the sediment are 23.4×10^6 , 35.6×10^6 , and 55.6×10^6 m³ respectively. They correspond to 3.6, 41.4 and 12.0% of the total storage volume of the each reservoir, respectively. The sediment levels of the each reservoir are EL. 191, 246, and 294m respectively, on the assumtion that the sedement lies in horizontal.

4.6 Flood Analysis

Probable Maximum Precipitation analysis has been already performed in the Yuam river basin. The value of PMF (Probable Maximum Flood) 6,200m³/s at Lower Yuam project site is obtained as a result of it. Flood discharge of each dam site is calculated with Creager's method in this study. PMF at Lower Yuam site was taken into consideration for this analysis. PMF 6,200m³/s at Lower Yuam site is in the case of the coefficient C of Creager equation being 40. The comparison of design flood of various dam sites in Thailand is shown in Fig. 4-20.

The Ngao river has a lot of discharge and specific run-off is $4.95 \text{m}^3/\text{s}$ -day/ 100km^2 . This is almost the same as 4.69 of Khao Laem site.

Coefficient C of Creager's equation at this site is 56. Design flood of the Ngao river basin is calculated by assuming the coefficient C 55. That of the Yuam river and the Rit river basin is assumed to be 30. Design flood of each dam site is shown in Table 4-19.

Table 4-1 Gaging and Observatory Stations of Nam Yuam River Basin

					·	
Š	River	Station	Location	Code	Orainage Area (_km²)	Period
+	7		Lat. 18°12.2' N	۷	0000	7007
	Nam Mae Tuam	ubli dos	Long. 97°56.1' E	A C	0647	- 006
•	3	C C H C	Lat. 17°50' N	V LIV	6770	-050+
J	Nam Mae Tuam	במו ועם גייים בעם וספ	Long. 97°54.8' E	1	0	2000
'n			Lat. 17°53'30"N	7.47	1 2 7 6	ADD 1 4003
)	Nam Mae KII	Edin Mae Sudi	Long. 97°57'48"E	104 I	0/0	AM. 1.1900
7	4		Lat. 17°51'18"N	T V 7	и М	M/V 1 1987-
r	Nam Iwae inguo	ophi abidi pag	Long. 97°58'12"E	10A I	000	
ч		, , , , , , , , , , , , , , , , , , ,	Lat. 18°23'18"N	FGAT	1974	MAY 12 1984-
າ	יאַכוּיי ואַכּיי	Dan Wang	Long. 97°58'12"E	ָּבְּ		
ď	Now Wide	Weigh	Lat. 18°21'56"N	כ	2617	1976-
>			Long. 97°56'06"E) J	2
^		Dadison Solve	Lat. 18°9.8' N	<u> </u>		1950-
		Similac ania	Long. 97°58' E	<u>)</u>		

Table 4-2 Monthly List of Daily Average Precipitation at Each Observatory Station

									-				n)	(Unit: mm)
Mon. Obs. Station	Jan. Feb.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.	Sep.	Oct.	Nov.	Dec.	Annual Annual Total Average	Annual Average
Mae La Luang ('67 - '84)	0.44 0.07	0.07	0.18	1.47	5.95	6.13	6.92	9.57	7.40	3.68	1.25	0.53	0.18 1.47 5.95 6.13 6.92 9.57 7.40 3.68 1.25 0.53 1,334.9 3.66	3.66
Sop Han ('67 - '84)	0.38	0.38 0.13		1.03	5.36	5.84	6.48	7.13	7.22	3.51	0.62	0.33	0.21 1.03 5.36 5.84 6.48 7.13 7.22 3.51 0.62 0.33 1,173.1 3.21	3.21
Chom Chaeng ('69 - '84)	0.35	0.35 0.12	0.25	1.16	5.26	5.91	5.92	7.28	2.60	3.68	0.58	0.34	0.25 1.16 5.26 5.91 5.92 7.28 5.60 3.68 0.58 0.34 1,115.8 3.06	3.06
Ban Tha Rua ('69 - '84)	0.54	0.54 0.08	0.20	1.48	7.35	10.46	10.46	11.90	6.95	3.81	0.97	0.33	0.20 1.48 7.35 10.46 10.46 11.90 6.95 3.81 0.97 0.33 1,669.7 4.57	4.57
Mae Sariang ('52 - '84)	0.30	0.30 0.16		1.17	5.23	90*9	6.13	7.58	6.41	3.81	0.58	0.28	0.15 1.17 5.23 6.06 6.13 7.58 6.41 3.81 0.58 0.28 1,161.2 3.18	3.18

Table 4-3 Monthly List of Daily Average Evaporation at Each Observatory Station

Mon.												n)	(Unit: mm)
Obs. Jan. Station	Jan. Feb.		Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Annual Annual Total Average	Annual Annual Total Average
Mae La Luang ('70 - '83) 3.29 4.38	4.38	5.48	6.22	4.76	3.59	3.31	2.55	3.61	3.47	3.25	3.28	5.48 6.22 4.76 3.59 3.31 2.55 3.61 3.47 3.25 3.28 1,442.24 3.95	3.95
Sop Han 2.72 4.19 ('68 - '83)	4.19	5.65	6.55	5.10	3.20	2.66	2.57	3.27	3.15	2.75	2.47	5.65 6.55 5.10 3.20 2.66 2.57 3.27 3.15 2.75 2.47 1,344.69 3.68	3.68
Ban Tha Rua 2.78 (168 - 183)	2.78 3.36	4.92	90.9	4.57	2.99	2.55	23.0	2.93	3.34	2.80	2.68	4.92 6.06 4.57 2.99 2.55 23.0 2.93 3.34 2.80 2.68 1,254.62 3.44	3.44

Table 4-4 Estimated River Runoffs of
The Yuam River at Sop Han in 1979
in cms. day, CA = 2496 sq. km

Month	Runoffs in 1979 cms. day
Jan	375.90
Feb	206.35
Mar	118.53
Apr	117.65
May	308.45
Jun	364.23
Ju1	524.51
Aug	1106.00
Sep	907.28
0ct	919.22
Nov	312.59
Dec	182.35
Total	5443.06

Estimated and Observed Monthly Runoff of	The Yuam River at Sop Han
Table 4—5	

	本本本本本本 10 ℃ 10 ℃ 10 ℃	* .0		בר ביים ביים ביים ביים ביים ביים ביים בי				Runoff of		
- 1	rved Mo	nthly Run			I he Yuam	n River at Sop	b Han			٠.
	orr or man - at Sob Han o 496km2 1968-	nan -aan Han cms 2 1968-84(6		5 6 6	-			cms. day		
	8-66879	2								
~ ~	*****	** ** ** ** ** ** ** **		1) 1967-78 2) 1979: E 3) CA~2496	6 1980- stimate km²	84: Observed runoff ald runoff by regression unit-cms.day	at Sop Han. on on river	runoff measured	at RID weir, M	Mae Sariang.
	Subfile	Totals	• .							
	Y1968		(J)	996	1969	1972		1978	1981	. 00
		000 000 000 000 000 000 000 000 000 00	270°088 290°088	201.990	1000,000 1000,000 1000,000	276.255 127.125 127.125	388.689 900.000	434.726	16.49	0,0
ا بتد	KNAR	10	20	, cu c) (N	121	ν (c) - (c) - (c)	4 37	04 	0 67 0 07 0 17
	00 00 00 00 00 00 00 00 00 00 00 00 00	(O ()	V R Ø 6	လောဂ လောဂ	⊠ι 4 (0.4	S.	123	(A) (7
	100 E	4.0	\$ €3 V €1	0 (N 0 (N	V O	- <i>V</i> - <i>V</i> - 4	ውዕ ትዕ	മേദ	(2) ((0) ((1) (200 200 200 200
· •~•	RJUL	727.8	9	859.9) th	721.8	0 (Q	4 (12)	57.07	0.00 0.00 0.00
~_ £	188UG 2008	evi e	തു ഗ്രീ	1 <u>0</u> 0 1	800	4 to 2	4 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	- 00	35.38	90.40
ž	1000 1000 1000 1000 1000 1000 1000 100	00 04 04	သောင္ သင	100 100 100	30 ₹ 20 ₹ 20 €		ω, (()	00.00 00.00 00.00	22.78 23.78	00. 00. 00.
	1RNOV	193.1		900	-10 -11	792.5	0 440 0 20 0 40	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00 0.00 0.00	. O
***	RBEC	er.	ŝ		00 00	342.6	80	ı ∩	13.48	83,38
	Y1961		5	1967	197	1973	, O	_	5	
تد ہے۔	2000 2000 2000 2000	± 0	8:	221,186	മാർ ഗ∙ വ•	40	÷.	100		
	12. 12. 13. 13. 13. 13. 13. 13. 13. 13. 13. 13		~ (O) - (Q)	111.000	- 01 - 02 - 03	2) (X 	· -	(O) IS	oğ iç	
-	TRAPE	ල ග	·	91.728	67.9	(00) (20)		. 10	3	
ڪ سند		യാർ യർ സംഗ	(2) (4) (2) (3)	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	10 6 10 6	(V) 1 (V) 1		4.	Çİ,	
	200	9 CS	မက ဗေလာ	2 2 0 0 0 0 0 0 0 0	20 20 30	かんり・7 かんしょく かんしょく かんしょく かんしょく かんしん	· .	(M.D.	e,	
. a	18806	518.18	Š	1927, 696	246.	20	•	3.00	ງ ເຄື່ອ ກຸກປຸ	
2	で (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	© 6 V- √ w e	(T) (I)	27.70 0000	ري دي دي دي	© 0.000 0.000 0.000 0.000 0.000	٠.	40	oi oo	
	>0X25	1300. NOD	1800.188 611.988	0.00 0.00 0.00 0.00 0.00	1073,000 706,700	.094 .004 .002 .002	1470 1700 1805 1805	919.2228 312.598	1760 0000 0000 0000	
_	RDEC	8.18	4	280.986	75.0	8		· (?)	(c)	
	Y1962		1965	196	1971	4	1977		1983	
		σı	+110 110 110 110 110 110 110 110 110 110	လ်ပ လပ်	დ * • იი • იი	$\omega_{\rm t}$, CJ.	
	ARMEN .	٠	70.4	;	86.11	- 00			~ ⊙ .c.	
	TRAPE	20.1	(S) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A	(A)	36,35	4 i		67	Zı	
	#####################################	رزم	0.0 0.0 0.0 0.0	2003	ენ ექ ექ	~ 0 O G	rin n	90	76.00 16.00	
	18.30L		(A) (A) (A) (B) (B)		988. 988. 988.	200	- N-		 636	
	18.00 10.00 10.00		ତ୍ର ୧୯୯ ୧୯୯	on is Out	ପ୍ରେଟ ୧୯୯ ୧୯୯	©) 0 ₩ 6		(0) (0)	67.47	
_	ROCT		81.26	S	262.68	(Z) (Z)	YA KA	14	78.08 88.08 88.08	
	MRNOV	കൾ അവ ആവ	ക വരം 1 മര 1 മര	840, 840, 840,	570,400 417,788	890. 900. 900. 900.	0010 010 000 000 000	539.288	5024 5026 5026	
•)	:				`			0	

Runoff of	
Monthly	Tha Rua
ed and Observed Monthly R	River at Ban Tha Rua
and	<u>.</u>
Estimated	The Yuam F
Table 4-6 Estimated ar	

	s Sariang.		. O	700 010 010 010	5	មាន ខាត	69	φφ γ	100	200	ώ. Ω. ψ.																				
	at RID weir, Mae		1981								2286.439 1451.278	1982	T)	Ņ	60 6 60 6	2 12	6	დ დ - ი	, w	~ (0 0	1356,628	1983	N.	.	N	00 e	v o	9 (4	0570 0400 0400	V V	v
cms. day	water-take raph method		~	75	o b	200			, 4 , 4	60	722	1979	8,62	96.03	64 6 64 6		80	() a	7 (O)	27.07	2+00.04 898.878	1980	₹.			952	0 0 0 0 0	0 00 0 00 0 00 0 00	90000		643
	ia Rua + Irrigation 10 Rua. Variant Unit Hydrog	-	IO.	1284, 188 717, 688		ഗന	001	N. J	· ©	(Z) (r 3.	1976	16.20	61.59	// // の 4	27.88	526.89	ひつび ひつびい かいかい ひかい ひかい ひかい	659.88	00 u	r on	-	52.83	20.0 20.0 20.0	43.89	33.69	1 7 . 1 2 A A	040.040	00.00 00.00 00.00 00.00 00.00 00.00	221.30	391.02
	at Ban Th at Ban Th f by Time day			ώr	8	$\frac{0}{2}$	800 800 800 800 800 800 800 800 800 800	112.90	35.00 35.00 35.00	986.68	00	1973	00	8	n n 20 0) (J)	922.70	101. 700 700	674.08	ଜନ ଜନ୍ମ ଜନ୍ମ	1715.466	1974	(X)	or or) ලා ()	964.60	000° 000° 000°	0.00 0.00 0.00 0.00	80 80 80 80 80	494.18	283.98
	: Cbserved runoff a : Observed runoff a : Estimated runoff km3	-			8	200	10	6 co c	12	0	2 W.	1970	120	•2	0	າ ເທ ກ ເທ - ທາ	878	9 - 9 -	 	0	1727.588	1971	ις: Izi	. ₩ 0) -	4 ((1)	n c		000 000 000 000 000 000 000 000	9 9 m	9
Note:	1) 1976-84: 2) 1969-75: 3) 1960-68: 4) CA=5770 k		9	978. 978. 988.		χ.,	7.0	0,0 0,0 0,0 0,0		833	ot et	1967	- (3)	(23)	ሲ ነው የ	σ	· *	നാര	രസ	100.0	1464. NEE	1968	60	44.0) ¢	775.58	988.38 37.4 38.4	801.75 861.75	5705.200	840.00.7 20.00.00 20.00	202.00
	. I -		v)	1152.300	'n	তে ব	0.460	174.8	200	914.0	ώώ	1964	73.888	98.900	ପ୍ରତିଶ୍ୱର କର ଜଣ୍ଡ ଜଣ୍ଡ	000 000 000 000	277,899	00 00 00 00 00 00 00 00 00 00	1000 1000 1000 1000 1000	814,988	1427.000	. 29	28.3	~. 	4 CO	7-6 3	7.00		(4) (4) (4) (4) (5)	684 486 7	22.00
Nas Yuas Tha Rua 1960-	- * - * - * - * - *	Totals	4,41	891 888 888	13	ගු ග	(2)	ω €	Š	Ø (2879.988	į	ক্র	201	~ o	200	3	20.0	30	200	1512,900		<u>ب</u>	တင	2	959 7	7 B C C	700.0	7296.2000	ကတ ကတ ကတ ကတ	761.3
of Ban 5778	30 : # 40	Subfile	Y1968	2000 2000 2000 2000 2000 2000 2000 200	MRMAR	MANA ANA ANA ANA	RUCH	100 S	MRSEP	MROCT	AKK AKBEC ARBEC	Y1961	MRUHN	MARKE	2000 2000 2000 2000	MRMAY	というない	NPB CO	MRSEP	MROCT	MRDEC	V1962		64 6 14 2 14 0 14 2 14 0 14 2	MARPA	MRMAY	22 22 23 23 24 25 25	MAN COL	MRSEP POSEP	AR AR SOC SOC	MRDEC

Table 4-7 Scattergram and Regression, Nam Mae Rit

Nam Mae Rit

Scattergram	Regression
Y=Daily Runoff o f Nam Mae Rit at Ban Mae Suat cm s EGAT APR83-MAR 85	Model: Y=b0+b1*X1+b2*X2 Coeffs of Normal Equations:
X1=Baily Runoff	A11= 641
of Nam Yuam at S	A12= 10643.86 A13= 46939.115
96sakm JAN1983-D EC1984 (4days in	Bi= 7331.24 A2i= 10643.86
1984 is estimat ed)	A22= 399635.8064 A23=
X2=Recovered Dai	1536443.63865 B2= 218666.112
ly Runoff of Nam Yuam at Ban Tha	A31= 46939.115 A32=
Rua cms CA=5770 sakm JAN1983-NAR	1536443.63865 833=
1985	7169910.36788 B3= 995177.57162
Period used for Scatteraram Plot 2 years	Solution 1
No of points= 641	b0= 2.3450941098
Range of Y (cms)	b1= .05734496051 b2= .11115810224
1.84 - 76.4 Range of X1 (cms	Error
.68 - 217	Erri= .00000002
Range of X2 (cms)	Err2= .000001 Err3= .000006
7.3 - 580.041	Correlation
Y file:DRRit X1 file:DR113H	Coefficient R2=
.X2 file:DR114W	.816817446532

Corr. coeff.= .903779534266

Table 4-8 Scattergram and Regression, Nam Mae Ngao

Nam Mae Ngao

Scatteraran

Y=Daily Runoff of Nam Mae Nsao a t Ban Mae Nsao c ms EGAT CA=935sa km May1984-Mar19

X1=Daily Runoff of Nam Yuam at S op Han cms NEA C A=2496sakm JAN19 84-DEC1984

X2=Recovered Dai ly Runoff of Nam Yuam at Ban Tha Rua cms CA=5770 sakm JAN1984-MAR 1985

Period used for Scattergram Plot 1 years No of points= 245

Range of Y (cms) 4 - 419 Range of X1 (cms) 2.15 - 217 Range of X2 (cms) 9.88 - 580.041

Y file:DRN9ao X1 file:DR113v X2 file:DR114Y

Regression

Model: Y=b0+b1*X1+b2*X2

Coeffs of Normal Equations:

A11= 245 A12= 6537.55 A13= 28793.171 B1= 15724.64 A21= 6537.55 A22= 319823.9567 A23= 1194144.48182 B2= 633339.139 A31= 28793.171 A32= 1194144.48182 A33= 5592099.61498 B3= 3134175.9769

Solution

b0=-2.089383883 b1=-.54183348322 b2= .68692685984

Error

Err1=-.0000003 Err2=-.000012 Err3=-.00005

Correlation Coefficient R2= .911485981406 Corr. coeff.= .954717749614

Table 4-9 Scattergram and Regression, Wang Khan

Wang Khan

Scatteraram.

Y=Daily Runoff of Nam Mae Yuam at Ban Wans Kan cms EGAT CA=1173s skm 12MAY1984-MAR1985

X=Daily Runoff of Nam Yuam at Sop Han cms NEA CA = 2496sakm JAN198 4-DEC1984

Period used for Scatteraram Plot 1 years

Ranse of Y (cms) 1.42 - 142 Ranse of X (cms) 2.15 - 217

Y file:DRWKan X file:DR113y

Regression

Model: Y=b0+b1*X

Coeffs of Normal Equations:

A11= 234 A12= 6486.57 B1= 4900.93 A21= 6486.57 A22= 319574.4865 B2= 226957.126

Solution

b0= 2.8753818955 b1≈ .65182224758

Error

Err1=-.00000004 Err2=-.000002

Correlation Coefficient R2= .886285621289 Corr.coeff.= .941427438149

롸

ae Suat		>		
River at Ban Mae		2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \omega \\ \omega $
of The Rit R		>4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -	\mathcal{F}	74444444444444444444444444444444444444
Runoff		> 01	> \(\text{A} = \text{A} = \text{A} \) \(2
Observed Monthly		> \(\text{A} \) \(\	> 01111110011000000 $> 0111110011000000000000000000000000000$	$\begin{array}{c} A \\ A $
stimated and O		\rangle \chi \chi \chi \chi \chi \chi \chi \chi	$\frac{2}{2}$	> 0111111000000000000000000000000000000
4—10 Esti		**************************************	\times HHHHHHMM MMMM MMMM MMMMMMMMMMMMMMMMMM	4 4 4 4 4 6 6 6 6 6 6 6 6
Table		$\begin{array}{c} \times$ 01-14-000 \ 00	$\begin{array}{c} \mathcal{F}_{\mathcal{O}} & \mathcal{O} & \mathcal{O} & \mathcal{O} \\ \mathcal{O} & \mathcal{O} & \mathcal{O} & \mathcal{O} & \mathcal{O} \\ \mathcal{O} & \mathcal{O} & \mathcal{O} & \mathcal{O} & \mathcal{O} \\ \mathcal{O} & \mathcal{O} & \mathcal{O} & \mathcal{O} & \mathcal{O} \\ \mathcal{O} & \mathcal{O} & \mathcal{O} & \mathcal{O} & \mathcal{O} \\ \mathcal{O} & \mathcal{O} & \mathcal{O} & \mathcal{O} & \mathcal{O} \\ \mathcal{O} & \mathcal{O} & \mathcal{O} & \mathcal{O} & \mathcal{O} \\ \mathcal{O} & \mathcal{O} & \mathcal{O} & \mathcal{O} & \mathcal{O} \\ \mathcal{O} & \mathcal{O} & \mathcal{O} & \mathcal{O} & \mathcal{O} \\ \mathcal{O} & \mathcal{O} & \mathcal{O} & \mathcal{O} & \mathcal{O} \\ \mathcal{O} & \mathcal{O} & \mathcal{O} & \mathcal{O} & \mathcal{O} \\ \mathcal{O} & \mathcal{O} & \mathcal{O} & \mathcal{O} & \mathcal{O} \\ \mathcal{O} & \mathcal{O} & \mathcal{O} & \mathcal{O} & \mathcal{O} \\ \mathcal{O} & \mathcal{O} & \mathcal{O} & \mathcal{O} & \mathcal{O} \\ \mathcal{O} & \mathcal{O} & \mathcal{O} & \mathcal{O} & \mathcal{O} \\ \mathcal{O} & \mathcal{O} & \mathcal{O} & \mathcal{O} & \mathcal{O} \\ \mathcal{O} & \mathcal{O} & \mathcal{O} & \mathcal{O} & \mathcal{O} \\ \mathcal{O} & \mathcal{O} \\ \mathcal{O} & \mathcal{O} & \mathcal{O} \\ \mathcal{O} & \mathcal{O} \\ \mathcal{O} & \mathcal{O} & \mathcal{O} \\ \mathcal{O} \\ \mathcal{O} & \mathcal{O} \\ \mathcal{O} & \mathcal{O} \\ \mathcal{O} \\ \mathcal{O} & \mathcal{O} \\ \mathcal{O} & \mathcal{O} \\ \mathcal{O} \\ \mathcal{O} & \mathcal{O} \\ \mathcal{O} \\ \mathcal{O} & \mathcal{O} \\ $	$^{+}$ $^{+}$
ed & Ubse outhly Run Nam Nae R Nam Nae Su CHE137659	r _e	>	$>$ 0 \rightarrow	$\begin{array}{c} \times \alpha = -4 - 4 \alpha $
M	FiletMR		NERGENOGONAS REGERNOGONAS NERGENOGONAS	

Mae Ngao		$\begin{array}{c} 000400-000\\ 00000000\\ 00000000000000000$		
River at Ban N	. •	$\begin{array}{c} 0.40444 & 0.40044 & 0.40044 & 0.40044 & 0.40044 & 0.4004 & $	$\begin{array}{c} 0.00000000000000000000000000000000000$	>400
The Ngao Ri		>4001-0000000000000000000000000000000000	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Runoff of			>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	~ % % % % % % % % % % % % % % % % % % %
ved Monthly		> 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	> \(\text{A} \text{C}	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
ed and Observed		$\begin{array}{c} -4000404040404040404040404040404440444444$		↑ ₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩
1 Estimated		> 4001 - 00 00 40 00 00 00 00 00 00 00 00 00 00	> \(\alpha \) \(> Nu
Table 4—1		> D 4 0	> N 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	> 44401-000000000000000000000000000000000
OFFICE STREET OF		> 6000 → C	>	> 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
A WATER TO A WATER OF A CONTROL	File:MR8	X88877000000000000000000000000000000000	SOCH VOR CENTRAL SOCIAL	JE 2000 2 200 200 2 200 2 200 2 200 2 200 2 200 2 200 2 200 2 200 2 200 2 200

Table 4-12

		2	
Khan		$ \begin{array}{ccccccccccccccccccccccccccccccccc$	
iver at Wang		2011111000004002 201111000004002 20200420010100000000 202001010101000000000000	$egin{array}{llllllllllllllllllllllllllllllllllll$
The Yuam Ri		>	— ომოტიტის განანანა — ანამე მანანანანანანანანა ან ანანანანანანანანა
Runoff of		> 001-1000000000000000000000000000000000	——————————————————————————————————————
bserved Monthly		\sim 0011111004 \sim 00	$-\alpha \omega \nu_{r} + \alpha \omega \nu_{r} \nu_{r} \nu_{r} \nu_{r} \sigma_{\sigma} \omega$ $-\alpha \omega - \alpha \omega \sigma_{\sigma} + \alpha \nu_{r} \nu_{r} \nu_{r} \sigma_{\sigma} \omega$ $-\alpha \omega \omega \omega \omega - \alpha \omega - \alpha \omega - \alpha \omega \nu_{r} \sigma_{\sigma} \sigma_{\sigma} \omega$ $-\alpha \omega \omega \omega \omega \omega \omega \sigma_{\sigma} $
o pue		> \(\alpha = \alpha \) \(\alpha = \alpha \) \(\alpha \	$egin{array}{llllllllllllllllllllllllllllllllllll$
-12 Estimated		> 0 $\rightarrow 0$	μ of
Table 4-		>- 001	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
d % Obse- thly Run am Yuam Khan cms sakm JAN		$ \begin{array}{c} 0.000000000000000000000000000000$	\sim WORD HIGH WIND PRODUCE A POOL TO CONTRACT AND THE PRODUCT
Estinated off of Nort of Est Chall73s 1960-DEC1	File: MR9	NAMAKANJOUTAOO EMEGEDDDMOONS PLEETDOWOLAS	THE CELL OR SEARCH SHOW THE CELL OR SHOW

Table 4-13 Monthly Comparison of Daily Average Runoff, Observed and Estimated (by Tank Model)

		٠							<u> </u>	(Unit:	m^3/s , excp.	кср. Апп	. Total (m3/s.day))	/s.day))
Mon												١.	Annual	A 222.03
	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Total	Amoraca
Year		. !											(m ³ /s.day)	79777
1970	48.09	34.65	25.20	24.65	49.25	69.23	145.13	247.13	262.60	145.77	77.21	55.73	36,186	99.14
277	30.03	23,25	16.53	12.05	26.10	43.88	54.76	163.55	258,70	219.09	111,33	64.93	31,254	85.63
1071	35.65	25.52	20.01	14.71	29.82	83.98	323,55	359.68	268,10	142.05	76.05	47.96	43,720	119.78
7767	40.90	33,16	29.04	20.41	14.81	18,36	154.76	5	230,67	133.48	64.29	39.31	29,338	80.38
1073	33.12	24.06	19.15	19.19	17.21	36.34	197,19	310.55	195.10	128.60	95.40	60.26	34,827	95.16
7/17	31,56	24.31	17.32	13.40	13.20	12.70	24.17	116.09	129.23	159:28	92.61	55.62	21,078	57.59
1072	-40°03	26 - 55-	-21.92	16.05	31,63		133.28	264.52	289.13	180.16	88.30	55.34	37,004	
6761	32,43	26.15	19.56	13, 59	16.58	22.38	51.21	147.37	196.02	136,46	65.19	36.94	23,305	63.85
1074	35.26	25.12	17,15	16.18	31.12	72.20	127.66		174.83	116.01	83.14	41.42	29,574	81.03
+/61	28.89	22.15	15.54	12.70	12.50		87.48	191.97	142.29	116.48	70.65	40.30	23,603	99.49
1075	38.84	25.63	21.92	15.22	24.98		140.70	205.09		-	85.96	50.25	34,723	95.13
2761	41.86	28.53	22.70	15.79	13,95	ις) Ιζ	83.14	113.47	132.39	94.92	51,15	31.57	20,325	55.69
1076	36.01	26.26	18.64	13.95	26.70	50.89	115,43	221.10	188.63	154.91	82.99	48.36	30,111	82.27
0 / 1	25.97	20.24	14.84	12.82	12,70	14.53	44.54	44.54 112.68		75.40	46.11	26.90	15,639	42.73
1077	52,73	24.76	18.37	17.57	20.02	29 . 29	71.02	170.48	290.53 115.72	115.72	72.43	44.48	28,265	77.44
1161	31.45	20.00	15.45	15.62	12,14	15.01		77.67	174.65	119.01	63.53	39.28	18,738	51.34
1070	32,31	23.49	15.80	11.67	21,91	23.35	133.64	244.19	211.10	140.91	58.89	34.66	29,134	79.82
4310	30.03	24.60	19.17	13.38	13,53	13.96	83.26	133.52		184.34 171.03	82.15	44.01	24,835	68.04
10.70	24.92	19.14	13,29		18.94	23.24	58.62	58.62 241.01	116.29	100	47:23	28.17	21,788	26.69
4717	32.19	24.84	17,75	1.	12,00	27.33	32,79	129.39	144.22	130.45	59.01	32.84	20,004	54.80
0001	17.96	13.29	-10.92	90.6	32,84	51.58	04.70	143.79	327.37	185.26	82.61	52,57	31,183	85.20
7300	25,58	19.04	13,25	12:00	66.20	47.05	69.28	110.32	279.99	197.98	106.01	63.82	30,843	84.27

Wote: Upper line is observed runoff.

Lower line is estimated runoff.

From : "Nam Mae Yuam Hydroelectric Development Project, Feasibility Report". Volume I, Mar. 1984, JICA, Table 3-19.

Table 4-14 Monthly Runoffs Estimated by Time Variant Unit Hydrograph Method

	Runo	off Est	imate d	of NAM	YUAM	at Ban	Tha R	ua (CA:	48901	_{(m²),} m	s day
	1970	1971	ا972	1973	1974	1975	ا 1976	1977	1978	1979	1980_
NAL	31.99	32.97	26.73	39.98	28.02	38.89	24.61	32.21	32,31	27.42	22.89
	991,7	1022.2	828.6	1239,4	868.5	1205.5	762.8	998.5	1001,7	850.0	709.7
FEB	23.91	25.37	19,97	23,45	21.90	25.67	18.90	24.66	27.00	21.21	15.94
	669.5	710,4	579.2	656,7	613.2	718.8	548.0	690,5	756.0	593.8	462.2
MAR	17.01	27.84	15.48	21,91	13.86	19.31	14,43	21,55	17.36	14,51	! 1.53
	527.4	863.0	479,9	679.2	429.7	598.5	447.2	668.1	538.2	449,9	357.3
APR	15.79	19,35	14.38	16.04	14.72	16,36	12.62	19.01	14 07	13.26	10.58
	473.7	580.5	431.5	481.2	441.7	490.8	378.7	570.4	422.2	397.7	317.4
МАҮ	36,25	28.83	17,16	29.20	24.71	27.26	20.99	27.68	25.IO	22.51	32.87
	1 123.9	893.8	532,1	905.3	766.1	845.1	650.6	858.1	778.2	697.9	1018.9
JUN	59.58	62.63	43.24	49.15	52.14	59.53	47.00	45.71	43.04	47.01	51.51
	1787.5	1878.9	1297.3	1474.4	1564-3	1786,0	1409.9	1371.4	1291.2	1410.4	1545.2
JUL	102,19 3167.8	178.55 5535.1	158.85 4924.3	108.50 3363.5	111.53 3457,3	104.01 3224.4	1 19 85 3715.4	102.37 3173.4	133.65 4143.0	68.79 2132.4	109.04
AUG	230,27	242,39	268.39	219.09	213.92	204.47	220.91	179,90	255.83	240.99	135,92
	7138.3	7514.2	8320.2	6791.8	6631.4	6338.7	6848.1	5576,9	7930.8	7470.7	5763.6
SEP	247.19	170,97	174.07	295.99	187,15	217.02	188 .65	255.67	218.27	180.77	327.32
	7415.7	5129.1	5222.1	8879.7	5614,5	6510.6	5659.6	7670,2	6548.6	5423.1	98 19.5
ост	152.11 4715.5	114.75 3557.3	124.32 3853.8	157.15 4871.7	119.17 3694.2	128.41 3980.8	128.04 3969.1	156,92 4864.4	140.94 4369.i	108.26	192.20 5958.3
NOV	74.73	65.40	95,45	78.64	85.17	64,07	66.15	72.44	68.74	52.91	89.91
	2241.9	1961.9	2863,6	2359.3	2555.2	1922.2	1984.6	2173.2	2062,3	1587,4	26.97.3
DEC	50.80	42.10	60,24	35.88	46.05	35.84	48.38	53.56	39.93	28.11	51.35
	1574,7	1305.0	1867.5	1112.2	1427.5	1110.9	1499.7	1660,5	1237.7	871.5	1591,7
Total			,								

From: Long Term Rainfall-Runoff Analysin, Proc of JSCE, NO.336 Aug 1983, pp 47-53.

Table 4-15 Ordinates of Time Variant Unit Hydrographs The Yuam River at Sop Han (R13336)

(CA = 2496 km²)

	01	02	03	04	05	06	07	08	09.	10	- 11	12		
	KOIOI													
01	.06704		'			[.								iagona sums
	K0201	KO202									· · ·			gona
02	.11686	.01044			·	_					' '		1) o
	K0301	K0302	козоз	1	1,							100		۵
03	.01598	.08747	01044			ŀ			}				21	
	K0401	KQ402	KO403	K004			1							
04	.01389	.01044	.05348	.01044]			
					K005	1				9.5		1 14		
05	KO501	.01389	KO503	K004	,01044								``.	<u> </u>
-	——— <u>—</u>						1				}		*.	
06	K0601		K0603	K004	K005	KOOE	1	[
<u> </u>	2.41.4.2	.02625	.01044	.01044	7	.01044	 	/ t					·	
07	K0701	K0702	K0703	K004	K005	K006	3712						. :	
ļ.,	.08136	.01433	.02625	.01044	*	.01044	.00241		· ·		* * *			
امرا	K0801	K0802	K0803	K004	K005	K006	K712	*						
08	.20242	.07054	.01044	.01044	5	.01044	.00241	.00241						ĺ
09	K0901	коэоз	KO903	K004	K 005	коое	K712	•				1.		
09	.18925	,04737	.07054	.01044	•	.01044	00241		.00241			1 1	1.4	
امرا	K 1001	K1002	K1003	K004	K005	K006	K712	#	,	'				
10	.17303	.01044	.04737	.01044	*	.01044	00241			.00241	Tay of	19 1941		
	KIIOI	K1102	K1103	K004	K005	K006	K712	. *			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
11	.01044	.09643	01044	.01044	7	.01044	00241				.00241			
	K1201	K1202	K1203	K 004	K 005	K 006	K712	1 e 2	·	100	•	K 7 12		K. H.
12	.09664	.01044	.04051	.01044	4	.01044	.00241			1 2 2 2	- 42	.00241	12	
		ко102	KO 103	K004	K 005	K006	K712		4			K712	-	-
13		.09091	01044	.01044		.01044	.00241				NAV 1	.00241		.13370
			ко203	K004	K 005	K006	K7!2		*			K712	1	
14			.01044	.01044		.01044	.00241					.00241		.30359
				K004	K005	K006	K712	•		. *		K712	1	
15				.01044	"	01044	.00241					00241	. 1	.08264
					K005	K006	K712	,		*	, ,	K712		
16			11	٠.	.01044	01044	.00241				* 33	.00241		.08400
						K006	K712	,			,	K712		
17						.01044	.00241	100			. "	.00241		.12453
	7.						K712	,				K712	1	
18				-			.00241		Lagrand C	No. Phys. 1		.00241		.09533
							T-0		•		•	K712		
19		2				1		.00241	ejeja a	•		00241	1	.26822
								1.002+1		10.0		· · · · · ·		.20022
20								i Karasi	~ 241		1, 500	K712		7400
	<u></u>								.00241			.00241		.34294
21						4		40.1		00041	'	K712	130	2000
<u>-</u> -							·	 		.00241		00241	\leftarrow	. 25591
ایرا											•	K712	-	
22	···							 	 		.00241	.00241	igspace	.35575
, ,		and the second	• .								1.11	K712	1	
23				·						ag til sa		.00241		.07710
							-						1	
														.24377

Table 4-16 Ordinates of Time Variant Unit Hydrographs The Yuam River at Ban Tha Rua (R13336)

(CA = 5770 km²)

											, ,,	1-57		
	01:	02	03	04	05	06	07	08	09	10 -	11	12		
01	K OIO I .02082													ه ۾
02	KO201	K0202			٠.	,				·				Diagonal sums
03	к озо I .01921	KO3O2 .08602	козоз .01921											۵
04	KO401 .01921	K0402 .01921	KO403 .01921	K004 .01921										I
05	KO501 .03427	K0502 .01921	KO503 01921	K004	K 005									
06	K0601 .07754	K0602 .03427	KO603 .01921	K004 .01921	K005	.01921								
07	KO701 .23488	К0702 .01921	KO703	K004 .01921	K005	K006	K712 .00444			·				
08	KO8O I .25679	K0802	K0803	K004 .01921	K005	K006	K712 00444	.00444						
09	.14704	C1680	КО9О3 .17862	KO04 .01921	коо5	K006 .01921	K712 .00444	"	.00444					
10	K100 I .05758	K1002 .09424	K1003 ,08190	KO04 .01921	K005	.01921	K 712 .00444	*	"	.00444				
11	.16976	K1102 .05758	K1103 .02629	K004 .01921	K005	.01921	K 712 .00444		*	"	.00444			
12	KI201 .01921	.06619	K1203 .04025	.01921	K005	.01921	K712 .00444					K712 .00444		
13	<u> </u>	K0102 .01921	KO103 .04879	K004 ,01921	K005	K006 .01921	K 712 .00444	"		"	,	K 712 .00444	1	.14351
14			.01921	KOO4 .01921	KO05	.01921	K712 .00444	*				K712 .00444	*	.33873
15				K004 .01921	K005	.01921	K712 .00444		*			K712 00444	1	.14190
16	······································		· · · · · ·		KO05 .01921	.01921	.00444	*	B	-		K712 .00444	*	14190
17			·			.01920	K712 .00444	•		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	*	K712	1	.17202
18					· · · · · ·	. 54. 	K712 .00444	*				.00444	1	.20023
19			-		. :. . 			.00444				K 712	*	.67639
20		<u> </u>			- 1. 1	· · · · · · · · · · · · · · · · · · ·		-	.00444	, ,		K712 00444 K712	1	.51926
21										.00444	,	.00444 K712	,	.35184
22			# * . 					- 1			.00444	00444 K712	1	. 23968
23					-							.00444		. 3690 I
													***	14190

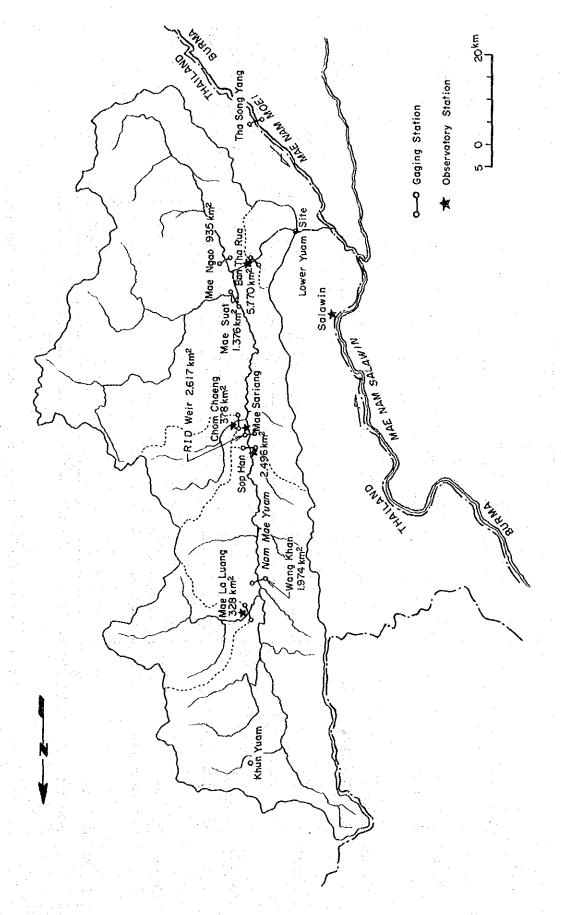
Table 4-17 Evaporation Extracted Inflow at Mae Rit Dam

Unit: m3/s.day

1	-								+						1-	_				-+		<u>. </u>	-					<u> </u>	<i>'</i>	_			-		-1
1984	135	7	133	101	m	8	70	4	99	106	4 5	7 8	; "	20	426	7	777	383	7	Š	807	~ ×	837	7	835	828	826	363	7	361	. 232	2 2	230		
1983	174	4	172	125	21	123	117	"	114	96	4 6	100	3	105	154	67	152	136	2	7	386	786	446	64	777	498	7 69	384	17	382	177	7	173		
1982	173	7	171	125	2	124	120	m	117	116	1,4	162		159	443	7	441	655	7	933	1421	7 0	1017	7	1015	713	711	332	2	330	226	2 2	224		7
1981	183	2	181	125	7	153	119	m	116	109	۳ <u>ر</u>	122	1.6	109	257	2	255	542	-(241	766	200	596	7	204	458	455	327	7	325	232	2 5	230		
1980	137	7	135	113	7	Ξ	113	4	109	104	4 6	30		188	254		253	416		412	601	1 200	1230	7	1228	734	732	353	7	351	256	7	254		
1979	167	7	165	126	7	124	115	4	111	108	4 5	2 / 2	? "	140	159	7	157	291	7	290	006	200	783	~	483	695	797	231	7	229	168	7	166		
1978	961	2	194	777	7	142	132	7	128	114	† ¢	17.0		146	150	61	148	575	7	5/ر	8/6	1 1	881	2	879	626	623	298	7	296	200	7	198		
1977	254	2	252	143	7	141	134	m	131	129	٣,	14.0	,	2 091	170	7	168	329	~-I	378	681	700	1111	2	1109	523	521	336	7	334	238	7	236		
1976	200	m	197	152	2	150	135	(L)	132	114		141	· ·	158	232	~	230	457	2	45	828	2	728	7	726	634	63.3	357	7	355	250	7	248	**; *:3:	
1975	211	7	209.	144	64	142	142	m	139	116	7 :	1.57	;	155	305	7	303	553	p-4	222	978	2 70	1112	7	1110	766	764	378	7	376	258	m	255	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
1974	196	63	194	144	7	142	130	n	127	120		280	,	178	305	-	304	501	7	477	861	2 2	683	7	681	787	780	368	7	366	218	7	216		
1973	208	7	206	145	7	143	143	m	97	119	ر .	200	1.0	180	279		278	554		555	1082	1001	1131	-	1130	723	720	367	7	365	260	7	258		
1972	187	~	185	747	7	742	136	ė.	133	132	4 0	120		127	190	7	188	131	7	67/	1167	7 7	720	7	718	520	517	007	7	398	276	7	274		
1971	197	7	195	145	7	143	140	n	137	117	e .	7 - 2	7	177	355	2	353	1199		11,78	1331	1,230	995	7	993	585	583	329	7	327	241	7	239		
1970	236	2	234	170	7	168	156	7	154	149	m y	254	,	251	310	7	308	570	7	200	970	H 0	992	7	990	610	607	339	7	337	274	7	272		1
1969	168	7	166	128	7	126	121	m	118	113	e :	165	-	163	358		357	545		244	2225	2,000	1365	71	1363	688	686	442	71	770	317	•	214		
1968	183	7	181	139	7	137	118	m	115	124	2 5	15.8	, (*	155	282	61	280	503	7 (700	825	2 2	212	7	717	067	7 7 7	270	7	268	204	7	202	· .	
1967	153	7	151	120	7	128	110	m	107	105		153	, "	150	209	7	207	687		400	1019	17	816	1/1	916	549	547	293	7	291	224	7	222		
1966	180	7	178	143	7	145	133	(L)	130	108	۳ <i>ب</i>	16.		158	260	~	258	575	, ,	3/4	1045	2 7	749	.77	747	955	444	232	7	230	190	7	188		
1965	171	7	169	178	7	176	138	(*)	135	113	m c	75	~	151	276	7	274	399	- 9	340	818	2 4	636	7	634	530	528	314	7	312	238	77	236		
1967	191	61	189	158	7	997	145	m ;	142	126	 	162	۳,	159	211	7	209	719	i (07/	923	023	1008	N	1006	515	2 2	289	N	287	232	Ν.	230	•	
1963	198	C ?	196	174	7	9/-	141	٣.	138	00	7 7	-	67	114	297	2	295	532	-1 :	700	726	127	811	7	809	573	571	380	7	378	269	7	267		
1962	213	7	211	791	2 2		133	<u> </u>	200	122	m ø	189	(*)	186	283	7	281	541		9	848		947	2	945	629	657	357	7	355	268	7	366	7 7 7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
1961	239	.7	237	184	7 50	701	164	m ,	191	133	m &	170	'n	167	260	27	258	200	7	447	1098	1002	971	.7	696	609	2 2 9 2	287	7	285	253	7	251		
1960	172	7	2	130	7 0	3	112	m c	501	_) & C	┿			263		261					2.2	_			-	737	 -	7	415	316	77	314		-
	-	AN.	7	 !	2	1		MAK.	\dagger	 ;	APR.	T	MAY		_	je.			. nr.	1		AUG.	-	SEP.	-		ocr.	<u> </u>	NOV.			DEC.		Total	
•	1	Š	1	ì	4	1	;	Ē	1	;	₹		ž		Ī	5	- 1		7	1		∢C		જ	i		Ó_	Ľ	ž		<u> </u>	Ä		ĘΨ	

ote: Upper figure show raw inflow, middle figure show evaporation loss and lower figure show net inflow in each of the monthly cells.

Table 4-18 Evaporation Extracted Inflow at Mae Ngao Dam


Unit: m3/s.day

ł		_					-	_			٠.,					+					-		<u> </u>		г		-1			-				-	***	-		-~i
	1984	339	11	328	206	12	194	164	17	147	150	20	8	207	71	7	1933	Φ.	1924	2159	2151	4210	9	4204	2685	12	2673	1614	12	1602	282	12	73	684	=	478		
	1983	371	12	359	202	12	190	147	13	128	98	51	77	COT .	12	2	337	Φ.	328	370	362	1445	00	1437	1765	II	1754	1831	14	1817	1049	12	1037	247	1	536		
	1982	421	11	410	243	7.	231	182	8	164	152	21	131	7/5	6	352	1745	O.	1736	3006	2994	6839	11	6328	3981	14	3967	2449	12	2437	1039	12	1027	583	::	578		
	1981	997	12	454	222	12	210	169	20	149	139	20	77.	?	2 :	8	887	6 6	8/8	22.63	2255	4104	6	4095	2146	13	2133	1674	25	1024	1086	7 6	1072	700	77	600		
	1980	254		243	172	17	160	159	21	138	127	24	507	7	91	77	610	0	709	7 V	1375	2082	'n	2077	7280	12	4568	2859	13	2840	1237	2 5	1227	09/	2 1	327	7	
	1979	238	11	227	177	14	163	138	22	116	110	53	ò	707	30 L	ŝ	215	0	208	862	856	4045	01	4035	1731	11	1720	1614	£ ;	1091	689	17	9/6	50,	12.	388		
	1978	367	0.	358	260	12	248	197	21	176	137	21	110	7.7	91.	7	784		273	218	1805	3454	αò	3446	2390	1.5	2375	1691	91	1675	648	Ξ,	635	392	11	381		
	1977	798	12	786	309	6	300	244	16	228	203	. 18	183	747	T i	77	381	요 ;	37.1	1069	1062	2607	co	2599	3941	7	3930	1415	14	1401	912	10	902	532	0	523		
	1976	097	16	444	305	13	292	219	16	203	145	8 5	127	700	9	340	785	6	91	1921	606T	3606	01	3596	2652	10	2642	2198	16	2182	1151	7 1	137	627	2	617		
	1975	493	0.	483	295	11	284	281	<u>∞</u>	263	181	21	100	27.5	9 (2	6901	σ.	1060	2263	22.56.	2676	11	2665	3157	Ø\	3148	2334	13	2321	1077		1062	611	16	595		
	1974	857	01	448	277	=======================================	266	192	17	175	176	61.	12/	3	77	288	1109	_	1102	2107	2096	3617	01	3607	2424	12	2412	1721	15	1706	1040	Ξ.	1027	248	으 의	538		
	1973	575	01	565	326	1	315	297	67	278	194	18	1/4	7 1	2	- 101 101	996	!~	959	1890	1883	3368	80	3360	3641	11	3630	2596	97	2580	1286	2	1276	834	I	823		
	1972	438	0	428	283	11	272	233	18	215	221	23	178	3	-12	188	485	<u>о</u>	476	3343	73.74	4804	6	4795	3023	13	3010	1980	5	1965	1316	6	1317	922	2	912		
	1971	897	12	456	285	13	273	233	17	216	149	19	130	25	o i	314	1196	12	1184	5136	\$170	5665	6	5656	3901	13	3888	2033	12	2021	1064	01	1054	652	2	642		
	1970	208	13	695	877	7	437	341	13	328	316	50	967	5	2 2	×	926	6	7	2319	2311	3555	60	3547	3676	13	3663	1977	16	1961	1023	=======================================	1012	724	Ξ	713		
	1969	393	=	382	244		233	169	17	152	151	17	1.74	٠ ٢	77	0/0	1411	00 1	1403	2290	2284	10255	1	0244	5841	12	5829	2826	15	2811	1596	Ξ	1585	1065	16	1049		
	8961	565	77	787	287	77	275	173	15	158 (193	196	1/1		25	787	911	01	200	926		3184			<u> </u>		_			4	_	_						
	1967	291	11	280	155	7	144	124	82	106	109	2 5	600	7,7	<u>م</u> د	280	230	0.	521	790		<u>. </u>			<u>. </u>	12		_					_			_		
-		-		-					<u> </u>		_	20.	- -			-+	<u> </u>	0 (-1			3963 4		3954 4	<u> </u>		_		2			_	-				:	
		_	· ,-	_			4			_	_	2 5		_		4			1		1488 2	⊢			—-	12	_	~-	15	-	_	_	-	_	11			
				_	_			_		_		50	4			-	<u></u>		584			3636 2		_	├ ─	17	_	Ŀ-							11			
	1963 1						_					50	1			1		0		:		2752 3			┝╾	12	-		51	╌	Ŀ	-		<u>L</u>		÷		
-	1962			4								61,	+			-		•	907		2107 2	╄	<u> </u>		 	12		<u> </u>		_	_	÷	_	L	I	႕	-	
		·		_			4				· _	200	4			4		_		_	1930 2	-			╂	12								٠.,	11			
		_	***	-		_	-1			_	-	50	_			ų		er i			-	4531 4	_		┝	12	-	Ι		7	1					4	<u> </u>	
				-			-			_	-		+	: - : -		-	_		+			4	_		Ē	_	ř			2	_					_	7019	4 5
			AN						MAR			APR.	1	:	Ā			ž,			700		AUC			SEP			ò			Š.		L	DEC		٤	}

Note: Upper figure show raw inflow, middle figure show evaporation loss and lower figure show net inflow in each of the monthly cells.

Table 4-19 Design Flood of Each Dam Site

Project Name	C. A. (km ²)	Design Flood	Specific Runoff	Value of Coefficient
		(m ³ /s)	m ³ /s/100 km ²	С
Lower Yuam	5,920	6,200	1.49	40
Nam Mae Ngao	835	3,600	4.95	55
Upper Mae Ngao	490	2,700	-ditto-	-ditto-
Nam Mae Rit	1,268	2,400	0.99	30
Upper Mae Rit 1	686	1,800	-ditto-	-ditto-
Upper Mae Rit 2 (a)	525	1,500	-ditto-	-ditto-
Upper Mae Rit 3	349	1,200	-ditto-	-ditto-
	٠.]		
Upper Mae Yuam 1	1,967	2,900	0.92	30
Upper Mae Yuam 2	1,149	2,300	-ditto-	-ditto-
Upper Mae Yuam 3	447	1,400	-ditto-	-ditto-
c.f.	:			
		1 2 2 2 2 2 2 2		
Khao Laem	3,720	7,100	4.69	56
Nam Chon	4,908	5,900	1.92	42

ig. 4-1 Gaging and Observatory Stations

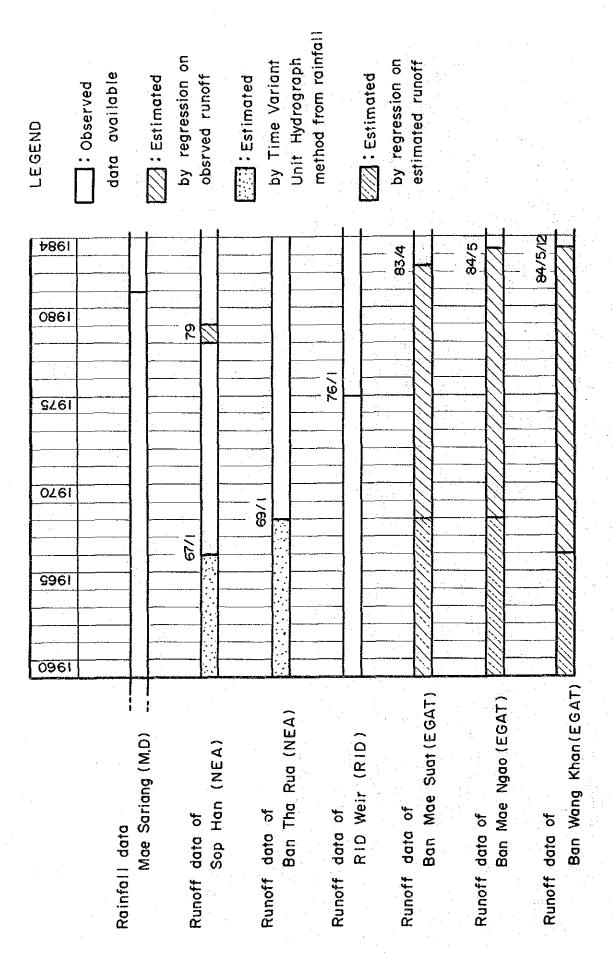


Fig. 4-2 Observed & Estimated Periods of Runoff Data, Nam Yuam River Basin

									>	\ \ \ \ \ \	۵								
STATION	ļ			1	-				-		֓֟֟֜֜֓֓֓֓֓֟֓֓֓֓֓֓֓֓֓֓֟֓֓֓֟֓֓֓֟֓֓֓֟֓֓֓֟֓					~			
	99	67	.68	69	70	7.1	72	73	74	75	76	77	78	79	80	8	82	83	84
		Feb.																	
Mae La Luong		<u> </u>											1						
	May																		
Sop Han	L		_																
			ļ.,																
Chom Chaeng			. :		-	_													Γ
}			_	_															
מסע העם אמס	-A-Harris				_														
	52																		
Mae Savieng		 			_	_													
Mae Ngao						* . :													ÀQ.
Mae Suat																		Apr.	T
Wang Khan																			May

Fig. 4-3 Available Daily Precipitation

	84					100 100	ö		
	83							N. O. W.	
	82								
	8								
	8	~~~~							
	2							-	
	78								
	76 77							_	
œ	92						ļ	1	
YEAR	75		_						
	74	L					-		
	73							_	
	72	Sept. May							
	7	Sept		JùC	L 		<u> </u>		
	20		Min.					_	
	69		and Min.				:		•
	89	Apr.	Only Min Max.				<u> </u>		
	29		X Nin				<u> </u>		
	99		e O	Mile year					
301444	SIALON		and don	ì	Bon Ing Kud	Mae Ngoo	Mae Suat		Wang Khan

Fig. 4-4 Available Daily Temperature

									\	YEAR	~								
NOI W S	99	29	68	69	70 71	7.1	72	73	74	75	76	77	78	79	80	8	82	83	84
T COV	May					Sept													
300						L_ [-								
2 4 F 2 C					-	Ę.					T.	Feb. Apr.			1.				
						<u> </u>		-						-					
Mae Ngao						-													Aug
4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1																		May	
Mae Sugi						-						-							
Wang Khan															· ·				Aug
			<u> </u>	ig. 4–	Fig. 4-5 Available Daily Relative Humidity	ailable) Daily	y Rela	rtive H	umidi	ty.			-					
		-		٠.															

; ;	<i></i>								>	M M	œ								
SHALION	99	29 99	68	69	7.0	7	72	73	74	75	92	77	78	79	80	81	82	83	84
				_					_			Nov							
Mae La Luang				· · ·															
		_						Jul. Aug.	gng.										
Sop Hon			_	_															
					_	₹ 9	= - - - -												
Ban ina Kua						L [
Mae Ngao															:				Aug
Mae Suat			<u> </u>						-									Moy	
Wang Khan				<u> </u>															A A

Fig. 4-6 Available Evaporation

Y: Daily Runoff of The Yuam River at Sop Han, cms, NEA, CA=2496 km² Jan. 1976 - Dec. 1978 & Jan. 1980 - Dec. 1984

X: Daily Inflow to RID Weir, Mae Sariang, cms, RID, (Spill over Weir + Irrigation intake)
Jan. 1976 - Dec. 1978 & Jan. 1980 - Dec. 1984

Regression model: Y=-2.096+1.05096X

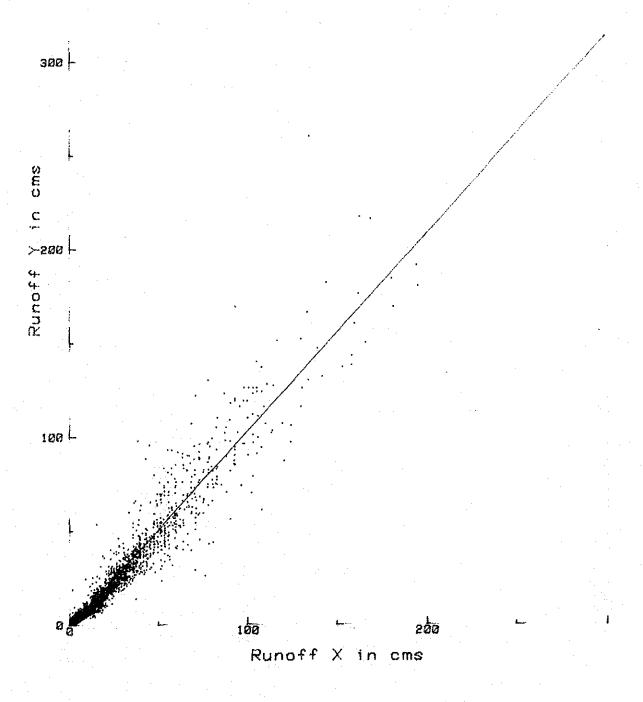


Fig. 4-7 Regression Y: X (Sop Han: RID Weir)

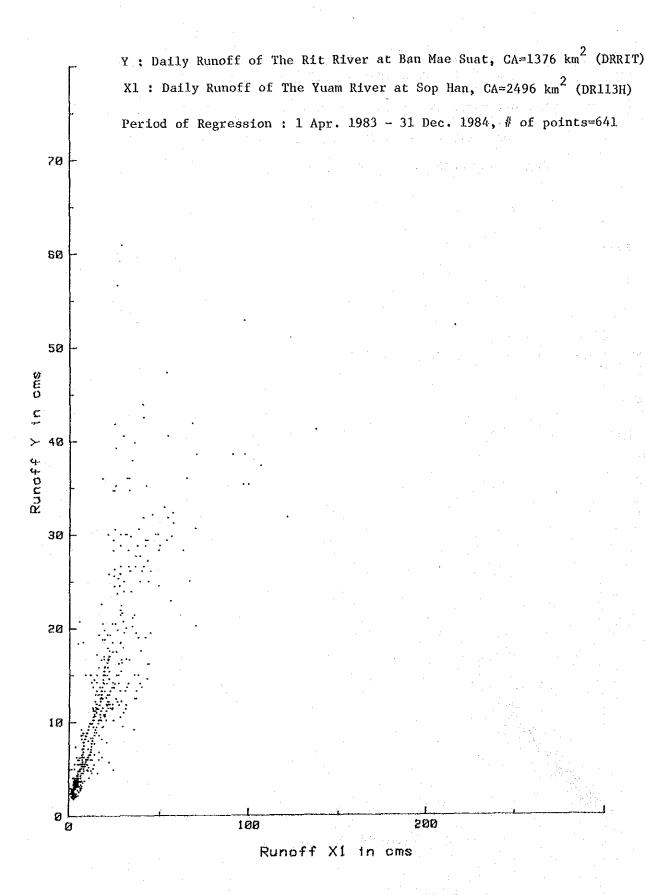


Fig. 4-8 Regression Y: X1 (Nam Mae Rit: Sop Han)

Y: Daily Runoff of The Rit River at Ban Mae Suat, CA=1376 km² (DRRIT) X2: Daily Runoff of The Yuam River at Ban Tha Rua, CA=5770 km² (DR114W) Period of Regression: 1 Apr. 1983 - 31 Dec. 1984, #of points=641 Regression model: Y=2.345+0.057345X1+0.111158X2 Runoff Y in cms Runoff X2 in cms

Fig. 4-9 Regression Y: X2 (Nam Mae Rit: Ban Tha Rua)

Y: Daily Runoff of The Ngao River at Ban Mae Ngao, cms, CA=935 km² X1: Daily Runoff of The Yuam River at Sop Han, cms, CA=2496 km² Period of Regression May 1984 - Dec. 1984, No. of points=245, Regression Model Y=-2.089-0.541833X1+0.686927X2. 400 300 Runoff Y in oms 200 100 ø 200 100 Runoff X1 in oms

Fig. 4-10 Regression Y: X1 (Nam Mae Ngao: Sop Han)

Y: Daily Runoff of The Ngao River at Ban Mae Ngao, cms, CA=935 km²

X2: Daily Runoff of The Yuam River at Ban Tha Rua, CA=5770 km² (Irrigation Water-take at RID Weir at Mae Sariang is added to observed values)

Period of regression: May 1984 - Dec. 1984, No. of points=245

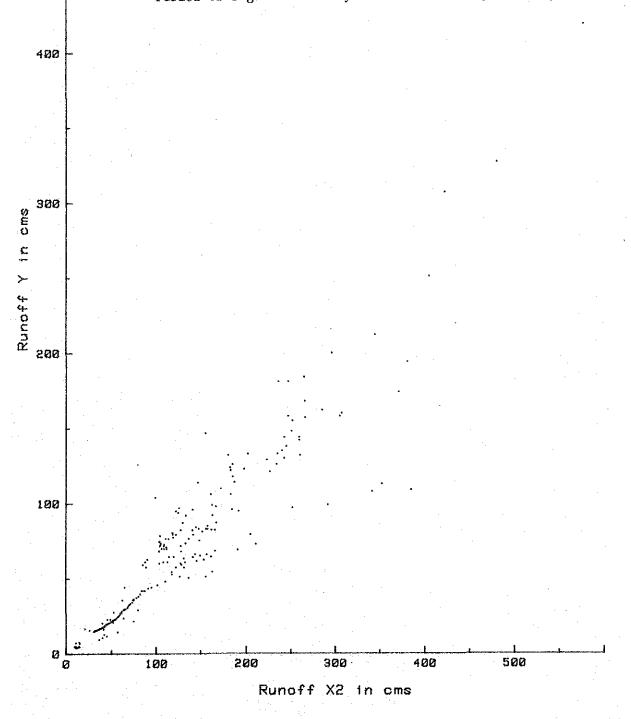


Fig. 4-11 Regression Y: X2 (Nam Mae Ngao: Ban Tha Rua)

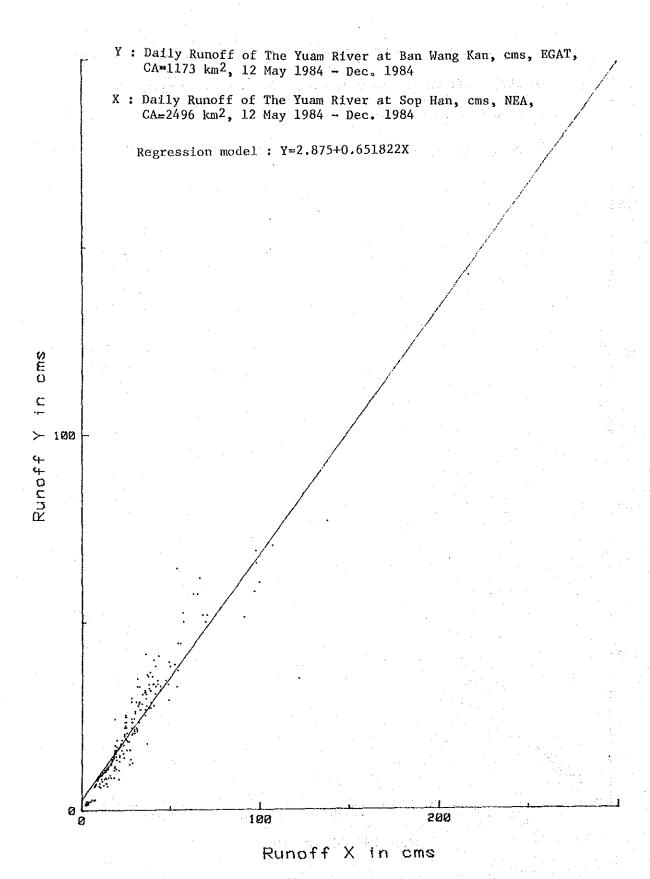


Fig. 4-12 Regression Y: X (Wang Khon: Soh Han)

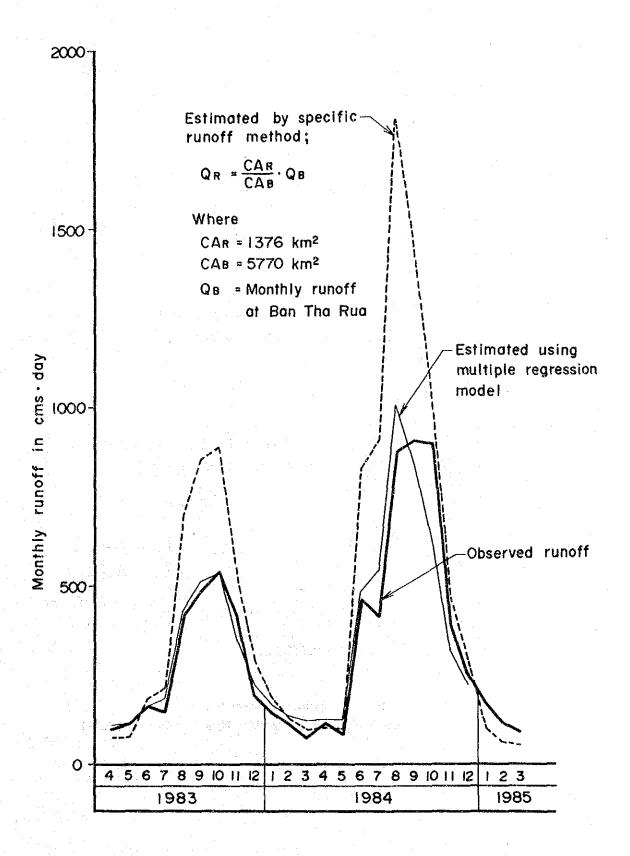


Fig. 4-13 Observed & Estimated Runoffs of
The Rit River at Ban Mae Suat (CA = 1376 km²)

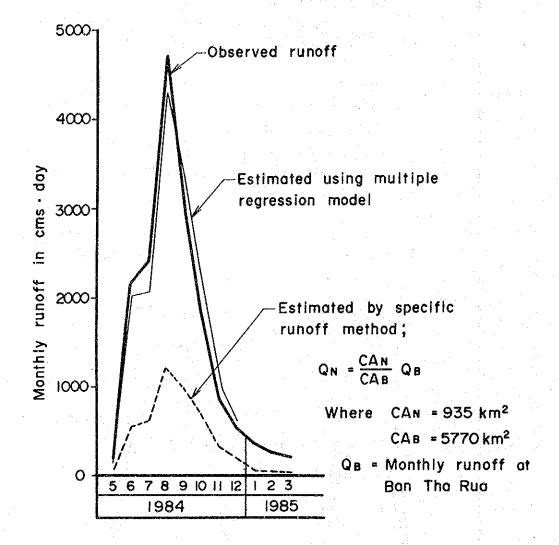


Fig. 4-14 Observed & Estimated Runoffs of
The Ngao River at Ban Mae Ngao (CA = 935 km²)

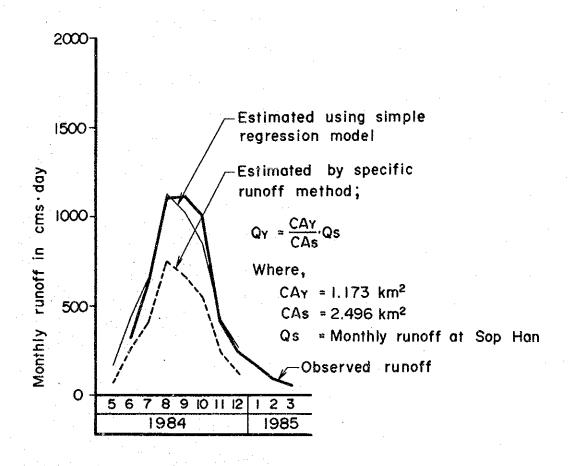


Fig. 4-15 Observed & Estimated Runoffs of
The Yuam River at Wang Khan (CA = 1173 km²)

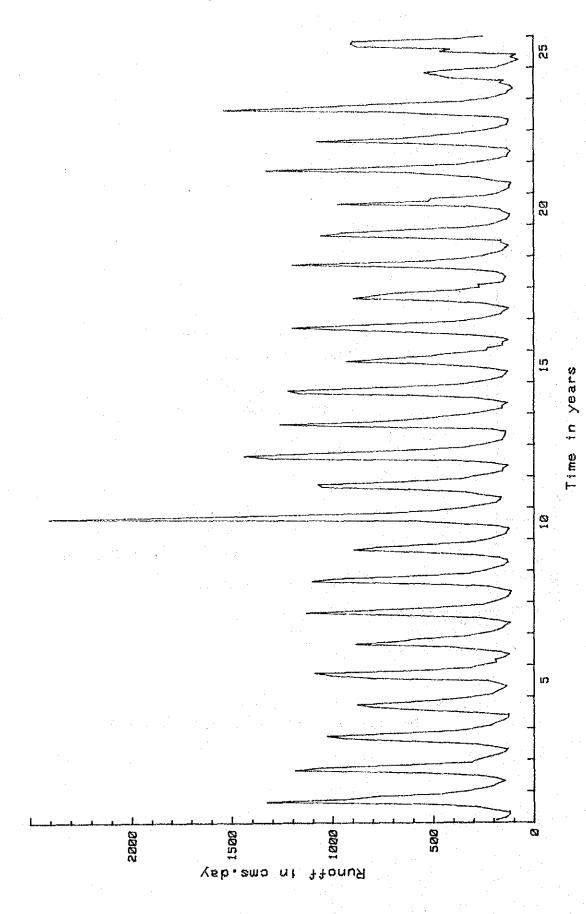
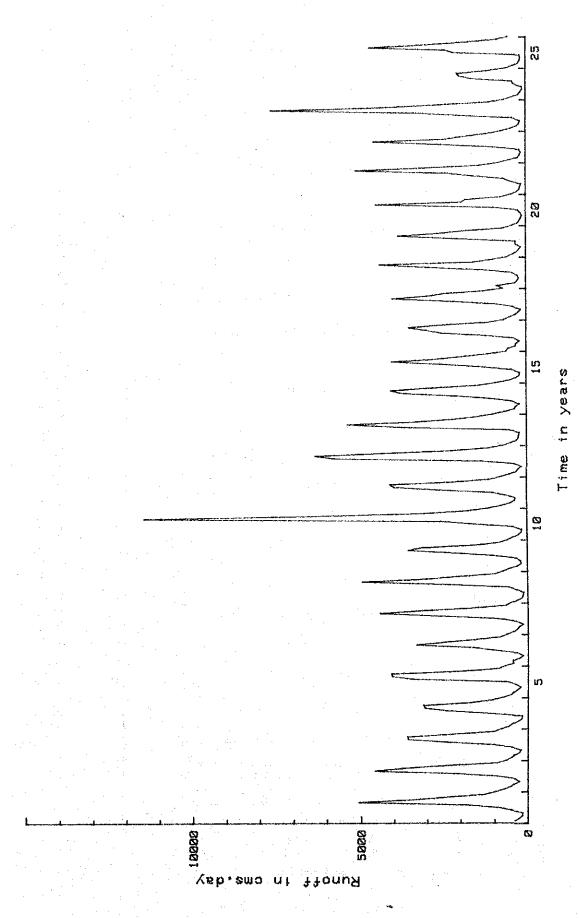



Fig. 4-16 Estimated & Observed Monthly Runoffs of The Rit River at Ban Mae Suat, CA=1376 sq. km, Jan. 1960 — Dec. 1984 (25 years)

Estimated & Observed Monthly Runoffs of The Ngao River at Ban Mae Ngao, CA=935 sq. km, Jan. 1960 — Dec. 1984 (25 years) Fig. 4-17

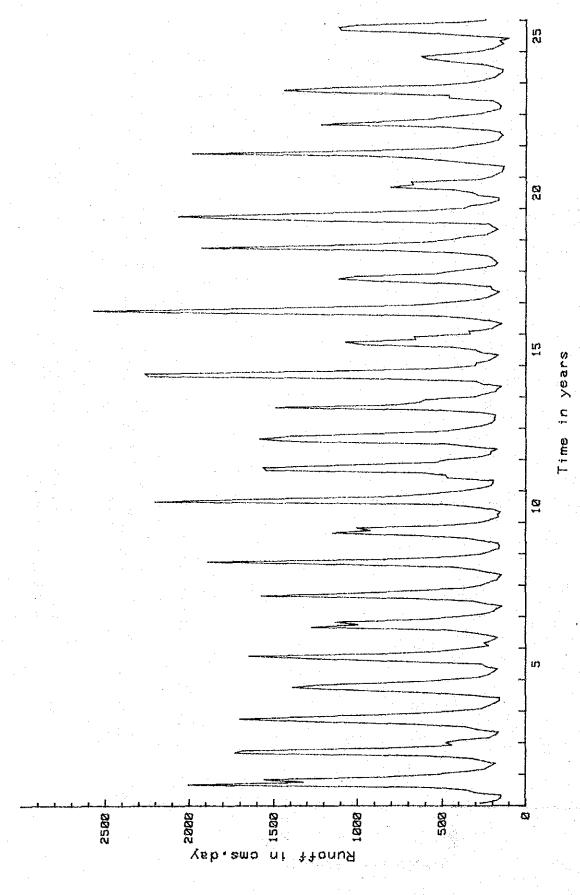


Fig. 4-18 Estimated & Observed Monthly Runoffs of The Yuam River at Wang Khan, CA=1173 sq. km, Jan. 1960 - Dec. 1984 (25 years)

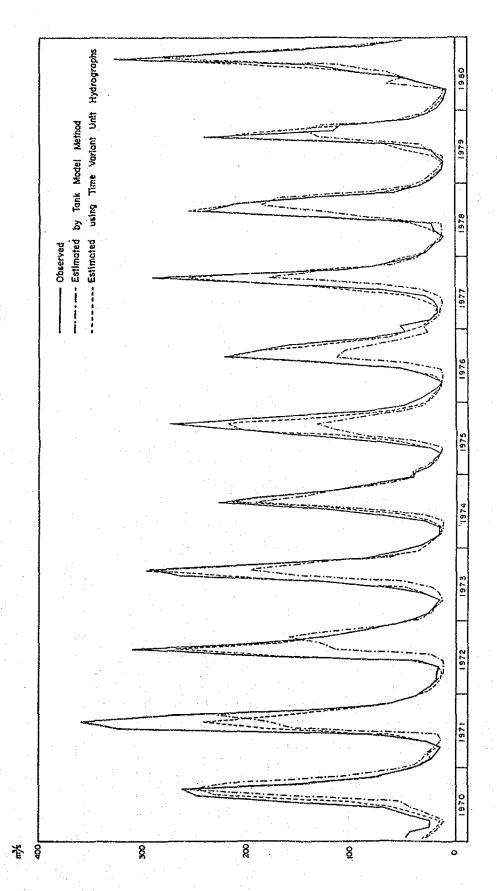


Fig. 4-19 Comparison of Runoffs Observed and Estimated for The Yuam River at Ban Tha Rua

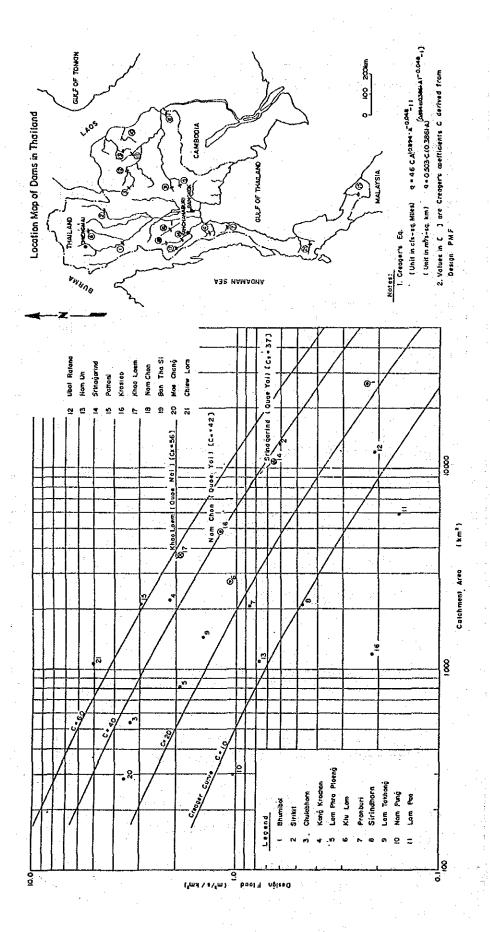


Fig. 4-20 Comparison of Design Floods in Thailand

CHAPTER 5. DEVELOPMENT PLAN

CHAPTER 5 DEVELOPMENT PLAN

,	CONTENTS	Page
5.1	Basic Item	5 - 1
5.2	Procedure for Study of Development Plan	5 - 3
5.3	Individual Development Plan (First Stage Study)	5 - 5
5.4	Selected Main Projects (Second Stage Study)	5 – 26
5.5	Additional Study	5 - 46
5.6	Incremental Benefit of the Lower Yuam Project	5 - 53

		Table List	
	•		
			Page
	Table 5-1	Basic Figures of Each Project	5-2
	Table 5–2	Alternative Thermal Power Plant for Studying Optimum Scale of Development (First and Second Stage)	5-13
	Table 5-3	1st Stage Planning Study Upper Mae Yuam 1	5-14
	Table 5-4	1st Stage Planning Study Upper Mae Yuam 2	5-15
	Table 5-5	1st Stage Planning Study Upper Mae Yuam 3	5-16
•	Table 5-6	1st Stage Planning Study Nam Mac Rit	5-17
	Table 5-7	1st Stage Planning Study Upper Mae Rit 1	5-18
	Table 5-8	Ist Stage Planning Study Upper Mae Rit 2	5-19
	Table 5-9	1st Stage Planning Study Upper Mae Rit 2a	5-20
	Table 5-10	1st Stage Planning Study Upper Mae Rit 3	5-21
٠	Table 5-11	1st Stage Planning Study Nam Mae Ngao (Site No. 2)	5-22
	Table 5-12	1st Stage Planning Study Nam Mae Ngao (Site No. 3)	5-23
	Table 5-13	1st Stage Planning Study Upper Mae Ngao	5-24
	Table 5-14-1	Summary of First Stage Study, Mater Plan of	5-25
	Table 5-14-2	Summary of Second Stage Study	529
	Table 5-15	2nd Stage Study Upper Mae Yuam 1	5-30
	Table 5-16	2nd Stage Study Upper Mae Rit	532
	Table 5-17	2nd Stage Study Upper Mae Rit 2a	534
	Table 5-18	2nd Stage Study Nam Mae Ngao (No. 2 Site)	5-36
	Table 5-19	2nd Stage Study Lower Yuam	5-39
.*.	Table 5-20	Integrated Development including Transmission Line	5-40
	Table 5-21	Incremental Benefit of Lower Yuam due to the Effect of Nam Mae Ngao No. 2 Development (Lower Yuam: Dam & Installed Capacity are Fixed at F/S Levels-Second Stage)	5-41
	Table 5–22	Incremental Benefit of Lower Yuam due to the Effect of Nam Mae Ngao No. 2 Development (Lower Yuam: Dam is Fixed at F/S Level, Installed Capacity is Optimized-Second Stage)	5-42
	Table 5-23	Fuel Price Variations for Alternative Thermal Plants	5-47
	Table 5-24	Reservoir Simulation Nam Mae Ngao	549
100	Table 5–25	Reservoir Simulation Lower Yuam	5-51

0	
Table 5–26	Incremental Benefit of Lower Yuam due to the Effect of

Figure List

		Page
Fig. 5-1	Flow Mass Curve Upper Mae Yuam 1 (Case YIB 325.10)	5-31
Fig. 5-2	Flow Mass Curve Nam Mae Rit (Case ROB 270.15)	5-33
Fig. 5-3	Flow Mass Curve Upper Mae Rit 2a (Case R2a D 585.5)	5-35
Fig. 5-4	Flow Mass Curve Nam Mae Ngao (Case NOB 250.20b)	5-38
Fig. 5-5	Flow Mass Curve Nam Mae Ngao (Case NO2A 260.25b)	5-50
Fig. 5–6	Flow Mass Curve Lower Yuam (Case YOA 170.20b)	5-52
Fig. 5-7	Load Duration Curve, Northern Region, 2000 with Nam Mae Ngao Hydro Power Fitted	5-43
Fig. 5–8	Load Duration Curve, Northern Region, 2000 with Lower Yuam Hydro Power (Case 0) fitted	5-44
Fig. 5–9	Load Duration Curve, Northern Region, 2000 with Nam Mae Ngao and Lower Yuam Integrated Development Projects (Case VI) Fitted	5-45
Fig. 5–10	Area-Capacity Curve, Nam Mae Ngao No. 2	5-56
Fig. 5–11	Area-Capacity Curve, Nam Mae Rit	5-57
Fig. 5–12	Area-Capacity Curve, Nam Mae Ngao No. 3	5-58
Fig. 5–13	Area-Capacity Curve, Upper Mae Ngao No. 2	5-59
Fig. 5–14	Area-Capacity Curve, Upper Mae Ngao No. 3	5-60
Fig. 5–15	Area-Capacity Curve, Upper Mae Rit 1	5-61
Fig. 5–16	Area-Capacity Curve, Upper Mae Rit 2	5-62
Fig. 5–17	Area-Capacity Curve, Upper Mae Rit 3	5-63
Fig. 5–18	Area-Capacity Curve, Upper Mae Yuam 2	5-64
Fig. 5–19	Area-Capacity Curve, Upper Mae Yuam 3	565

CHAPTER 5. DEVELOPMENT PLAN

5.1 Basic Items

1) Location of the Dam Site

The projects to be studied in the Master Plan are nine (9) projects, illustrated on the Fig. 1-1.

The basic figures of the projects are shown on Table 5-1.

2) Catchment Area and Storage Capacity Curve

The three kinds of topographical map listed below can be utilized.

Scale 1:250,000 whole river basin
Scale 1:50,000 - ditto Scale 1:5,000 Nam Mae Ngao, Nam Mae Rit and
Upper Mae Yuam 1

The measurement of both catchment area and storage capacity curve has been made by EGAT using 1:50,000 scale map and handed over to the JICA survey team during the first field survey.

The team checked the catchment area and the area-capacity curve of each project. The exactitude of the catchment area measured by EGAT has been confirmed and the value was adapted for the inflow calculation as shown on Table 5-1. Regarding to the area-capacity curves, some discrepancies have been found out. So the team checked the area-capacity curve again using 1:25,000 scale map, enlarged from 1:50,000.

However, final volumes were measured by 1:5,000 scale map for the major three planned reservoirs; Nam Mae Ngao, Nam Mae Rit, and Upper Mae Yuam 1 in the second stage.

Table 5-1 Basic Figures of Each Project

2	· · ·			Coordi	Coordinates		Q.	Tollogo
ż Z	Project name	ame	Dam	site	Power	house	()	ביוות איר.
			, N	E°	, N	Ę,	(km²)	(H)
	Upper Mae Yuam 1		18°23'52"	97°54' 48"			1,967	262.0
. ~	Upper Mae Yuam 2		18° 33' 20"	97°54' 41"			1,149	326.5
ιú	Upper Mae Yuam 3		18° 45' 27"	97°51' 21"			447	428.0
4	Nam Mae Rit		17°55'11"	.20,00.86			1,268	192.0
, r	Upper Mae Rit 1		17°59'55"	98°04' 10"	17°57'04"	98°04'00"	989	281.0
ဖ	Upper Mae Rit 2	Original Alternative A	18°04'35"	98°05' 55"	18° 03' 28"	98°05'55" 98°04'49"	52.5	491.0
	Upper Moe Rit 3		17°56'24"	98°08' 17"	17°57'07"	98°04°18*	349	281.0
æ	Nam Mae Ngao	Site 2	17°47'24"	97°59' 42" 98°00' 38"			835 756	163.0
၈	Upper Mae Ngao		17°35'19"	98°06' 37"			159	2711
	Lower Yuam (NEA)		17°49'	97°49'			5,920	73.2

5.2 Procedure for Study of Development Plan

1) Study Procedure

The study of the development plan is to be made divided into the three stages described below.

a. First Stage

The principal objective of the first stage is to find out the economical feasibility of the planned projects; Nam Mae Ngao, Nam Mae Rit, Upper Mae Yuam 1 and other six projects, at the preliminary study level.

Comparison studies are made for individual projects varying dam heights, effective storage capacities, installed capacities, etc.

The study results are described in Clause 5-3.

b. Second Stage

Taking into account the study result in the first stage, the selected projects are examined more in detail.

In the study, Lower Yuam on which the feasibility study was already completed in 1984, is regarded as if it is an existing power station therefore the increment of power and energy of the station is considered to be an additional benefit.

The study results are described in clause 5-4.

c. Additional Stage

In the additional stage, following studies have been made, based upon the third minutes of meeting.

- i) Detailed optimization study of Nam Mae Ngao No.2, applying the up-dated fuel prices which were given by EGAT.
- ii) Study of the incremental benefit of Lower Yuam due to the regulation effect of Nam Mae Ngao No.2, applying the same up-dated fuel prices.

The study results are described in the clause 5-5.

2) Reservoir operation and energy production

a) Reservoir Operation

To study operation of a reservoir and an output capacity, the 95% firm discharge will first be obtained. Herein, the mass curve of runoff is drawn, then on the assumption that past runoff is reproduced exactly the same way and that the future discharge is completely foreseeable, the 95% firm discharge is obtained from the probability distribution of the minimum discharge of each year, with operation of reservoir made most effectively.

In the annual inflow calculation to the dam site, evapotration loss has not been considered at the first stage study, since the effect of loss is small in the proposed reservoir simulation. However, the evaporation loss was considered in the second stage.

The various reservoir operations for the planned dam sites have been examined varying the dam height and the effective storage volume to find out the most optimized development scale.

b) Equivalent Peak Duration Hours

The first assumption to be made for the examination of output capacity is that of the peak duration hours to be supplied by the project. Since peak duration hours are closely related to load duration curves, and the latter is mostly dependent on the character demand, a discussion has been made with EGAT during the first field survey.

EGAT usually adopts a plant factor between 20% and 30% for planning a storage type hydro power plant depending upon the situations and conditions of the proposed hydro power project.

Since a power supply area of the Nam Yuam hydro power projects is most reasonably considered to be the Northern Region, the plant factor of the Nam Yuam hydro power plants should be determined based upon a daily load duration curve and a daily load factor, etc. of the Northern Region.

After the discussion, the plant factor of 25% has been adopted tentatively, and used for the first stage study of the Master Plan. However, in the second stage, three plant factors; 15, 20 and 25% have been adopted for the comparison study, based on "the Second Minutes of Meeting".

c) Maximum Discharge

The maximum discharge is to be obtained by the firm discharge of 95% probability and the equivalent peak duration hours of 6, 4.8 and 3.6 hours (Plant factor of 25, 20 and 15%) respectively.

d) Calculation of Energy Production

Energy production of each planned power station is calculated based on the monthly inflow for the 25 year period from 1960 to 1984 at each dam site.

e) Firm Capacity

The firm capacity is calculated by the maximum turbine discharge and the lowest reservoir water level.

f) Firm and Secondary Energy

Of the annual energy production, the part corresponding to firm discharge is taken as the firm energy, and any energy production other than the firm energy is taken to be the secondary energy.

5.3 Individual Development Plan (First Stage Study)

The projects to be studied in the first stage study of the Master Plan are nine pre-selected projects.

Number of main cases studied in this stage including some alternative cases are as following:

Upper Mae Yuam 1		12 cases
Upper Mae Yuam 2	• • • •	12 cases
Upper Mae Yuam 3		3 cases
Nam Mae Rit		12 cases
Upper Mae Rit 1	• • • • •	4 cases
Upper Mae Rit 2		9 cases
Upper Mae Rit 2a		3 cases
Upper Mae Rit 3	••••	4 cases
Nam Mae Ngao (Site No.2)		16 cases
Nam Mae Ngao (Site No.3)	• • • • •	8 cases
Upper Mae Ngao		9 cases
Total:		92 cases

Reservoir operation study was performed for each case to maximize the firm capacity, firm energy and secondary energy given the various high water levels and low water levels (i.e., given the various effective heads and various effective reservoir capacities).

The details of the study results were included in the "Interim Report, Master Plan Study on Nam Yuam River Basin Hydroelectric Development Project, Nov. 1985" and the computer output volumes submitted and explained to EGAT in November 1985, so that those details have not been attached here.

The summary of the study results are shown on Table 5-14-1. On this table, only the most economical case among several cases studied is listed for each of the nine projects. (Note that either Upper Mae Rit 2 or Upper Mae Rit 2a constitutes one project, and either Nam Mae Ngao Site No.2 or Nam Mae Ngao Site No.3 will be Nam Mae Ngao Project.)

It is seen also that Nam Mae Ngao Site No.2 is the most promising project (B/C = 1.67, rank 1) followed by Upper Mae Rit 2a (rank 2), Nam Mae Rit (rank 3), Upper Mae Yuam 1 (rank 4), etc. in this order.

The B/C ratios of these four upper ranked projects are nearly equal to or greater than 1.0. Taking into account of these results and other relevant information as described in the following subsections, it is judged that the above four projects were deserved for the objects of the next stage of study. The explanation of the study results for the individual project are as follows.

l) Upper Mae Yuam l

This project, planned on the upstream of the Yuam river, is located about 2 km upstream from Ban Wan Kang in the Mae La Noi District.

There are no alternative dam axes except the planned dam site according to the topographical condition.

The site location is shown on Table 5-1.

Rockfill type dam is adopted and the power station is planned on the left bank of the down stream considering the topographical condition.

To find out the economic feasibility and the optimized development scale, various comparison studies were made varying HWL, available reservoir capacity and installed capacity for twelve cases in total. The results are shown on Table 5-3.

Judging from the result, the project feasibility of the individual development plan is still uncertain unless the investigation works are carried out more, including the possibility of irrigation scheme. In addition to the above the studied project scale should be re-examined using 1:5,000 scale map of the planned reservoir, mapped out by EGAT.

Tentative design works are made at preliminaly study level using 1:50,000 scale map for the next investigation works.

2) Upper Mae Yuam 2

This project is planned on the Yuam river, about 17 km upstream from Upper Mae Yuam 1 project. There are no alternative dam axes except this dam site due to the topographical condition.

The site location is shown on Table 5-1.

Rockfill type dam is adopted and power station is planned on the left bank of the downstream from the dam site.

Various comparison studies were made varying HWL, available reservoir capacity and installed capacity for twelve cases in total.

The results are shown on Table 5-4.

Judging from the results, this project is not so promising so that further study need not be made in the next stage.

3) Upper Mae Yuam 3

This project is planned on the upper most reach of the Yuam river. There are no access roads so that any reconnaissance survey was not carried out during the first field investigation works.

The site location is shown on Table 5-1.

Comparison study was made varying HWL, available reservoir capacity and installed capacity for three cases in total.

The study results are shown on Table 5-5.

This project shows the poorest character in economy among those planned on the main stream of the Yuam river.

4) Nam Mae Rit

This project is located about 6 km upstream from the confluence of the Rit river and the Yuam river. Two alternative dam sites are planned for the project.

The reconnaissance survey to both dam sites was carried out during the first and second field survey. As the results, the downstream site has been selected for the study.

The location of the site is shown on Table 5-1.

This project is planned as a dam and waterway type power station. Rockfill type dam is adopted and power station is planned on the right bank of the down stream from the dam.

The comparison studies to find out the project feasibility were made varying HWL, available reservoir capacity and installed capacity for twelve cases in total.

The results are shown on Table 5-6.

The studied project scale should be re-examined using 1:5,000 scale map for the planned reservoir which will be mapped out by EGAT.

Tentative design works are made at preliminary study level using 1:50,000 scale map for the next investigation works.

5) Upper Mae Rit 1

This project is planned about 6 km upstream from the conflence of the Rit river and the Lap river, one of the tributary of the Rit river coming from the left bank.

There are no access roads to the site so that any reconnaissance survey was not carried out.

The site location is shown on Table 5-1.

Various comparison studies were made and the results are shown on the Table 5-7.

6) Upper Mae Rit 2

Upper Mae Rit 2

This project is planned on the upper most reach of the Rit river. Any reconnaissance survey was not carried out because of no access roads.

This project is planned as dam and waterway type power station. The location of the dam and power station are shown on Table 5-1.

The project consists of rockfill type dam, power tunnel with 2,100 m long and power station.

Comparison studies for the project feasibility were made varying HWL, available reserior capacity and installed capacity for nine cases in total.

The results are shown on Table 5-8.

Judging from the results, it can be said that the project could be advantageous provided the dam height is reduced.

In other word, run-of-river type power station would be more advantageous.

For making clear this tendency, an alternative plan (2a) was examined.

Upper Mae Rit 2a

The alternative 2a consists of intake dam, planned on the same site, power tunnel with 5,900 m long and power station located on the right bank, to utilize the steep gradient of the river.

Comparison study for the project feasibility was made for three cases in total. The results are shown on Table 5-9.

Judging from the results, run-of-river type power station seems to be suitable to the upper reach of the Rit river and the high project economy can be expected.

Therefore tentative design works are made at preliminary study level using 1:50,000 scale map.

7) Upper Mae Rit 3

This project is planned on the Lap river, one of the tributary of the Rit river.

The location of the project is shown on Table 5-1. Any reconnaissance survey was not carried out because of no access roads.

Various comparison studies were made and the results are on Table 5-10.

8) Nam Mae Ngao

This project is planned about 8 - 12 km upstream from the confluence of the Yuam river and the Ngao river.

Three alternative dam sites were studied.

The reconnaissance survey to the sites was carried out during the first and second field survey. As the results, alternative site of No.2 and No.3 were selected for the study.

The locations of two sites are shown on Table 5-1.

No. 2 Site

This project was planned as dam type power station. Main structures are rockfill type dam and power station planned on the left bank considering the topography and the geology.

Various comparision studies were made to find out the project feasibility and optimum development scale varying HWL, available reservoir capacity and installed capacity for sixteen cases in total.

The study results are shown in Table 5-11.

Judging from the results, this project is very promissing and the results show that the Ngao river has high potential.

In the next stage, the project should be re-examined using 1:5,000 scale map of the planned reservoir, mapped out by EGAT.

Tentative design works are made on preliminary study level for the next investigation works using 1:50,000 scale map.

The case with HWL 260 m is very attractive. However, judging from the topography, the case with HWL 250 m was conservatively adopted for the first stage study.

Therefore, tentative design drawings are based upon the figures described on Table 5-14.

No. 3 Site

The higher is HWL, the more is the benefit of the project. However, since the HWL of the No.2 site is restricted due to topographical and geological condition, the No. 3 dam axis is considered as an alternative dam site. The field reconnaissance was also made by the team.

The comparison study results are shown on Table 5-12.

According to the results, No.3 site also be very promising to construct high dam keeping the economy of the project.

Considering the study results of the above two sites, No. 2 site is preferred to No. 3 site.

However, due to the uncertainty of topographical and geological information, the investigation works in the next stage should be made for both No.2 and No.3 site.

9) Upper Mae Ngao

This project is planned upstream of Nam Mae Ngao.

Therefore the site was selected according to the study results of Nam Mae Ngao. The location of the site is shown on Table 5-1.

Comparison study results are shown on Table 5-13 and summarized on Table 5-14.

Table 5-2 Alternative Thermal Power Plant for Studying Optimum Scale of Development (First and Second Stage)

				Alterno	srmaf	Power Plant		
	Item	Calculation formule	Hydro power plant	for the first 25 yrs	25 yrs	for the se	for the second 25 yrs	for 50 yrs
				Gas Turbine	Thermal	Gas Turbine	Thermal	Lignife Thermal
Basic Criteria	(a) Installed Capacity (MW)			22	009	25	009	150 ~ 300
for Alternative	(h) Service, life (yrs.)		50	20	25	20	25	25
Thermal	(c) Station Service Use (%)		0.5	2		2	7	
	(d) Scheduled Outage rate (%)		0.0	21	12	12.	12	. 12
	(e) Forced Outage rate (%)		0.5	\$	4	4	ŧ.	4
	(1) Adjustment factor (%)	(1-Ct/100)(1-dt/100)(1-et/100)		84	79	84	79	. 79
		(1- Ch/100)(1- Ch/100)(1-Ch/100)						
	(g) 0 t M cost rate (%)			'n	2.5	3	2.5	2.5
-	(h) Unit Construction Cost							
_ :	(th) Net Cost (US\$/kW)			405	580	405	957	296
	(Az) Cost with IDC (US\$/kW)			1		l	1	_
	(/) Fue!			Notural Gas	Notural Gas	Diesel Oil	Imported Cool	Lignite
	(11) Colonific Value							
	(Bfu/unit)			1,087.52 Btycuf1	1.087.52 Btycuff		I	l
	(Kcol/unit)	18tu = 252 col		274.06K ^{cot} /cuft	274.06 Kcol/cuft	9,317,41 Kcal /t	6,717,3 Kco17 kg	2,700 Keat / kg
. :	(12) Energy Equivolence	BSO Kcal / kwh		-	_		1	ļ
	(13) Thermal Efficiency or heat rate			% 52	36 %	25%	36%	2,500Kccl/kwh
	(14) Fuel Consumption	12 /(11 x 13 10r 13/11.		12.55 cutt/kwh.	9.72 cuf1/ kwh	0,37 L/ kwh	0.36 kg/kwh	0.93kg/kwh
	(75) Unit fuel price	ı		0.095 \$7cutt	0,095 B / cuft	6.605 \$7.1	0.075 USE / kg	0.534 B / kg
	(/e) Fuel cost	14 x /3						
	(# / kwh)			1, 19 B/kwh	0.83 \$/kwh	2.44 \$/ kwh	0.73 B/kwh	_1
	(US\$ / kwh)	: US\$ = 27 @		0.044 US\$/ kwh	0.031 USB/kwh	0,090USE/IMM	0.027 USEVKWh	0.019US\$/kwh
								ï
Basic Criteria	(1) Installed Capacity (MW)			0.846	0.79T.	0.846	0.797	0.79L
for Optimal	(A) Effective Capacity (MW)	(A) × (I)						
Combination of	(1) Annual Plant Factor (%)			×°	×	×	×	×
Alternative	(m) Annual Energy Production (103 kwh)	(1) x 24" x 36500" x (1)		8,760GX&	8,760TX†	8,760 GXs	8,760 TX1	8,760 LXL
Thermal Plant	(n) Stotion Service Use (%)		0.5	2	7	2	7	7
	(o) Adjustment Factor (%)	(1- Rr /100) / (1- Nu /100)		98	93	98	93	93
	(P) Annual Available Energy (1034wh)	(m) × (o)		8,584,8 GXe	8,146,8TX	8,584,8 GX ₆	8,146,8TXT	8,145.8 LXL
	(9) Capital Investment Cost (10°us#)	(h;) x (j)		405 G	580T	4056	957 T	957 L
	1	(6) x (6)		12.156	14.5T	12.156	23.925T	23.9251
		(10) K (m)		385.4 GXs	271.6TXY	789.4 GXc	236.5 TXT	166.4 LXL
		% 01						
	(u) Conversion Rate of Currency	US\$ 1.00* \$ 27.0						

Table 5-3 1st Stage Planning Study Upper Mae Yuam 1

3	194 MCM								E				9		6	6		66	3.6	3.7	500	26.0	240	-	+	14			66.2	6	26.5	14.0	16.6	-		998		+	3.6	990	2002	100
	Specify	® 	9.0	8	'		8	158	30.3	290	262	48	37.9		126	662	-	1	1	-	-		-	-	+	899.4	-	1	-	1	_		4		4		-	-	4			NID AL
		9	D.	8	ı		ŧ	134	302.7	292	262	48	39.4		2.3	88		0	4.2	φ.	52.0	ဝို လ	220			9019			69.4	0.7	88	12.9	15.2			8			٥		1,93	012013
H.¥.⊓	Total St	9	S.	8	ı		õ	ŝ	304.5	38	292	84	41.2		E,	299		10.7	45	3,2	230	350	210			903.8			902	4	32.6	1.5	(4,5			1003			762 ₹	020	189	OCULTUR SICIETING COLUMN
E	MCM																																									
310	lly 194	6	SG	8	ı		8	.58	301.3	82	292	48	37.8		12.6	50.3		16.6	11.7	4.0	52.0	26.0	260			1,0022			892	29.7	26.5	2	6.71			11.2			0.22.0	080	2,14	000
	ige Capacity	- @	SG	င္ဖ	,		15	134	302.7	295	262	48	39.3		17.7	49.2		6.9	13.6	 S.	530	300	230			1,002.4			942	34.5	30,6	13.2	6.51			E	7.		A 17.1	085	2,10	- 2
H.W.L	Total Storage	0	S.G	60			Q	3	304.5	စ္တ	292	. 84	1.14		11.3	45.1		16.2	14.4	3.5	220	320	230		-+	9836		1	983	36.6	32.6	13.2	15.9	1	_	109.4			1.114	0.90	66'1	31 31 51 51 51 51 51 51 51 51 51 51 51 51 51
-	MCM	-					-			-							1							-				1														
325	y 455	9	P,G	κ	ŀ		30	395	316.3	295	262	63	52.4		15.2	89.9		3,6	3.2	5.7	730	360	37.0	-		1,216.2			898	13.2	36.7	21.5	25.5			135,0			0.38.€	0.72	- 95	1
	e Copacity	9	P.G	R			8	318	318.1	305	262	63	545		13.9	29.9		1.0	6.2	4.6	740	440	30.0	1	-+	1,216.4			2.86	15.7	649	174	20.7	1		135.0		+	△363	0.73	<u>-</u> 88	
H.W.L	Total Storage	•	P.G	Ŕ	1		01	061	3.9.7	315	262	63	55.8	-	12.5	6.62		5. 5.	0,1	0.	750	49.0	0'92	1	-	1,215.5		1	88	17.8	8	13.	6.71	1		134,9			۵34.1	0.75	1.80	
	MCM T		-	-					_							+	+								-	<u> </u>		1									-		1			*
325	.455	(E)	S.G	25	,		8	395	316.3	285	292	63	524		15.2	63.6		278	16.5	5.7	730	360	37.0			1,408.3			1256	61.9	36.7	21.5	255	1.	11	156.3			A 30.7	080	2.14	
	e Capacity	_	5.6	75	1		શ્વ		318.1	305	-	63	542		6.53	55.5		262	6.61	9.4	74.0	940	30.0	1		1,362.1			1335	50.5	443	17.4	20.7			151.2			- 1	0.88	204	
H, W.L	Total Storage		5.6	25		-	Q	8	319.7	315	262	63	55.8		12.5	50.1	4	4	4	_	760	49.0	27.0			1,335.9	1	4	4	566	80	15.9	19.6			1483		\vdash	_	0.95	1.95	
Ξ	<u> </u>	\odot	S	£	1		E	ξ Q	rn E	. 3				.]	m/s		1	×	4		GWH	-		-	о 8	 E.1		-1	90	•	-	•	-		eΩ		,	1	7 8,01		B/m/H	
Description		Case No.	Project Type		Tunnel Langth		Available: Orowdown	Effective Storage Capacity K	┢	L.W. L	T.W. L	Gross Head	Effective Normal Head		2	Max. Turbine Discharge		Jointy	1	- 1	Annual Energy Production G	Firm Energy	Secondary Energy		Construction Cost	for Generating F.	for Tronsmission F.			- 1	for first kWH	for Secondary kW	for Secondary kWH		11.0	for Generating F.	for Transmission F.			B/C	Annual Energy Cost	

Table 5-4 1st Stage Planning Study Upper Mae Yuam 2

Daerrinting	-	Y.		1	-	_		400	00 m	 M		380	ε
063613610		Total	Storoge	Capacity 8	830 MCM	Total	Slorage Cap	Capacity 4:	432 MCM	Total :	Slorage Capacity	city 178	MCM
Cost No.		Θ	0	(E)	(9	9	Θ	0	0	©	(I)	<u>@</u>
Project Type		S.G	S.G	9 d	9 d	8.6	S.G	O G	9 6	5.6	5.6	P.G	P.G
Dam Height	٤	102	102	10.2	102	85	85	85	85	65	65	65	65
Tunnel Length	·	,	1	1	ı	1	1	1	1	-		-	ı
Available Orowdown	E	20	37	20	37	15	30	15	30	õ	20	ō	8
Effective Storage Copacity	.E	Ľ	253	447	652	205	329	502	329	75	124	7.5	124
N.I.W.E.	ε		4084	6.05	408.4	393.9	392.2	383.9	392.2	574.2	371.5	374.3	371.5
L.W. L		397	380	397	380	385	370	382	370	370	360	370	360
T.W.L		326.5	326.5	326.5	326.5	326.5	326.5	326.5	326.5	326.5	326.5	326.5	326 5
Gross Head	•	90.5	80.8	90.5	505	73.5	73.5	73.5	73.5	53.5	53.5	53.5	53.5
Effective Normal Head		81.7	79.2	7.18	79.2	65.2	63.5	2'59	63.5	46.1	43.3	46.2	43.4
Firm Discharge (95%)	11.75	2.6	9'0;	2.6	10.6	8.3	9.3	6.3	£ 6	7.1	42	12	7.
Max. Turbine Discharge	_	38.7	42.2	b.61	21.1	33.0	37.0	17.4	19.5	28.4	962	17.4	17.4
Installed Copacity	MM	276	29.5	13.6	14.6	18.8	20.5	6.0	10.2	11.4	11.2	2.0	9.9
Firm Capacity		22.9	19.7	11.4	6.6	16.2	13.3	- 8	6.7	10.4	9.2	5.2	4
Associated Capacity		2.8	0.4	2.8	4.0	2.6	3.E	2.6	3.5	2.1	2.6	1.8	2.4
Annual Energy Production	GWH	0.89	67.0	0.89	670	52.0	52.0	52.0	52.0	37.0	35.0	35.0	340
Firm Energy:	ŀ	50.0	4.0	50.0	0.14	350	29.0	380	29.0	23.0	18.0	23.0	180
Secondary Energy		18.0	28.0	0.81	26.0	0'21	23.0	17.0	23.0	14.0	170	12.0	160
Construction Cost	9 01												
for Generaling, F.		1,943	1.367	1,805	1,816	1,307	1,337	1,201	1,214	822	827	725	742
for Transmission E	·												
									1	1	100	o lu	0 07
Bensfit	Ö.	132.2	122.3	103.0	984	98.3	92.5	778	2.5	6/3	3	87.	5 5
for first kW	•	58.5	47.5	23.0	23.6	41.1	33.6	20.6	17.0	26,4	38	152	2 3
for first kWH.		51.0	41.8	51.0	41.8	35.7	962	35.7	59.62	23.5	18.4	23.5	5
for Secondary kW		10.6	121	10.6	15.1	9.8	13,2	9.8	13.2	62	9.6	6.8	6
for Secondary KWH	ŀ	12.4	621	12.4	17.9	11.7	15.9	11.7	6.59	9.7	111	8.3	0.1
Annual Cost	₽ ,0											7 50	
for Generating F.	_	215.7	218.3	2004	201.6	145.1	149.4	133.3	134.8	91.2	8.6	92.7	82.4
for Transmission F.													
						3,5	0.55	A 45.5	201	× 27.7	A 31.1	908	△ 33.5
B - C	B O	4	0.96.0	△ 974	A 103.2	0.45.6	6 33.9	500	1	22.0		Ή.	
2/8		19'0	0.56	0.51	049	0.68	0,62	BC 0	8	\$10	000	200	3 3
Annual Energy Cost	E V	3.17	3.26	2,95	3.01	2.79	2.85	2,56	529	246	292	236	2.42
										0, 10, 10, 10, 10, 10, 10, 10, 10, 10, 1	02.087.00 01.087.00 00.000 01.000.000 01.000.000	OI CATORY	7203803
		06.41.5064	Y2841730 Y2841737	V2C41720	M2C417.37	M2C417.37 JM2B 400.15				2000	21.000		

Table 5-5 1st Stage Planning Study Upper Mae Yuam 3

km² C. A Annual Inflow 129.5 MCM

Description	Unit	H.W.	L		477	m
Description	Uilli	Tota	l Storoge Co		67.6	MCN
Case No.		(1)	(2)	(3)		
Project Type		S.G	S.G	S.G	1	
Dam Height	m	62	62	62	1	
Tunnel Length	1		-	_		•
				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
Available Orawdown	m	10	15	20	1	
Effective Storage Capacity	iO ⁶ m³	32.3	42.0	49.9	1	
N.I.W.L	m	470,7	469.8	468.7		,
Ł.W. L		467	462	457		
T.W.L	٦,	428	428	428		
Gross Head	,	49	49	49		
Effective Normal Head	•	41.3	40.3	392		
Firm Discharge (95%)	m7s	2.8	2.9	2.9		
Max. Turbine Discharge		113	11,4	11.7		
Installed Capacity	MW	4.i	4.0	4.0		
Firm Conacity		3.7	3.2	2.8	_ 5	
Associated Capacity		0.7	0.9	0.9		
-Annual Energy Production	GWH	13.0	12.7	12.4		-
Firm Energy	٠,	8.1	7.1	6.2		
Secondary Energy	3	4.9	5.6	6.2		
					_	
Construction Cost	1068		(d) 1 1 1 1 2			
for Generating F.	,	475.0	476.4	477.9		
for Transmission F.	9.					
						
Bensfit	10 _e B	23,7	22.6	21.1		<u> </u>
for first kW	1,5	9.4	8.1	7.1		
for first kWH		8.3	7.2	6.3		
for Secondary kW		2.6	3.4	3.4		
for Secondary kWH	1	3.4	3.9	4.3		
				ļ	-	
Annual Cost	10 _e B					<u></u>
for Generating F.		52.7	52,9	53.0	12.	
for Transmission F.				******		
						
B - C	10,8	Δ 29.0	Δ 30.3	Δ 31.9	-	
B/C		0.45	0.43	0.40		
Annual Energy Cost	8/kwH	4.05	4.17	4.27		
		Y38477.IO	Y38477.15	Y3B477.20	+-	

SG : Storage Type , RR : Run-of River Type PG ; Pondage Type ,

Table 5-6 1st Stage Planning Study Nam Mae Rit

00:40:40	! —	H. W. L			H.W.L	í.			_	H.W.L		270		H.W.L		240	ε
Description	<u>.</u>	Total Slorage	i 🕶	Capacity 360 MCM	M Total	al Storage	Capacity	178	MCM.	· Total Starage Capacity	age Capo	clry 79	MCM	Total Sto	Storage Capacity	city 27.	MCM
Case No.		Θ		0		0	9	9		0	(8)	0		9	⊜	(C)	
Project Type		3.6	5.6	5.6	S	S.G.	5.5	5.6	-	5.6	S.G	5.6		} 9'd	PG	S.G	
Dom Height	E	145	145	145	_	113	113	113	-	83	63	83		53	53	53	
Tunnel Length		ı	-	ı				1		1	ı	_		-		1	
										-			-				ļ
Available Orawdown	u	0	50	30		ō.	15	50	_	0	2	20		0	2	8	
Effective Storage Capacity	(m,0)	63	127	172	7	44	62 .	7.5		22.5	33.0	\$		9.5	13.8	17.1	
N.1.W.L	E	326.9	322.5	320.4	Ň	-		230.7	-	265.5	263.1	261.2		235.6	233.6	23.18	
1. W. L		322	312	302	_	290. 2	285	280	-	260	255	250	ì	230	225	220	1
T.W.L	ŕ	192	192	192	<u> </u>	L	261	192		192	192	192		192	192	192	
Gross Head		40	140	140	Ĺ	_	901	801	-	82	78	78		48	48	48	
Effective Normal Head	-	1307	1263	124.2	"		97.3	95.5		71.2	688	668		42.2	40.1	38.3	
					1		-		-								
Firm Discharge (95%)	m/s	7.83	9.40	9.95		6.82	7.81	8.32		5.55	6.17	6.58		4.63	4.95	205	
Max, Turbine Discharge	•	31.3	376	39.8		25.6	31.2	33.3		22.2	24.7	26.3		20.3	20.1	20.	
			of and Surv			_			-					_			
Installed Copocity	3	35.7	41.4	43.1		23.7	26.5	27.7		(3.8	14.8	15.3		7.4	202	67	
Firm Capacity	·	34.3	380	36.7			24.5	24.6		12.7	13.1	12.8		59	5,4	4.7	İ
Associated Capacity	-	7.2	5.5	5.8	_	6.4	5.6	5.3		5.1	4,9	4.9		3,4	3.1	32	1
Annual Energy Production	± 8 8	121	97.	211	<u> </u>	905	900	980		61.0	61.0	60.0	Î	350	32.0	31.0	- {
Firm Energy	Ŀ	ĸ	83	80		49	54	54		280	29.0	280		13.0	200	00	
Secondary Energy		46	35	37	,	S	360	34.0		33.0	32.0	32.0		220	20.0	21.0	
	L						-										
Construction Cost	ō					L	-										
for Generating F.	Ŀ	2,889	2,98	2,957	1.671	-	1,710	1,722		896	987	997		262	560.3	559.3	
for Transmission F.	,				_												
																	1
Bensfil	10°	222.5	226.2	222.2	_	60.0	163,3	161.1	-	103.6	103.5	7.10		\$6.4	51.4	48.7	1
for tirst kW	·	87.1	96.5	93.2		L	62.2	62.5	-	52.3	33.3	32.5		15.0	13.7	6.13	-
for first kWH	Ŀ	76.5	84.7	81,5		Ļ.	55.1	55.0		28.6	29.6	28.6		13.3	12.2	10.2	١
for Secondory kW		27.2	20.8	21.9		24.2	21.2	20.0	_	19.3	18.5	18.5		12.9	2:	12.1	
for Secondary KWH	-	31.7	24.2	25.5		28.6	24.8	23.5		22.8	22.1	22.1		15.2	13.8	14.5	
			-		-		-	-									
Annual Cost	õ				_		-										
for Generating F.		320.7	326.5	328.2		185.5	83.8	1361		107.4	9.60	1.0.7		624	62.2	129	1
for Transmission F	Ŀ					-	-										
					_												
D - B	Ö	A 98.2	& 100.3	0.9010	٥	Δ 25.5 Δ	26.5	0 300		4.4	0 6.1	0.6 0		0.90	V 0.8	∆13.4	
97.6	•	0.69	69.0	0.68	_	0.86	0.86	0.84		0.96	0.94	0.92		8	0.83	0.78	1
Annual Energy Cost	E/kwrt	2.65	2.77	2.81		2.05	1,5	2.17	1	1.76	1.80	1.85		1.78	1.94	200	
					+	3				October 51 000 000 01 000 000	St Care one	Oc 070 gag		Ben240 10 Ben240 (5 Bel240 20	Re024015	R#8240.20	}
Cimming and an inches	_	C- CKK 050	0.00	ひょうしゅう しんこうきゅう しんりょう しんしゅう しょうしん	C T			22.22	<u>c</u>	200		200)		1	}

Table 5-7 1st Stage Planning Study Upper Mae Rit 1

C.A 686 km² Annual Inflow 214 MCM

			1771112	Aimu	al Intlow
H.W.L.	m	445		490	
Total Strage Capacity	lO _e m ₃	0.3		15.8	
Case No.		0	2	(3)	4
Project Type		R.R	P.G	P.G	P.G
Dam Height	m		66	66	66
Tunnel Length		5,100	5,100	5,100	5,100
Available Orawdown	m	-	10	15	5
Effective Storage Canacity	10 ⁶ m ³		8.1	11.2	4.7
N.I.W.L	m	365	401.8	399.9	403.8
L.W. L		-	397	392	402
T.W.L		281	281	281	281
Gross Head	,	84	126	126	126
Effective Normal Head	1	64	90.9	88.9	92.9
		1			
Firm Discharge (95%)	m³/s	2.01	2.72	2.90	2.46
Max. Turbine Discharge	<u>, </u>	12,94	12.94	12.94	12.94
				<u> </u>	
Installed Copacity	MW	7.2	10.3	10.0	10.5
Firm Capacity		1.1	-8.2	8.2	7.8
Associated Capacity		2.3	3,9	3.7	3.9
Annual Energy Production	GWH	29.8	42.5	41.9	42.7
Firm Energy		9.8	179	18.0	17.1
Secondary Energy		20.0	24.6	23.9	25.6
<u> Perganan kanan berana</u>				ļ	
Construction Cost	10,8			ļ	
for Generating F.	- -	553.8	837.2	⋅838.6	836.3
for Transmission F					
	-5-	<u> </u>	700	60.7	60.6
Bensfit	10 ⁶ 8	34.0	70.8	69.7 20.8	69.6 19.8
for first kW		2.8	208	 	19.8
for first kWH	1 1	10,0	(8.3	18.4	14.7
for Secondary kW		10.2	14.7	14.0	17.7
for Secondary kWH	1 1	11.0	17.0	10.5	11.7
Annual Cost	10 ⁶ B		 		
for Generating F.	10.5	61.5	92.9	93.1	92.8
for Transmission F.					
ivi ridisinissivii i	-				
8 - C	10°B	Δ 27.5	Δ22.1	Δ23.4	Δ 23.2
B / C		0.55	0,76	0.75	0.75
Annual Energy Cost	8/kwH	2.06	2.19	2.22	2.17
27.31	1/////	2.00			
Simulation Case No	1	RIE 365.0	RID 407.10	RI0407.15	RID407.50

Project Type . SG : Storage Type , RR : Run-of River Type

Table 5-8 1st Stage Planning Study Upper Mae Rit 2

00000000000000000000000000000000000000		≯ I			645 m	HW		9	615 m	HWL		5	35 m
north the contract of the cont	5_	Total	Storage	Capacity	134 MCM		Total Storage Car	Capacity 4	486 MCM	Total	Storage Cop	Capacity 13.5	5 MCM
Cose No.		Θ	@	0		•	9	9		0	0	0	
Project Type		S.6	S.G.	5.6		5.6	5.6	SG		ا	PG	8.6	
Dom Height	Ε	123	123	123		93	93	93		63	63	63	
Tunnet Length	٠	2,015	2,015	2,015		2,055	2,055	2,065		2,110	2,110	2,110	
Available Orowdown	Œ	10	50	30		0)	15	20		S	0	ž	
Effective Storage Copacity	Ω	34	ß	88		15.7	22.4	622		3.2	5,3	7.2	. 1
N.I.W.L	E	638.3	634.7	633.5		5809	606.5	604.4		591.4	579.4	577.6	
L.W. L		635	625	615		85	609	595		580	575	570	
T.W.L	Ŀ	491	164	491		491	491	49.		164	491	491	
Gross Head		154	154	154		124	124	124		94	94	94	
Effective Normal Head	Ŀ	139.6	136.0	(34.B	_	11.5	109.3	107.2		95.7	83.7	6.18	
Firm Discharge (95%)	2/E	3.6	4	1,4		2.7	3.1	3.3	1	8.1	2.0	2.1	
Mox. Turbine Discharge	•	2.41	16.4	16.4		10.7	12.2	13.3		63	8,3	8.4	
Installed Capacity	ММ	€21	3.5	19.3		401	11.6	12.5		6.2	 6. i.	6.0	
Firm Capacity		691		16.7		10.1	60	4:11		5.4	9.5	5.4	
Associated Capacity	$\left[\cdot \right]$	5.6	20	2.6		- 2	2.8	2.5		5.4	2.4	2.4	. 1
Annual Energy Production	HMS	٩	530	53.0		420	420	0.14		28.0	28.0	280	
Firm Energy			40.0	360		220	240	25.0		12.0	12.0	120	
Secondary Energy	Ŀ	0'21	13.0	0.71		200	0.81	16.0		16.0	Ø9I.	(6.0	
Construction Cost	18. O≀												
for Generating F.	÷	999"	1,701.5	1,702.5		0.966	1,016.0	1,027,0		561.1	561.1	563.0	
for Transmission F.	•												
			٠										
Bensin	10.8	102.1	103.4	100.6		73.6	75.2	750		45.0	\$6.5	460	
for first : KW	•	42.9	46.0	45.4		25.7	27.7	29.0		13.7	14.2	13.7	
for first kWH	-	27.7	40.8	36.7		22.4	24.5	25.5		12.2	122	12.2	
for Secondary kW	·	9,6	7.6	9.6		11.7	10.6	9.5		1.6	1,9	7.00	
for Secondary KWH	Ŀ	7.11	9.0	7,11		13.8	12.4	0.1		0.1	-	0.5	
	I												
Annual Cost	0			3		9	861	0.00		623	623	625	
Consequent L.	1	184.9	688	2662									
for Transmission F.	1												
B . C	0	A 82 B	A 855	A88.4		A 37.2	0.37.6	0.95. △		A16.3	A 158	4 16.5	
3/8		0.55	25.0	0.53		99'0				0.74	0.75	0.74	
Apount Frances Cost	9	3.42	4	357	-	2.64	_			2.22	2.22	2.23	
(S.)	Į		20.5		-								
	_	_			.]								

Table 5-9 1st Stage Planning Study Upper Mae Rit 2a

C.A 525 km² Annual Inflow 163 MCM

			Annual	Inflow 18
H.W.L.	m	445	490	535
Total Strage Capacity	10 _e m	0.3	15.8	_
Case No.		(0)	(1)	(8)
Project Type		Ρ6	96	RR
Dam Height	m	63	38	13
Tunnel Length		5,500	5,845	5,960
		1.54(2.5)		11.1
Available Orawdown	m	5	5	
Effective Storage Capacity	10 ⁶ m ³	3.2	0.8	4. V
N. I. W. L	m	581.3	556.9	534.0
L.W. L	1	575	555	_
T,W,L		407	407	407
Gross Head	,	178	153	128
Effective Normal Head	4	151,4	126.9	104
Firm Discharge (95%)	m³/s	1.8	1.6	1.5
Max. Turbine Discharge .	7,	9.9	9.9	9.9
	† · · · ·			
Installed Capacity	MM	13.1	11.0	9.0
Firm Capacity		9.6	6.8	14
Associated Capacity		4.9	4.4	2.8
Annual Energy Production	GWH	53.0	44.0	37.1
Firm Energy	•	21.0	15.0	12.2
Secondary Energy		320	29.0	24.9
Construction Cost	10.8			
for Generating F.		745.1	599.9	433.7
for Transmission E				
Bensfit	105 8	864	692	42.1
for first kW		244	17.3	3.6
før first kWH	4	21.4	15.3	12.4
for Secondary kW		18.5	16.6	12.4
for Secondary kWH		22.1	20.0	13.7
Annual Cost	10.8			
for Generating F.		82.7	66.6	48.1
for Transmission F.	,	_		
	-		<u> </u>	
8 - C	1068	3.70	2.60	Δ 6.0
B/C	,	1.04	1.04	0.88
Annual Energy Cost	8/kwH	1.56	. 1,51	1.30
	<u> </u>		00.05005	D2-05 535 A
Simulation Case No	<u></u>	R2oD 585.5	M20U36U.5	R2aE 535.0

Project Type . SG : Storage Type , RR : Run-of River Type PG : Pandage Type ,

Table 5-10 1st Stage Planning Study Upper Mae Rit 3

349 Annual Inflow IO8.6 MCM

			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Ann	ual Inflov
H.W.L.	m·	445		490	
Total Storage Capacity	iO6m³	0.3		15.8	
Case No.		(1)	(3)	(3)	4
Project Type		R.R	P.G	P.G	S.G
Dam Height	m		64	64	64
Tunnel Length	\$1	6,800	6,800	6,800	6,800
	_		ļ		<u> </u>
Available Orawdown	m	-	5.	10	15
Effective Storage Capacity	(O _e w ₃	-	4.1	7.1	9.7
N. I. W. L.	m	445	486.3	484.4	482.3
L.W. U		<u></u>	485	480	475
T.W.L		281	281	281	281
Gross Head	9	164	209	209	209
Effective Normal Head		138	176.1	174.2	172.0
Firm Discharge (95%)	m³/s	0.27	1.38	1.59	1.73
Max. Turbine Discharge	,	6.58	6.58	6.58	694
		· ·			
Installed Capacity	MW	7.9	10.1	10.0	10.4
Firm Capacity		1.2	8.4	9.4	10.0
Associated Capacity		2.5	3.6	3.3	3.2
Annual Energy Production	GWH	32.7	418	42.2	42.7
Firm Energy		10.7	10.5	20.6	21.8
Secondary Energy	1 3	22.0	23.3	21.6	20.9
				<u> </u>	ļ
Construction Cost	10,8			<u>                                     </u>	ļ
for Generating F.		447,9	829 7	831.5	838.1
for Transmission E					<u> </u>
					ļ
Bensfit	10 _e B	37.1	61.7	72.3	74.1
for first kW	25	3.0	21.3	23.9	25.4
for first kWH		10.9	10.7	21.0	22.2
for Secondary kW		11.1	13.6	12.5	12.1
for Secondary kWH		{2.1	16.1	14.9	. 14.4
	1065		1	<del> </del>	<del> </del>
Annual Cost	10 8	407	02.1		02.0
for Generating F.		49.7	92.1	92.3	93.0
ter Transmission F.	-		<del> </del>	-	<del>                                     </del>
8 - ¢	10.8	∆ 12.6	Δ 30.4	Δ 20.0	Δ 18.9
8/C		0.75	0.67	0.78	0.80
Annual Energy Cost	B, kwH	1.52	2.20	2.19	2.18
	7,5,111		1.3		1
Simulation Case No		R3E445.0	R30490.5	R3049010	R38490.15

SG : Storage Type . RR: Run-of River Type PG : Pondage Type .

Table 5-11 1st Stage Planning Study Nam Mae Ngao (Site No. 2)

Contribution	2	H, W.		ณ์		H W.L		240	E 0	H, W. L.		250	E
10000		Total	Storage	Capacity 6(	669 MCM	Total	Storage Copo	Copacity 345	5 MCM	Total S	tomage Capacity		MCM
Case No.		(O)	9	0	0	0		(3)	@	9	1	(E)	9
Project Type		S.G	5.6	5.6	5.6	P.G	5.6	S.G	8.6	l	P.G	S.G	S.G
Dom Height	ŧ	105	105	105	105	85	85	88	88	95	95	95	95
Tunnet Length	·	-1	•		-	1	1.			1	1		
Available Orawdown	ε	ō	15	20	25	õ	15	20	2.5	0	15	20	25
Effective Storage Capacity	10°m³	69	262	325	388	811	166	88	245	133	197	251	562
N.f. W.L	E	255.2	253.1	251.1	248.8	235.3	233.4	231.3	258.2	245.2	243.0	2408	238.7
r.w.L	•	250	245	240	235	230	225	220	215	240	235	230	225
TWL		163	163	163	163	.63	163	163	163	163	163	163	163
Gross Head	-	97	26	-26	26	77	7.2	77	77	87	87	87	83
Effective Normal Head		89.3	87.2	85.2	82.7	0.07	1.89	660	63.9	79.6	77.4	75.2	73.1
												-	
Firm Discharge (95%)	s,⁄E	17.6	21.2	23.5	26.6	13.6	16.3	18.4	20.3	5,5	6.21	20.6	22.7
Max. Turbine Discharge	ř	70,5	94.8	93.8	106.5	734	65.0	73.5	81.3	73,4	73.4	92.6	6.08
Installed Capacity	3.50	2,42	64.5	2.69	0.77	44.9	38.6	42.3	45.3	603	49.5	54.2	579
Firm Capacity	•	51.2	58.5	60.6	54.2	30.7	33.8	35.0	35.2	37.6	43.4	46.4	47.1
Associated Capacity	•					1.61	16.8	17.1	0.71	21.3	19,4	18.7	1.8.1
Annual Energy Production	GWH	251	255	255	Į.	061	182	187	186	218.6	219.0	220.7	218.0
Firm Energy	•	113	128	(33	141	29	74	- 77	7.2	82.3	950	101.5	103,1
Secondary Energy	1	136	127	122	OII	123	108	10	601	1363	124.0	119.2	114.9
Construction Cost	ro*B												
for Generating F.	·	2,355	2,444	2,504	2,573	1,703	1,659	669	1,737	1,977	1,975	2,021	2,051
for Transmission E	·												
Bensfit	10 8	341.8	366.8	373.8	382.8	303.4	299.4	3029	307.4	353.9	366.0	374.3	3228
for first kW	•	131.3	148.6	153.9	163.1	780	85.9	688	488	95.5	110.2	117.9	119.6
for first KWH	,	115.3	130.6	135.7	143.8	68.3	75.5	78.5	78.5	839	696	103.5	105.2
for Secondary kW						72.2	63.5	646	64.3	805	733	7.07	88
for Secondary KWH	•	95.2	928	84.2	75.9	64.9	74.5	759	75.2	0.50	85.6	82.2	293
Annual Cost	8,01												
for Generating F.		2614	271.3	577.9	285.6	0681	184.1	188.6	1928	219.4	2.9.2	224.3	227.7
for Transmission F.													
						•							14 11 13
8 - C	10 B	80.4	95.5	95.9	97.2	114.4	115,3	119.3	146	<u>7</u>	146.8	150.0	144.8
B/C	•	15,1	35.	1.35	1,34	1,61	1.63	1.63	159	1.61	1.67	1.67	- 64
Annual Energy Cost	3kwH	8	98.	601	1 14	850	0,	0.7	1,04	8	8	1.02	8
		01000011	The Contract of	CC COCCAS P. CACCAS	The Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Co	OI OVCOM	N-02001	0.0000 P	1114000000	0.0000000	200000	ころういんびゅう	N 2017 50 70

Table 5-12 1st Stage Planning Study Nam Mae Ngao (Site No. 3)

1000 1000 1000 1000 1000 1000 1000 100	1	3			1 -	77.11				
Description	<u></u>		Storage	Capacity	947 MCM	Total	Storage Car	Capacity 52	538 MCM	
Case No.	_	Θ	0	0	0			h	r	
Project Type		P G	S.G.	S.G	S.G	P.G	9.6	υ 0.0	5.6	
Dam Height	ε	120	120	120	120	<u>0</u>	100	001	100	
Tunnel Length		ł	1	ł	ı	1	-	1	,	
Available Orawdown	E	0	5	8	25	0	(5	. 20	25	
Effective Storage Capacity	iO m	212	315	409	494	156	2 18	269	3/5	
	Ε	274.8	272.3	2703	2689	255.1	253.0	2510	248.9	
L W. L	Ŀ	270	265	560	255	250	245	240	235	
TWL	-	2 121 3	121	121	121	121	121	121	121	
Gross Head	_	60:	601	60)	60	89	98	68	88	
Effective Normal Head		9:001	1 86	96.0	94.7	81.4	79.3	77.3	75.2	
	, i	170	1 00	2 30	4 2 6	9	C	3		
riem Discharge	2/E	1	777	27.2	20.0	O. I.	2.01	50.5	62.1	
Max. Turbine Discharge	•	20	2	n Š	20	ָאָר אַר	n n	92.1	O Th	
Installed Good ity	×	200	77.8	95,4	87.6	567	552	55.4	59.7	
Firm Conacity		59.9	720	76.2	7.47	104	45.4	47.5	48.7	
Associated Cooocity	•	21.9	17.5	(5.9	16.1	20.02	17.71	16.5	15.4	
Appual Energy Production	HASS	["	266.8	265.8	263.8	216.0	212.0	2090	2040	
Firm Energy		131.1	1577	166.9	163.6	88.0	29.0	1040	070	
Secondary Energy		1380	169	989	100.2	128.0	13.0	1050	960	.*
Construction Cost	8,01									
for Generating F.	•	2,927	2,998	3,072	3.115	2,140	2.139	2,151	2,201	
far Transmission E			I.	1	1					-
- 1	-	1								
	<b>⊕</b> ⊙		485.3	4920	486.6	9000	2190	7 191	0.000	
	٠	152.1	182.9	93.5	189.7	2	c c	120.7	23.7	
for first KWH		133.7	60.9	170.2	6991	89.8	010	106	1,60	
for Secondary kW	٠	. 92.9	662	- 09	603	75.6	66.9	62.4	58.2	
for Secondary, KWH		95.2	75.3	682	69.1	88.3	78.0	72.5	67.6	
	9									
AUTHORI COST	2	0 / 62	2228	3410	3458	237.5	237.4	2388	244.3	
Paris of the	-		23				ì	1		
ior transmission F.	-									
D = 8	9	1389	152.5	151.0	140.8	1.8.1	123.8	6.221	114.3	
B / C	-	1.43	1.46	144	141	1,50	1.52	- 3	1.47	
Annual Energy Cost	B/KwH	1.21	1,25	1 28	_   ⊡	0F1	- 5	1.14	2	
The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s										

Project Type. SG: Storage Type, RR: Run-of River Type PG: Pondage Tvos.

5 22

Table 5-13 1st Stage Planning Study Upper Mae Ngao

Case No. Project Type Dam Height Tunnel Length		≯ I		4				18	380 m	×		340	١٤
Gase No. Project Type Dam Height Tunnel Length	5	Total	Storage	Capacity, 4	422 MCM	Total	Storage Cap	Capacity 16	1		Storboe Copacity		MCM
Project Type  Dam Height Tunnel Length:		$\odot$	0	0		0	9	9		©	1~	0	
Dam Height Tunnel Length:		S.G	9.8	5.6		9.6	S.G	5.6		P.G	9.	9.6	
Tunnel Length	E	160	. 091	160		120	82	120		80	8	90	
	·	1	1	1		1	_	1			,	1	
Available Drawdown	ε	Q	ξ.	8		0	15	S,		'n	9	ξ	İ
Effective Storage Capacity	IO m	17	==	152		39.8	56.6	71.9	:	æ	15.2	21.2	
N.I.W.L	Ε	414.0	412.1	411.2		374.5	3723	370.0		337.1	335.0	333.0	
L.W. L.		410	405	\$		370	365	360		335	330	325	
T.W. L	·	1.172	271.1	1:122		1,1.75	271.1	271.1		271.1	1,175	271.1	
Gross Head		148,9	148,9	6.84		108,9	108.9	6.801		689	6.83	689	
Effective Normal Head	÷	138.4	136.6	135.7		100.2	97.9	95.7		63.9	6.18	59.8	
-													
Firm Discharge (95%)	# 7s	5.0	5.6	5.9		3.5	4.3	5.0		1.5	2.2	2.5	
Max. Turbine Olscharge		6.61	22.3	23.5		(6.8	17.3	20.0	14	8.91	8'91	8'91	
	:												
Installed Capacity	MW	24.0	26.6	27.9		14,7	14.7	16.7		9.4	1.6	8.5	
Firm Capacity		23.3	25.2	25.5		6.11	13.6	14,9		33	43	46	
Associated Capacity		4.4	3.9	3.9		4.7	4.0	3.5		0.4	3.6	3.5	
Annual Energy Production	H/VD	79.8	803	808		56.3	55.9	55.3		334	33.2	32.6	
Firm. Energy	-	51,1	55.2	55.9		25.8	59.9	32.7	1	7.2	9.4	0.01	
Secondary Energy		28.7	25.1	24.9		30.5	26.0	22.6		262	23.5	22.6	
Construction Cost	в О												·
for Generating, F.	•	4,940	4,963	4,973		2,402	2,406	2,428		908.8	1.606	6706	
for Transmission F.													
Bensflt	10.E	1477	152.3	153.7		95.1	98.0	<u>8</u>		46.9	50.5	50.7	
for first kW	•	59.2	64.0	64.8		30,0	34.5	37.8		8.4	6'01	7.11	
for first kWH	1 4 1	52.1	56.3	0'25		26.3	50.5	33.4		7.3	9.6	10.2	
for Secondary kW	ŕ	9'9'	14.7	14.7		8'21	15.1	13,2	1.1	. 15.1	13.6	13.2	
for Secondary : KWH		6.61	17.3	2.21		21.0	621	15.6		181	16.4	15.6	
And the second second								11					
Annual Cost 12 1 1 1 1 1	10 B				Section 1								
for GeneratingF.	1	548.3	550.9	552.0		566.6	267.1	269.5		6'001	6'001	100.8	
for Transmission F.	•												
8 - C	10. E	△ 400.6	△398.6	A3983		0171.5	Δ169.1	△ 169.5		A 520	A 504	A 50.1	
B/C		027	028	0.28		0.36	0.37	037		0.48	0.50	0.50	
Annual Energy Cost	W.	587	6.96	5.83		4,74	4.78	4.87		3.02	3,04	3,09	1
								1 13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 11			_	

Project Type, SG : Storage Type, RR; Run-of River Type Project Type,

Table 5-14-1 Summary of First Stage Study, Mater Plan of Nam Yuam River Basin

											Š	cember, 1985
	Unit	Upper Mae Yuam 1	Upper Mae Yuam 2	Upper Mae Yuam 3	Nam Mae Rit	Upper Mae Rit 1	Upper Mae Rit 2	Upper Mae Rit 2a	Upper Mae Rit 3	Nam Mae Ngao (Site No.2) (	Nam Mae Ngao (Site No.3)	Upper Mae Ngao 1
4	Km2	1967	6711	777	1268	686	525	505	078	835	756	0,7
Annual Inflow	X V	570	333	129.5	395	214	163	163	108.6	1304	1182	249
Case No.		-	50	-	7	۲۰	ω.	17	4	15	φ	00
Project Type 1)		SG	၁၄	ဗ္ဗ	SG	PG	54	PG	Sc	SS	P.G.	70
Dam Height	E	75	9	62	83	99	63	38	64	35	100	80
Tunnel Length	p	1	ı	1	•	2100	2110	5845	0089	ı	1	1
HMT	Ħ	325	380	477	270	407	585	560	067	250	260	340
NIWI	F	319.7	374.2	470.7	265.5	401.8	579.4	556.9	482.3	240.8	253	335
1.47	El .	315	370	467	260	397	575	555	475	230	245	330
TWI	P	262	326.5	428	192	281	491	407	281	163	171	271.1
Total Storage	W .	554	178	67.6	0.0	19.4	٠ ٢	7	25.08	8,4	538	43.2
Effective Stores	S E	0 0	2 5	32.3	22.5	2 00	, r.	 	70	25.	2 6	2 5
Gross Head	i a	9	53.5	1 64	700	126	96	153	209	8	000	6.89
Effective Normal-Head	В	55.8	46.1	41.3	71.2	6.06	83.7	126.9	172	75.2	79.3	61.8
\$ BU		(		e e	N		(		r			c
95% FIRM DISCRAFG	g (	12.0	1.00	7.0	0.0		200	0 C	7.	0.07	7.07	7.0
Tax. Intoine Discharge	3 5	1 .	7.07	C . 4	7.77		0 4		0 0	0.70	77.7	9 -
Installed Capacity	3	7 7 7 7	* ·	4.6	7.0		7 4	0.11	4 6	7 7 77	7.66	- ~
ATTEN CAPACITY	1 5	27.3	7.07	, r	, v		2 0	0 4	2,6	, K	17.1	1 "
Annual Energy-Production	2	76.0	37.0	2.0	61.0	42.5	28.0	0.44	42.7	220.7	212.0	33.2
Firm Energy	185	0.67	23.0	8	28.0		12.0	15.0	21.8	101.5	0.66	7.6
ретв	EME.	27.0	14.0	6.4	33.0		16.0	29.0	20.9	119.2	113.0	23.8
Capacity Factor 2)		0.36	0.37	0.36	0.50		0.52	0.46	0.47	0.46	0.44	0.42
10000	1064	1036	0	27.4	840	6 750	1 1 1 2	0 005	000	2021	2130	909
Annual Benefit	100	141 1	67.5	23.7	103.6	70.8	46.5	69.2	74.1	374.3	361.2	50.5
for Firm KW	1063	56.6	26.4	4-6	32.3	20.8	14.2	17.3	25.4	117.9	1,15,3	10.9
for Firm KWH	1061	50.0	23.5	8.3	28.6	18.3	12.2	15.3	22.2	103.5	101.0	9.6
for Associated KW	1003	15.9	7.9	2.6	19.3	14.7	6	16.6	12.1	70.7	66.99	13.6
for Secondary KWR	1001	18.6	9.7	3.4	22.8	17.0	11.0	20.0	14.4	82.2	78.0	16.4
Annual Cost	1062	148.3	91.2	52.7	107.4	92.9	62.3	9.99	93.0	224.3	237.4	100.9
U M	106g	47.2	△23.7	△29.0	4.40	Δ 22.1		2.6	△18.9	150	123.8	4.050
B/C	1063	0.95	0.74	0.45	96.0		0.75	1.04	0.80	1.67	1.52	0.50
Annual Energy Cost	B/KWH	1.95	2.46	4.05	1.76			1.51	2.18	1.02	1.12	3.04
Simulation Case No. Rank of the Project		Y18325,10	Y2B380.10	Y3B477.10	ROB270.10	R1D407.10	R2D585.10	R2aD560.5	R3B490.15	5 NO2B250.20 1	NO3D260.15	N1D340.10 8
Selected Project for				_							•	
the Second Stage-Study		*	·		*			*		*		
			-									

1) Project Type, SG: Storage Type PG: Pondage Type

2) Capacity Factor = Annual Energy Production (MMH) Installed Capacity (MW) x 8760 (hr)

### 5.4 Selected Main Projects (Second Stage Study)

In this stage, further detailed studies were performed for the four main projects selected in the first stage study.

Main items studied more in detail are as following:

- 1) 1:5,000 scale map prepared by EGAT was used as against 1:50,000 scale map used for the first stage study.
- 2) Evaporation loss from the proposed reservoir surfaces was estimated and deducted from the inflow so that net inflow were input to the reservoir simulation program. In order to estimate the loss, however, pre-simulation of the reservoir operation was needed to obtain the monthly variation of the reservoir surface area.
- 3) Three daily plant factors, 0.15, 0.20 and 0.25 were adopted for comparison purpose as against only one daily plant factor of 0.25 in the first stage study.
- 4) High water levels and low water levels were varied with narrower intervals than those adopted in the first stage study taking into account the new information collected through the second field survey.
- 5) Runoff regulation effect of Nam Mae Ngao on Lower Yuam was newly studied. The incremental benefit due to this effect will be described in the later section.
- 6) Several transmission line routes were compared for formulating the optimal transmission scheme. The details of the study are contained in Chapter 7.
- 7) Irrigation benefit which would be expected to accrue from the development of Upper Mae Yuam 1 was studied. Although the details of the study are explained in Chapter 10, the result shows up a negligible incremental irrigation benefit.

However, following basic values were unchanged from those adopted in the first stage study.

- a) Fuel prices, other relevant costs and coefficients of the alternative thermal power plants which were used for the economic evaluation of the hydro power projects.
- b) Discount rate, 10%

Based upon the above new information and additional requests for the variation of basic values, the number of cases studied in the second stage excluding pre-run cases for evapolation loss estimation has come up to:

Upper Mae Yuam 1	. 3	cases
Nam Mae Rit	. 12	cases
Upper Mae Rit 2a	8	cases
Nam Mae Ngao	. 24	cases
Effect on Lower Yuam	. 8	cases
Total:	55	cases

Among these, only Upper Mae Rit 2a was studied using 1:50,000 scale map and Upper Mae Yuam 1 was studied belatedly to others after the 1:5,000 scale map was availed to the team on September 1986.

The reservoir operation study was performed for each case employing the same procedure as adopted in the first stage study.

The details of the results were included in the "Master Plan Study on Nam Yuam River Basin Hydroelectric Development Project, Study Result (Second Stage), June, 1986", "The Master Plan Study on Nam Yuam River Basin Hydroelectric Development Project, The Second Progress Report, August 1986" and in particular, the computer output volumes submitted and explained to EGAT in June 1986, so that those details have not been attached here except the summary results for all the cases as shown on Table 5-15 through Table 5-20.

From these results it is seen that Nam Mae Ngao (No.2 Site) Case (1) is most economical for individual development scheme (see Table 5-18), but from the view point of integrated development scheme, Nam Mae Ngao plus Lower Yuam, Case VI in Table 5-20 is most superior.

All the other projects, Upper Mae Yuam 1, Nam Mae Rit and Upper Mae Rit 2a resulted in the B/C ratios less than 1.0. Therefore, the key

projects in the Nam Yuam river development planning should be Nam Mae Ngao and Lower Yuam which are to be further studied in the next stage of the study.

Table 5-14-2 Summary of Second Stage Study

	Unit	Mae Ngao (Site No.2)	Mae Rit	Mae Rit 2a	Upper Yuam l
	Km ²	835	1,268	525	1,967
C.A.			395	163	567
Annual Inflow	MCM .	1,292	2	. 1	· ·
Case No.		3	~	3	1
Project Type 1)	* -	SG	SG	PG	SG
Dam Height	m	114	87	38	62
Tunnel Length	TDL .	***	-	5,845	-
	İ				
HWL	m	260	270	560	325
NIMT	m	248.4	262.9	556.9	319.4
LWL	m	235	255.0	555	315
TWL	m	163	192	407	277
Total Storage	MCM	661.2	85.7	3.2	421.4
Draw down	m	25	10	5	10
Effective Storage	MCM	355.2	34.7	0.8	188.1
Gross Head	m	97	78	153	48.0
Effective Normal-Head	m	82.5	68.5	126.9	41.0
DES Prime Diagrams	CmS	24.9	6.18	1.56	13.2
95% Firm Discharge		and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s	41.2	i 1	and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s
Max. Turbine Discharge	CmS	166.2		10.4	53.0
Installed Capacity	MW	116.9	24.0	11.2	18.5
Firm Capacity	MW	97.9	21.3	11.1	16.5
Annual Energy-Production	GWH	245.2	61.5	43.6	54.46
Firm Energy	GWH	128.6	28.0	14.5	36.17
Secondary Energy	GWH	116.5	33.5	29.1	18.29
Daily Plant Factor	%	15	15	15	25.0
Capacity Factor	%	23.9	29.2	44.5	33.6
Construction Cost	10MB	3,373	1,273	698	1,791
Annual Benefit	10MB	488.5	115.8	68.7	100
for Firm KW	10MB	171.8	37.4	19.5	29
for Firm KWH	10MB	197.5	43.0	22.3	55.6
for Secondary KWH	10113	119.2	35.4	26.9	15.4
102 Secondary Rin	10.16	* * * * * * * * * * * * * * * * * * *			
Annual Cost	10MB	374.4	141.3	77.5	198.8
B/C	10MB	1,305	0.82	0.858	0.503
Simulation Case No.		No2A260.25b	ROA270.15b	R2aA560.5b	Y1V325.10b

¹⁾ Project Type, SG: Storage Type

PG: Pondage Type

Table 5-15 2nd Stage Study Upper Mae Yuam 1

C. A. 1967km²

Annual flow

567MCM

		Attitut	II TIOW	20 (MCM
	Unit	HWL 325	m p	PF= 0.25
Available draw down	m	10	15	20
Case No.		0	2	3
Simulation case No.		YIV325-10b	YIV325-15b	YIV 325 201
Project type		SG	SG	SG
Dam height	m			
Tunnel length	m			
Total storage capacity	мсм	421.4	421.4	421.4
Effective storage capacity	MCM	188.1	257.4	311.9
HWL	m	325	325	325
NIWL	m	319.4	318.2	317.1
LWL	·m	315	310	305
TWL	m	277	277	277
Gross head	m	48	48	48
Effective head	m	41.0	39.7	38.7
				10.1514
Daily plant factor	%	25	25	25
Capacity factor	%	33.6	32.4	31.8
95% firm discharge	cms	13.2	13.7	13.9
Max. turbine discharge	cms	53.0	54.9	55.8
Installed capacity	MW	18.5	18.6	18.4
Firm capacity	MW	16. 5	14.8	12.6
Annual energy production	GWH	54.5	52.7	51.3
firm energy	GWH	36.2	32.3	27.7
secondary energy	GWH	18.3	20.4	23.6
Construction cost	мв			
for generating F.	MB	1791	1791	1791
for transmission F.	М₿			
Benefit	мв	100,0	92.7	84.4
for firm kW	М₿	29.0	26.0	22.1
for firm kWH	M B	55.6	49.6	42.5
for secondary kWH	MB	15.4	17.1	19.8
Annual cost	м₿			
for generating F.	м 8	198.8	198.8	198.8
for transmission F.	M B			
	1			
В/С		0.503	0.466	0.425
5, 0				

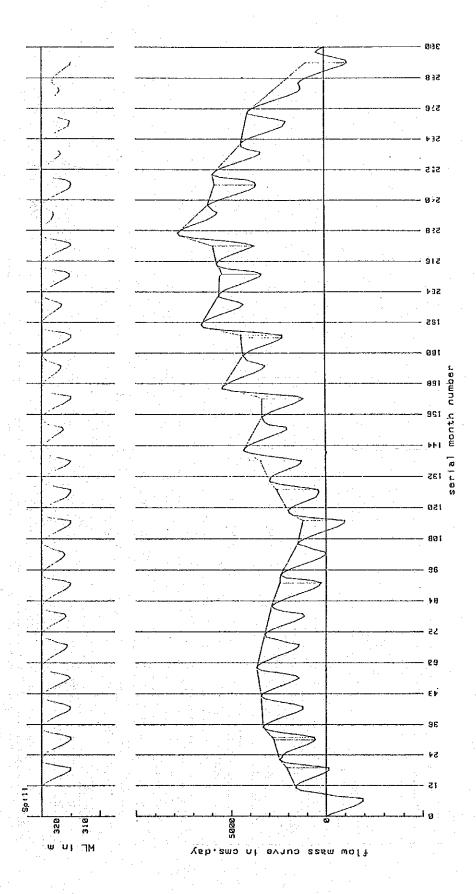



Fig. 5-1 Flow Mass Curve Upper Mae Yuam 1 (Case YIB 325.10)

Table 5-16 2nd Stage Study Upper Mae Rit

			Table 5-16		2nd Sta	2nd Stage Study Upper Mae Rit	/ Upper	Mae Ri	<b>.</b>	4.0		263 km²	
										Ann	to flow	395 MCM	
	1103	HWL 270m	5: 0 3d	HWL 265m	1	PF = 0.15 HWL 270m	PF - 0.20	HWL 265m	1 /	PF = 0.20 HWL 270m	PF=0.25 HWL 265	HWL 265 M	PF=0.25
Available draw down	5	0	1	_	1	2	5	Q		0	15	ō	5
Case No.		Θ	0	0	⊕	0	9	0	0	0	9	(3)	2
Simulatation case No.		ROA 270, 106	ROAZTO IOBROAZTO 155	R04265-10b	ROA265-15b	ROBZ70 . O b ROBZ70 (5 b) ROB 265 . Ob	ROB270-156	ROB 265-10b	R08265-15b	ROCZ70 (D)	ROCZ70 (Db ROCZ70-15b	ROCZ65-IOb ROCZ65-156	30C265:15b
Project type		Se	26		Se		95	SG	SG	98	SG	98	SG
Dam height	ε												
Tunnet length	ε												
Total storage capacity	MCM	85.7	85.7	73.5	73.5	85.7	85.7	73.5	73.5	85.7	85.7	73.5	73.5
Effective storage capacity	MCM	25.4	34.7	22.5	32.9	25.4	34.7	22.5	32.9	25.4	34.7	22.2	32.9
HWL	ε	270	270	265	265	270	270	265	265	270	270	265	265
NIWL	ε	264.9	262.9	250.2	257.9	264.9	262.8	260.2	257.9	265.0	262.9	260.3	258.0
	E	260	255	255	250	260	255	255	250	260	255	255	250
TWL	ω	192	192	192	192	192	192	192	192	192	192	192	261
Gross head	ε	7.8	7.8	73	7.3	78	78	73	73	78	7.8	73	7.3
Effective head	٤	70.5	6.89	66.0	63.7	70.5	68.5	0.99	63.7	70.6	68.5	66.1	63.8
Daily plant factor	%	1.5	51	3	15	20	20	R	20	25	22	25	25
Capacity factor	%	31.6	29.5	32.9	9.62 23.6	41.4	38.4	42.6	38.9	49.5	46.9	50.3	47.3
95% firm discharge	cms	5,65	6.18	5,44	6.06	5.65	6.18	5.44	6.06	5.65	6.18	5.44	6.06
Max, turbine discharge	cms	37.7	41.2	36.3	40.4	28.3	30.9	27.2	30.3	22.6	24.7	21.8	24.2
Installed capacity	MM	22.7	24.0	20.4	22.0	17.0	18.0	15.3	16.5	3.6	4.4	12.3	13.2
Firm capacity	WW	21.1	21.3	18.8	19.2	15.8	16.0	14.1	14.4	12.7	12.8	-2	11.5
									. [				
Annual energy production	GWH	62.8	us O	58.7	57.1	9.19	909	57.1	56.2	58.9	2.65	54.3	54,7
firm energy	EW.	27.7	28.0	24.7	25.2	27.7	28.0	24.7	25.2	27.7	28.0	24.7	25.2
secondary energy	СМН	35.1	33.5	340	31.9	33.9	32.6	32.4	31.0	31.2	31.2	29.6	29.5
									2.1				
Construction cost	<u>3</u>												
for generating F.	MB	1 297	1273	1235	1305	1223	1216	1142	1121	1075	151	1098	0601
for transmission F.	æ ¥												
Benefit	MB	115.6	115.8	105.1	106.2	97.6	97.3	88.9	69.0	86.3	86.9	76.5	77.4
for firm kW	W.	37.0	37.4	33.0	33.7	45; 8	46.4	40.9	41.8	36.8	37.1	32.8	33.4
for firm kWH	MB	42.5	43.0	37.9	38.7	23.3	23.5	20.8	21.2	23.3	23.5	20.8	21.2
for secondary KWH	MB	35.6	35.4	34.2	33.8	28.5	27.4	27.2	26.1	26.2	26.2	23.0	22.9
		3		÷.									
Annual cost	Μ <b>8</b>												
for generating F.	MB	144.0	141.3	137.1	144.9	135.8	135.0	126.8	124.4	1.9.3	127.8	121.9	121.0
for transmission F	8												
<b>8</b> -0	<u>8</u>												
B/C		0.799.	0.620	0.767	0.735	0.79	0.721	0.70	0.715	0.723	0.660	0.628	0 640
Annual energy cost	BYKWH												

Capacity factor annual energy / Linstalled capacity x 8760)

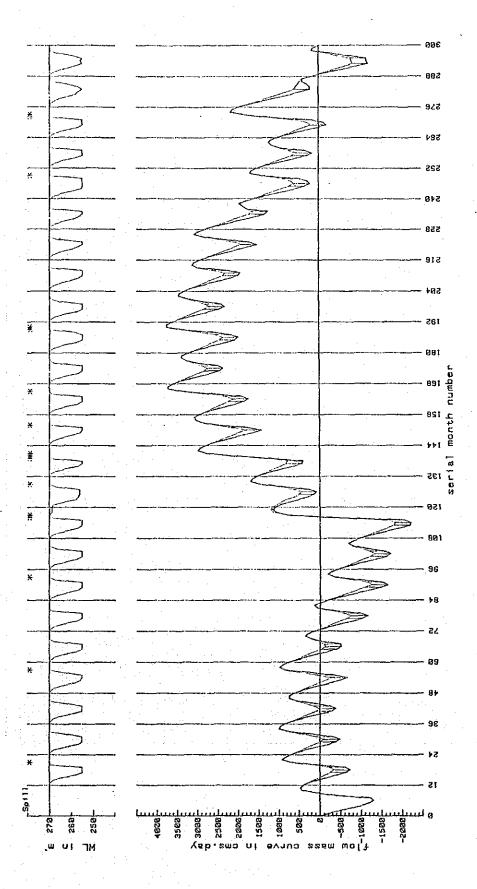



Fig. 5-2 Flow Mass Curve Nam Mae Rit (Case ROB 270.15)

80m PF:	15 15 15 15	PF=0.15		60m	PF=0.15 IO	HWL 580 ^m	PF=0.20	PF = 0.20 HWL 560m	PF = 0.20 IO	
Case No.		Θ	©	0	•	ග	9	0	@	
Simulation case No.		72aA58010b	5	R2:A560 5b	32A56010b	R22A560101R20B580 10bR20B580 15bR20B580 5b	72aB580 ISb	R2aB5605b	R20B56010b	
Project type		SG	SG		9 <u>6</u>	ß	SG	PG	PG	
Dam height	٤	58	28	38	38	58	58	38	38	
Tunne! length	٤	5510	5510	5845	5845	5510	5510	5845	5845	
- 1										
Total storage, capacity	MCM	10.3	10.3	3.2	3.2	10.3	10.3	3.2	3.2	
Effective storage capacity	MCM	4.1	5.4	9:0	9.1	4	5.4	9.0	1.6	
HWL	ε	580	580	560	560	580	580	560	260	
NIWL	٤	574.5	5.278	556.9	555.4	574.6	572.3	556.9	555.3	
LWL	٤	570	565	555	550	570	565	555	550	
TWL	ш	407	407	407	407	407	407	407	407	
Gross head	E	173	173	153	-53	173	173	153	153	
Effective head	ш	144.5	142.3	126.9	125.5	144.5	142.3	126.9	125.4	
Dally plant factor	%	15.0	15.0	15.0	15.0	20.0	20.0	20.0	20.0	Α.
Capacity factor	%	38.0	36.6	44.5	42.7	47.4	46.3	53.5	51.3	
95% firm discharge	cms	1.94	2.03	1.56	1.66	1.94	2.03	1.56	1.66	
Max, turbine discharge	cms	12.9	13.5	10.4	1.1.	89.6	10.1	7.78	8.30	
Installed capacity	MM		16.4	11.2	11.8	6.11.	12.3	8.4	8.9	
Firm capacity	MΜ	15.4	15.6	1.1.	1.3	11.3	11.7	8.3	8.5	
Annual energy production	GWH	52.9	52.6	43.6	44 1	49.4	49.9	39.3	40.0	
firm energy	6WH	20. 2	20.4	14.5	4.9	20.2	20.5	14.5	4.9	
secondary energy	GWH	32.7	32.2	29. 1	29.2	29.2	29. 4	24.8	25. 1	
Construction cost	MB									
for generating F.	<b>9</b>	883	968	698	713	806	824	613	646	
for transmission F.	MB	_	J	1	1	1	1	1	ļ	
Benefit	<b>69</b>	89. 3	90.0	68.7	70.1	74.9	75.9	57.1	58.3	ď
for firm kW	Σ	27.0	27.4	19.5	861	33.4	33.9	24. 1	24.7	
for firm kWH	W W	31.0	31.3	22.3	22.9	17.0	17.2	12.2	12.5	
for secondary KWH	MB	31.2	31.3	26.9	27.4	24. 5	24.7	20.8	21.1	
		-		2						
Annual cost	MB									. i
for generating F	œ X	98.0	99.5	77.5	79. 1	69.5	9 5	68.0	717	
for transmission F	φ.	J	1	ı	1	1	1			
8/C		0.899	668.0	0.858	0.872	0.803	0.812	0.796	0.771	
			· 	· 						

Capacity factor annual energy/(Installed capacity  $\times$  8760) SG: Storage, PG: Pondage, RR: Run-of-Rive.

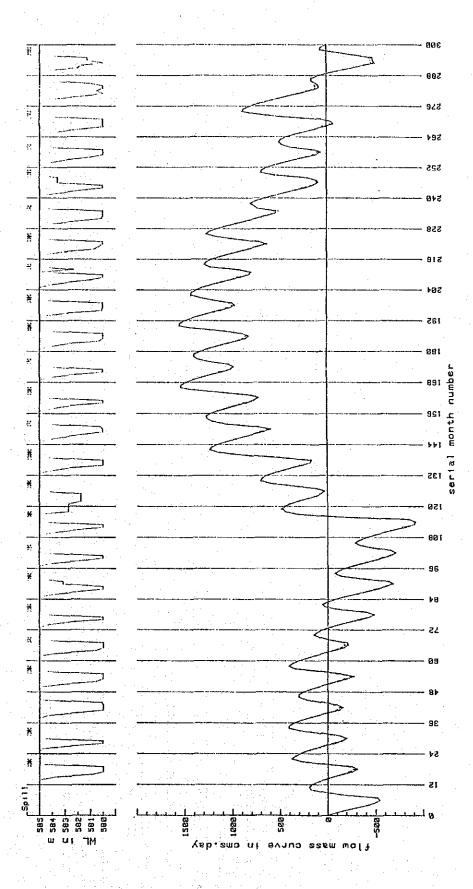



Fig. 5-3 Flow Mass Curve Upper Mae Rit 2a (Case R2a D 585.5)

Table 5-18 2nd Stage Study Nam Mae Ngao (No. 2 Site)

C. A , 835 km² Annual flow 1292MCM

			:							į					
	Unit	HWL .26	.260m		d d	PF = 0, 15	HWL 255m			# Ed	PF = 0.15	HWL 260m	шC	۵.	PF = 0.20
Available draw down	ε	2	22	25	ŀ	35	5	2	52	30	35	15	20	25	જ્
Case No.		Θ	@	0	ٶ	<b>ම</b>	9	0	0	0	9	(3)	(1)		3
Simulation case No.		NO2A26015b	NO 24 26015 NO 24 260 20 NO 24 260 25 b	NO2A26025bly	VOZAZED 306#	OESSERON PSI-SEEDEON PSE-OSEVED M-OEOSEVEDN	02A25515bIN		NOZAZSSZBON	02A25630bl	102A25535b	VOZBZGO ISBIN	NOZAZES ZEUNOZAZES ZONNOZ AZESZEUNOZBZEO ISBINOZBZEO ZOBINOZBZEO ZE		NO2826030
28		56	SG	SG	SG	SG	SG		ş	SS	SG	56	56		56
Dom height	٤	105	105	105	105	105	100	00	001	8	001	105	105	105	105
Tunnel length	Ε	1	j	_			ı	-	J	ı	1	1	1	ı	ı
										:					
Total storage capacity	MCM	661.2	661.2	661.2	661.2	661.2	578.0	578.0	578.0	578.0	578.0	661.2	661.2	661.2	661.2
Effective storage capacity	MCM	230.2	295.2	355.2	407.3	454.7	212.0.	272.0	324.0	371.4	414.2	230.2	295.2	355.2	407.3
HWL	ε	260	260	260	260	260	255	255	255	255	255	260	260	380	260
NIWL	٤	252.8	250.6	248.4	246.4	244.9	247.9	245.7	243.7	241.5	239.5	252.9	250 6	248.3	246.4
LWL.	ε	245	240	235	230	225	240	235	230	225	220	245	240	235	230
TWL	ε	163	163	163	163	163	163	163	163	163	153	163	163	163	163
Gross head	٤	76	-26	26	97	9.7	92	92	95	92	92	26	- 26	97	97
Effective head	Ε	86.9	84. 7	82.5	80.5	0.62	92.1	6.67	230	75.8	73.9	86.9	84.6	82.5	80.5
															,e;
Daily plant factor	%	12	51	15	15	[5	15	15	5	5	15	20	ଯ	20	20
Capacity factor	%	30.8	26.9	23.9	22.4	21.7	32.2	27.9	26.0	23.4	22.3	40.2	35.4	31.6	29.6
95 % firm discharge	cms	1.61	22.2	24.9	26.8	27.9	18.2	. 21.2	23.0	25.5	27.0	- 6	22.2	24.9	26.8
Max, turbine discharge	cms	127.6	147.7	166.2	178.7	185.0	121,5	141.3	153.2	1702	180.0	95.7	110.7	124.7	1340
Installed capacity	MM	94.6	1.06.7	116.9	122.7	124.5	85.1	96.3	10 1.8	0.01	113.4	71.0	49.9	87.6	92.0
Firm capacity	MW	86.1	93, 3	97.9	97.6	93.2	6.92	83.4	83.9	86.0	83.2	64.6	70.0	73,4	73.2
				-											
Annual energy production	GWH	255.4	251.5	245.2	240.8	236.2	240.	234.7	232.1	225.8	221.3	250.3	247.6	242.5	238.6
firm energy	6WH	-13	122.6	128.6	128.3	,122.5	101	9.601	10.3	13.0	09.4	113.1	122.6	128.6	1283
secondary energy	- HWB	142.3	128.9	116.5	112.5	113.7	139.0	125.0	121.9	112.8	6	137.2	125.0	13.9	110.3
				-				:		-					
Const ruction cost	æ ⊻				_		1								
for generating F.	æ	3!4!	3286	3 373	3438	3 472	2897	3 035	308	3190	3236	2911	3002	3101	3157
for transmission F.	Σ					1		1	1	1	I	l	ı		
Benefit	MB	460.4	478.9	488.5	484.4	471.3	423.5	439.5	442.6	446.6	437.8	397.0	410.2	415.6	411.8
for tirm kW	¥	151.1	163.7	171.8	171.3	163.6	135.0	146.4	147.2	150.9	146.0	151.6	173.8	181 3	181.0
for firm kWH	W.B	173.7	88.3	197.5	197.1	188.2	55,3	168.3	169.4	173.6	168.0	120.1	131.4	138.6	138.
for secondary WWH	ΨΨ	135.6	126.9	119.2	116.0	9.6	133.3	124.8	125.9	122.1	123.8	115,3	1.05.1	. 95.7	92.7
	1										•				
Annua! cost	MB														
for generating F.	W.B	348.7	364,7	374.4	381.6	385.4	321.6	336.9	343.4	354.	359.2	323.1	333.2	344.2	350,4
for transmission F.	æ ¥	l	I	1	ì	l	j	1	ı	1	I	1	1	l	ĺ
															.
8/0		1,320	1.313	- 305	1.269	1,223	1.317	1,305	692	1,261	1.219	1 229	1.231	1, 207	1.175
						-									
							7 17 17 17								

Table 5-18 (Continued) 2nd Stage Study Nam Mae Ngao (No. 2 Site)

٠.	Unit	HWL 255m	, ms		F = 0.20	HWL 260m	٥	F: 0.25	HWL 255™		PF = 0.25
Avoilable draw down	ε	1.	١.	25	30		8	25			
Cose No.		(E	@	(E)	<b>@</b>	@	8	(8)	(8)	6	3
10		V00075.15.	Ę	ķ	É	5.55	NOSCSSCSN	Ş	NO2C245, FL	NCOCOGEOOM	MODERATION
a dy		56		36			56	36	SG	86	56
Dam height	E	8	8	001	8	105	105	105	001	õ	8
Tunnel length	E	]	1	1	1	ı	ı	ŀ	1	1	ı
							-				
Total storage capacity	¥C.M	578.0	578.0	578.0	578.0	661.2	561.2	661.2	578.0	578.0	578.0
Effective storage capacity	MCM	212.0	272.0	324.0	371.4	230.2	295.2	355.2	212.0	272.0	324.0
HWL	Ε	255	255	255	255	260	260	260	255	255	255
NIWL	ε	247.9	245.6	243.7	241.5	252.9	250.6	248.3	248.0	245.7	243.7
L W L	ε	240	235	230	225	245	240	235	240	23.5	230
TWL	٤	-63	-63	163	163	163	163	163	163	163	163
Gross head	ε	26	36	35	95	97	97	97	95	92	35
Effective head	٤	82.2	79.9	77.9	75.8	97.0	84.7	82,4	82.2	0.09	77.9
				:							
Daily plant factor	%	20	20	20	20	25	25	25	25	22	25
Capacity factor	%	42.0	36.4	34.3	30.9	49.0	43.6	39.0	50.6	44.7	42.2
95% firm discharge	cms	18.2	21.2	23.0	25.5	19.1	22.2	24.9	18.2	21.2	23.0
Max. turbine discharge	cms	16:	106.0	114.9	127.7	76.6	88.6	99.7	72.9	84.8	6 16
Installed capacity	×Ψ	63.8	72.2	76.3	82.5	56.8	64.0	70. 1	- - -	57.8	- 19
Firm capacity	WW	57.7	62.6	62.9	64.5	51.6	56.0	58.7	46.2	20.	50.4
Annual energy production	GWH	234, 7	230.5	229.1	223.5	243.9	244.2	239.5	226.7	226.4	225.8
firm energy	GWH.	101.1	109.6	110.3	(13:0	113.1	122.6	128.6	101.1	9.601	1,0,3
secondary energy	ВМН	133.7	120.9	118.9	10.6	30.8	1216	110.8	125.6	f 16.8	122.5
Construction cost	EΒ										
for generating F.	<b>⊛</b> ∑	2 69 (	2768	2831	2918	2774	2659	2932	2566	2646	2684
for transmission F.	Φ.	1	-			ı	1.	ı			
Benefit	<b>89</b> <b>X</b>	364.2	374,6	374.4	374.3	334,6	367.7	371.4	324.5	335.6	341.8
for firm kW	Σ	146.2	1.57.1	158.2	161.5	149.6	162.4	170.2	134.0	145.3	146.2
for firm KWH	Μ	105.6	116,0	116.3	119.8	1.56	103.0	1.99.1	85.0	92.1	92.7
for secondary kWH	æ	12.4	101.6	6.66	93.0	109.9	102.2	93.1	105.6	98.2	103.0
Annual cost	æΣ										
for generating F.	MB	298.7	309.5	314.2	323.9	307.9	317.3	7 325,5	284.8	293.7	297.9
for transmission F.	æ Z	ı		ì	1		}	1	1	ı	1
U . C											

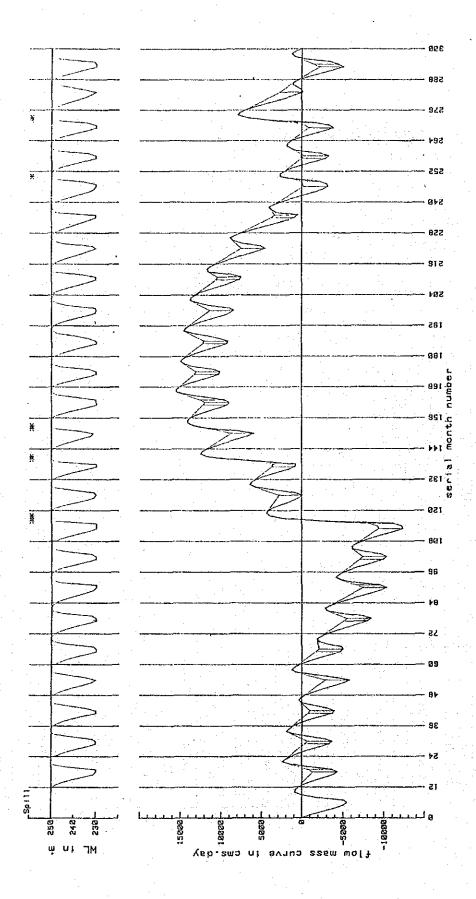



Fig. 5-4 Flow Mass Curve Nam Mae Ngao (Case NOB 250.20b)

Table 5-19 2nd Stage Study Lower Yuam

										אסוד דוטיהתא	OW A, BAUMUM	MICM
	<u>.</u>	Individ	lual development without	in without			Integrated		development			
	5	5	projects		Installed	capacities	are fixed at 152 MW 13	1 162 MW 11	Installed	~	are	estimaled
Case No.		( O	Θ	(S)	(S)	<b>(</b>	(e)		9	0	<b>®</b>	9
Simulation case No.			Y\$V170-200	Y#VI70-200 Y#A170-20 8	YØV170-20 C	YAVID 20 C YAVITO 20 b M WITO 200 MAVITO 20 d	Y# VRO-204		YØA170-20 C	YFAITO-206 YMAITO-200	Y#A170-20a	Y#A 170-20d
Upstream Projects												
Name		None	None	None	Ngao Na2	Ngdo No. 2	Ngao No.2	Ngdo No.2	Nggo No.2	S. oN oppN	Nggo No.2	Nggo No. 2
Simulation case No.	٠	-	-	]	N#2426025b	N92A26030b	N#2A25035b	NØZAZBOZOD	N#2426025b	nirza 26025b ingza 26030binirza 26035b ingza 26020binirza 26025b ingza 26030binirza 250binirza 26020b	4 SECSEDEN	N#2A260-20b
Lower Nam Yeam after												
upstream projects												
Total storage capacity	MCM	444	444	444	444	444	444	444	444	444	444	444
Effective strage capacity MCM	MCM	260	260	260	260	260	260	260	260	260	260	260
HWL	m	170	170	1.70	170	170	170	1.70	170	170	170	170
NIWL	æ		161.4	161.4	161.4	161.4	161.4	161.4	161.4	161.4	161.4	161.4
TWL	٤	73.2	73.2	73.2	73.2	73.2	73.2	73.2	73.2	73.2	73.2	73.2
Gross head	٤	96.8	96.8	96.8	96.8		96.8	96.8	96.3	968	96.8	96.8
Effective head	٤	87.3	85.6	85.6	85.3	85.3	85.3	85.3	85.3	85.3	85.3	
Dally plant factor		NA	0.148	0.15	0.239	0.247	0.254	0.225	0.15	0.15	0.15	0.15
Annual capacity factor		۷N	0.380	0.384	0.389	0.387	0.388	0.386	0.248	0.239	0.233	0.261
95% firm discharge	cms		32.5	32.5	52.4	54.4	55.9	49.7	52.4	54.4	55.9	49.7
43	cms	215	2 19.5	216.9	219.5	220.2	220.2	220.2	349.3	362.8	3724	331.0
Installed capacity	M	1621	162 1	160.1	182 1)	1 62 1)	162, 11	162 1)	257.1.	267.0	274.0	243.6
Firm capacity	MΜ	128	1 39.9	138.2	139.7	140.3	140.3	140.3	222.6	231.2	237.3	210.9
							,-					
Annual energy production GWH	EWH.	565	538.9	538.1	550.0	549.8	550.9	547.4	559.3	5585	5 59 0	557.5
firm energy	6WH	_	181.6	181.6	292.5	303.8	311.8	277.2	292.5	303.8	311.8	277.2
ergy	GWH.	_	357.3	356.5	257.5	246.0	239.1	270.2	266.8	254 7	247.1	270.2
	_	ļ										
			-									

Table 5-20 Integrated Development including Transmission Line Nam Mae Ngao No. 2 + Lower Yuam

Case No. of Ngao No. 2 Case No. of Lower Nam Yuam Installed cancelts	_				מינים היינים מינים	TXCC.	1071	COG LIXES	Lower Youm Dam fixed. Installed capacity optimized	02712100
Case No. of Lower Nam Yuam  Case No. of Lower Nam Yuam  Installed canonity		α	1	Ī	Д	P	Þ	Þ	¥	100
Cose No. of Lower Nam Yuam Testalled concerts			(2)N#2A360:30b	(2)N#2A36O30b (3)N#2A36O-25b	3N# 24260 30b	3N#2A260:35b	2)N#24260:20b	@N#2A26025b	4)N62A26030b	@N#2426030b @N#24260:35b
Installed connectivi		⊕Y#V170-20 5	3Y#VI70204 3Y#VI70:20c			3Y4VI70-20 a			FY#4170-20b (8)Y # A 170-200	@Y \$ A 170-200
Installed conneits								1		
(10040)	3,2		268.7	278.4	284,7	286.5	350.3	374.0	389.7	398.5
Ngao No.2	Σ×	I	106.7	116.9	122.7	124.5	106.7	116.9	122.7	124.5
Lower Nom Yuom	3	162.0	162.0	161.5	162.0	162.0	243.6	1.722	267.0	274.0
Firm copacity	WM		233.6	237.6	237.9	233.5	304.2	320.5	328.8	330.5
Ng00 No.2	ž	1	93.3	97.9	97.6	93.2	93.3	97.9	97.6	93.2
Lower Nom Yuam	MW	139.9	140.3	139.7	140.3	140.3	210.9	222.6	231,2	237.3
Annual firm energy	GWH		399.8	421.1	432.1	434.3	399.8	421.1	432.1	434.3
Nggo No.2	GWH G		122.6	128.6	128.3	122.5	122.6	128.6	128.3	122.5
Lower Nam Yuam	¥ 5	181.6	277.2	292.5	303.8	311.8	277.2	292.5	303.8	311.8
Annual secondory energy	GWH.		399.1	374.0	358.5	352.8	399.1	383.3	367.2	360.8
Ngoo No.2	38	İ	128.9	116.5	112.5	115.7	128.9	116.5	112.5	113.7
Lower Nam Yuam	GWH	357.3	270.2	257.5	246.0	239.1	270.2	266.8	254.7	247.1
									N.	
Construction cost for generating f.	ž	4 340	7.628	7712.7	7780	7814.	8307	8528.2	8656.1	8740.7
Ngao No.2	<b>69</b> ∑	1	3286	3373	3438	3472	3286	3373	3438	3472
Lower Nam Yuam	<b>69</b> ⊻	4340	4,342	4339.7	4342	4342	5021	5155.2	5216.1	5268.7
Construction cost for transmission f.	6 <del>3</del> Σ	400	465.5	465.5	465.5	465.5	745.5	745.5	745.5	745.5
Ngdo No.2	₩.	1	65.5	65.5	65.5	65.5	65.5	65.5	65.5	65.5
Lower Nam Yuom	<b>⊕</b> ∑	400	400.0	400.0	400.0	400.0	680.0	680.0	680.0	680.0
					. :					11.
Total benefit	9 2	824.7	1 320.6	1331.6	1331.2	1318.9	1460.8	1504.4	1519.7	1520.3
unit benefit for firm capacity	8/KW	1755	2271	2309	2336	2365	2060	2071	2077	2078
benefit for total firm capacity	8 M	245.5	530.5	548.6	555.8	552.3	625.6	663.8	682.8	696.7
unit benefit for firm energy	6/kivir	1:536	1.137	1, 13	1.097	1.082	1.248	1.23	1.223	1.221
benefit for total firm energy	MG	278.9	454.7	468, 7	474.1	470.1	498.8	518.4	528.3	530.3
unit cost for secondory energy	B/kwH	0.8405	0,6405	0.8405	0.8405	0.8405	0,8405	0.9405	0.8405	0.9405
benefit for total secondary energy	<b>€9</b> 52	300.3	335.4	314.3	301.3	296.5	335.4	322.2	338.6	303.3
	_									
Total annual cost		543.0	925.2	934.8	942.3	945.9	1034.8	1060.2	1074.7	1084.1
for generation facilities 0.111	2	481.7	845.7	1.958	863.6	857.4	922. 1	946.6	960.8	970.2
for fronsmission facilities 0.112	ž	44.8	52.1	52.1	52.1	52.1	83.5	83,5	83.5	83.5
for transmission losses Benefit x2%	ž	16.5	26.4	26.6	26.6	26.4	29.2	30.1	30,4	50,4
								* [		
D - @	09 2	281.7	395.4	396.8	388.9	373.0	426.0	444.2	445.0	436.2
B/C		1 519	1,427	1.424	1.413	1.394	1, 412		1.414	1,402
Annual energy cost	нужин	10.1	1.16	1.18	1.19	1.20	1, 30	1.32	1.34	1,36
Case to be adapted	· 			۵				0	:	

Table 5-21 Incremental Benefit of Lower Yuam due to the Effect of Nam Mae Ngao No. 2 Development (Lower Yuam: Dam & Installed Capacity are Fixed at F/S Levels-Second Stage)

		Individu	al Developn	nent	Integrated	
		Nam Mae Ngao	Lower Yuam	Total	Development Nam Mae Ngao & Lower Yuam	Increase
Case No.		③ Nø2A 260:25b	① YØV170 200	(1)+(2)	Case II	(4) - (3)
de de la companya de la companya de la companya de la companya de la companya de la companya de la companya de	Unit	: (1)	(2)	(3)	(4)	(5)
Installed Capacity	MW	116.9	1 62.0	278.9	278.9	.0.
Firm Capacity	MW	97.9	1 3 9.9	237.8	237. 6	- 0.2
Annual Energy Production	<b></b>					
Firm Energy	GWH	128.6	1816	310.2	421.1	110.9
Secondary Energy	GWH	116.5	357.3	473.8	374.0	- 99.8
Total	GWH	245.1	538.9	784.0	1.795	14.17
Construction Cost						
Generating F.	MHB	3373.	4 340.	7713	7713	0
Transmission F.	M®	65.5	400.	465.5	465.5	0
Total	MB	3438.5	4740.	81785	8178.5	0
Annual Benefit						2
for Firm Capacity	MB	171.8	245.5	417.3	548.6	131. 3
for Firm Energy	MB	197.5	278.9	4 76.4	468.7	7.7
for Secondary Energy	MB	119.2	300.3	419.5	3   4.3	-105.2
Total	MB	488.5	824.7	1313.2	1331.6	18.4
Annual Cost						
for Generating F.	MB	374.4	481.7	8 5 6.1	856.1	0
for Transmission F.	MB	7.3	44.8	52.1	52.1	0
for Transmission Losses	MB	9.8	16.5	26.3	26.6	0.3
Total	MB	391.5	5 4 3.0	934.5	934.8	0.3
B - C	M B	97.0	281.7	378.7	396.8	18.1
B/C		1.248	1.519		1.424	
		1.2.40	1.019	_		
Energy Cost	B/kwh	1.60	1.01	-	1.18	-
Incremental Benefit	MB					181

Table 5-22 Incremental Benefit of Lower Yuam due to the Effect of Nam Mae Ngao No. 2 Development (Lower Yuam: Dam is Fixed at F/S Level, Installed Capacity is Optimized-Second Stage)

		Individu	al Developn	nent	Integrated	
		Nam Mae			Development	Increase
		Ngao	Lower Yuom	Total	Nam Mae Ngao	
Case No		3	0	(1)+(2)	& Lower Yuam	(4)-(3)
Case No.		NØ2A 260:25b	YøV170 200		Case VI	
	Unit	(1)	(2)	(3)	(4)	(5)
Installed Capacity	MW	116.9	1620	278.9	374.0	95.1
Firm Capacity	MW	97.9	1 3 9.9	237.8	320.5	82.7
Annual Energy Production	1					
Firm Energy	GWH	128.6	181.6	310.2	421.1	110.9
Secondary Energy	GWH	116.5	357.3	473.8	383.3	- 90.5
Total	GWH	245.1	538.9	784.0	804.4	20.4
Construction Cost	-					5.74(2.75)
Generating F.	MB	3373.	4 340.	7713	8528.2	815.2
Transmission F.	MB	65, 5	400.	465.5	745.5	280.0
Total	MB	3438.5	4740.	81765	9 273 . 7	1095.2
Annual Benefit				<del>-</del>	81. 81	
for Firm Capacity	MB	171.8	245.5	417.3	663.B	246.5
for Firm Energy	МВ	197.5	278.9	476.4	518.4	42.0
for Secondary Energy	MB	119.2	300.3	419.5	322.2	- 97.3
Total	MB	488.5	824.7	1313.2	1504.4	191.2
Annual Cost						
for Generating F.	MB	374.4	481.7	8 56.1	946.6	90.5
for Transmission F.	MB	7.3	44.8	52.1	83. 5	31.4
for Transmission Losses	MB	9.8	1 6.5	26.3	30.1	3.8
Total	MB	391.5	5 4 3.0	934.5	1060.2	125.7
B-C	M B	97.0	281.7	378.7	444.2	65.5
B/C		1.248	1.519		1.419	:
		· · ·				
Energy Cost	B∕kwh	1.60	1.01		1.32	_
Incremental Benefit	мв					65. 5

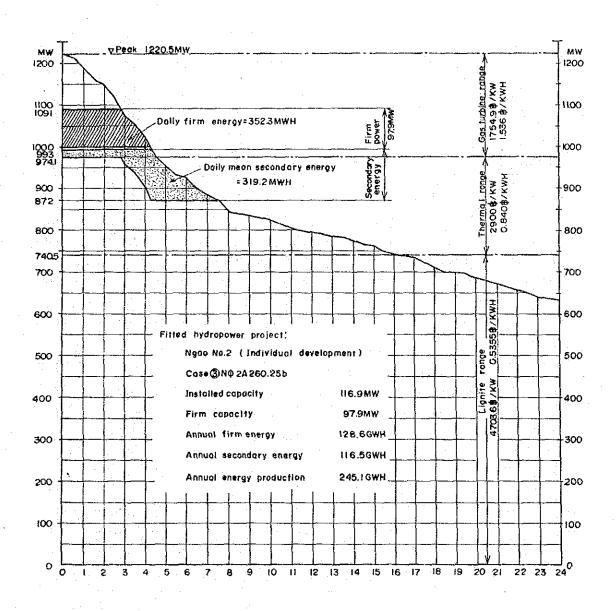



Fig. 5-7 Load Duration Curve, Northern Region, 2000 with Nam Mae Ngao Hydro Power Fitted

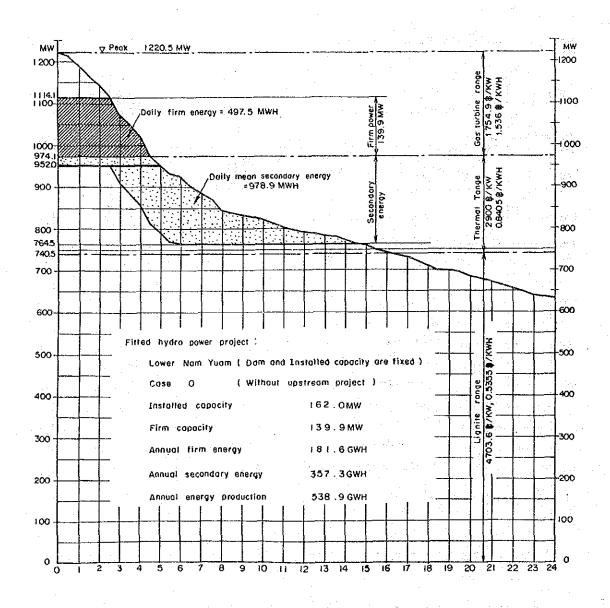



Fig. 5-8 Load Duration Curve, Northern Region, 2000 with Lower Yuam Hydro Power (Case 0) Fitted

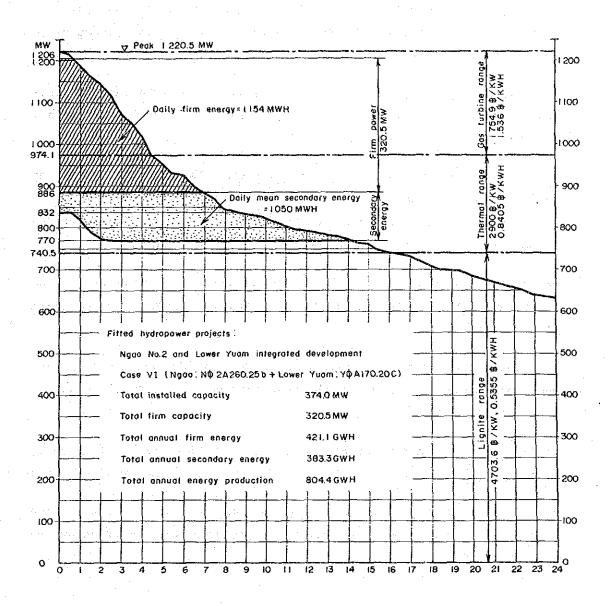



Fig. 5-9 Load Duration Curve, Northern Region, 2000 with Nam Mae Ngao and Lower Yuam Integrated Development Projects (Case VI) Fitted

#### 5.5 Additional Study

When the first stage and the second stage studies were being proceeded in 1985, the world oil price was at its highest level so that the evaluations of the benefit of the hydropower projects were made based upon that highest price level.

However, from the beginning of 1986 to around July 1986 the oil price has come down drastically to the present low price level and remains, it seems, calmly at this price level.

Although there are no assurances the price level would rocket up again, it was requested that the benefits of the hydro power projects selected in the previous stages should be re-evaluated based on the present low price level from a conservative view point.

Discussion was held between EGAT officials and team members at the end of the June 1986 on the fuel costs which would be adopted in the additional stage of study.

The finally concluded fuel costs are shown on Table 5-23 as base case and summarized and compared with those adopted in the previous stages in the same table.

It is seen that the adopted diesel oil price at 3.68 B/lit of the base case is only 56% of the one at 6.6 B/lit adopted in the previous stage.

Moreover, it is requested also that the fuel prices should be varied on several levels to see the impact of the oil price reduction on the project economy.

Table 5-23 Fuel Price Variations for Alternative Thermal Plants

			Case #		Fuel prices adopted
Fue1s	Unit	No.1 1) Base Case	No.2	3) No.3	in the second stage of study 4)
Natural Gas	B/MBtu	5) 71 <b>.</b> 09	75.16	79,24	87.38
Diesel Oil	B/11t	6) 3.68	4.41	5) 5.14	6.60
Imported Coal	B/kg	1.484	1.619	1.755	2.025
Lignite	ß/kg	0.5332	0.5332	0.5332	0.5332

¹⁾ Given by EGAT on July 3, 1986

^{2), 3)} Assumed by the JICA team

⁴⁾ Given by EGAT on Oct. 7, 1985 (Letter No. EGAT 32004/51394)

^{5) 83} B/MBTu - Tax 11.9053 B/MBTu = 71.0947 B/MBTu

^{6) 6.17 \$/1}it - Tax 2.525 \$/1it + Transport by ship 0.035 \$/1it = 3.68 \$/1it
1 US\$ = 26.5 \$

Accordingly, in the additional stage, following number of cases were studied

Nam Mae Ngao (Individual Development) .... 6 cases
Lower Yuam (Individual Development) .... 6 cases
Nam Mae Ngao & Lower Yuam

(Integratd Development) .... 6 cases
Total:

However, the reservoir operations themselves undergo no change from the ones studied in the second stage. Among all the cases of the reservoir operation studied, only the ones of the finally adopted cases of Nam Mae Ngao individual development project and Nam Mae Ngao & Lower Yuam integrated development project are listed in Table 5-24 and Table 5-25 respectively.

The mass curves corresponding to these cases are also shown on Fig. 5-5 and Fig. 5-6 respectively.

Using these results, economic evaluation of the projects were performed for the various fuel cost cases as above described.

The result of the base case calculation shows that the B/C ratio of Nam Mae Ngao individual development project has come down to 1.2 from that of 1.3 attained in the second stage of study.

Also, the B/C ratio of the Nam Mae Ngao and Lower Yuam integrated development scheme reduced from the previous stage value of 1.4 to 1.3.

Even these reduced values, however, are well above the ballance point of B/C=1, especially when the integrated development scheme will be realized.

As for the proposed dam site of Nam Mae Ngao project, further survey and investigation works based on the topographical and geological conditions are needed towards the start of the feasibility study.

Table 5-24 Reservoir Simulation Nam Mae Ngao

Case No. NO2A26	0.25ь		Project Nam Mae Ngao 3
CA at dam		835 Km²	Referenced gaging station
Annual inflow at a	lam 1292	MCM (40.95 cms)	
Project type	Stor		CA= 935 km² file: MR8
		<u> </u>	Annual min discharges obtained by
NHWL 260 m L			5 m reservoir simulation in cms
			Yr Min discharge Yr Min discharge
Naxhead 97 m	<del></del>	of head 82.45	2 32.935 14 34.872
Total starage 661.	Z MCM  Eff	storage 355.2 MC	32.933 33.090
Effective storage/	annual inflo	w 27 %	4 32.692 16 32.359 5 32.126 17 20.245
Installed capacity		116.9 MW	5 32.126 17 32.045 6 30.996 18 28.539
Firm capacity		97.9 MW	7 26.976 19 24.894
(unnua) energy proc	duction (100	252.734	<u> </u>
Annual energy prod	luction (97	%) 245.152 G	WH 9 31.120 21 28.109
Annual firm energ	v	128.647	WH 10 31.120 22 32.101
Annual secondary e		%) 124.087 (	11 33.913 ²³ 25.111
			12 30.651 24 25.111
Annual secondary e			
Daily plant factor	0.15  Mach	ne efficiency 0.8	24.023
Copacity factor = annu	al energy (	97%) _ 0.239	95% firm discharge 24.931 cms
înste	alled capacity	x8760	95% firm dis/mean inflow = 60.9%
Flow utilizability = (ii	nflow - spill )	'inflow = 99.5	JI
Energy produced by I	m³ of discha	rge 0.198 KWI	for min discharges: Y = a + b X,
Daily firm energy p	roduction	352.459 MWI	g = -2.17806 b = 0.08937
		.*. *	Moximum discharge 166.205 cms
Dam Ht	Tunnel !	ength	Max dis/mean inflow = 4.06
	Total	Present w Leveli:	
Construction cost			1000 1000 1000
			····
Transmission line			<del> </del>
Total cost			
KW benefit	10.00		<b></b>
KWH benefit			
Total benefit			
8-C	8/C	EOR	
Power production i	coși		

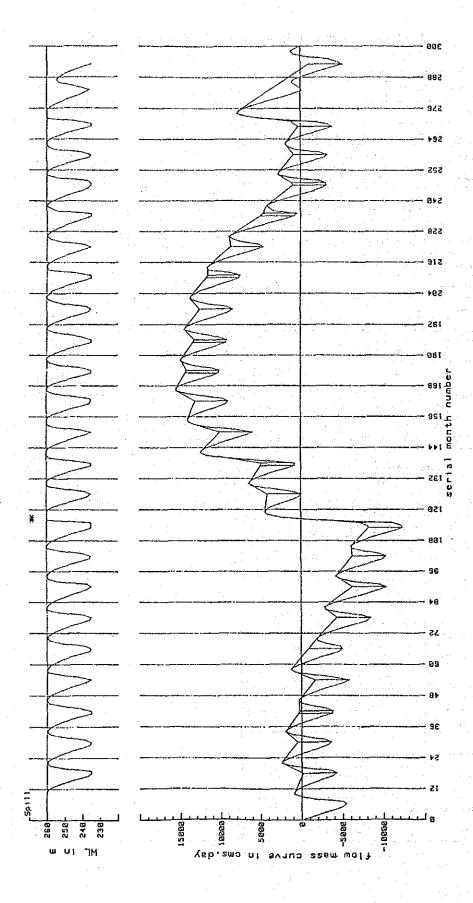



Fig. 5-5 Flow Mass Curve Nam Mae Ngao (Case NO2A 260.25b)

•	Table 525	Reservo	oir Simul	ation Lo	wer Yuam				
Casa Na			· T	Project	Lower Nam	Vice			
Case No. YØA170	).20Ь				LOWEL HAM	ruan			
CA at dam		5,920	Reterenced gaging station						
Annual inflow at a	dam	2,816							
Project type		Storag	е	CA=		file:			
NHWL 170 m	WL 150 a	Drow o	Annual min discharges obtained by reservoir simulation in cms  Yr Min discharge Yr Min discharge						
MWL 161.4 m T	WL 73.2 π	Head !							
Maxhead 96.8 ti	Eff norm	al head	85.3 n	K	70.054	14 71.186			
Total storage 444	MCM Eff :	torage	T = -	69.395	15 68.617				
Effective storage/	annual infla	w	4	69.395	16 67.221				
	<del></del>	<u>i</u>	5	64.456	17 66.770				
Installed capacity	<u> </u>	26	6	64.456	18. 60.913				
Firm capacity 231.2 MW					56.892	19 56.210			
Annual energy production (100%) 575.819 GWH					56.892	20 56.210			
Annual energy production (97%) 558.544 GWH					63.788	21 57,064			
Annual firm energy 303.839 GWH					63.788	22 64.680			
Annual secondary energy (100%) 271.980 GWH					71,098 63.541	23 66.717 24 51.202			
Annual secondary e	neray (97	%) 25%	705 GWH	12	63.541	24 51.202			
Daily plant factor 0.15 Machine efficiency 0.88					Least minimum discharge 51.202 cms				
					95% firm discharge 54,426 cms				
Capocity factor = $\frac{\text{annual energy (97\%)}}{\text{installed capacity x8760}} = 0.239$					95% firm dis/mean inflow = 61.0 %				
Flow utilizability = (in	nflow - spill ly	inflow=	Parame	Parameters of uniform distribution					
Energy produced by I	<del></del>		for min	for min discharges: Y = a + b X,					
		. 4	a = -2.73183 b = 0.051112						
Doily firm energy production 832.437 MWH					Maximum discharge 362.843 cms				
Ogin Ht 120 m. Tunnel length 240 m					Max dis/mean inflow= 4.07				
Oam Ht 120 m	Total		Levelized	Effec	t of unstrea	m project, Ngao No.			
	10181	Present w	Cevenzeu	2 (Ca:	se NØ2A260.3	30b) is considered.			
Construction cost		· · · ·	ļ <u>.</u>			y, etc. are detem- ne estimated pland			
Transmission line		· · · · · · · · · · · · · · · · · · ·		facto		• :			
Total cast				1					
KW benefit									
KWH benefit				1					
Total benefit			<u> </u>	_					
B-C	B/C	EOR							
Power production cost									
Discount rale Price year					2				

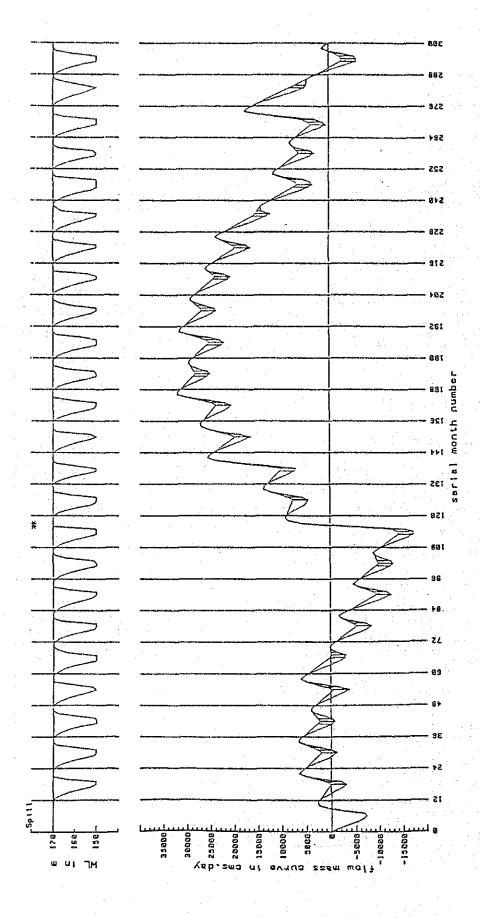



Fig. 5-6 Flow Mass Curve Lower Yuam (Case YOA 170.20b)

# 5.6 Incremental Benefit of the Lower Yuam Project

## 1) Combination of the Projects

The situation of Lower Yuam, which has been studied by JICA in response to the request of NEA in 1984, is considered in the Master Plan Study as if it is the existing power station.

The incremental benefit of Lower Yuam, accruing from the effects of the upstream projects, have to be examined systematically in relation with the upstream projects.

As described in the previous clause 5-4 "Selected Main Projects (Second Stage Study)", the selected four projects in the first stage study have also been restudied further by using 1:5,000 scale map except Upper Mae Rit 2a.

According to the study results, Nam Mae Ngao is the most promissing project.

Strictly speaking, for the incremental benefit study of Lower Yuam Project, the effects of Nam Mae Rit and Upper Mae Yuam 1 have to be taken into account together with Nam Mae Ngao, because both projects are planned as reservoir type power station.

However, the Nam Mae Ngao project is the most important and superior among the four projects in terms of both the scale and the feasibility. Therefore outline of the basin development plan can be obtained almost definitely in the integrated development plan of Nam Mae Ngao and Lower Yuam.

Accordingly, the following cases were studied.

- . Dam and installed capacity are fixed at Feasibility Study level.
- . Dam is fixed at Feasibility Study level but installed capacity is optimized.

# 2) River Runoff Data

The river runoff data for 11 years at Ban Tha Rua, spanned between 1970 and 1980, have been used in the feasibility study made by JICA in 1984.

However, in the present study, as described in Chapter 4 "Meteorology and Hydrology", the runoff data of Ban Tha Rua have been extended from 11 years to 25 years, spanning between 1960 and 1984, by means of the regression analyses.

Accordingly, the extended runoff data for 25 years were adopted for the reservoir simulation study and the power and energy calculation of Lower Yuam.

#### 3) Construction Cost

The construction cost of Lower Yuam has been reviewed applying the same work quantities of the feasibility study and the same unit price of the master plan study.

### 4) Incremental Benefit

As mentioned above, the incremental benefit was studied based upon the combination with Nam Mae Ngao and the reservoir operation using the extended runoff data. The results are shown in Table 5-20, 5-21 and 5-22 in the previous section 5-4 for the second stage of study, and in Table 5-26 for the additional stage of study. (More detailed results corresponding to the additional stage of study are contained in the later chapter 9, in Table 9-10 and 9-11). Note that in the additional stage, only the incremental benefit that accrues from the later case above (i.e. Dam is fixed but installed capacity optimized) was studied because this case is more realistic than the former case (i.e. Dam and installed capacity are fixed).

The leftest column in Table 5-20, designated by case 0 corresponds to the values of the feasibility study made by JICA in 1984 which is the individual development plan without any effect from the upstream projects.

In this case, the economic feasibility is still dominant in terms of Benefit-Cost ratio (B/C); 1.519.

Table 5-26 Incremental Benefit of Lower Yuam due to the Effect of Nam Mae Ngao No. 2 Development (Lower Yuam: Dam & Installed Capacity are Fixed at F/S Level - Additional Stage)

	Indivi	dual devel	Integrated develop-	In-		
×	Nam Mae Ngao	Lower Yuam (1) YØV170-	Total (1)+(2)	ment Nam Mae Ngao & Lower Yuam	crease (4)-(3)	
Case No.	(3) NØ2A					
	260.25b	170.20o		Case VI		
	unit	(1)	(2)	(3)	(4)	(5)
Installed capacity	MW	116.9	162.0	278.9	278.9	0
Firm Capacity	MW	97.9	139.9	237.8	237.6	-0.2
Annual energy production	OUV	100 (	101.6	210.2	601 1	110.0
Firm energy	GWH	128.6	181.6	310.2	421.1	110.9 -99.8
Secondary energy	GWH	116.5	357.3	473.8	374.0	
Total	GWH	245.1	538.9	784.0	795.1	11.1
Construction cost		0 070	1 240	7 710	7 710	<u> </u>
Generating f.	MB	3,373	4,340	7,713	7,713	0
Transmission f.	MB	65.5	400	465.5	465.5	0
Total		3,438.5	4,740	8,178.5	8,178.5	0
						2.5
Annual benefit	3478	171 0	245.5	417.3	548.6	131.3
for firm capacity	MB	171.8	278.9	417.3	468.7	~7.7
for firm energy	MB	197.5	300.3	419.5	314.3	-105.2
for secondary energy	MB	119.2 488.5	824.7	1,313.2	1,331.6	18.4
Total	MB	400.0	024.7	1,313.2	1,551.0	10.4
Annual cost					. :	
	MB	374.4	481.7	856.1	856.1	0
for generating f. for transmission f.	WR	7.3	44.8	52.1	52.1	0
for transmission losses	MB	9.8	16.5	26.3	26.6	0.3
Total	MB	391.5	543.0	934.5	934.8	0.3
locar	Пр	371.43	242.0	33443	234.0	0.5
В-С	мв	97.0	281.7	378.7	396.8	18.1
в/С		1.248	1.519		1.424	-
Energy cost B/KV		1.60	1.01	· · · · · ·	1.18	•••
Incremental benefit	МВ		1.			18.1

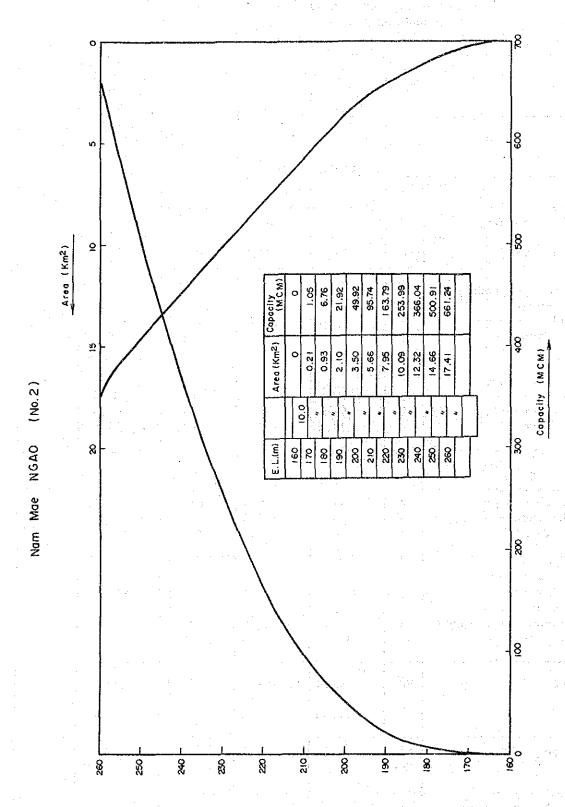



Fig. 5-10 Area-Capacity Curve, Nam Mae Ngao No. 2

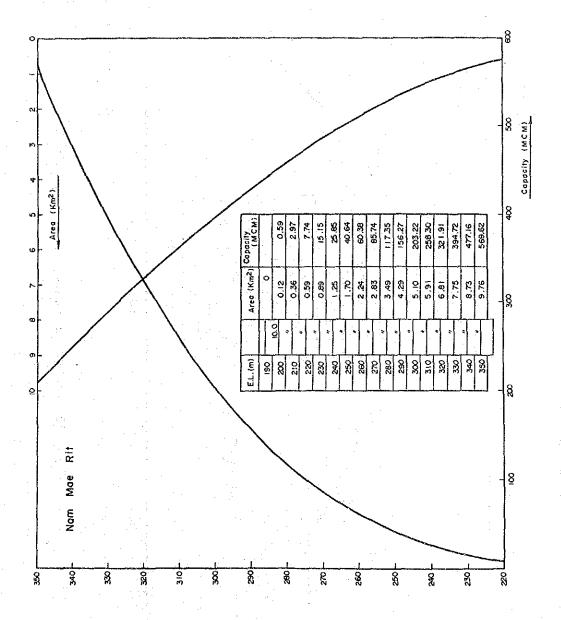



Fig. 5-11 Area-Capacity Curve, Nam Mae Rit

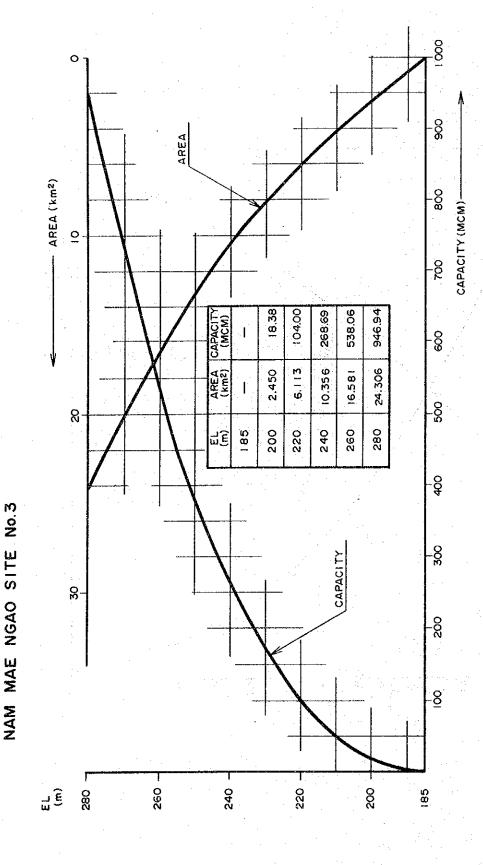



Fig. 5-12 Area-Capacity Curve, Nam Mae Ngao No. 3

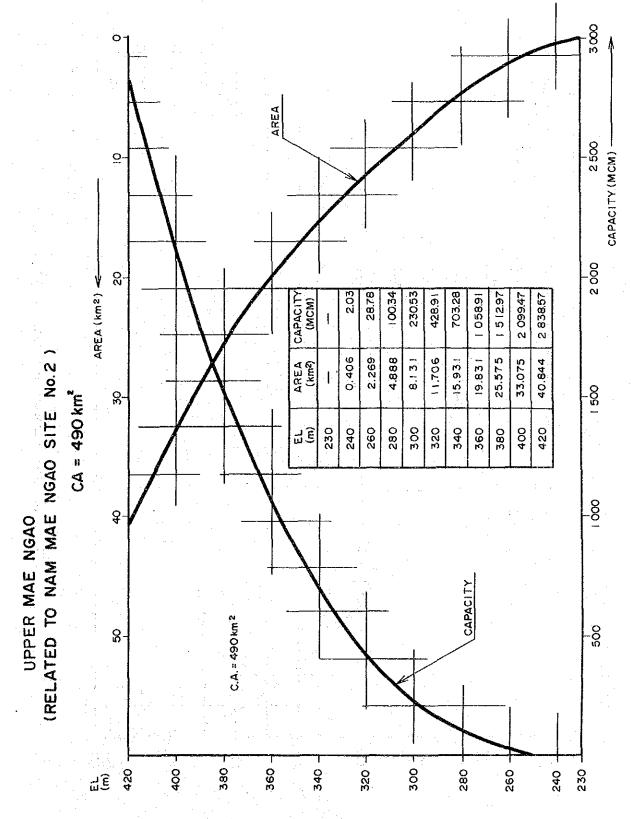



Fig. 5-13 Area-Capacity Curve, Upper Mae Ngao No. 2

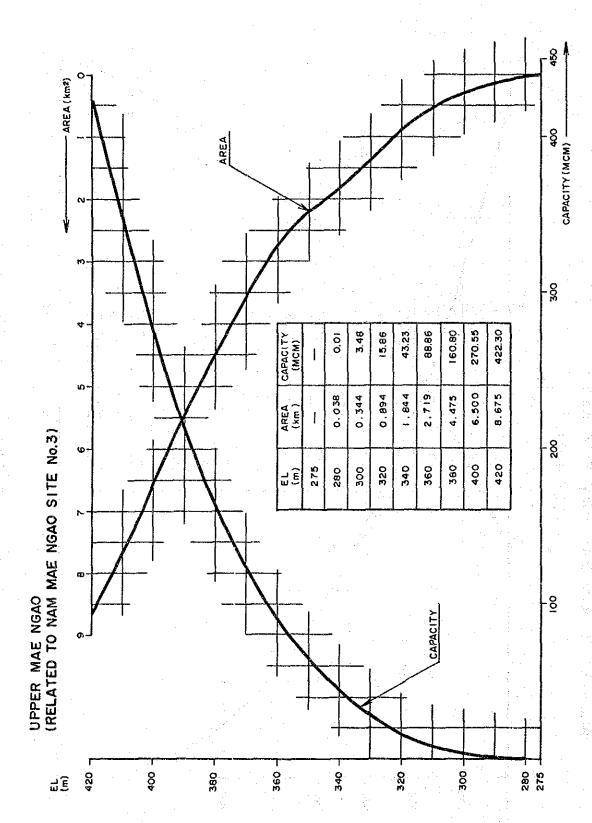



Fig. 5-14 Area-Capacity Curve, Upper Mae Ngao No. 3

8 8 CAPACITY (MCM) 2 - AREA ( km2) 70.38 0.13 13,19 35.50 2.94 - 0 0.050 0.231 0.794 . 4 38 2.050 A REA ( km²) က္ဆ O. 420 440 380 360 400 E (a) 355 \$ - R UPPER MAE RIT - 82 0 400 360 -420 380 355

Fig. 5-15 Area-Capacity Curve, Upper Mae Rit 1

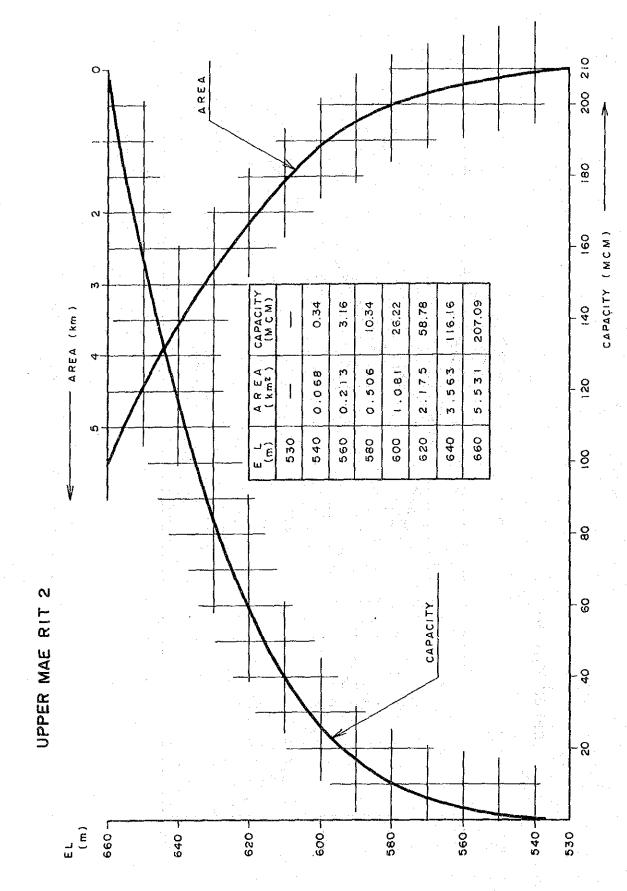



Fig. 5-16 Area-Capacity Curve, Upper Mae Rit 2

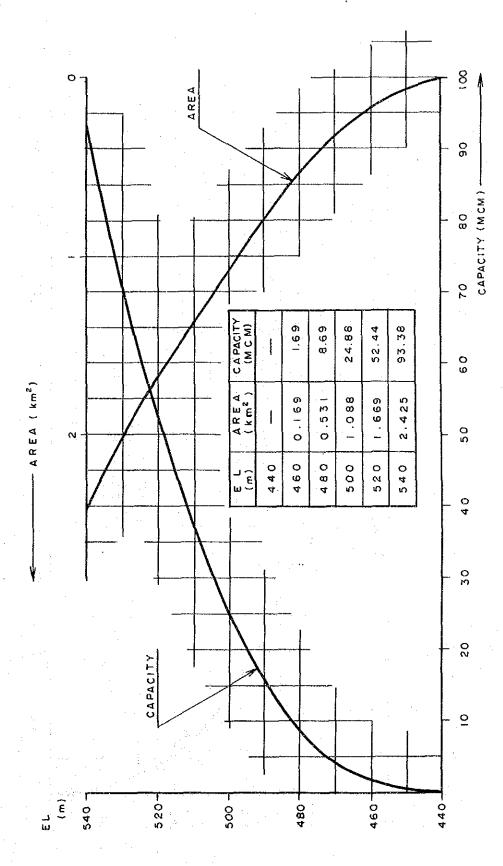



Fig. 5-17 Area-Capacity Curve, Upper Mae Rit 3

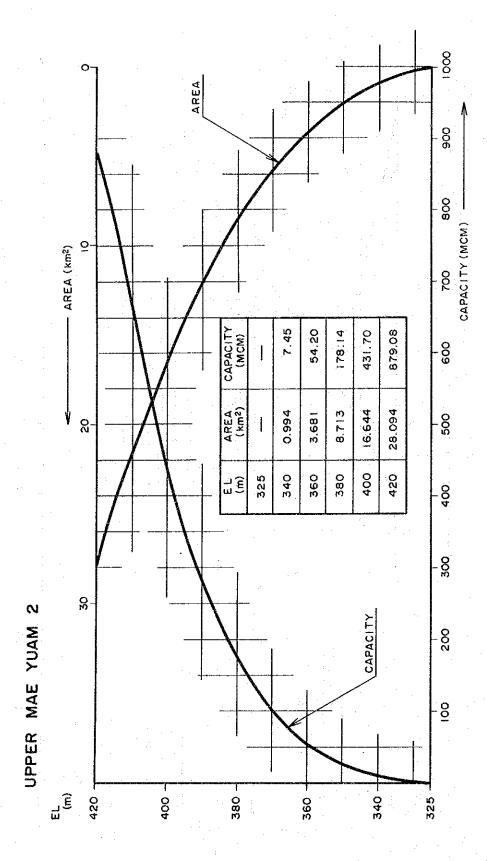



Fig. 5--18 Area-Capacity Curve, Upper Mae Yuam 2

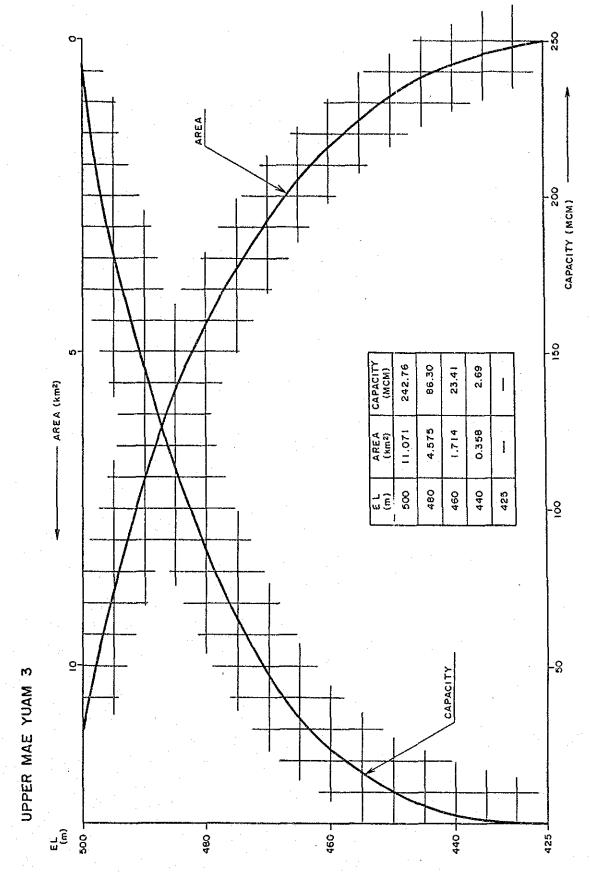



Fig. 5-19 Area-Capacity Curve, Upper Mae Yuam 3

# CHAPTER 6. PRELIMINARY DESIGN

## CHAPTER 6 PRELIMINARY DESIGN

CONTENTS			
Civil Main Structure		6 – 1	
		6 - 4	

## Figure List

		Page
Fig. 6–1	Nam Mae Ngao General Plan	6-11
Fig. 6–2	Nam Mae Ngao Dam	6–13
Fig. 6–3	Nam Mae Ngao Spillway	6-15
Fig. 6-4	Nam Mae Ngao Waterway	6-17
Fig. 6-5	Nam Mae Rit General Plan	6-19
Fig. 6-6	Nam Mae Rit Dam	6-21
Fig. 6–7	Nam Mae Rit Spillway	6-23
Fig. 6–8	Nam Mae Rit Waterway	6-25
Fig. 6–9	Upper Mae Yuam 1 General Plan	6-27
Fig. 6–10	Upper Mae Yuam 1 Dam	6-29
Fig. 6-11	Upper Mae Yuam 1 Spillway	631
Fig. 6–12	Upper Mae Yuam 1 Waterway	633
Fig. 6–13	Upper Mae Rit 2a	6-35
Fig. 6–14	Single Line Diagram. Ngao, Rit, Rit 2a	6-37

#### CHAPTER 6. PRELIMINARY DESIGN

#### 6.1 Civil Main Structure

Preliminary design has been carried out for the selected four projects; Nam Mae Ngao, Nam Mae Rit, Upper Mae Yuam 1 and Upper Mae Rit 2a, based upon the basic figures, studied in the previous Chapter 5 "Development Plan".

Topographic maps used for the preliminary design were 1:5,000 scale map for Nam Mae Ngao, Nam Mae Rit, and Upper Mae Yuam 1 and 1:50,000 scale map for Upper Mae Rit 2a.

Preliminary design drawings are shown on Fig. 6-1 through 6-13. However, those basic figures and preliminary design drawings should be required further review at the next feasibility study stage. Stated hereunder is the preliminary design outline at each project site.

#### 1) Nam Mae Ngao

The project undertakes construction of rockfill dam of 114 m height, 545 m crest length and  $5,360 \times 10^3 \text{m}^3$  volume on the axis along site No. 2.

Upstream and downstream faces are sloped at 1:2.0 and 1:1.8 respectively. The left bank of dam is provided with a spillway, which is capable to release the design flood of 3,600 m³/sec.

Two diversion tunnels are located on the left bank and one of them will be converted to an outlet structure in the future. An intake with the maximum intake quantity of  $166.2 \text{ m}^3/\text{sec}$  is provided on the right bank upstream of the dam.

From the intake, a headrace and penstock convey the water intake by 7.0 - 6.5 m inner diameter and the length of 700 m, leading to the powerhouse for power generation of maximum output of 116.9 MW.

#### 2) Nam Mae Rit

The project undertakes construction of rockfill dam of 87 m height, 285 m crest length and 2,100 x  $10^3 \text{m}^3$  volume on the axis

along the proposed site. Upstream and downstream faces are sloped at 1:2.0 and 1:1.8 respectively.

The left bank of dam is provided with a spillway, which is capable to release the design flood of 2,400 m³/sec. Two diversion tunnels are located on the right bank and one of them will be converted to an outlet structure in the future.

An intake with the maximum intake quantity of  $41.2 \text{ m}^3/\text{sec}$  is provided on the right bank upstream of the dam. From the intake, a headrace and penstock convey the water intake by 4.1 - 3.8 m inner diameter and the length of 417 m, leading to the powerhouse for power generation of maximum output of 24.0 MW.

### Upper Mae Yuam 1

The project undertakes construction of rockfill dam of 62 m height, 520 m crest length and 2,307 x  $10^3 \text{m}^3$  volume on the axis along the proposed site. Upstream and downstream faces are sloped at 1:2.0 and 1:1.8 respectively.

The left bank of dam is provided with a spillway, which is capable to release the design flood of 2,900 m³/sec. Two diversion tunnels are located on the right bank and one of them will be converted to an outlet structure in the future.

An intake with the maximum intake quantity of 53.0 m³/sec is provided on the right bank upstream of the dam axis. From the intake, a headrace and penstock convey the water intake by 4.5 - 4.2 m inner diameter and the length of 259.0 m, leading to the powerhouse for power generation of maximum output of 18.5 MW.

#### 4) Upper Mae Rit 2a

The project undertakes construction of rockfill dam of 38 m height, 105 m crest length and  $177 \times 10^3 \text{m}^3$  volume on the axis along the proposed site. Upstream and downstream faces are sloped at 1:2.0 and 1:1.8 respectively.

The left bank of dam is provided with a spillway, which is capable to release the design flood of 1,500 m3/sec. Two diversion tun-

nels are located on the right bank and one of them will be converted to an outlet structure in the future.

An intake with the maximum intake quantity of  $10.4 \text{ m}^3/\text{sec}$  is provided on the right bank upstream of the dam axis. From the intake, a headrace and penstock convey the water intake by 2.5-1.8 m inner diameter and the length of 6,280 m, leading to the powerhouse for power generation of maximum output of 11.2 MW.