	0.000	125.355	125.355	16020901	1.028	188,528
35.25	77.8	93.39	V. ÚUU	115.053	115.053	15735419	0.465	185, 465
36.00	66.5	72.13	0.000	164.684	104.684	15847514	0.901	188, 491
35.75 17.50	54,9 63,4	60.72 49.18	0.000 0.000	+4.367 84.066	94.367 84.036	15756670 15662413	v.834 0.765	133, 394 165, 165
.u.25	35.1	39.26	0.00	73.846	73.846	15567029	0.696	180,175
39.00	26.€	30,97	0.600	64.147	64.147	15479450	0.631	185,131
37.75	23.3	25.05	ů, č(vu	\$5.281	55.282	15397820	0.571	183,671
40.50 41.25	19.7	21.50	0.000	47,595	47.575	15327373	0.519	188.019
42.00	17.4 15.1	10.53 16.27	0.000 0.000	41.276 34.924	41,27 <u>6</u> 35,629	15268682 1521274t	6,474 0,435	137.974 187.935
42.75	13.5	14.29	0,000	31.650	31.660	15165355	0.400	187. ≠0v
43.50	11.3	12.63	0,000	27.575	27.978	15124419	0.370	197,870
44.25	10.6	11.19	0.000	24, 353	24.853	15407536	0.343	167,843
45.66 45.75	9,4 8.5	.9.98 8.94	0.000 0.000	22.177 17.374	22.177 19.874	15054597 15025062	0.319 0.277	197.819
45.50	7.6	8.07	0.000	17.881	17.687	14998563	0.278	197.7 <i>1</i> 7 187.778
47.25	1.1	7.35	0.000	16.156	16.156	14974794	0.260	187.760
49.00	6,5	4.79	0.600	14.658	14.658	14953550	0,245	197,745
48.75	6.2	6.34	0.000	13.361	13,361	14734597	0,231	187.731
49.50 50.25	5.6 5.7	6.01 5.78	0.000 0.000	12.238 11.267	12,238 11,269	14917772 14902949	0.218 0.203	167.716 187. <i>10</i> 8
51.00	5.6	5.66	0.000	10,438	10.438	14890047	0.1%	187.698
51.75	5.6	5.60	0.000	9.732	9.732	14378891	0.190	187,690
52.50	5.6	5.10	0,000	9, 135	9.135	14869346	0.163	187.483

E.S means Emergency Spillway, S.S means Service Spillway, Dep, means Overflow Depth on Crest of S.S.,

Table 2.21 <u>Flood Control Study</u>
(4) Huai Khon Kaen Dam (Return Period 10 Years)

1140	Gra (n.)	Oin ave	Gaut E.S	uout 3.3 (a3/4)	Gout Total	Storage (m3)	Lier.	W.L (Holes
(hr)	(m3/5)	(m3/ş)	(m3/1)	123777	180151	\ <b></b> /		
1.00	14.1	14.10	v.ÚVV	9,000	Ů.ŮUU	28113160	0.035	211.555
2.00	14.1	14.10	0,000	1,133	1,133	28159841	0.066	211.555
3.00	14,1	14.10	0.000	3,015	3.013	23179753 28232358	0.073 0.116	211.573 211.616
4.60 E 66	14.1	14.10	0.000 0.000	5,043 6,741	5,043 5,741	28258206	ú.133	211.633
5.00 6.00	14.1 14.2	14.12 14.16	0.660	8,584	8,584	26 278295	0.147	211.647
7.00	14.3	14.25	0.000	2.736	9,733	23293313	û. 157	211.657
8.00	14.4	14.38	0.660	11.024	11,029	28305884	0.186	211.64
7,00	14.3	14.61	0.000	11.901	11.701	28315616	0.172	211.67.
10,00	15.1	14.95	0.000	12.623	12.623	20323992	0.176	211.678
11.00	34.6	24.87	0.000	13,250	13.255 16.557	28385309 28465940	0.2v6 0.274	211.706 211.774
17.00 13.00	54.1 80.6	44.3/ 67.39	0.000 0.000	16,557 25,3%	25.3%	28617063	0.277	211.377
14.60	107.1	93.89	0.000 0.000	40.9.5	40,725	26867728	0,507	212,007
15.00	136,5	121.30	0.000	63.747	63.747	27016712	Ű. 047	212.14+
16.00	165.6	151.11	0.600	92.357	92,357	29228221	0.773	212.293
17.00	195.6	131.18	0,000	124.705	124.705	29431513	0.931	212,431
18.00	227.4	211.99	0.600	159.707	158.707	29623348	1.002	212,562
17.00	259.9	243.64	0.000	193.245	193,205	29/604703	1.185 1.303	212.665
20,00	292.3	276.11	0.600	227.876	227.876 262.771	29978541 30145350	1,417	212.80s 212.317
21.00 22.00	325.9 359.1	309.11 342.49	0.600 0.600	262,771 297,820	297.520	30306152	1.526	213.026
23.00	364.4	361.76	0,000	302,965	332,765	30407801	1.5 6	213.0%
24.00	369.7	367.06	0.000	356,301	336.301	3/448540	1.623	213.123
25.00	364.3	367.00	0.000	365.157	55.157ء	30455197	1.627	213,127
26.00	350.9	361.58	0.000	366.684	366.694	30436924	1.615	213.115
27.00	349.3	354.07	0.000	362,471	3-2.471	30406582	1.574	213,694
28,00	339.7 327.1	344.47	0.000	355,568 346,513	355,568 346,513	30366613 30319425	1.557 1.535	213.(%7 213.035
29.60 30.60	314.6	333.41 320.67	0,000 0,000	335.924	335,924	302653c5	1.4%	212.5%
31.00	277.6	307.14	0.000	323.514	323.914	30204921	1.457	212.957
32.00	284.7	292.16	0.000	310.687	310.687	30133212	1.412	212,912
33,00	269.3	276.49	0,000	296.291	296, 291	30066944	1.363	212.363
34.60	252.0	260.15	0,600	281, 164	281,164	2/991300	1.312	212.812
35.00	233.9	242.96	0.000	265.400	265.400	27910512	1.257	212,757
36.00	215.9	224.92	0.000	248.902	248, 902	29824159	1.178	212.6%
37.60 38.60	197.9 179.8	206.83 188.85	0.000 0.000	231.6e2 214.269	231.862 214.289	29734937 29643354	1.137 1.075	212.637 212.575
37.(v)	161.5	170.68	0.000	170.731	196,731	27543354	1.011	212.511
40.00	143.2	152.39	0.000	177,543	179,543	27451101	0.944	212,444
41.00	125.2	134.20	0.600	162.125	162, 115	29350530	0.376	212.376
42.09	107.1	116.13	0.000	144,844	144.644	27247216	0.866	212.306
43,00	81,4	73.23	0.000	127.765	127.765	29149906	ü.733	212,239
44.00	71.6	(0.51	0.000	110.961	110.961	29031291	0.659	212.15y
45.00 45.60	59.1 44.6	64.88 51.36	0.000	94,449	94,490	28724732	0.535	212.035
47.00	33.2	41.40	0.000 0.000	79.332 65,343	79.332 65.843	28924021 29736015	0.518 0.453	212.018 211.958
45.00	31.8	35.02	0.000	54,771	54,771	28664908	0.410	211.910
49.00	28.1	29.93	0.000	46, 332	46.332	28606039	0.370	211.870
50,00	24.4	26.28	0.600	39.710	39.710	28557700	0.337	211.037
51.00	22.0	23.21	0.000	34,533	34,553	29516720	0.309	211.80*
52.00	19.5	20.75	0.000	30.357	30.357	28482326	v. 2%6	211.768
53.00 54.00	13.0	13.74	0.600	26.953	26.953	28452729	0.265	211.765
55.60	16.4 15.5	17.17 15.96	0.000 0.000	24.159 21.862	24.159	28427577	0.248	211.749
56.00	14.7	15.10	0.600	19,983	21.862 19.993	23406335 28388774	0.234	211.734 211.722
57.00	14.4	14,53	0.000	18.472	13.472	28374591	0.212	211.712
58.00	14.1	14.24	0.000	17.281	17.281	28363658	0.205	211.705
59.00	14.1	14.10	0.000	15.391	16.381	28355446	0.195	211.697
60.00	14.1	14.10	0.000	15.716	15.716	26349624	0.195	211.095

E.S means Emergency Spillway. S.S means Service Spillway. Dep. means Overflow Depth on Crest of S.S .

Table 2.21 Flood Control Study

(5) Huai Khon Kaen Dam (Return Period 30 Years)

Time (hr)	03h (m3/s)	Gin ave (m3/s)	Pout E.S	Gaut 5.5	Qout Total	Storage	Der.	W.L
(GF)	183/5/	183/5)	(n3/s)	(m3/s)	(m3/s)	(m3)	(m)	(MSL m)
1.00	17.4	17,40	0.000	0.000	ÿ.000	28125040	0,043	211.543
2.00	17.4	17.40	0.000	1.553	1.553	26182087	0.081	211.561
3.00 4.00	17.4 17.4	17.40 17.40	0.666 0.000	4.102	4.102	28223761	0,114	211.614
5.00	17.4	17.42	0.000	6.795 9.245	6.795 7.245	29268139 29297574	0.140	211.640
6.00	17.5	17.46	0.600	11.278	11,298	28319770	0.160 0.175	211,640
7.00	17.7	17,57	0.00v	12.935	12.935	28336455	0.186	211.636
8.00	17.8	17.74	0.600	14.213	14.213	28349151	0,155	211,695
2.00	18.4	13.10	ů,00v	15.212	15.212	28359553	0,202	211,702
10.00	18.9	18.65	0.000	16.647	16,047	28348736	0.20	211,708
11.00 12.00	49.9 81.0	34,44 65,45	0.000 0.000	16.814	16.814	23132331	0.252	211,752
13.00	120.7	100.84	0,000	22,295 37,722	22.275 37.722	28587743 28314968	0,357 0,512	211.857
14.60	160.5	140.61	0.000	64.678	64.678	29088308	0.512	212,012
15.00	203.7	182.11	0.000	102.743	102.943	29373310	0.872	212.372
16.00	247.0	225.36	0.000	148.695	148.695	29649291	1.079	212.579
17.60	272.0	267.48	0.000	193.042	198.042	29706467	1.254	212.754
18,60 12,60	337.0 334.2	314.49	0.000	248.086	248.066	30145496	1.417	212.917
20,00	431.4	360.59 407.81	0.000 0.660	277.851	297.851	30371367	1.570	213,070
21.60	479.5	455, 47	0.000 0.000	347.566 397.678	347.586 397.678	30588189 30796255	1.718 1.857	213.218 213.359
22.00	527.6	503,57	0.000	447.815	447.815	30796977	1,656	213.476
23.00	530.7	529.15	0,000	493.028	473.023	31109013	2,072	213.572
24,00	533.7	532.21	0.000	525.819	526.819	31128414	2,085	213,585
25.00	523,4	523.55	0.000	531.869	531.360	31116516	2,077	213.577
26.60 27.65	513.0	518.19	0.000	528.767	528.747	31078431	2,051	213.551
23.00	477.5 431.9	505.24 489.71	0.000 0.000	518.707 566.260	518.907	31029224	2.018	213.510
27.00	462.3	472,37	0.000	471.634	5%.260 471.084	30969636 36962273	1.977 1.931	213.477 213.431
30,00	443.7	453.23	ù,600	474.115	474.115	30827098	1.880	213,350
31.00	421.3	432.43	0.000	455,415	455.415	30744526	1,624	213.324
32.00	378.9	410.11	0.000	435, 166	435.166	30654315	1,763	213.263
33.00	375.1	307.03	0.00	413.377	413.397	30559333	1,693	213.198
34.66 35.60	351.3 325.4	363.24 334.36	0.000 0.00u	370.895	370.875	30459836	1,630	213,130
31.00	279.5	312.45	0.000	367.75 <i>5</i> 343.694	357,753 343,694	30354048 30241605	1.55) 1.492	213.059 212.982
37.00	273.6	296.54	0.000	313.701	313.701	30125811	1.403	212.503
8.00	247.7	260.65	0.000	293.639	293.639	30007049	1.323	212.823
37.00	221.4	234.54	U <b>.0</b> 00	263.657	263.657	27/34243	1.237	212.737
40,60	195.1	26.22	0.000	243,614	243.614	29756816	1.152	212,652
41.00	169.1	132.07	0,000	218.507	213.507	29625707	1.063	212,563
42.(v) 43.(v)	143.2 117.3	156.16 130.49	8,600 9,600	193.643 189.113	193.643	29490753 29351668	0.971 0,677	212.471
44.00	92.4	105.09	0.000	145.031	169.118 145.031	29207682	0.779	212.377
45.00	73.6	83.01	0.000	121.456	121.456	29059468	0.685	212.185
46.00	54,9	64.26	0.000	160.121	100.121	28940355	0.597	212.097
47.60	47.0	50.73	0.000	81,493	31.475	29330305	v.522	212,022
48,00	39.1	43.02	0.000	65.665	66.665	28745196	0.464	211.964
49,00	34,5	36.79	0.050	55.395	55.875	23676433	0,418	211.918
50.00 51.00	30.0 26.7	32.24 23.45	0.000 6.000	47,665 41,347	47.668 41.349	28620893 28574470	0.350 0.343	211.880 211.948
52.00	25.9	25,43	0.000	35.392	36.302	28535347	0.322	211.622
53.00	22.0	22.97	0.600	32.222	32.222	23502047	0.259	211.777
54.00	20.1	21.07	0.00u	29,880	28.860	26173916	0,280	211.780
55.00	17.1	17.60	0.000	26.153	26.153	28450337	0.264	211.764
4.00	18.1	18.59	Ů.(*,Ú	23, 757	23.937	28431048	0.251	211.751
57.00	17.7	17.91	0.600	22.176	22.176	23415699	0.240	211.740
58.(4) 57.(6)	17.4 17.4	17.57 17.40	0.000 0.000	10.694 [1.784	20.804 14.784	29404052 29395470	0.232 0.227	211.732 211.727
60.00	17.4	17.40	0.000 0.000	15.002	17.704	20373470	0.227	211.722
~~.••	4.4.7	*****	A11-30	******	******	\$7.307494	*****	-11114

C.S means Emersency Spillway. S.S means Service Spillway. Dep. means (werflow Depth on Crest of 5.5.

Table 2.21 Flood Control Study

(6) Huai Khon Kaen Dam (Return Period 50 Years)

_					Acres Trans	Storage	Der.	H.L
Time (1d)	Úth (m3/51	ÿın ave {m3/x}	Qout E.3 (m3/s1	vout 5.5 (m3/s)	ūsut Tota! (m3/s)	(m3)	(A)	(MSL a)
(4)1.)	(43131	183743	(102) 21	143/3/	1=3/3/			
1.00	13.7	19.70	0.000	v.000	0.000	28129720	0.046	211.596
2.00	18.7	18.70	0.660	1.730	1.730	28190810	0.687	211.587
3.00	13.7	18.72	ů.vvů	4.553	4.55/	28241797	0.122	211.622
4.00	18.6	18.76	0.000	7.528	7.528	29292248	0.150	211.650
5.00	13.)	18.83	0.000	10.212	10.212	28313263 28336536	0.171 0.186	211.671 211.686
5.00 7.00	19.Q 17.2	19.91 19.06	0.660 0.666	12,448 14,220	12.448 14.220	28353367	0.123	211.6%
3.00	19.4	19.27	0.000	15.597	15,597	28367204	0.207	211.707
3.00	20.1	17.72	U.000	16.671	10.671	28370173	0.215	211.715
10.00	20.7	20,40	0.000	17,550	17.560	28368326	0.222	211.722
11.00	5.4	35, 43	0.000	13,434	13.434	29460473	0.271	211,771
12.00	91.7	73.95	<b>0.66</b> ∪	24.882	24,682	28637128	0.371	211,691
(3.0)	1,6.6	114,14	9.996	43,165	43.165	25872640	0,565	211.665
14,00	181.5	157.05	p. (NO	74,946	74.946	29195415	0.771	212.271
15.00	2:0.2	205.83	0.600	119,476	117,478	29506284	0.782	212, 432
14.00	278.8	254, 49	0.000	171.864	171.894	29803673	1.184	212.684 212.371
17.00	329.3	304.06	0.000	227.631	227.633 283.664	30076910 30333955	1.545	213.645
18.00 13.00	379.9 432.7	354.54 406.23	0.000	283.664 317.173	337.173	30575356	1.707	213.299
30.02	465.6	459.13	V.UUÛ	394.651	394.651	36607473	1,967	213,367
21.00	537.3	512.45	0.000	459,599	450.530	31630213	2.018	213,516
22.00	593.0	5/6.17	0.600	504.514	506,514	31244979	2.164	213,644
23.00	5.5.3	594.15	0.000	562.474	562,477	31359013	2.242	213,742
24.00	597.5	596.40	0,000	592,977	592.977	31371324	2.250	213.759
67,163	535.0	571.40	0.009	513. 112	276.302	31353690	2.238	213.733
26.00	575.0	579.17	0.000	591.539	591.539	31309137	2.200	213.70
27.00	555.2	564.10	0.00	577,571	573.571	31253444	2.170	213.670
28.00	537.3	546.21	0.000	564.722	544.722	31186783	2.125 2.074	213.625
17.60 30.60	515.5 493.8	526.40 504.68	0.000 0.000	547.120 527.643	547.120 527.643	31112197 31029517	2.014	213.574 213.518
31.00	468.6	481.23	0.000	506.335	566.335	30737122	1,956	213.456
32.60	443,4	456.64	v.000	463.373	483,373	30940709	1.689	213.389
33.00	415.3	130.13	0.000	453,732	453.732	30737570	1.819	213.317
34.00	350.2	403.51	0.000	433, 474	433.474	30629711	1.746	213.246
35.00	361.2	375.70	ა.069	407.524	407.524	30515140	1.669	213.169
36.00	332.2	346.69	0.000	386.551	380,551	30393243	1.585	213.065
37.09	303.2	317.71	0.600	352.533	352.538	30267977	1.500	213.600
38.00	274.3	288,77	0.000	324,481	324.491	30137304	1.412	212.912
37.00	244.9	259.57	0.000	276.524	276.524	30306273	1.322	212.822
40.00 41.00	215.4	230.13	0.000 6.000	268,496	268.47 <i>6</i> 240.393	29868149 29726017	1.131	212.729 212.631
42.00	186.4 157.4	200.91 171.92	0,000	240,393 212,577	240.373	29579865	1.131	212.531
43.00	129.0	143.23	0.000	185.152	155.152	27428759	0.729	212.427
44.00	100.6	114.84	ú.000	159, 426	159.228	29272576	0.823	212.323
45.00	79.9	90.25	0.000	131.393	131.83	29122678	0.721	212.221
46.00	57.1	69.46	0.606	1(G.160	108.180	28983388	0. 826	212.176
47.65	50.5	54.81	0.000	97,559	37.559	23565463	0.545	212.096
48.60	42.0	46.29	0.600	71.395	71.295	26775437	v. 485	211.905
49.(0)	37.1	39.53	0.000	59.647	57.64/	20703170	0.435	211,736
50.00	32.2	34.69	0.000	5v.817	50.817	28645115	0.396	211.8%
51.60 52.60	27.0 25.8	30.62 27.39	0,000 0.000	44.v4.i 30.692	44.053 52.483	20596705	0.363 0.336	211.363
53,00	23.7	24.75	0.600	34.357	38.692 34.357	28556009 28521407	0.336 0.312	211.636 211.812
54.60	21.7	22.69	0.000	30,606	39,200	28492191	0.312	211.812
55.69	20.6	21.11	0.000	27.714	27.914	23467706	û.276	211.776
56.00	19.5	20.01	0.000	25.563	25.555	28447697	0.262	211.762
57.00	17.1	17.26	v.600	23.694	23.694	23431747	0.251	211.751
59.6)	18 7	18.87	ý.000	27,237	22.235	13419690	0.243	211,743
59.W	13.7	13.76	9.909	21.1\$.	21.153	28419843	0.237	211.737
60.00	18.7	18.70	0. <b>6</b> 00	20, 377	20.377	26404807	0.233	211,735

E.S avans Emergency Spillway. S.S means Service Spillway. Dep. means Overflow Depth on Crest of S.S.

Table 2.21 Flood Control Study (7) Huai Yai Dam (Return Period 10 Years)

Tine Thri	ûih (m3/5)	ÚIN AVE (m³/+)	Qout E.S (m3/s)	Gout 3.5 (#3/5)	uout Fotal (m3/1)	Storage (m3)	Des. (n)	W.L (MSL m)
v.75	3,2	3.20	0.000	0.(K#)	9,900	3170640	0.(v)	207.007
1.50	3.2	3.20	0.600	9.4.4	Ų, 664	9179107	0.016	209,016
2.25	3,2	3.20	6.000	0.179	0.177	8137265	0.027	207.027
3.60	3.1	3.20	0.000	0.321	0.321	8195039	0.035	206,035
5.75	3.2	3.20	0.000	0.4/	0.479	8202334	0.043	207,043
4,50	3.2	3.20	0.000	0.643	v. 648	8209275	0.050	209.050
5.25	3.2	3.70	Ú, OOO	0.021	0,821	3215699	0.057	207.057
6.00	3.7	3.20	0.000	0.573	0.793	6221657	v. 053	209.063
6.75 7.59	3.2 3.2	3.21	0,000 0,660	1.163	1.163	3227137	0.069	209,067
8,25	3,3	3.23 3.27	0.660 0.660	1.329	1.329	8232332	v.074	207.074
9,00	3.3	3.31	0.000	1.439	1.437	3237136	0.079	207.079
1.75	3.5	3, 42	8,000	1.644 1.774	1.644 1.774	6241643 9246023	0.084 0.087	209.064
16.50	3.7	3.58	0.000	1.945	1, 745	6250434	0.057	209.089 209.693
11.25	7.5	6.57	y, (key	2.100	2,100	9262570	0.105	209.105
12,60	15.4	12,47	0.000	2.546	2,546	3267352	0.134	207.134
12,75	23.1	19.25	0,000	1.623	3.620	8331542	0.179	209.179
13.50	.W. 8	26.98	0.000	5.574	5.574	8389290	U. Z4U	209.240
14,25	40.0	35.41	9.000	3,651	4.651	8461543	0.316	207.316
15,00	49.2	44.61	0.666	13.669	13.029	6546637	0,406	209,400
15.75	58.8	54.00	0.000	17.045	17.045	8641015	v. 506	209.566
16.50	68.4	63.60	0.000	20.469	16.469	8741260	0.612	209.612
17.25	75.3	71.36	0.000	35.199	35.137	8310233	0.716	2u9.716
18.60	82.2	70.76	9.000	44.595	44,595	8932524	0.813	209.813
18,75	83.1	82.67	0.000	54.000	54.000	2002744	0.375	209,895
19.59 20.25	£4.0	83.55	0.000 0.000	62.340	62.340	9067206	0.956	209,956
21.00	31.8 79.7	92.72 80.78	0.000	63.760	63.760	7105432	0.976	209,576
21.75	77.9	73.75	0.000 0.000	73.161 75.277	73, 161	9126004	1.015	210.015
22,50	75.8	76.61	V. 000	76.219	15.21 76.219	7135364 9136965	1.024 1.025	210.024
23,25	72.8	74.35	0.000	76.331	75.381	9131470	1.023	210.025 210.020
24.00	69.8	71.34	0.000	75.620	75.d?&	9119363	1,009	210.009
24.75	14.6	67.10	0,000	74.614	74.014	7(01247	0,992	209,992
35.50	62.1	64.03	0.600	72.175	72.675	9077844	0.567	209.967
20,25	57.5	59.79	0.000	67.732	64.982	7050307	0.738	207.933
27,00	52.9	55.21	0.000	<b>ట.85</b> 3	oo. 853	9018752	0.505	209.905
27.75	47.6	50.23	0.000	o3. 33o	43.336	3793670	0.867	209.367
.3.50	42.4	44,59	0.000	54,467	59.467	3944613	0,828	209.826
27.25	36.0	37.45	0.00	55.276	:5.27:	8501973	v. 781	209.781
70.10)	30.9	33.74	0.000	50,820	50.820	6855865	0.733	209.733
30.75	25.7	28, 28	0.000	45,145	46.145	8907625	v.582	209.682
31.50 32.25	20.5 17.7	23.07 19.10	0.000 u.000	41.416	41.418 14.743	6758133 3710474	9.629 6.520	209.629
33.60	14.9	16.30	0.000	32.450	31.430	3710474 8666933	0.579 0.539	209.579 209.539
33.75	13.1	13.57	0.000	23.040		8627352	U.4*1	209.491
34.50	11.2	12.14	0.000	25.345	25, 545	85917u9	0.454	209.454
35.25	7,9	10.54	0.000	12.431	2469	3539442	0.420	207, 420
35, 1911	€.5	9,17	o, test	20.004	39. v(m	8530195	v, 369	367, 337
36.75	7.5	7.93	0.000	17.337	17,037	8503535	ŷ.Jol	209.361
37,50	6.5	6.97	6,666	15.430	15, 939	8479366	0.335	209.335
33.25	5.7	0.10	0.000	14.274	1+,174	3457287	v. 312	207.312
37.(*)	5.0	5.37	0.000	12.511	12.611	6437194	0.271	205.241
37.75	4.5	4.76	0.000	11,520	11.5.6	8418913	u. 271	
40.50	4.0	4.26	0.000	10.3/7	10.397	84023./8	0.254	209.254
41.25	3.7	3.00	U. VÁRU	F. 4(1)	+, 407	8337.560	0.233	2003.236
47.01	5, 4	1.57	0.000	\$ 54.	e.557	*373*	0.224	2.7.224
42.75	1.3	3.57	ii, quat	1 111	7.7N	3361733	0.211	20+11
43.5	3.7	3.26 3.26	0,000	7,140	7,180	8351498	0.20	207,200
44,25	3.2	3,20	9,000	1.565	5 -40	8342355 6311465	u. 190	203,190
45.00 45.75	3.2	3.20	V. (**)	6.11* 5.71*	6,115 5,717	633446 <del>4</del> 8327632	v. (\$1 v. 135	305.162
45,65	3. Î	3.20 3.20	0.000 6.000	5,714 5,384	5.354	8327632 8321765	v 175 v.164	209,175 209,159
-4.0 T.	3.2	. 2.64	********	J. J.	20,247	Want Lon	6.15.	EV-137

E.J means Emergency Spillway. S.S means Service Spillway. Dep. means Overflow Depth on Greet of J.J.

Table 2.21 Flood Control Study

## (8) Huai Yai Dam (Return Period 30 Years)

Time (he)	∯[6 (m.e/c)	01h ave (m3/1)	Cout E.5 (43/5)	Bout 3.5	uout lotal insisi	Storage (m))	Der. 12)	Hil Mil as
		3.3.		0.009	9,600	3171970	0.011	201.011
· v. 75 · 1.50	ı; i 3.7	3,70 3,70	9,009 8,000	14. <b>14</b> 50)	v.030	6191765	0.021	209.01
2.25	j.7	3.70	9.000	0.222	g. 222	8191156	0.031	207, 931
3.69	3.7	3.70	0,000	e.397	0.397	8200u73	0.040	209.640
3.75	3,7	3.70	0,000	v.5):	v.533	3708461	0.647	2(r)
4.50	3.7	3.70	0.000	v. 8e0	0.800	8216292	0.657	201.657
5,25	3.7	3,71	0.000	1.010	1.610	9223536	0.065	201.065 201.072
6.00	3.7	3,73	0.000	1.220	1.220	6230375 8236696	0.072 0.077	207.072
6.75	3,8	3.77	Û, ÛÛU 6. 653	1.427	1.427 1.630	8242592	0.077	29.65
7,56 3,25	3.6 3.4	3.81 3.88	0,000 6,000	1.630 1.327	1.927	3248142	0.003	100.001
9.60	4.6	3.97	0.000 0.000	1,019	2.019	8253424	Ü. 097	207.057
7.75	4,3	4.14	0,600	2,207	2,207	3258630	0.102	avi. lv.
10.50	4,5	4.36	0.000	2.3%	2.398	8263939	v. 108	209.109
11.25	14.0	7.23	0.000	2,597	2.599	3281839	v. 127	201.127
12.60	23.5	18.73	0.000	3.312	3.312	8323456	U. 170	209.170
\$2.75	35.7	27.57	ú.úúi	કે, દિલ્હ	5.160	8337278	y.240	207.240
13.50	47.6	41.75	0.000	8.652	0.652	8478654	0.334	.07.334
14.25	95°A	54.92	0.000	14.226	14.226	9589525 8715006	v. 450 v. 584	207.450 207.5c4
15.00	76.2	69.03	0.000	12,240 32,833	22.240 32.833	8351670	0.723	207.728
15.75	90.7 105.3	33.45 98.01	0,000 0,000	45.727	32.033 45.7 <i>2</i> 7	8992843	0.728	207.728
16.50 17.25	115.3	110.23	0.000	60.454	60.464	9127312	1.016	216.010
18.61	125.2	120.24	0.000	75.413	75.413	9248360	1.125	210, 125
18.75	125.4	125.30	0.000	37.377	37.379	9342425	1.217	210.217
19.50	125.5	125.46	0.000	90.701	93.761	9421510	1.282	210.284
20.25	121.1	123.33	0.000	196.73⊎	106.760	9466195	1.322	210.322
<b>41.60</b>	110.7	118.91	Q.(CO	(11.654	111.654	9465254	1,337	210.31
21.75	113.1	114,83	0.000	114.042	114.642	·467514	1.341	219.351
72.50	109.4	111.23	0.600	114.302	114,302	9479216	1.334	210.3-4
23.25	104.3	106.87	0.000	115. 147	113.347	9461717	1.313	210.313
24.60	99.3	101.79	0.000	111.342	111.342	9435928	1.295	210.295
24.75	93.1	95.16	0.000	109.4(6	103.408 164.683	9402944 9363094	1,265	210.265 210.2.y
25.50 26.25	86.9 79.8	89.96 33.33	0,000 0,000	104.683 100.28e	104.260	7303071 7317391	1.188	210.227
27.00	72.7	76.26	0.000	95.264	95,264	9288113	1.141	210.141
27.75	64.8	69.73	0.000	c).753	37,753	9209470	1.050	210.090
28.50	56.9	60,84	0.000	83.80.	83.802	9147478	1,035	210.035
27.25	45.5	52,66	0.000	77,443	77,443	9,00573	9.970	201.910
39.00	4(r, ()	44.24	0.600	70.289	70.289	9010244	0.696	709.89
30.75	32.6	36.30	6.000	62.373	62.373	8731456	v.321	202.321
31.50	25.1	28.65	0.000	54.773	54.773	5267664	0.747	201.747
32.25	21.5	23.32	0.000	47.54+	47.547	33/4434	U.678	207.67
31.00	17.9	19.70	0.000	41.111	41.111	8746626	0.617	209.617
33.75 34.50	15.7 13.4	16.77 14.54	0.000 0.000	35.634 31.116	.5.५४७ ज्ञानीह	3695556 6650792	v.563 v.516	A9.563 Wi.516
35.25	11,3	12.59	0.00	21.239	27.224	3611119	0.474	254,474
35.00	10.1	10,93	0.000	24.050	_4,U30	£575757	0.437	(1),437
36.75	3.7	9.49	0.000	21.247	21.249	8544017	v. 403	( <b>1)</b> 403
37.50	7.7	8.27	0.000	18.651	19.851	8515455	0.373	37.37
38.25	6.3	7.22	0.000	10.777	10.777	8437647	0.346	209.346
37.00	5.9	6.33	0.600	14.574	14.974	8466319	0.321	207.3.1
37.75	5.3	5.59	0,000	13.405	13.403	8445234	0.259	Nr. 27
40,50	4.7	5.60	0.000	12.035	17.035	8126.13	0.277	209.277
41.25	4.3	4.52	6.000	19,345	10.345	84(7)77	v. 261	V1.20
42.01 42.75	4.0	4.17	0.000	9.011	9,611	8393v37	9,245	J. 21.
43,50	3.8 3.7	3.92 3.77	0,099 0,000	a, 413 8,150	3.∀13 3.15∂	3330429 0375403	0.231	201.231 204.245
44,25	3.7	3.77 3.70	0.000	2,42	3.190 J.47a	6368607 3353353	0.218 0.207	209.207
45.14	3.7	3.70	17.000	6.947	8.947	5337557 5347557	0.207	209.176
45.75	3.7	3.70	0.000	6.437	6.497	8342063	v. 170	207.170
46.50	3.7	3.70	0,00	6.100	6,100	8335562	v.183	207.16

E.S means Emergency Spallway. S.S means Service Spallway. Dep. means Overflow Depth on Crest of 3.5.

Table 2.21 Flood Control Study

(9) Huai Yai Dam (Return Period 50 Years)

Time (hr)	(n3/5)	01N ave (m3/s)	Gout E.S (m3/s)	Cout \$.5 (#3/\$)	Cout Total (m3/s)	Storage (m3)	Ber.	NAL OBSL NA
1.75	1.0	2.00	A 201		_			
6.75 1.50	3.9 3.9	3.90 3.90	0.000 0.000	0.000	0.000	9172530	0.011	209.011
2.25	3.3	3.90	0.000	0.u66 v.240	0.686 v.240	8182827	0.022	209.072
3.00	3.9	3.90	0.000	0,430	0.430	8192709 6202079	0.032 0.042	207.032 207.042
3.75	3.9	3.90	0.60	0.641	0.641	3210879	0.052	209.052
4.50	3.9	3.90	0,600	0,843	0.563	8219080	0,060	209.060
5,25	3.3	3.91	ú.00u	1.037	1.63)	8226701	0.068	209.068
6.00	3.9	3.93	0.000	1.314	1.314	8233777	0.076	209.076
6.75 7.50	4,0 4,0	3.97 4.01	0.000	1.5.5	1.535	8240346	0.093	209.033
8.25	4.2	4.09	0.000 0.000	1.751	1.751	8246455	0.089	209.089
9.00	4.3	4.21	0.000	1.960 2.163	1.96v 2.163	3252218	0.095	207.075
9.75	4.5	4.40	0.000	2.365	2.365	8257741 8263246	0, 101 6, 107	209, 101 209, 107
10.50	4.8	4.68	0.000	2,572	2.572	6268932	0.113	209.113
11.25	16.0	10.43	0.600	2.732	2.792	3237550	ù, 135	207.135
12.00	27.3	21.65	0.000	3.637	3.637	8338196	0.186	209.186
12.75	41,3	34.30	600.0	5.705	5.705	8414870	0,267	209.267
3.50	55.4	48.37	0.000	10.152	10.152	8518070	0.376	209.376
14, 25	71.7	63,55	0.000	16.761	16.464	3643865	0.509	209.507
15.00	68.0	79.84	0.000	26.706	26.70b	8787337	0.860	209,650
15.75 16.50	104.6	96.29 112.90	0.000	37.431	37.431	6740724	0.022	209.822
17.25	121,2 132,3	126.76	0.000 0.660	54.864	54.864	9097410	0.988	209.988
18,00	143.5	137.89	0.000	72.2% 87.465	72.23u 87.465	9244650	1,122	216.122
13.75	143.1	143.29	0.000	102.22u	102.220	9380750 9471635	1,245 1,345	210, 245
19.50	142.8	142.95	0.660	114,777	114.777	9567702	1.413	210.345 210.413
20,25	137.3	140.06	v.600	123,665	123,668	7611970	1.453	210.453
21.00	131.9	134.63	0.000	172.943	126,943	9627317	1.467	210.467
21.75	127.6	129.75	0.000	130.739	130.787	9624507	1.465	210.465
22.50	123.3	125.43	0.000	130,450	130,450	9610943	1.452	210,452
23.25	117.3	120.27	6,000	126.520	128.820	9587870	1.432	210, 432
24.00	111.3	111.29	0.000	126.002	126.062	9558068	1.403	210.403
24.75	104.1	107.70	0,600	122, 236	122, 296	9516637	1.367	210, 367
25.59 26.25	96.9	100.52	0.600	117.691	117.681	9470343	1.326	210.326
27.(0)	63.8 69.7	92.36 64.75	0.000 0.000	112.329 108.361	112,327	9417790	1.278	210.273
27.75	71.7	76.17	6.666	77.303	1(6.361 19.363	9359442 9275479	1.226 1.163	210.226
28.50	62.6	67.13	0.000	92,898	92.898	9225910	1.105	210.163 210.165
21.25	53.1	57.84	0.000	85.517	o5.517	9151182	1.033	210.038
30.00	43,5	45.29	0.000	77.616	77.818	9071409	0.960	209.560
30.75	35.2	39.34	0.000	67.246	07.240	8970715	ŭ.875	207.875
31.56	.4.6	30.97	ŷ, <b>û</b> yû	69.231	(a, B)	8911705	0.791	109.791
32.25	22.7	24.85	0.000	51.826	51.826	6933365	0.715	207.715
33,69	19.0	20.98	0.60	44,460	44,460	8775462	0.143	209.648
33, <i>7</i> 5	16.6	17.35	0.000	33,3/,2	33.362	8720067	v.587	209,589
34.50 35.25	14.3 12.5	15.45	0.000	33.285	23. 285 23. 431	8611916	0.536	209.53
36.00	14.7	13.37 11.60	6.000 6.600	29.071 25.522	24.071 25.522	862)525 8591946	0.474 0.454	209.474 209.454
36.75	7.4	16.07	0,000	22.503	22.503	8553357	0.418	209,454
37.50	1.0	8.76	0,000	19.923	19.923	\$528227	0.367	207.416
33.25	7.2	7.64	0.000	17.6+5	17.675	8501083	0.358	207.350
39.60	6.2	6.70	0.000	15.764	15.764	8476622	0.332	209.332
37.75	5.6	5.92	0.000	14.690	14.090	8454563	0.309	207.307
10.50	5.0	5.29	0.000	12.634	12.634	8434745	0.266	209.28%
41.25	4.6	4.78	0.000	11.372	11.372	8416959	v. 289	209.269
42.00	4.2	4,40	0.000	10.278	10.278	8401090	0.252	709.25
42.75	4.1	4,13	0.000	). Ni	9.333	8397026	0.239	209.233
43,50	3,9	3,98	0.000	8.522 3.625	9.522	8374750	0.225	209.225
44.25 45.00	3.9 3.9	3.90 3.90	0.660 0.660	7.835 7.255	7.955 7.255	8364127 8355068	0.213	209.213
45.75	3.9	3,90 3,90	0.000	1.255 6.773	6.773	8347311	0.204 0.196	209.204 209.176
16.50	3.9	3,90	0.000	6.369	6.369	8340645	0.175	207.176
	4.,	~***	41-W	V.007	Q1207	VV 17474	V. (U)	4474107

E.S means Emergency Spillway. S.S means Service Spillway. Dep. means Overflow Depth on Crest of S.S..

Table 2.21 Flood Control Study

(10) Khlong Chaliang Lab Dam (Return Period 10 Years)

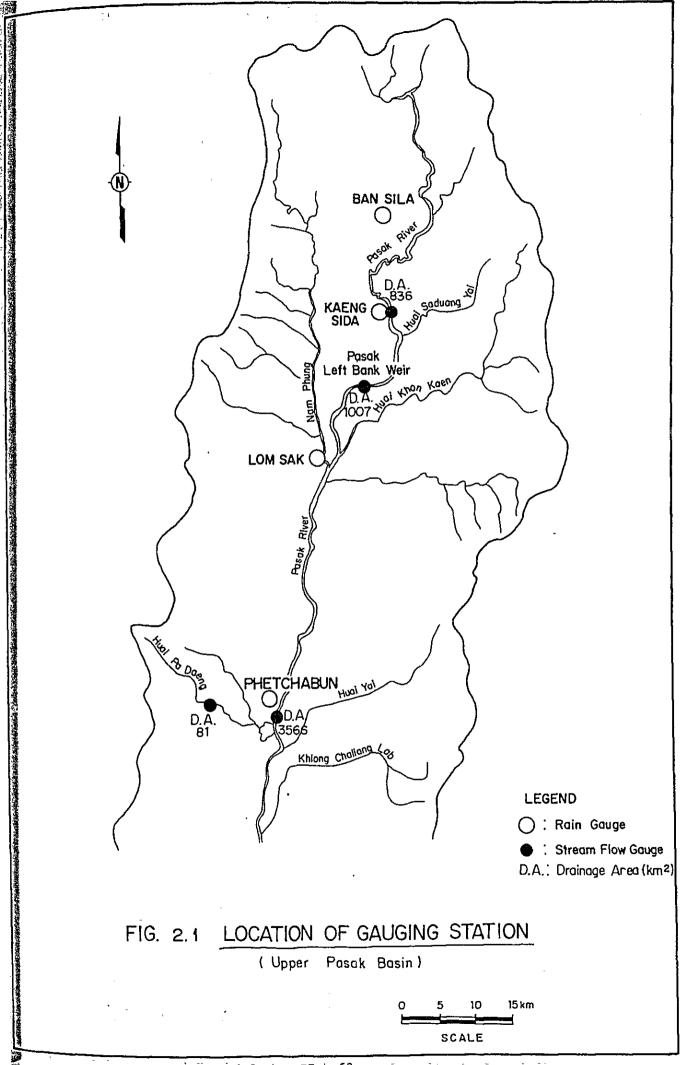
Time (hr)	û1n (m3/s)	Qin ave (m3/s)	Dout E.S (#3/5)	Bout 3.5 (m3/5)	Wout Total (m3/s)	Storage (m3)	Der. (m)	W.L. (MSL m)
0.75	3,2	3,20	0.000	0.600	v.00u	2355340	0.027	196.527
1,50	3.2	3.20	0.000	0.325	0,325	2363104	0.051	196.551
2,25	3.2	3,20	0.000	v.345	v.847	2369451	0.071	196.571
3.00	3.2	3,20	0.000	1.367	1.357	2374347	0.086 0.097	196.586
3.75	3.2	3,20	0.000	1.358 2.735	1.053 2.235	2377971 2330577	0.105	196,577 196,605
4,50 E oc	3.7 3.2	3.20 3.20	0.000 0.000	2,520	2.52v	2332414	0.111	196,611
5.25 6.00	3.2	3.20	0.000	2.727	2.727	2383/89	0.115	196.615
6.75	3.2	3,21	0.000	2.875	2.375	2384590	u.118	196.613
7,50	3,2	3.23	0.000	2.981	2.981	2385251	0.120	196.620
8.25	3.3	3.25	0.000	3,059	3,659	2335770	0.122	196.622
9,00	3.3	3.29	0.000	3. 121 3. 174	3.121 3.174	2386213 233672u	0.123 0.125	196.623 196.625
7.75 10.50	3.4 3.5	3.36 3.48	0.000 0.000	3.135	3.235	2387386	0.127	196.627
11.25	7.9	5.72	û.ûû	3.517	3.317	2573362	0.147	176.647
12.60	12.2	10.06	0.000	4,137	4.139	2409051	0.197	196.697
12,75	15.1	15.18	0.000	6. 113	6.413	2433531	0.270	196.770
13,50	24.0	21.68	0.000	10.340	10.340	2462535	0,361	196.861
14,25	30.9	27.45	0.000	15.932	15.732	2493622	0.457	176.957
15,00	37.7	34.27	0.000 0.000	22.758	22.758 30.352	2524712 2554347	0.554 0.646	197.054 197.146
15.75 16.50	45.0 52.3	41.33 48.61	0.00	30,352 38,2%	30.332 30.239	2582348	0.733	197.233
17.25	57.8	56.65	0.000	46, 228	46.223	2609364	ŭ.916	197.316
13.00	67.4	63.65	0.000	54.246	54.246	2634246	0.895	197.375
13.75	71.1	67.25	0.000	62.312	62.312	2653065	0.954	197.454
19.50	74.8	72.95	0.000	88.529	65.526	2665016	0.991	197, 491
20,25	75.0	74.83	0.000	72.577	72.577 74.715	2671236 2672169	1.610 1.013	197,510
21,75	75.2 74.0	75.06 74.57	0.000 9.000	74.715 75.037	74.715 75.037	2672107	1.07	197,513 197,507
22.50	72.0	73.40	0.000	74.598	74.5%	2667664	0.999	197,499
23.25	70.9	71.34	0.000	73,435	73,435	2663235	0.755	197,485
24,00	68.9	69.90	0.000	71.969	71.969	2657646	0.963	197.468
24.75	66.4	67.65	0.000	70.071	lu.vit	2651037	0.947	197,447
25.50	03.6	65.09	0.600	67.069	67.869	2643561	0.924	197.424
26.25	60.6	62.19	0.000 0.00 <b>0</b>	65.371 62.552	65,371 62,552	2634933 2625259	0.897 0.867	197.377 197.367
27.00 27. <i>1</i> 5	57,3 53.6	56.95 55.47	0.000	59.414	57.414	2614607	0.834	197.334
28,50	49.9	51.74	0.000	56.031	56.039	2603007	0.778	197.2%
27.25	45.7	47.79	0.009	52,437	52.439	2570443	0.759	197.257
30.00	41.5	43.60	0.000	48.631	48.631	2576956	0.716	197.216
30, <i>1</i> 5	36.9	37.23	u.000	44.622	44.622	2562237	0.671	177.171
31.50 32.25	32.4 27.9	34.67 30.14	0.000 6.000	40.455 36.135	40,453 36,139	2546671 2530477	0.622 0.572	197,122 197,072
33, (ú	23.4	25.64	0.000	31.835	31.835	2513742	0.520	197.020
33.75	19.7	21,53	0.009	27.5%	27.570	2497370	0.469	196.969
34,50	15.9	17.80	0.000	23.655	23.635	2481613	0.420	196.920
35, 25	13.2	14.91	v.00y	10.026	20.026	2467800	0.377	196.977
34.00	11.8	12.86	0.000	17.031	17.631	2456540	0.342	196.842
36.75 37.50	10.4 9.1	11.14 9.75	0.000 0.000	14.711 12.816	14.711 12.818	2446699 2439623	0.312 0.266	196.812 196.785
38.25	8.0	3.55	0.000	11.763	11.263	2431302	0.263	196,763
37,66	7.0	7.54	0.000	9,944	9.944	2424904	0.243	198.743
39,75	6.3	6.66	0.000	0.021	8.321	2418961	0.225	196.725
40.50	5.5	5.91	0.000	7.650	7.850	2413723	0.209	196.709
41.25	5.0	5.27	0.000	7.012	7.012	2409013	0,194	196.694
42.(%) 42.75	4.5 4.1	4.74 4.29	0.600	o.287 5.664	6. <i>2</i> 87 5.664	2404832 2404432	0.181	196,681
43.50	3.6	3.94	0.000	5.131	5.131	2401127 2397897	0.169 0.159	196.669 196.659
44,25	3.6	3.65	0.000	4.681	4.631	2375124	ů.151	176.651
45,60	3,3	3.45	0.000	4.306	4.366	2392606	0.144	196.644
45.75	3.3	3.31	0.000	4.(4)1	4.001	2370741	0.133	196.633
46,50 47,25	3.2	3.24	0.000	3.761	3.761	2357526	0.133	196.633
49.00	3.2 3.2	3.20 3.20	0,000 0,000	3.541 3.453	3.502 3.453	2333476	6.130	196.630
49.75	3.2	3.20	0.000	3.453 3.369	3.455	2367612 2397 <i>3</i> 57	0.128 0.127	196.628 176.627
49,50	3.2	3.20	0.600	3.313	3.313	2367052	0.120	196.626

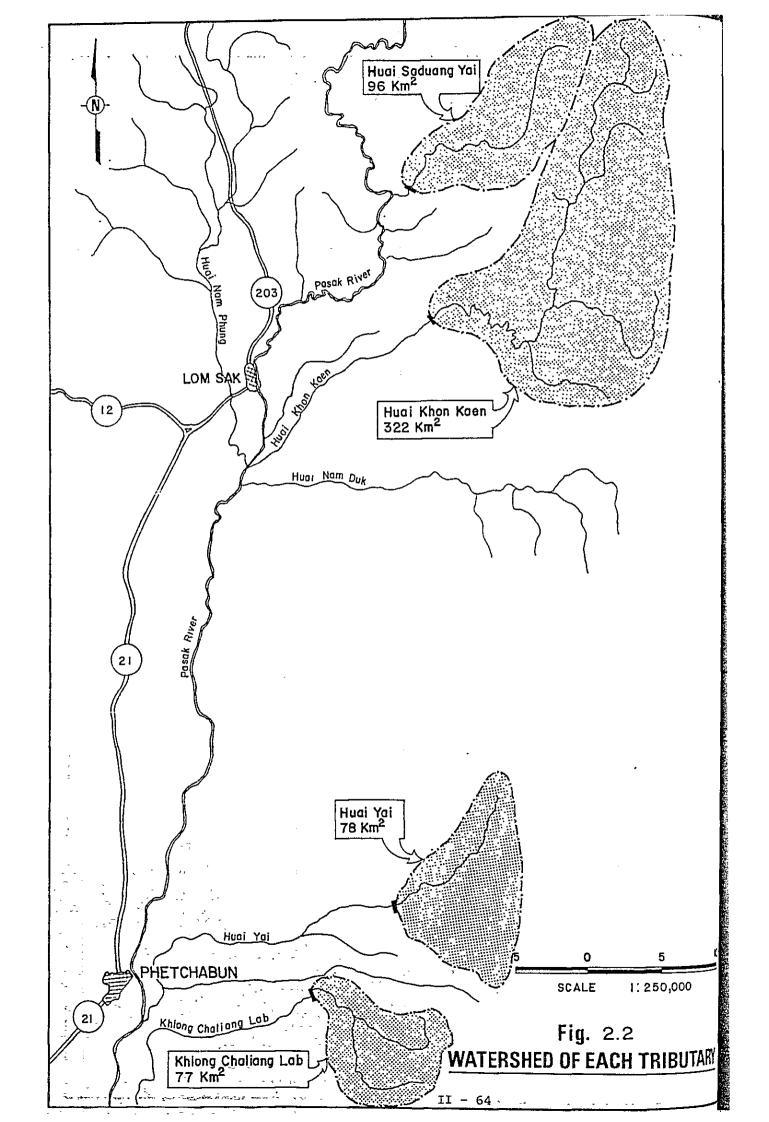
E.S means Emergency Smillway. S.S means Service Smillway. Dep. means Overflow Depth on Crest of S.S.,

Table 2.21 Flood Control Study

(11) Khlong Chaliang Lab Dam (Return Period 30 Years)

line	ûia	Om ave	Qout E.S	Gout 5.3	Dank Tale?	C4		17.1
(hr)	(n3/s)	(m3/s)	(m3/5)	(R3/s)	Wout Total (m3/s)	Storage (m3)	Der. (m)	W.L (MSL ≥)
0.75	3.6	3.60	0.000	0.000	V.000	2358420	6.630	196.550
1,50	3.6	3.60	0.000	0.387	(1, 387	2365094	0.057	196,557
2.25	3.6	3.60	0.000	1.003	1.003	2372092	0.079	196,579
3.00 3.75	3.6	3.60	0.000	1.635	1.635	2377377	0.096	176.596
4.50	3.6 3.6	3.60 3.60	0.600 0.000	2.174	2.174	2331247	0.103	196,608
5. 25	3.6	3.61	0.000	2.595 2.901	2,595	2383962	0.116	196.616
6.00	3.6	3.63	0.000	3.131	2,707 3,131	2385357 2387191	0.122	196,622
6.75	3,7	3.65	0.000	3,273	3.293	2383159	0.126 0.129	196.626 196.629
7.50	3.7	3.69	0.000	3.411	3.411	2358897	0.131	194,631
3.25	3.8	3.74	0.000	3,503	3.503	2389523	0.133	195,633
9.00	3.8	3.81	0.000	3.582	3.542	2390132	0.135	196.635
9.15	4.0	3.93	0.000	3.650	J. 653	2370354	v.137	196.637
10.50	4.2	4.10	0.000	3,750	3.750	2391791	0.140	196.640
11.25 12.60	11.2 18.3	7.70 14.74	0.669 0.660	3.863	3.669 5.375	2402133	0.175	196.673
12,75	27.6	22.93	0.000	5,275 9,315	5.275 2.315	2427695	0.252	196.752
13.50	36.9	32.26	0.000	16.336	16.328	2464448 2507472	0,366 0,500	195.800 197,010
14.25	47.4	42.19	0,000	26.051	26,051	2551038	v.636	197.136
15.60	59.6	52.70	0.600	37.328	37,323	2592535	0.765	197.265
15.75	6.0	63,47	0.440	49.253	47.250	263v713	0.385	197.335
16.30	έυ.υ	74.51	0.00	01.232	61.232	2006766	0.496	197.476
17.25	91.4	35,72	0.000	73.176	73.176	2700623	1.102	197.602
19.00 19.75	102.8 107.3	97.09	0.000	65.669	(5.0(4	2733020	1.202	197.702
19.50	112.6	105.22 110.12	0.000 0.000	47.036 105.461	77,036	2/55121	1.2/1	197.771
2v. 25	111.7	112.21	0.000	110.367	105.481 110.367	2767637 2772621	1.310 1.326	197.810 197.826
21.00	111.2	111.51	0.000	112.333	112,333	2770379	1.319	197.819
21.75	163.6	109.86	0.000	111.455	111.455	2766164	1.305	197.805
22.50	108.0	107.28	0.000	109.764	107.764	2759384	1.234	197.784
23.25	102.4	104.21	0.000	107.137	107.137	2751478	1.260	177.760
74.00	98.9	160.46	0.000	104.075	104.073	2742273	1.231	197.731
24.75	94.7	96.78	0.000	100.543	100,543	2732103	1.200	197.700
25.50 26.25	90.4 85.3	92.55 37.89	0,660 0,660	96.692	96,692	2720729	1.165	197.645
27.00	80.2	82.80	0.000	92.516 87.925	72.516 67.925	2706442 2694596	1.126 1.0€3	197.626 197.583
27.75	74.6	77.40	0.000	62.725	82.725	2679632	1,036	177.53/
26.50	46.9	71.71	0.000	77.650	77,650	2663634	0.986	197.486
27,25	62.6	65,75	0.066	/2.105	72,105	2646472	0.733	197.433
30.00	56.4	59.53	0.000	66.328	66.328	2628110	0.876	197.376
30.75	49.7	53.03	0.000	60.328	60.328	2603534	0.815	197.315
31.50	43.1	46.40	0,000	54.144	54,144	2587625	0.750	197.250
32.25 33.00	36.5 30.0	39.77 33.24	0,000 0.000	47.7∌0 41,507	47.790	2566017	0.683	197, 183
33.75	24,7	27.31	0.000	35.333	41,507 35,333	2543692 2522023	0.613 0.546	197.113 197.046
34.50	19.3	22.00	0.(Kŷ	29.667	77.667	2501310	0.481	196.981
.5.25	16.7	13.02	0.000	24.563	14.563	2483637	0.426	196.926
¥.00	14.1	15.39	0.000	20,478	20.478	2469875	0.363	196.833
36.75	12.4	13.23	0.000	17.474	17,474	2453431	0.348	196.543
37.50	10.7	11.54	0.000	15.093	15.093	1448940	0.316	196.618
31.25	9.5	10.03	0,000	13.172	13.192	2440446	0.292	196.792
39.66	8.2	6.86 7.73	0.000	11.700	11.660	2433036	0.269	196,769
37.75 40.50	7.3 6.4	7.79 6.89	0.000 0.000	10,252 9,091	10.252 9.091	2426389 2420441	0.248 0.230	176.748 196.730
41.25	5.3	6.11	0.000	\$40.5	3.0*2	2415977	0.213	196.713
12.00	5,1	5,47	0.000	7.2%	7.2.9	1410342	v. 17£	190.6%
42.75	4,7	4,93	0.000	6.463	6.433	2406137	0.135	196.635
43.50	4.3	4.51	0.000	5.858	5.856	2402490	0.174	196.674
44.25	4.6	4.17	0.000	5,325	5.325	2377362	0.164	190.664
45,00	3.3	3.92	0.000	4,884	4.8.4	2396752	0.156	196.656
45.75	3.7	3.74	Ů. ÇŮU 6. CZG	4.525	4,525	2394642	0.147	196.649
46,56	3.6	- 3,65	0.660	4.242	4,242	2393026	0.144 0.121	176.644
47,25 48,00	3.6 3.6	3.60 3.60	0.000 0.000	4.031 3.860	4.031 3.880	2371974 2391118	0.141 0.138	196.641 196.638
43.75	3.6	3.60	0.000	3.783	3.783	2370623	v.137	176.637
49.50	3.6	3,60	0.00	3.720	3.720	2390299	0.136	196.636
	-							


E.S means Emergency Spillway, 5.5 means Scrutce Spillway, Dem. means Gwerflow Benth on Greet of S.S .


Table 2.21 Flood Control Study

(12)	Khlong	Chaliang	Lab	Dam	(Return	Period	50	Years)

(hr)	gin (a3/51	Qin ave (m3/s)	Gout E.S (#3/s)	Qout 5.5 (m3/s)	Gout Total (#3/s)	Storase (m3)	Der. (a)	H.L (MJL m)
0.75	3.9	3.70	0.000	0.000	0,000	2357230	0.033	196.533
1.50	3.9	3.50	6.000	0.437	0.437	2355581	0.062	196.562
2.25	3.7	3.90	0,000	1.133	1.133	2374052	0.005	196,595
3,60	3.9	3.90	0.000	1.82	1.825	2379846	0.103	196.603
3.75	3.9	3.90	0.000	2.417	2,417	2383651 2386431	0.115 0.124	196.615 196.624
4.50 5.25	3,9 3,9	3.90 3.91	0.000 0,000	2,976 3,266	2.670 3.200	2333343	0.130	196.639
6,00	3.7	3.93	0.600	3,434	3,434	2389669	0,134	196.634
6.75	4.0	3.35	0.000	3.00	3,600	2370618	0.137	190.637
7.50	4.0	3,99	0.000	3.719	3.719	2371335	0.139	196.639
3.25	4.1	4.05	0.000	3,311	3.311	2371767	0.141	190.641
9.00	4.2	4.13	0.660	3,692	3.892	2392612	0.143	176.643
9.75	4.4	4.23	0.000	3, 976	3.776	2393425	0.145	196.645
10.50	4.6	4.48	0.000	4,00.	4.082	2394504	0.149 0.187	196.649 196.687
11.25	12.3	8,74	0,000	4, <i>2</i> 24 5,940	4.224 5.940	2406705 2438730	0.260	196.780
12.00 12.75	21.2 32,6	17,06 26,61	0.000 0.000	10.917	10.917	2479112	0.412	196.712
13.50	42.8	37.40	0.000	14,472	19.472	2527530	0.563	197.663
14.25	54.9	49,84	v.000	31.075	31.075	2575494	0.712	157,212
15.60	67.0	60.92	0.000	44,226	44.226	2620573	0.852	197.352
15.75	77.6	73.26	0.000	57.921	57.921	2661996	0.931	197.431
16.50	92.2	35.86	0.000	71.547	71.547	2700648	1.102	197.602
17.25	105. i	70.64	0.000	85.079	a5.093	2737204	1.215	197.715
18.00	118.1	111.59	0,660	%.617	98.617	2772228	1.324	197.814
18.75	123.3	120,69	0.000	112.177	112,177	2795215	1.376	197,896
19.50	129.6	125.94	0.000	121,388	121.386 126.416	2907516 2811746	1.434 1.447	197.934
20,25 21,60	127.4 126.2	127.98 126.81	0.000 0.000	126.416 120,161	128.161	2808090	1.436	197.947 197.936
21.75	123.0	124.62	0.000	126.653	126.653	2802602	1.419	197.919
22.50	119.8	121,42	0.000	124.4W	124,400	2794562	1.394	197.894
23.25	115.6	117.71	0.000	121,124	121.124	2785352	1,365	197.365
24.00	111.4	113.49	0.000	117.406	117.406	2774780	1.332	197.832
24.75	106.4	108.91	0,000	113.183	113,185	2743235	1.296	197.796
25.50	101.5	103.98	0.00	108,640	108.640	2750641	1,257	197.757
26.25	95.6	98.56	0,660	103.750	103,750	2736622	1.214	197.714
27.00	89.7	92.65	0.000	93.396	98.396	2721132	1.165	197.665
27.75	83.2	86,45	0.000	92,592	72.592	2704558	1.114	197.614
28.50 29.25	76.7 69.6	79.94 73.14	0.000 0.000	56.512 90.157	86.512 90.157	7686810 2667870	1,059	197.559 197.50u
30.00	62.5	66.06	0.000	73.556	73.556	2647640	0.937	197.437
30.75	55.0	53,74	0.000	00.716	66.716	2626101	0.870	197.370
31.50	47.4	51.17	0.000	57.663	59.683	2603115	0.799	197.298
32.25	40.0	43.67	0.000	52,472	52.472	2579402	9.724	197.224
33,00	32.6	36,30	6,606	45.364	45.364	2554918	0.648	197.143
33.75	26.7	29.63	6.000	38,376	38.376	2531242	0.574	197.674
34.50	20.7	23.68	0.000	32,037	32.037	2506690	0.504	197.604
35.25	17.9	19.30	0.000	26.349	26.343	2499667	0.445	196.945
36.00	15.1	16.49	0.000	21.646	21.846	2475182	0.400	196,900
36.75 37.50	13,3 11.5	14.17 12.36	0.000 0,000	18.611	13.611	2463184	0.363	196.863
33.25	10.2	10.81	0.000	16.06s 14.643	16.066 14.043	2453186 244449	0.331 0.304	196.831 196.809
39.00	8.6	9.50	0.000	12.350	12.350	2436744	0.364	196.760
39,75	7.9	8.36	0,000	10.719	10.919	2429335	0.259	196.757
40.50	6.9	7.40	0.000	9.687	9.687	2423654	0.240	196.740
41.25	6.2	6.57	0.000	8,627	8.627	2419110	0.222	196.722
42.00	5.5	5.89	0.000	7,712	7,712	2413189	0.207	196.707
42.75	5.1	5.32	0.000	6.729	0.727	2409343	0.193	196.693
43.50	4.6	4.87	0.000	6.261	£.261	2405087	0.182	196.682
44.25	4,4	4.51	0.000	5,702	5.702	2401363	0.172	196.672
45.00 45.75	4.1 4.0	4.24 4.05	0.000	5.236	5.236	2399168	0.163	196.663
45.50	3.9	1.05 3.95	0.000	4,857 4,558	4.857	2396996	0.157	176.657
47.25	3.9	3.90	0.000	4,337	4.558 4.337	2395355 2394175	0.151 0.148	196.651
48.00	3.9	3.90	0,000	4,180	4.180	2374173	0.145	196.648 196.645
48,75	3.9	3,90	0.000	4.061	4.031	2372730	0.144	196.644
49.50	3.9	3.90	0.000	4,617	4.017	2372614	0.143	196.643
				-				

E.S means Emersency Spillway. S.S means Service Spallway. Der. means Overflow Beeth on Crest of S.S.





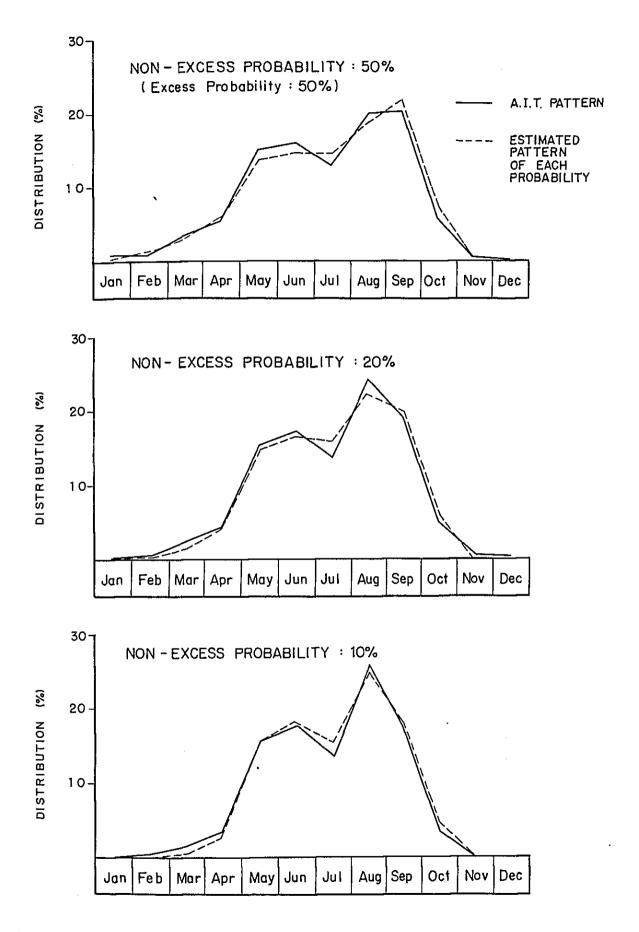



Fig. 2.3 (1) MONTHLY RAINFALL DISTRIBUTION OF LOM SAK (DROUGHTY YEAR)

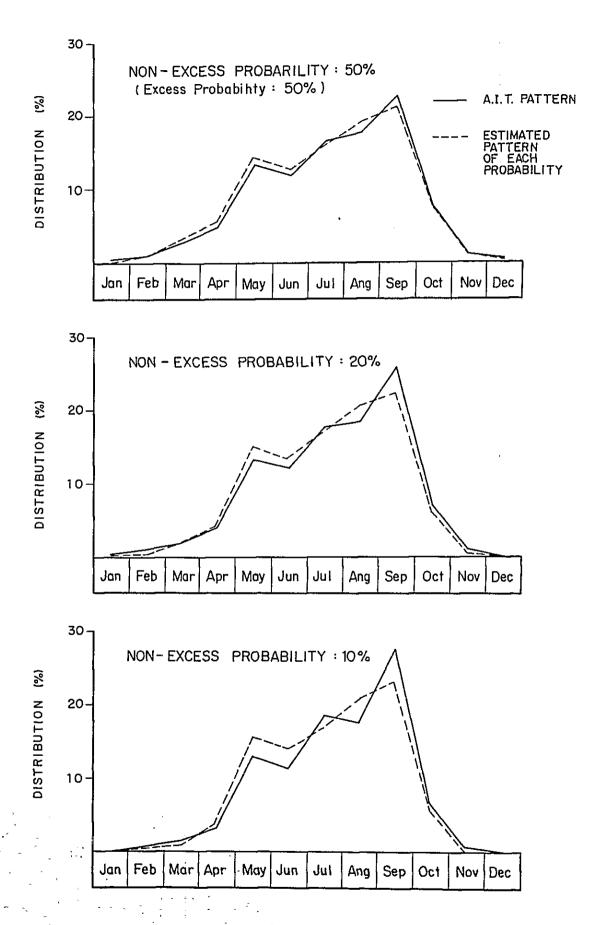
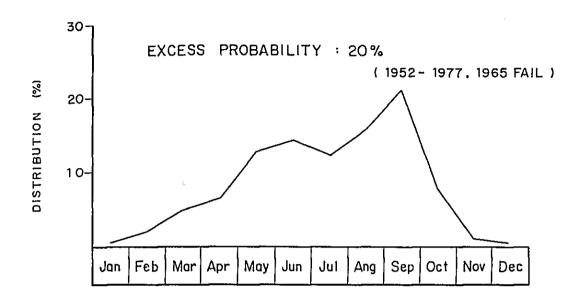




Fig. 2.3(2) MONTHLY RAINFALL DISTRIBUTION OF PHETCHABUN (DROUGHTY YEAR)



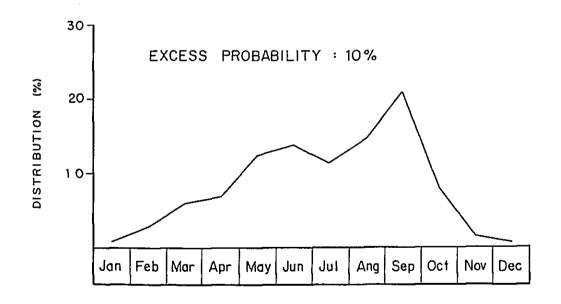
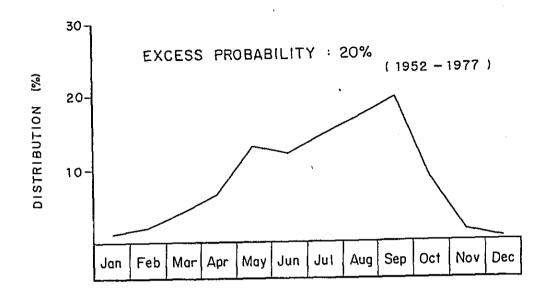




Fig. 2.3 (3) MONTHLY RAINFALL DISTRIBUTION OF LOM SAK (PLUVIOUS YEAR)



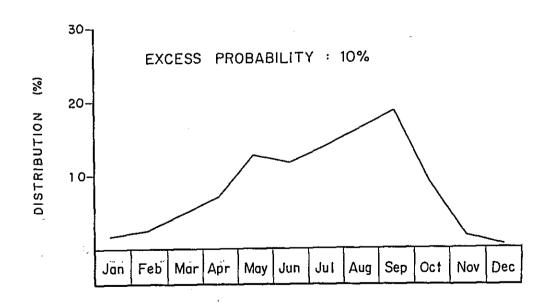
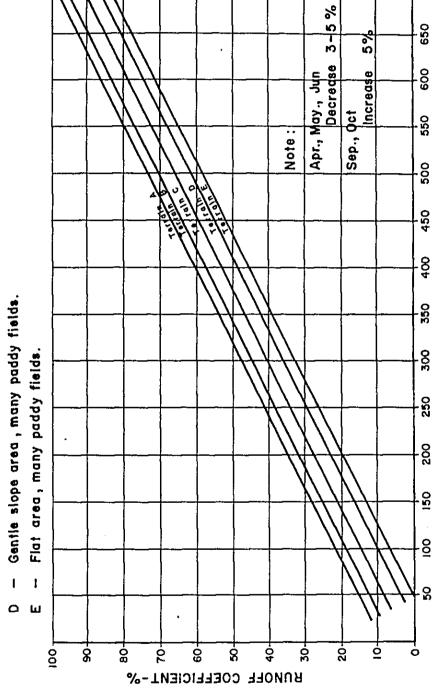



Fig. 2.3 (4) MONTHLY RAINFALL DISTRIBUTION OF PHETCHABUN (PLUVIOUS YEAR)

Type of Terrain

- Steep mountainous area, no paddy fleld. d m
  - Rather steep area, open forest.
- Rolling area, open forest, some paddy fields. ပ
  - Gentle slope area, many paddy fields.

- 90

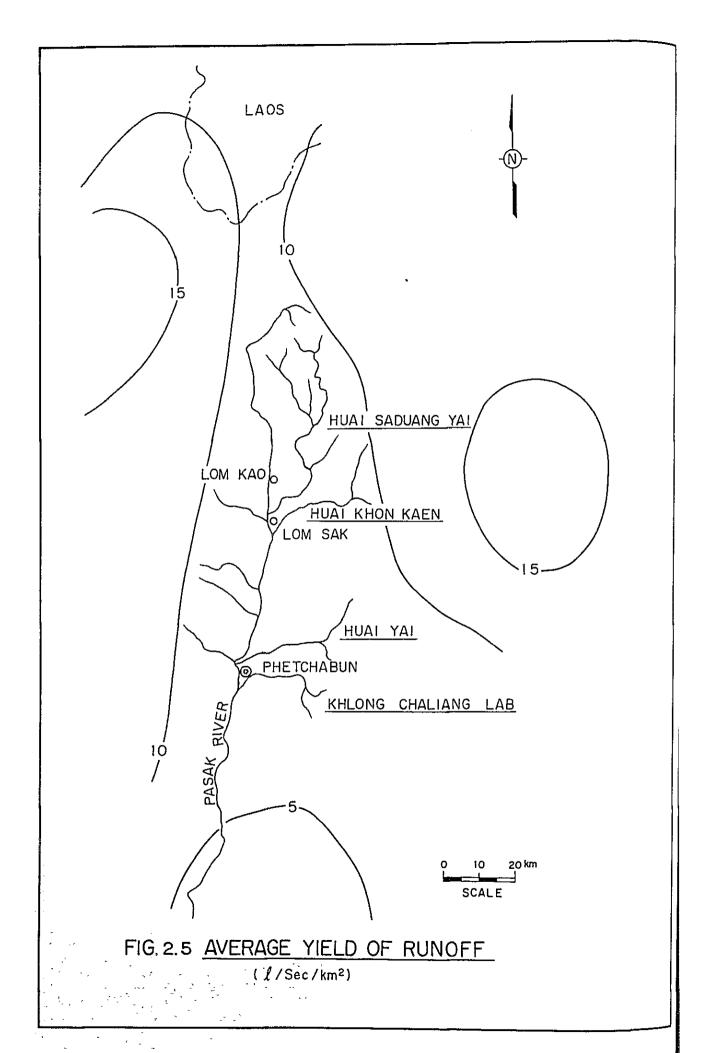

2

၀

ဂ္ဂ

6

30




. 20

0

Fig. 2.4 ESTIMATE OF RUNDFF COEFFICIENT (Developed by RID)

MONTHLY RAINFALL - mm



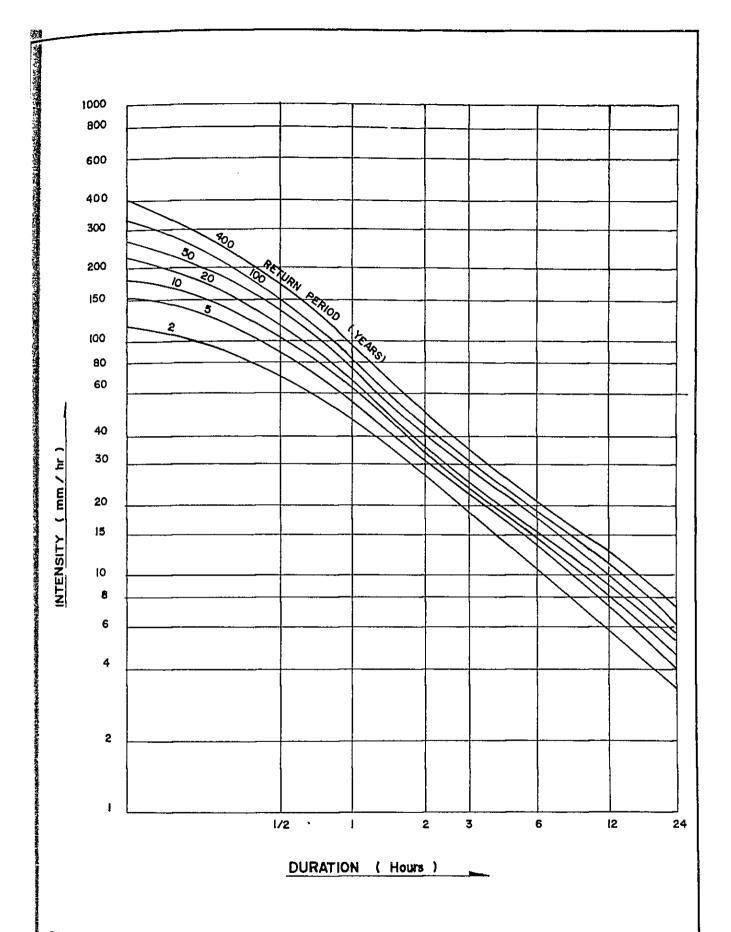
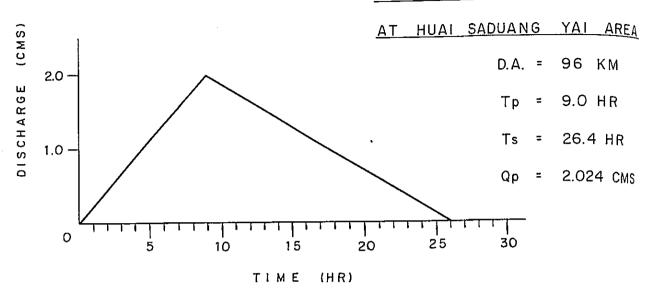




FIG. 2.6 INTENSITY - DURATION CURVE OF MAXIMUM DAILY RAINFALL (1964 - 1974)

## UNIT - HYDROGRAPH



## UNIT - HYDROGRAPH

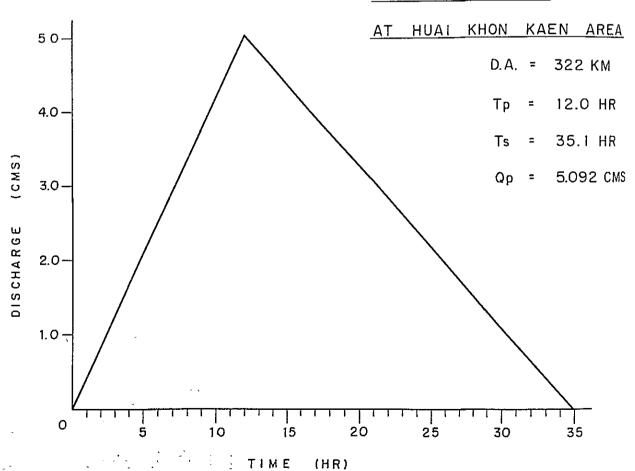
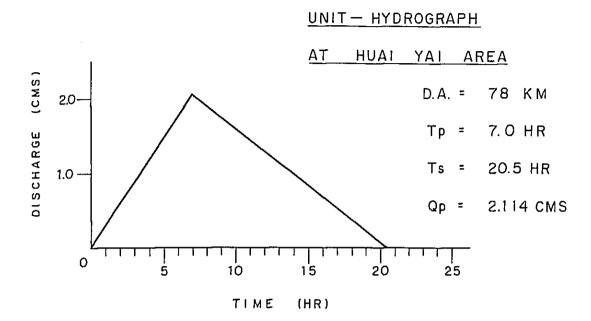




FIG. 2.7 (1) UNIT-HYDROGRAPH AT EACH SITE



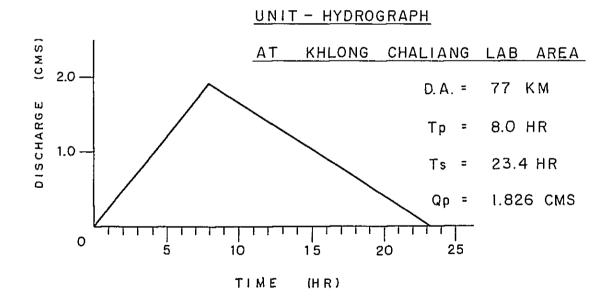



FIG. 2.7(2) UNIT - HYDROGRAPH AT EACH SITE

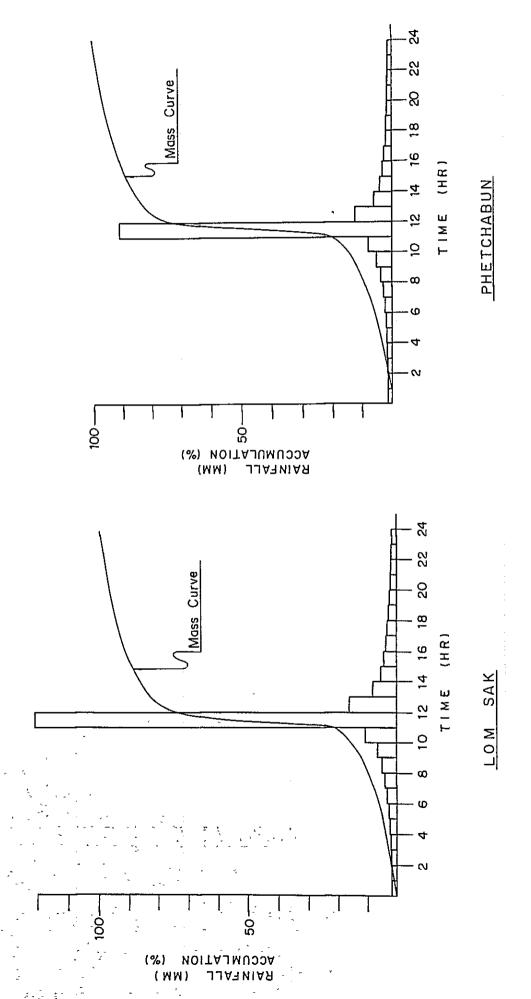



FIG. 2.8 HOURLY RAINFALL DISTRIBUTION

II - 74

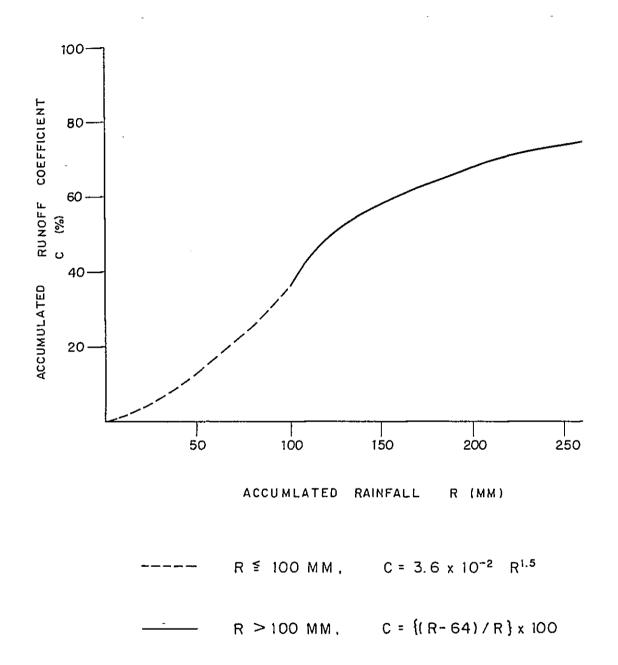
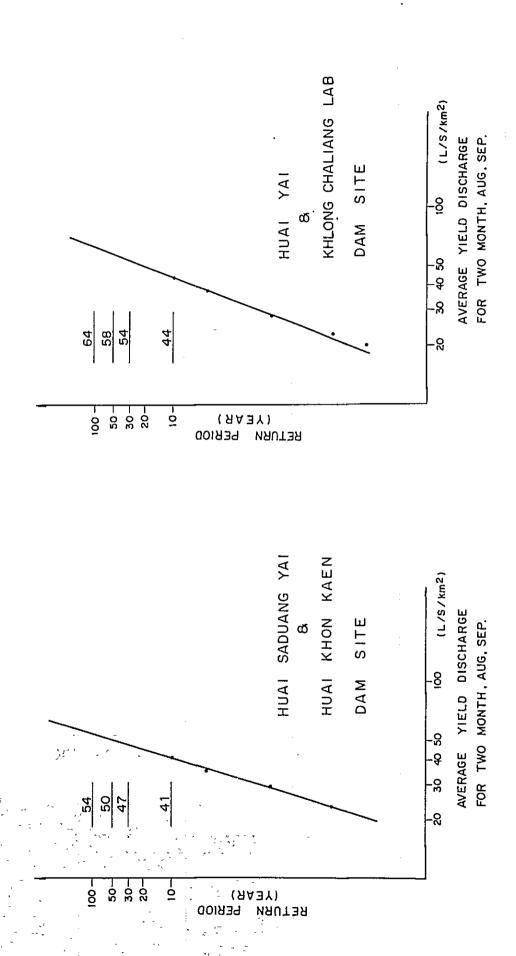
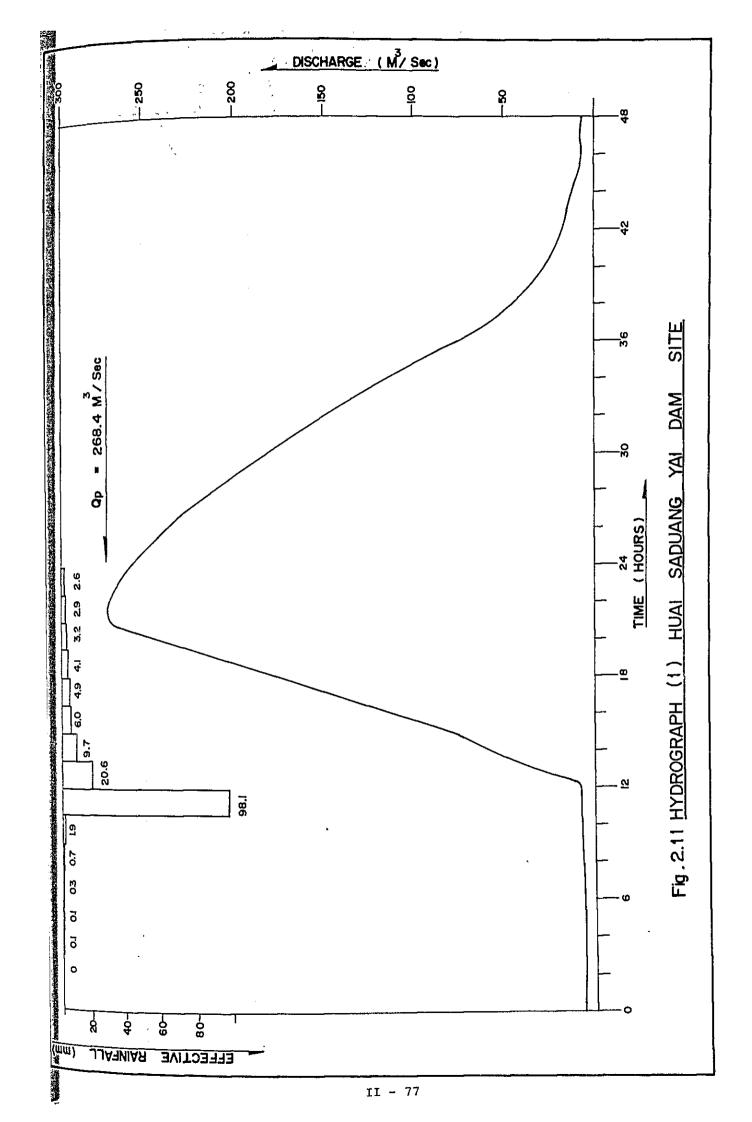
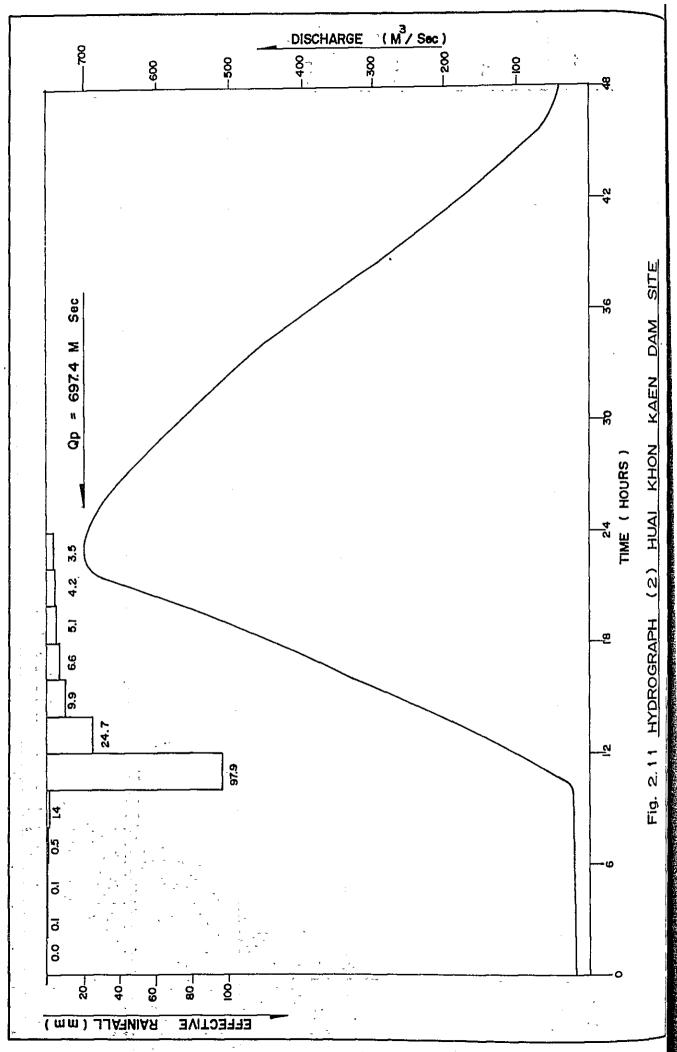
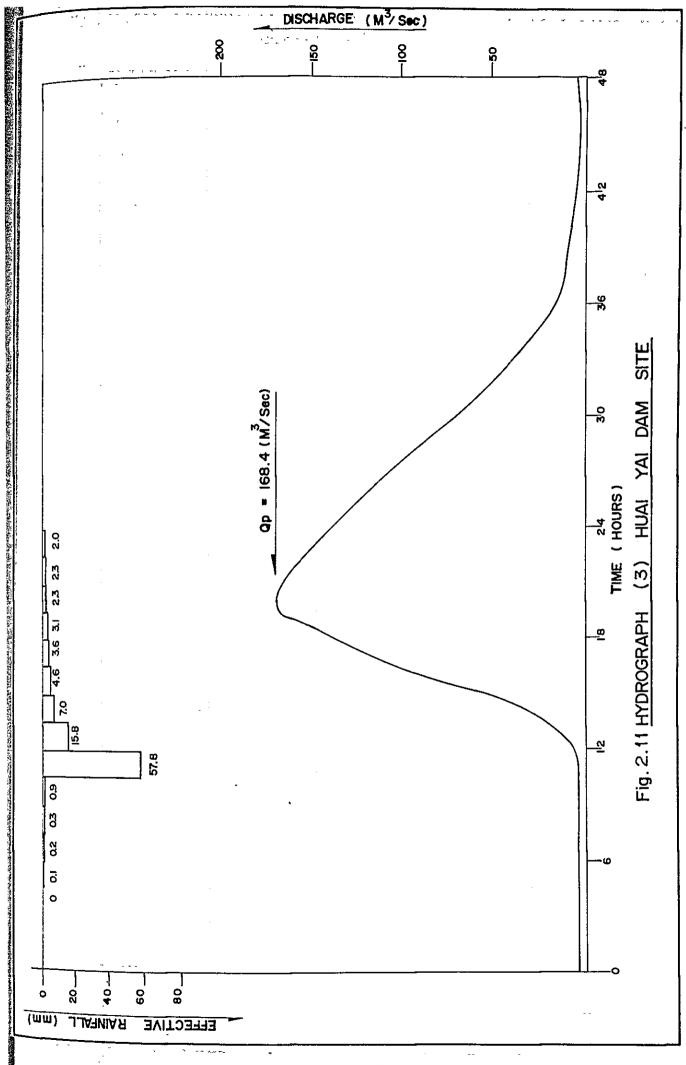
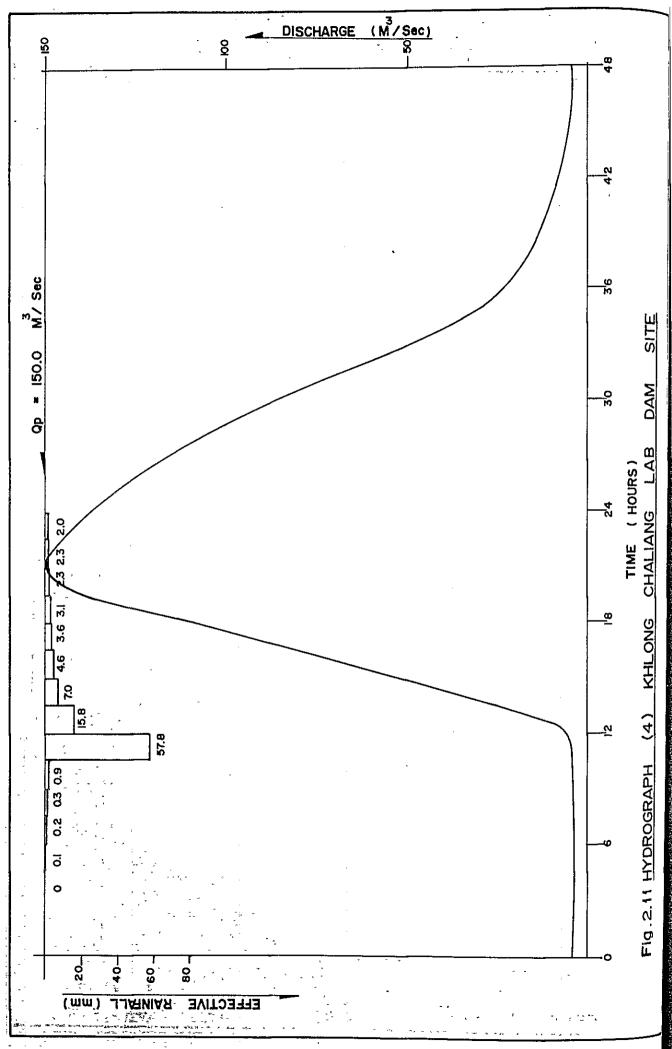
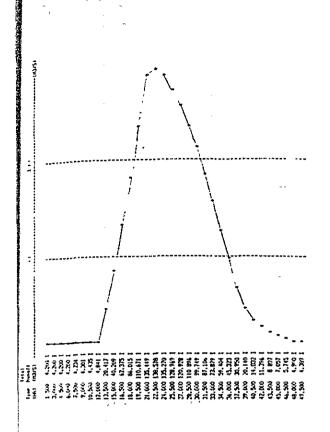
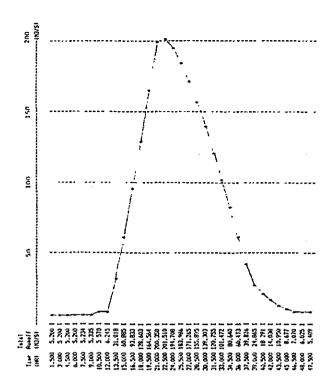


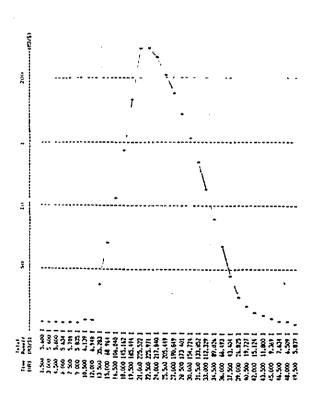

FIG. 2.9 RUNOFF COEFFICIENT CURVE



FIG. 2.10 BASE FLOW IN FLOOD TIME



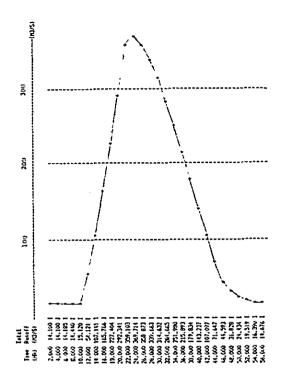


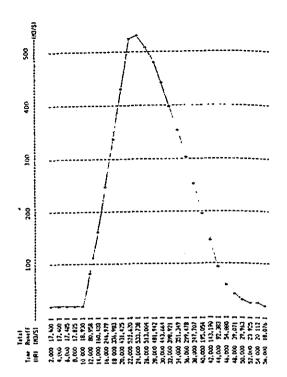





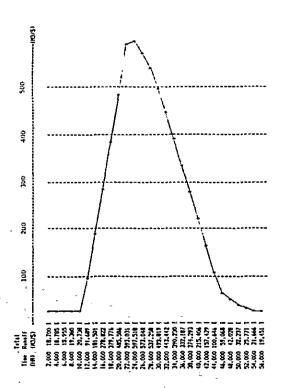






30 Years Return Period



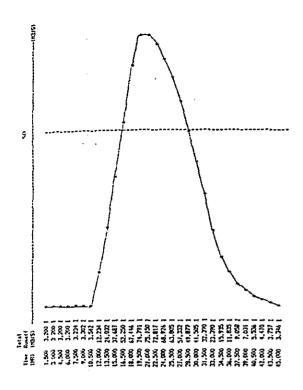

50 Years Return Period

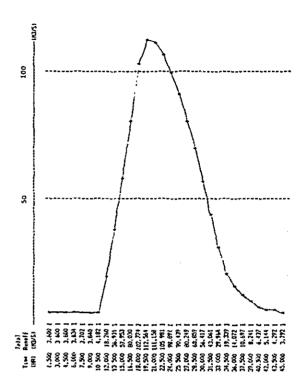

Fig. 2.12 Probable Flood for Flood Control

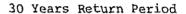
(1) Huai Saduang Yai

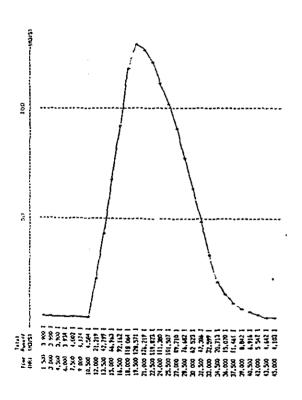





30 Years Return Period



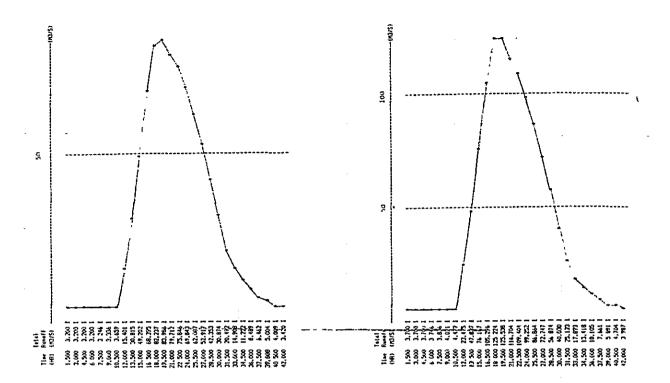


50 Years Return Period


Fig. 2.12 Probable Flood for Flood Control

(2) Huai Khon Kaen









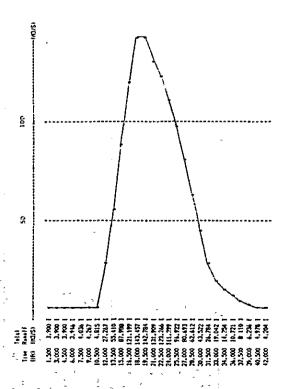


50 Years Return Period

Fig. 2.12 Probable Flood for Flood Control

(3) Huai Yai



30 Years Return Period



50 Years Return Period

Fig. 2.12 Probable Flood for Flood Control

(4) Khlong Chaliang Lab