Appendix 4.13 Solid waste collection and transportation simulation result

Table AP 4.29 Solid waste collection and transportation simulation result (1/8)

Baht/d)		Total cost	1.761.431	1,825,243	1,677,590	.728,881	2,266,906	2,129,245	2,090,538	2,085,986
(Unit:		Sub- total	819.392	866,462	790 * 966	1,043,1341,728,881	1,227,282	1,256,208	1,370,437	1,380,482
	Facilities related cost	land	154,492	201,662	166,654	213,724	28,978	63,568	39,158	72.282
	Facilitie	Maint. 5 Ope.	277,000 387,800	277.000 387,800	302,200 527.210	302,200 527,210	372,844 825,460	825.460	935,935	385,180 923,020
		Depreci- ation	277,000	277.000	302,200	302,200	372,844	367,180	395,344	385,180
	d * cost	Sub- cotal	942,039	958,781	681,523	685.747	1,039,624	873,037	720,101	705,504
	Collection and Transportation c	2nd	1000 100 100 100 100	1			1	ł		
	Coll. Transpo	lst	942,039	958,781			1,039,624	873,037		
		Total	(5,540)	(075.2)	(5,540) (3,098)	(5,540) (3,098)	(5,540)	(5,540)	(5,540)	(2,455) (5,540) (2,169)
			805 (0)	805 (10)	805 (0)	805 (10)	754 (765)	758 (617)	765)	758 (417)
	node No.	t/d)	804 (57)	804 (15)	804 (57)	804	753 753 758 758 (140)	757 (1.957)	753 758 758 (765) 758	757 (2,212)
	Selected not	Node No. t volume:	802 (552)	802 (255)	802 (552)	802 (255)	752 (765) 757 (765)	755 (1,078)	752 (765) 757 (765)	755 (1,484)
	Sel	Node No. (Treatment volume:	801 (2,891)	801 (2.260)	801 (2,891)	801 (2.260)	751 (270) 756 (765)	751 (422)	751 (270) 756 (765)	751 (600)
- -			800 (2,040)	800 (3,000)	800 (2.040)	800 (3.000)	750 (540) 755 (765)	750 (1,466)	750 755 765(765(750 (827)
		of of	. • ^	<u>ہ</u>	2 10	5 25	б ——52	ี เซ		ь с 4
	90 90 1	type of facilities	Landfill	Landfill	2-(1) Landfill (Transfer)	Landfill (Transfer)	Composting	3-(2) Composting		(Transfer) Composting (Transfer)
	, , ,	No.	1-(1)	1-(2)	2-C)	2-(2)	5 *	3- (2)	(1)-7	4-(2)
		Type		ζίπο	A sqyT 1111bas	1		18 ouj) B	aqyî niteoqaad	

* 1st ... Transportation cost from origin to the intermediate facilities. 2nd ... Transportation cost from intermediate facilities to the final disposal sites.

Ap4--83

Table AP 4.29 Solid waste collection and transportation simulation result (2/8)

र ।			3	4	82		2	33	12	88		32	609	145
Baht/d)		Total cost	2.716,294	2,721,144	406,478	1.474.299	1,880,777	396,237	1.446,351	1,842,588		636,132	1,231,509	1,867,641
(Unit:		Sub- total	2,014,464	2,039,859 155,353)	224,732	695.972	920,704	224,732	852,618	1.077,350	156,646)	370,390	583,500	953,890
	related t	land	148,520	157,750 188	17,184	145,172	162,356	17,184	156,558	173.742	11,386	14,490	114,300	128,790
	Facilities related cost	Maint. 5 Ope.	808,840	820,505 11,565	141,550	321,300	462,850	141,550	443 . 160	584.710	121,860	242,870	273,700	516,570
	1	Depreci- ation	1.057,104	1,061,604 (3,600	65 , 998	229,500	295,498	65,998	252,900	318,898	(23,400	113,030	195,500	308,530
	d * cost *	Sub- total	701,830	681,285	181,746	778327	960,073	171,505	593,773	765.238		265,742	648,009	913,751
	Collection and Transportation cost	2nd	30.670		\$	ł	I					•	1	1
	Colle Transpo	lst	671,760		181,746	778,327	960,073					265,742	648,008	913,751
		Total	(5,540)	(5.540) (257)	(056)	(4,590)	(072*5)	(050)	(065.4)	(075*5)	(2,708)	(1,630)	(3.910)	
			712 (777)	712 (993)		805 (10)		·	805 (10)			758 (140)	805 (10)	
	. No.	(P/1	710 (1,167)	710 (1,951)	-	804 (15)			804 (15)			757 (463)	804 (15)	
	Selected node No		708 (1,196)	708 (1,196)	758 (140)	802 (255)		758 (140)	802 (255)			755 (217)	802 (255)	· •
	Selec	Node No. (Treatment volume:	705 (1,200)	701 (1,200) (1,200)	751 (270)	801 (2,260)		751 (270)	801 (2,260)			7 51 (270)	801 (2,07@)	
		άr.	701 (1.200)	701 (1,200)	750 750	800 (2,050)		750 (540)	800 (2 ,050)			750 (540)	800 (1.558)	
	2	of of node	S.	ις η	e	ŝ		Ω.	Ś			ś	ŝ	
		type of No. of facilities node	Incinera- tion	Incinera- tion (Transfer)	Composting (1,120 t)	Landfill	Total	Composting (1,120 t)	Landfill	Total	(Transfer)	Compositing (1.920 t)	Landfill	Total
	ļ		Ś	γ¢.	~			<i>හ</i>				σ		
		Type	ouly Incine-	Type C ration			L	ชีบ	jasodak G	6 Cc	(II)	uel		
		Type No. facilities		v v		11:3part	Total	တ	5150 dak	>) 9			Landfill	

Ap4-84

Solid waste collection and transportation simulation result 4.29 Table AP

(3/8)

Baht/d) 605 465 1,206,065 1,811,530 393,623 2,237,537 2,631,160 389,970 2.231,300 640.205 2,518,712 2 621 270 1,914,507 Iotal COST (Unit: 724,838 1,654,670 1,095,228 21,048) 370,390 1,674,718 1,879,402 1,899,450 1,794,428 224,732 1,423,222 371,206 141,338) 224,732 Sub-ctal Facilities related 11,198) 14,490 139,988 99,386 125.498 17,184 110,786 127,970 17,184 258 15,306 114,692 110,044 127,228 land Mainc. 242,870 382,240 625,110 670,140 813,730 108,540 141,550 811,690 141,550 14.490 684,630 826,180 242,870 570,860 ъ В Depreci-ation 65,998 873,744 113,030 65,998 217,100 330,130 (21,600 939,742 770* (6,300 113,030 946,042 752,976 866,006 380. 235,075 716,302 168,891 751.758 165,238 81.227 721,820 582,867 556,582 232,999 491,285 724.284 Sub-total Collection and * Transportation cost 27.836 405 26,405 27,836 Znd . 3 555,031 679,879 168,891 723,922 232,999 464,880 1st (1.630) (016'E) (21412) Total (322) (1,630) (016.5) 4,590 4.590 50 950 758 (140) 805 (10) 758 (140) 757 (463) 804 (15) 710 (066) 757 (463) 710 t/4) Ś d selected node 755 (217) 802 (255) 758 (140) 708 755 (217) Node No. (Treatment volume: 758 (140) 200 707 (864) đ đ 751 (270) 200) 801 (2,702) 751 (270) 751 (270) 751 (270) ,016) 200) ਦੱ ฮ์ đ 800 (1,558) 701 (1.200) 750 750 701 750 701 200) 750 đ đ node б. Ч en. 5 t, ŝ **.**1 9 ŝ 4 Compositing (1.120 t) Composiing (1.920 t) facilities Compositing (1,920 t) (Transfer) Composting 9 E Incinera-tion Incinera-ríon Incinera. tion (ransfer) andfil Total Total Type Total Total Case <u>%</u> ģ 뎚 N 13 Sallsogno) & Illibard Compositing & Incineration ž Type D(Cont'd) 3 ag Y

Ap4-85

(4/8) Solid waste collection and transportation simulation resilt 4.29 2 Table

Baht/d) 607.237 2,508,540 1,968,811 596,433 1,312,028 1,234,876 1,908,461 500,408 1,908,132 1,361,574 Total 1893 (Unit: 1,810,665 7,412 960,129 124,028) 459.752 459-752 371,206 1,439,459 1,110,848 75,124 Sub total 113,034 Facilities related 194,696 97,728 7,568 15,306 56,832 56.832 187,128 137,864 272 303,800 130,296 land 0080 403,160 578_360 99,360 824,455 479,000 175 200 7,155 242.870 581.585 175,200 Maint. ა. 0 დ. 260,146 461,820 (17,100 Depreci-ation 873,176 217,000 227,720 234,100 113,030 227,720 444,720 (3.570 (3.570 229,202 468,673 857,963 697,875 147.485 710,478 673,585 536,904 136,681 Sub-* Fransportation cost Collection and 9,965 9,965 2nd I 137,520 710,478 847,998 lst (016.5) (1,630) (129) (1,200) (075.4) (1,200)(075.4) (2,280)Total 758 (140) 805 (10) 805 (10) 757 (463) 710 (897) 807 (12) 804 (53) No. t(d) Selected node 802 (255) 755 (217) 707 (902) Node No. (Treatment volume: 802 (Land-to-land) (Land-to-river) 801 (2,260) 751 (270) 705 (116) 801 (2,260) 701 (1.200) (240) 2001 800) 800) 800 800 800 701 (1,200) đ ਰੰ ਰੰ node ર્કુ સુ ŝ -1 4 ,H ŝ ч in. 16 Composting (1,920 t) Incinera-tion (Incl Transfer facilities (Transfer) Type of (Transfer) (Incl. Transfer cost) Incinera-tion Incinera-tion Total Landfill ILIJbacu Tetal Total (lasoo Case 0 2 ង 4 Type E (conteration Compositing 6 Incineration Type F Ittlbned 8 notleranton1 Ě

(5/8) Solid waste collection and transportation simulation result Table AP 4.29

394,838 394,838 397.701 (Unit: Baht/d) 605,640 494,138 1,048,643 2,049,121 1,150,057 2.203.834 599,585 1,008,458 168,576 1,281,869 2,002,881 COST 656,076 TOCAL 224,732 855,576 224,732 597,345 103,207) 459,792 1,178,662 244,732 319,404 1,399,712 459,792 Sub-total Facilities related 87,338 17,184 49.656 123,444 56,832 17.184 94.560 7,222 56,832 17.184 161,354 56,604 land 1001 634,735 141,500 175,200 141,550 645,250 141,550 80,685 Maint. 237,300 554,050 350,400 153,300 175,200 317,985 နိုင် Depreci-ation 65,998 65,998 65,998 184,800 (15,300 169,500 631.018 227,760 478,558 227,760 463,258 455,520 109,500 145,848 170,106 804,122 170,k06 554,505 172,969 139,793 721,012 870,459 294,481 336,672 411,113 Sub-total * Collection and ' 3,965 9,965 14,817 14.817 2nd 1 ŧ 1 ł 135,883 170,106 554,505 336,672 789, 305 860,494 279,664 172,969 lst. (026) (1,200) (3,390) (056) (1,200) (1,973) (2,190) (950) Total (3,190) (10) (10) 805 (10) 805 (10) 804 (315) 804 804 (55) Selected node No. Node No. (Treatment volume: r/d) 758 (140) 802 (255) 802 (138) 758 (140) 758 (140) 802 (255) 751 (270) 751 (270) 751 (270) 801 994) 801 (1,298) 801 (1,858) 708 (1,200) đ 701 (1,200) 800 (1.200) 800 (729) 800 (1,252) 750 750 750 (540) 201 ಕ đ node S. H -1 e 2 ŝ ŝ н **m** ŝ Ч, No. facilities Compositing Composting Composting (Transfer) 17-(1) Incinera-tion 17-(2) Incinera-tion Type of 18-(1) Incinera-tion Landfill Landfill Landfill Total Total Total Case ž Compositing & Incineration 'IIIIpuer Type G

Ap4-87

(6/8) Table AP 4.29 Solid waste collection and transportation simulation result

	· .	<u></u>		•.		·								_
(Unit: Baht/d)	 	Total Cost	1,133.786	396,738	666,846	2,197,370	719. 665	614.498	843,760	2,057,872	1,227,532	606,225	440,787	2,274,544
(Unit:		Sub- total	855,576	224,732	386 . 675	147,920 1,466,983 1,556 44,351)	459,792	371,206	399,312	146,250 1,230,310	930 *696	371,206	218,914	177,796 1,520,816
	related t	land	49,656	17,184	81,080	147,920	56,832	15,306	74.J12	146,250	127,776	15,306	37,714	
	Facilities related cost	Maint. č Ope.	350,400	141,550	187,995	679,945 34,695	175,200	242,870	189,700	607 + 770	350,400	242,870	105,700	698,970
		Depreci- ation	455,520	65,998	117,600	639,945 (8,100	227,760	113,030	135,500	476,290	455,520	113,030	75,500	644 • 050
	* cost	Sub- total	278,210	172,006	280,171	730,387	139,822	242,292	444,448	827 +562	296,836	235,019	221,873	753,728
	Collection and Transportation	2nd				-	9,965	: 1	1	9,965	20,995	8	•	20,995
	Collec Transp	lst					129,857	243,292	444,448	265*218	275,841	235,019	221,873	732,733
		Total	(2,400)	(056)	(2,190)	(122)		(1,630)	(2,710)		(007*2)	(1,630)	(1,510)	
					805 (10)			758 (140)	805 (10)			758 (140)	805 (10)	÷ .
	No.	(p			804 (15)			757 (463)	804 (15)			757 (463)	804 (15)	
	Selected node No.	Node No. t volume: t/d)		758 (140)	802 (246)			755 (217)	802 (255)			755 (217)	802 (130)	
	Selec	Node No. (Treatment volume:	708 (1,200)	751 (270)	801 (755)			751 (270)	801 (1,459)		703 (1,200)	751 (270)	801 (882)	
* - _*		Ę	701 (1.200)	750 (540)	800 (1,164)		701	750 (540)	800 (971)		701 (1,200)	750 (540)	800 (473)	
	No.	of node	2	e 1	S	Ø		Ś	s		5	Ś	ŝ	
	Type of	facilities node	Incinera- tion	Compositing	Landfill (Incl. Tra- nsfer cost)	Total (Transfer)	Incinera- tion	Composting	Landfill	Total	Incinera- tion	Composeting	Landfill	Total
	Case	No.	18-(2)				19-(1)			· .	19-(2)		:	
	· · · · · · · · · · · · · · · · · · ·	Type			tro	itasrant:	0 (0 1 3 80)	aqvī Lizogae	» 'п	11bne.	[· · ·		

Solid waste collection and transportation simulation result Table AP 4.29

(Unit: Baht/d) 606.334 426,287 1,234,122 2,266,743 598,375 598,406 1,673,687 180,862 2,452,955 815,027 907 909 153,238 1,317,263 2,019,808 COST Total 930,696 1,492,072 1,255,806 368,890 192,486 96,226 368,890 1,720,922 459,792 86,935) 371.206 486,265 Sub-total (2/8) Facilities related 124,776 172.072 14,406 11,286 150,468 129,120 14,406 28,546 56,832 15.306 81,100 6.988 land 698,970 350,400 Maint. 6 Ope. 488,516 242,870 242,870 105,700 242,870 39,480 67.365 770,866 675,135 175,200 257,065 Depreci-ation 75,500 638,170 455,520 111,614 642,634 777.984 (12,600 111,614 28,200 227,760 113,030 488,890 148,100 303,426 237,444 233,801 774,4571 229,516 732.033 235,200 84,636 417,881 Sub-total 138,583 328,762 702.545 Collection and * Transportation cost 20,995 24,048 24,048 20,995 2nd Ł ť , **;** ı 237,444 282,431 233,801 753,676 393,833 84,636 707,985 229,516 1st (2,400) (1,630) (012,1) (3, 346)(2,710) Total (1,630) (564) (1.630) (1,200) 758 (140) 805 (10) 80 80 758 (345) 758 (345) (122) 304 58 0 Selected node No. Node No. (Treatment volume: t/d) 757 (475) 757 (475) 804 804 755 (217) 710 (952) 802. 802: (154) (1,200) 751 (270) 703 (1.194) 751 (270) 802. (55) 751 (270) 801 (1,381) (1, 200) 701 (1.200) 750 801 (847) 750 800 (463) 300 (1,049) 750 (1,200) No. note ci. 4 e7) m . ന പ ŝ ដ Total (Incl. Tra-nsfer cost) facilities Composting Incinera-tion Compositing Composting Type of (Transfer) 19-(4) Incinera-20-(1) Incinera-tion Landfill Landfill Landfill Total Total (C) - 61 Case No. Landfill, Compositing & Incineration Type Jype G

Ap4-89

(8/8) Solid waste collection and transportation simulation result Table AP 4.29

.

···			Select	Selected node No.	No.			Coll: Tran	Collection and * Transportation cost	d +		Facilities related cost	s related st		· · · ·
Type of No. of facilities node	1 1.1.1	(Treatm	Node No. Ment volume	Node No. (Treatment volume: t/d)	q)		Total	년 양 년	2nd	Sub- total	Depreci- ation	Maint. 6	land	Sub- total	Total cost
	H H	(1,200) (1.	703 (1,200)				(2,400)			295,277	455,520	350,400	124.776	930,696	1.225.973
	^v	750 (540)	751 (270)	755 (217)	757 (463)	758. (140)	(1,630)			233,828	113,030	242,870	15,306	371,206	605,034
	, S	800 (539) (5	801 (816)	802 (130)	804 (15)	805 (10)	(015.10)			202.134	001.67	119,065	42,692	240,857	166,277
										731,239	647,650	712,335	· · · · ·	182,774 1.542,759	2,273,998
											(3.600	13,365	1,612	18,577)	

Appendix 4.14 Introduction to methods of evaluation

Methods of evaluation are broadly classified into four categories as follows:

•Deterministic evaluation method

·Economic evaluation method

•Operations research

·Compound evaluation method

(1) Deterministic evaluation method

Deterministic evaluation method is a method to establish some items of evaluation and criteria of judgment, and get ratings on the items according to the criteria by making an intuitive comparison to decide whether to employ a certain project or not, or to decide the order of priority of some subjects by comprehensive judgment.

Personal judgment or decision by discussion of a group such as a committee are often qualitative, while the deterministic evaluation method aims at an objective, universal and general judgment, representing the rating results qualitatively by means of digits, charts, etc. Items which are difficult to express numerically are shown digitally or diagrammatically.

This method has been used for a long time widely from basic studies in which many factors can only be evaluated qualitatively to industrialization which can be easily evaluated quantitatively.

i) Selection of evaluation items

Items for the evaluation of a project should be widely selected. The items range over from the level of the nation, politics, or economics to in-company level. Subdivision of items should be limited to the extent that a distinct difference of significance remains between items to maintain credibility in the final evaluation and facilitate the evaluation procedure.

ii) Establishment of evaluation criteria

The followings should be considered to establish evaluation criteria:

• Number of ratings to be provided

Indication method of ratings

Generally, ratings of 2, 3, 4 or 5 grades are used. In some cases, the number of grades is increased or decreased depending on evaluation items and in the other cases, the same number of ratings are used for all items. The ratings are shown in marks and/or explanation. The explanation includes symbolic, descriptive and numerical description.

iii) Conclusion of final evaluation

In the stage of final evaluation, the following points should be considered:

- · Relative importance of evaluation items
- Appearance probability of ratings
- · Weight by person in charge of ratings

There are various methods to conclude the final judgment from the evaluation results of each item.

a. Score method

Evaluation results of each item are expressed as the score obtained. This method is subdivided depending on the methods of calculation, weight by item and use of concept of probability.

- · Addition method (addition of scores of each item)
- Continuous multiplication method (continuous multiplication of scores of each item)
- Addition/multiplication method (combination of addition and multiplication)
- Weight coefficient method (adjustment by importance of items)
- Probability method (adjustment of scores of each item by importance of items and appearance probability of ratings)
- b. Profile method

Evaluation results are shown in diagrams and specific characters are judged from them.

This method is classified into the following four methods depending on the diagrams to be used.

- Chart method (ratings of each item are connected by a broken line and shown in a chart)
- · Block method (ratings are shown in the form of checkers)
- Scale method (ratings are shown with a scale)
- Radial method (evaluation items are arranged radially)

c. Check list method

Evaluation items are arranged as a check list in the form of questions and anasers.

iv) Score method

a. Addition method

Scores of items are simply added and the priority order is decided by the total scores. Generally, maximum score of each item is different by item in case of providing different importance between items.

b. Continuous multiplication method

Scores of each item are multiplied by each and the results is used for a final evaluation.

The multiplied score is a very large number when there are many evaluation items. Therefore, it is almost impossible to prepare a large number of items. The score calculated varies from 1 at least to some tens of hundreds at the highest and therefore small difference of scores of each item can result in a large difference finally. Therefore, this is a very "sensitive" method.

c. Addition/multiplication method

Evaluation items are classified into some groups. The scores of the items in the same group are added and the results of each group are multiplied by each other.

d. Weight coefficient method

The maximum score of each items are the same. Each item has a weight coefficient respectively and the final score is obtained by adding all figures obtained by multiplying the score by the weight coefficient of each score.

By properly deciding the weight coefficient of each item, the final evaluation can be obtained in a proper way.

e. Probability method

All of the evaluation items have the weight coefficient and probability of each rating by presumption. The final evaluation can be obtained by multiplying these factors and the scores of items.

v) Profile method

a. Chart method

Ratings of each evaluation item are plotted on a chart, and the points are connected by straight lines to form a broken line graph. The pattern of the graph is examined for the final comprehensive evaluation.

b. Block method

Squares of checkers are painted out to show the positions of ratings and the pattern is examined.

c. Scale method

Rating positions are indicated by graduations of a numerically marked scale and the points are represented as a broken line graph or bar graph to examine the pattern.

This method can express the difference of importance between the items. The score method (addition method) can be used together.

d. Radial method

Evaluation items are arranged radially in a circle and the distance from the center shows ratings. The rating points are connected with straight lines and the pattern drawn by the lines is examined.

- vi) Check list method
 - a. Questionnaire method

Evaluation items are established in the form of questions and answers. Reasons for the answers are also required.

b. Flow chart method

Relation between evaluation items, namely cause and effect, are expressed as a flow chart.

The flow advances ansering "Yes" or "No" and reaches "Yes" of total evaluation finally.

vii) Advantage and disadvantage of deterministic evaluation method

Method	Advantage	Disadvantage
Score method	(1) Qualitative factors shown digitally.	 Unsuitable for scor- ing medium point bet- ween digits selected.
	(2) Definite ranking by score.	(2) Final evaluation can- not be obtained only by scores.
	(3) Easily input to a compuster.	(3) Difficult to express digitally.
	(4) Easily handled mathematically.	
Addition method	 Maximum score of each item can be changed considering the differ- ence between the items. 	
	(2) Easy calculation.	

Table AP 4.30Advantage and disadvantage of deterministic
evaluation method

(cont'd)

Tab	le	AP	4.	30

Method	Advantage	Disadvantage
Continuous multiplica- tion method	(1) Difference between the final scores of each project is large and distinction becomes clearly.	(1) Many evaluation items makes calculation exhausting.
Addition/ multiplica- tion method	(1) High sensitivity.	 Classification of items into groups the items of which is to be added is important.
Weight co- efficient method	(1) Convenient to decide importance.	(1) Complicated calcula- tion.
Probability method	(1) High credibility.	(1) It is difficult to provide many evalua- tion items.
	(2) Theoretical	(2) Complicated calcula- tion.
Profile method	(1) Visual, and therefore problems can be traced.	(1) Undefinite order
	(2) Comparison of specific properties is easy.	(2) Quantitatively undefinite.
Chart method	(1) Unevenness shown clearly.	(1) Large paper required.
Block method	(1) Understandable pattern.	(1) Large paper required.
Scale method	(1) Importance made clear	
Radial method	(1) Understandable degree of balance	
Check list method	(1) Factors offered as they are.	(1) Unclear order
	(2) Factors can be added when problems occur.	(2) Undefinite quanti- tatively
Questionnaire method	(1) Facts can be clearly understood.	

(2) Economic evaluation method

Economic evaluation method is a method to evaluate a project in terms of expenses, expenditure and profits from economic standpoint. In this case of evaluation, the economic evaluation is limited to the static evaluation and dosen't include the OR.

The economic evaluation method basically finds indices of economical efficiency of a project. The economic indexes are found with the

following equations usually.

Economic index = output (achievement of a project)/ input (expense or expenditure of a project)

Economic index = output (achievement of a project) input (expense or expenditure a project)

Since the economic evaluation method is a quantitative evaluation, it is highly objective and is based on a relatively secure theory. Therefore, if proper parameters are selected and the evaluation indexes are calculated using proper data, this can be rational and of practical use.

It is almost impossible to apply this method of evaluation when the effect of a project is almost impossible to measure quantitatively (mone-tarily) such as solid waste disposal system.

(3) Operations research method

It is the most important subject to obtain the highest efficiency and the most brilliant achievement under restrictions of time, materials, money, personnel and technique.

The operations research method answers this problem with operations research. It represents various phenomena occurred in operation of a project with a mathematical model which can be used for the static and dynamic estimation of effects and cost of a project.

OR method have been developed in various fields in various forms. The following basic methods have been already put in practical use.

• Linear programming (LP)

• Non-linear programming (NLP)

• Dynamic programming (DP)

• Queuing theory

• Game theory

Inventory control theory

Optimum distribution theory

• Statistical intention decision theory

Search theory

Information theory

Simulation

These methods are applied actually for an ideal system which is a model of a real system.

To prepare a model of this ideal system, following points should be considered generally.

- Propriety of a model depends on the boundary conditions of the system, propriety of variables selected and value of parameters.
- Parameters and structure of the model should correspond to parameters and structure of real system.
- The real system has "noise" or "factors" which cannot be explained in the model and are changing dynamically.
- "Noise" has a strong influence on the decision of real system conditions, and therefore the deviation from the target should be corrected by feedback system when deciding the target-oriented intention.
- Applicability of a model is affected by the magnitude of the noise and depends on the accuracy of the model.
- If the model has sufficient reality, the structure and boundary conditions of the system or details of the model should be reviewed.

(4) Compound evaluation method

Compound method is a combination of the deterministic evaluation method (D), economic evaluation method (E) and OR evaluation method (O).

Four combinations are considered as follows:

- OD (combination of OR and deterministic approaches)
- OE (combination of OR and economic approaches)
- ED (combination of economic and deterministic approaches)
- EDO (combination of economic, deterministic and OR approaches)

The above description was cited from "Evaluation and Decision for Study and Research (1972)" compiled by POEM Research Association, Japan Productivity Association.

Appendix 4.15 Evaluation criteria

Table AP 4.3	criteria for	

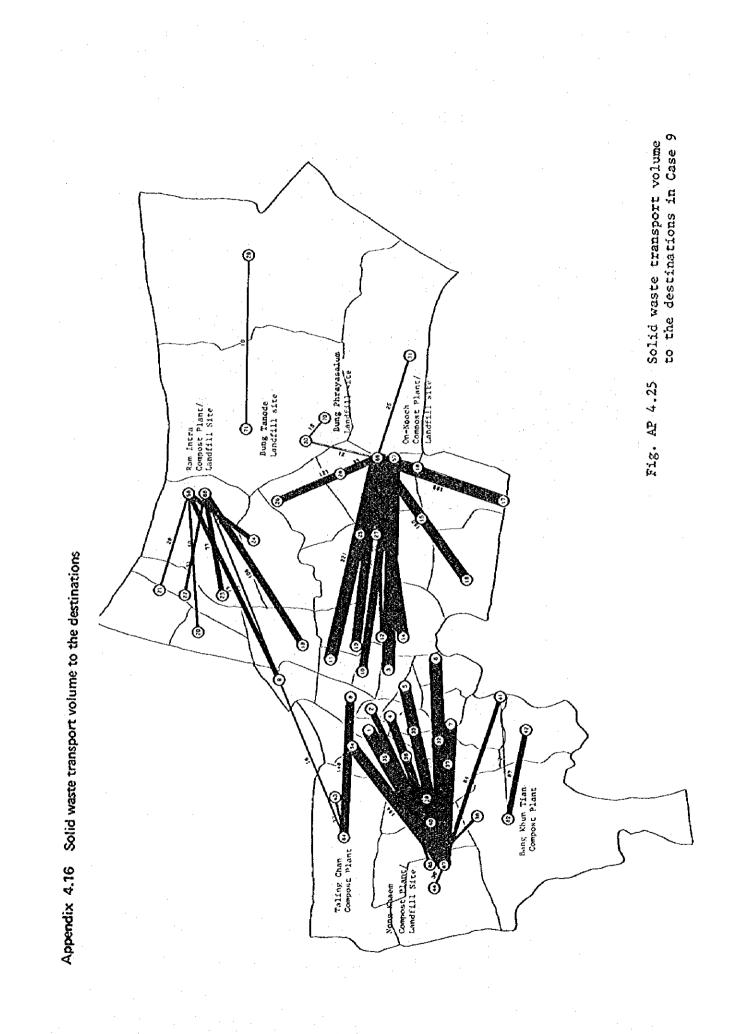
Code	Evaluation elements	Rating methods	Ranks
V1	(V: Technology) Reliability of the system	Relative evaluation method. Utility and result in practical use of the system. Previous cases of practical application of the technology. Flexibility of treatment and disposal method.	a, b, c
V2	Ease of operation	Relative evaluation method. Technical level required for operation and mainte- nance of the system; etc.	a, b, c
¥3 -	Practicability of the Plan	Relative evaluation method. Possibility of land acquisition. Appropriateness of the facilities location.	a, b, c
WI	(N: Economy) Unit treatment and disposal net cost per ton of solid waste	The cost is divided into 3 levels. (ref. Note 1.) <u>a</u> <u>b</u> <u>c</u> <u>310 Baht/t</u> <u>360 Baht/t</u>	a, b, c
X1	(X: Environmental protection) Adaptability to natural environmental cycles	Relative evaluation method. Reducibility of burden to environment, Grade of stabilization and volume reduction.	a, b, c
X2	Ease to satisfy environmen- tal restrictions	Relative evaluation. In the case of application of standard pollution prevention equipment. (ref. Note 2.)	a, b, c
X3	Reliability of operation of pollution prevention equip- ment.	Relative evaluation. Ease of operation and mainte- nance when standard pollution prevention equipment is applied.	a, b, c
¥1	(Y: Resource recovery) Utility of recovered resources	Relative evaluation method. Ability to save virgin resource. Strength of social demand.	a, b, c
¥2	Marketability of recovered resources.	Relative evaluation method. Ease of sales and market development.	a, b, c
¥3	Stability of the resource supply to the market.	Relative evaluation method. Balance between demand and supply.	a, b, c
ZI	(2: Administrative situa- tion) Consistency with the exist- ing systen	Relative evaluation method. Grade of the system improvement, guilization of the existing compost plants. (ref. Note 3.)	a, b, c
Z2	Peasonableness for budgeting	Overheads are divided into 2 levels. (ref. Note 3.) <u>a</u> <u>b</u> 255 Baht/t	a, b
Z3	Adaptability to the organi- zation	Relative evaluation method. Necessity of re- organization and employment of competent personnel.	a, b, c
24	Adequacy of the system	Relative evaluation method. Appropriateness of the system to Bangkok in the year 2000.	a, b, c
25	institutions	Relative evaluation method. Availability of urban transportation system, sewer system, water supply, power supply, telecommunication system, etc.	a, b, c

* Note 1 % 3 are shown in the next page.

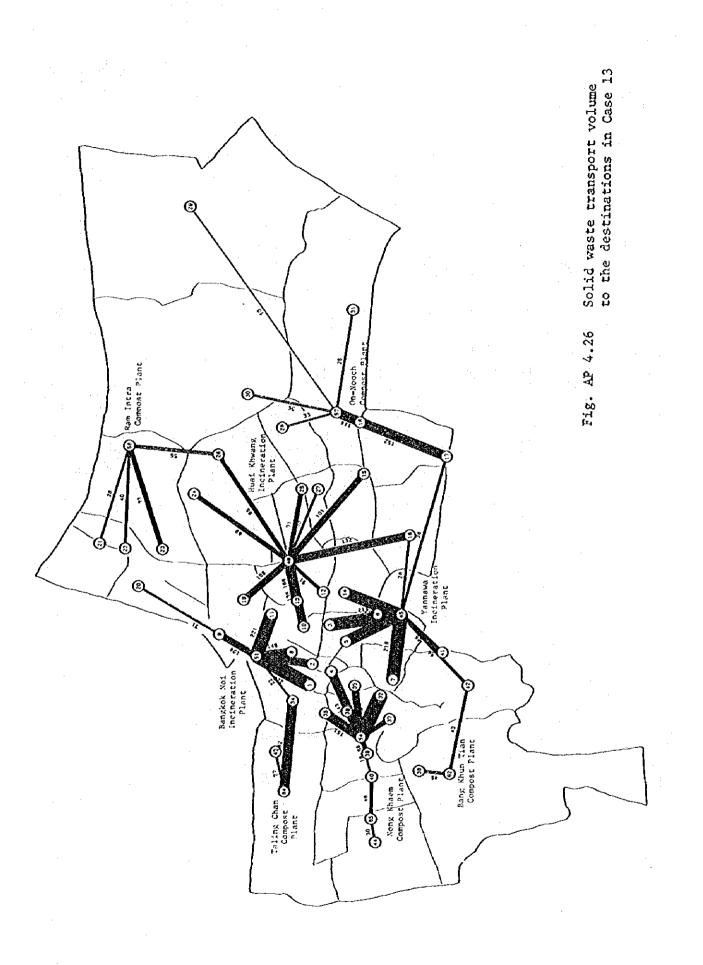
Note 1. When treatment and disposal cost per ton of solid waste is 310 Baht or less, it is ranked in 'a'. This cost, calculated as of 1980, is securable amount in the year 2000 provided that a rate between the present GPP of Bangkok city and a total expense for sanitary utility enterprises paid from the GPP does not change in the future.

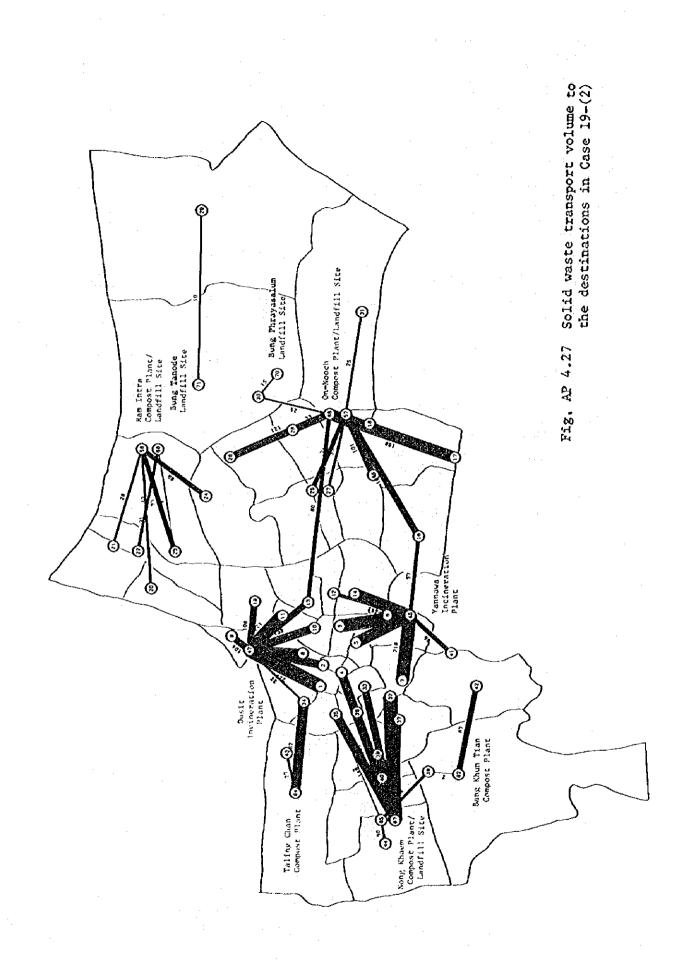
From socio-economic responsibility's viewpoint also, allocation of the above amount to the future sanitary utility enterprises shall be claimable with certainty. When the cost is over 310 Baht but less than 360 Baht, it falls in rank 'b'. The figure of 360 Baht is derived, in the same manner as above, from a rate between gross expenditure of metropolitan Tokyo and a total solid waste management cost paid for sanitary activities in Tokyo 23 wards as a part of the gross expenditure. The rate is applied to GPP of Bangkok city as it is. If the cost exceeds 360 Baht, it is regarded unreasonable amount and ranked in 'c'.

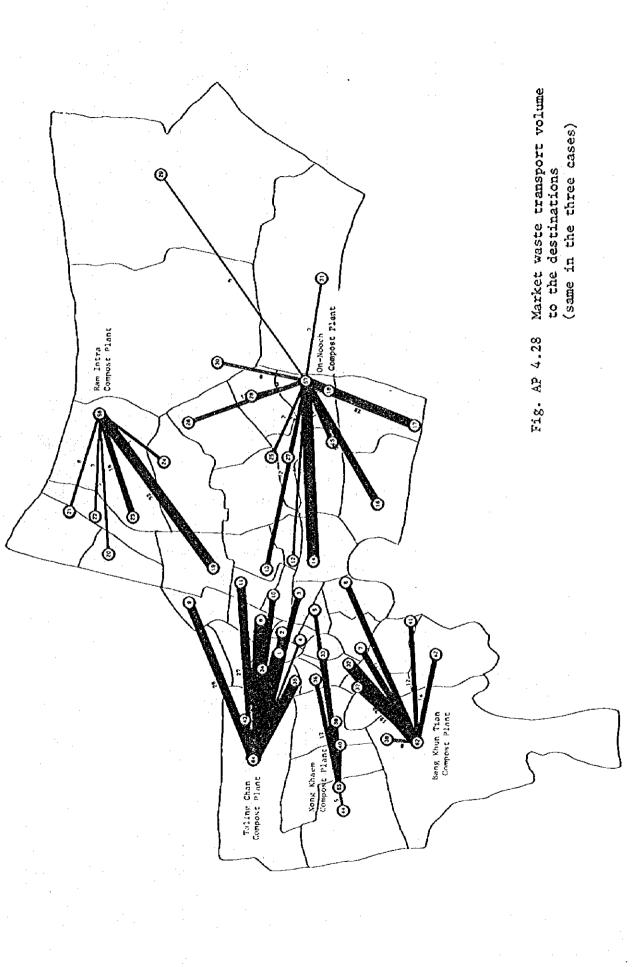
Note 2.


Establishment of legal restrictions against issue of pollutant is common measure of environmental protection taken in many countries. The restrictions strictly order factories and effluent-discharging facilities to suppress their issuing flue gases and effluent including rank odour and noise within the specified limits. In our evaluation also, the restrictions stipulated in environmental standards and in the Factory Act are taken as the evaluation criteria and, for some toxic substance and noise to which no restrictions are placed, the following limitations are provisionally targeted. The further details of the restrictions against pollutant will be described in "Environmental assessment" in Phase II.

Toxic substance in flue gas Nox; within 150 ppm (at 12% Oz density in the flue gas) Sox; within 100 ppm (at 12% Oz density in the flue gas) Fly ash; 0.18/Nm³


Noise; with 50 phon (A-characteristic range) at the facilities site.


Note 3.


In the actual management of administrative activities, largeness of annual ordinary expenses should be taken as more serious obstruction for the sound management than an amount of the initial investment. Evaluation element Z_2 'Reasonability for budgeting' is to check adequacy of amount of ordinary expenses. The soms of collection & transportation cost per ton of solid waste and operation & maintenance cost of the related facilities were calculated from each of 15 cases of the typical Naster Plan alternatives being selected at the 1st step, and an average of the sums was obtained 254 Baht per ton of solid waste. Applying this figure, the expenses per ton of solid waste less than 255 Baht is ranked 'a' and the same equivalent to 255 Baht or the higher is 'b'.

Chapter 5 SOLID WASTE MANAGEMENT FACILITY PLAN AND THE COST ESTIMATION

Appendix 5.1	Design conditions of an incineration plant Ap5-1
Appendix 5.2	Outline of principal components in the destan
	of the incineration plants Ap5-2
Appendix 5.3	Incineration plants layout
Appendix 5.4	Location of incineration plants
Appendix 5.5	Location of composition plants
Appendix 5.6	Location of composting plants
Appendix 5.7	Design drawing of the compost plant Ap5-12 Planned unburght of the compost plant Ap5-14
Appendix 5.8	Planned volume of landfilling by year
usbengiy 2.0	Landfill volume for each section and landfill
Annondau 5 0	schedule
Appendix 5.9	riual disposal sice layout and landfill shape An5-24
Appendix 5.10	Location of final disposal sites
Appendix 5.11	outline of leachate treatment facilities An5_20
Appendix 5.12	rurchase schedule of trucks and other equipment 45-33
Appendix 5.13	Additional labor requirements
Appendix 5.14	rersonnel for an incineration plant
Appendix 5.15	Construction and landfill implementation schedule
	at final disposal site
Appendix 5.16	Construction cost items of incineration plants Ap5-42
Appendix 5.17	Final disposal site construction cost
Appendix 5.18	Parking lot construction cost
••	And the construction cost and an an an Ap5-47

Appendix 5.1 Design conditions of an incineration plant

(1) Properties of incoming solid waste (the year 2000)

Item	Lower heat value (Hu) [kcal/kg]	Combus- tible content [wt%]	Ele còm	busti	l comp ble co [wt%]	ositi ntent	on of		Moisture content [wt%]	Ash [wt%]
waste			С	H	0	N	S	Cl		
of maximum heat value	1,620	33.7	18.90	2.89	11.09	0.38	0.08	0.32	51.1	15.2
of minimum heat value	1,030	<u>.</u>			-				58.2	
of average heat value	1,280	28.9	16.07	2.45	9.74	0.34	0.06	0.26	55.4	15.7

- (2) Combustion temperature (at entrance of water-wall)
- (3) Type of gas cooling
- (4) Type of air and gas movement
- (5) Type of refuse-charging
- (6) Type of gas cleaning and emission standard
- (7) Ignition loss of residue
- (8) Type of waste water processing
- (9) Noise
- (10) Vibration of ground
- (11) Electricity
- (12) Power generation
- (13) Emergency power generation
- (14) Operation time in percent per annum

750 - 900°C

water-wall

forced-draft fan and induced-draft fan

overhead crane

electrostatic precipitator (max. emission level 0.1 g/Nm^3)

under 5 wt%

closed system by spraying into furnace (but, sewage is biochemically treated)

45 phon (at site boundary in midnight) (A characteristics)

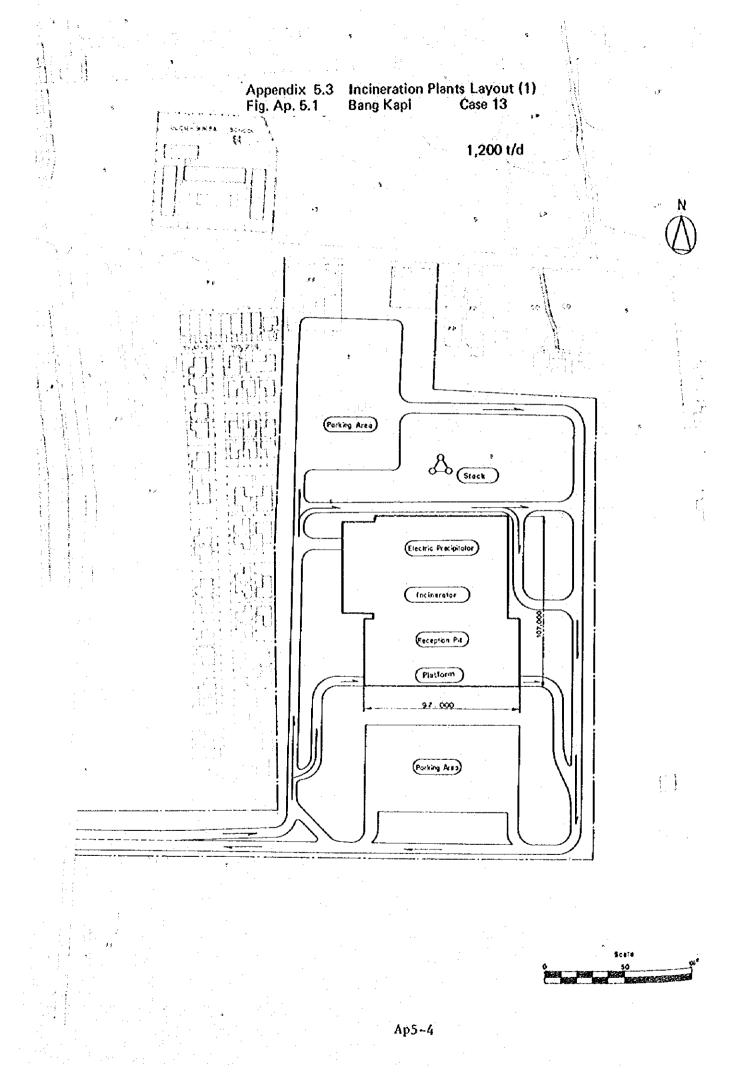
- vertical max. 60 dB (at site boundary in midnight)
- horizontal max. 70 dB (at site boundary in midnight)
- Single circuit, 3 phases, 69,000 V, 50 Hz

steam-turbine generator para-run with EGAT

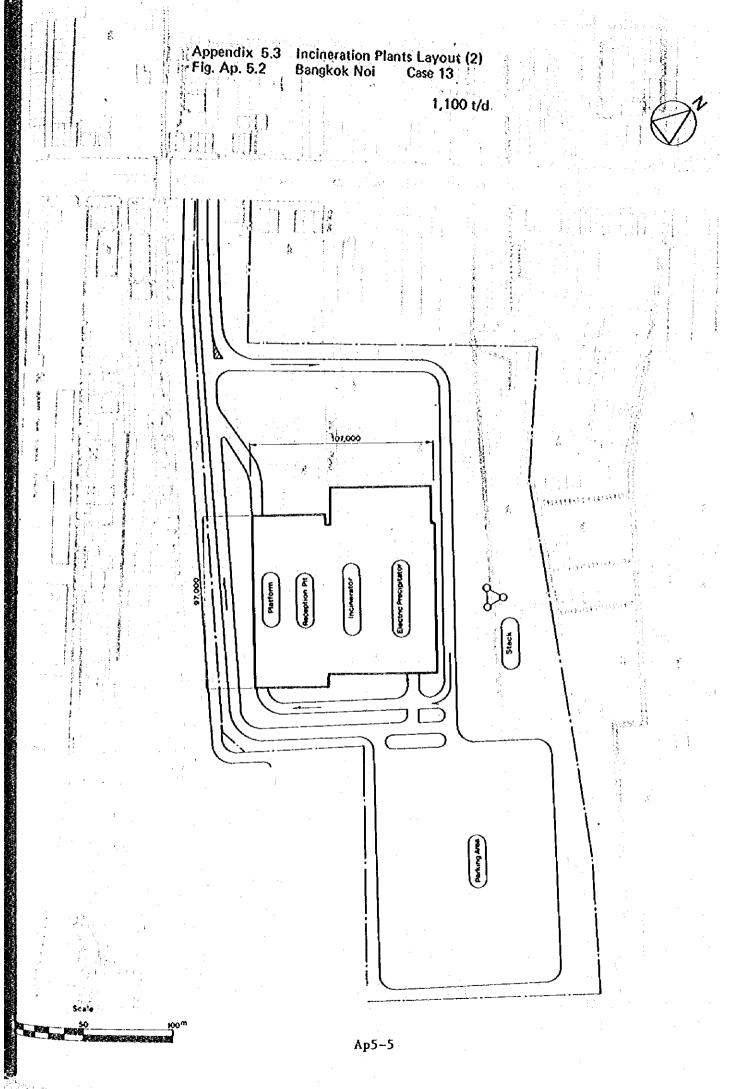
surplus power will be sold to EGAT

diesel engine generator

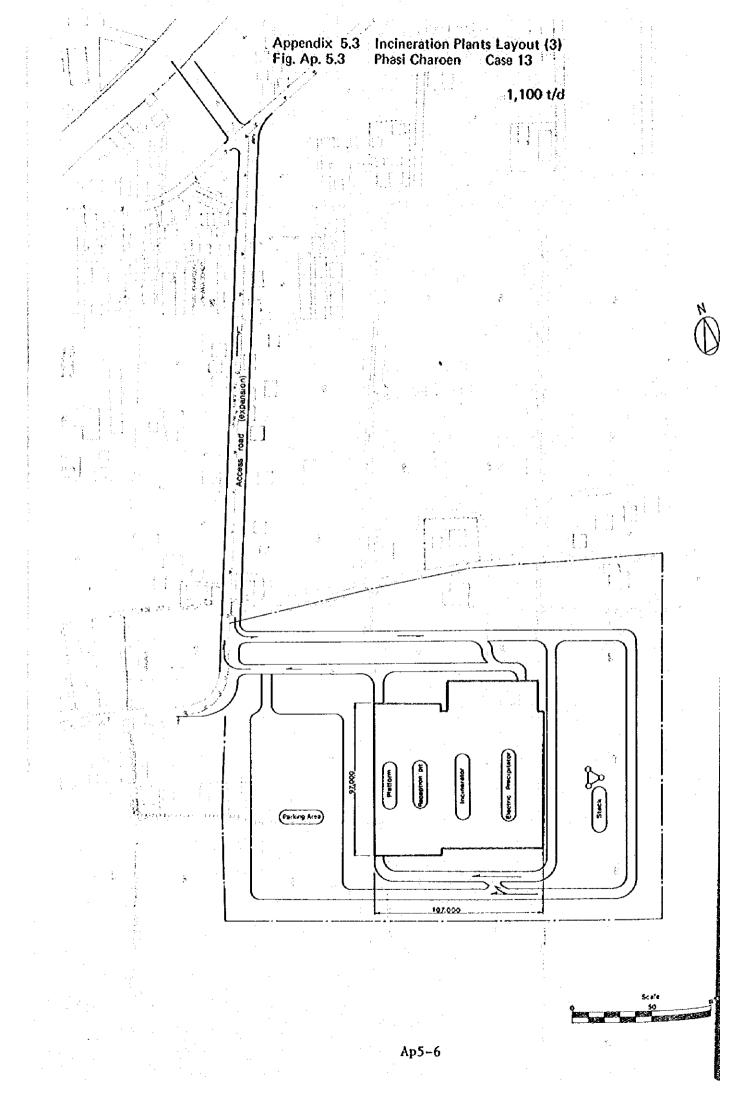
80%

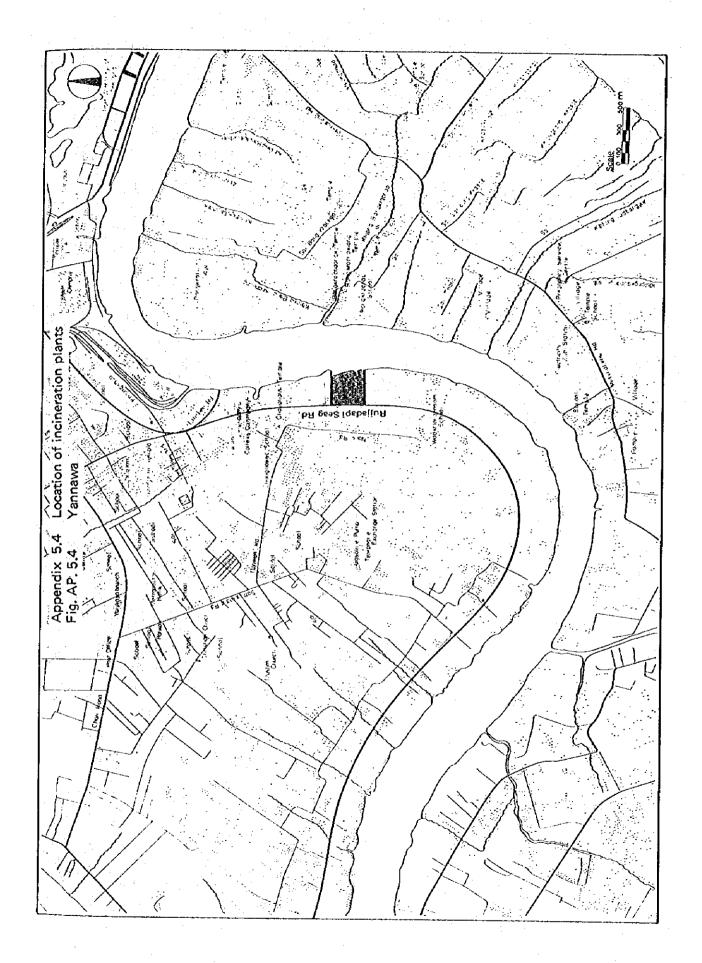

ApS-1

Appendix 5.2 Outline of principal components in the design of the incineration plants

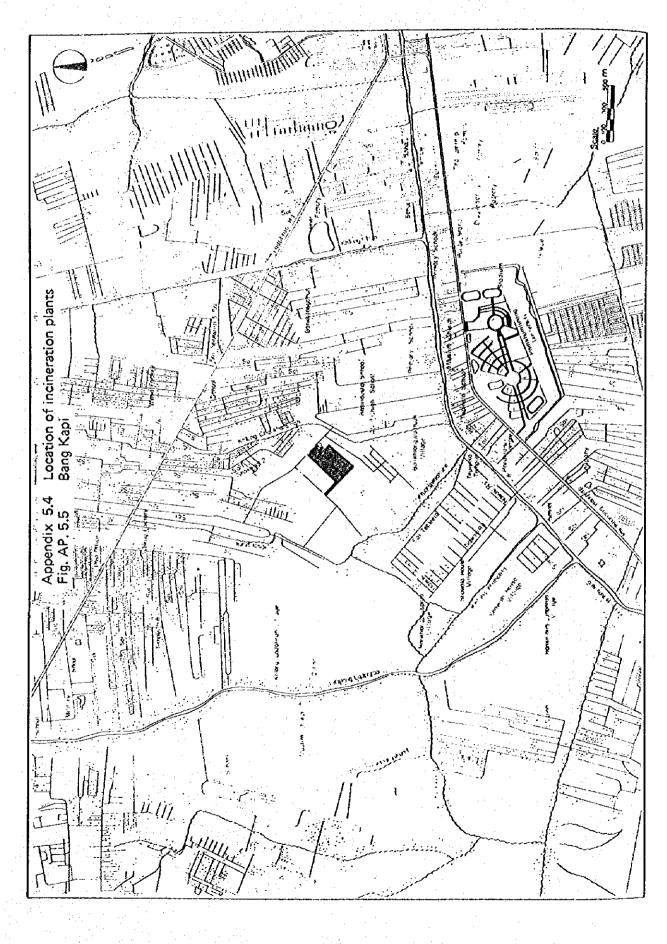

(1)	Solid waste accepting	and charging facilities
	• weighbridge	1 unit for the capacity of 300 t/d
	 discharging gate 	1 unit for the capacity of 100 t/d
•	 reception pit 	volume of 3 day storage, 1 unit
	• crane	3 units
(2)	Incinerator	3 units (starting oil-burner attached)
(3)	Residue treatment fac	ilities
	• residue cooling	water quenching and push-out discharger 1 unit per incinerator
	• residue crane	2 units
	• residue pit	1 unit, capacity with 2-day storage
	• residue weighbridge	l unit
(4)	Waste water treat- ment	no-discharge type
	hent	
(5)		
	• air duct	3 systems
	 forced-draft fan 	3 units
	• cooling fan	3 units
	 steam-air heater 	3 units
(6)	Dust collector	
	 electrostatic precipitator 	3 units (max.emission level 0.1 g/Nm ³)
(7)	Gas discharging equip	nent
	• flue	3 systems
	• induced-draft fan	3 units
(8)	Stack	steel made, concentration type (1 unit per incinerator), height 60 m
(9)	Boiler	· · · ·
(2)	• boiler	3 units
	• deaerator	3 units
	• attachment	1 unit of total
(10)	Power generation equip	
	• steam turbine	1 unit
· .	 ground condenser 	1 unit

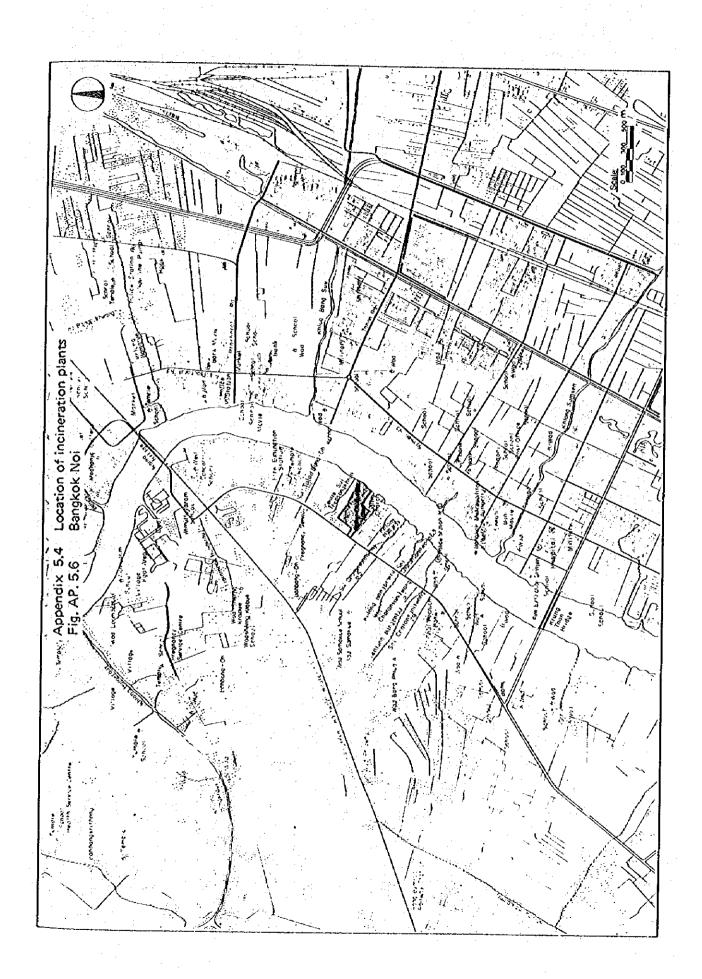
Λp5-2

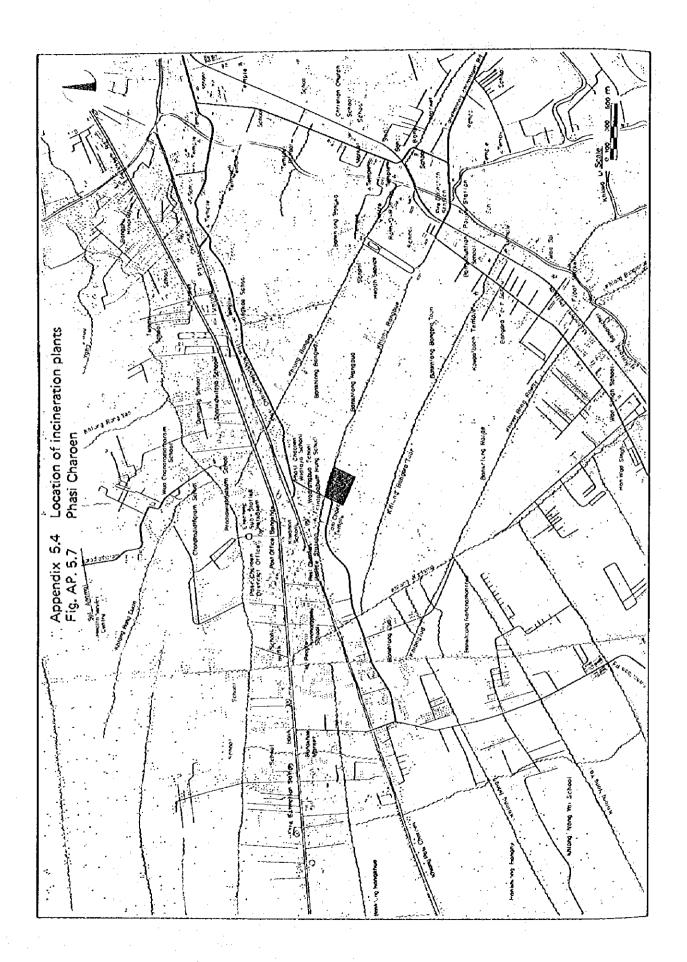

	• generator	l unit
	• emergency gene- rator	1 unit
(11)	Recovered heat utilization equipment	
	• cooling equipment	1 assortment
(12)	Steam condenser	
	• steam condenser	3 units (water cooling type)
	• drain tank	2 units (1 unit is for a spare)
2	 deaerator feed pump 	o 5 units (2 units are for spares)
(13)	Piping	1 unit per incinerator
(14)	Pure water produc- tion equipment	2 units
(15)	Electric	1 assortment
(16)	Instrument	1 assortment
(17)	Water supply equip- ment	l assortment
(18)	Blectronic data processing system	1 assortment

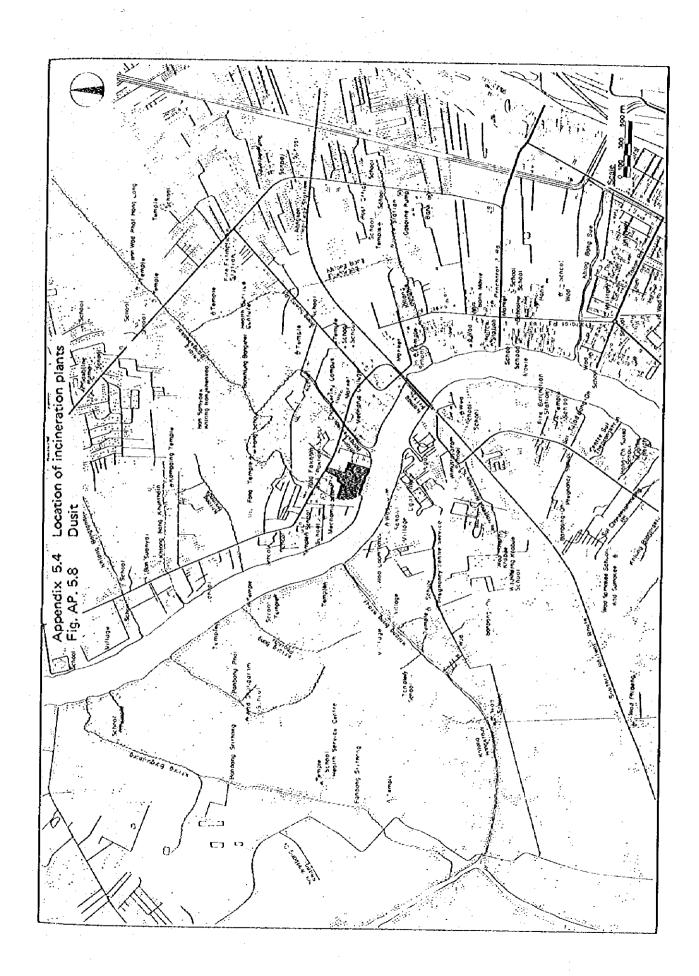


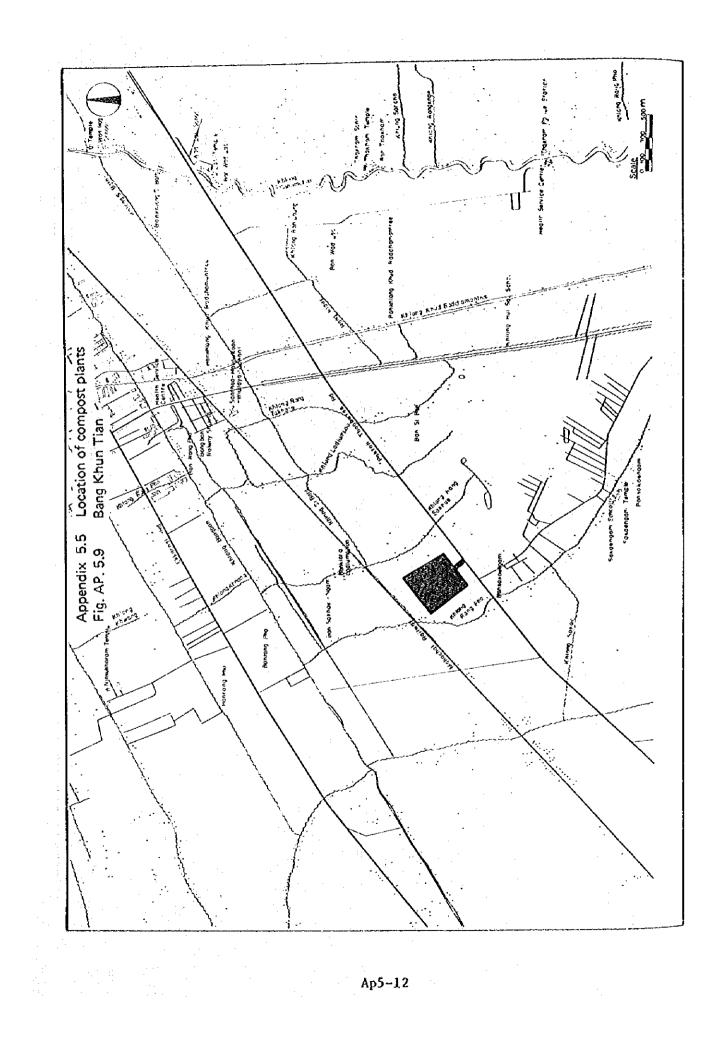
1 I

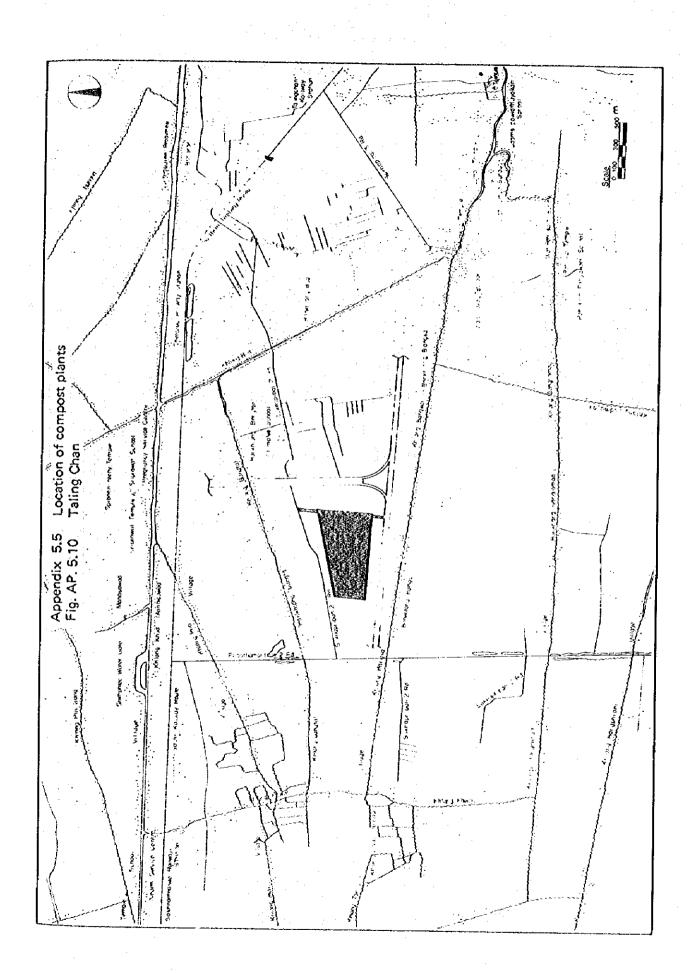


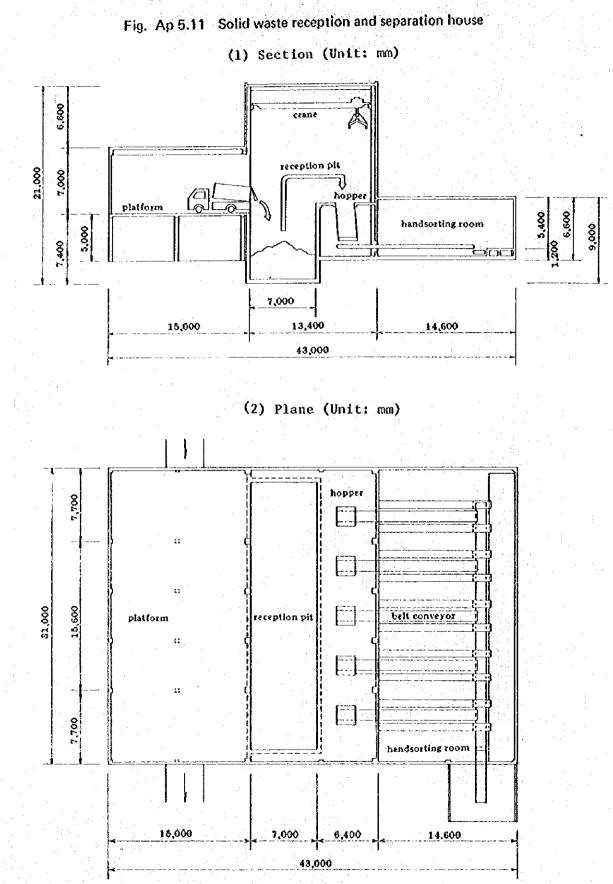

n (na 1997) i sente internet de la sente La 1997 de la sente de la se



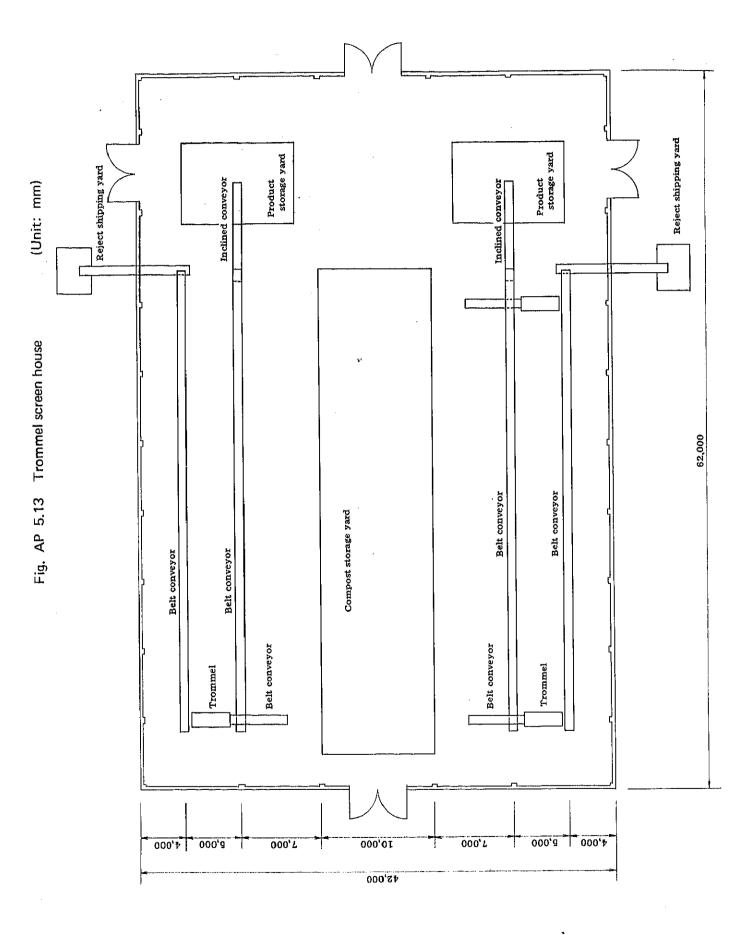



Ар5-7





Ap5-13



Appendix 5.6 Design drawing of the compost plant

Ap5--14

Air supply pipe Legend — – — Air supply pipe c (Unit: mm) 15 @ 13,500 = 202,500Fig. Ap 5.12 Fermentation house (2) Section II (1) Plane Air supply pipe Blower I 009'E 20,000 20,000 2,000

.

Appendix 5.7 Planned landfill volume by year

ور. المراجع مترجم ومسر ي						(Unit: m ³)	
		Disposal volume					
Fiscal		Nooch		Khaem		Intra	
	Gross (incl. re- jects and residue)	Incoming waste	Gross (incl. re- jects and residue)	Incoming waste	Gross (incl. rejects and residue)	Incoming waste	
				0.05 1.00			
1983	170,755	105,283 122,452	247,712 257,991	225,193 234,537	32,736	0	
4 5	187,924 192,784	143,184	270,068	234,557		0	
6	202,871	169,143	285,100	259,182		0	
7	230,640	196,912	301,032	273,665	16,864	0	
8	198,602	164,874	236,149	214,681	152,796	135,932	
9	217,991	184,263	251,342	228,493	176,389	159,525	
1990	233,642	199,914	289,083	262,803	176,944	160,080	
1	256,506	222,778	316.481	287,710		0	
2	280,830	247,102	345,133	313,757		11	
3	302,303	268,575	395,060	359,145		u i	
4	329,481	295,753	432,616	393.287	- 11	0 .1	
5	358,114	324,386	471,783	428,894	1 1	u	
6	391,447	355,861	507,825	461,659		11	
7	427,429	388,572	401,619	365,108	н	0	
8	477.026	433,660	432,354	393,049	11	11	
9	526,766	478.878	462.994	420,904	1 0 °	- 1	
2000	582,575	529,614	496,984	451.804	1 1	11	
1	639,855	581,686	525,303	477.548	152,198	135,334	
2	669,203	608,366	549,397	499,452	158,406	141,542	
3	701,663	637.875	574,281	522,074	162,864	146,000	
4	740,251	672,955	599,983	545,439	1 1 1	Ĥ	
5	779,089	708,263	623,997	567,270		ti ti	
6	813,142	739,220	646,610	587,827			
7	845,876	768,978	668,346	607,587	1		
8	879,440	799,491	690,635	627,850		11	
9	913,858		713,490	648,627			
2010	949,150	862,864	736,925	669,932	11	11	
Total	13,499,213	12,041,682	12,730,293	11,572,993	4,036,893	3,501,213	

Table AP 5.1 Planned landfill volume (Case No. 9)

Volume of rejects and residue is detailed in the table below.

(Period: fiscal 1983-2010)

and the second			(Unit:	m ³)
Site	Rejected materials from com- post	Residue from the incin- erator attached to the existing compost plants	Residue from the incin- eration plants	
On-Nooch Nong Khaem Ram Intra	690,432 152,768 369,024	333,312 83,328 166,656	0 0 0	433,787 921,204 0

	Disposal volume					
: Pfree1	- On-	Nooch	Nong	Khaem	Ram Intra	
Fiscal Year	Gross (incl. re- jects and residue)	Incoming waste	Gross (incl. re- jects and residue)	Incoming waste	Gross (incl, re- jects and residue)	Incoming waste
1983	170,755	105,283	247,712	225,193	32,736	0
4	187,924	122,452	257,991	234,537	D	Ő
5	192,784	143,184	270,068	245,516	с І†	Ó
6	202,871	169,143	285,100	259,182	11	
7	230,640	196,912	301,032	273,665	16,864	0
8	198,602	164,874	280,250	254,773	112,704	95,840
9	217,991	184,263	321,396	292,178	D	н
1990	239,833	206,105	352,937	320,852		н
1	105,688	71,960	170,612	155,102	109,971	93,107
2	112,585	78,857	217,327	197,570	110,975	94,111
3	119,447	85,719	353,175	321,068	111,956	95,092
4	127,074	93,346	411,415	374,014	112,704	95,840
5	135,092	101,364	473,260	430,236	- it	95,840
6	83,245	49,517	144,883	131,712	36,755	19,891
7	85,850	52,122	163,424	148,567	59,344	42,480
8	93,331	59,603	203,258	184,780	69,944	53,080
9	105,061	71,333	193,843	176,221	75,310	58,446
2000	126,455	92,727	246,799	224,363	87,534	70,670
1	55,556	21,828	26,663	18,231	26,732	9,868
2	79,511	45,783	46,671	38,239	37,562	20,698
3	104,252	70,524	67,335	58,903	48,746	31,882
4	129,804	96,076	88,676	80,244	60,298	43,434
5	156,194	122,466	112,221	102,019	72,017	55,153
6	177,552	143,824	131,793	119,812	81,636	64,772
7	199,238	165,510	151,665	137,877	91,402	74,538
8	221,475	187,747	172,042	156,402	101,417	84,553
9	244,277	210,549	192,937	175,397	111,686	94,822
2010	267,658	233,930	214,361	194,874	122,215	105,351
Total	4,370,745	3,347,001	6,098,846	5,531,527	2,126,828	1,591,148

Table AP 5.2 Planned landfill volume (Case No. 13)

.

(Unit: m³)

Volume of rejects and residue is detailed in the table below.

(Period: fiscal 1983-2010)

			(Unit	: m ³)
Site	Rejected materials from com- post	Residue from the incin- erator attached to the existing compost plants	Residue from the incin- eration plants	*1 Covering soil
On-Nooch Nong Khaem Ram Intra	690,432 152,768 369,024	333,312 83,328 166,656	0 188,089 0	0 143,134 0

Table AP 5.3 Planned landfill volume (Case No. 19-(2))

(Unit: m³)

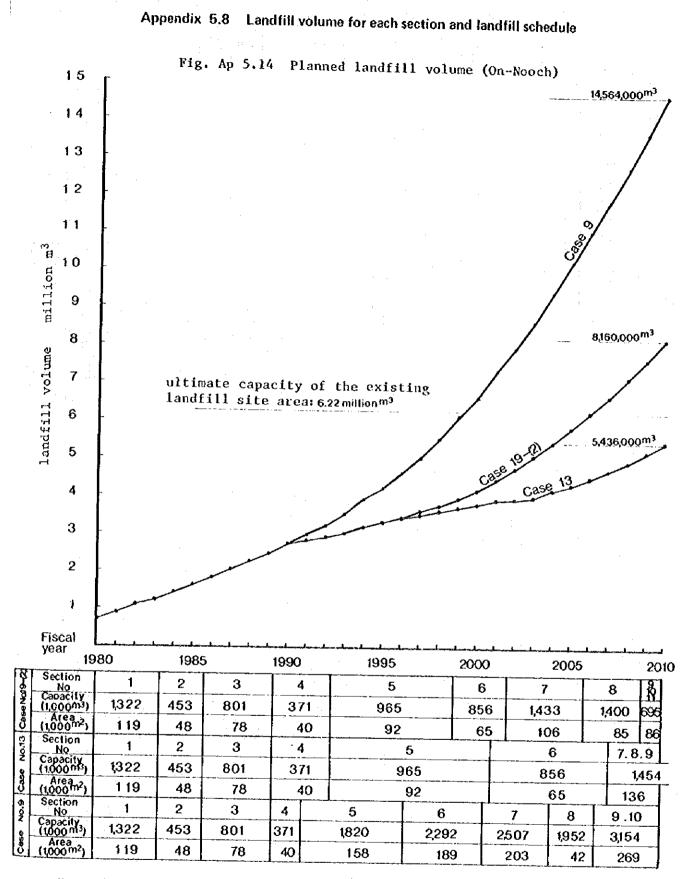
r		andre weren ogst sjok en skonen. Al 1943 Britske komer som	n. 1994 - Miller Biller, James at a Statistical Academic Statistics	د. وی وی اسار مالک بر چرو مطابقه افغان ور بر مطابقه ا)	(Unit: m³)
	Disposal volume					
Fiscal		-Nooch	Nong	Khaem	Ram	Intra
Year	Gross (incl. re- jects and residue)	Incoming waste	Gross (incl. re- jects and residue)	Incoming waste	Gross (incl. re- jects and residue)	Incoming waste
1983	170,755	105,283	247,712	225,193		0
4	187,924	122,452	257,991	234,537		0
5	192,784	143,184	270,068	245,516		0
6	202,871	169,143	285,100	259,182		0
7	230,640	196,912	301,032	273,665		0
8	198,602	164,874	280,250	254,773		95,840
9	217,991	184,263	321,396	292,178		553040
1990	239,833	206,105	352,937	320,852		- 14
1	105,688	71,960	170,612	155,102	109,971	93,107
2	112,585	78,857	217,327	197,570	110,975	94,111
3	119,447	85,719	353,175	321,068		95,092
4	127,074	93,346	411,415	374,014	112,704	95,840
5	135,092	101,364	473,260	430,236		ла 10 30 го
6	133,884	100,156	226,667	206,061	51,927	35,063
7	147,789	114,061	280,674	255,158	59,005	42,141
8	162,342	128,614	326,304	296,640	76,000	59,136
9	189,024	155,296	283,098	257,362	96,878	80,014
2000	231,092	197,364	309,351	281,228	112,704	95,840
1	273,568	239,840	206,209	187,463	83,329	66,465
2	300,182	266,454	229,092	208,265	90,705	73,841
3	327,670	293,942	252,724	229,749	98,322	81,458
4	356,058	322,330	277,132	251,938	106,189	89,325
5	386,815	351,650	299,893	272,630	113,215	96,351
6	414,522	376,838	321,373	292,157	120,116	103,252
7	441,101	401,001	341,980	310,891	126,737	109,873
8	468,357	425,779	363,111	330,101	133,526	116,662
9	496,305	451,186	384,778	349,798	140,487	123,623
2010	524,962	477,238	406,996	369,996	147,624	130,761
Total	7,094,957	6,025,211	8,451,657	7,683,323	2,600,995	2,065,315

Volume of rejects and residue is detailed in the table below.

(Period: fiscal 1983-2010)

			(Unit:	m ³)
Site	Rejected materials from com- post	Residue from the incin- erator attached to the existing compost plants	Residue from the incin- eration plants	*1 Covering soil
On-Nooch Nong Khaem Ram Intra	690,432 152,768 369,024	333,312 83,328 166,656	46,002 389,104 0	0 143,134 0

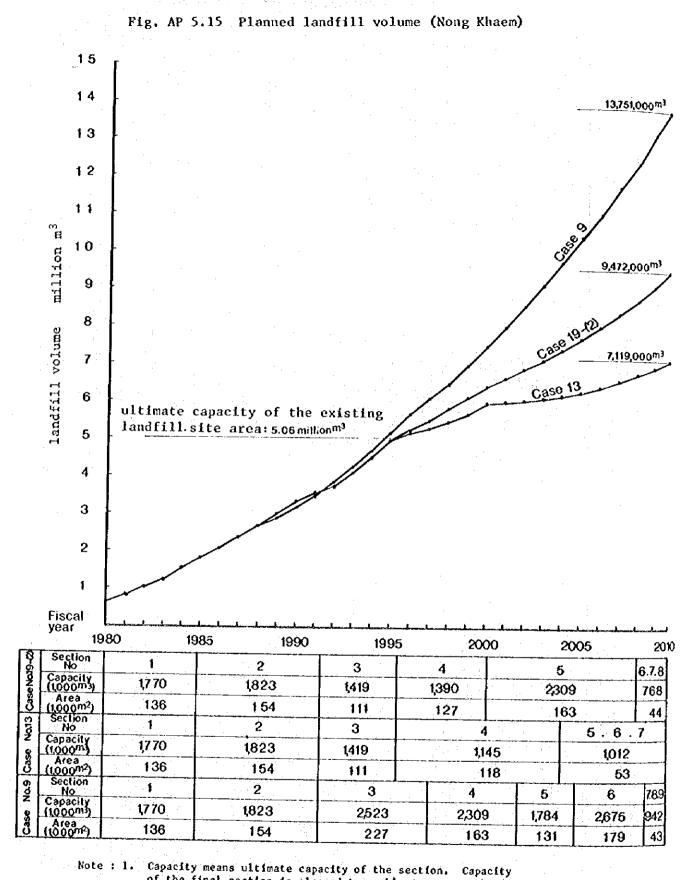
Table AP 5.4 Planned landfill volume (without-project case)


(Unit: m³)

			Disposa	l volume		
Fiscal	On-	Nooch	Nong	Khaem	Ram Intra	
Year	Gross (incl. re- jects and residue)	Incoming waste	Gross (incl. re- jects and residue)	Incoming waste	Gross (incl. re- jects and residue)	Incoming waste
1983	170,755	705,283	233,625	225,193	32,736	0
4	187,924	122,452	242,969	234,537	11	0
5	192,784	143,184	253,948	245,516	19 E	- Ó
6	202,871	169,143	267,614	259,182	10 ju	· 0
7	230,640	196,912	282,097	273,665	16,864	0
8	198,602	164,874	223,113	214,681	152,796	135,932
9	217,991	184,263	236,925	228,493	176,389	159,525
1990	233,642	199,914	271,235	262,803	176,944	160,080
· <u>1</u>	256,506	222,778	296,142	287,710	1 1 1	1 . u . 1
2	280,830	247,102	322,189	313,757	` 11	
3	305,328	271,600	429,032	420,600	4t	- 11
4	332,630	298,902	463,050	454,618	11	u u
5	361,363	327,635	498,557	490,125	<u> </u>	u
6	392,987	359,259	531,173	522,741	.,11	i u
7	436,436	402,708	557,804	549,372	tI	11, 5
8	481,872	448,144	585,398	576,966	0	H.
9	527,511	493,783	612,729	604,297) I	ti
2000	578,640	544,912	643,360	634,928	11	11
1	641,754	608,026	654,998	646,566	155,254	138,390
2	665,670	631,942	680,430	671,998	160,698	143,834
3	693,827	660,099	706,696	698,264	162,864	146,000
4	725,144	691,416	733,824	725,392	11	et (
5	756,664	722,936	759,428	750,996	11	11
6	784,305	750,577	783,316	774,884	11	41
7	810,866	777,138	806,273	797,841	11	ti
8	838,103	804,375	829,812	821,380	11	11
9	866,031	832,303	853,950	845,518	a a	11
2010	894,669	860,941	878,701	870,269	•11	ŧ
Total	13,266,345	12,242,601	14,638,388	14,402,292	4,042,241	3,506,561

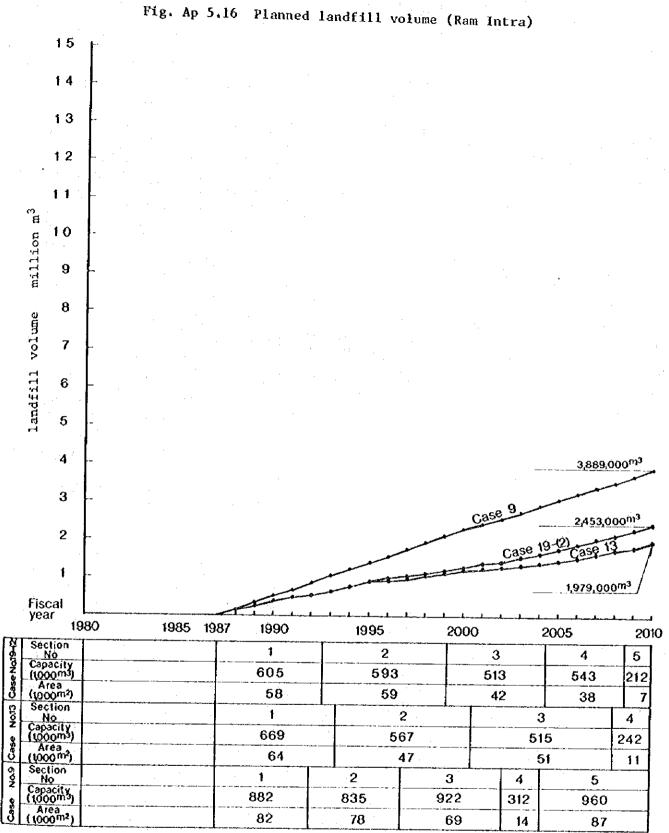
Volume of rejects and residue is detailed in the table below.

(Period: fiscal 1983-2010)


			(Unit:	m ³)
Site	Rejected materials from com- post	Residue from the incin- erator attached to the existing compost plants	Residue from the incin- eration plants	*1 Covering soil
On-Nooch Nong Khaem Ram Intra	690,432 152,768 369,024	333,312 83,328 166,656	0 0 0	0 0 0

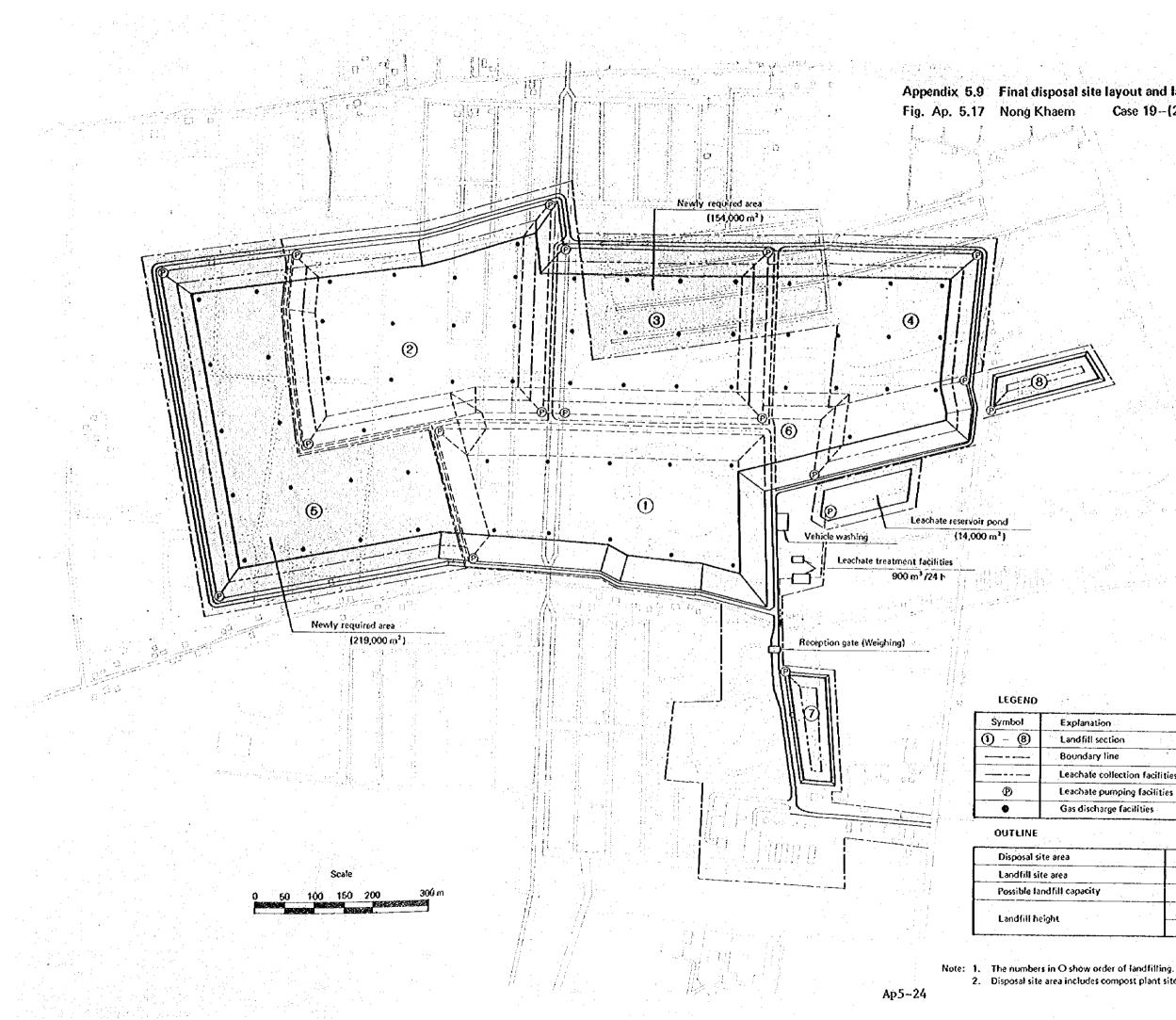
Note : 1. Capacity means ultimate capacity of the section. Capacity of the final section is planned to enable to accept the disposed-of volume with a room.

2. Area means bottom area of the landfill.


Ap5-21

of the final section is planned to enable to accept the disposed-of volume and a little more. 2. Area means bottom area of a fill.

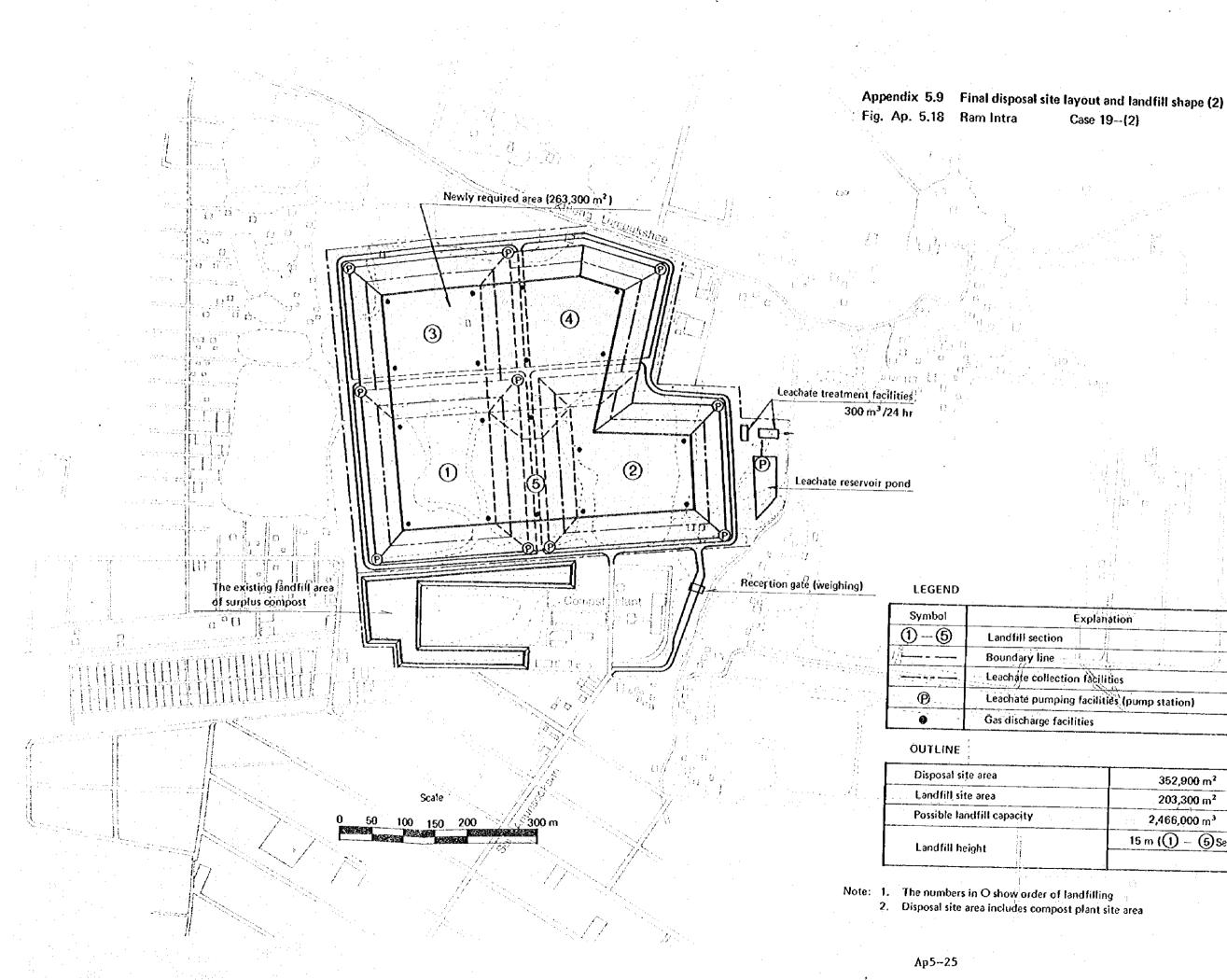
.


Ap5-22

Note : 1. Capacity means ultimate capacity of the section. Capacity of the final section is planned to enable to accept the disposed-of volume and a little more.

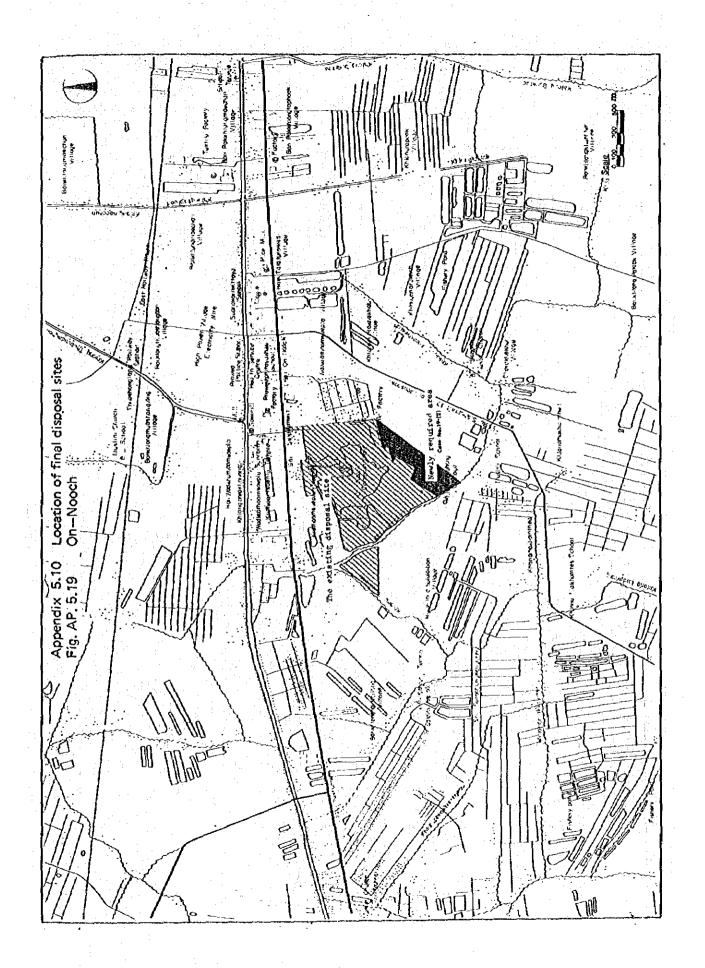
2. Area means bottom area of a fill,

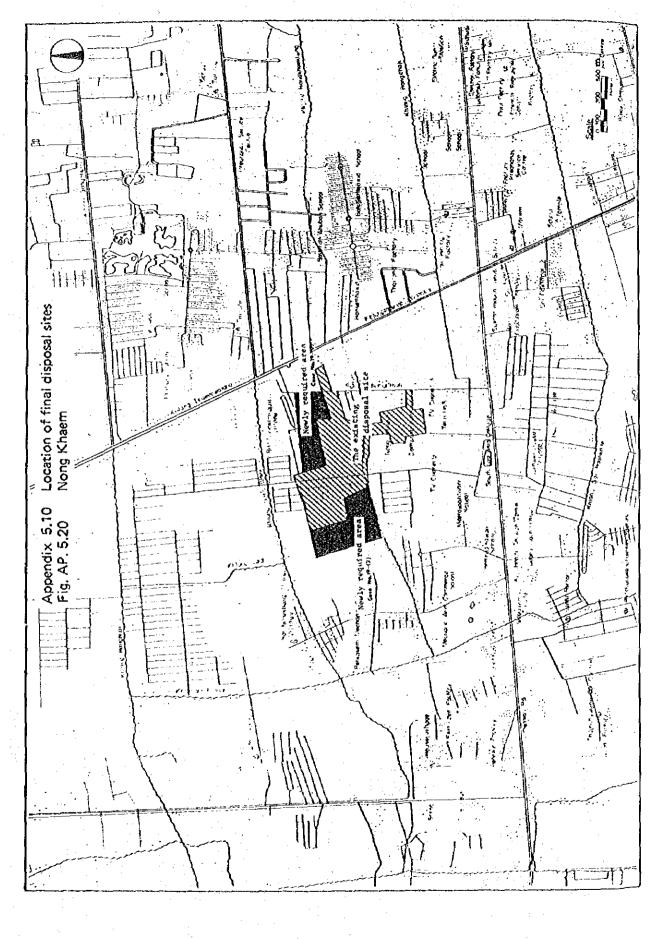
ł



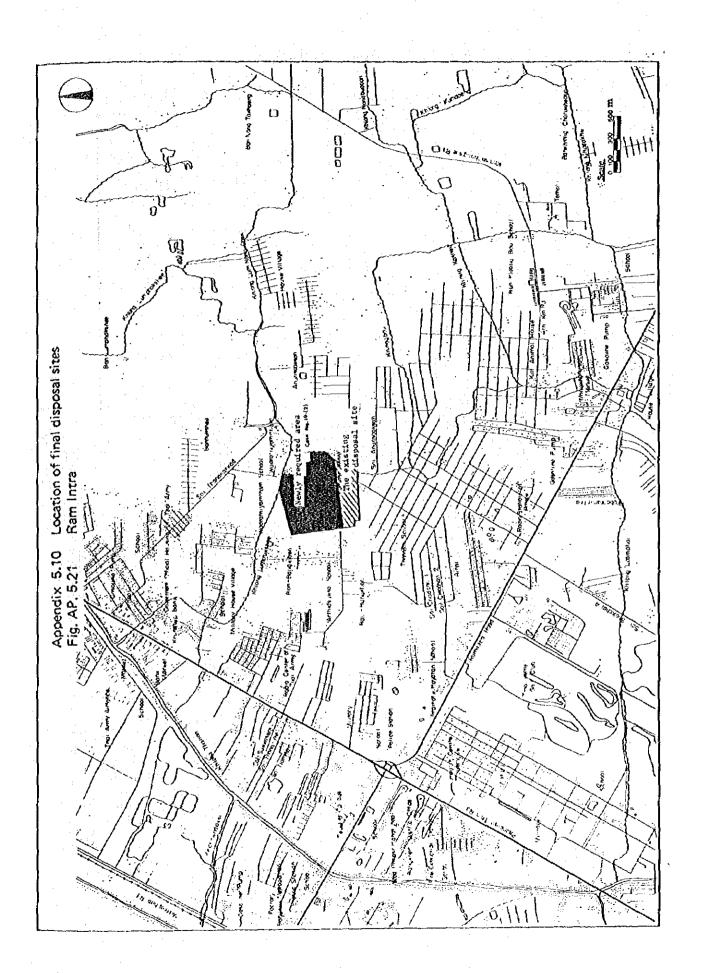
Appendix 5.9 Final disposal site layout and landfill shape (1) Case 19-(2)

ofill section	· · · · · · · · · · · · · · · · · · ·	
indary tine	•	
chate collection facilit	ies	
chate pumping faciliti	es (pump station)	
discharge facilities		
	976,700 m²	
	734,500 m ²	
pacity	9,478,000 m ³	
	15 m ()-(6) Sectio	n)
	3 m (), (8) Section	<u>}</u>


2. Disposal site area includes compost plant site area.


	·		
Explanati	on .		
2			
		<u>)</u> }	[
tion facilities	ŝ		
ing facilities	(pump station	n)	
cilities	·····	•	

N


	352,900 m ²
	203,300 m ²
	2,466,000 m ³
_	15 m (1) - (5) Section

Åp5~26

Ap5-27

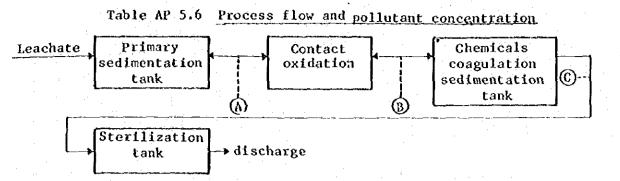
Appendix 5.11 Outline of leachate treatment facilities

Site	Case No.	Capacity (m ³ /d)	Remark
		400	to be constructed by 1987
	9	600	to be constructed in 1992
		500	to be constructed in 2003
On-Nooch	13	500	to be constructed by 1987
1	19(2)	500	to be constructed by 1987
		200	to be constructed in 2000
,,,,,,	9	800	to be constructed by 1986
		500	to be constructed in 2002
Nong Khaem	13	800	to be constructed by 1987
	19-(2)	900	to be constructed by 1987
· · · · · · · · · · · · · · · · · · ·	9	450	to be constructed by 1988
Ram Intra	13	300	- ditto -
	19-(2)	300	- ditto -

Table AP 5.5 Capacity of leachate treatment facilities

Note: The total of the capacities are planned to increase as the completed landfill increases. The quantity of leachate is determined by the following equation.

 $Q = \frac{1}{1,000} (C_1A_1 + C_2A_2)P$


where, Q = 1 cachate discharge volume per year (m³/year)

- C1 = coefficient of seepage in a working section (assumed to be 1.0)
- C_2 = coefficient of seepage in a completed section (assumed to be 0.4)
- $A_1 = area of a working section (<math>w^2$)

 Λ_2 = area of a completed section (m²)

P = precipitation (assumed 912 mm/year)

Capacity is determined to treat Q on a 80% operation rate and 20% surplus rate bases.

U					,×	

	Leachate	(incoming and	after treatme	ent)					
Consti-	Position								
tuent	Incoming	A	B	C					
pH BOD COD SS	7 - 9 200 700 200	200 700 120(40%)*2	20(90%)*2 700 120	5 - 9 20 350(50%)*2 30(75%)*2					

Note: *1 Except pH

*2 Figures in parentheses show the removed quantity of constituent in percent.

Item	Criteria
1. Primary sedimentation tank Surface loading Retention time Weir loading	$ \leq 20 \text{ m}^3/\text{m}^2 \cdot \text{d} $ $ \geq 3 \text{ h} $ $ \leq 100 \text{ m}^3/\text{m} \cdot \text{d} $
2. Contact oxidation tank BOD loading	0.6 kg/m ³ .d (for fillers)
3. Chemicals mixing tank Retention time	<u>≥</u> 10 min
4. Chemicals coagulation tank Retention time	_ <u>≥</u> 10 min
5. Coagulation sedimentation tank Surface loading Retention time Weir loading	$ \leq 20 \text{ m}^3/\text{m}^2 \cdot \text{d} $ $ \geq 3 \text{ h} $ $ \leq 100 \text{ m}^3/\text{m} \cdot \text{d} $

Table AP 5.7 Design criteria

Table AP 5.8 Reservoir pond capacity

مىلىرى بىرى يىلىكى بىرىكى بىرىكى بىرىكى بىرى يىلى بىرى بىرى بىرى بىرى بىرى بىرى بىرى ب			(Unit: m ³)
Case No.	On-Nooch	Nong Khaem	Ram Intra
9 13 19-(2)	26,000 9,000 11,000	22,000 14,000 16,000	8,000 5,000 5,000

Note: Capacity was determined by the following equation:

 $Q = \frac{1}{1,000}$ (Cn P A₁ + Cm¹ P' A₂)

 $Cm = \frac{1}{100} (0.002 P^2 + 0.16 P + 21)$

 $Cm^{1} = \frac{1}{109} (0.002 P^{12} + 0.16 P + 21)$

where, Q

P

= Reservoir pond capacity (m³)

- Annually probable maximum precipitation per day (assumed to be 89.3 mm/d)
- = Absorbed portion of P by fill (P-run-off quantity) ₽' (assumed to be 0.6 P)
- A₁ = Working section (m^2)
- A2 = Completed section (m^2)
- Percolation coefficient of landfill-working Cm ≂ section
- = Percolation coefficient of completed section Ca'

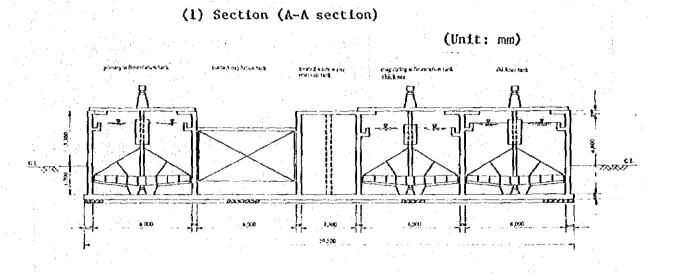
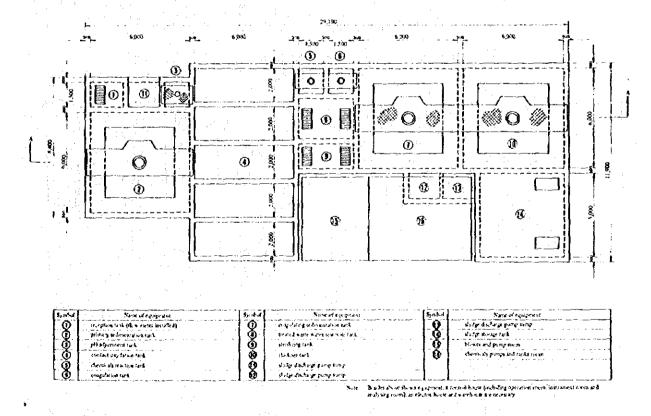



Fig. Ap 5.22 Design drawing of leachate treatment facilities

(2) Plane

(Unit: mm)

Appendix 5.12 Purchase schedule of trucks and other equipment

			1.1	
Table	AP	5.9	Collection	•

(Unit	: ve	hicle)
-------	------	--------

ingtogramy "Will Bailing Inc	an a]	Period	(fiscal	year)		
		1983	1986	1991	1996	2001	2006	
Case	Equipment	to	to	to	to	to	to	Total
No.	• •	1985	1990	1995	2000	2005	2010	
	Compactor	90	238	515	600	570	790	2,803
9	Container loader	0	0	20	5	14	20	59
	Dump truck	52	17	0	55	23	10	157
	Total	142	- 255	535	660	607	820	3,019
· ·	Compactor	90	206	428	490	435	610	2,259
13	Container loader	0	· . · O	21	6	12	21	60
	Dump truck	52	17	0	45	18	6	138
	Total	142	223	449	541	465	637	2,457
	Compactor	90	206	428	515	495	640	2,374
19(2)	Container loader	0	Ó	21	÷ 6	12	21	60
	Dump truck	52	17	0	0	45	23	137
	Total	142	223	449	521	552	684	2,571
a*	Compactor	90	238	515	630	580	810	2,863
11/0	Container loader	0	0	21	6	16	21	64
W/0	Dump truck	52	17	0	57	23	10	159
	Total	142	255	536	693	619	841	3,086

Table AP 5.10 Road sweeping

(Unit: vehicle)

	· ·	Period (fiscal year)							
Equipment	1983 to 1985	1986 to 1990	1991 to 1995	1996 to 2000	2001 to 2005	2006 to 2010	Total		
Dump truck	0	8	8	7	12	11	46		
Mech.road sweeper	2	2	9	11	5	17	46		
Road washer	0	0	11	10	2	23	46		
Compactor with a crane	0	17	10	10	9	10	46		
Total	2		38	38	28	61	184		

Note: Equipment plan is the same in all cases (9, 13, 19-(2), W/O).

Ap 5-33

Table AP 5.11 River and canal cleaning

					· .	(Unit:	unit)
]	Period	(fiscal	year)		
Equipment	1983 to 1985	1986 to 1990	1991 to 1995	1996 to 2000	2001 to 2005	2006 to 2010	Total
Mechanical work- ing boat	1	1	1	2	1	1	7
Small boat	4	10	55	40	10	55	174
Dump truck	0	1	17	7	6	17	48
Total	5	12	73	49	17	73	229

Note: Equipment plan is the same in all cases (9, 13, 19-(2), W/O).

Table AP 5.12 Incineration residue hauling

(Unit: vehicle)

				Period	(fiscal	year)		÷
Case No.	Equipment	1983 to 1985	1986 to 1990	1991 to 1995	1996 to 2000	2001 to 2005	2006 to 2010	Total
13 19-(2	Residue truck	00	13 13	19 13	10 0	13 13	19 13	74 52

Table AP 5.13 Compost plant

(Unit: vehicle)

						_		
				Period	(fiscal	year)		
Case No.	Equipment	1983 to 1985	1986 to 1990	1991 to 1995	1996 to 2000	2001 to 2005	2006 to 2010	Total
9	Front-end loader Crawler dozer Backhoe Other vehicle Total	0 0 0 1	11 8 2 9 2 2 32	3 2 2 5 2 14	7 2 0 4 1 14	7 7 4 9 2 29	0 0 1 3 4	28 19 8 29 10 94
13 & 19-(2)	Front-end loader Crawier dozer Backhoe Dump truck Other vehicle Total	0 0 0 1 0 1	9 5 0 7 0 21	2 2 4 2 12	10 4 2 9 2 27	2 3 0 4 1 10	5 4 4 7 3 23	28 18 8 32 8 94
W/O	Front-end loader Crawler dozer Dump truck Total	0 0 1 1	9 5 7 21	0 0 2 2	7 2 5 14	2 3 4 9	0 0 1 1	18 10 20 48

Note: Other vehicles include station wagons for general use.

Table AP 5.14 Final disposal

1

r				د المراجع المر مستقبل المراجع ا		an agus an an	Uniti	vehicle)
				Period	(fiscal	year)		
Case No.	Equipment	1983 to 1985	1986 to 1990	1991 to 1995	1996 to 2000	2001 to 2006	2007 to 2010	Total
9	Front-end loader Crawler dozer Backhoe Dump truck Other vehicle Total	2	7 3 3 3 13 29	5 2 7	5 3 2 3 13 26	10 1 2 2 15	3 10 13	30 6 6 8 42 92
13	Front-end loader Crawler dozer Backhoe Dump truck Other vehicle Total	2	6 3 3 3 13 28	4 2 6	2 3 2 2 13 22	5 1 1 2 9	10 12	19 6 6 6 42 79
	Front-end loader Crawler dozer Backhoe Dump truck Other vehicle Total	2	7 3 3 3 13 29	3 2 5	3 3 2 2 13 23	9 1 1 2 13	1 10 11	23 6 6 6 42 83
	Crawler dozer Other vehicle Total		2 6 8	4	2 6 8	7		15 12 27

Note: Other vehicles include jeeps, disinfecting trucks, water trucks, fire engines, etc.

Appendix 5.13 Additional labor requirements

<u></u>	T	.			1	(Jnit: 1	person)
			Per	lod (fi	scal ye	ar)		
Case No.	Kind of worker	1983 to 1985	1986 to 1990	1991 to 1995	1996 to 2000	2001 to 2005	2006 to 2010	Total
9	Driver	129	153	280	430	263	233	1,488
	Collector	272	353	601	1,015	777	687	3,705
	Total	401	506	881	1,445	1,040	920	5,193
13	Driver	129	153	203	253	157	184	1,079
	Collector	272	353	338	511	464	543	2,481
	Total	401	506	541	764	621	727	3,560
19-(2)	Driver	129	153	203	282	231	194	1,192
	Collector	272	353	338	598	684	574	2,819
	Total	401	506	541	880	915	768	4,011
W/0	Driver	129	153	288	466	271	240	1,547
	Collector	272	353	625	1,118	798	709	3,875
	Total	401	506	913	1,584	1,069	949	5,422

Table AP 5.15 Collection

Table AP 5.16 Road sweeping

		Per	iod (fi	scal yea		nit: pe	rson)
Kind of worker	1983 to 1985	1986 to 1990	1991 to 1995	1996 to 2000	2001 to 2005	2006 to 2010	Total
Sweeper Driver Assistant Total	72 0 Λ 39 33	170 19 9 198	330 26 11 367	460 22 9 491	150 7 5 162	150 14 9	1,332 88 4 1,424

Note: Excess labor (refer to as A) is to be redistributed to other positions.

Nanpower requirements are the same in all cases (9, 13, 19-(2), W/0).

. . .

Table AP 5.17 River cleaning

				· 	ິ (ປ	nit: p	erson)
		Per	1od (fi	scal ye	ar)		
Kind of worker	1983 to 1985	1986 to 1990	1991 to 1995	1996 to 2000	2001 to 2005	2006 to 2010	Total
Boat crew member Driver, Worker	29 0	66 0	75 26	112 30	0	0	282 56
Total	29	66	101	142	0	0	338

Note: Manpower requirements are the same in all cases (9, 13, 19-(2). W/O).

Table AP 5.18	<u>Incineration</u>	residue hauling
---------------	---------------------	-----------------

(Unit: person)

			Per	lod (fi	scal ye	ar)	- 1969-cining-gay	Nanda Walati ini ang
Case No.	Kind of worker	1983 to 1985	1986 to 1990	1991 to 1995	1996 to 2000	2001 to 2005	2006 to 2010	Total
13 19-(2)	Driver Driver	0	14 14	22 14	<u>10</u> 0	0	0	46

Table AP 5.19 Incineration plant

	The second s	: 			(Unit:	person)
Plant capacity	Officer	Driver	Worker	Skilled worker	Engineer	Total
1,500 ton per day plant	8	3	30	47	10	98
1,100-1,200 ton per day plant	7	3	28	36	10	84

Table AP 5.20 Compost plant

(Unit: person)

Name of plant	Skilled worker		Officer	Landfill operation worker	Engineer	Total
Bang Khun Tian	19	60	5	10	2	96
Taling Chan	29	120	7	12	3	171
Total		180	12	22	5	267

Table AP 5.21 Final disposal site

(Unit person)

		Per	iod (fi	scal ye	ar)		
Case No.	1983 to 1985	1986 to 1990	1991 to 1995	1996 to 2000	2001 to 2005	2006 to 2010	Total
9	20	42	25	28	35	30	180
13	20	35	1	<u>\ 18</u>	Δ 3	13	48
19-(2)	20	36	1	8 9	15	24	87
W/0	9	10	29	26	23	30	127

Note: Figures in the table show the total number of officers, engineers, drivers, landfill operation workers and skilled workers.

Appendix 5.14 Personnel for an incineration plant

					and the second
	Table	AP 5.22	Personnel	for an	incineration plant
5	· · ·	1. A.			induced un plane
1		:	A State of the second sec		

Duty	Content			r of perso	worke n)	ers
		W	S	D	0	E
Concerning scaling	reception, scaling, data processing	2 1	1		1	
Concerning platform	control and indication of incoming trucks, sweeping	4	1			
Control center	control and operation of equipment	4	4			-
Concerning furnacé	operation and routine main- tenance of furnace	4	12 8			:
Crane operation	operation and routine main- tenance of cranes	7				
Technical management	operation and maintenance planning, pollution control		3			1
Material management	acquisition of items neces- sary for daily operation and routine maintenance	1 1	1			
Power genera- tion management	power generation management, safety management		1 1			1 1
Boiler-turbine	operation and maintenance of boller and turbine	4	8 4			
Special main- tenance	planning and management of overhaul, special main- tenance		11 8			: 1 1
Shredder	operation and routine main- tenance of shredder		1 1			
Water treatment	operation and maintenance of waste water treatment and pure water production equipment	4 4	4 4			
Driver	driving of a commuters' car and a messenger car			3 3		· · · · ·
General manage- ment	general management, person- nel management, contract, accounting			-	6 5	
lanager	top and middle managers				1 1	7 7
Total	:	30	47	3	8	10
		28	36	3	7	10

Legend: Upper figures in the column "No. of workers" are for a 1,500 ton per day plant and lower figures for a 1,100 or 1,200 ton per day plant.

W: Worker

S: Skilled worker

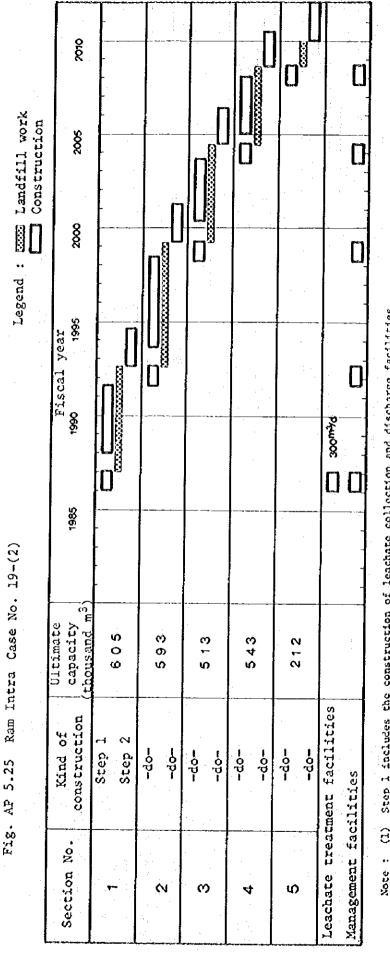
- D : Driver
- 0: Officer
- E: Engineer

Appendix 5.15 Construction and landfill implementation schedule at final disposal site

Fig. AP 5.23 On-Nooch Case No. 19-(2)

Legend : East Landfill work

							.		- JF	· · · · · · · · · · · · · · · · · · ·
5010		-					 			
2005		-								 ∞
2000										
Fiscal year 90 1995	-		n							0
F) 1985 1990										
			IJ							
capacity thousand m ³	1,322	453	801	371	965	8 5 6	1,4 33	1,440	695	
Kind of construction	Step 1 Step 2	- do - - do -	-do- -do-	-do- -do-	-do- -do-	- do - - do -	-do- -do-	-do- -do-	-do- -do-	facilitie es
Section No.	-	N	¢	4	S	Ŷ	2	ω	9 10 11	Leachate treatment Management faciliti


Step 2 includes the final soil covering, construction of rainwater drain and gas discharge facilities, etc. Construction during landfill work includes construction of embankment from the second to fifth scories. (?)

						.	Construction	ction	
Section No.	Kind of construction	Ultimate capacity thousand m ³	1985	5 8	Fiscal year 0 1995		2000	2005	3010 20
T	Step I Step 2						- - -		
8	-do- +do-	1.823							·
с N	-do- -do-	1,4 1 9							
4	+do- -do-	1.390							
ŝ	طَها الم ا	2,309				U			
Q	- do - 	706) D
7	-do- -do-	35							
ω	-do- -do-	27					· · · · · · · · · · · · · · · · · · ·		
Leachate treatment fa Management facilities	treatment facilities t facilities		╎┺┚╌┍╸	P/;006			r		

ଟି

embankment, etc. Step 2 includes the final soil covering, construction of rainwater drain and gus discharge facilities, etc. Construction during landfill work includes construction of embankment from the second to fifth stories.

ි

- Step 1 includes the construction of leachate collection and discharge facilities 3
 - embankment, etc. Step 2 includes the final soil covering, construction of rainwater drain and ଟ୍ର
- gas discharge facilities, etc. Construction during landfill work includes construction of embankment from the second to fifth stories. Ξ

Ap5-41

Appendix 5.16 Construction cost items of incineration plants

Table AP 5.23

87,555 6,258 17,640 51,480 145,293 8,615 2,553 968 20,783 Phasi Charoen Local Foreign (Unit: thousand Baht) 30,554 0 Ó 75 30,554 0 0 182 2 0 87,555 6,258 51,480 14,265 145,293 257 4,925 20,783 2,287 395 Local Cost for architectural and civil work (incineration plant) Bangkok Noi 30,554 Foreign 0 0 30,554 75 0 190 0 0 2 53,514 22,633 56,160 505 2,896 48,827 158,501 0 538 20,100 Local Bang Kapi Foreign 0 0 33,332 33,332 ᅜ 0 0 0 ы 281 ĻĴ ¢ 66,893 28,943 70,201 60.849 197,943 2,118 5,540 502 ർ 15,054 527 Local ച Dusit Foreign 0 0 41,664 41,664 104 0 240 0 0 2 66,893 60,849 197,943 2,964 70,201 28,943 0 3,694 29,888 393 Foreign | Local Yannawa ó Ò 41,664 104 41,664 0 0 207 2 0 Electricity and Concrete work Parkíng yard In-site road water supply Clearance & Access road Pile and foundation reclamation Steel work Construction work Others Total Supers truction item Construc-Substruc-Miscellaneous ture ture

6,119

4,810

4

6,455

0 283

6,103

4

5,684

÷

Others

Total

29,844

246

42,623

213

35,895

184 Ó

26,939

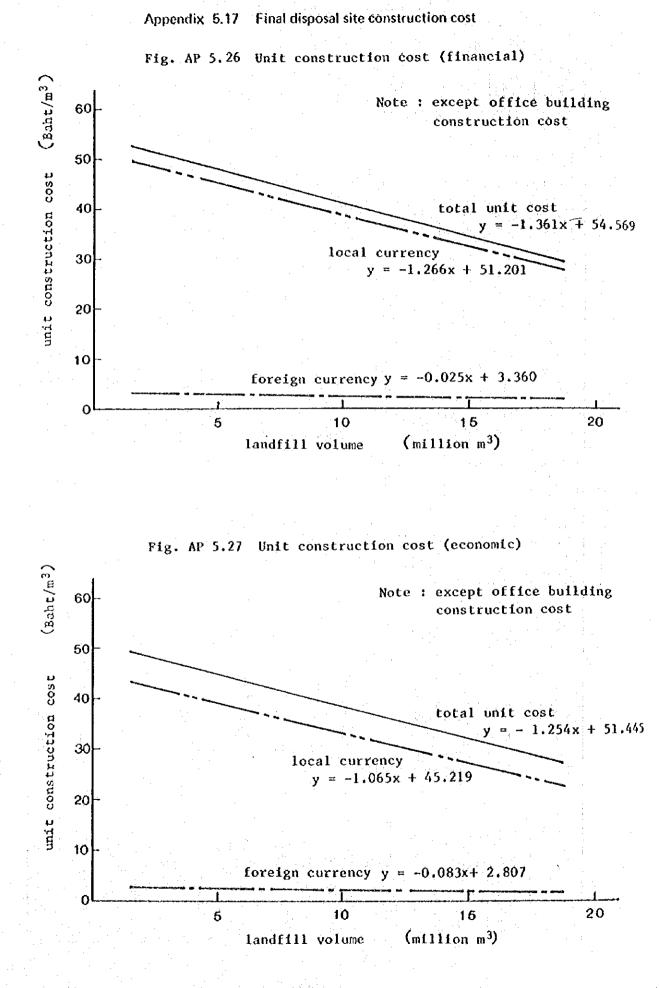
196

30.494

Ò

Ap 5-42

Purchase and installation cost for equipment of the incineration plant (1,500 ton per day) Table AP 5.24


thousand Baht) Installation work cost 555.2 159.3 210.5 7-677 800.9 36.6 64.3 290.6 2,839.6 31.6 140.7 557.3 589.4 1,693.1 1,908.1 1,087.4 Local Labor 1,057.7 142.8 943.6 432.6 7,298.2 3,726.8 245.0 5,376.0 19,059.6 11,365.2 12,807.2 3,740.8 3,956.4 1,068.2 1,412.6 3,017.0 1,950.2 7.099.4 Foreign labor (Unit: 134,449.8 48,030.2 156,483.2 3,558.6 9,545.6 147,698.5 17,428.3 12,571.4 91,430.9 90,570.2 4,768.7 40,760.2 42,007.4 21,755.6 32,151.4 44,254.1 12,644.3 Economic cost 54,000.9 174,883.3 150,259.2 10,668.0 Financial 3,977.0 165,065.6 122,345.8 45,553.0 56,442.9 14,131.0 19,477.6 14,049.6 123,508.5 26,359.4 43,431.4 5,329.4 49,457.7 COST Business 115.8 310.7 409.2 1,886.5 4,376.6 4,807.7 155.2 1,326.8 567.3 8,080,0 8,003.9 1,440.5 2,841.3 5,093.7 3,639.9 411-5 I,197.7 tax Equipment Cost Standard 20,121.8 22,104.5 7,188.2 23,419.3 532.6 713.7 1,428.6 11,438.9 6,100.2 3,040.6 11,331.2 6,623.1 5,287.4 1,892.3 2,608.3 1,881.4 4.022.4 profit 11,432.8 302.6 4,084.2 13,306.4 811.7 12,559.4 405.5 23,997.6 23,771.7 3,466.0 8,438.7 3,763.1 10,795.6 1,075.2 3,406.1 1,482.0 1,069.0 Duty 8,117 34,,660 40,842 114,328 3,026 4,055 36,720 10,752 14,820 10,690 79,992 79,239 133,064 125,594 18,715 37,631 28,129 CLF Particulate emission Name of equipment charging equipment Pure water produc-Waste water treat-Electric equipment Power generation Steam condenser Flue and others Instrumentation Recovered heat Reception and Residue crane Water supply Incinerator utilization Air supply control Boiler Piping Stack tion ment

Ap5-43

Purchase and installation cost for equipment of the incineration plant (1,200 ton per day) Table AP 5.25

					1. 11		(Unit; th	thousand Bahr)
		nbg	Equipment Cost	ų			Installation work	on work cost
Name of equipment	CIF	Ducy	Standard profit	Business tax	Financial cost	Economic cost	Foreign Labor	Local labor
Reception and charging equipment	35,884	3,588.4	6,315.5	1,657.5	47,445.4	42,199.5	3,274.6	487.9
Incinerator	116,431	11,643.1	20,491.8	4,457.1	153,023	136,922.8	16,676.8	2,484.6
Boiler	100,037	10,003.7	17,606.6	3,829.5	131,476.8	117,643.6	9,944.2	1,481.4
Steam condenser	2,659	265.9	468.0	101.8	3,494.7	3,127.0	186.2	13.9
Pure water produc- tion	6,757	675.7	1,189.2	258.7	8,880.6	7,946.2	830.2	123.6
Particulate emission control	109,895	10,989.5	19,341.5	4,206.8	144,432.8	129,236.5	10,026.8	1,493.8
Water supply	19,479	1,947.9	3,428.3	745.7	25,600.9	22,907.3	229-6	34.1
Waste water treat- ment	33,063	3,306.3	5,819.1	1,265.7	43,454.1	38,882.1	3,287.2	489.6
Recovered heat utilization	30,453	3,045.3	5,359.7	1,165.7	40,023.7	35,812.7	379.4	56.5
Power generation	32,475	9,547.7	4,676.2	3,219.2	49,918.1	37,151.2	3,500.0	521.3
Air supply	9,408	940.8	2,003.8	370-6	12,723.2	11,411.8	935.2	139.3
Flue and others	16,375	2,980.3	2,660.4	1,048.0	23,063.7	19,035.4	1,236.2	184.2
Stack	13,021	1,302.1	2,291.7	498.4	17,113.2	15,312.7	2,650.2	394.8
Residue crane	9,393	939.3	1,653.2	359.6	12,345.1	11,046.2	1,713.6	255.3
Electric equipment	70,282	21,084.6	10,050.3	7,099.2	108,516.1	80,332.3	6,413.4	955.4
Instrumentation	69,620	20,886.0	9,955.7	7,032.3	107,494.0	79,575.7	4,723-6	703.7
Piping	23,836	7,150.8	3,408.5	2,407.7	36,803.0	27,244.5	6,238.4	929.3

Ap5-44

Table AP 5.26 Construction cost items (On-Nooch) (Financial cost)

	<u> </u>			<u> </u>	(Vait:	1,000 Bał	it)
Name of equipment	Number 6	Hateria equip		Labo		Tota	
	Size	Foreiga	Local	Foreign	Local	Foreign	Local .
Case 13 (per 4,899,900 m)		11 A.		1.111	1.55		· · · · · · · · · · · · · · · · · · ·
Leachate collection and discharge facilities	1 unit	1,581	11.684	0	3.987	1,581	15,67
Embankmen t	5,800 m	Ó	20,534	- ŏ	5,887		26,42
Final soil covering	53 ha	Ō	72,034	- ŏ	12,773	ŏ	81.80
Gas discharge facilities	47 unit	. ŏ	2.325	ŏ	873	ŏ	3,19
Reinwater drain facilities	14.800 m	ō	4,134	ŏ	5.262	ŏ	
On-site road	1 unit	l ŏ	8,572	ŏ	6.700	ŏ	9,39
Leachate treatment facilities	500 m ³ /d	8,110	1,200	230	480	8,340	
On-site building*1	l unit	1 474	4,427	- 0			1,68
Others*2	l unit	3,901	1,578	212	2,355	1,474	6,78
Subtotal		15,065	226,488	442	38.718	4,113	-1,97
Miscellaneous expease	361		140,400	494	30,/18	15,508	165,20
Business tax	3.38	15.066	126.488	422	38,718		54,21
Total		1,7,000	100,405		301110		7.75
Unit cost per landfill volume (m) #1 (Baht)		<u>ا ا</u>		لمج سمس ما	L	15,503	227,17
Case 9 (per 13, 350, 400 m3)						2,9	45.
Leachate collection and discharge facilities			· · · · · · · · · · · · · · · · · · · ·			· · · · · · · · ·	
Embankment	1 unit	2,428	20,559	0	4,596	2,428	25,15
Final soil covering	10,490 m	. 0	36,461	0	10,453	0	46,91
	126 ha	· 0	172,350	0	27,281	0	199,63
Gas discharge facilities	107 unit	. 0	5,463	Ó	2,005	0	7.44
Rainwater drain facilities	26,200 m	0 -	7,200	· 0·	9,165	. 0	16,36
m-site road	1 unit	0	15,757	Ö	12,717	l ol	28,47
eachate treatment facilities	1,500 m ³ /d	16,372	2,839	460	1.037	16,832	3.92
m-site building*1	lunit	1,474	4 427	. 0	2,356	1,474	6,18
thers+2	1 unit	7 800	2,990	424	794	8 224	3,78
Subtotal		28,074	268 076	884	70,404	28,958	338,48
liscellaneous expense	302					-42,220	
Business tax	3.3x	·					110,23
Total		28.074	268.076	885	10,405		15,76
Unit cost per landfill volume (m')*1 (Baht)	• • • • • • • • • • • • • • • • • • •		200,010	001	10,403	28,958	464,474
inter th includion office building	<u> </u>		11.1			2.1	34.3

Note: *1 including office building, warehouse, repairing house, rest house, etc.

*2 including truck scale, truck washing, electric equipment, illumination, vegetation, etc.

A3 except on-site building construction cost.

Appendix 5.18 Parking lot construction cost

Parking lot construction cost (Case No. 9) Table AP 5.27

(1) Cost items

ר ר ר

					5	ידדעם בותטו	million Sant)
		Fin	Financial cost	r	Economic	mic cost	
POCALION	COST LEEDS	Foreign	Local	Total	Foreign	Local	Total
	Main construction	2.7	42.7	45.4	1.9	42.6	44.5
Yannawa	Scafolding, temporary construction and miscellaneous expenditure	i	1.6	1.6	1	1.6	۲.6
	Business tax	I	1.8	1.8	1	1	l
	Total	2.7	53.6	56.3	1.9	51.7	53.6
	Main construction	2.7	40.3	43.0	1.9	40.2	42.1
Bangkok Noi	Scafolding, temporary construction and miscellaneous expenditure	J	8. 6	8.6	ł	8.6	8. 6
	Business tax	I	1.7	1.7	I	l	: •
	Total	2.7	50.6	53.3	1-9	48-8	50.7
Total		5.4	104.2	109.6	3.8	100.5	104.3
(2) Main cc	(2) Main construction cost items					Unit; tho	thousand Baht)
		ţ	Financial	ial cost	Ĥ	Economic cost	st
nocacion	COST ITEMS	SIZE	Foreign	Local	Foreign	Local	Unskilled
	Pavement Building	14,600m ² 560m ²	2,738.4	28,382.4 8,086.4	- 1.892.8	19,710.0 7.414.4	8,672.4 672.0
Yannawa	Clearance & reclamation	40,000m ³		6,000.0	l	5,440.0	560.0
	Total	E000	2,738.4	42,652.4	1,892.8	32.741.4	9-9 11-0
							nne F

8,672.4 672.0 336.0 5,687.0

3,264.0 177.0 30,565.4

.

2.738.4

19.710.0

1,892.8

28,382.4 8,086.4 3,600.0 183.6 40,252.4

2,738.4 ľ

14,600m² 560m² 24,000m³ 600m

Clearance & reclamation Fence

Total

Pavement Building

Bangkok Noi

Ар5-47

Chapter 6 ECONMIC AND FINANCIAL ANALYSES

		에 가지를 수별되었다. 그는 것을 가지 않는 것을 가지 않는 것을 가 있는 것을 가지 않는 것을 가지 않는다. 그는 것을 수별되었다. 것은 것을 것을 것을 갖고 있는 것을	
Appendix	6.1	Economic evaluation of solid waste management	
		project	Ap6-1
Appendix	6.2	Direct benefit flow	Ap6-3
Appendix	6.3	Development of electricity generation in Thailand.	Ap6-6
Appendix	6.4	Costs of a hydro-type electric power station	Ap6-7
Appendix	6.5	Effect on rice yield by use of city compost	Ap6-8
Appendix	6.6	Chemical component of compost	Ap6-9
Appendix	6.7	Cost for fertilizer application	Ap6-10
Appendix	6.8	Necessary time for producing compost and income	
		from agricultural products	Ap6-10
Appendix	6.9	Indirect benefits	Ap6-12
Appendix	6.10	Economic cost flow	Ap6-14
Appendix	6.11	Cost for electricity generation by thermal-	
		type power plant in Thailand	Ap6-17
Appendix	6.12	Costs of a thermal-type power station	Ap6-19
Appendix (Annual investment costs by facilities	Ap6-20
Appendix	10 - 11 E 1 M	Budget of solid waste management	Ap6-23
Appendix		Cash flow statement	Ap6-27
Appendix	143 C 14 14 14	Project cost by year	Ap6-36

Appendix 6.1 Economic evaluation of solid waste management project

Comparison the total benefit and cost for solid waste management enterprise in the economic analysis is summarized as follows:

- Benefit from the proposed solid waste management project can be 1. expressed by 3,574 t/d which is the additional solid waste treatment volume resulted by increase of the solid waste collection volume from 1,966 t/d (1980) to 5,540 t/d (2000).
 - Cost against the above benefit is expressed as follows: (refer to a figure in the next page.)

1) Cost required for the existing solid waste management system:

Solid waste treatment cost for 1,966 t/d: (a + b)

Solid waste treatment cost for 3,574 t/d: (c + d)

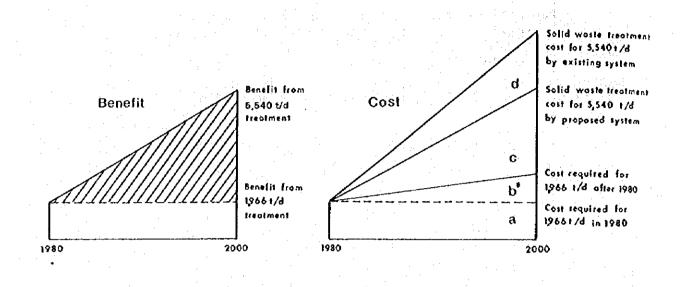
(c + d) was calculated by subtracting the treatment cost for 1,966 t/d which is required for maintainance of the existing solid waste treatment system in the future, from the treatment cost of 5,540 t/d.

2.

2) Cost required for the proposed solid waste management system:

Solid waste treatment cost for 5,540 t/d treated by the proposed solid waste management system

When the proposed solid waste management system is established, treatment cost of the existing system will be influenced to some extent and the required cost for 1,966 t/d will not be the same as (a + b) described above.


Suppose the cost of (a + b) does not change after the establishment of the proposed system, the cost reflecting the 3,574 t/d can be expressed as "c"; however, the total cost under the proposed system includes the effect of construction of the proposed system not only in the total cost but also in the treatment cost of 1,966 t/d.

Therefore, the value "c" does not accurately reflect the additional benefit.

To avoid such inaccuracy, the solid waste treatment cost for 1,966 t/d should be calculated with the existing system and with only 3,574 t/d of the proposed system.

It is difficult, however, to determine what part of the future solid waste collection volume shall be treated by existing system and what part by proposed system. (If the assumption is made that the existing collection volume should be treated by the existing system, the solid waste flow will become unreasonable because of the limitation of treatment capacity of the proposed solid waste facilities).

Considering these facts, it seems difficult to simply compare the additional cost with benefit of the solid waste management project as usually done with a normal construction project. To avoid an unbalanced result, total cost has been compared with the total benefit in this sanitation project.

Ap6-2

ъ

: Due to the increase of the accumulated incoming solid waste volume, existing solid waste treatment cost for 1,966 t/d in 1980 will increase even if the treatment volume of 1,966 t/d is maintained in the future.

Appendix 6.2

Direct benefit flow

Table Ap 6.1(A) Benefit flow (Case No. 9)

			· · · · · · · · · · · · · · · · · · ·				(Uni	t: millio	n Baht)
ļ		Primary Di	irect Benefit	1. 	Secondary D	lirect Benefit		Total Dir	ect Benefit
	Yeat	15 m height of solid waste	3 in height of solid waste	Ash for reclamation land	Electric power generation	Compost product	Retrieved ferrous metal	15 on beight	3 m height
	1983	80.0	397.5	-	-	13.0	1.3	94.3	411.8
	1984	83.2	413.7	-		13.0	1.3	97.5	428.0
	1985	87.1	433.0		-	13.0	1.3	101.4	447.3
	1986	92.0	457.2	-	_	13.0	1.3	106.3	471.5
	1987	97.1	482.8	-	-	13.0	1.3	111.4	497.1
	1988	102.6	509.8	- ¹		13.0	1.3	116.9	524.1
Í	1989	108.0	536.8		-	13.0	1.3	122.3	551.1
	1990	114.0	566.7	· · ·	. –	13.0	1.3	128.3	581.0
	1991	119.7	594.9	-	-	13.0	1.3	134.0	609.2
	1992	125.6	624.5	-		13.0	1.3	139.9	638.8
ļ	1993	131.6	654.0	-	-	16.0	1.4	149.0	671.4
	1994	138.1	686.4	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	_	16.0	1,4	155.5	703.8
	1995	144.9	720.2		_	16.0	1.4	162.3	737.6
	1996	151.7	753.8	· -		16.0	1.4	169.1	771.2
	1997	159.0	790.3	-		22.3	2.0	183.3	814.6
	1998	166.6	828.1	-	-	22.3	2.0	190.9	852.4
	1999	174.2	865.6	_	-	22.3	2.0	198.5	889.9
	2000	182.6	907.6	- '	. 	22.3	2.0	206.9	931.9
	2001	188.7	937.7		-	22.3	2.0	213.0	962.0
	2002	194.8	968.1	-		22.3	2.0	219.1	992.4
	2003	201.1	999.6		-	22.3	2.0	225.4	1,023.9
	2004	207.8	1,032.8	_		22.3	2.0	232.1	1,057.1
	2005	214.6	1,066.6		-	22.3	2.0	238.9	1,090.9
	2006	219.9	1,093.1			22.3	2.0	244.2	1,117.4
	2007	225.6	1,121.5		· · ·	22.3	2.0	249.9	1,145.8
	2008	231.3	1,149.5	-	-	22.3	2,0	255.6	1,173.8
	2009	237.1	1,178.7	-	- <u>`</u> . i	22.3	2.0	261.4	1,203.0
	2010	243.4	1,209.5		۰ ـ ۰ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ	22.3	2.0	267.7	1;233.8
	Total	4,422.3	21,980.0		-	506.2	46.6	4,975.1	22,532.8

				:	
Table	Ap	6.1(B)	<u>Benefit</u>	flow (Cas	<u>e No. 13)</u>

	B-imany D	firect Benefit	 	Secondary D	lireet Benefit	Uni	1	on Baht) rect Benefit
		T	·	1	I COLOCICAL		rotor DI	
Year	15 m height of solid waste	3 m height of solid waste	Ash for reclamation land	Electric power generation	Compost product	Retrieved ferrous metal	15 m height	3 m height
1983	80.0	397.5	-	-	13.0	1.3	94.3	411.8
1984	83.2	413.7	-	-	13.0	1.3	97.5	428.0
1985	87.1	433.0		-	13.0	1.3	101.4	447.3
1986	92.0	457.2	-	-	13.0	1.3	106.3	471.5
1987	97.1	482.8	-	-	13.0	1.3	111.4	497.1
1988	102.6	509.8	-	-	13.0	1.3	116.9	524.1
1989	108.0	536.8	-	-	13.0	1.3	122.3	551.1
1990	114.0	566.7	-	-	13.0	1.3	128.3	581.0
1991	119.7	594.9	8,9	35,9	13.0	1.3	178.8	654.0
1992	125.6	624,5	8.4	35.9	13.0	1.3	184.2	683.1
1993	131.6	654.0	7.0	35.9	13.0	1.3	188.8	711.2
1994	138.1	686.4	6.4	35.9	13.0	1.3	194.7	743.0
1995	144.9	720.2	5.8	35.9	13.0	1.3	200.9	776.2
1996	151.7	753.8	23.9	89.2	13.0	1.3	279.1	881.2
1997	159.0	790.3	23.7	89.2	13.0	1.3	286.2	917.5
1998	166.6	828.1	23.3	89.2	13.0	1.3	293.4	954.9
1999	174.2	865.6	23.4	89.2	16.0	1.4	304.2	995.6
2000	182.6	907.6	22.9	89.2	16.0	1.4	312.1	1,037.1
2001	188.7	937.7	31.5	113.8	22.3	2.0	358.3	1,107.3
2002	194.8	968.1	31.5	113.8	22.3	2.0	364.4	1,137.7
2003	201.1	999.6	31.5	113.8	22.3	2.0	370.7	1,169.2
2004	207.8	1,032.8	31.5	113.8	22.3	2.0	377.4	1,202.4
2005	214.6	1,066.6	31.3	113.8	22.3	2.0	384.0	1,236.0
2006	219.9	1,093.1	31.1	113.8	22.3	2.0	389.1	1,262.3
2007	225.6	1,121.5	30,9	113.8	22.3	2.0	394.6	1,290.5
2008	231.3	1,149.5	30,7	113.8	22.3	2.0	400.1	1,318.3
2009	237.1	1,178.7	30,5	113.8	22.3	2.0	405.7	1,347.3
2010	243.4	1,209.5	30.3	113.8	22.3	2.0	411.8	1,377.9
Tota1	4,422.3	21,980.0	464.5	1,763.5	463.0	43.6	7,156.9	24,714.6

(Unit: million Baht)

Table Ap 6.1(C) Benefit flow (Case No. 19-(2))

	·	- <u></u>		T			(Uni	t: <u>milli</u>	on Baht)
· .			Direct Benefit		Secondary	Direct Benefit		Total D	itect Benefit
	Year	15 m heigt of solid waste	of	Ash for reclamation land	Electric power generation	Compost product	Retrieved ferrous metal	15 m height	3 in height
	1983	80.0	0 397.5	_		13.0	1.3	94.	3 411.8
	1984	83.3	2 413.7	-	_	13.0	1.3	97.	
	1985	87.	433.0	-	- ·	13.0	1.3	101.4	
	1986	92.0	457.2		-	13.0	1.3	106.	
	1987	97.1	482.8	-	_	13.0	1.3	111.4	
	1988	102.6	509.8			13.0	1.3	111.	
	1989.	108.0	536.8	· . —		13.0	1.3	122.3	
	1990	114.0	566.7	. – .	-	13.0	1.3	128.3	
	1991	119.7	594.9	8.9	35.9	13.0	1.3	178.8	
	1992	125.6	624.5	8.4	35.9	13.0	1.3	184.2	
	1993	131.6	654.0	7.0	35.9	13.0	1.3	188.8	
	1994	138.1	686.4	6.4	35.9	13.0	1.3	194.7	
	1995	144.9	720.2	5.8	35.9	13.0	1.3	200.9	
	1996	151.7	753.8	17.9	71.8	13.0	1.3	255.7	
:	1997	159.0	790.3	17.4	71.8	13.0	1.3	262.5	
	1998	166.6	828.1	16.9	71.8	13.0	1.3	269.6	
:	1999	174.2	865.6	17.4	71.8	16.0	1.4	280.8	
	2000	182.6	907.6	17.1	71.8	16.0	1.4	288.9	
	2001	188.7	937.7	18.1	71.8	22.3	2.0	302.9]
	2002	194.8	968.1	17.9	71.8	22.3	2.0	308.8	
	2003	201.1	999.6	17.7	71.8	22.3	2.0	314.9	
	2004	207.8	1,032.8	17.4	71.8	22.3	2.0	321.3	
	2005	214.6	1,066.6	17.0	71.8	22.3	2.0	327.7	1,179.7
	2006	219.9	1,093.1	16.6	71.8	22.3	2.0	332.6	1,205.8
	2007	225.6	1,121.5	16.1	71.8	22.3	2.0	337.8	1,233.7
	2008	231.3	1,149.5	15,6	71.8	22.3	2.0	343.0	1,261.2
	2009	237.1	1,178.7	15.1	71.8	22.3	2.0	348.3	1,289.9
	2010	243.4	1,209.5	14.6	71.8	22.3	2.0	354.1	1,320.2
	Total	4,422.3	21,980.0	289.3	1,256.5	463.0	43.6	·	24,032.4

Appendix 6.3 Development of electricity generation in Thailand

Annual electricity generation in Thailand 1980 is 14,753 million kW.h. 80 percent of this power was generated using expensive imported fuel oil. A rate of electrification of households is not large but, considering the progress of electrification especially in the rural area and the promotion of the development of industry, demand of electricity is thought increase greatly in the future.

In the Power Development Plan established by EGAT, the future demand of electricity is estimated to increase 7 - 13% per annum. The imported fuel oil for electricity generation will decrease due to the substitution of Thai natural resources such as gas, lignite and hydropower.

Under these circumstances, electricity generation utilizing the surplus heat from the incineration plant will reduce the high construction cost of an electrical generation plant and imported crude oil. Generated electricity from the proposed incineration plant will contribute to the improvement of the national standard of living and the national economy.

Energy	198	0	197	9
Generation from	Million kW•h	percent	Million kW•h	percent
Hydro	1,653.31	11.20	3,099.07	22.19
Thermal	11,998.71	81.33	9,899.45	70.89
Gas Turbine	284.35	1.93	241.06	1.73
Diesel	64.43	0.44	66.08	0.47
Purchased from Laos	752.93	5.10	658.89	4.72
Total	14,753.73	100.00	13,964.55	100.00

Table Ap 6.2 Energy generation in Thailand

Source: Annual Report 1980, EGAT

Table Ap 6.3 EGAT power development plan

Fiscal Year	Peak	Energy
· · · · · · · · · · · · · · · · · · ·	(MW)	(GW∙h)
1981	2,663.0	16,221.0
1982	3,001.0	18,386.0
1983	3,433.0	20,570.0
1984	3,817.0	22,894.0
1985	4,195.0	25,252.0
1986	4,604.0	27,725.0
1987	4,968.0	29,944.0
1988	5,346.0	32,273.0
1989	5,742.0	34,693.0
1990	6,150.0	37,211.0

Source: EGAT Power Development Plan (Planned in 1981)

Appendix 6.4 Costs of a hydro-type electric power station

	rr		r	F	<u>{Unit</u>	percent)
Year	Book value	Rate of interest + Depreci- ation	Repair expenses	Personnel expenses	General management cost + Others	Total expenses
1	100.00	6.07	0.78	0.04	1.41	8.30
2	97.43	5.98	0.88	0.05	1.41	8.41
3	94.86	5.89	0.98	0.05	1.59	8.51
4	92.29	5.80	1.09	0.05	1.68	8.62
- 5	89.72	5.71	1.22	0.05	1.78	8.76
. 6	87.15	5.62	1.35	0.06	1.89	8.91
7	84.58	5.53	1.50	0.06	2.00	9.09
8	82.01	5.44	1.66	0.07	2.12	9.29
9	79.44	5.35	1.83	0.07	2.25	9.50
10	76.87	5.26	2.02	0.07	2.39	9.74
11	74.30	5.17	2.22	0.08	2.53	10.00
12	71.73	5.08	2.44	0.08	2.69	10.29
13	69.16	4.99	2.68	0.09	2.85	10.61
14.	66,59	4.90	2.94	0.09	3.01	10.95
15	64.02	4.81	3.22	0.10	3.20	11.33
16	61.45	4.71	3.52	0.10	3.40	11.74
17	58.88	4.63	3.82	0.11	3.58	12.14
18	56.31	4.54	4.12	0.11	3.73	12.50
19	53,74	4.45	4.44	0.12	3.91	12.92
20	51.17	4.36	4.78	0.12	4.09	13.35
21	48.60	4.27	5.16	0.12	4.28	13.83
22	46.03	4.18	5.50	0.13	4.48	14.29
23	43.46	4.09	5,80	0.13	4.67	14.69
24	40.89	4.00	6.18	0.14	4.86	15.18
25	38.32	3.91	6.54	0.14	5.06	15.65

Table Ap 6.4Percentage of annual expenses in the caseof hydro-type electric power station

Appendix 6.5 Effect on rice yield by use of city compost

Treatment	Yield (kg/ha)
No treatment	1,944
City compost, 2 t/ha	2,181
City compost, 6 t/ha	2,396
Farm manure, 2 t/ha	2,198
Farm manure, 6 t/ha	2,349
Cíty compost (2 t/ha) + Fertilizer	2,350
City compost (6 t/ha) + Fertilizer	2,504
Farm manure (2 t/ha) + Fertilizer	2,271
Farm manure (6 t/ha) + Fertilizer	2,398
Chemical fertilizer	2,274

Table Ap 6.5 Comparison of effect of city compost, farm manure, and chemical fertilizer on rice yield

(Suwanawong, S. and Suthdhani, S. 1968)

Table Ap 6.6	Effect on rice yield	using compost
	in successive years	(Unhulled rice)

	••••		-	(Unit : kg/	1,000 m²)
Treatment	Year				
	1976	1977	1978	1979	1980
City compost 250 kg (dry veight)	591 kg (113)	607 kg (100)	676 kg (104)	682 kg (104)	577 kg (106)
- đo - 550 (- đo -)	594 (113)	682 (104)	682 (105)	702 (107)	557 (102)
- do - 1,000 (- do -)	574 (109)	619 (102)	693 (108)	665 (102)	586 (107)
Farm compost 250 kg (dry weight)	603 (115)	618 (102)	694 (107)	652 (101)	554 (101)
-do - 500 (-do -)	572 (109)	593 (99)	634 (59)	660 (101)	549 (101)
-60 - 1,000 (-60 -)	598 (114)	597 (93)	680 (105)	667 (102)	553 (101)
No supply of organic fertilizer	525 (100)	605 (100)		655 (100)	5\$6 (100)
Such supply of organic fertilizer	537 (102)	584 (97)	1	654 (100)	532 (97)

Notes : Number in () indicates yield index.

Source: TARAHASHI, Urban waste disposal and agriculture utilization, Agriculture and Horticulture, Vol. 57 No. 1 Appendix 6.6 Chemical component of compost

Table Ap 6.7 The ingredients of compost and the market price

3	· · ·	Compost	ost.	Market	price of	Market price of the component	onent
นอบอด	Unit price of the ingredient	component (2)	nent)	Japan (yen/kg)	Japan ven/kg)	Thailand (Baht/ke)	land /ke)
	(yen/kg)	On- Nooch	Nong Khacm	On- Nooch	Nong-* Khaem	On- Nooch	Nong Khaem
		compost	compost*	compost	compost*	•	compost*
~	1.41 Ammonium Sulfate T-N : 212 T-N : 462	1.00	0.92	1.41	1.30		
ρı	$\frac{2.39}{\text{Fused Phosphate}} = \frac{7-P_2O_5}{1-P_2O_5} = \frac{172}{202}$	0.72	1.04	1.72	2.49	0.26 (averace)	0.30
×	0.92 Potassium Sulfate T-K20 : 502 Potassium Chloride T-K20 : 602	1.12	1.06	1.03	0.98		
3	0.43 Slaked Lime Alkali : 60% Calcium Silicate Alkali : 35%	5.80	7.74	2.49	3.33	0.08	11.0
	Total			6.65	8.10	0 34	17-0

Note : * After trommel processing

 Japan	77,000 yen/t	18,000 yen/t
Thailand	4,800 Baht/t	600 Baht/t
Sort of fertilizer	High-analysis compound fertilizer (15-15-15)	Lime

Price comparison of chemical fertilizer between Thailand and Japan

Table Ap 6.8

Ap6-9