
The water wells drilled by official agencies under NPWP were usually approximate 30 m (100 feet) in depth, installed 10 - 15 cm (4 - 5 inch) diameter of casing with strainer and set a handpump. A typical profile of water well in Thailand is shown as follows (This is an example of well drilled by PWD).

(2) Deep Well Data around the SDs

Deep well data in and around the SDs are mainly collected from government agencies such as PWD, DMR, DH, ARD and RID (the last one had no deep well in the concerned areas as the result).

Data collected during the study term were as follows;

SD	No. ot <u>Wells</u>	W.Q.Test*	Logs
Kham Sakae Sang	19	14	5
Huai Thaleang	31	16	7
Kusuman	19	9	2
Phon Charoen	20	5	6
Nong Song Hong	17	5	5
Total	106	49	25

* including data tested in this study

The situations of existing deep wells in each SD are explained briefly and detail location of deep wells inside of SD are shown in the location map of geoelectric prospecting.

<u>Kham Sakae Sang</u>: Total four deep wells were located in the boundary of SD and all of them were drilled by DMR. Among these four wells, two wells were already abandoned because of salty water, and only two remaining wells are still at work.

Besides the wells inside of the SD, other two wells drilled by DMR were also abandoned already due to salty groundwater. The matter suggested that the area near around the SD Kham Sakae Sang may be suffered from salty water widely, and the test well position should be selected carefully not to yield salty groundwater.

According to the geological logs, the area is underlain by brown to reddish brown shale (supposed to belong the Maha Sarakam Formation). The overburden mainly consisted of clay extends widely, ranging from 3 to 8 meters in depth.

<u>Huai Thaleang</u>: 31 deep well data around the SD were collected from DMR, ARD and DH. Among them, 9 wells were located inside of the SD.

In this area, there is no well abandoned due to salty water, although the water qualities of some wells are not excellent in Fe, Cl and/or total hardness. By the data, the yields of groundwater are generally poor ranging from 1.0 to 7.7 m³/hour with the draw down from 11 to 30 m.

The depth of wells are mostly from 30 to 36 m (100 - 120 feet) but the deepest well in the SD is about 152 m (500 feet) in depth. The bedrock of the area is almost all shale but interbedding some gypsum layers. Partly a laterite overlies the bedrock, and overburden mainly consisted of clay covers the area wholely but rather thin (in 1.5 - 3.0 m of thickness except laterite).

<u>Kusuman</u>: Nevertheless the town area of SD Kusuman is not so wide, rather many deep wells could be confirmed by the team. There were 10 deep wells drilled by government agencies. Besides, many shallow wells were observed in the site. These matter suggests that the area should be abundant in groundwater both shallow and deep aquifers.

Although there is no salty water well, the water qualities of some wells are not favorable for drinking water because of high contents of Fe and total hardness.

The deepest well in front of the railway station G7 SN6 by DMR) was drilled to the depth of 319 m (already abandoned though). According to the geological log of the well, the bedrock consists of mainly shale but includes some anhydorite or gypsum in lower portion. <u>Phon Charoen</u>: In this area total 20 wells were listed in the well data, and 14 wells were checked by the team in the boundary of SD. Among them, 12 wells out of 14 wells were drilled by government agencies concerned and the other two well were private wells. Remarkably, these two private wells are spring with yielding groundwater of considerably good quality.

The water qualities of most deep wells around the SD are rather good except some wells. The yields vary from 1.4 to more than $10 \text{ m}^3/\text{hour}$ with draw down of 15 - 20 m.

The bedrock of the area consists of shale and mudstone overlain by laterite or lateritic soil. Generally the overburden lies from 1.5 to 6.0 m in thickness but partially it exceeds 10 m in depth.

<u>Nong Song Hong</u>: In the area, deep well data of altogether 17 wells were collected from in and around the SD. In the service area of SD Nong Song Hong, eight deep wells were checked in the list and map. However, four wells out of total were already abandoned due to salty water. Outside of the SD, also some wells were abandoned because of salty water or dried up.

The water qualities of wells show a quite contrast that some wells are so salty that they must be abandoned but the other wells yield groundwater of rather good quality comparing with other SDs investigated.

The deepest well in the SD is drilled with the depth of about 460 m (1,510 feet) by DMR. The depth of overburden varies from 0 to more than 20 m, and the layers consist of clay, sand and laterite or lateritic soil. The bedrock is composed of mainly shale but intercalating rock salt partially.

A.4.4. Geoelectric Prospecting

(1) General

In each subject SD, a geomorphological and hydrogeological reconnaissance survey had been done to grasp a general physical condition and to make an actual geoelectric prospecting plan. Existing deep wells in the SD were checked by the team simultaneously.

Geoelectric prospecting applied in hydrogeological or civil engineering aspect is generally a resistivity method prospecting. The resistivity method of geoelectric prospecting is classified into two major methods from a removing process of electrode system; a horizontal resistivity prospecting (resistivity mapping) and a vertical resistivity prospecting (resistivity sounding).

For this project, the vertical prospecting method with Wenner's electrode arrangement, the most prevailing and simple way, was adopted based on the consideration that the field work should be carried out with laborers without knowledge of this kind of work, during limited working time.

The geoelectric prospecting stations were selected in the sites based on the geomorphological reconnaissance survey. The numbers of station in each SD ranges from 28 (at Phon Charoen) to 31 points (at Huai Thaleang, Kusuman and Nong Song Hong), as just enough/minimum to investigate a hydrogeological condition of the sites.

Usually the stations were allocated along 200 or 400 m grid according to the wideness of each SD area. Although the most of stations were set on the side of roads, some were settled on a paddy field or rough when the road net was not suitable for the prospecting grid.

(2) Hydrogeological Assessment

The consideration and assessment for the hydrogeological condition of each project site, were made based on the analysis of geoelectric prospecting and geomorphological reconnaissance mentioned in the previous paragraph.

As a general, the assessment has been done based on the fundamental ideas or concepts, those are (1) the shallow aquifer shall not be used for water resource because it does not bear groundwater firmly throughout a year and it is easily polluted generally, (2) the deep aquifer should be a target for water source, (3) since the deep aquifer is a fissure water type, a weathered rock zone and some kinds of structure line like a fault zone shall have dominant groundwater, and (4) the groundwater-flow of a certain region shall be conformable to the physiographic trend as a whole.

Based on the basic ideas mentioned above, a contour map or iso-bath of bedrock surface and an equi-thickness contour map of weathered rock zone were drawn up and the most adequate test well position was selected out in each site. The followings are the description of hydrogeological assessment of each site investigated.

Kham Sakae Sang

The town area of King Amphoe Kham Sakae Sang situates on the remnant of low terrace surrounded by wide and a little low lying paddy field (alluvial plain). The ground surface trends to south or southeast as a whole but very gently. The small streams, Huai Raam and Huai Yana, flow down trending from NW to SE passing through the southwest end of the SD. Based on the analysis of p-a curves, a contour map of bedrock surtace was drawn (Figure A-4-1). As shown in the map, the bedrock surface also inclines gently toward south and one main valley on the rock surface separates the area into two zones. The valley is significantly clear and is supposed as a kind of structure line in the base geology. An equi-thickness contour of weathered rock zone was not made because the weathered zone was not so clear in the site.

The most severe hydrogeological problem in the SD is an existing of salty groundwater both in shallow and deep aquifers. The distribution of salty groundwater is shown on Figure A-4-2. Salty groundwater in shallow aquifer distributes only at restricted area. While the distribution of salty water in deep aquifer is rather wide and in complecated feature. However, as shown on the distribution map, the salty water aquifers develope at north and northwest part of the area. In other words, they distribute only northwestern side of the structure line mentioned above. By the figure, the structure line seems to work as a kind of partition or barrier to the aquifer.

Based on the matter mentioned above, the most part of the town area has hardly a chance to yield non-salty water. While the southern side of the said structure line do not show the existing of salty water (in deep aquifer) so far forth. So the test well should be drilled at outside of the town, and the position between geoelectric prospecting station No.2 and No.3 was recommended as the test well position to be drilled by PWD (Figure A-4-1).

Huai Thaleang

Amphoe Huai Thaleang is located on the one of very gentle slopes of rolling peneplain, toward northeast as a whole. A small stream passes through the SD from the west to the east and flows down to northeast after this. Figure A-4-3 shows an isobath of the bedrock surface. As shown in the figure, the depth of bedrock ranges trom 4 m to more than 10 m in the figure, the depth of bedrock ranges from four meters to more than 10 m below the ground surface, and a linear valley on the rock surface is distinguished clearly. The valley was certainly formed along a weak zone like a fault. Then, an equi-thickness contour was also illustrated in Figure A-4-4. The figure indicates a notably thick weathered zone center (more than 35 m in thickness) at nearly center of the town, just west of the structure line described above. Further it suggests a discrepancy of the weathered zone thickness between western and eastern sides of the said structure line.

In these structure, the groundwater is supposed to be recharged mainly through the structure line and stored at thick weathered rock zone, and totally flows down toward northeast. The bedrock itself is rather hard shale and this kind of rock has few effective pores when it is sound excepting the case it has heavy bedding plains or concentrated joint system. Based on the consideration mentioned above, the test well should be drilled at the point where the thickness of weathered rock zone is large. Thus, the position between station No.19 and No.20 was recommended (Figure A-4-3).

However, although there is no problem concerning to salty water, the potential of groundwater for a water resource shall be estimated as rather low, because the bedrock consists of hard shale and most of the existing deep wells indicate low yield. If the test well yielded less than 10 m³/hour of groundwater in safety draw down, the water resource of the project shall be sought except for groundwater.

Kusuman

The area including the SD is a gently undulating land and the site is situated in one of the very gentle valley. This

A-4-13

undulating land is a dissected terrace and the low portions dissected are already covered by some alluvial deposits. The main stream near the SD is Hual Saphoe flowing down toward north at the western margin of the SD. A small tributary of Hual Saphoe flows down to southwest passing across the town and separates it into two zones; the major town zone and Amphoe Office area. The ground surface near around the SD inclines toward southwest or westward because Hual Saphoe is forming a basin at southwest of the SD, nevertheless the total landscape slopes down toward north.

Based on the p-a curve analysis, a contour map of the bedrock surface was drawn as shown in Figure A-4-5. As easily read out from the figure, a flat top bedrock ridge lies at the main part of the town and a clear valley is dissecting as separating the SD into two zones. The flat top ridge coincides roughly to the distribution of laterite layer, and the valley situates nearly same position of the current stream mentioned above. Then, Figure A-4-6 shows an equi-thickness contour map of weathered rock zone. The figure is not so conformable to the shape of bedrock surface but rather complecated. However, the high portion of bedrock has shallow, the lower portion of bedrock has deep weathered rock zone as a general tendency.

For the test well location, the most deep weathered rock zone portion should be preferred as the drilling point as a general However, the most deep weathered rock zone in this tendency. site extends along to the existing stream, where the loose overburden is being deposited thickly. The condition is not preferable to actual drilling works. While, one narrow sub-valley on the contour map extends from the main valley to the ridge. The zone along this narrow valley should have rather deep weathered rock zone and the depth of overburden is expected as shallow. These consideration results out the position along the narrow valley on the equi-thickness contour map as a recommended test well position, as shown in Figure Δ-4-5.

A-4-14

The site seems to be abundant relatively for groundwater from the existing well condition; some of them yield more than 20 m^3 /hour of groundwater. However, if the test well yield is not sufficient compared with the demand, the formulation of succeeding well plan seems to be difficult because the prospected test area of drilling is rather narrow. So the availability of water resource from groundwater in this SD will be depending on the result of test well.

Phon Charoen

The SD Phon Charoen is located at southwestern slope of a terrace trending NW-SE, and the town area consists of remnants of terrace and dissected low and flat plain (alluvial plain). Although the total landscape inclines toward southwest, it slopes down to west at near around the SD.

A contour map of bedrock surface was illustrated based on the analysis (see Figure A-4-7). As shown on the figure the contours indicate an irregular or obscure pattern, but it shows as a total that the rock surface inclines toward west gently. An equi-thickness contour map of weathered rock zone also was drawn as Figure A-4-8. The figure indicates that the thickness of weathered rock zone becomes large and large toward southern part of the SD. A small isolated thick weathered zone basin is located at right front of the Amphoe Office.

Concerning to the test well position, the southern end of the site is preferred than inside of the town from the viewpoint of the thick weathered rock zone where have much groundwater. However, from the viewpoint of succeeding practical waterworks, well location is preferable near or in the town area. By these discussion, two test well positions were recommended; one is located at front of the Amphoe Office and another is at southern part of the SD.

The quality of groundwater is rather good comparing with other SDs, but the yields in existing well data are not preferable for the project purpose so far because of most of the wells yield are less than 10 m³/h. Otherwise, the SD area is so wide and extended that several wells can be settled with enough distance not to influence each other. Further, there is considerably shallow but artesian aquifer at southwest of the site. It must be reconsidered depending upon the result of test well when it were a pessimistic result. As a conclusion, the site still has relatively high possibility to get groundwater as a water resource for the project.

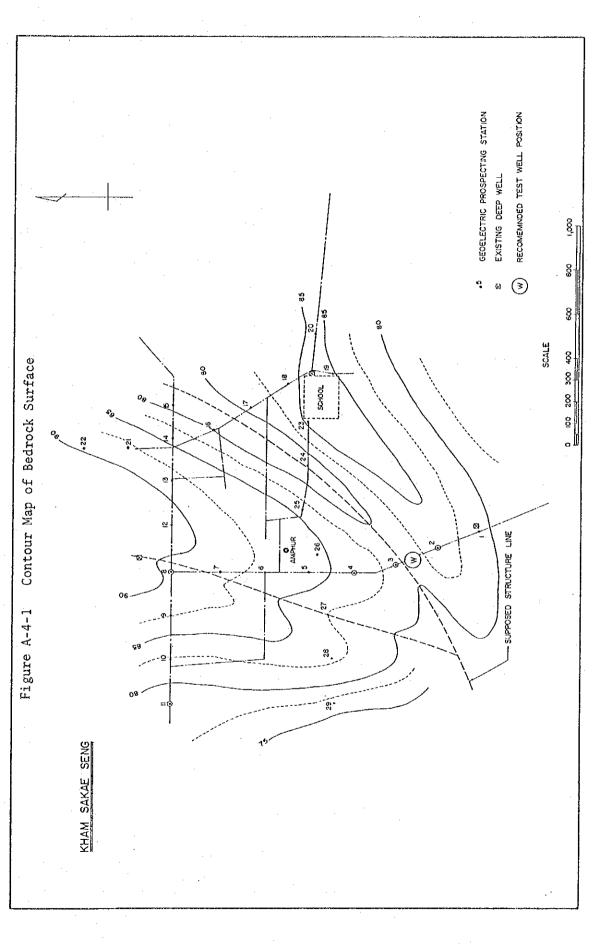
Nong Song Hong

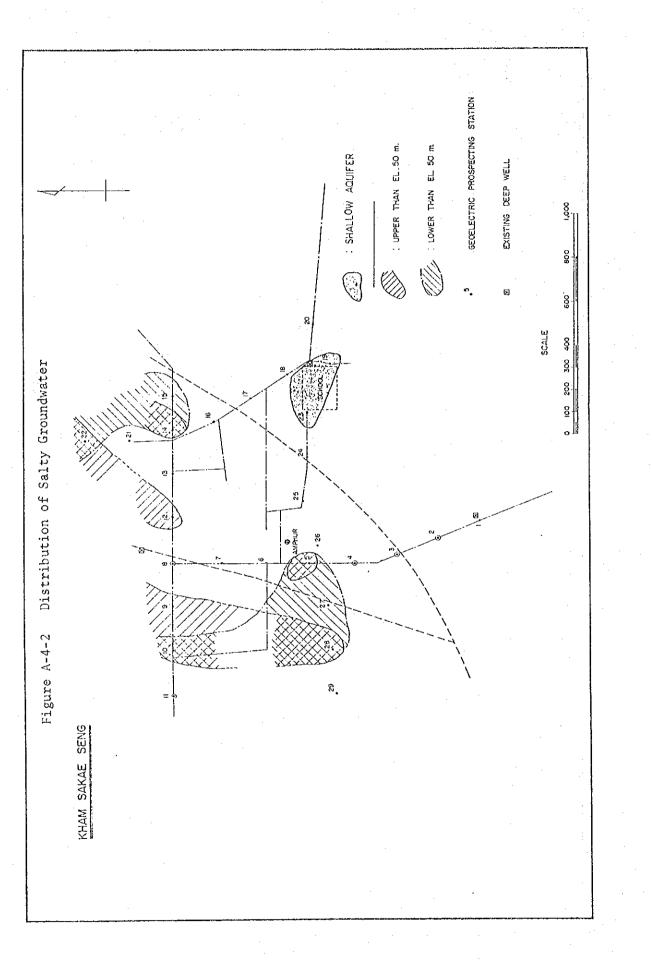
The service area of the SD is a gently undulated land, and the SD situates at one of high portions. Mostly the high portions of the vast undulation are terrace and the low portions are dissecting alluvial plains. Inside the SD, the western half of the town stands on terrace and eastern half stands on dissecting slope and low alluvial plain. It means the total landscape slopes down toward east.

Figure A-4-9 is a contour map of the bedrock surface drawn based on the analysis. The figure shows rather complecated configuration of the bedrock surface, and it suggests one structure line passing across the site at southern half of the town. The most high portion of bedrock surface is found out at the cross point of subordinate national road (route No.211) and the railway. The ridge of bedrock surface continued from far west of the site extends toward center of the town and then turns to north diminishing gradually.

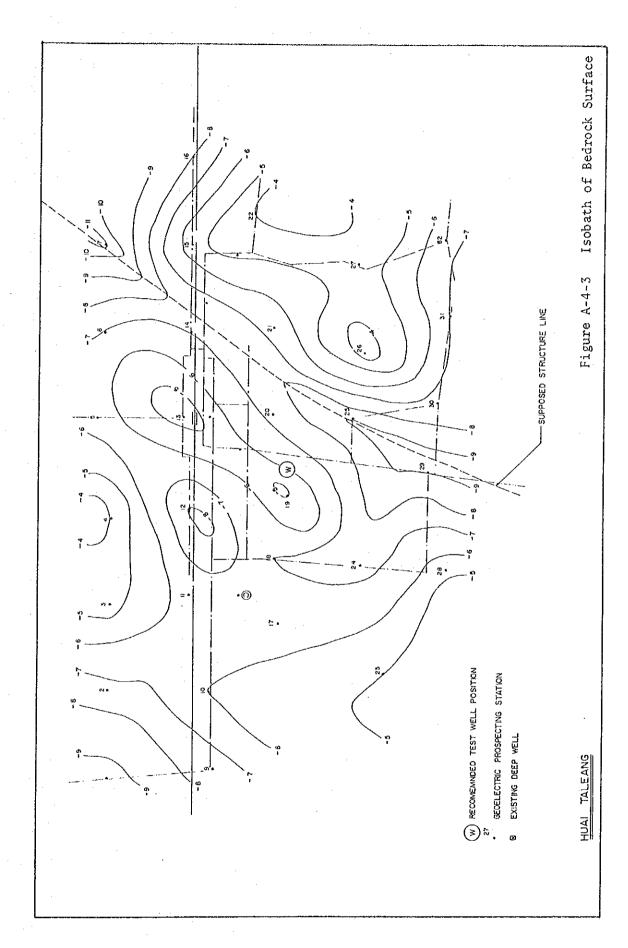
The SD is involved in salty water problem. More than 10 geoelectric prospecting stations indicate an existing of salty groundwater. Figure A-4-10 shows a distribution of salty water

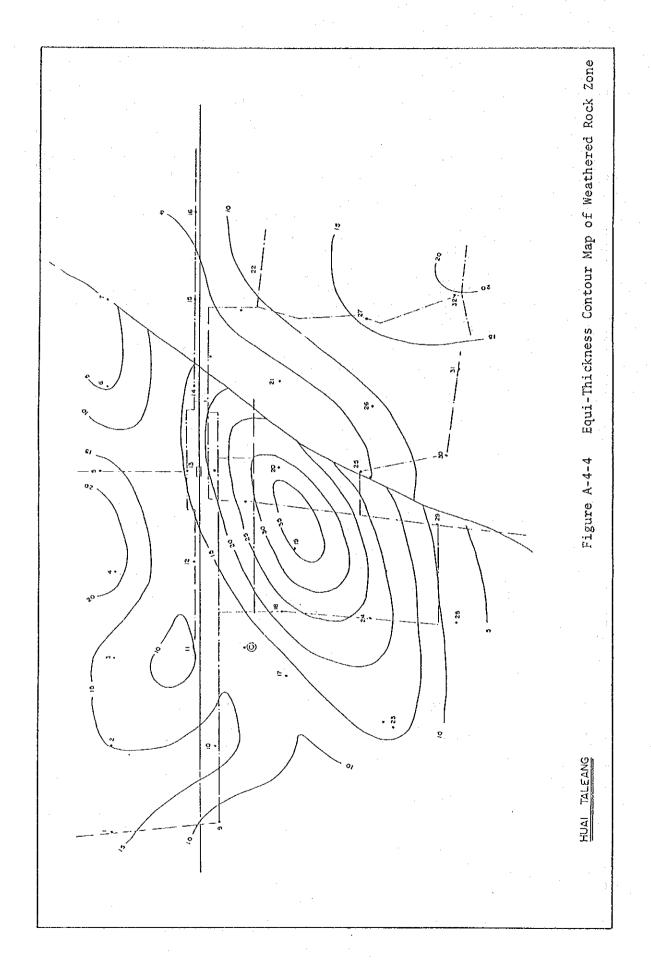
A-4-16

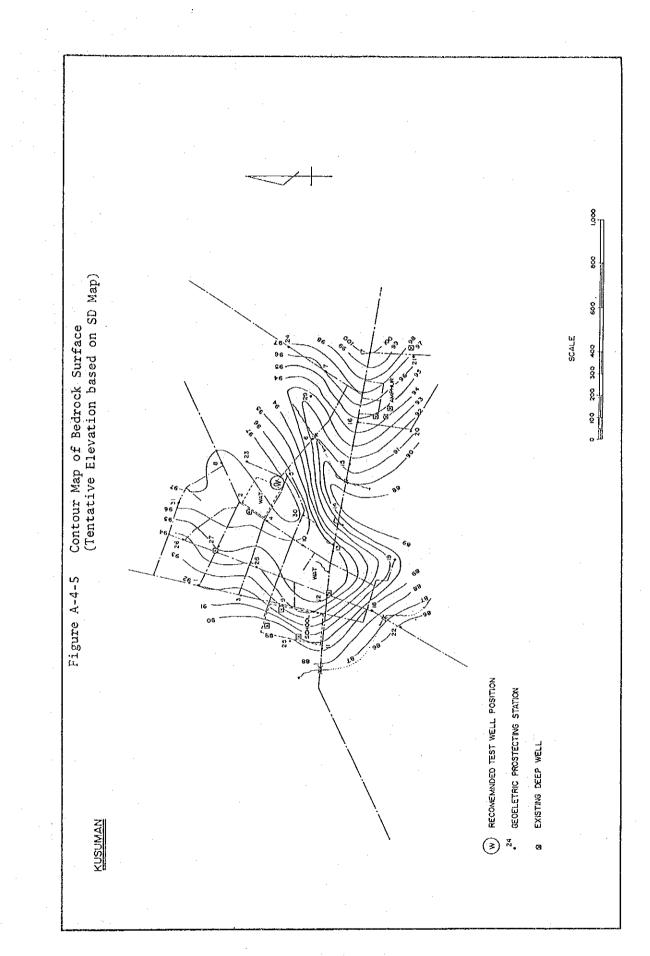

separating three depths of aquifers; upper than EL 80 m (tentative elevation), upper than EL 60 m and lower than EL 60 m. As shown in this figure, salty water aquifers cover a considerable part of the town area, but they distribute only southern side of the bedrock ridge, and it seems that they extend along or centralized to the structure line mentioned above. These condition is more easily recognized from the Figure A-4-11. The figure A-4-11, shows an equi-thickness contour map of weathered rock zone as well as the distribution of salty groundwater. As easily read from the figure, the center of the most thick weathered rock zone coincides to the structure line, and the zone is also a center of salty water distribution.

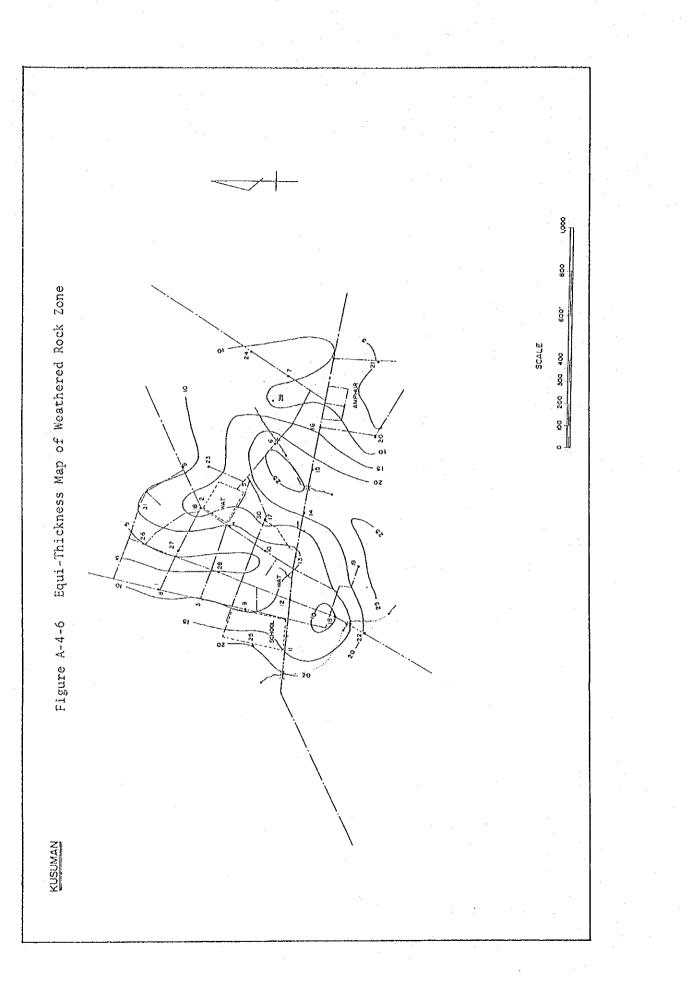

As mentioned above, the prime issue for selecting the test well position should be to avoid salty water, in the SD. For the matter, Figure A-4-11 is available to consider them. As shown on the figure, salty water distributes at southern side of the bedrock ridge and is limitable near along the railway. It means, to the contrary, aquifer at northern side of the ridge has not salty water. Actually a deep well drilled by DMR (No.1 well in the well data) yields rather good quality groundwater about 27 m^3 /hour. Then, although groundwater should be recharged from western side of the SD from the total geomorphological viewpoint, the the west side of the town area has rather thin weathered rock zone. Based on these considerations, the test well drilling portion was selected at northern part of the town along the road route No.2, as shown on Figure A-4-11.

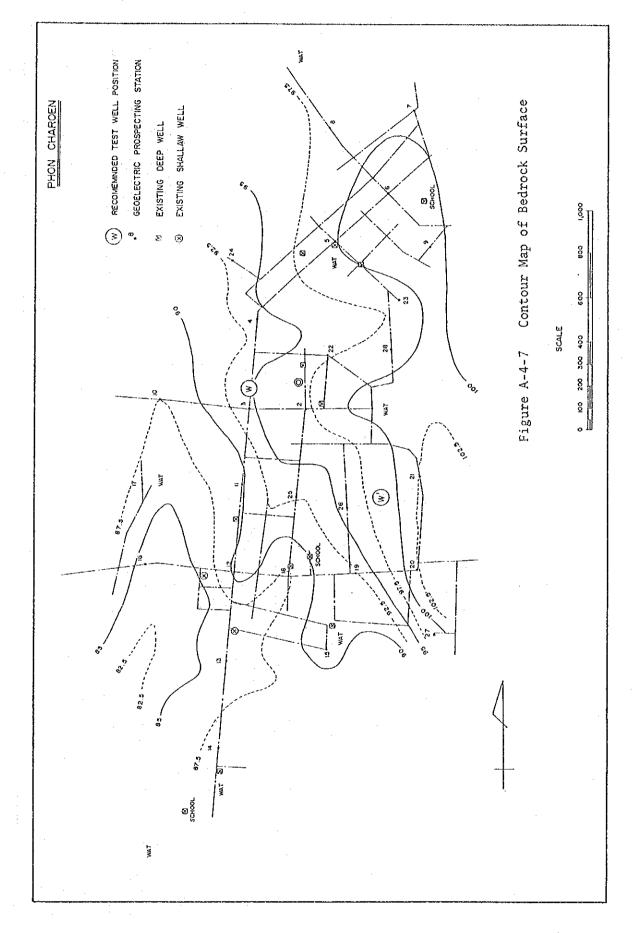
The half of this SD has a potential to yield considerably good quality and quantity of groundwater, but the other half shall yield salty water. Although the distribution of salty water was defined by this investigation, there still be anxiety about an introducing salty water by abstracting groundwater of

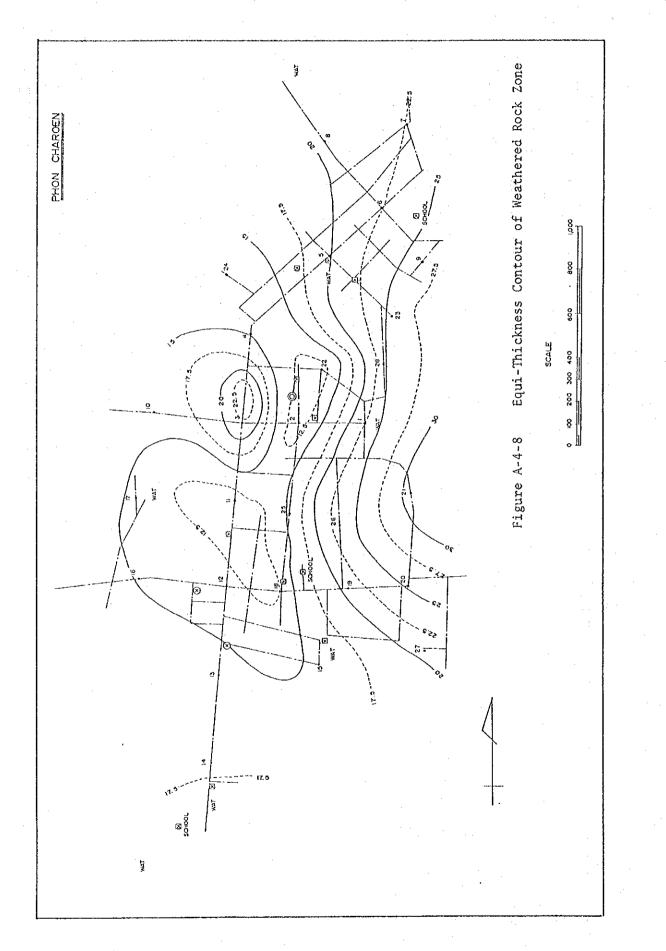

A-4-17

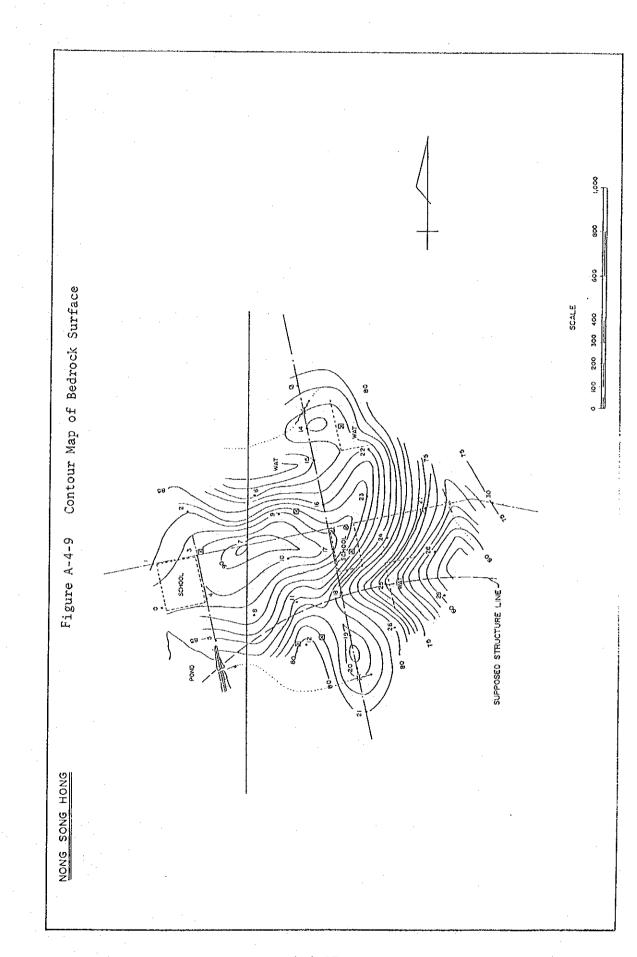

considerable amount and for long time even in the northern side of the town. To estimate the risk exactly, more detail and extensive hydrogeological investigation shall be required to know the direction of groundwater flow, amount of recharge monthly and yearly, influence circle of resource well, etc. So the water resource from the surface water for the project shall be sought from the viewpoint of long term stability of water resources, excepting the case the test well yields enough amount of water.

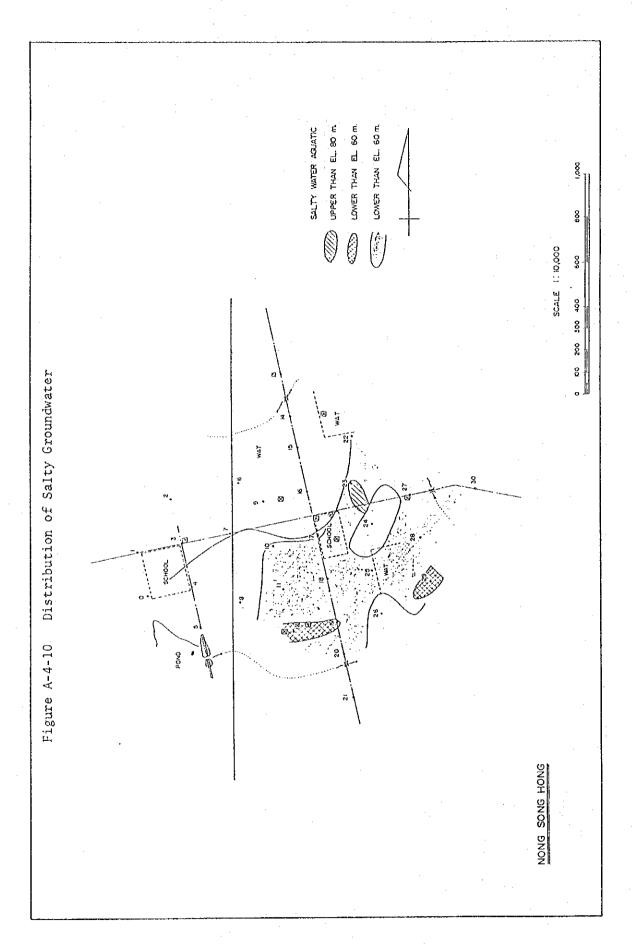


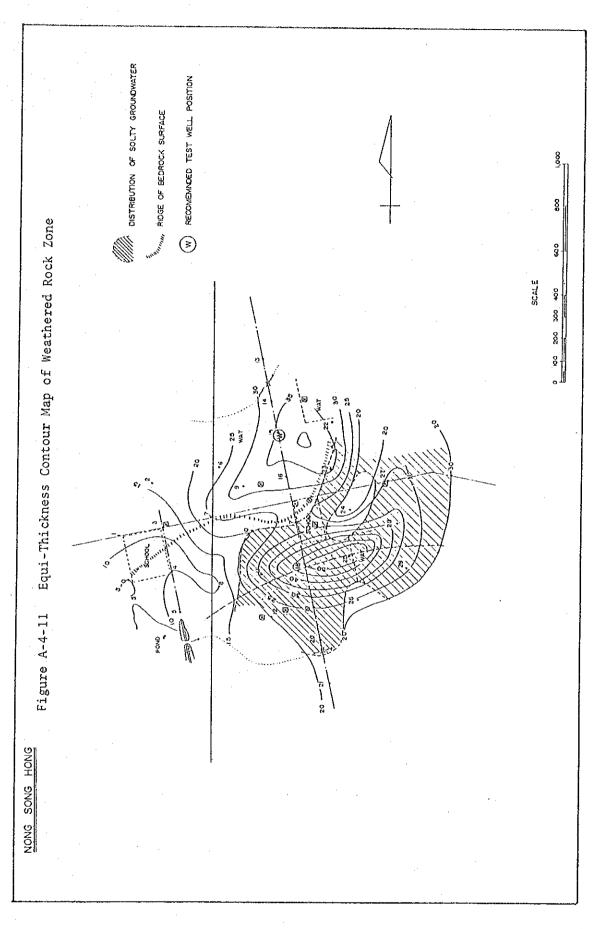

.




.






.

A.4.5. Well Log and Result of Pumping Test

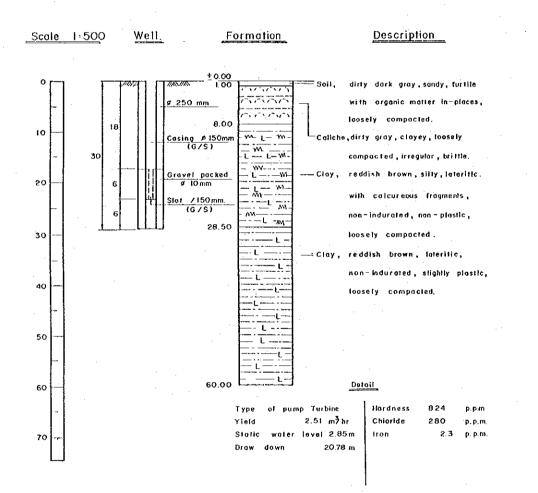
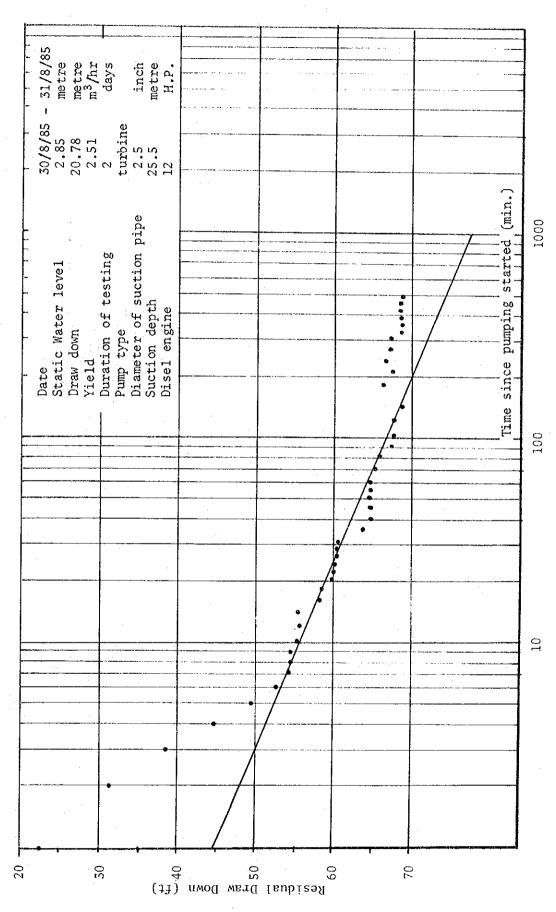
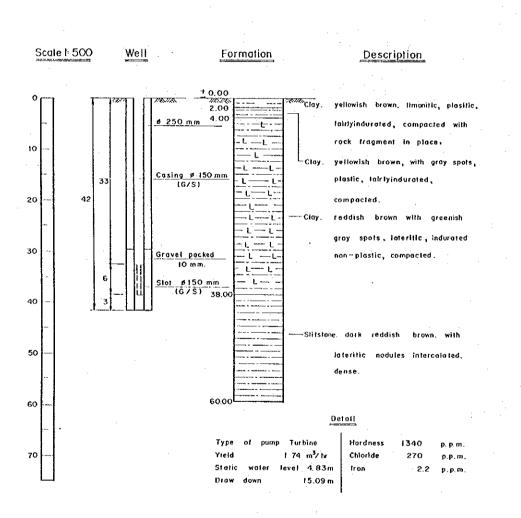
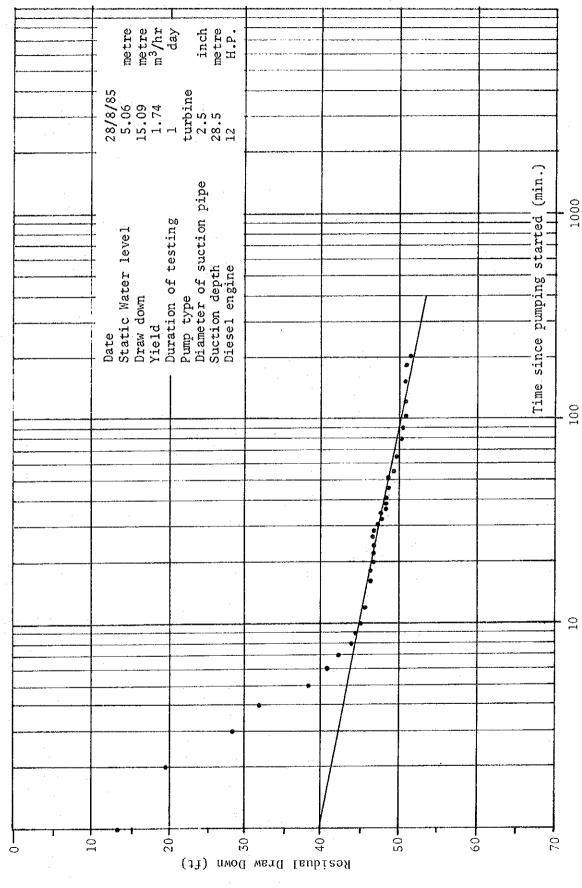
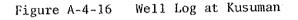
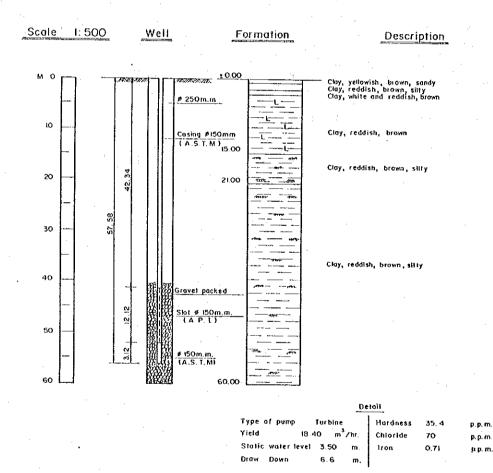
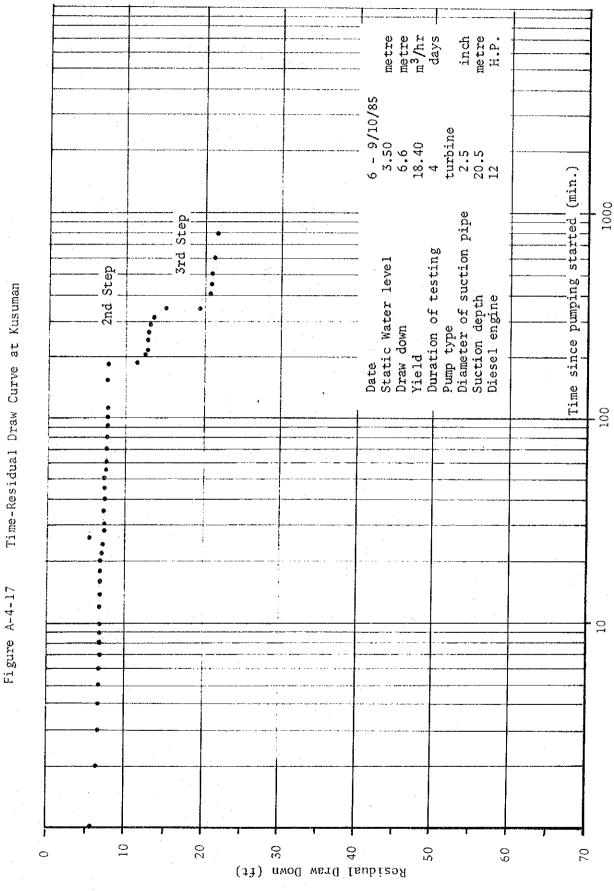
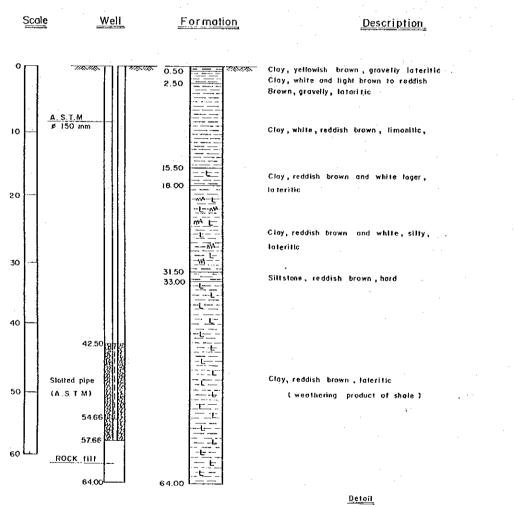



Figure A-4-13 Time-Residual Draw Curve at Kham Sakae Sang


Figure A-4-14 Well Log at Huai Thalaeng

Time-Residual Draw Curve at Huai Thalaeng Figure A-4-15



Time-Residual Draw Curve at Kusuman

Figure A-4-18 Well Log at Phon Charoen

Туре	of pum	p Turbine	Hardness
Yield		9.97 m ³ /hr	Chloride
Static	water	level 2.5 m	Iron
Drow	down	18.18 m	E ·

190 p.p.m. 8.0 p.p.m. 0.55 p.p.m. Figure A-4-19 Time-Residual Draw Curve at Phon Charoen

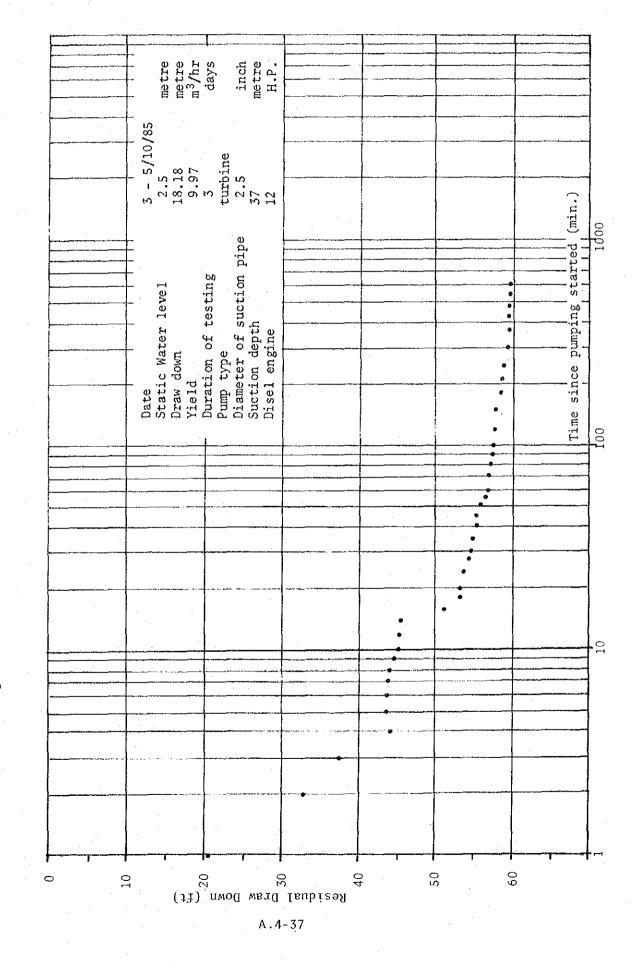
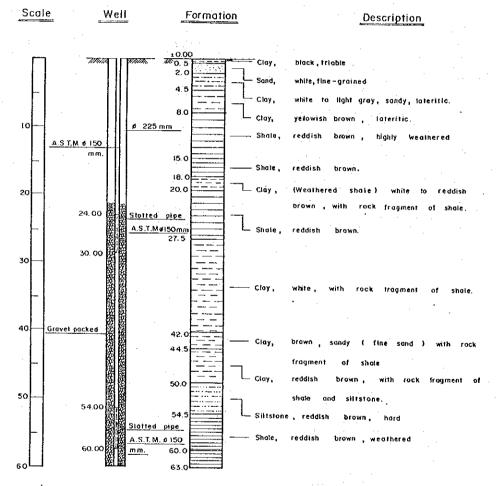
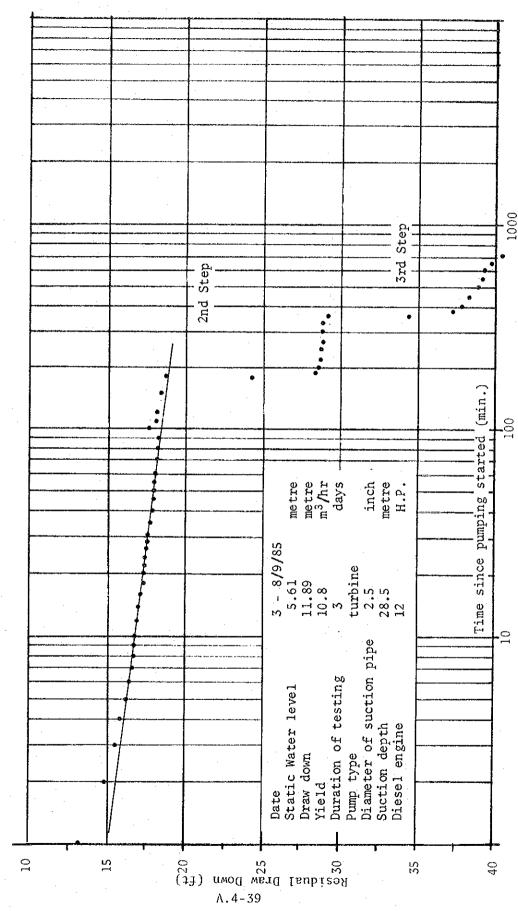




Figure A-4-20 Well Log at Nong Song Hong

	itail
Type of pump Turbine	Hardness 240 p.p.m.
Yield 10.8 m³/hr.	Chloride 6.0 p.p.m.
Static water level 5.61 m.	iron 0.88 p.p.m.
Draw Down 11.89 m.	[

Time-Residual Draw Curve at Nong Song Hong Figure A-4-21

A.5. WATER QUALITY

LIST OF TABLES

		Page
Table A-5-1.	Water Source of ESD	A.5-1
Table A-5-2.	Drinking Water Standards, 1978	A.5-2
Table A-5-3.	Raw Water Quality of Surface Water in ESD	A.5-3
Table A-5-4.	Raw Water Quality of Ground Water in ESD	A.5~4
Table A-5-5.	Raw Water Quality of Water Sour in	
	New Proposed Area	A.5-5

Table A-5-1 Water Source of ESD

1Cho Ho1977Lam Takhong reservoir-Sufficient2Nong Thai1972Pond800,000cu.mShortagePlanning of intake canal3Prang Ku1972Deep Well11,000cu.m/ShortagePlanning of intake canal4Tha Rae1968Nong Han Lake-SufficientMater source will be5Akat Amnuai1969Deep Well53,000cu.m/SufficientMater source will be6Sangkha1975Reservoir300,000cu.m/SufficientMater source will be7Ban Phu1976Deep well57,000cu.m/SufficientMater source will be8Khuang Nai1970Dsep well25,000cu.m/SufficientMater source will be9Chanuman1970Dsep well25,000cu.m/SufficientMater source will be9Khuang Nai1970Dsep well25,000cu.m/SufficientMater source will be9Khamhai1970Dsep well57,000cu.m/SufficientMater source will be9Khamhai1970Dsep well5,000cu.m/SufficientMater source will be9Khamhai1970Dsep well-SufficientSufficient9Khamhai1984Huai Muk reservoir-SufficientSufficient9Khamhai1984Huai Muk reservoir5.3000cu.m/SufficientSufficient	NO	SD Name	Construction Ye	ar Source	Capacity	Status	Remark
Nong Thai1972Pond800,000cu.mShortagePrang Ku1970Deep Well11,000cu.m/ShortagePrang Ku1968Nong Han Lake-SufficientTha Rae1968Nong Han Lake-SufficientAkat Amuai1969Deep Well53,000cu.m/SufficientSangkha1975Reservoir300,000cu.mSufficientBan Phu1976Deep Well57,000cu.m/SufficientKhuang Nai1970Dsep Well25,000cu.m/SufficientKhuang Nai1972Mekhon rivel-SufficientKhamcha-i1984Huai Muk reservoir6.3MCMSufficient	-1	Cho Ho	1977	Lam Takhong reservoir	1	Sufficient	
Prang Ku1970Deep Well11,000cu.m/Shortage yearTha Rae1968Nong Han Lake-SufficientAkat Amnuai1969Deep Well53,000cu.m/SufficientAkat Amnuai1975Reservoir53,000cu.m/SufficientSangkha1975Reservoir50,000cu.m/SufficientBan Phu1966Deep well57,000cu.m/SufficientKhuang Nai1970Dsep well25,000cu.m/ShortageChanuman1972Mekhon rivel-SufficientKhamcha-i1984Huai Muk reservoir6.3MCMSufficient	0	Nong Thai	1972	Pond	800,000cu.m	Shortage	Planning of intake canal
Tha Rae1968Nong Han Lake-SufficientAkat Amnuai1969Deep Well53,000cu.m/SufficientAkat Amnuai1975Reservoir53,000cu.m/SufficientSangkha1975Reservoir500,000cu.m/SufficientBan Phu1966Deep well57,000cu.m/SufficientBan Phu1966Deep well57,000cu.m/SufficientKhuang Nai1970Dsep well25,000cu.m/ShortageChanuman1972Mekhon rivel-SufficientKhamcha-i1984Huai Muk reservoir6.3MCMSufficient	ŝ	Prang Ku	1970	Deep Well	11,000cu.m/ year	Shortage	Water source will be changed into river
Akat Amnuai1969Deep Well53,000cu.m/SufficientSangkha1975Reservoir300,000cu.mSufficientBan Phu1976Deep well57,000cu.m/SufficientKhuang Nai1970Dsep well25,000cu.m/ShortageChanuman1972Mekhon rivel-SufficientKhamcha-i1984Huai Muk reservoir6.3MCMSufficient	4	Tha Rae	1968	Nong Han Lake	Ļ	Sufficient	
Sangkha1975Reservoir300,000cu.mSufficientBan Phu1966Deep well57,000cu.m/SufficientBan Phu1970Dzep well57,000cu.m/SufficientKhuang Nai1970Dzep well25,000cu.m/ShortageChanuman1972Mekhon rivel-SufficientKhamcha-i1984Huai Muk reservoir6.3MCMSufficient	ы	Akat Amnuai		Deep Well	53,000cu.m/ year	Sufficient	Water source will be changed into reservoir
Ban Phu1966Deep well57,000cu.m/SufficientKhuang Nai1970Deep well25,000yearYearyearyearyearChanuman1972Mekhon rivel-SufficientKhamcha-i1984Huai Muk reservoir6.3MCMSufficient	9	Sangkha	1975	Reservoir	300,000cu.m	Sufficient)
Khuang Nai 1970 Deep well 25,000cu.m/ Shortage year 1972 Mekhon rivel - Sufficient Khamcha-i 1984 Huai Muk reservoir 6.3MCM Sufficient	7	Ban Phu	1966	Deep well	57,000cu.m/	Sufficient	
Chanuman 1972 Mekhon rivel – Sufficient Khamcha-i 1984 Huai Muk reservoir 6.3MCM Sufficient	8	Khuang Nai	1970	Deep well	25,000cu.m/ year	Shortage	Water source will be changed into reservoir
Khamcha-i 1984 Huai Muk reservoir 6.3MCM	თ	Chanuman	1972	Mekhon rivel	I	Sufficient	
	10	Khamcha-i	1984	Huai Muk reservoir	6. 3MCM	Sufficient	

Note : Yield of well has been estimated by water charge.

Λ.5-1

Table A-5-2 Drinking Water Standards, 1978

ltem	Highest Desir- able Level	Maximum Permis- sible Levcl
1. Physical Condition		
Colour Taste Odour Turbidity	5 Unobjectionable Unobjectionable 5	15 Unobjectionable Unobjectionable 20
PH range	6.5 to 8.5	Under 9.2
2. Chemical Condition (unit: ppm)	· · ·	
Total solids	500	1,500
Fe	0.5	1.0
Mn	0.1	0.3
Fe + Mn	0.5	1.0
Cu	1.0	1.5
Zn	5.0	15
Ca	75	200
	50	150
Mg	200	250
So ₄		
Cl	250	600
P .	0.7	1.0
NO3	45	45
Alkylbenzyl sulfonates, ABS Phenolic-substances, as phenol	0.5 0.001	$\begin{array}{c}1.0\\0.002\end{array}$
3. Toxin (unit: ppm)		
	0.001	
Hg Pb	0.001	
	0.05	
As	0.03	
Se		
Cr Hexavalent	0.05	
CN	0.2	
Cd	0.01	
Ba	1.0	
4. Bacteriological Condition		
Total Standard	500	
Place count/ml	< 2.2	
MPN/100 ml E. Coil	0	

Note: *1 Data Source PWD. Laboratory Office

A.5-2

No. ESD 1 Cho Ho 2 Non Thai 4 Tha Rae 6 Sankha	ESD Ho Thai Rae ha	Water Source Reservoir Reservoir Reservoir River	Treat- ment System RA RB RB	PH 7.8 7.1	Turb.							1	
	isD hai ae a	er rce /oir /oir	ment System RA RB RA RA		Turb.						Jar	Test Alum	•
Cho H Non T Tha R Sankh	ta hhai a ta e an	Reservoir Pond Reservoir Reservoir River	RA RB RA	7.8 7.1	<u>unit</u>	°C °C	DO DD	DO COND Ppm ms/cm ²	Alkali	Alkali Chlorid ppm ppm	Floc forming	feeding	Capacity m ³ /Hr
Non T Tha R Sankh	hai ae ae	Pond Reservoir Reservoir River	RB RA	7.1	45	28.2	2.5	0.5	157	92	4/5	20	50
Tha R Sankh	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Reservoir Reservoir River	RA		80	26.7	2.7	0.6	78	102	4/5	20	30
Sankh	00 E	Reservoir River		7.4	9	24.0	2.5	0.3	40	18	2/5	10	50
		River	RB	7.1	18	27.0	4.7	0.1	20	11	2/5	10	30
Chanuman			RA	8.0	144	24.6	4.2	0.7	75	14	4/5	20-30	20
Kham Chai	Chai	Reservoir	RA	7.5	თ	22.8	3.3	0.2	45	4	2/5	10	30
Remarks:	RA	; Rapid	sand	filtr.	filtration	process		standard					
	RB	; Rapid	sand	filtr	filtrátion	process		simple type		standard			
	Turb.	; Turbidity (NTU)	dity (N	(UTV)									
	Temp.	; Temp	erature			·							
	DQ	; Disso	olved oxygen	(ygen									
	COND	; Elect:	Electric conductivity (min.	iduct:	ivity	(min.	seme:	$semens/cm^2$)					

Table A-5-3 Raw Water Quality of Surface Water in ESD

Λ.5-3

Table A-5-4 Raw Water Quality of Ground Water in ESD

	Item	Unit	[3] <u>Prang Ku</u>	٨ka	[5] it Amr	iuai	[7] <u>Ban Phu</u>	[8] Khuang Nai
1.	Water Source	-	Ground Water	Grou	ınd Wa	iter	Ground Water	Ground Water
2.	Treatment Sys	stem -	С		C		A + RA	A + RA
3.	РН	· _	7.5	7.5	9.0	7.6	8.4	6.0
4.	Turb. unit		5	5	8	5	7	10
5.	Temperature	°C	31.6	25.5	21.7	27.7	25.0	27.0
6.	DO	ppm	3.1	0.4	2.2	1.6	2.1	3.3
7.	COND	ms/cm ²	1.9	0.5	0.2	0.5	1.7	0.7
8.	Alkali	ppm	· · _	-	-	· ·	205	15
9.	Chlorid	ppm	_	-	-	-	540	56
0.	Setting Water	. .						
	– PH	_	-	-	-`	-	`	6.0
	- Turb.	ppm	-	-	~	~	_ ·	8
1.	Filtrated Wat	er						
	– PH	-	-	-	-	-	8.5	6.0
	- Turb.	ppm	-		-	-	7	7
2.	Capacity	m ³ /Hr	10	30	· _	-	20	30
	· ·	· .						

Remark:

Treatment System C ; Chlorination process

Treatment System A + RA; Aeration and Rapid Sand Filtration Process

Water Quality Unit is same as Table 3-3-1.

A.5-4

Table A-5-5 Raw Water Quality of Water Source in New Proposed Area (1)

1									t	17 (11	June to Novembe	o ll Ju er to le	17 June to 11 July, 1985 (11 November to 16 December,	er, 1984)	4)
						KMn04									
;				Turb.	Color	consum- tion	Hardness [mg/2]as	Ç	Mo	đ ti	- - 	Alka- 1 i tv	, mrs Samta	Jar	Test
2		Samples	Hd	(unit)	(unit)	(mg/%)	CaCO3	ହ	(<u>mg</u> /£)	(<u>mg/k)</u>	(2)	(mg/2)	No.		Feeding
S.	Kham Sakae Song	Surface Water Bunchiwuk Reservoir	(7.8) 6.7	(50.0) 22.0	(-) 25	30.5 c	٠ ژ	() ·	Ŀ'	(-) - 0	(-)06 006	(-) 88	Ś	4/5	20-30
=	=	Surface Water Temple Pond	7.1	14.5	10	29.0	,	•	: •	6 0	65.0	126	s, s)
=	-	Deep Well Temple	8.0	8.0	none	,	146	32	. 91	5	417	078	Ċ		
Q	Nong Bua Lai	Surface Water Nong Sanp Reservoir	(7.3) 7.5	(36.0) 54.5	-) IS	(-) 28.5	٠ £	: : :	: ① '			(50) 75		4/S	20-30
:	E	Deep Well No. 11 Muban	69	16.5	10	۴ ۱	412	115	30	6 8		316	ે હ		
1	Huai Thalaeng	Surface Water Nong Takai Reservoir	(7.15) 7.4	(7.0) 12.0	- Si	20.8	⊙ ,	Ĵ,	<u>.</u>	12	(19)	(83) (83)	e v		
=	Ξ	Deep Well Amphoe office	7.9	20.0	10	1	330	107	IZ	00 17	11	421	6 e		
₽	=	Deep Well Hospital	7.6	0.6	none	1	592	160	5 5 5 5		2 201	476	8 2		
=	=	Deep Well School	7.3	86.0	15	1	364	111	21	0	i ve	47.4 47.4	ેં હ		
-	£	Deep Well Market	7.0	88.0	15	,	4 10	147	80	3 13	760 7	430-			
Ξ	£	Surface Water Lam Chamuak Reservoir	7.6	8.0	S	7.6	l '	1	1	6.0	8.0	64			
ŝ	Nong Ki	Surface Water Toong Katen Reservoir	(7.0) 7.5	(207) 34.0	30(-)	(-) 30.8	<u>.</u>	£ '	Ŀ		(41) 20.0	148 148	ດ ເ	4/5	40
-	Ŧ	Deep Well 2nd School	7.0	12.5	none	ı	424	98 8	44	2.8	2	492	24 G	1	2
:	Nong Ki	Deep Well Temple	7.6	6.0	none	1	214	50	22	0.4		476	88		
:															

A.5-5

: Alum Feeding rate mg/2

Note : Underlined figure is comparatively high value Jar Test : Floc Forms/S is best condition

: Ca Feeding rate mg/2

	Τ	Table A-5-5 Raw	Water	Quality	ity of	f Water	r Source	in.	New Pr	Proposed	d Area	a (2)			
	. gsk	Samples	Hd	Turb. (unit)	Color (unit)	KMnO4 consum- tion (mg/2)	Hardness (mg/l)as CaCO3	Ca (mg/k)	Mg (mg/2)	Fe (mg/2)	CI (mg/2)	Alka- lity (mg/2)	Sample No.	Jar Floc Form	Test Alum Feeding
60	Ncng Ki	Deep Well School	() 60	ა. ა	none	ı	136	21	14	0.1	54.5	434	g ₉		
=	÷	Deep Well Hospital	7.1	6.0	лопе	,	192	108	01 t	0.1	847.5	128	610		-
10	Huai Rat	Surface Water Ram Huai Rat River	(1.4) 7.3	(17.8) 220.0	£≋	(-) 28.5	(+) (+)	() ·	Ĵ'		(9) 13.0	(69) 63	Sg	4/5	40
12	Khun Han	Surface Water Nong Si Reservoir	(6.3) 6.4	(7.5) 5.9	Ĵ,	<u>.</u> ,	(-) 16	(- 2	(-) 1.9	(-) 0,44	(7) 4.0	- (20)	s S	2/5	Alum 10 Ca 10
13	Kusuman	Surface Water Huai Daeng Reservoir	(6.9) 7.5	(7.5) 30.0	S≊	(-) 	٠Ĵ	÷,	۰ <u>:</u>	1.15 1.15	(7) 4.5	(19) 17	Sll	2/5	Alum 20 Ca 10
=	•	Deep Well Temple	8.1	4.0	none	ı	50	16	. 61	0.2	57.0	242	G11		
ŧ	¥	Deep Well Market	7.7	s. S	попе	ľ	1,712	614	92	0.98	8,500	06	G12		
E	z	Deep Well Amphoe office	7.9	24.0	30	. 1	354	109	.12	4.0	7.0	328	613		
17	Phon Charoen	Surface Water Nong Loeng Reservoir	(8.3) 6.8	(25.0) 16.0	ିଖ	(-) 22.8	(-) -	÷.	<u>ר</u> י י	(-) 0.45	7.5	Ĵĝ	S ₁₃	2/5	Alum 20 Ca 20
÷	=	Deep Well Spring No.1	8.0	s.0	none		194	64 4	ø	0.7	54.0	240	Gl6	-	
£	Ŧ	Deep Well Temple Road No.2	6.7	10.5	15	ı	65	53	5	3.0	8.0	100	G17		
18	Nong Song Hong	Surface Water Nong Song Hong Reservoir	(7.25) 7.2	(9.1) 9.5	<u>15</u>	(-) 13.7	(-) ·	٠ ا	<u>َ</u> ا	(-) 0.85	3.0)	(20). 20	S12	2/5	Alum 10 Ca 10
z	z	Deep Well Elevated Tank	8.2	3.0	none	•	240	81	6	0.2	15.0	594	Glt		
÷	*	Deep well No.11 Muban	6.8	176.0	20	'	54	10	۲.	25	39.0	4 8	G15		
20	Huai Kha Yung	Surface Water Huai Kha Yung River	(7.05) 7.4	(20.5) 40.0	ંશ	21.5 21.5	(-)	() 	÷ ا	(-) 2.85	(10.0) 7.5	(24) 34	S10	2/5	Alum 30 Ca i 15

A.5-6

APPENDIX B. ALTERNATIVE PLANS

APPENDIX B: ALTERNATIVE PLANS

B.1. DESIGN CRITERIA

B.2. SELECTIVE COMPARISON OF ALTERNATIVE PLANS

B.1. DESIGN CRITERIA

TABLE OF CONTENTS

		Page
B.1.1.	Hydraulic Design	B.1-1
B.1.2.	Study on Economical Velocity in Pump Pressurized	
· .	Pipelinc	B.1-3
B.1.3.	Capacity of Distribution Reservoir and Elevation ${\sf Tank}$.	B.1-6
B.1.4.	Distribution Pipeline Materials	B.1-11

LIST OF TABLES

Table B-1-1.

Water Balance Computation

LIST OF FIGURES

Figure B-1-1.	Economical Velocity
Figure B-1-2.	Variation of Hourly Water Consumption
Figure B-1-3.	Capacity of Distribution Reservoir and
	Elevated Tank

B.1. Design Criteria

B.l.l. Hydraulic Design

(1) Water Demand of Facilities

MDWS = Maximum Daily Water Supply = 150 1/c/d x population x 1/1,000 (cu.m/d) MHWS = Maximum Hourly Water Supply = 150 1/c/d x 1.5 x population x 1/1,000 (cu.m/d) FFWS = Fire Fighting Water Demand Population ≥ 10,000 FFWS = 0.50 cu.m/min Population < 10,000 FFWS = 0.26 cu.m/min</pre>

Design capacities of each facilities are follows.

Description	Water Demand cu.m/d
Intake, Water Transmission	MDWS x $(1 + \alpha)$
Treatment Plant	MDWS
Distribution Pipeline	MDWS or MHWS + FFWS
Note: a; Miscellaneous losses	10%

(2) Hydraulic Formula

(a) Pipeline

Hazen William's formula

I = 10.666 C^{-1.85} x D^{-4.87} x Q^{1.85}

- I: Hydraulic gradient
- C: Velocity coefficient
- D: Pipe diameter(m)

C-Value

Pipe	Transmission	Distribution
Mortal Lining Pipe	130	110
Asbestos Cement Pipe	140	110
Polyvinyl Pipe	140	110

For actual calculation of distribution pipeline, C-value is adopted 110 taking into account miscellaneous losses such as bend loss, valve loss and so forth.

(b) Open Canal

Manning's formula

$$Q = A \times V \qquad V = \frac{1}{n} \times I^{1/2} \times R^{2/3}$$

A: Flow area (m^2)

- V: Flow Velocity (m/s)
- R: Hydraulic mean depth (m)
- n: Coefficient of roughness Earth canal n = 0.03 Reinforced concrete N = 0.015

(c) Weir

Fransi's formula (Rectangular weir)

$$0 = 1.833 \text{ B x H}^{3/2}$$

B: Weir width
H: Flow depth over the weir

(d) Head losses

he =
$$\alpha \times \frac{V^2}{2g}$$

α: Coefficient of loss

(3) Standard Velocity of Pipeline

Pipe Diameter		Design Velocity
ø50 – 150 ø200 – 400	- •	0.5 - 1.0 m/s 0.7 - 1.6 m/s

B.1.2. Study on Optimum Velocity of Pump Pressurized Pipeline

The Study on the relationship between optimum velocity and pipe diameter for in the pressuring pipeline was carried out to optimize diameter of pipe from the viewpoint of pipe construction cost to be installed and pressuring power cost of the pump systems.

Annual total Cost; T.C. = $\alpha x A + \beta x B$

A: Pipeline cost

- B: Electricity tariffs
- : Accumulated present worth factor for construction cost $\alpha = 0.9465$
- : Accumulated present worth factor for power cost $\beta = 8.3045$

(1) Discharge

Q = 50 and 100 cu.m/hr

(2) Pipe Unit Price and Annual Cost

Diameter (mm)	Price (Ø/m)	Annual Cost (Ø/y)
100	150	161
150	250	237
200	400	379
250	550	521
300	760	719

(3) Electricity Tariff

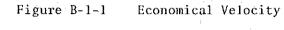
Demand charge: 95 Baht/kwh Energy charge: 1.5 Baht/kwh B = (95 + 1.5 x 24 x 30) x 12 x (kw) = 14,000 #/year (kw) = 0.163 x $\frac{Q}{60 \times np}$ x (1 + α) x he = 0.005930he np = 0.55 α = 0.20 he = 10.666 x C^{-1.85} x D^{-4.87}x Q^{1.85} C = 100

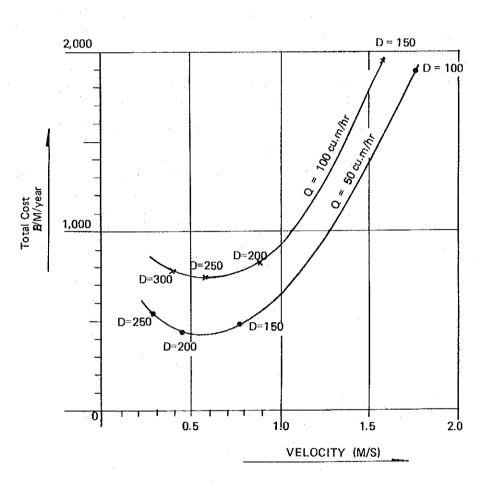
Q = 50 cu.m/hr

D mm	<u>Vm/s</u>	·I : :	(kW)	В	Cost(B)
100	1.783	0.04912	0.0146	206.0	1,710
150	0.792	0.00682	0.0020	28.0	232
200	0.446	0,00170	0.00051	7.2	60
250	0.285	0.00057	0.00017	2.4	20

= 100 cu	ı.m/hr		a sa an		Annua1
<u>D mm</u>	V m/s	I	(kW)	<u> </u>	Cost(B)
150 200 250 300	1.582 0.892 0.572 0.392	0.0246 0.0061 0.0020 0.00084	0.0146 0.0036 0.0019 0.0005	206.0 51.0 27.0 7.1	1,710 423 224 59

(4) Total annual cost


Q


				(U	nit: ß)
[Dine Cost	Q = 50 cu.	m/hr	Q = 100 cu	.m/hr
	Pipe Cost	Power Cost	Total	Power Cost	Total
100	161	1,710	1,871	-	- .
150	237	232	469	1,710	1,947
200	379	60	439	423	802
250	521	20	541	224	745
300	719		-	59	778

B.1-4

(5) Conclusion

Economical velocity is 0.4 - 0.9 m/s as shown in Figure B-1-1.

B.1-5

B.1.3. Capacity of Distribution Reservoir and Elevated Tank

The distribution reservoir is provided to balance the constant supply rate from the water source and treatment plant with the fluctuating water demand in the service area. The capacity should be large enough to accommodate the accumulative differences between water supply and demand.

The elevated tank is provided to supply the pressured water to the service area and its capacity should be the amount of water consumed during night, while pumps stop operating.

Their capacities are determined on the basis of the findings obtained from the field survey in Chonnabot sanitary district.

Variation of hourly water consumption in the district is shown in Figure B-1-2.

The following matters are observed in the figure.

		hourly water demand	
v	Maximum	daily water demand	$52 \text{ m}^3/\text{h}$

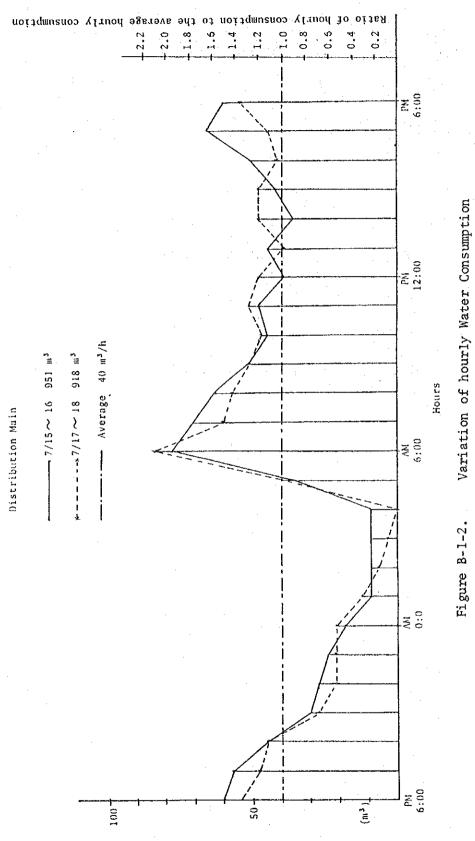
- from 10 PM to 5 AM 105 m³

(1) The Capacity of Elevated Tank

105 ÷ 52 ÷ 2 hours

Therefore, the capacity is to be two hours' volume of the maximum daily water demand.

(2) The Capacity of Distribution Reservoir


The capacity is determined by considering the inflow amount, operation time of pump, capacity of elevated tank and water consumption.

The required capacity is 276 cu.m as described in Table B-1-1 and Figure B-1-3.

By adding the amount of water for fire-tighting to the said required capacity,

 $(276 + 30)/52 = 5.9 \rightarrow 6.0$ hours

Therefore, the capacity is to be six hours' volume of the maximum daily water demand.

Mater Consumption

					rage Volum		
Time	Inflow	Pump Up	Consumption	Total (276)	Elevated Tank	Reservoir (276)	Remarks
5~6 PM	39.4	.78	36	279	42	237	
7	39.4	78	78	241	42	199	
8	39.4	78	48	238	72	160	
9	39.4	78	63	209	87	122	
10	39.4	(78)	51	197	104	93	
11 -	39.4	_	45	191	59	132	
12	39.4	· _	48	183	11	172	
1	39.4	78	39	183	50	133	
2	39.4	78	45	178	83	95	
3	39.4	(78)	36	181	104	77	
4	39.4	-	42	178	62	116	
5	39.4		51	167	1	166	
6	39.4	78	66	140	23	117	
7	39.4	78	60	119	. 41	78	
8	39.4	78	57	102	62	40	
9	39.4	78	45	96	95	1	
10	39.4	(78)	30	105	105	0	
11	39.4		27	118	78	40	
12	39.4	– '	24	133	54	79	
1 AM	39.4	-	18	155	36	79	
2	39.4	· -	9	185	27	119	
3	39.4	~	9	215	18	158	
4	39.4		9	246	9	197	
5	39.4	-	9	276	0	276	

Table B-1-1 Water Balance Computation

(276) ----- Initial storage volume

(78) ----- Not full operating in one hour

Total operating hours is 6 hrs.

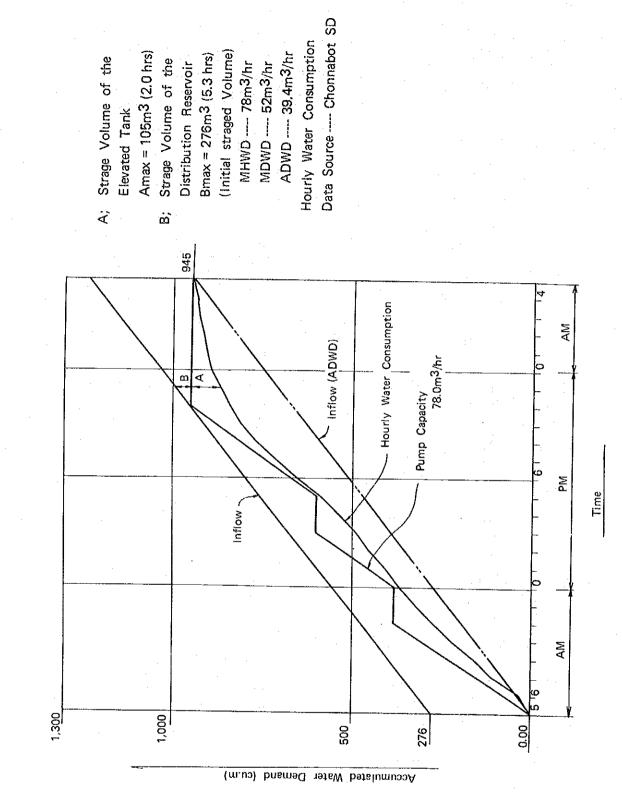


Figure B-1-3 Capacity of Distribution Reservoir and Elevated Tank

B.1-10

B.1.4. Distribution Pipeline Materials

(1) Water Head

The static head in distribution pipeline is about 20 m. However, the design water pressure should be considered as the dynamic water pressure because of long length and closed pipeline system in spite of having the free surface in the elevated tank. The dynamic water pressure is desirably 4.0 kg/cm^2 in case of non-dynamic water pressure calculation.

(2) Pipe Materials

Following pipe diameters and materials will be generally applied for pipeline.

(Dia (mm)	50	75	100	125	150	200	250
Steel Pipe (SP)	0	0	0	0	0	0	0
Asbestos Cement Pipe (AC)		<u>.</u>	Ō		0	0	0
Polyvinyl Pipe (PVC)	0	0	0	0			-

(3) Pipe Cost

The pipe costs (Bahts per meter) are as following. The data is given by PWD.

(4) Actual Results of Pipes Used in the PWD's Water Works

The minimum diameter of distribution pipeline designed for the PWD's water works is 100 mm. Though asbestos cement pipes are used in many cases, $\phi 4''$ PVC pipe was recently used for the SD water works project at THA-PRA in Khon-Khen changwat.

The Unit Cost of the Pipes (Materials + Installation)

(Unit		B/m)
5	1.1	

		(GSP	SP		AC		PVC	"D-PL	AST"
	D	Light	<u>Medium</u>	Under the Ground	Class 15	Class 20	C1ass 25	Class		Class 13.5
(mm)	(")									
10	(1/2)					: -	-	6		-
15	(3/8)	. •	. –	**				7	9	10
18	(1/2)	.26	30	сц. Т		-		8	11	12
20	(3/4)	31	35	-	-	-	-	10	12	14
25	(1.0)	27 (2) 47	-	-	-		13	16	22
35	(1 1/4)	-	_	-			 .	16	20	27
40	(1 1/2)	- 58	70	-		. ~		19	25	34
55	(2.0)	71	92	-	-	-	-	28	37	51
65	(2 1/2)	101	118		-	-		41	55	78
80	(3.0)	122	151	· _	-	-	-	57	76	108
100	(4.0)	181	218	-	118	129	140	92	124	177
125	(5.0)	-			-	-	- .	148	197	261
150	(6.0)	375	393	334	170	206	263		÷	-
200	(8.0)	-	930	544	270	338	446	. –	-	-
250	(10.0)	_	1,604	718	379	461	605	60-9		

B.1-12

B.2. SELECTIVE COMPARISON OF ALTERNATIVE PLAN

TABLE OF CONTENTS

		Page
B.2.1.	Outline and Cost of Alternative Plan	B.2-1
8.2.2.	Drawings of Alternative Plan	B.2-25
B.2.3.	Hydraulic Calculation of Pipeline Networks	B.2-42

LIST OF TABLES

Page Table B-2-1. Comparative Table of Construction Cost B.2-20 Table B-2-2.(1)Diameter and Effective Head of Pipeline (Kusuman Alternative Plan (1)) B.2-42 Diameter and Effective Head of Pipeline Table B-2-2.(2)(Kusuman Alternative Plan (2)) B.2-44 Table B-2-2.(3) Diameter and Effective Head of Pipeline (Kusuman Alternative Plan (3)) B.2-46 Table B-2-3.(1) Diameter and Effective Head of Pipeline (Phon Charoen Alternative Plan (1)) B.2-48 Table B-2-3.(2) Diameter and Effective Head of Pipeline (Phon Charoen Alternative Plan (2)) B.2-49 Table B-2-3.(3) Diameter and Effective Head of Pipeline (Phon Charoen Alternative Plan (3)) B.2-51 Table B-2-4.(1) Diameter and Effective Head of Pipeline (Nong Song Hong Alternative Plan (1)) B.2-53 Table B-2-4.(2)Diameter and Effective Head of Pipeline (Nong Song Hong Alternative Plan (2)) B.2-54 Table B-2-4.(3) Diameter and Effective Head of Pipeline (Nong Song Hong Alternative Plan (3)) B.2-56 Table B-2-4. (4) Diameter and Effective Head of Pipeline (Nong Song Hong Alternative Plan (4)) B.2-58 Table B-2-4 (5) Diameter and Effective Head of Pipeline (Nong Song Hong Alternative Plan (5)) B.2-59

LIST OF FIGURES

Figure B-2-1.	Nong Takai Reservoir Heightening Method B.2-7
Figure B-2-2.	Nong Si Reservoir Intake Method and Pumping
	Station B.2-12
Figure B-2-3.	Nong Song Hong Reservoir Embankment Method B.2-19
Figure B-2-4.	Huai Kya Yung Pumping Station for Inclined
	Type B.2-23
Figure B-2-5.	Huai Kya Yung Pumping Station for Vertical
	Shaft Type B.2-24
Figure B-2-6.	Alternative Plan of Kham Sakae Sang B.2-25
Figure B-2-7.	Alternative Plan of Nong Bua Lai B.2-26
Figure B-2-8.	Alternative Plan of Huai Thalaeng B.2-27
Figure B-2-9.	Alternative Plan of Nong Ki B.2-28
Figure B-2-10.	Alternative Plan of Huai Rat B.2-29
Figure B-2-11.	Alternative Plan of Khun Han B.2-30
Figure B-2-12(1)	Alternative Plan of Kusuman (1) B.2-31
Figure B-2-12(2)	Alternative Plan of Kusuman (2) B.2-32
Figure B-2-12(3)	Alternative Plan of Kusuman (3) B.2-33
Figure B-2-13(1)	Alternative Plan of Phon Charoen (1) B.2-34
Figure B-2-13(2)	Alternative Plan of Phon Charoen (2) B.2-35
Figure B-2-13(3)	Alternative Plan of Phon Charoen (3) B.2-36
Figure B-2-14(1)	Alternative Plan of Nong Song Hong (1) B.2-37
Figure B-2-14(2)	Alternative Plan of Nong Song Hong (2) B.2-38
Figure B-2-14(3)	Alternative Plan of Nong Song Hong (3) B.2-39
Figure B-2-14(4)	Alternative Plan of Nong Song Hong (4) B.2-40
Figure B-2-15.	Alternative Plan of Huai Kya Yung B.2-41
Figure B-2-16(1)	Hydraulic Calculation Diagram of Pipeline
•	Network (Kusuman Alternative Plan (1)) B.2-43
Figure B-2-16(2)	Hydraulic Calculation Diagram of Pipeline
	Networks (Kusuman Alternative Plan (2)) B.2-45
Figure B-2-16(3)	Hydraulic Calculation Diagram of Pipeline
	Networks (Kusuman Alternative Plan (3)) B.2-47

Figure B-2-17. (1) Hydraulic Calculation Diagram of Pipeline Networks (Phon Charoen Alternative Plan (1), (2)) B.2-50
Figure B-2-17. (2) Hydraulic Calculation Diagram of Pipeline Networks (Phon Charoen Alternative Plan (3)). B.2-52
Figure B-2-18. (1) Hydraulic Calculation Diagram of Pipeline Networks (Nong Song Hong Alternative Plan (1), (2)) B.2-55
Figure B-2-18. (2) Hydraulic Calculation Diagram of Pipeline Networks (Nong Song Hong Alternative Plan (3)) B.2-57
Figure B-2-18. (3) Hydraulic Calculation Diagram of Pipeline Networks (Nong Song Hong Alternative Plan (3)) B.2-57
Figure B-2-18. (3) Hydraulic Calculation Diagram of Pipeline Networks (Nong Song Hong Alternative Plan (4)) B.2-58

B.2.1. Outline and Cost of Alternative Plans

(1) NSD-5 Kham Sakae Sang

(a) Water Demand: 0.50 MCM/year

(b) Water Source

Bun Chiwuk reservoir with a capacity of 0.34 MCM is located at 5.0 km west of the district. An unidentified reservoir is also located near the Ban Non Chang reservoir and 5.2 km north of the district. Ponds with the total capacity of 0.05 MCM are located near the temple lot. Two rivers are also located at the west side of the district, and may run dry in the dry season.

(c) Alternative Plan

The following water sources are available,

° Bun Chiwuk reservoir

[°] Ban Non Chang reservoir

* Existing pond in the temple lot

- ° Construction of new reservoir
- ° Existing pond in the temple lot
- ° Construction of new reservoir

In comparison of Bun Chiwuk reservoir with Ban Non Chang reservoir, the Bun Chiwuk is more suitable source because of the shorter transmission pipeline.

The capacity of the pond in the temple lot (only 50,000 m^3) is so small that a feeder canal from Huai Fuam reservoir is required and costs much more than the construction of new reservoir.

Therefore, the following two cases are further studies.

Case-1: Rehabilitation of Bun Chiwuk reservoir Case-2: Construction of new reservoir

(d) Selective Comparison

(i) Outline of Facilities

Outline of Facilities

Case	Intake <u>Weir</u>	Feeder Canal	Transmission Length	Motor Output	<u>Remarks</u>
1	1 LS	2,000 m	ø 150 mm 5,800 m	11 KW	
2	1 LS		∳ 150 mm 500 m	3.7 KW	

(ii) Cost Estimate

Initial Cost and Running Cost

(Unit: \$ 1,000)

Case	Intake & Feeder Canal	Trans- mission	New <u>Reservoir</u>	Sub-total	Electric _Charge_	<u>Total</u>
1	600	1,450	·	2,050	157	
				(1,940)	(1,303)	(3,243)
2	100	130	7,300	7,530	53	
				(7,130)	(440)	(7,570)

(e) Proposed Plan

Case-1 is proposed as the optimum plan because Case-1 is more economical.

- (2) NSD-6 Nong Bua Lai
 - (a) Water Demand: 0.20 MCM/year
 - (b) Water Source

A big pond named Nong Samp Pond is located in the district, its capacity is 0.30 MCM.

This pond is connected by earth canal with Phai Lung reservoir which is located at 2.0 km south-east of the district and its capacity is 0.37 MCM.

Huai Yang river located at south and west of the district may be dried up in dry season.

(c) Alternative Plans

The following water sources are available.

^o Nong Samp Pond

° Construction of new reservoir

Nong Samp Pond is being used for demotic use at present because the pond can reserve enough capacity for new water works by releasing water from Phai Lung reservoir during the dry period.

It is clear that the utilization of Nong Samp Pond is more economical than construction of new reservoir. Accordingly the Nong Sam is used as the water source.

The location of treatment plant can be considered for alternative.

Case-1: Outside the pond Case-2: Public plaza in the pond

(d) Selective Comparison

(i) Outline of facilities

Case-2 has the following construction problems

- * The area is not large enough to construct the whole treatment facilities.
- ° Firm foundation is required.
- ° Work and maintenance road is required.
- The area around the pond is used as recreation area for the inhabitants.
- ° The construction work deteriorates the water quality.

(ii) Cost Estimate

Initial Cost and Running Cost

	<u>Case-1</u>	Case-2
Treatment plant	600	760 (16)
Distribution reservoir	210	430 (22)
Elevated tank	420	460 (4)
Distribution pump station	160	160
Land acquisition	20	800
0 & M Road	_	40
Total	1,410	1,850

Note: (); Number of piles Case-1 cost is referred from the interim report.

(iii) Proposed Plan

Case-1 is proposed as the optimum plan because Case-1 is more economical in the cost and more simple in the construction work.

(3) NSD-7 Huai Thalaeng

(a) Water Demand: 0.64 MCM

(b) Water Source

Nong Takai reservoir with a capacity of 0.16 MCM is located at 6 km north-west of the district and Lam Chamuk reservoir with a capacity of 22.2 MCM is located at 20 km north-west of the district.

There is also a small river named Huai Tako with the catchment area of 5 km^2 at south of the boundary.

(c) Alternative Plans

The following water sources are available.

Nong Takai reservoir

Lam Chamuk reservoir

Construction of new reservoir

The capacity of Nong Takai reservoir is not enough to supply for new water works without any improvement.

Case-1: Improvement of Nong Takai reservoir Case-2: Utilization of Lam Chamuk reservoir

(d) Selective Comparison

(i) Outline of Facilities

For heightening the dam embankment, there are three methods; front, whole and backside.

The front and whole methods have some difficulties in construction works such as;

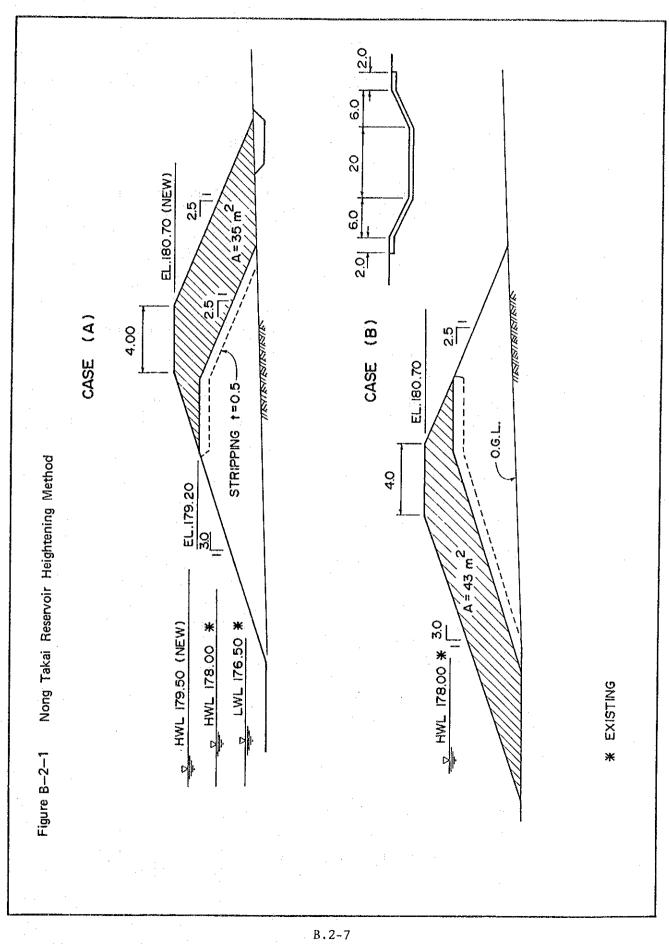
- 1) Proper drainage is required.
- 2) Foundation of slope tip is loosen.
- 3) Embankment volume is increased. (See Fig. B-2-1)

So the backside embankment method is preferable.

Outline of Facilities

4 ^{- 1}	Transmission		Pump	Increased	
Case	Length	Dia.	Output	Dike Height	Remarks
1	6,000m	ø200mm	30 KW	1.5m	
2	20,000m	ø200mm	55 KW	· _	

(ii) Cost Estimate


Cost Estimation

			(Unit: B	1,000)
Case	Pipe	Embankment	<u>Sub-total</u>	Running Cost	Total
1	2,400	5,400	7,800	428	
			(7,400)	(3,600)	(11,000)
2	8,100	· · · · ·	8,100	785	
			(7,700)	(6,500)	(14,200)

Note: Intake pumping station cost is excluded from the table because the both alternative costs almost same.

(e) Proposed Plan

Case-1 is proposed as the optimum plan because of the lower cost.

(4) NSD-8 Nong Ki

(a) Water Demand: 0.81 MCM/year

(b) Water Source

Water sources available around the district are Tung Kraten reservoir and small ponds with no river and stream flowed into.

Tung Kraten reservoir with the capacity of 1.60 MCM is located at 2.5 km north-west from the district. The reservoir was constructed for multipurpose use under the ARD's accelerated rural development project.

Small pond with the total capacity of 30,000 cu.m are located at southern part of the district and is being used for domestic use.

(c) Alternative Plans

Since the water source available is only Tung Kraten reservoir, no alternative plan can be considered. Major facilities from the said reservoir to water treatment plant are the 3.1 km long transmission pipeline with 250 mm in diameter and 22 KW intake pump in output capacity.

(5) NSD-10 Huai Rat

(a) Water Demand: 0.24 MCM

(b) Water Source

Huai Talet reservoir with a capacity of 18.5 MCM is located at 15 km south-west and a small pond with a capacity of 0.03 MCM is located in the west part of the district.

There are two main irrigation canals, however, these canals are not being used because they are so damaged that soils are deposited at the bottom of the canal.

The rehabilitation work will be completed by 1987 under the NESSI project of RID.

It is possible to construct a water transmission canal from the RID's canal.

(c) Alternative Plans

The following two cases are considered to be alternative plans.

Case-1: Utilization of Huai Kadong river Case-2: Utilization of Huai Talet reservoir

(d) Selective Comparison

(i) Outline of Facilities

Outline of Facilities

	Transmission		Pump	Increased		
Case	Length	Dia.	Output	Dike Height	Remarks	
1	600	150	3.7 KW			
2	100		2.2 KW	·		

(ii) Cost Estimate

1997 - B.	Cost Estimation					
			(Unit:	₿ 1,000)		
Case	Transmission	Running Cost	<u>Total</u>	Remarks		
1	150	53				
• •	(140)	(440)	(580)			
2	100	31				
	(100	(260)	(360)			

Pumping station cost is excluded.

Figures in parenthesis indicate discounted amount.

(e) Proposed Plan

Case-2 is proposed as the optimum plan. Further, Case-2 requires a storage pond to supply the water shortage in the case of periodical canal rehabilitation work. The existing pond, which has a sufficient capacity of 30,000 cu.m (45 days' water demand), is recommendable to be used as a storage reservoir.

- (6) NSD-12 Khun Han
 - (a) Water Demand: 0.22 MCM
 - (b) Water source

Nong Si reservoir with a capacity of 3.8 MCM is only one water source and its outlet is Nong Si river.

(c) Alternative Plans

The following three intake methods are considered to be alternative plans.

Case-1: Direct pumping from the Nong Si reservoir (See Fig. B-2-2)

Case-2: Natural flowing from the Nong Si reservoir (See Fig. B-2-2)

Case-3: Direct pumping from the Nong Si river

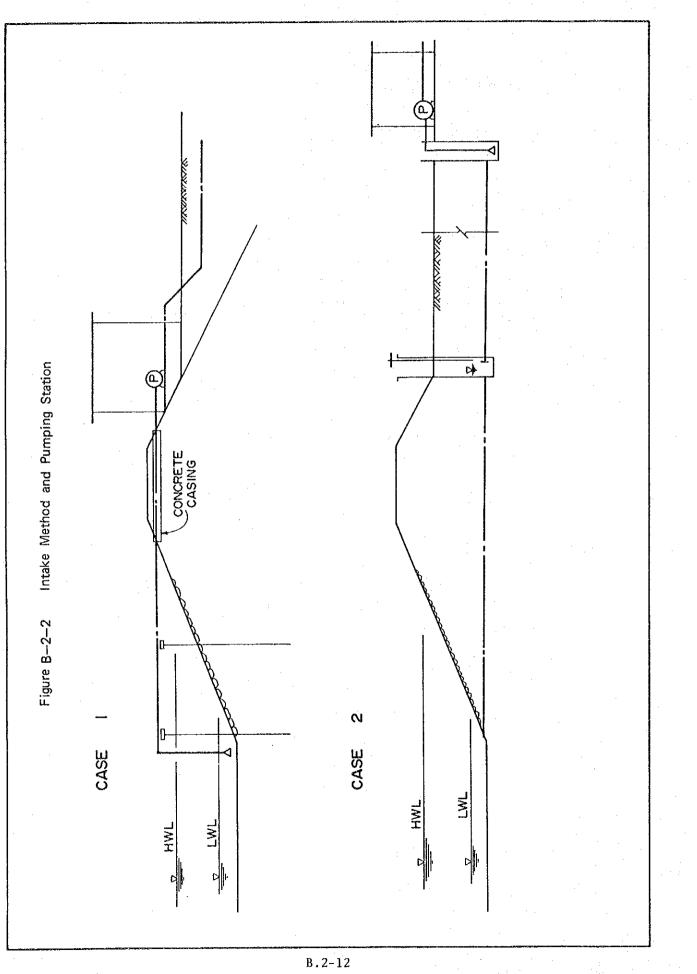
(d) Selective Comparison

(i) Outline of Facilities

Outline of Facilities

	Transmission		Gate or	Motor	
Case	Length	Dia.	Valve	Bank Cut	Output
1	120m	ø150	•••		2.2KW
2	120m	ø150	ø150	open	2.2
3	500m	ø150	•••	- .	2.2

Cost Estimate


(Unit: \$ 1,000)

Case	Intake	Trans- mission	<u>Sub-total</u>	Running Cost	<u>Total</u>
1	130	30	160	31	
			(150)	(260)	(410)
2	1,100	40	1,140	31	
			(1,080)	(260)	(1,340)
3	100	100	200	31	
			(190)	(260)	(450)

Note: Cost of pumping station is included in the cost of intake.

(c) Proposed Plan

Case-3 is proposed as the optimum plan because Case-1 is more economical in the construction work than Case-2. In Case-1 and 2, however, constructing any structures on the embankment or excavating the embankment are prohibited under the RID regulation.

(7) NSD-13 Kusuman

(a) Water Demand: 0.3 MCM

(b) Water Source

Huai Daeng reservoir with a capacity of 1.2 MCM is located at 4.0 km east of the district, and there are two rivers, Huai Sophoe and Huai Rong Pho. The both rivers, however, as dried up in dry season.

The hydrogeological survey and the pumping test shows that groundwater is available in the district and the yield is sufficient for new water supply. In consideration of safety yield the required water demand is supplied by three wells $(18.0 \text{ m}^3/\text{h x 3})$.

(c) Alternative Plans

The following water source are available.

° Huai Daeng reservoir

° Three deep wells

° Construction of new reservoir

First of all, the following two cases are considered to be alternative plans among the surface water available.

Case-1: Utilization of Huai Daeng reservoir Case-2: Construction of new reservoir The outline of facilities are:

	Trans	mission	Motor	Proposed New
Case	Length	Dia.	Output	Reservoir Size
1	4,250m	ø150mm	7.5 KW	
2	-	-	2.2 KW	270mx270mx4.5m

The construction cost estimate is:

		· · ·		(Unit:	₿ 1,000)
Case	Pipe	Reservoir	Sub-total	Running Cost	<u>Total</u>
1	1,100	***	1,100 (1,040)	107 (890)	(1,930)
2	_	7,600	7,600 (7,200)	31 (260)	(7,460)

Accordingly Case-2 is more economical.

Secondary, the said surface water treatment is compared with the groundwater treatment in construction cost and O/M cost.

As for groundwater, the two distribution system; single point pressurizing method and multi point pressurizing method, are further studies.

Therefore, the following three cases are considered to be alternative plans.

Case-1: Utilization of Huai Daeng reservoir

Case-2: Three deep wells (single point pressurizing method)

Case-3: Three deep wells (multi point pressurizing method)

(d) Selective Comparison

The result of the hydraulic calculation of the said two methods is described in B.2.3.

The outline of facilities and the construction cost estimate is referred from Table B-2-1.

(e) Proposed Plan

Case-2 is proposed as the optimum plan.

(8) NSD-17 Phon Charoen

(a) Water Demand: 0.51 MCM/year

(b) Water Source

Nong Loeng reservoir with a capacity of 2.0 MCM is located at 9.5 km north-east of the district. Two rivers, Huai Sam Hong and Huai Mak are located at the west side and east side of the district respectively.

The catchment area of the Huai Mak is larger than that of the Huai Sam Hong, but located much far from the district. The required catchment area for new reservoir is 5 km^2 at least.

The hydrogeological survey and the pumping test shows that groundwater is available, but its yield is not sufficient for supplying the whole required volume.

The wells available in the district are four wells in which safety yield of a well is 7.0 m^3/h .

(c) Alternative Plans

First of all, the following two cases are considered to be alternative plans among the surface water available.

Case-1: Utilization of Nong Loeng reservoir Case-2: Construction of new reservoir

The outline of facilities are:

	Trans	mission	Pump		
Case	Length	Dia.	Output	<u>New Reservoir</u>	Remark
1	12,500m	ø200mm	22 KW	-	
2	1,300m	ø200mm	11 KW	370m x 370	
			1	h = 4.5m	1

The construction cost estimate is:

				(Unit:	B 1,000)
Case	Pipe	Pond	<u>Sub-total</u>	Running Cost	Remark
1	5,500	. –	5,500 (5,200)	314 (2,600)	(7,800)
2	520	11,000	11,520 (10,900)	157 (1,300)	(12,200)

Accordingly, Case-1 is more economical.

Secondly, the said surface water treatment is compared with the combined use of the surface water treatment (Q = $40 \text{ m}^3/\text{h}$) and the groundwater treatment (Q = $20 \text{ m}^3/\text{h}$)

As for ground water treatment, the two distribution system; single point pressurizing method and multi point pressurizing method, are further studied.

Therefore, the following three cases are considered to be alternative plans.

Case-1:	Utilization	of	Nong	Loeng	reservoir	÷ .

Case-2: Combined use of Nong Loeng reservoir and four deep wells (single point pressurizing method)

Case-3: Combined use of Nong Loeng reservoir and four deep wells (multi point pressurizing method)

(d) Selective Comparison

The result of the hydraulic calculation of the said three cases is shown in B.2.3.

The outline of facilities and the construction cost and O/M cost estimate are referred from Table B-2-1.

(e) Proposed Plan

Case-1 is proposed as the optimum plan. Case-1 and 2 is nearly the same in construction cost, however, Case-1 will cost less if operation and maintenance cost for a long period is considered.

(9) NSD-18 Nong Song Hong

(a) Water Demand: 0.42 MCM

(b) Water Source

Nong Song Hong reservoir with a capacity of 0.38 MCM is located at 0.1 km west of the district.

Nong Kom Ko lake with a capacity of 10.0 MCM is located at 6 km north-west of the district. There are no available rivers in the district and its surrounding area.

The hydrogeological survey and the pumping test shows that groundwater is available, but its yield is not sufficient for supplying the whole required volume.

The wells available in the district are three wells in which safety yield of a well is 7.5 m^3/h .

(c) Alternative Plans

First of all, the following two cases are considered to be alternative plan among the surface water available.

Case-1: Utilization of Nong Song Hong reservoir Case-2: Utilization of Nong Kom Ko Lake

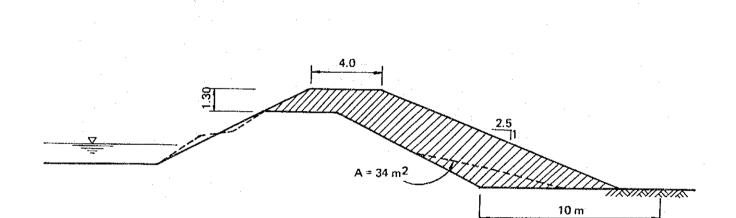
Since Nong Song Hong reservoir has an insufficient capacity for new water supply, the reservoir requires a 1.5 m heightening of the embankment.

As for the embankment, the backside embankment method as shown in Figure B-2-3 is recommendable from the viewpoint of construction works.

The outline of facilities are:

	Transm:	ission	Increased	Pump	
Case	Length	Dia.	<u>Dike lleight</u>	Output	Remark
1	200m	ø150	1.30m	3.7 KW	
2	8,500m	ø200	6.7	11.0 KW	

Their construction cost is estimated as follows:


(Unit: \$1,000)

		. :		Running	
Case	Pipe	Reservoir	Sub-total	Cost	Tota1
1	50	4,050	4,100	53	
			(3,880)	(440)	(4,320)
2	2 500		2 500	107	
. 4	3,500	-	3,500	157	
			(3,300)	(1,300)	(4,600)

Accordingly Case-1 is more economical.

Since groundwater, which covers a part of the required volume, is available, Nong Song Hong reservoir $(20 \text{ m}^3/\text{h})$ and three wells $(30 \text{ m}^3/\text{h})$ are used in combination.

NSD - 18 NONG SONG HONG

Comparative Table of Construction Cost

Table B-2-1

110.4	Pri- ority	19		- C1	N		н		in	-		n		4		~
	cost m ³ /h	128	102	110	190		182		197	170		185		204	1	184
	0/M Cost	324	303	303	794		831			294		309		505		309
	Total 0/M cost Cost	4,830	3,780	4 115	0,620		10,100 831		11,000 831	8,210		9,100 309		505 006 ° 6		8,930
E	Cost	780	710	650	1,310 10,620	-	1,270	+	1030 1	910		910		840 		730 \$
Distribution Works		9,560m	9,210m	9,210m	12,260m		12,100m		12,100m	8,850m		8,850m		ED 74 7		10,590m
	Sub- Total	2,590	2,160	2,715	3,390		3,540		5,110	2,880		3, 310		4,440		3,570
	Distri- bution pump	740	740	740	820		200		800	860		800		2002		800
t Works	Elevated tank	780	770	1,325	770		270		2,340	740		740	010			1,000
Treatment Works	Storage Reser- voir	350	350	550	600	370	250	570	250	480	320	200	320	200	320	200
	Working cost	720	300	300	1,200	750	600	750	600	800	750	200	750	500	750	500
	Treat- ment Type	RA	A,F,C	A,F,C	RA	RA	A,F,C	RA	A, F, C	ŖA	RA RA	A,F,C	RA	A.F.C	RA	A,F,C
Work	Pipe cost	1,000	190	1	5,000	3,125	420		3,125	.S0	50	300	50	•	50	,
Transmission Work	Pipe length	¢150 2 = 4,250	¢100 £ = 1,690	•	¢200 &= 12,500	¢150 2 = 12,500	¢100 &= 3,820	¢150	£ = 12,500	¢150 &= 200	¢150 &= 200	ø100 2=2,700	ø150 &= 200	- E	ø150 &= 200	1.
Intake Works	Pump cost	300	180	180	300	300	800	300	800	200	200	600	200	600	200	600
<u>-</u> 3	Pump star tion	100	30	30	120	100	40	100	40	120	100	30	100	30	100	30
Source	Working Cost	•	540	540	500	, co n	000	003	202	4,050	3,650	ł	3,650	ı	3,650	1
Water	Capacity	Reservoir	Deep Well W x 3	÷	Reservoir		K X 4	4	¥ X 4	Reservoir	Recentor	K X 3	Reservoir	n × ≆	Reservoir	M X X
امد ن مد ا	Capacity	40	40	40	60	40	20	40	20	50	92	20	30 -	20	30	20
	USD NSD	Kusuman 1	11	()	Pon- charoen 1	<u> </u>	<u>. </u>	۳ 	<u>}</u>	Nong 1 Song		<u>N</u>	<u></u> 10			
	No	13			1	·				8	<u> </u>				- 	

Note; RA ; Rapid Sand Filtration F ; Filtration A ; Aeration C ; Chlorination

The following four cases are considered to be alternative plans.

Case-1: Utilization of Nong Song Hong reservoir (the 1.3 m heightening of embankment)

Case-2: Combined use of Nong Song Hong reservoir (the 1.1 m heightening of embankment) and three deep wells (single-point pressurizing method)

- Case-3: Combined use of Nong Song Hong reservoir (the 1.1 m heightening of embankment) and three deep wells (multi-points pressurizing method)
- Case-4: Nong Song Hong reservoir (the 1.1 m heightening of embankment) covers the southern part of the district and three deep wells (single-points pressurizing method) cover the northern part of the district.
- (d) Selective Comparison

The result of the hydraulic calculation of the said four cases is show in B.2.2.

The outline of facilities and the construction cost and O/M cost estimate are referred from Table B-2-1.

(e) Proposed Plan

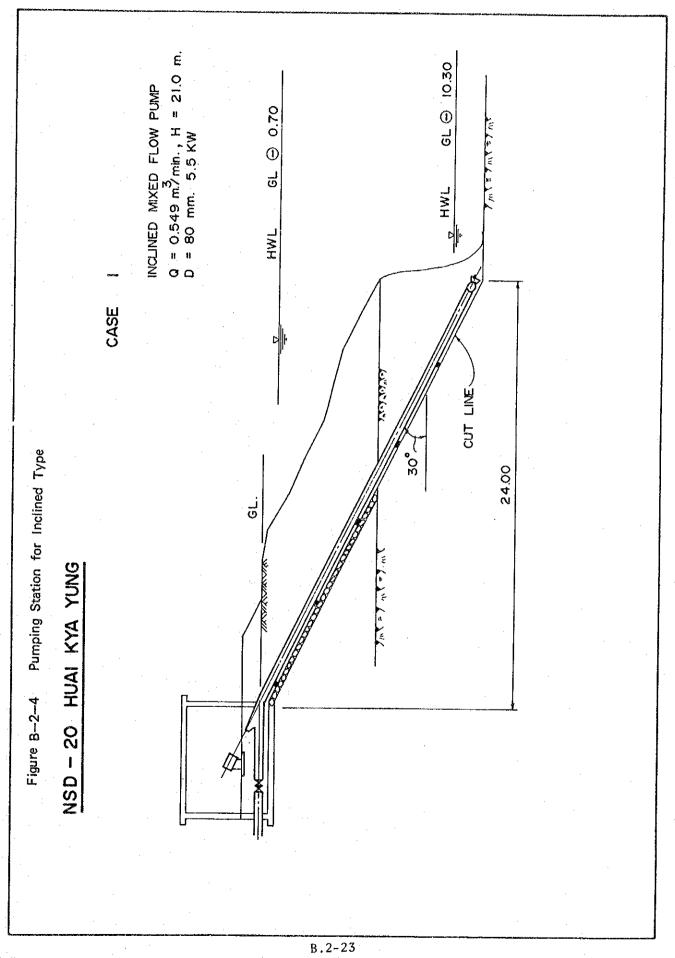
Case-1 is proposed as the optimum plan.

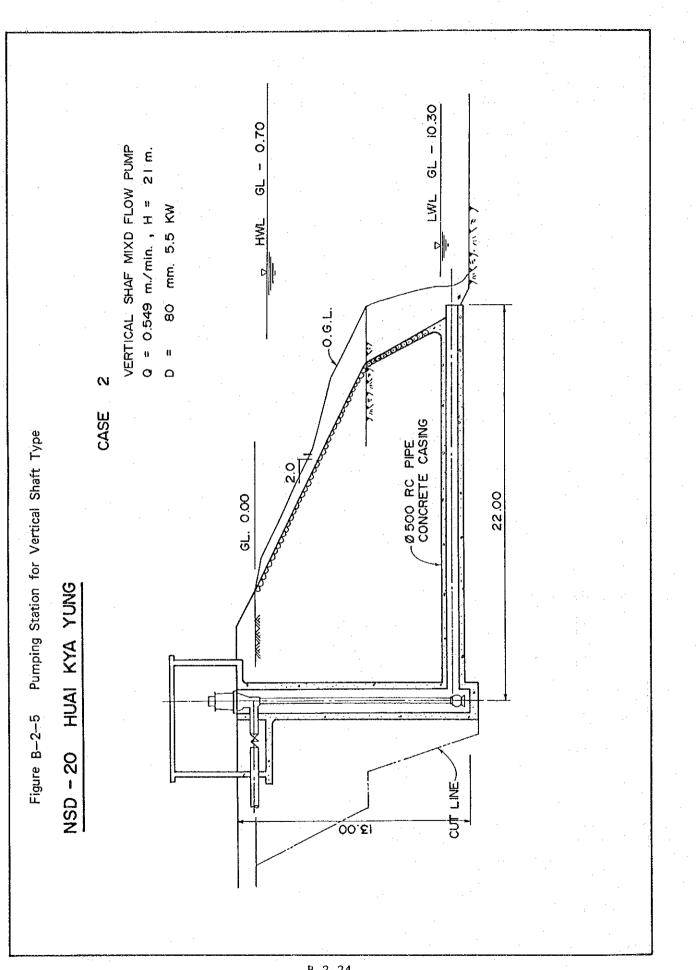
(10) NSD-20 Huai Kya Yung

(a) Alternative Plans

Available water source around the district is only Huai Kya Yung river, which is located at south and west of the district, flows to the north and its discharge is 11.7 cu.m/s in dry season.

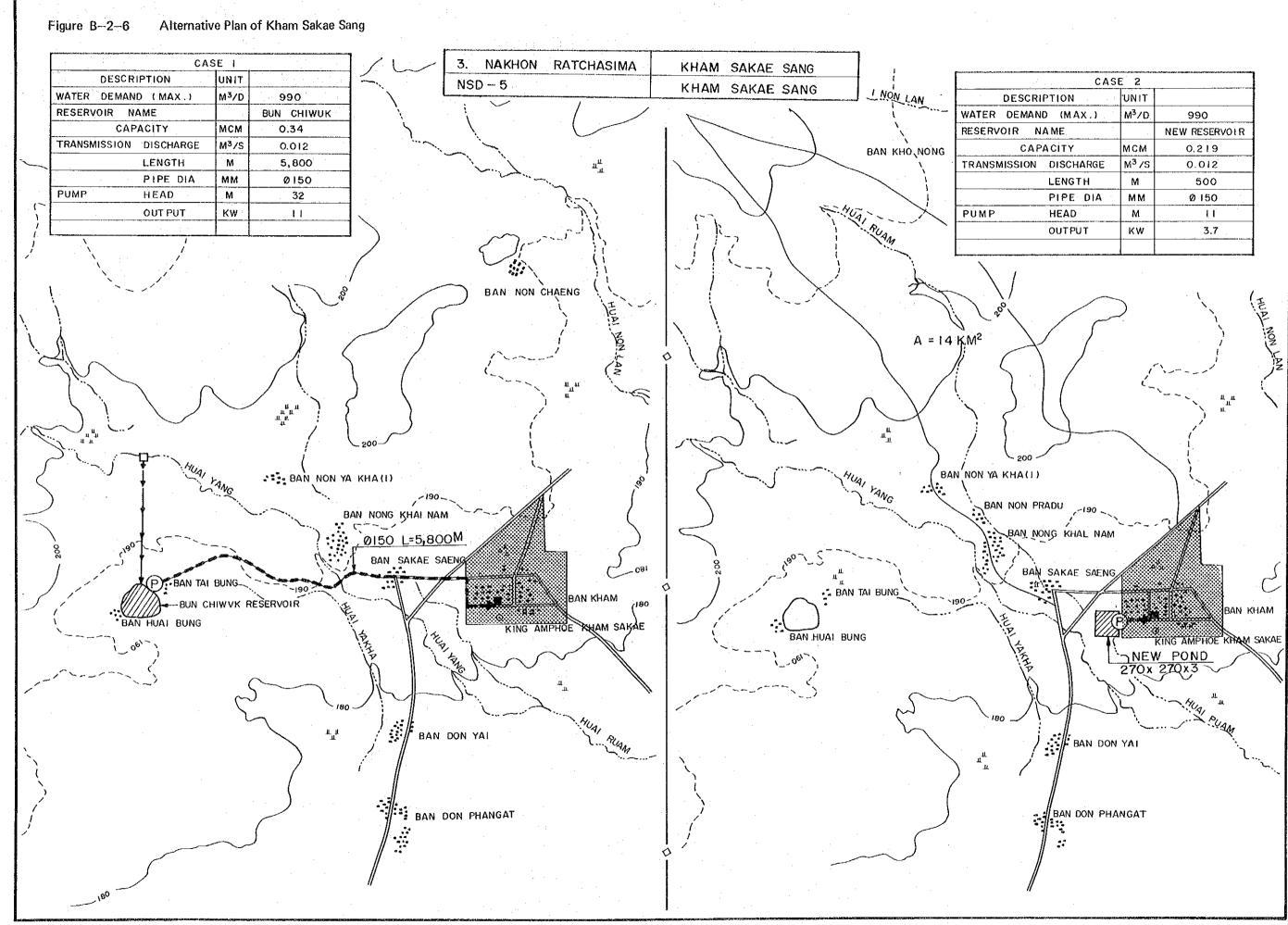
Two suitable sites for pump station are considered, one is the upstream of railway bridge, 1.5 km from treatment plant. The south of the district is proposed as the intake pump station site.

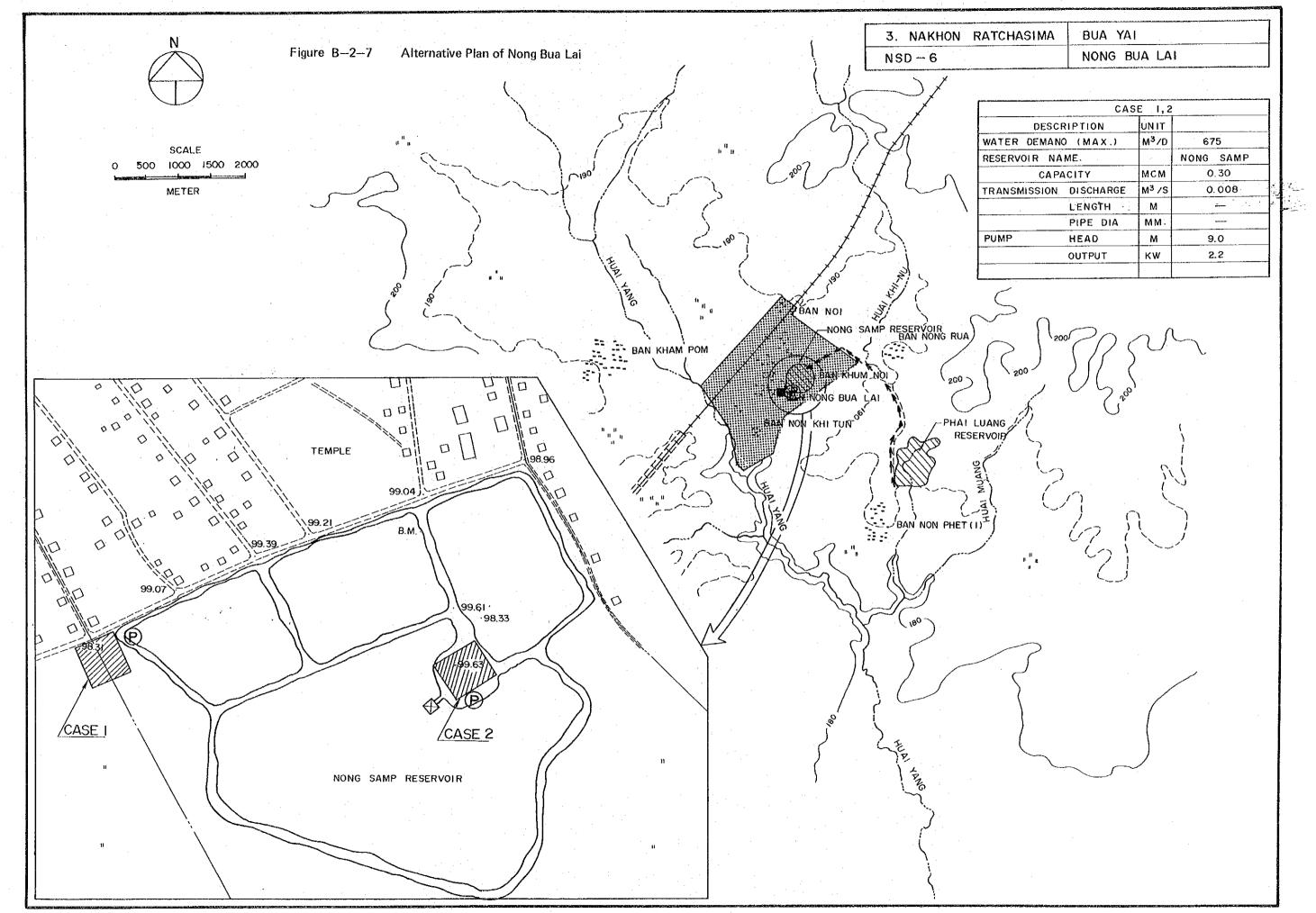

Since the seasonal fluctuation of water level in the river attains approximately 10 m and the velocity becomes 2.0 m/s in flow period, the following three types of the intake pump are considered to be alternative plan. Case-1: Inclined shaft pump (See Fig. B-2-14) Case-2: Vertical shaft pump (see Fig. B-2-15) Case-3: Horizontal shaft pump on boat


(b) Selective Comparison

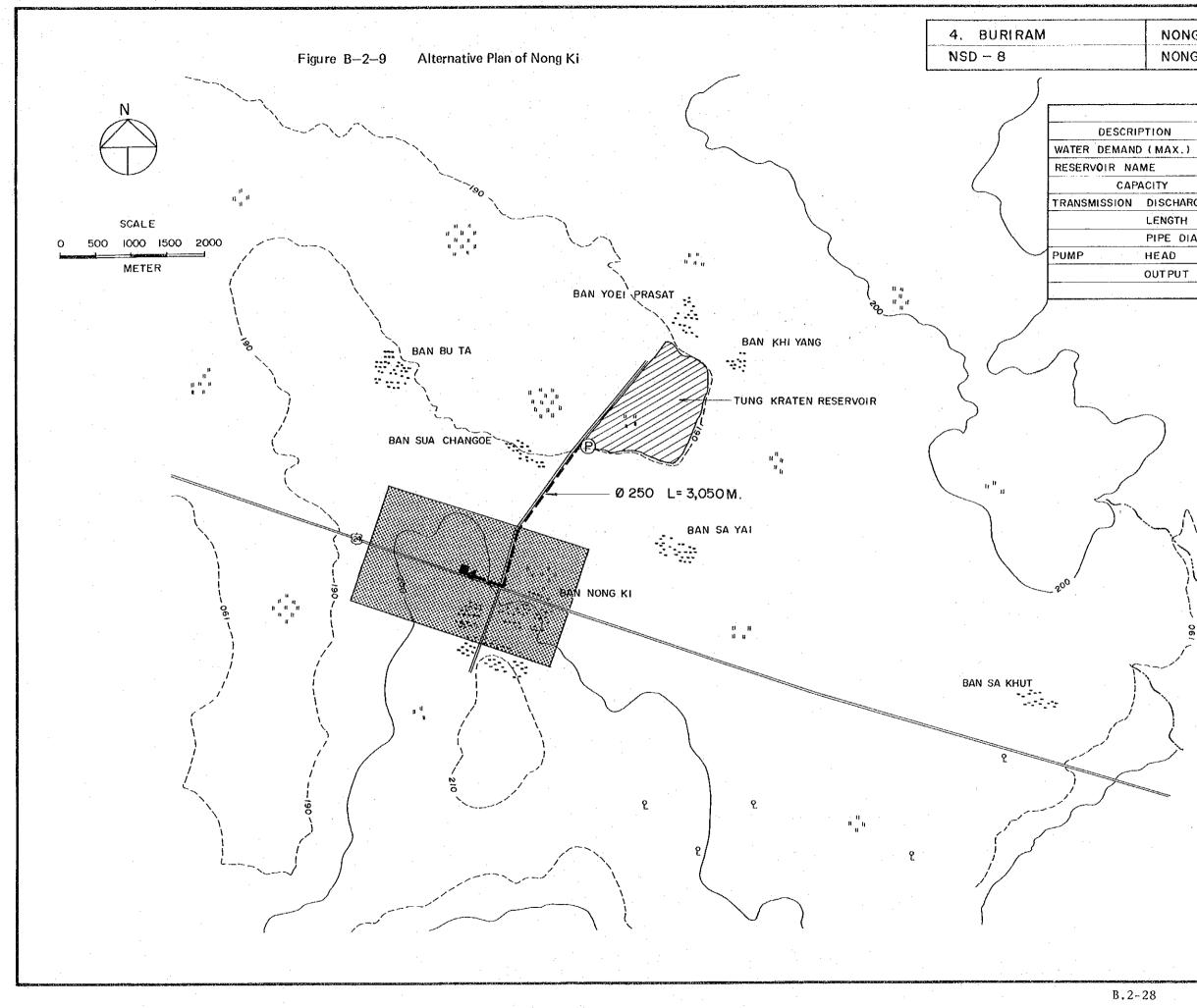
Case-3 is not preferable to use as permanent facility even through Case-3 has less constructional problems than the other cases. Case-2 requires much excavation and concrete volume.

(c) Proposed Plan

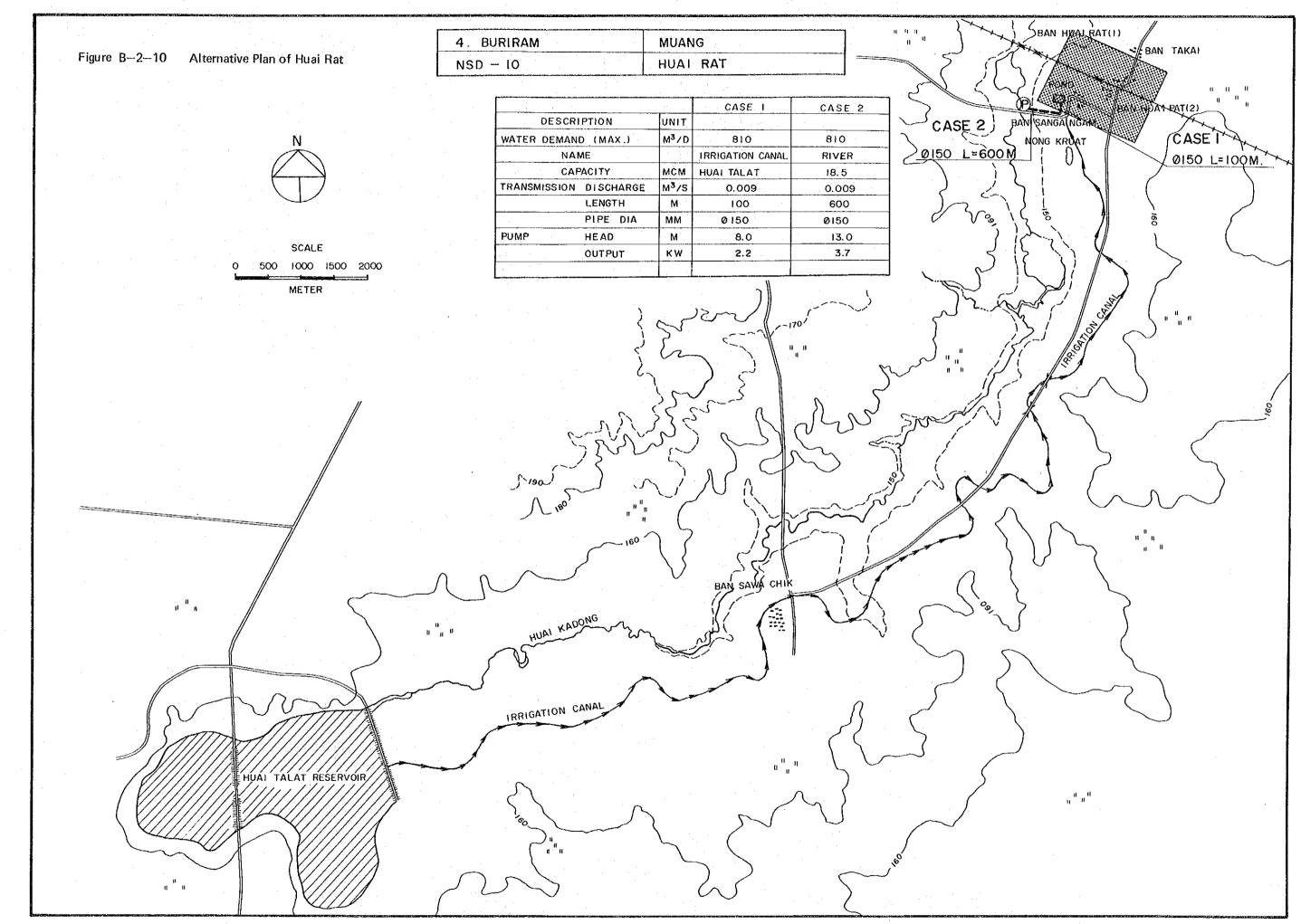

Case-1 is proposed as the optimum plan.

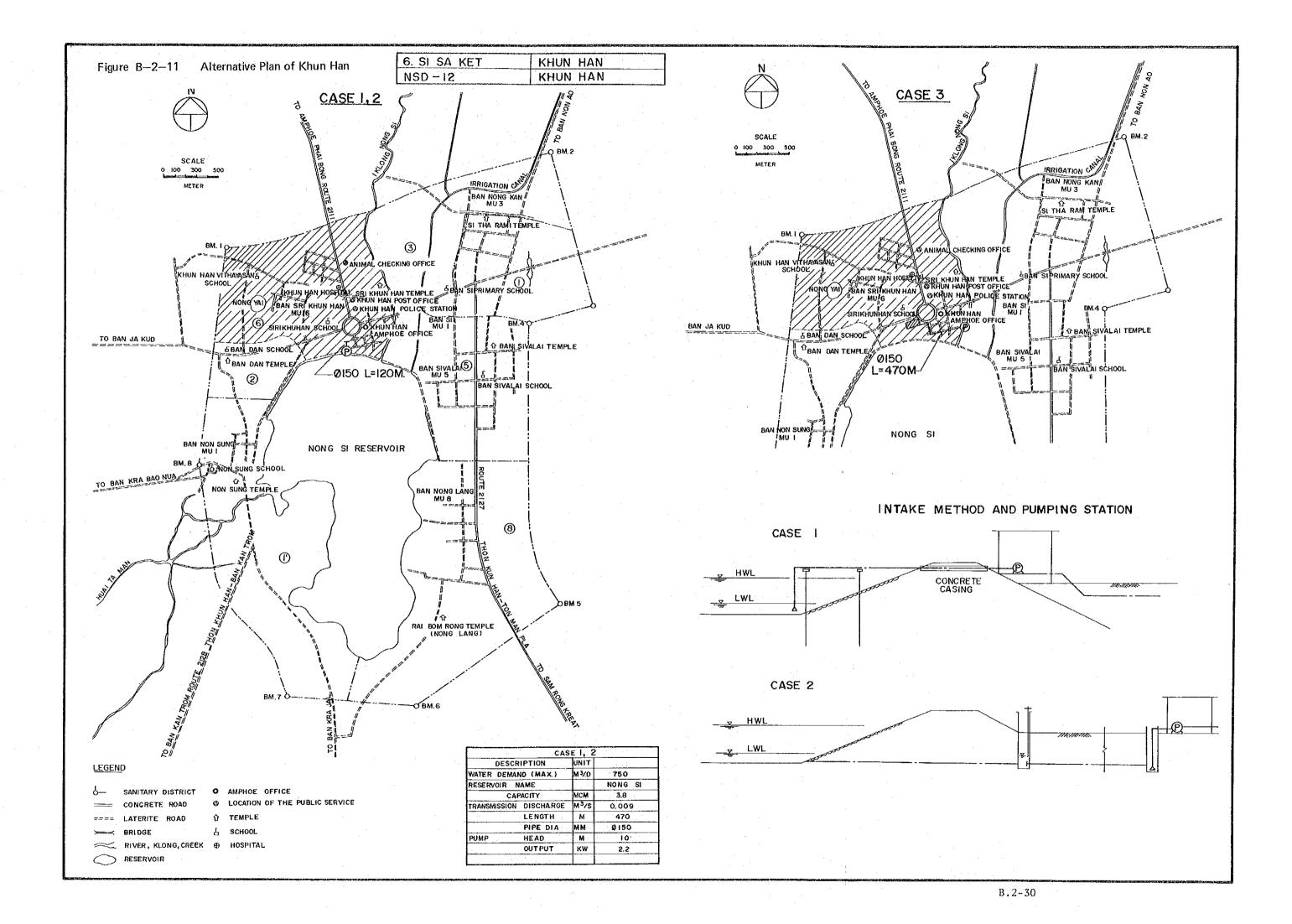


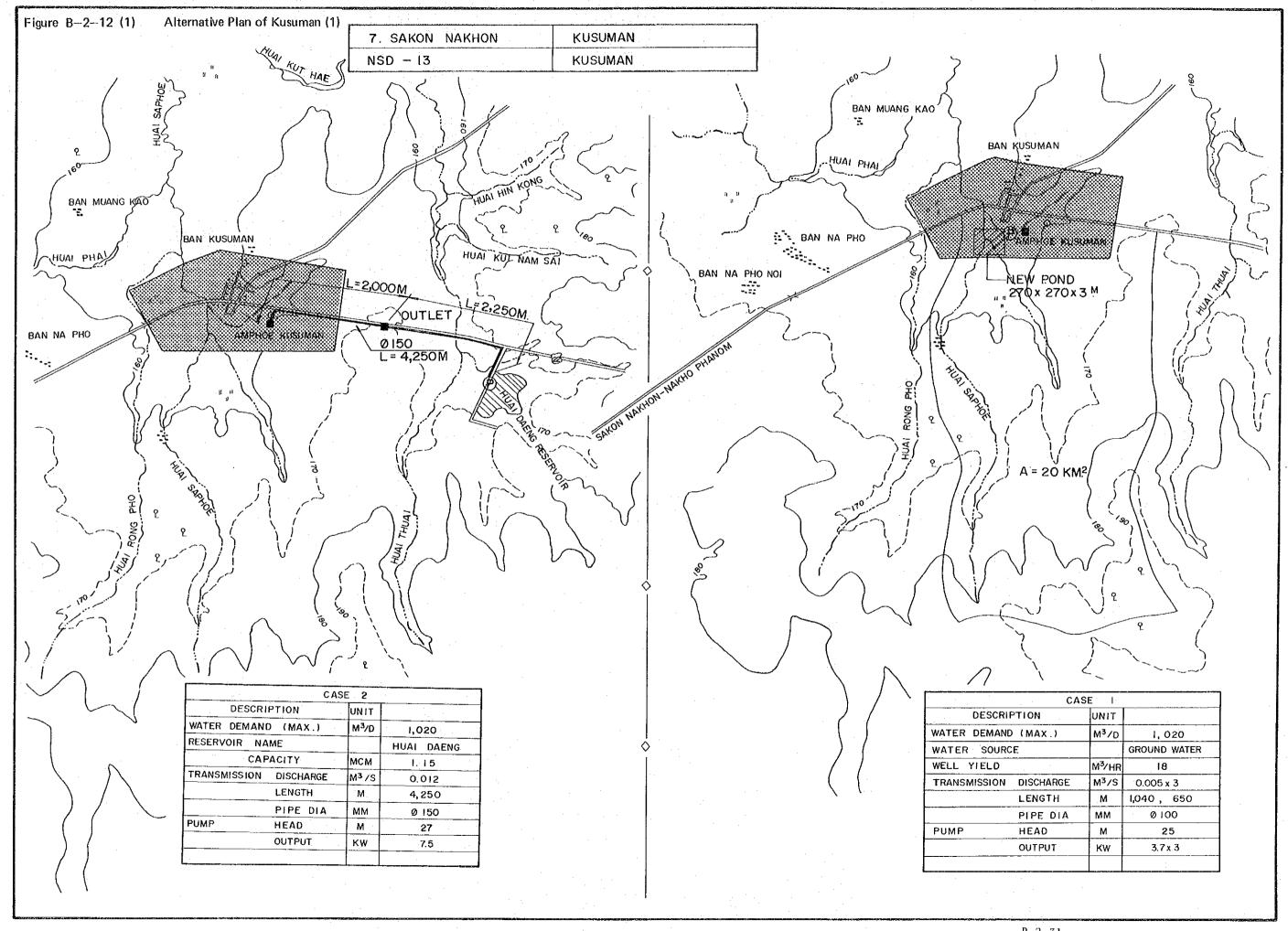

B.2.2. Drawings of Alternative Plan

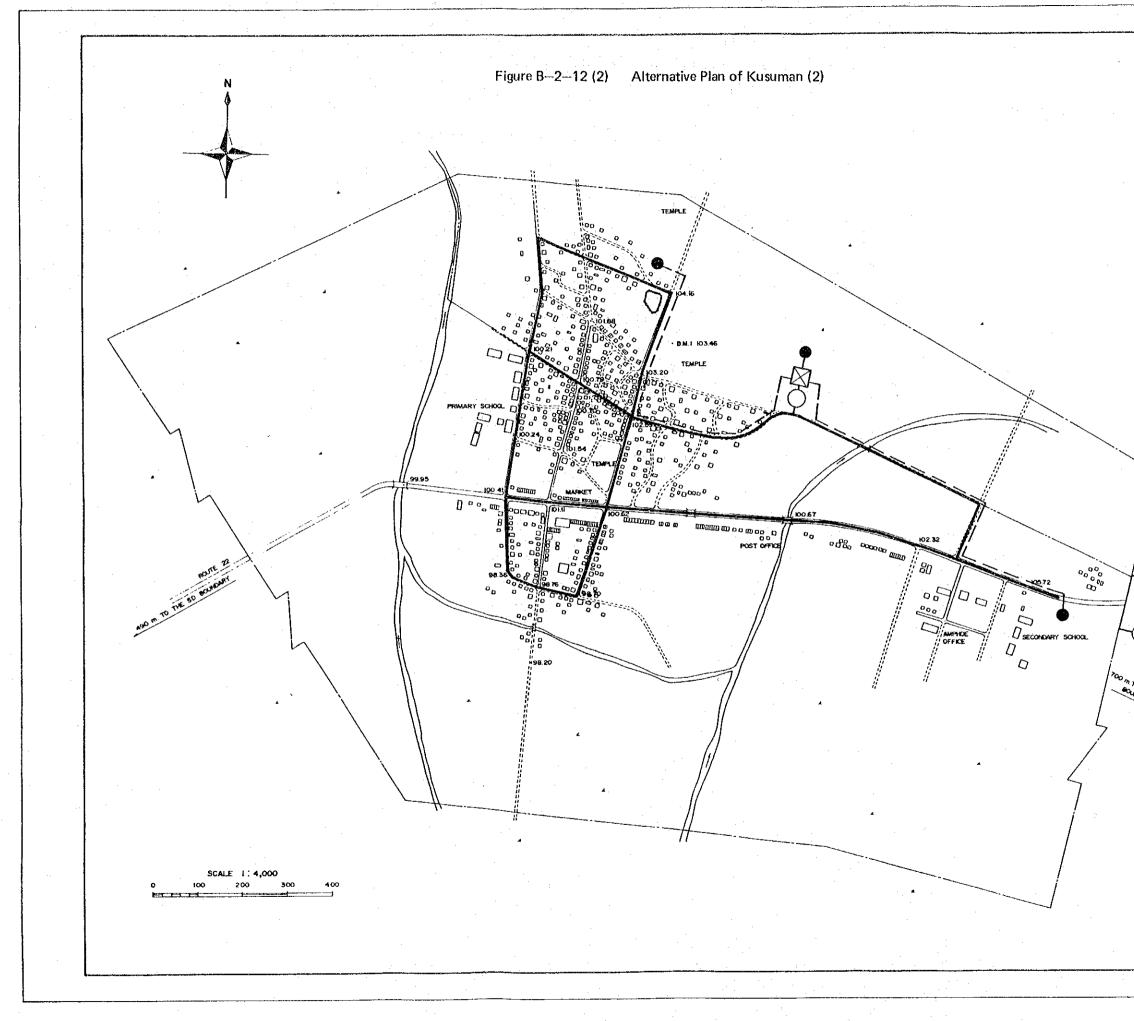

.

CAS	SE 2	
SCRIPTION	UNIT	
EMAND (MAX.)	M ³ /D	990
R NAME		NEW RESERVOIR
CAPACITY	мсм	0.219
SION DISCHARGE	M ³ /S	0.012
LENGTH	М	500
PIPE DIA	MM	Ø 150
HEAD	м	t t
ΟυΤΡύΤ	кw	3.7

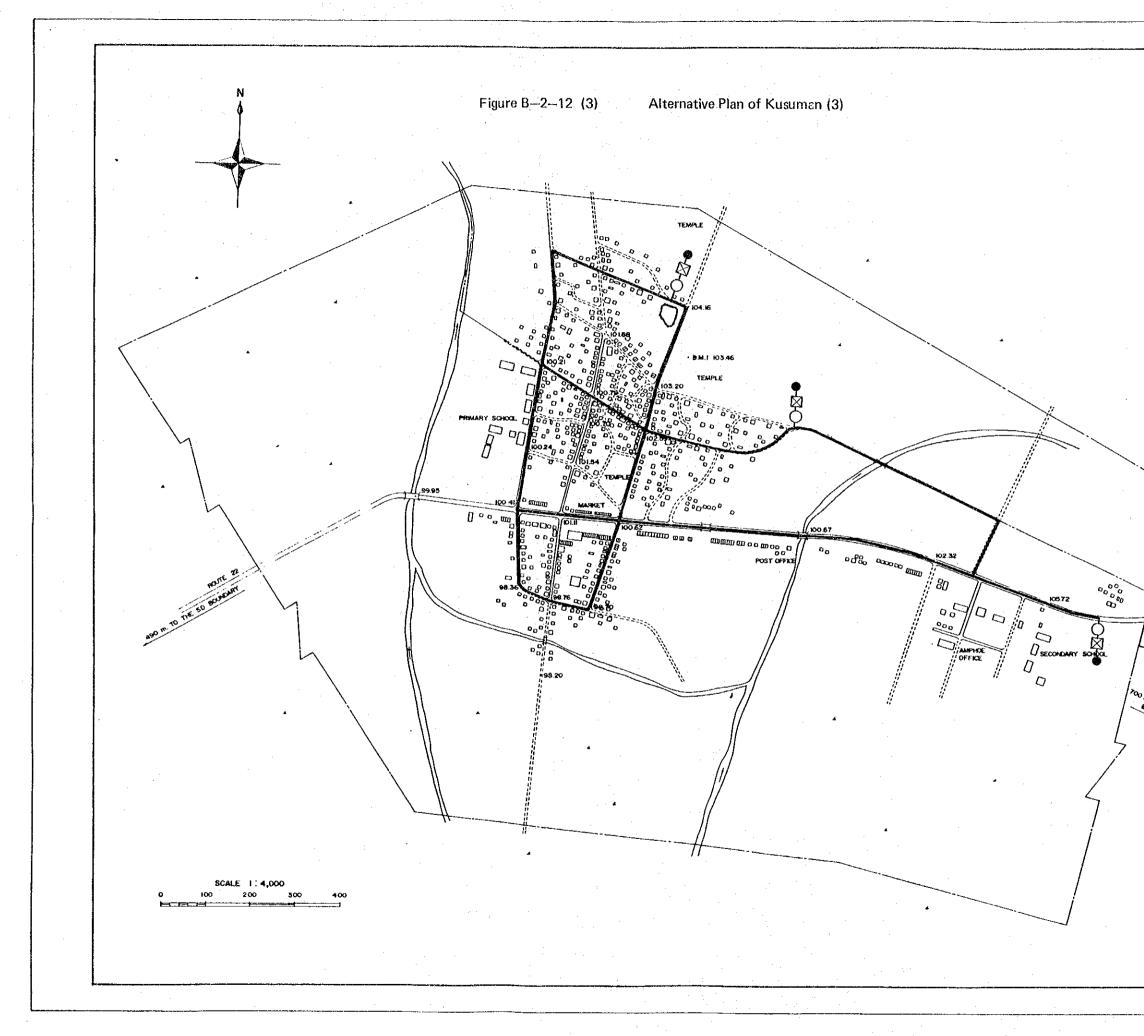


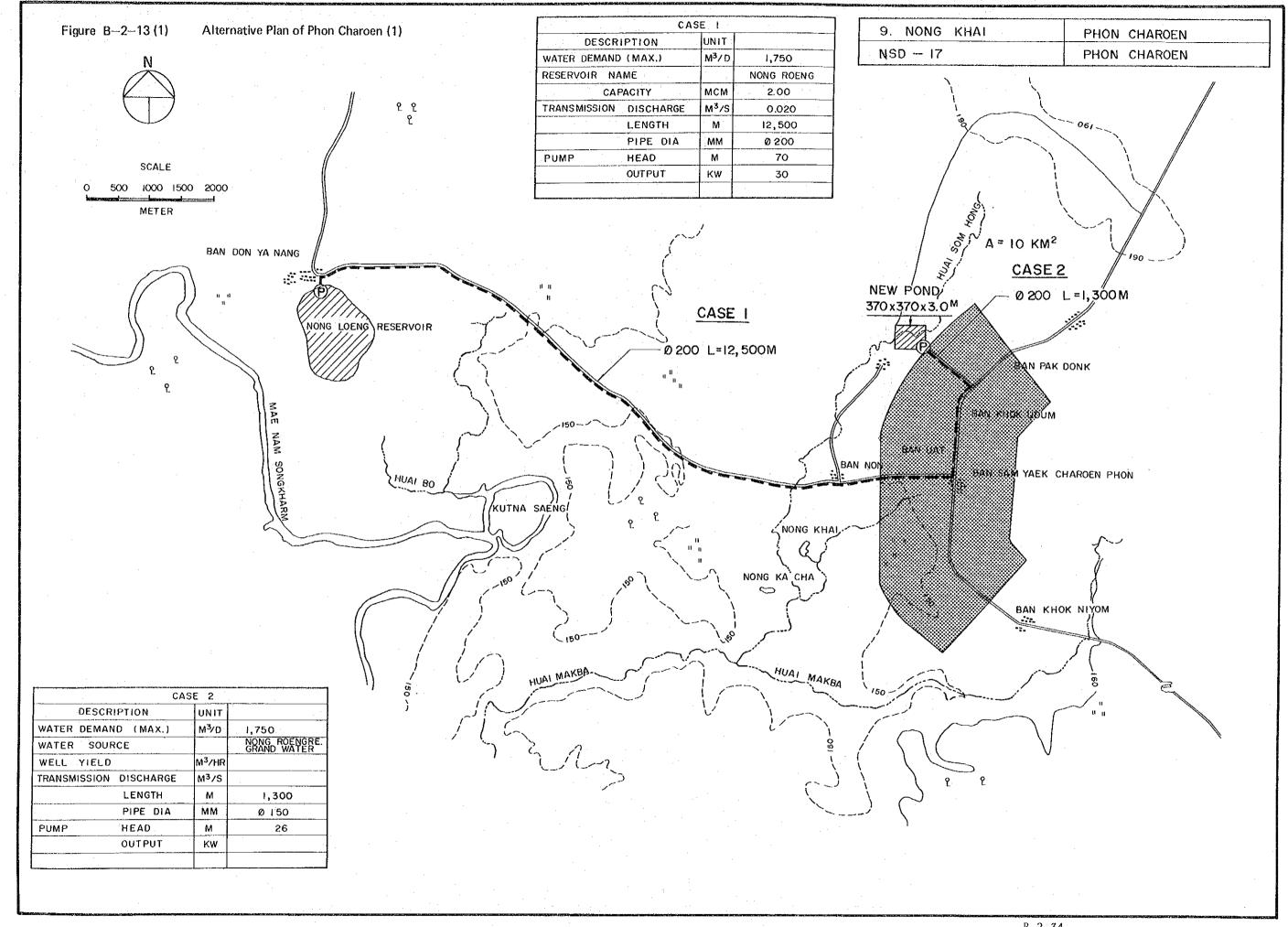


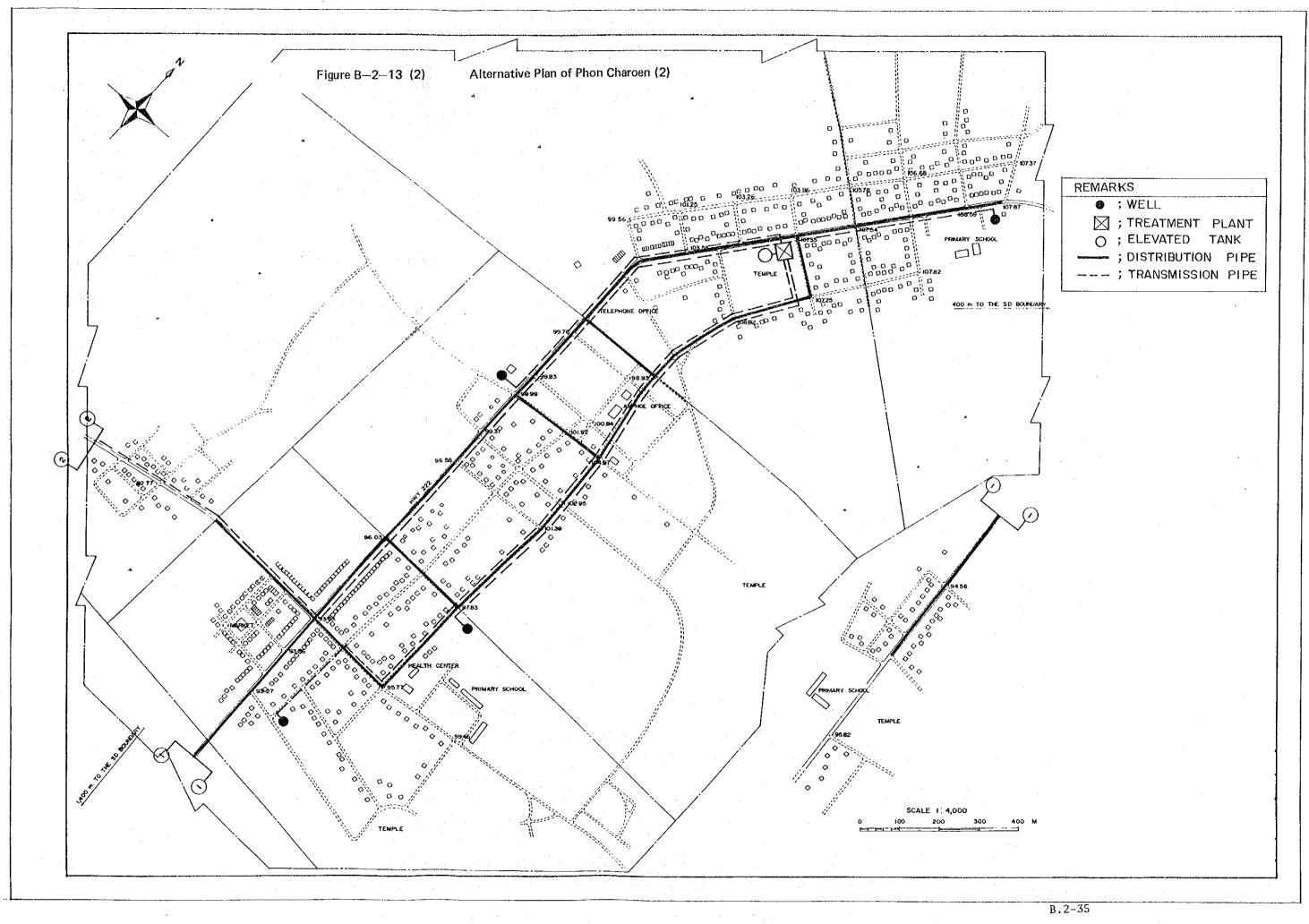


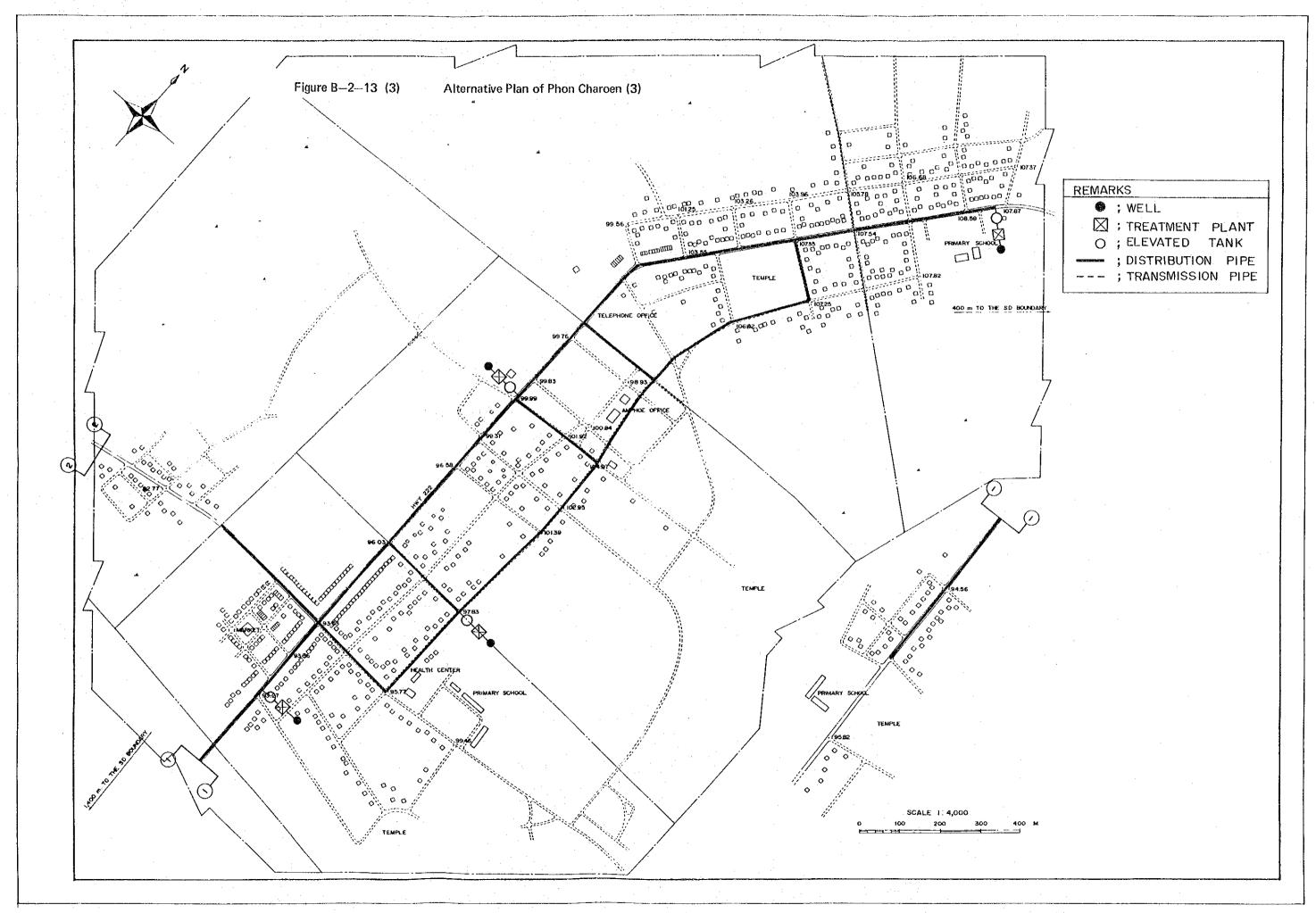

NONG	KI	
NONG	KI	

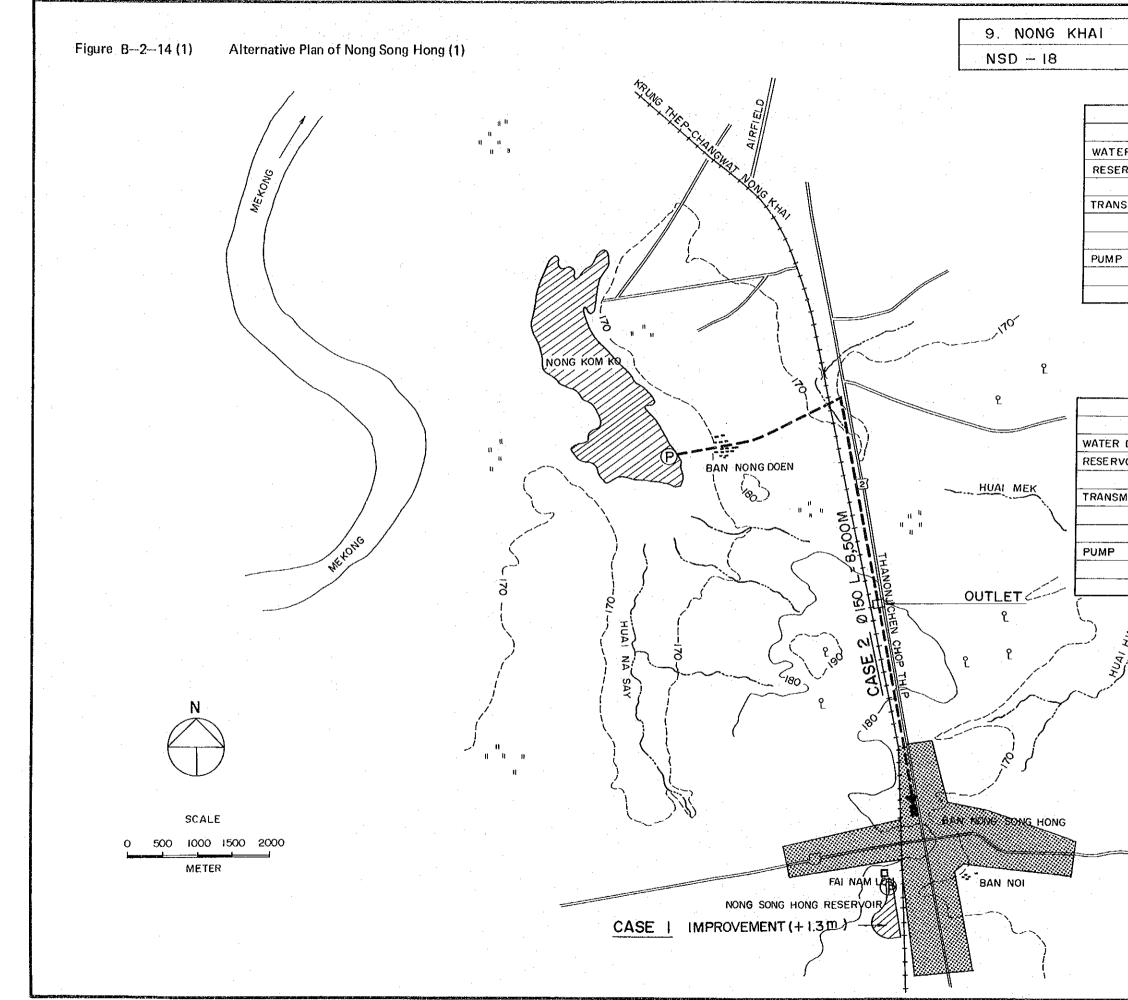
1	CAS	SE I	
DESCRI	PTION	UNIT	
ER DEMAN) (MAX.)	M ³ /D	2,790
ERVOIR NA	ME		TUNG KRATEN
CAP	ACITY	мсм	1.6
NSMISSION	DISCHARGE	M3/S	0.032
	LENGTH	м	3,050
	PIPE DIA	мм	0 250
Ρ	HEAD	M	35
	OUTPUT	кw	22



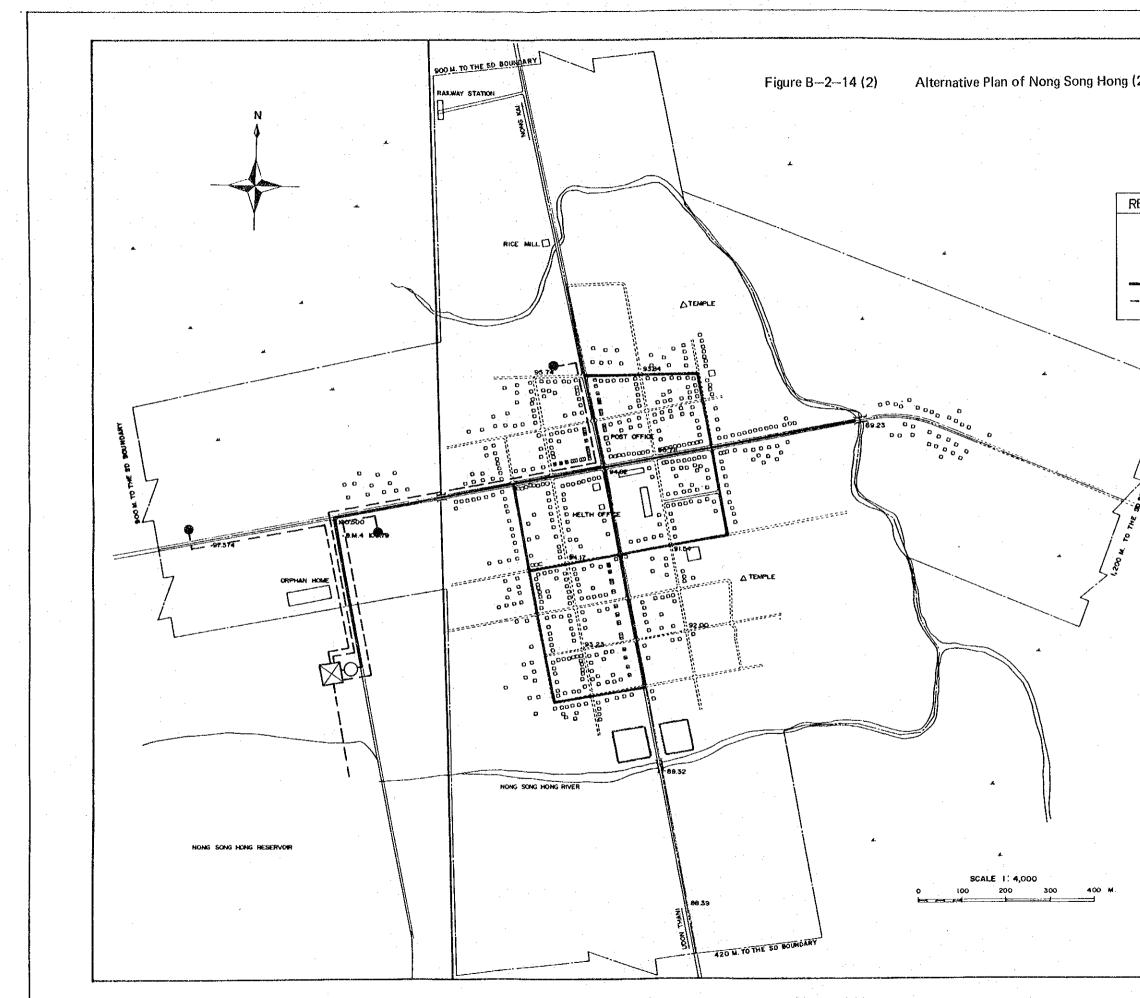


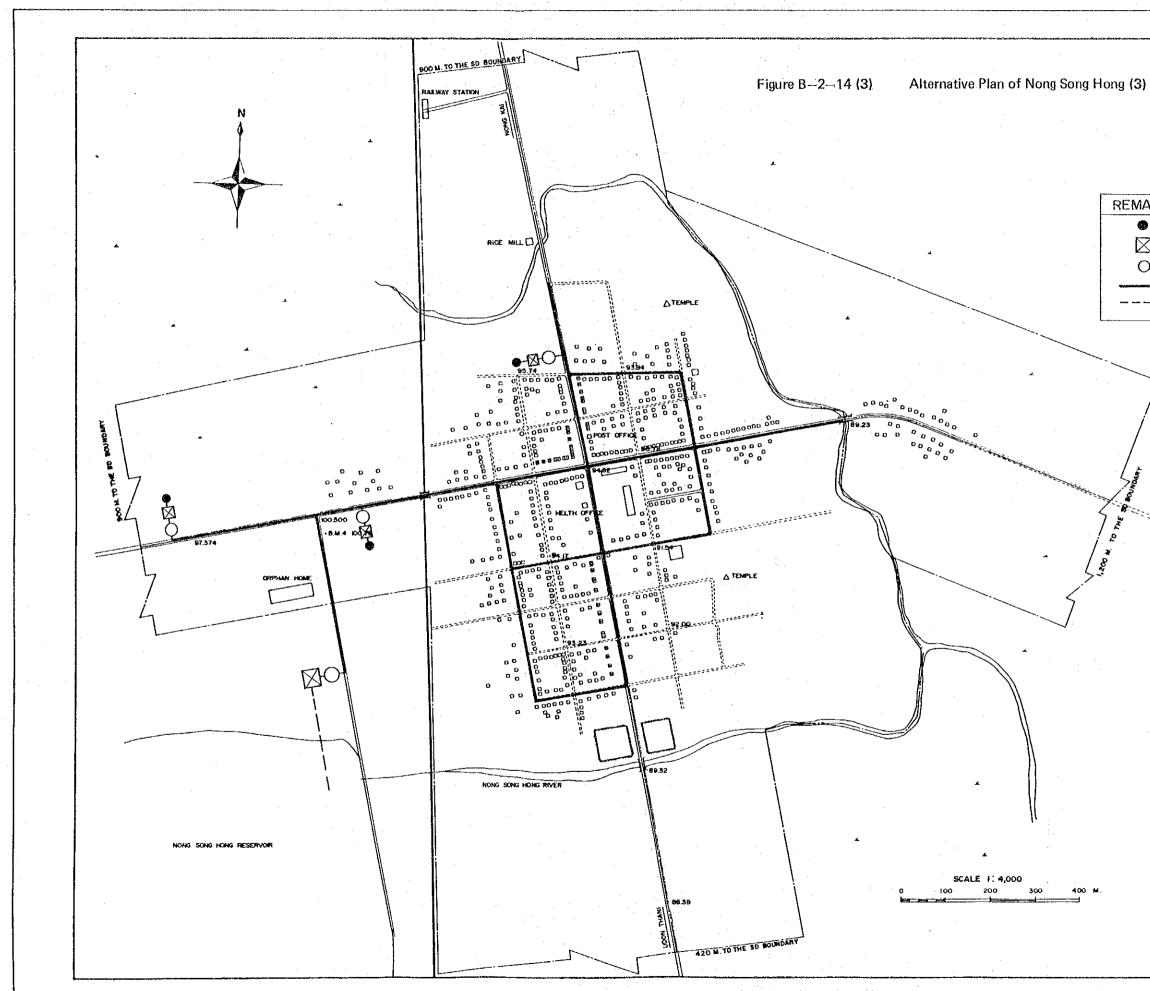



REMARKS 🔴 ; WELL ; TREATMENT PLANT O ; ELEVATED TANK ; DISTRIBUTION PIPE ---; TRANSMISSION PIPE $\overline{}$ $(\overline{})$

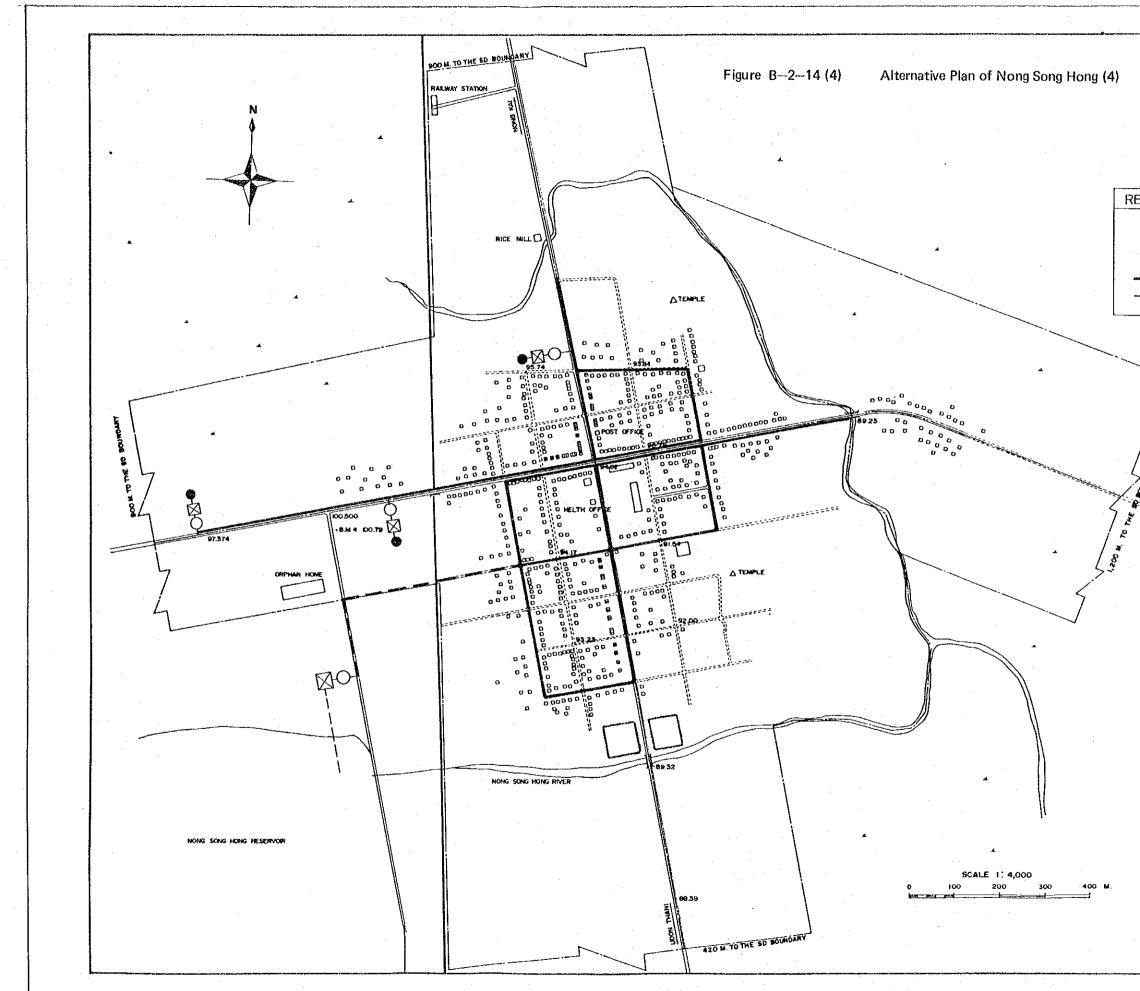


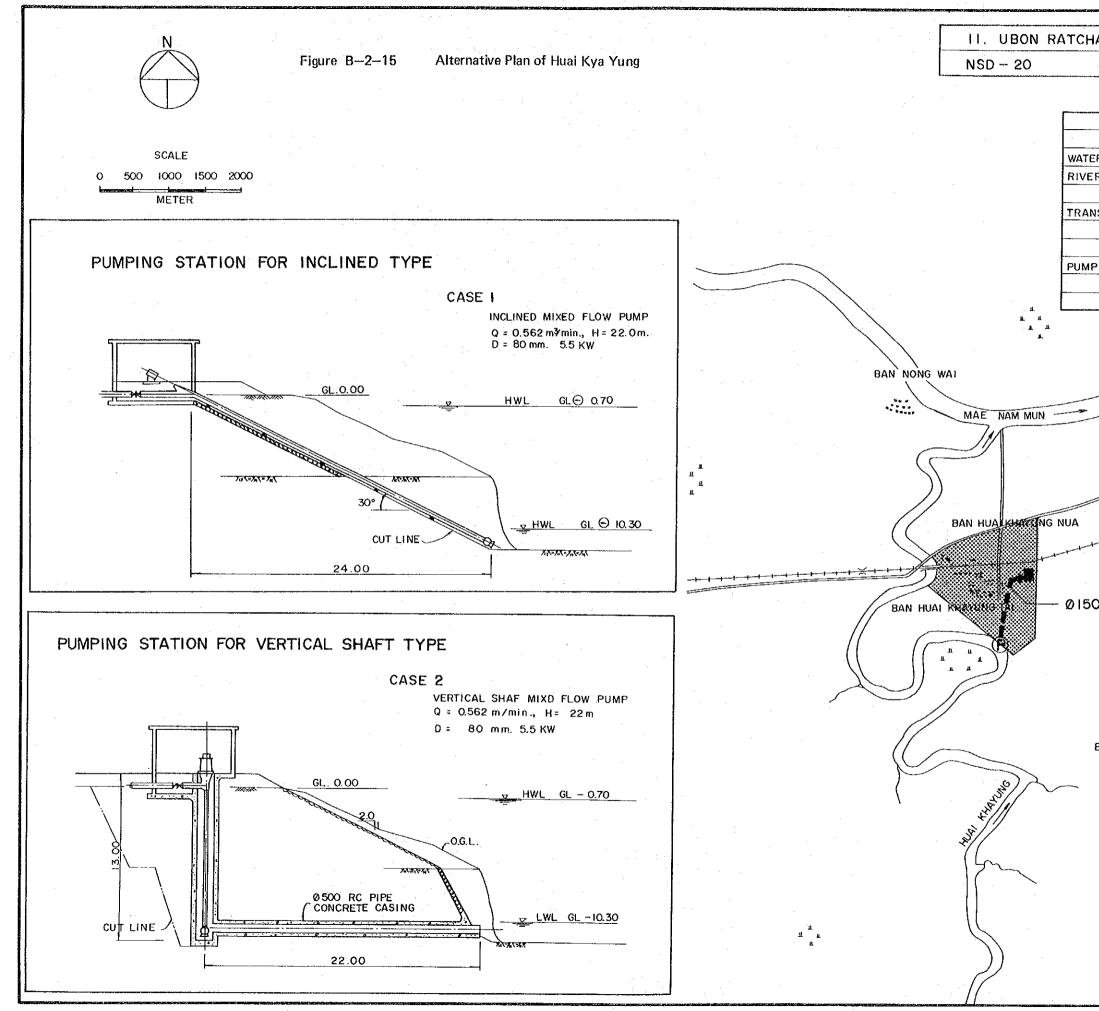
REMARKS • ; WELL 🔀 ; TREATMENT PLANT O ; ELEVATED TANK ____; DISTRIBUTION PIPE --- ; TRANSMISSION PIPE (\overline{r}) 1




 	·		
NONG	SONG	HONG	
NONG	SONG	HONG	

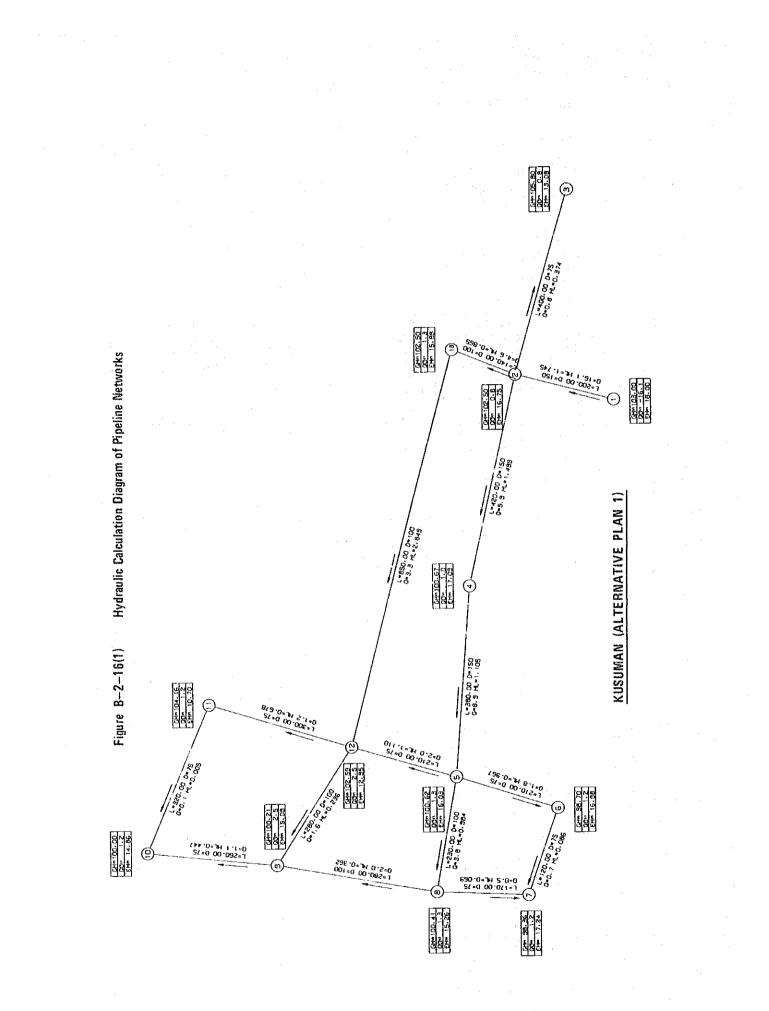
	CAS	SE I	
DESCRIP	TION	UNIT	
ER DEMAN	D(MAX.)	M3/D	1,420
RVOIR NA	ME		NONG-SONG HONG
САРА	CITY	мсм	0.38
SMISSION	DISCHARGE	M3/S	0.016
•	LENGTH	м	200
	PIPE DIA	MM	Ø 150
>	HEAD	м	·
	Ουτρυτ	ĸw	3.7
	· · .		


	CAS	SE 2				
DESCRI	PTION	UNIT				
DEMAND	(MAX.)	M ³ /D	1,420			
VOIR NA	ME		NONG KOM KO			
CAP	ACITY	мсм	10.0			
MISSION	DISCHARGE	M3/S	0.016			
	LENGTH	M	8,500			
	PIPE DIA	MM	Ø 200			
	HEAD	M	29			
	OUTPUT	ĸw	11			
		the second s				


alara mandari di kata mandari da fini di pada mandari matemati da bar (i fini di mandari			
2)			
· · ·			
EMARKS			
 ; WELL ; TREATME ; ELEVATE 	ENT PLANT		
, DISTRIB	UTION PIPE ISSION PIPE		
· · · · · · · · · · · · · · · · · · ·]	
	• .		
/			
		·	
B.2-38		· ·	

REMARKS • ; WELL 🔀 ; TREATMENT PLANT O ; ELEVATED TANK - ; DISTRIBUTION PIPE --- ; TRANSMISSION PIPE 8

REMARKS 🗢 😳 WELL ☐ ; TREATMENT PLANT O ; ELEVATED TANK ; DISTRIBUTION PIPE ----; TRANSMISSION PIPE #::-


HATHANI	WARIN	СНАМ	RΔP
	HUAI K		
· · · · · · · · · · · · · · · · · · ·	CAS		
		UNIT M ³ /D	<u> </u>
ER DEMAND	(MAX.)	Mº/U	810 HUAL KYA YUNG
CAPA	CITY	M ³ /S	11.7
NSMISSION		M ³ /S	0.009
	LENGTH	M	1,000
	PIPE DIA	MM	0150
	HEAD	M	22
	OUTPUT	KW	5.5
		<u> </u>	<u> </u>
17	/		<u></u>
_ / /		÷	
		/	
			نې : بې :
			tot tot tot
	•	-++++-+-	turturt
	+ + A + + +		
t t t t t t t		N NONG	SALA
50 L=1,00	O M		
1			
		T	
	ц		
		т ГГ П	
BAN NAM TH	IANG		
92. ⁴⁷			

of Pipeline
llead
Effective
and
Diameter
Table B-2-2(1)

NAME OF SANITARY DISTRICT : KUSUMAN (ALTERNATIVE PLAN 1)

X** INPUT DATA *** 0.075 (M) WATER HEAD ELEVATION HEAD ELEVATION HEAD ELEVATION WATER NUMBER OF PTPELINE MININUM DIAMETER		
CONTACT DIVERTED GRDUND EFFECTIVE NO. WATER HEAD ELEVATION HEAD (EL.M) (EL.M) (M) (M) (EL.M) (M)	WATER Demand (L/SEC)	
CONTACT DIVERTED GRDUND EFFECTIVE NO. WATER HEAD ELEVATION HEAD (EL.M) (EL.M) (M) (M) (EL.M) (M)	POPULATION Served	- - - - - - - - - - - - - - - - - - -
CONTACT DIVERTED GROUND NO. WATER HEAD ELEVATION (EL.W) (EL.W) (EL.W) (FL.W) (FL.M) (F	EFFECTIVE HEAD (M)	17.000 17.0000 17.0000 17.0000 17.0000 17.0000000000
0.075 (M) 16 13 1 0026 (L/SEC/CAPITA) 1 19.6	GROUND ELEVATION (EL.M)	102.550 102.550 102.500 105.800 105.800 98.700 98.360 98.360 98.360 100.620 100.210 100.210 102.590
0.075 (M) 16 13 1 0026 (L/SEC/CAPITA) 1 19.6	DIVERTED WATER HEAD (EL.M)	1119.550 1119.550 1116.689 1116.689 1116.028 1116.028 1116.028 1116.3282 1116.3282 1116.3282 1116.3282 1116.3282 1116.3282 1116.3282 1116.3282 1116.3282 1116.3282 1116.3282 1116.3282 1116.3282 1116.3282 1116.5282 11175.5282 1116.5282 1116.5282 1116.5282 1116.5282 1116.5282 1116.5282 1116.5282 11175.5285 11175.5285 11175.5585 11175.5585 11175.5585 11175.5585 11175.5585 11175.5585 11175.55855 11055.55855 110555.55855 11055555555555555555555
	CONTACT NO.	- 019 4 59 9 7 8 8 0 - 0 9 1 - 1 - 1 1 - 1 - 1 1 - 1 - 1 1 - 1 - 1
WINIMUM DIAMETER **** INPUT DATA *** MINIMUM DIAMETER ***********************************		0.075 (M) 16 13 0.0026 (L/SEC/ 119.6
MINIMUM DIA MUMBER OF P NUMBER OF C NUMBER OF C NUMBER OF C NUMBER OF C NUMBER OF C NUMBER OF C	*** INPUT DATA ***	
n a 44		MINIMUM DIA NUMBER DF F NUMBER DF C NUMBER DF C HUURLY MAXI DESIGNATED DESIGNATED

FRICTION LOSS COEFFICIENT	0.03588 0.035888 0.04580 0.04580 0.04580 0.045846 0.045846 0.045846 0.04575 0.04575 0.04575 0.04575 0.033711 -0.04505 -0.033711 -0.035445 -0.033711 -0.035445 -0.033711 -0.035445 -0.035445 -0.035445 -0.035445 -0.035445 -0.03545 -0.03545 -0.03545 -0.03545 -0.03555 -0.03555 -0.035555 -0.035555 -0.035555 -0.0355555 -0.0355555 -0.0355555 -0.03555555 -0.035555555 -0.03555555 -0.0355555555 -0.0355555555555555555555555555555555555
HYDROURIC GRADIENT	4.871 2.3779 2.3779 0.0504 0.053 0.05500000000
HEAD LOSS (M)	2.436 0.3336 0.2122 0.02122 0.0212 0.0255 0.017 1.14588 1.145888 1.145888 1.145888 1.145888 1.1458888 1.145888 1.1458
VELDCITY (M/SEC)	00000000000000000000000000000000000000
DISCHARGE (L/SEC)	4001010101010 1880000004000041
DISCHARGE COEFFICIENT	2222222222222222
LENGTH (M)	500.00 140.00 420.00 380.00 380.00 170.00 320.00 320.00 320.00 320.00 350.00 350.00 350.00 350.00 350.00 350.00 350.00 350.00 350.00
DIAMETER (MM)	00000222200000002000 000002222000000000
.01 10.	омалогаранойолог ммалогаранойолог
CONTACT	-0000000000000000000000000000000000000
PIPE KO.	× 01111111 0110000000000000000000000000

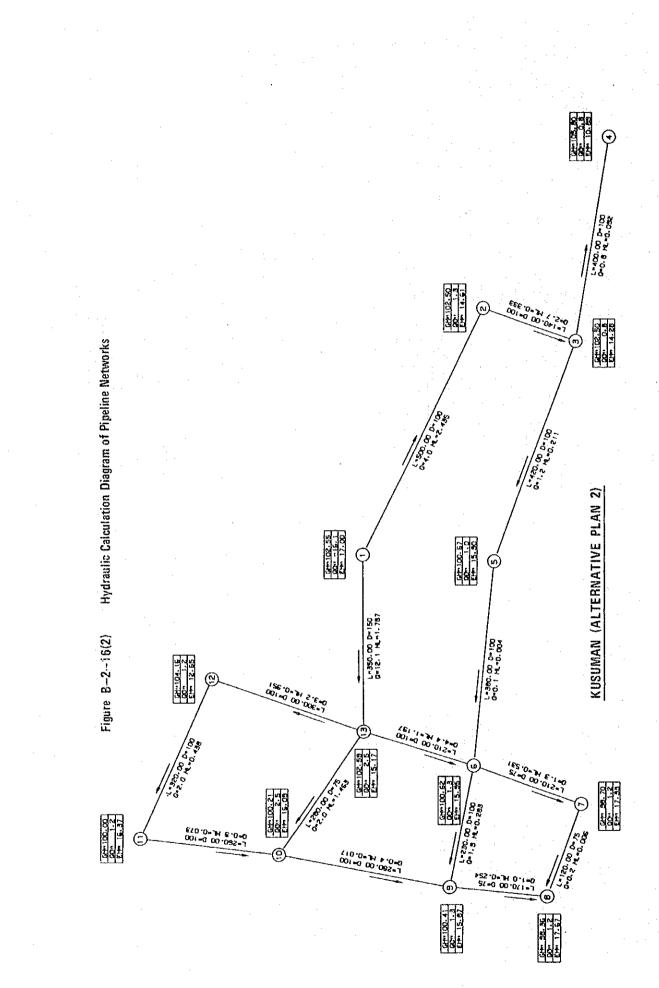

B.2-43

Table B-2-2(2) Diameter and Effective Head of Pipeline

NAME OF SANITARY DISTRICT ; KUSUMAN (ALTERNATIVE PLAN 2)

WATER Demand CL/SEC)	
EFFECTIVE POPULATION HEAD SERVED (M)	6 6200 72000 70000 7000000
EFFECTIVE HEAD (M)	17.000 14.614 14.614 15.9400 15.9400 17.334 17.334 17.668 17.334 17.334 17.334 17.334 17.334 17.334 17.173
GROUND ELEVATION (EL.M)	102.550 102.550 102.550 102.500 102.500 98.700 98.700 98.700 98.700 100.210 100.210 102.590
DIVERTED WATER HEAD (EL M)	119.550 117.114 116.581 116.581 116.589 116.589 116.228 116.228 116.229 116.239 117.763
CONTACT ND. W	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
· ·	
	0.075 (M) 16 13 0.0026 (L/SEC/CAPITA) 119.6
*** INPUT DATA ***	MINIMUM DIAMETER

	H																		Ħ
FRICTION LOSS COEFFICTENT		0.03588	0.03800	0.04580	0.04302	0.05846	0.04075	0.05556	-0.04250	-0.05098			11220.0-					917cn-n-	
HYDROURIC GRADIENT		4.871	2.379	0.231	0.504	0.011	2.530	0.053	-1-497	-0.060	-0.284		121 2-	-1 231				col.c_	
HEAD LOSS (M)		2.436	0.333	0.092	0.212	0.004	0.531	0.006	-0.255	-0.017	-0.074	0.4.0-	-0.951	-0.283	11 466		797	101.1	
VELOCITY (M/SEC)		0.516	0.350	0:099	0.152	0.019	0.302	0.037	-0.228	-0.048	-0.111	-0.260	-0.409	-0.245	-0.447	0.562	-0.683		4 1 6 6 7 7 8
DISCHARGE (L/SEC)	8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4.1	2.8	0.8	1.2	0.2	~ T	0.2	-1,0	-0.4	6.0-	-2 0	- 3. 2	6 1	12.0	4.4	- 1 2 1		
DISCHARGE CDEFFICIENT) 	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110		
LENGTH (M)		500.00	140.00	400.00	420.00	380.00	210.00	120.00	170.00	280.00	260.00	320.00	300.00	230.00	280.00	210.00	350.00		4570.00
DIAMETER (MM)		100	100	100	100	100	22	75	75	100	100	100	100	100	75	100	150		
0 0 Z F		2	v	4	Ś	οı	~ ·	ŝ	თ .	0		12	13	9	13	9	•~•		
CONTACT FROM		، ا	.71	ו ני	~> 1	<u>~</u> ·	ام	~ `	80 ·	љ	10	11	12		10	13	13		
PIPE ND.		+ ¢	NI	~).	er i	^ `	۵ı	~ .	0	<u>ም</u>	01	11	12	2	14	5	16		TOTAL

B.2-45

Table B-2-2(3) Diameter and Effective Head of Pipeline

NAME DF SANITARY DISTRICT : KUSUMAN (ALTERNATIVE PLAN 3)

WATER DEMAND (L/SEC)	400000000000000000000000000000000000000
EFFECTIVE POPULATION HEAD SERVED (M)	1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
EFFECTIVE HEAD (M)	111 112 112 112 112 112 112 112 112 112
GROUND ELEVATION (EL.M)	105.800 100.670 98.760 98.760 98.360 98.360 100.210 100.210 100.210 102.550 102.550
DIVERTED WATER HEAD (EL.M)	118.800 116.813 114.8513 114.9848 113.8888 113.8888 114.9433 116.806 116.806 116.806
CONTACT ND.	
	0.075 (M) 16 13 0.0026 (L/SEC/CAPITA) 118.8
*** ATAG TUPUT 3***	MINIMUM DIAMETER

i co i	i Ni	
FRICTION LOSS COEFFICIENT	0.03543 0.03543 0.03647 0.03647 0.051034 0.04103 0.04214 0.04089 -0.04089 -0.04089 -0.03961 -0.03961 -0.03961 -0.04251 -0.04251	
HYDROURIC GRADIENT	5.718 3.973 3.973 3.973 3.973 2.126 2.126 5.718 0.026 5.718 0.026 5.718 0.026 5.718 0.026 5.718 0.026 5.718 0.026 5.718 0.026 5.718 0.025 5.7555 5.7555 5.7555 5.75555 5.75555 5.755555555	
HEAD LOSS (M)	2.287 2.287 2.669 2.669 2.669 2.669 2.288 2.20 2.20 2.20 2.20 2.20 2.20 2.2	
VELOCITY (M/SEC)	0.562 0.562 0.2652 0.2330 0.2349 0.2344 0.02441 0.2346 0.15520 0.15520 0.15520000000000000000000000000000000000	
DISCHARGE (L/SEC)	4000000000000400 400000000000400	
DISCHARGE COEFFICIENT		
LENGTH (M)	400.00 420.00 380.00 210.00 170.00 220.00 3300.00 230.00 220.00 3350.00 3350.00 3350.00 3350.00 500.00 3350.00	4010.00
DIAMETER (MM)	0001 775 0000 775 0001 775 0001 775 0001 775 0001 775 00000 775 00000 775 00000000	
.0 10.	0m4v9r800044440m0	
CONTACT NO FROM TO	20004000000000000000000000000000000000	
PIPE NO.	* ••••••••••••••••••••••••••••••••••••	

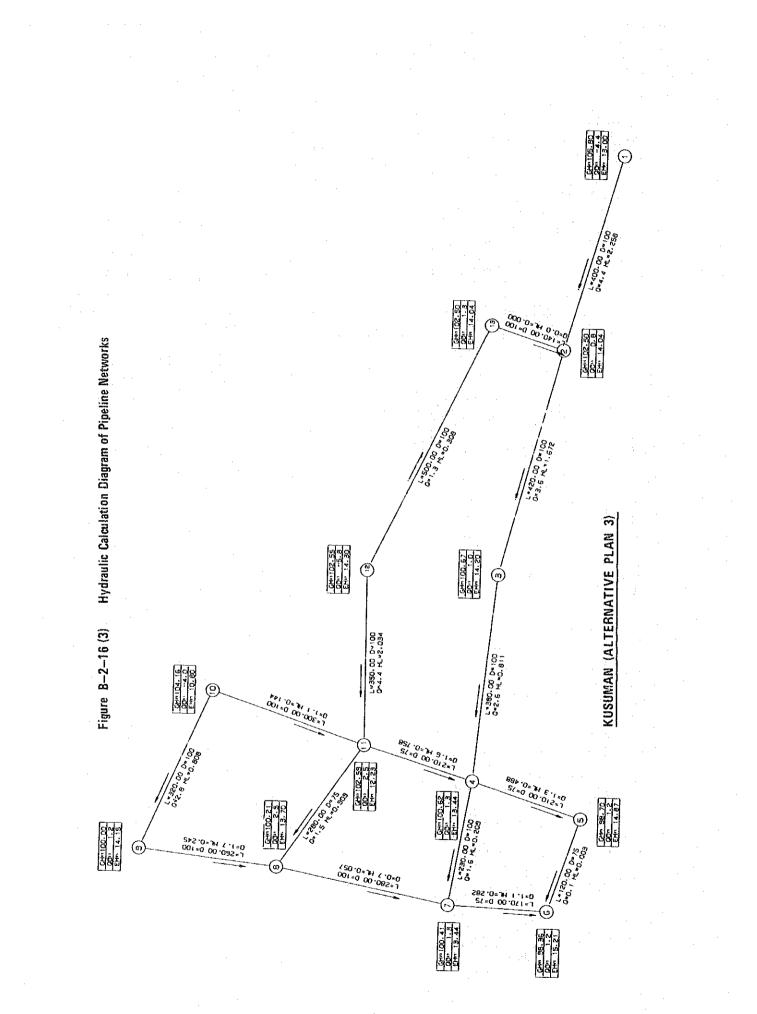


Table B-2-3(1) Diameter and Effective Head of Pipeline

NAME DF SANITARY DISTRICT / PHON CHARDEN (ALTERNATIVE PLAN I)

•	
WATER DEMAND (L/SEC)	1 V40400000400044 04040004000000
POPULATION SERVED	-10600.0 15600.0 2200.0 2200.0 2200.0 2200.0 2200.0 2200.0 2200.0 200000000
EFECTIVE F HEAD (M)	14.000 10.800 177.391 177.391 177.391 209.825 209.825 209.825 209.825 209.255 209.255 209.255 209.255 209.255 209.255 209.255 209.255 209.255 200.2555 200.25555 200.2555 200.2555 200.2555 200.2555
GROUND ELEVATION (EL.M)	107.350 99.090 95.030 95.030 95.030 95.770 95.770 97.770 97.770 97.970 98.970 98.970 98.970 98.970
DIVERTED WATER HEAD (EL.M)	121.350 118.550 118.774 118.774 118.774 115.983 115.983 113.597 115.597 115.59
CONTACT NO.	-0194502-0000-0194 -01945
	0.075 (M) 17 14 0.0026 (L/SEC/CAPITA) 121.4
*** INPUT DATA ***	MINIMUM DIAMETER

S	¥ 1 1																							¥
FRICTION LOSS Coefficient		0.03578	0.03228			10400.0	0.03384	0.03333	22420 U		-0.03884	-0.04169	-0.03552		F0000-0-	-0:03437	-0.03305		-0.04000	-0,04354			0.03235	
HYDROURIC GRADIENT -		5.057	4.897	5.088			20.2	3.278	4 155		10.41	-0.746	-5.511			-2.233	-3.648	001 11		-1.106		3 L V P V	CO/ • #	
HEAD LOSS (M)		2.680	1.959	0.618	0 637		20001	0.885	2.867	707		-0.179	-1.488	-0 807		000.01	-1.605	-0.782		-0.288	-0.208	0.45	20.0	
VELOCITY (M/SEC)	4 0 0 1 1 1 1 1 1 1 1 1	0.526	0.668	0.521	0.469			0.538	0.473	0 V 1 8		-0.15/	-0.551	-0.359			-0.570	-0.339		061.0-	-0.178	0.658		
DISCHARGE (L/SEC)		4.1	11.8	9.2	8.3	ν α		с • љ		۲ ۵			-4.3	-6.3		- (-10.1				-0. ⁸	11.6		
DISCHARGE		011	110	110	110	110		110	110	110			011	110	110		110	110	0		110	110		
LENGTH (M)			400.00	200.00	250.00	480.00	00 020		00.00	510.00	240 00	040.00		520.00	250.00			250.00	260.00		00.022	160.00		5940.00
DIAMETER (MM)	007				041	150	5.0		200	22	100			0 < 1	150	5		~	₹ •	1 1		150		
NO.	Ċ	4 6	יי	1 1	^ '	ø	~	- 0	01	~	10	-		2	2	14	۲ ب		-2 -1 -1	2	7.	41		
CONTACT FROM	٠		- 1-	• •	41	'n	v		- 6	т	~	C F) -	-	12	14 1	•	21	Ś	4	••	-		
ртре NG. ж	٠	• •	4 L	•	\$ I	'n	ç	- 1	- 0	0	ው	01	• •		21	۲٩ ۳		f 1	5	16	, ,			TOTAL

Table B-2-3(2) Diameter and Effective Head of Pipeline

NAME DF SANITARY DISTRICT' & PHON CHARDEN (ALTERNATIVE PLAN 2)

	U	CONTACT NO.	DIVERTED Water Head (EL.M)	GROUND ELEVATION (EL.M)	EFFECTIVE HEAD (M)	EFFECTIVE POPULATION HEAD SERVED (M)	WATER Demand (L/Sec)
*** INPUT DATA ***	7	. 					#
		•	121.350	107.350	14.000	-10600.0	-27.6
MINIMUM DIAMETER		~	118.670	107.870		1590.0	4 1
NUMBER OF PIPELINE		ر م .	119.391	102.000	17.391	1000.0	2.6
NUMBER OF CONTACT	5 -	4	118.774	99.800		650.0	1.7
NUMBER OF CONTACT DESIGNATING WATER HEAD	A DOSE (1 /SEC/CAPITA)	ŝ	118.136	060 66		220.0	0.6
HOURLY MAXIMUM WATER DEMAND		9	116.835	96.030		220.0	0.6
DESIGNATED CONTACT	101 4	7	115,950	93.530		2080.0	5.4
1 1 1 5 7	F • 1 7 1	sO	113.083	94.560		1430.0	3.7
	-	6	113.597	92.770		710.0	1.8
		01	116.129	95.770		1100.0	2.9
	•		117.617	97.830		200.0	0,5
-		12	118.424	104.970		200.0	0.5
		13	118.982	98.930		600.0-	1.6
		14	120.588	107.250		600.0	1.6

N N		•			-														98 1 1	
FRICTION LOSS COEFFICIENT		0.03578	0.03228	0.03349	0.03401	0.03384	0.03333	0.03634	-0.03684	-0.04169	-0.03553	-0.03539	-0.03437	-0.03305	-0.04006	-0:04354	-0.04408	0 02076		
HYDROURIC GRADIENT	· ·	5.057	4 897	3.088	2.549	2.712	3.278	4,155	-4.613	-0-746	-5.511	-1 553	-2.233	-3.648	-3.128	-1.106	-0.948	376 1		
HEAD LOSS (M)	-	2.680	1.959	0.618	0.637	1.302	0.885	2.867	-2.353	-0.179	-1.488	-0.807	-0.558	-1.605	-0.782	-0.288	-0.208			
VELDCITY (M/SEC)		0.526	0.668	0.521	0.469	0.485	0.538	0.473	-0.418	-0.187	-0.551	-0.359	-0.437	-0.570	-0.339	-0.193	0.178			
DISCHARGE (L/SEC)	 	4.1	11.8	9.2	с С	9.0	5	2Z			- 4	1	- 2 - 2 -	-10.1		- C-	. C -		0.11	
DISCHARGE COEFFICIENT	4 1 1 1 1 1 1 1 1 1 1 1	110	110	110	0.11	011	011	110	011		011	110	110	011					011	-
LENGTH (M)		530.00			250.00	480.00	220.00	690.00	510.00 00.012		270.00	200.00	950.00		00.024	00.004			160.00	5940.00
DIAMETER (MM)		100							2						202	- r	- r	-	150	
NO.		0		, -	żν	٦v	7 6	- a	-1 C	- C	2 -		4 F) < - r	t -	- 6	4 V 7 -	2	14	
CONTACT FROM	: : : : :	. e	• •	- Þ	د ر	1 V	שר	4 C	- C	r F	- 0		C 7	4 6		o v	n -	Ŧ	-	
ΡΙΡΕ ΝΟ.	1 1 1 1	. •		1	°.	3 V	יי	10	- 0	00	P () • - •		4 U 7 T		4 6	10 V 11 F	10	17.	TOTAL

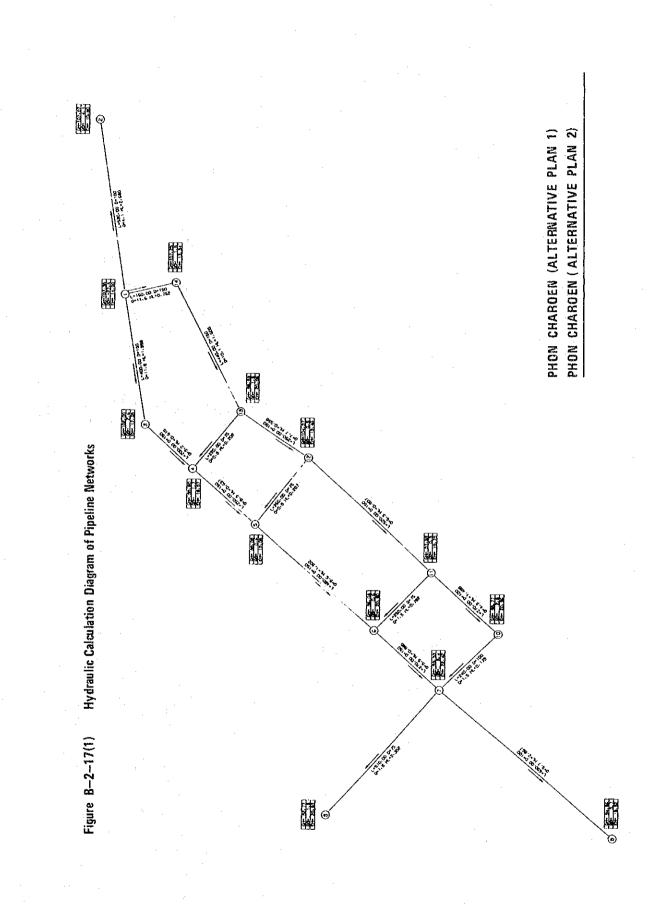


Table B-2-3(3) Diameter and Effective Head of Pipeline

NAME OF SANITARY DISTRICT ; PHON CHARDEN (ALTERNATIVE PLAN 3)

WATER DEMAND (L/SEC)	, , , , , , , , , , , , , , , , , , ,
POPULATION SERVED	6900.0 6900.0 10000.0 11120.0 6000.0 11120.0 6000.0 11120.0 6000.0 11120.0
EFFECTIVE HEAD (M)	12. 10. 10. 10. 10. 10. 10. 10. 10
CROUND ELEVATION (EL.M)	107.350 107.350 99.800 99.800 99.800 99.500 97.770 92.7700 92.7700 92.7700 92.7700 92.7700 92.7700 92.7700 92.7700 92.7700 92.7700 92.7700 92.7700 92.7700 92.7700 92.7700 92.7700 92.7700 92.7700 97.770000000000
DIVERTED WATER HEAD (EL.M)	119.350 118.779 118.779 117.454 111.5454 111.2995 111.278 111.388 111.388 11.388 11.388 11.388 11.388 11.388 11.388 11.3888 11.3888 11.3888 11.3888 11.3888 11.3888 11.3888 11
CONTACT NO. (- 007 4 5 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
*** INPUT DATA ***	MINIMUM DIAMETER 0.075 (M) NUMBER OF PIPELINE

¥																	4	¥
FRICTION LOSS COEFFICIENT	0,04048	0.03486	0.03542	0.03602	0.03411	0.03483	0.03634	-0.03884	-0.04128	-0.03541	-0.03528	-0.03501	-0.03448	-0.03860	0.05165	-0.04134	0.03354	L L T T T T T T T L L
HYDROURIC GRADIENT	1.078	1.873	5.731	4.638	9.1.80	1.890	4.155	-4.613	-0.846	-5.756	-6,010	-6.637	-2.145	-4.988	0.131	-2.116	3.038	- - - - - - - - - - - - - - - - - - -
HEAD LOSS (M)	0.571	0.749	1 146	1.160	4.406	0.510	2.867	-2.353	-0.203	-1.554	-3.125	-1.659	-0.944	-1.247	0.034	-0.466	0.486	₽ ↓ ↓ ↓ ↓ ↓ ↓ ↓
VELOCITY (M/SEC)	0.228	0.397	0.563	0.502	0.726	0.399	0.473	-0.418	-0.200	-0.565	-0.578	-0.610	-0.428	-0.436	0.061	-0.274	0.516	t t t t t t t t t t t t t t t t t t t
DISCHARGE (L/SEC)	5. 8	7.0	4.4	ы. С	5.7	7.1	3.7	-1.8	-1.6	-4.4	-4.5	-4.8	-7.6	-1.9	0.3	-1.2	9.1.	•
DISCHARGE	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	
LENGTH (M)	530.00	400.00	200.00	250.00	480.00	270.00	690.00	510.00	240.00	270.00	520.00	250.00	440.00	250.00	260.00	220.00	160.00	5940.00
DIAMETER (MM)	100	150	100	100	100	150	100	22	100	100	100	100	150	22	75	75	150	
NO.	0	1 14	1	۰Ļ	ŝ		. 00	(10) e-	1	۱۲. • • •	14	1	2	i M	4	1
CONTACT FROM	.	•	. 17.	- 1	· ur	¢ د	- 1	σ	• •	10	,	6	1	è.e	. vr	-1	- 	
PIPE NO.	*	• ~	1 14	4		ي د ا		- 00)σ	, 1 0,) .		1 M	14		9.9	12	TOTAL

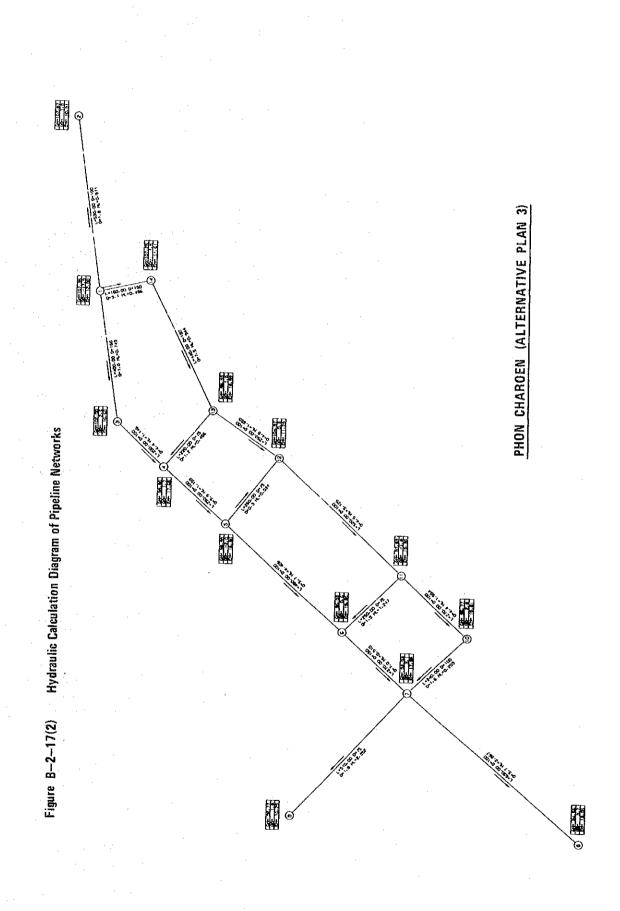


Table B-2-4(1) Diameter and Effective Head of Pipeline

NAME OF SANITARY DISTRICT : NONG SONG HONG (ALTERNATIVE PLAN 1)

10 0701 11 12 07 0
94 020
100 587
4
NUMBER OF CONTACT DESIGNATING WATER HEAD
NATING W

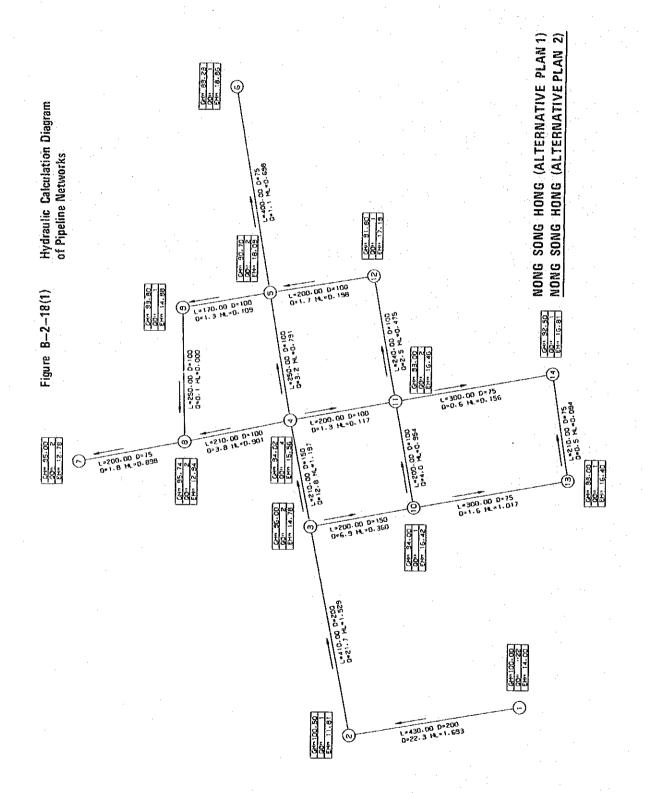

¥ 1							•													·		¥ 1		
COEFFICIENT		0.03048	0 03061	0.03189	0.03715	0.04198			0.03892	-0.06781	-0.04220	70/20 U-		-0.04Z5U	0 04077	0.0750.0		0,0350	-0.03981	-0.04623		20040.0		
GRADIENT		3.937	3.727	5 695	3 160	1 745		4 004	4.494	-0.002	-0.641	-1 707		-0.587	0.988	1 1 1	4 10	1.980	-3, 389	-0.522		0.440		
(W)		1.693	1.528	1,196	0.790	0.608		0. 400 U	0.899	-0.000	-0.109		600°0-	-0.117	301 0		0.404	0.475	-1.017	-0.157		0.044		
(M/SEC)		0.712	0.691	0 725				0 481	0.412	-0.007	-0-17		- CO CO -	0.155	0 218) () (014.0	0 317	-0.354	061 01		0.118		
(L/SEC)		22.4	21.7	10.0		, - , -		80	5.5				۰ ۰ ۰				4.0	2.5	y			0.5		
COEFFICIENT		110					011	110	110	110			110	110) (' (011	110	110			110	110		
(W)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	00 U2 V				00.052	400.00	210.00				1 / 0.00	200.00	00 006		200.002	200,00	240.00			200.000	210.00		4380.00
CMM)		000		201	001	100	5	100	2 C C C C C C C C C C C C C C C C C C C		001	100	150	001		100	100	100		2;	() ()	. 75		
		c	~ ~	~ ·	4	ŝ	¢	α	1 0	- 0	ب ر	ഹ	~		4 1	n	• •			2	11	4		
FROM		Ŧ	(NI	γ	ব	w	-	, c	0 (χ,	.	C F) •		12	0.7			5	4	13		
Р17 КО.				N	m	4	ŝ	i vi	5 F	~ ,	a) I		: C	2	11	12			<i>t</i> I	<u>_</u>	16	17	1 1 1 1	TOTAL

Table B-2-4(2) Diameter and Effective Head of Pipeline

NAME OF SANITARY DISTRICT / NONG SONG HONG (ALTBRNATIVE PLAN 2)

WATER DEMAND (L/SEC)	000400-00-00-0 40000-000000000000000000
SERVED	8600.0 2500.0 2500.0 4500.0 4500.0 7800.0 5000.0 8600.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0
EFFECTIVE POF	4144144444444 444444444444444444444444
GROUND ELEVATION (EL.M)	100.000 94.000 94.000 94.000 94.000 94.000 94.000 94.000 94.000 94.000 94.000 94.000 94.000 95.000 97.0000 97.0000 97.0000 97.0000 97.0000000000
DIVERTED WATER HEAD (EL.M)	1114 000 1112 799 1109 583 108 793 108 685 108 685 108 686 109 420 109 420 109 991 108 991 109 309
CONTACT NO. 5	-0040000000004 -0004000000004
*** INPUT DATA ***	MINIMUM DIAMETER

PIPE NO.	CONTACT FROM	NO.	DIAMETER (MM)	LENGTH (M)	DISCHARGE COEFFICIENT	DISCHARGE (L/SEC)	VELOCITY (M/SEC)	HEAD LOSS (M)	HYDROURIC GRADIENT	FRICTION LOSS COEFFICIENT
										¥1
•• •		2	200	00 U24	011					
~	ç	1					217.0	1.693	3.937	0.03048
1	4 1			410.00	110	21.7	0.691	1.528	3.727	0 03061
ว	n	đ	041	210 00	110	12.8	0 705		- 10 - 10	
4	4	Ś	100	250.00	0.1					0.03169
v	v		9 U I			2.0	U.4US	0.790	3.160	0.03715
1.		- -		400.00	110	1.1	0.247	0.698	1.745	
D	4	-0	100	210.00	110	3.8	0 481			
~	•0	~	75	00.000	• • •			0.00	4 - 404	CZ950-0
α		- c	• •		011	0.1	0.412	0.899	4.494	0.03892
.	0 0	, , 1	0.1	00.042	110	-0.1	-0.007	-0.000	-0.002	-0.06781
ת	ን	n	100	170.00	110	-1-4	20122			
0	10	m	150	200 00						-0.04660
t t	•	-					-0.004	-0.359	-1.797	-0.03497
• 6	- 6	5 1	001	200.00	110	~ ~ ~	-0.165	-0.117	-0.587	-0.04250
2	12	n	100	200.00	110	1.7	0.218			
<u>۲</u>	10	€	100	200 00	077					
14		÷				2	010.0	0.454	4.770	0.03594
, v	4 P	10	21			< 7	0.317	0.475	1,980	0.03856
۱. • •	<u>,</u>		C	300.00	110	-1.6	-0.354	-1.017	13 780	
9	14	e	75	300.00	011	9 U -		- (10000.0
	4	1					F21-0-	-0.15/	-0.522	-0.04623
		1	`	20.012	011	0.5	0.118	0 094	0.446	0, 04682
TOTAL				4380.00						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

B.2-55

Table B-2-4(3) Diameter and Effective Head of Pipeline

NAME OF SANITARY DISTRICT ; NONG SONG HONG (ALTERNATIVE PLAN 3)

WATER DEMAND (L/SEC)	1 4 - 0 - 4 0 0 0 6 0 0 0 0 0 6 0 0 0 0 0 6 0 0 0 0 0 7
POPULATION SERVED	1 2 2 2 2 2 2 2 2 2 2 2 2 2
EFFECTIVE HEAD (M)	16.000 12.000 112.9892 112.9892 15.587 15.587 15.587 15.587 15.587 15.587 15.587 15.587 15.587 15.587 112.4585 112.478 112.478 15.905 15.905 15.431 16.335 16.335 16.335 16.335 16.000 17.957 16.885 17.000 17.957 16.900 17.957 16.900 17.9577 17.9577 17.9577 17.9577 17.9577 17.9577 17.9577 17.9577 17.95777 17.95777 17.95777 17.957777 17.9577777777777777777777777777777777777
GROUND ELEVATION (EL.M)	100.000 100.000 94.020 94.020 95.740 93.8000 93.800 93.8000 93.8000 93.8000 93.8000 93.8000 93.8000 93.8000 93.8000 93.8000 93.80000 93.8000000000000000000000000000000000000
DIVERTED WATER HEAD (EL.M)	116.000 112.892 107.077 107.989 107.077 106.287 106.754 106.754 106.708 106.273 106.390 106.961 113.706
CONTACT NO.	-0040000000000000000000000000000000000
	0.075 (M) 18 15 0.0026 (L/SEC/CAPITA) 116.0
*** INPUT DATA ***	MINIMUM DIAMETER

ŝ	X H	
FRICTION LOSS COEFFICIENT	0.00 0.03 0.03 0.03315 0.033715 0.033715 0.033715 0.033715 0.033715 0.0345456 0.0455633 0.0455633 0.0555563 0.0555563 0.0555563 0.0555563 0.0555563 0.0555563 0.0555563 0.0555563 0.0555563 0.0555563 0.0555555 0.0555555 0.0555555 0.0555555 0.0555555 0.0555555 0.05555555 0.05555555 0.05555555 0.05555555 0.05555555 0.05555555 0.055555555 0.055555555 0.0555555555 0.05555555555	
HYDROURIC GRADIENT	7.228 4.345 3.160 3.160 1.759	
HEAD LOSS (M)	4 4 903 4 4 903 4 4 903 4 903 4 903 1 790 1 700 1 790 1 700 1 7	
VELOCITY (M/SEC)	00000000000000000000000000000000000000	
DISCHARGE (L/SEC)	40422000000000000000000000000000000000	
DISCHARGE COEFFICIENT		
LENGTH (M)	4.30.00 250.00 250.00 250.00 250.00 250.00 250.00 250.00 2200.00 200.000 200.0000 200.00000000	4 1 00.00
DIAMETER (MM)	22220000000000000000000000000000000000	
0 Z L	88489888899999999999999999999999999999	
CONTACT FROM	-07949488860480648444 -079494888604806484888	
PIPE ND.	10004000000000000000000000000000000000	

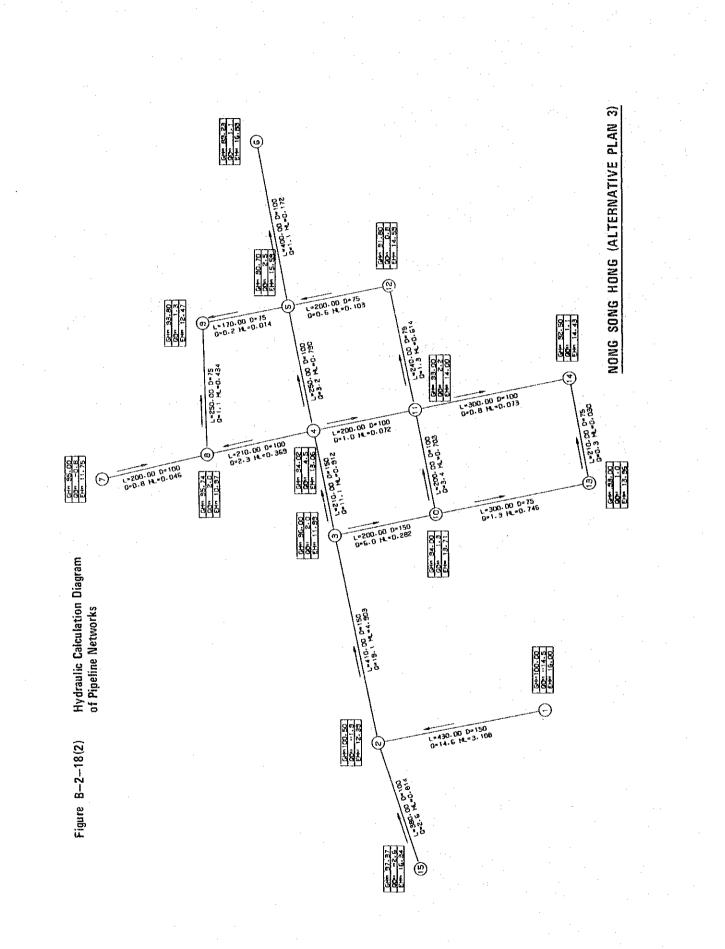


Table B-2-4(4) Diameter and Effective Head of Pipeline

NAME OF SANITARY DISTRICT ; NONG SONG HONG (ALTERNATIVE PLAN 4-1)

WATER DEMAND (L/SEC)	444700440044 444700440044
POPULATION SERVED	- 5600.0 7500.0 7500.0 8000.0 8600.0 8600.0 700.0 8600.0 700.0 200
FFECTIVE HEAD (M)	12.000 14.000 14.000 14.607 13.835 13.835 13.621 13.825 13.825 13.825
	100.000 96.000 94.020 94.020 92.230 93.230 93.000 92.500
CONTACT DIVERTED NO. WATER HEAD E (EL.M)	112.000 106.578 106.578 106.578 104.535 104.535 106.533 106.621 106.621
CONTACT NO. 1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*** INPUT DATA ***	MINIMUM DIAMETER

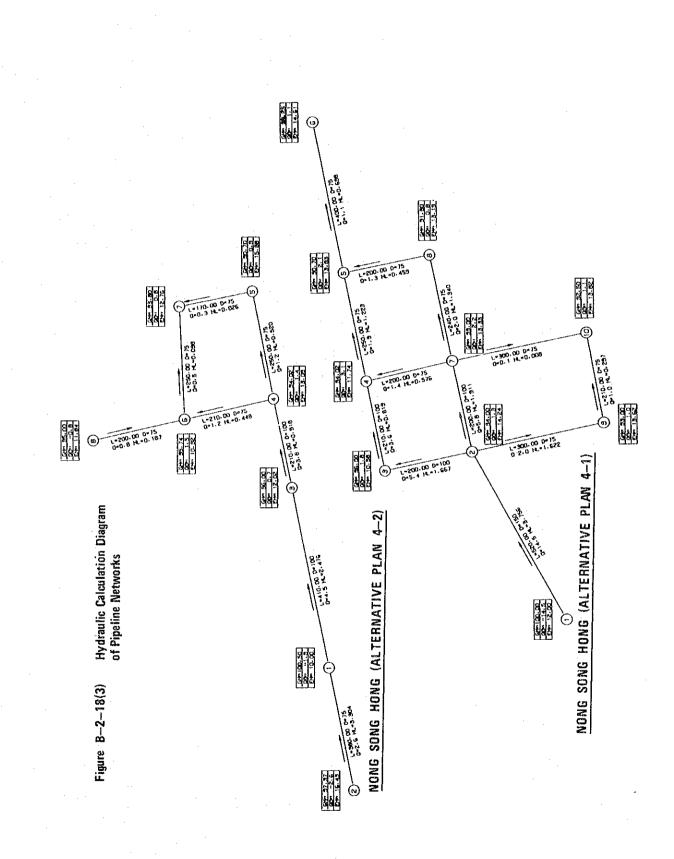

FRICTION LOSS COEFFICIENT	0.03129 0.03437 0.034532 0.04198 0.04198 0.04198 0.04107 0.042335 0.04107 0.042335 0.04233 0.04233	
HYDROURIC GRADIENT	7.222 8.335 3.903 3.903 4.892 1.745 9.556 9.556 7.7457 7.7457 7.7457 7.7457 7.7457777777777	
HEAD LOSS (M)	755 755 755 755 755 755 755 755 755 755	
VELOCITY (M/SEC)	0.00 0.28894 0.28894 0.2847 0.28844 0.28848 0.28848 0.28848 0.20555 0.20555 0.20555 0.20555 0.20555 0.205	
DISCHARGE (L/SEC)	40000000000000000000000000000000000000	
DISCHARGE CDEFFICIENT		
LENGTH (M)	520.00 250.00 250.00 250.00 250.00 260.00 200.000 200.000 200.000 200.000 200.000 200.000 200.000 200.000 200.000 200.000 200.000 200.000 200.000 200.000 200.000 200.000 200.000 200.0000 200.00000000	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
DIAMETER (MM)	200 000 00 00 00 00 00 00 00 00 00 00 00	
NO.	02400000400000	
CONTACT NO. FROM TO		
PIPE NO.	*	

Table B-2-4(5) Diameter and Effective Head of Pipeline

NAME OF SANITARY DISTRICT : NONG SONG HONG (ALTERNATIVE PLAN 4-2)

*** INPUT DATA ***		CONTACT NO.	CONTACT DIVERTED NO. WATER HEAD (EL.M)	GROUND EI ELEVATION (EL.M)	EFFECTIVE HEAD (M)	EFFECTIVE POPULATION HEAD SERVED (M)	WATER DEMAND (L/SEC)
MINIMUM DIAMETER	0.075 (M) 8 8 1 0.0026 (L/SEC/CAPITA) 110.5	₩₩4₩Φ₩₩	110.500 113.805 108.024 107.105 106.585 106.585 106.558	100.500 96.020 96.700 96.700 90.700 95.8700 95.8700 95.8000	10. 400 110. 400 110. 425 110. 685 110. 425 110. 425 1100		

H I S S I I S S	¥	
FRICTION LOSS COEFFICIENT	-0.03692 0.03519 0.04139 0.04131 0.04131 0.047213 0.05105	
HYDROURIC GRADIENT	-8.697 6.040 6.040 2.082 2.082 2.082 2.132 2.132 0.334 0.151	
HEAD LOSS (M)	- 3. - 3. - 4. - 5. - 5. - 5. - 5. - 5. - 5. - 5. - 5	
VELOCITY (M/SEC)	-0.588 0.578 0.578 0.272 0.272 0.1177 0.1177	
DISCHARGE (L/SEC)	04644600 94808800	
DISCHARGE		
LENGTH (M)	380.00 210.00 210.00 250.00 250.00 250.00 250.00 250.00	2080.00
DIAMETER (MM)	1000 1000 175 175 1000 175 1000 175 1000 1000	
DZ .	004000000	
CONTACT ND. FROM TO	ศ.ศ.พ. <i>ช.</i> ส.ด.ค.ท. 	
P1PE N0,	+ 010 4 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1	TOTAL

