Chapter 9

Fig. 9.1 Land Subsidence and Groundwater Removal 64
Fig. 9.2 Estimated Ground Surface Elevation in the Study Area in the Year 2000 65
Fig. 9.3 Estimated North-South Profile of the Study Area in the Year 2000 64
Fig. 9.4 Estimated West-East Profile of the Study Area in the Year 2000 67
Source : Invesrigation of Land $\stackrel{y}{2}$
(7SW:4) 10nor punose
 Surveyed Estimated

Chapter 10

Fig. $10.1 \quad$ Out11ne of Flood Protection Measures $\quad . . . \omega_{1} . . .68$

Fig. 10. 2 Concept for Flood Protection Measures 69
Fig. 10.3 Land Use Plan for the Study Area \quad in the Year 2000 ... 70

FIG. 10. 1 Outline of F Flood Protection Measures

Chapter 11

Fig. 11.1 Steps of Analysis for Flood Protection/Drainage System 71
Fig. 11.2 Schematic Concept of the Impact of the Green Belt Project -Step I 72
Fig. 11.3 Schematic Concert of the Impact of a Storm-Water Retarding Area -Step II 73
Fig. 11.4 Schematic Concept of Drainage Area

- Step III 74
Fig. 11.5 Alternatives for Zoing of Drainage Area and Basic Flood Protection/Drainage System - Step III 75

Steps of Study			
No.	Study Area	Schematic Figure	Key Words
$\begin{gathered} 1-1 \\ 0 \\ \stackrel{0}{ \pm} \\ i \end{gathered}$	Whole Area		Green Belt
$\stackrel{8}{\stackrel{\circ}{4}}$	Whole Area		Consevation ofRetardingArea
$\begin{aligned} & \text { 业 } \\ & \text { Q } \\ & \stackrel{\rightharpoonup}{\Phi} \end{aligned}$	Proposed Master Plan Area		Zoning of Drainage Area
$\begin{aligned} & R \\ & R \\ & 0 \\ & \stackrel{0}{0} \end{aligned}$	Proposed Master Plan Area		Poider System

FIG. 11.1

Steps of Analysis for Flood Protection Drainage System

FLOOD PROTECTION/DRAINAGE PROJECT IN EASTERN SUBURBAN-BANGKOK

(D) Proposed Storm-Water
Retention Area

(C) Flood Area more than 30 cm
in 1982 (Study Team)

(A) Urbanized Area in 1983

Chapter

Fig. 12.1 Outline of Hydraulic Flooding Mode1s 76
Fig, 12.2 Outline of Hydrological Models for Polder Drainage System 77
Fig. 12.3 Application of Mode1s 78
Fig. 12.4 Study Area Size for Modeling 79
Fig, 12.5 Study Area for Two Basin Model 80
Fig. 12,6 Comparison of Observed and Calibrated Water Levels in Retarding Area in 1983 using Two Basin Mode1-1.. 81
Fig. 12.7. Comparison of Observed and Calibrated Water Levels in Protection Area in 1983 using Two Basin Model-2. 82
Fig. 12. 8 Comparison of Observed Water Level and Calibrated Water Level in 1983 using Two Basin Model -3 83
Fig. 12.9 Comparison of Observed and Calibrated Flood Marks in 1980 using Two Basin Model 84
Fig. 12,10 Mesh Components for Bi-Dimensional Model 85
Fig. 12.11 Comparison of Observed and Calibrated Water Levels in 1983 using Bi -Dimensional Model 86
Fig. 12.12 Calibrated Water Level and Inundation Depth in 1983 Flood using Bi-Dimensional Model 87Fig. 12.13 Sample Calculation in Polder Unft usingHydrological Model (Ramkhamhaeng Site)88

	Model	Easic Equation	Schematic Diagram
$\overline{0}$0022022000000	Unidimersional Model (Complex Basin Mode!)	$\begin{array}{ll} \Delta V=\left(\Sigma Q_{\text {in }}-\Sigma Q_{\text {out }}\right) d t & Q: \text { Inflow and Outflow } \\ V_{t}=V i-d t+\Delta V & V: \text { Storage } \\ V=F(Z) & \Delta V \text { :Change in Storage During "dt" } \\ & Z: \text { Water Level } \end{array}$	One Easin Modet Complex Basin Mode!
	Bidimensional Model (Plane Tank Model)	$\begin{aligned} & \frac{\partial Z}{\partial t}=Q_{\text {in }}-Q_{\text {out }} \\ & \left.\frac{1}{9 A} \frac{\partial Q}{\partial t}=\Delta(Z+S)-L Q Q \right\rvert\, Q i \end{aligned}$ S: Ground EL. of Mesh A: Sectional Area of Syption Pipe L: Length of Syphon Pipe 9: Gravity Acceleration	Plane (i,j-1) (i,j) (i,j+3) Protite
$-\overline{9}$ 0 0 \sum 0	Unidimensional Model	$\begin{aligned} \frac{\partial A}{\partial t}+\frac{\partial Q}{\partial X}=g(t) \quad & g: \text { Inflow Hydrogragh } \\ \frac{\partial Q}{\partial t}+\frac{\partial}{\partial X}\left(\frac{Q^{2}}{A}\right)+g A \frac{\partial h}{\partial X}+g \frac{n^{2} 1 Q l Q}{A \cdot R^{4 / 3}} & =0 \\ & \text { A: Flow Area } \\ & n \text { Coollicient of roughmess } \end{aligned}$	
	Bidimensional Model	$\begin{aligned} & \frac{\partial Q_{x}}{\partial t}+\frac{\partial}{\partial X}\left(\frac{Q_{x}^{2}}{A x}\right)+g A_{x} \frac{\partial Z}{\partial X}+g \frac{n^{2}\|Q\| Q}{A R^{2} / 3}=0 \\ & \frac{\partial Q}{\partial t}+\frac{\partial}{\partial y}\left(\frac{Q_{y}^{2}}{A y}\right)+g A_{y} \frac{\partial Z}{\partial y}+G \frac{n^{2}\|Q\| Q}{A R^{2 / 3}}=0 \\ & \frac{\partial Z}{\partial t}+\frac{\partial Q x}{\partial X}+\frac{\partial Q y}{\partial y}=(R-E) \end{aligned}$ $Q: \times$ Direction Flow R: Rainfall E: Evapotranspiration	© Water Level Boundary A. Intlow Boundary Q: Gate (D): Pump Datum Line

Outline of Hydraulic Flooding Models

FIG. 12.1

Model	Sub-Model	Schematic Diagram
Hydrological Model	Rainfall Model a) For the caiculation of the runoff discharge, a front concentrafion type nyetograph is adopted into the Rainfell Pattern. b) The land use morphorogy such as residensial area, paddy field, open space etc.. are considered in the Excess Rainfall Model. Runotf Model c) Quasi Storage Function Model to adopted in order to calculate the runoff. $s=K . Q 1$ $\mathrm{X}=\mathrm{tc} / 2$ $\mathrm{tc}=\mathrm{C}. \mathrm{~A}^{0.22} \cdot \mathrm{re}^{-0.35}$ One Basin Model in the area. $\frac{d V}{d t}=Q 1-Q c$ where; S : Storage volume Q : Runoff X : Constant tc: Time of concentration C : Value to be determine Where; depending on land use A : Drafnage area re: Excess rainfall d) One Basin Model which facters are Inflow, Outfiow and Storage Volume, is adopted in order to analize the fiood stage and pexiod dV : Change of storage Qi volume Q1 : Total infiow Qo : Total outflow	a) Rainfall Pattern R i) c) Runoff Model Duration Curve Rainfali Intensity ii) Front Concentration Type Hyetograph b) Excess Rainfall Mode! (Rainfall Loss Model) d) One Basin Model

	Classification of Study Area	Schematic Model of Srudy Aroa	Major Evaluation Item	Application of Models	Index of Evaluation
			1. Shutting out (Qi) by Green Belt 2. Previous Flood Mark Height and Max. Storage	One Basin Model	z : Water Level V : storage volume A : rlooding Area T : Duration Time
	- Boundary of Study Area man---: Partition Line 4- IFlow Direction of Canal		1. Partition in Study Area 2. Shutting out (@i) 3. Previous Flood Mark Height and Max. Storage 4. Future Land Subsidence	Two Basin Model	z: Water Level v : Storage volume A : Flooding Area T : Duration Time c : Capacity of Drainage Facility
	- Boundary of study Area \qquad Partition Line for Mesh \longrightarrow 国 Drainage Facilities (Pump/Gate) \qquad Retarding Area		1. Previous Flood Mark Height and Max. Storage 2. Future Land Subsidence 3. Alternative Drainage S_{Y} stern	Bi-dimensional Model SOpen Canal Type Model.	$\left\{\begin{array}{cl} z & : \\ \mathrm{V} & \text { Water Level } \\ \mathrm{A} & \text { storage Volume } \\ \mathrm{T} & \text { Flooding Area } \\ \mathrm{c}: & \text { Duration Time } \\ \text { Capacity of } \\ \quad \begin{array}{l} \text { Drainage } \\ \\ \text { Facility } \end{array} \end{array}\right.$
	(m) Polder Unit		1. Alternative Drainage Facility 2. Change in Run-off Discharge due to Land Use Condition	Mydrological Model . Rainfall. Model . Excess Rainfall Model Sub-watershed Model (Storage Funct. Model) . Storage Pond Model	2 : Water Level v : Storage volume A : Flooding Area T: Duration time C : Capacity of orainage Facility
	polder Unit Retarding Basin		1. Alternative rotal riood protection and Drainage System	Bi-dimensional Model Uni-dimenstonal Model Combined by Inflow Hydrograph of polder	 $z:$ Water Level V : storage Volume A : Flooaing Area T $:$ Duration rime c : Capacity of Drainage Facility
FIG.12.3 Application of Models					
FLOOD PROTECTION/DRAINAGE PROJECT IN EASTERN SUBURBAN-BANGKOK					

	FIG. 12.8	Comparison of Obser Level in 1983 using	Water Level andCalibrated Wate Basin Model - 3

St(8) $\sim \mathbf{S t (5) : ~ S t a t i o n s ~ o f ~ W a t e r ~ L e v e l ~ G a g e ~ i n s t a l l e d ~ i n ~} 1983$ by the Study Team
(Refer to Appendix Fig.F.4)

FIG. 12.11
Comparison of Observed andCalibrated Water Levels
in 1983 using Bi -Dimensional Model
FLOOD PROTECTION/DRAINAGE PROJECT IN EASTERN SUBURBAN-BANGKOK

FIG. 12.12

Calibrated Water Level and Inundation Depth in 1983 Flood using Bi -Dimensional Model

FLOOD PROTECTION/DRAINAGE PROJECT IN EASTERN SUBURBAN-BANGKOK

FIG. 12.13 Sample Calculation in Polder Unit Using Hydrological Model (Ramkhamhaeng Site)

2
∞
∞
2
2
0
0
0
0
0
0
-BANGKOK FLOOD FROTECTION/DRANAGE PROJECT IN EASTERN SUB

(Case $1 \cdots Q p=13.2 \mathrm{~m}^{3} / \mathrm{s}$)

- Total head of purnp is not limitted
- initial water levelin poider is 0.2 m
FIG. $12.13 \quad \begin{aligned} & \text { Sample } \\ & \text { Using Hy }\end{aligned}$
- Initial water levelir polder is 0.2 meter above M.S.L.

	Watershed Condition	Canal Condition
Cose 1	Existing	Existing
Cose 2	Urbanized	Improved Widin Length $\vdots 9$ meter Height of shore $:+0.5 \mathrm{~m}$

(1) Maximum Water Level - pump capacity
(7Sw anoge dojaw) seplod wi lone7 lole/A

Chapter 13

Fig. 13.1 Procedure for the Decision of Hydrological Design Criteria 89
Fig. 13.2 Rainfall Intensity - Duration Curves and Formulas 90
Fig. 13.3 Time Distribution and Frequency of Daily Rainfall 91
Fig. 13.4 Probable 3-Month Rainfall in the Study Area and Probable Water Level at Bangkok Port 92Fig. 13.5 Probable Monthly Water Level and Observed WaterLeve1 at Bangkok Port for 1980, 1982 and 198393
Fig. 13.6 Average Areal Daily Rainfall in the Study Area Eor the Recent Flood Years 1978, 1980, 1982 and 1983 94

 FLOOD PROTECTION/DRAINAGE PROJECT IN EASTERN SUBURBAN-BANGKOK

Time Distribution Diagram for Duration of Daily Rainfall above 90^{mm} day Note: Daily rainfall data(15 samples) above 90 mm day were recorded at the Bangkok Station between 1951 and 1982.

Frequency Diagram for Duration of Daily Rainfall above $60^{\text {mum/day }}$
Note; Daily rainfall data (52 samples) above $60 \mathrm{~mm} / \mathrm{day}$ recorded at the Bangkok Station between 1951
and 1982 were used.
FIG.13.3
Time Distribution and Frequency of Daily Rainfall

	Scation 10d (Year)		Average Study
	2	,	707.3
	2	1	872.4
	7	"	922.8
	10	\because	973.4
	20	i	1065.7
	30		1117.1
	50		1179.9
	70	"	1263.0

Legend

- Probable 3-Months Rainfali

Probable 3 -Month Rainfall in the Study Area

		Bangknk Port (nme)
	2	1.61
	5	1.72
	10	1.77
	20	1.82
	30	1.85
	50	1.88
	100	1.92
	2	0.22
	5	0.27
	10	0.30
	20	0.32
	30	0.34
	50	0.35
	100	0.37
	2	-1.64
	5	-1.73
	10	-1.77
	20	-1.81
	30	-1.83
	50	-1.85
	100	-1.88

Unit : Heter above HSI.

Legend

- Highest High Water Level
- Mean Water Level
v: Lowest Low Water Level

FIG. 13.4
Probable 3 -Month Rainfall in the Study Area and Probable Water Level at Bangkok Port
 Level at Bangkok Port for 1980, 1982 and 1983
FLOOD PROTECTION/DRAINAGE PROJECT IN EASTERN SUBURBAN-BANGKOK

Chapter 14

Fig. 14.1 Evaluation Cases for Impact of Barrlers using Two Basin Mode1 95
Fig. 14.2 Rate of Composition of Accumulated Inflow in Study Area 96
Fig. 14. 3 Inundated Condition without Green Belt (lst Barrler) (Rainfa11 in 1980) 97
Fig. 14.4 Inundated Condition with Green Belt (1st Barrier) (Rainfall in 1980) 98
Fig. 14.5 Inundated Condition with Barrier of Protection Area (2nd Barrier) (Rainfall in 1980) 99
Fig. 14.6 Flood Water Leyels with \& without lst Barrier (Green Belt) (Rainfall in 1980) 100
Fig. $14.7 \quad$ Flood Water Leve1s whth \& without 2nd Barrier (Ralnfa11 in 1980) 101
Fig, 14,8 Tnundated Condition without Green Belt (1st Barrler) (Rainfall in 1983) 102
Fig. 14.9 Inundated Condttion with Green Belt (lst Barrier) (Rainfall In 1983) 103
Fig. 14,10 Flood Water Levels with \& without 1 st Barrier (Green Be1t) (Rainfal1 in 1983) 104
Fig. 14.11 Sample Case of Study for Mixed System (Alternative III) 105
Fig. 14.12 Simulated Water Level and Inundation Depth for Alternative-IIJ 106
o Evaluation Cases using Two Basin Model

- Schematic Calculation Types using Water Balance Model

FIG. 14.1
Evaluation Cases for Impact of Barriers using Two Basin Model

FLOOD PROTECTION/DRAINAGE PROJECT IN EASTERN SUBURBAN-BANGKOK

Topographical Condition; Existing-1983-1
Topographical Condition; Future - 2000-

FLOOD PROTECTION/DRAINAGE PROJECT IN EASTERN SUBURBAN-BANGKOK

	Topographical Condition; Existing-1983- Topographical Condition; Future -																
Legend \square - Decreased Difference of Simulated Water Level . Increased Difference of Simulated WAter Level MGL : Mean Ground Elevation above M.S.L								Flood Water Levels with \& without 2nd Barrier (Rainfall in 1980)									

Chapter 15

Ffg. 15.1 Proposed Master Plan Area 107
Flg. 15.2 Alternative of Master Plan Area 108
Fig, 15.3 Preliminary Flood Protection/Dralnage System for the Study Area 1.09
Fig. 15.4 Benefit \& Cost According to Area 110

FIG. 15.1
Proposed Master Plan Area
FLOOD PROTECTION/DRAINAGE PROJECT IN EASTERN SUBURBAN-BANGKOK

-...- Drainage Area
....... Polder Unit
(1) Main Pump
(P) Polder Pump
(1) Gate
[i] Retarding Area

FIG. 15.3

Preliminary Flood Protection/

 Drainage System for the Study AreaFLOOD PROTECTION/DRAINAGE PROJECT IN EASTERN SUBURBAN-BANGKOK

AREA (km^{2})

Fig.15.4 Benefit \& Cost According to Area

Chapter 16

Fig. 16.1 Organization Chart of BMA and DDS 111
Fig. 16.2 BMA Directive Committee 112
Fig. 16.3 Administrative Districts of BMA 113

BANGKOK METROPOLITAN ADMINISTRATXON

DEPARTMENT OF DRAXNAGE AND SEWERAGE

FIG. 16.1
BMA Directive Commirtee
Chairman $\ldots \ldots$. Covernor of BMA

(BMA Offices)
(rembers)
(Central Government Offices)

Chapter 17

Fig. 17.1 DDS Annual Budget 114
Fig. 17.2. Budget of BMA,DDS and Tokyo Met. 115
Fig. 17.3 Cost Schedule for BMA under Assumption 116
(β 1,000)

DDS Annual Budget by Expenses
1983

FIG. 17.1 DDS Annual Budget

FLOOD PROTECTION/DRAINAGE PROJECT IN EASTERN SUBURBAN-BANGKOK

TOKYO NETROPOLIS

2.9%

Total Revenue:	$b 4,526 \mathrm{mill}$ $(\$ 197 \mathrm{mil1})$	$(3,430,000 \mathrm{mill}$ Population

Comparison of Expenditure of BMA and Tokyo Metropolis (1983)

B 1 A
Tokyo

* Dralnage cost is $1,7 \%$ of the total budget ($\% 59$ billion). Sewerage cost (3.9%, $¥ 132$ billion) is a subsidy for Sewerage Authority, a public enterprise owned by Tokyo Metropolis, which has its own revenue collected from residents.
(Ref. to Table 17.1 and The total budget of Sewerage Authority is $¥ 584$ billion. 1.7.2)

FIG. 17.2
Budget of BMA, DDS and Tokyo Met.

