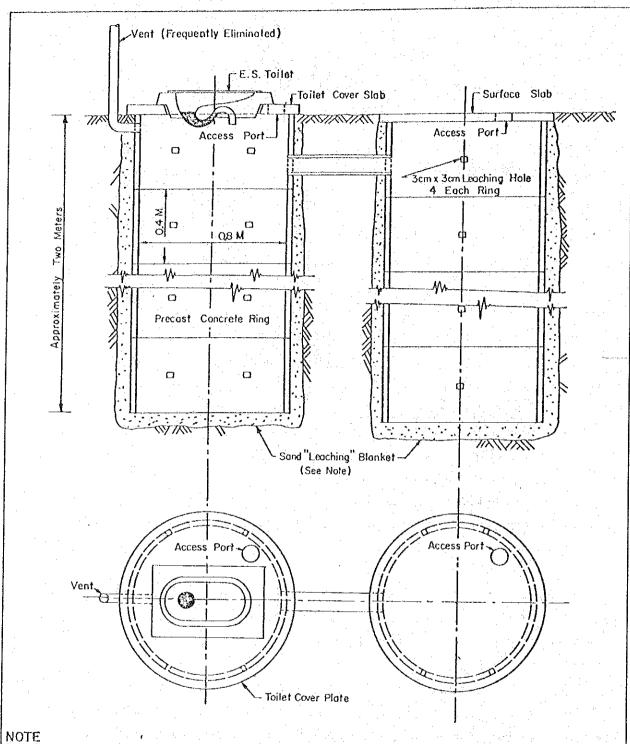
APPENDIX G WASTEWATER SURVEY

APPENDIX G WASTEWATER SURVEY

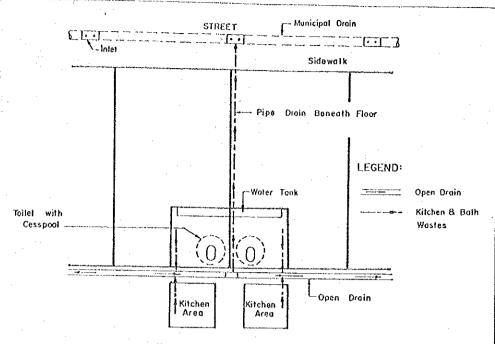

Wastewater surveys were made to obtain the data on per capita wastewater flows and BOD loadings originating from domestic and commercial activities, and additionally to collect the information of the wet-weather BOD loadings discharged into the klongs through the drain system in the town area.

In Bangkok the wastewater disposal system consists of the drainage system which collects and conveys storm water and sullage water originating from each house, and the septic tank system which receives toilet wastes and treats them by on-site digestion and permeation as a rule. Some of toilet wastes are discharged into the drains and/or surface waters. Typical wastewater systems are shown in Figures G.1 through G.3.

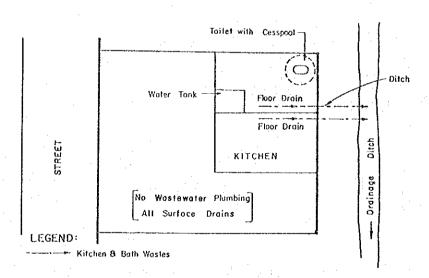
In the Master Plan Area, most areas of residential and/or commercial are recognized as mixed ones, but the former is residential dominant and the latter is commercial dominant. So, the "domestic wastewater" is, in this report, defined as the wastewater discharged from residential areas, so that it includes the wastewater from neighbouring shops and/or institutes as its portion.

On the other hand, in the commercial area which widely spreads over the central Bangkok, it is considered that commercial waste-discharge would be almost free from the number of residents, but characterized by the day time activities, namely trading. Therefore, the wastewater from the commercial area should be estimated based on the sum of house wastes and commercial wastes. The former can be estimated from the number of residents as domestic wastewater. And the "commercial wastewater" is defined as the wastewater originating from the trading in the central commercial area.

To obtain the data on existing wastewater production two field sampling and chemical analysis of wastewater were carried out. The sampling points were selected from the each category, i.e. residential and/or commercial areas.

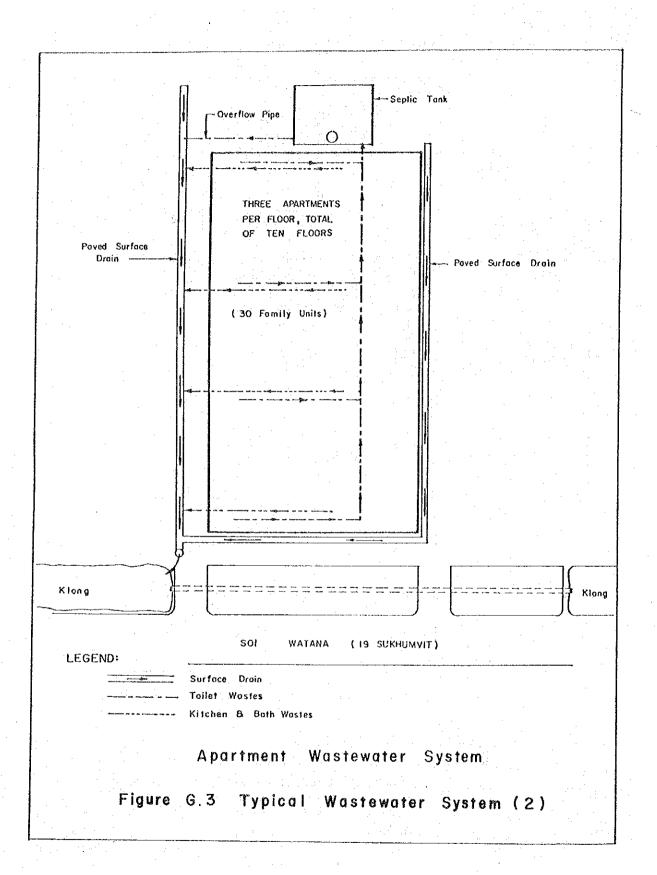


MUNICIPAL PLAN CALLS FOR PROVIDING A SAND LEACHING BLANKET AROUND EACH TANK.
IN FACT THIS IS SELDOM DONE THE RINGS ARE USUALLY INSTALLED
BY "CAISSON" TYPE EXCAVATION, OR EXCAVATION FROM WITHIN, ALLOWING
THE RING TO SLIDE INTO THE GROUND.


THE CAPACITY CAN BE INCREASED BY THE ADDITION OF RINGS BUT THE USE OF 5 RINGS (2.0 M DEPTH) SEEMS TO BE STANDARD. IF MORE CAPACITY IS REQUIRED A SECOND TANK IS ADDED AS SHOWN.

Scale 1:20 Icm = 0.20 meter Iin = 1.66 feet

Figure G I Typical Leaching Cesspool



Row Housing Wastewater System

Small Single Family Unit Wastewater System

Figure G.2 Typical Wastewater System (1)

Prior to the selection of sampling points, existing drainage condition such as flow direction, discharge points, connection from the neighbouring areas and water retention in the sewers were checked up. And then the Huay Kwang Housing Estate and Wang Burapa were selected.

1. Survey Area

Huay Kwang

The Huay Kwang Housing Estate was constructed by National Housing Authority (NHA) as a link of settlement projects for slum people. The sewerage system in the area is a most modernized one in Bangkok, which is composed a separate collection system (partly combined) and a treatment facility consisting of activated sludge wastewater treatment process and sludge digestion process together with a machinery dewatering system.

There are 38 buildings of multistoried residence including 3,360 units, super market including many retail stores and restaurants, primary school, 3 Government offices, and open space as a sports ground.

The outline of the estate is as follows:

* Served Area : about 13 ha

* Population : 25,000 persons

* Number of Units : 3,360 units (38 buildings)

* Super Market : 1

* School : 1 (2,700 pupils)

* Government Office : 3

Wang Burapa

The area is a central commercial area containing 137 shop houses (shop on ground floor and residence on upper floor). Most of the shops are retail stores, restaurants, etc. and in the area theaters and super markets are also located.

The outline of the area is as follows:

* Survey Area : 3.2 ha

* Population : 647 persons

* Number of Unit : 137

* Theater : 2

* Super Market : 6

* Bank : 1

The area used to be the biggest shopping center before construction of Siam Square. The drainage system in the surveyed area is independent from neighbouring drain network as shown in Figure G.4. The wastewater is discharged into Klong Ong Ang by gravity flow. The water level of the klong can be controlled by the Kasem Pump Station through other klongs.

During the sampling the water level was controlled to prevent the klong water backing up into the drain sewer.

2. Methods

2.1 Flow Rate Measurement

At the Huay Kwang Community the wastewater flow rate was continuously measured by the Parshall measuring flume attached to the treatment facility. The records of the Parshall flume was corrected by the cross-section-velocity method during the survey.

At the Wang Burapa commercial center the wastewater flow rate was measured by the cross-section-velocity method at one hour interval and at 5 to 10 minutes interval during initial runoff if rained. The measuring point was the outlet of the drains network in the block of the commercial center.

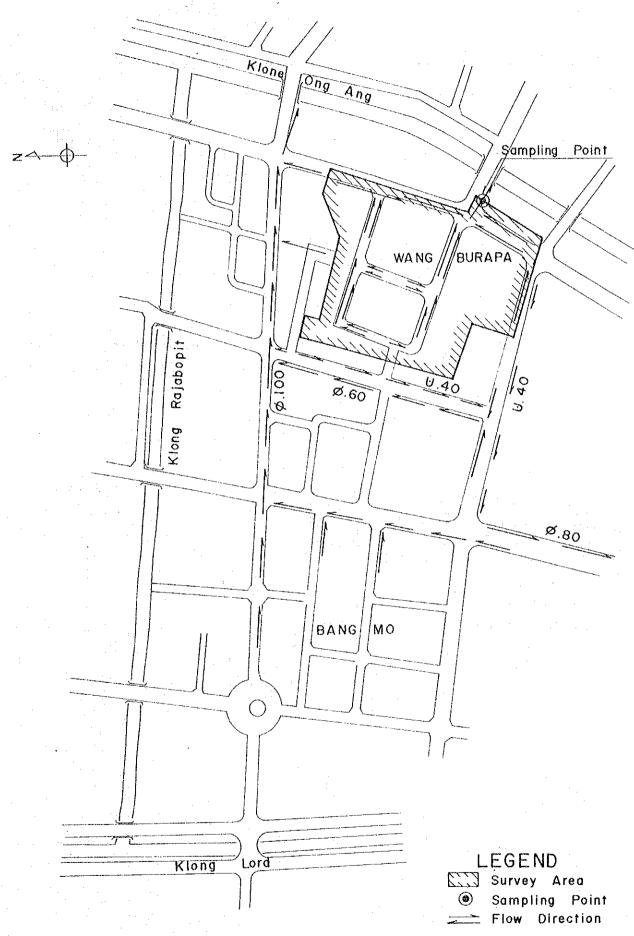


Figure G-4 Drain Network and Sampling Point at Wang Burapa

2.2 Sampling and Chemical Analysis

The wastewater samples were bi-hourly collected at the point of the inlet flow gauge of the Huay Kwang treatment facilities and/or at the outlet point of the drain network in Wang Burapa. And, if rained, the water samples were taken at 10 minutes interval during initial runoff. All the samples were stored in an ice packed cooler and refrigerator until analyzed.

The chemical analyses of the wastewater were made by the laboratories of Chulalongkorn University and Bureau of Drainage and Sewerage, BMA.

The parameters analyzed are pH, biochemical oxygen demand (BOD), chemical oxygen demand (COD), suspended solids (SS), and chloride ion (C1).

The findings of the surveys are shown in Tables G.1 through G.3.

In Table G.1, the data on 26 August shows wet-weather discharge from a typical drainage system in Bangkok, and the data on 27 August is dryweather wastewater. The average dry-weather wastewater flow rate, BOD and SS at Wang Burapa are 28.2 1/sec, 74 mg/l and 24 mg/l respectively.

At Huay Kwang the average vlaues are 68.8 1/sec of flow rate, 147 mg/l of BOD, 151 mg/l of SS. Comparing the data obtained from two surveyed areas, it is considered that in the sewer system of Wang Burapa, i.e. a typical drainage system in Bangkok, dilution of wastewater by ground water infiltration and deposition of suspended solids are dominant.

2.3 Home Visit

To obtain the background information a home visit survey was carried out at each surveyed area by BDS staff conducted by the survey team.

Table G.l Findings of Wastewater Survey at Wang Burapa

Date	Time	Flow Rate	1511	DOD				
Date	Time	l/sec	рН	BOD mg/l	COD mg/l	SS mg/l	CL mg/l	
26 Aug.		24.2	7.18	. 89	147	53	52	
	11:00	26.4	. -		-	· –	·	
	12:00	26.4	7.21	82	143	48	53	
	13:00	32.8		144	_	-		
. :	14:00	29.7	7.25	96	171	47	52	
	15:00	28.9	-		-			
•	16:00	32.5	7.54	88	151	52	5 7	
	17:00	33.9	•••	***	_	- '		
	: 45	34.7	· –			. –	-	
	:55	75.4	7.42	125	1,047	359	52	
	18:00	299.6	7.40	145	1,321	584	42	
	:05	221.7	· -	· <u>-</u>				
	:10	212.0	7.42	142	936	573	31	
	:15	216.9	_	. -	, -	· –	· -	
	: 20	212.0	7.44	114	403	253	24	
	:30	163 4	7.39	71	210	91	2,2	
	: 40	160.9	7.34	54	250	94	29	
	19:00	125.4	7.37	48	70	63	22	
	20:00	42.7			_	· _		
	21:00	55.5	7,13	74	111	69	47	
	:00	68.9	7.22	86	145	108	45	
	:20	72.4	7.26	77	170	70	44	
	:30	71.4	7.24	69	123	146	43	
	:40	65.9	7.31	66	36	72	44	
	22:00	64.6	7.28	92	111	74	44	
	24:00	39.8	7.24	32	51	21	38	
27 Aug.	2:00	37.6	7.34	23	25	11	39	
	4:00	35.2	7 24	16	45	8	38	
	6:00	29.5	7.27	16	20	6	37	
	8:00	30.4	6.71	100	565	66	7 9	
	9:00	28.6	_ `			-	-	
-	10:00	29.5	7.41	93	138	25	59	
•	11:00	31.3	 ,	-		_		
	12:00	34.2	7.04	102	166	40	88	
	13:00	35.7	<u></u> .			·	_	
	14:00	25.1	7.10	120	182	23 .	63	
	15:00	30.9		·		_	_	
	16:00	27.1	7.20	89	154	26	56	
	17:00	30.8	7.20	121	213	31	110	
	18:30	25.7	7.16	107	182	28	74	
	20:00	30.7	7.45	107	170	33	69	
	22:00	26.9	7.46	100	265	47	66	
	24:00	29.1	7.27	50	988	17	43	
28 Aug	. 2:00	28.3	7.29	32	36	6	37	
ao nug	4:00	27.8	7.37	24	36	12	38	
	6:00	28.1	7.37	22	36	15	36	
•	and the second second second		7.37	35	44	11	42	
	8:00 10:00	20.1 25.1	7.12	89	136	29	58	

Table G.2 Flow Rate, BOD and SS of Wastewater at Huay Kwang

						2523 (1980)
Date	Time	Flow Rate	ВС	DD .	SS	
		1/sec	mg/l	g/s	mg/l	g/s
29 Jan.	9:00	71.1	303	21.5	339	24.1
•	11:00	88.9	160	14.2	213	18.9
	13:00	80.0	136	10.9	168	13.4
	15:00	71.1	123	8.7	144	10.2
	17:00	71.1	137	9.7	114	8.1
	19:00	71.1	164	11.7	160	11.4
	21:00	80.0	152	12.2	148	11.8
•	23:00	72.9	136	9.9	140	10.2
30 Jan.	1:00	65.8	98	6.4	71	4.7
	3:00	56.9	69	3.9	74.	4.2
	5:00	56.9	68	3.9	62	3.5
	7:00	64.0	280	17.9	27	17.2
	9:00	71.1	220	15.6	208	14.9
	11:00	74.7	159	11.9	154	11.5
	13:00	71.1	126	9.0	141	10.0
	15:00	67.6	123	8.3	144	9.7
	17:00	69.4	137	9.5	148	10.3
	19:00	71.1	157	11.2	152	10.8
	21:00	74.7	154	11.5	170	12.7
•	23:00	71.1	117	8.3	118	8.4
	1:00	65.8	103	6.8	78	5.1
	3:00	56.9	63	3.6	50	2.8
	5:00	51.6	77	4.0	68	3.5
	7:00	56.9	294	16.7	292	16.6
	9:00	71.1	165	11.7	172	12.2
Average		68.8	147	10.1	151	10.4

Table G.3 Flow Rate at Huay Kwang Wastewater Treatment Facilities

	· · · · · · · · · · · · · · · · · · ·				2523 (1980)
Date	Time	Flow Rate (1/sec)	Date	Time	Flow Rate (1/sec)
27 Aug.	17:00	53.4	8 Sept.	15:00	67.6
	19:00	58.7		17:00	67.6
	21:00	85.4		19:00	72.9
	23:00	81.8		21:00	80.0
28 Aug.	1:00	60.5		23:00	74.7
	3:00	42.7	9 Sept.	1:00	49.8
	5:00	35.6		3:00	35.6
	7:00	92.5		5:00	28.5
	9:00	85.4		7:00	94.3
	11:00	67.6		9:00	74.7
e e e	13:00	53.4	•	11:00	58.7
	15:00	49.8		13:00	49.8
	17:00	58.7		·	
	19:00	64.0			
	21:00	80.0			
	23:00	76.5			
29 Aug.	1:00	56.9			
. *	3:00	40.9			
	5:00	35.6			
	7:00	71.1			
	9:00	97.8			
	11:00	96.0			
	13:00	85.4			
	15:00	72.9			

Data on family composition, mean water consumption rate, monthly income, etc. were collected from each house selected by the random sampling method.

The findings of home visits are shown in Tables G.4 and G.5. The average household population in Huay Kwang is 5.9 persons per unit, and their monthly income is 3,700 baht per unit per month, so they are classified to the middle or low income group in Bangkok.

The per capita water consumption is estimated at 184 liters per capita per day in Huay Kwang. The water bills show that their expenditure for water is about 1 percent of their income.

3. Results and Discussion

3.1 Per Capita Flows and BOD Loadings

The results of the dry-weather wastewater survey are summerized in Table G.6.

The domestic wastewater flow is strongly affected by living condition of residents, especially water consumption rate. According to "Water Use Study" (MWWA, 2520), water uses for high or low income groups are varied between more than 350 1/day/cap and less than 200 1/day/cap, and average to 230 1/day/cap.

As the Huay Kwang community surveyed belongs to comparatively low income groups, the per capita flow of 157 1/day/cap (Table G.6) is corrected to the average flow of residential area of 184 1/day/cap by the factor of 1.17.

Strength of BOD and SS of wastewater is usually almost same if the wastewater is collected by sanitary sewers which are provided for both sullage water and nightsoil as seen at Huay Kwang (Table G.6).

Table G.4 Findings of Home Visiting Survey in Huay Kwang Housing Estate (Household Population and Monthly Income)

Flat No.	Surveyed			Month13	Monthly Income
	Units	Persons	Persons/Unit	Baht / Month/Unit	Baht / Month/Capita
ເຐ	70	108	5.40	4,635	858
7	Φ	50	6,25	3,363	538
12	21	123	5.86	3,824	653
13	27	142	6.76	4,367	646
22	20	145	7.25	3,470	479
26	23	119	5.17	2,665	515
31	v	41	6.83	3,783	554
8. 4.	21	104	30.4	3,476	702
	140	832	5.94	3,700	623

Date: 28 Jan. 2523 (1980)

Findings of Home Visiting Survey in Huay Kwang Housing Estate (Water Expenditure and Water Consumption) S.5 Table

Flat No.	No. Surveyed		Water	Water Expenditure	Water Consumption	tion
	Units	Persons	Baht/Month/Unit	Baht/Month/Unit Baht/Month/Capita	M3/Wonth/Unit	1/day/cap
ហ	i	J	E.	1	l.	
-	Q	39	44.0	6.77	28,00	97
12	16	102	45.7	7.16	36.0) & # & H =
13	18	127	47.7	6.75	0.14	100
22	13	80	37.4	9,08	33.1) [] [
56	. ~	1 /	22.8	0 in • 0	25.3	9 C
31		ī)
34	71		18.3	5.21	15.8	150
	57	362	42.2	7 9 9		

Date : 28 Jan. 2523 (1980)

On the other hand, low SS value comparing with BOD, as seen at Wang Burapa, indicates that some portion of loading produced in the area may be reduced in the sewers by deposition.

From above, it is estimated that about 30 percent of BOD produced in Wang Burapa would be reduced in sewers. Therefore, total BOD load of 181 kg/day (Table G.6) is corrected to 235 kg/day of BOD production in the area by the factor of 1.30.

Following the definition of the "domestic" and "commercial" waste-waters, both of them are estimated as shown in Table G.7 on the basis of land use pattern, "residential" and "commercial". BOD contents of each wastewater are assumed at 260 mg/l as can be calculated from the figures shown in Table G.6.

Table G.6 Summary of Domestic Wastewater Survey

	Unit	Wang Burapa	Huay Kwang
Date	**	Aug. 2523(1980)	Jan. 2523(1980)
Area	ha	3.2	13
Population	Capita	647	19,958
Population Density	Capita/ha	202	1,535
Total Discharge	m ³ /day	2,441	5,587
Infiltration*	11	1,737	2,462
Sewage Flow	#	704	3,125
Per Capita Flow	1/day/cap	1,088	157
rotal Load BOD	kg/d	181**	821***
Potal Load SS	kg/d	59**	844***
Per Capita BOD	g/day/cap	280**	41***
Per Capita SS	g/day/cap	91**	42***

^{*} It is assumed that minimum flow equals to infiltration.

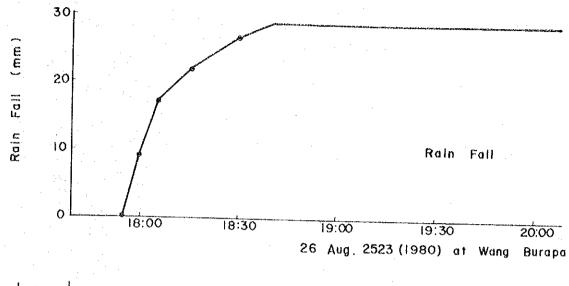
^{**} Septic tanks are applied to nightsoil removal in this area.

^{***} Both sullage water and nightsoil are collected by sanitary sewers.

Table G.7 Per Capita Wastewater

			2523 (1980)
Unit	Residential Area	Commercial Area	Total
Per Capita Flow 1/day/o	cap 184	50*	234
BOD Concentration mg/l	260	260	260
Per Capita BOD g/day/ca	ap 48	13*	61

^{*} Value of per capita correspondent.


3.2 Wet Weather Wastewater Survey

During field sampling at Wang Burapa there was heavy rainfall of which pattern could be seen quite frequently in Bangkok during rainy season. The rainfall pattern is characterized by strong intensity and short duration. The rainfall intensity changed as shown in Figure G.5 (100 mm/hr for first 10 minutes, 20 mm/hr for successive 30 minutes).

Figure G.5 shows a typical initial runoff pattern of storm-water from the town area in Bangkok. In the town area the initial runoff is very quick because of high density roof cover and pavement and small tributary area (in this case about 3.2 ha).

BOD and SS contents of the storm-water increases up to about 20 times of dry weather averages in a short time and then quickly decreases less than the averages. The initial increasing may be caused by flushing deposits from the sewer system, and the successive decreasing may be caused by dilution of wastewater by the storm-water.

This characteristics of the initial runoff and loadings would be considered to determine the effects of intercepting of wastewater on the water pollution control of the receiving waters.

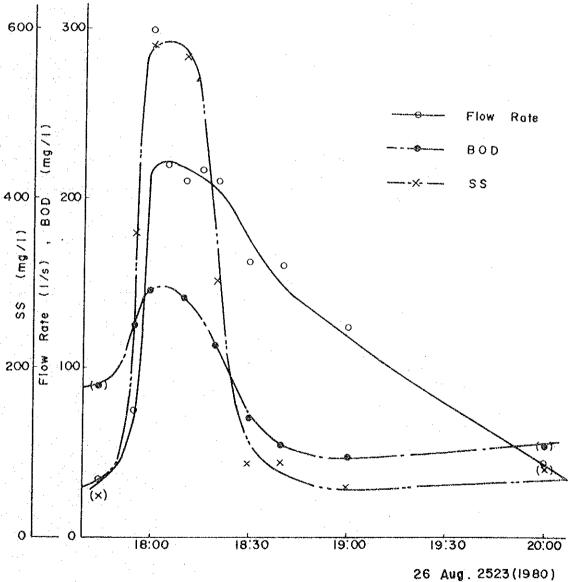
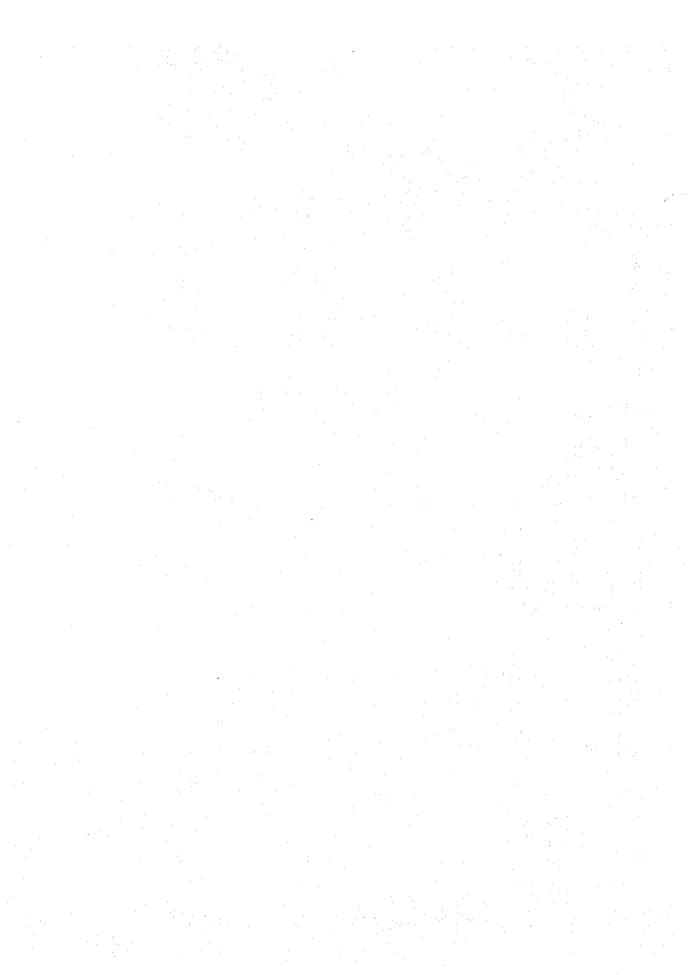



Figure G.5 Typical Initial Runoff Pattern of Storm Water

APPENDIX H
WATER POLLUTION SURVEY

APPENDIX H WATER POLLUTION SURVEY

In the Master Plan Area there are many klongs which were constructed in ansewer to navigation, drainage and irrigation needs and have been known as a symbol of Bangkok for tourists. However, in the last decade the klongs, especially in the central Bangkok, have been heavily polluted owing to wastewater discharge.

1. Sampling and Chemical Analysis

During this Master Planning water quality analyses on the klongs in the Master Plan Area were made by the Laboratory of Bureau of Drainage and Sewerage (BDS), BMA, from March 2523 (1980) through September 2523 (1980). The water samples were collected once a month from 56 locations in 34 klongs at surface of each klong. The sampling points are shown in Table H.1 and Figure H.1.

2. Findings of the Survey

The findings of the survey are shown in Table H.2. These findings confirmed the existing condition of klong pollution in the Master Plan Area, especially in the central area. The nuisance conditions such as foul odor and black color of water have occurred in these klongs. The water quality of the polluted klongs located in the central Bangkok is similar to that of wastewater as described below.

Temperature

The water temperature of the klongs varied from 28°C to 32°C. It would be more than 26°C even in December which is the coldest season in Thailand and not included in this survey period.

These comparatively higher temperatures cause to increase the rate of decomposition of biodegradable matter such as BOD, and to decrease DO content of the water.

Dissolved Oxygen (DO)

The DO content of the klongs was in the range of zero to 6.7 mg/l. Even the highest DO content was less than the saturation of oxygen. The DO content of the klong located in the town area of Bangkok and Thonburi are always zero or nearly zero. Klongs Rajabopit, Watteptida, Ong Ang, Bang Lam Poo, Nahanak and Padung Krung Kasem in Bangkok, and Klongs San, Bang Sai Kai and Bang Nam Chong in Thonburi are the examples of these.

Klongs Bangkok Noi, Bangkok Yai, Dao Kanong, Rat Burana, Bang Prokok, etc. have also very low DO content sometimes in a year even though these klongs receive comparatively small amount of pollutants such as BOD. This is caused by backing up of the Chao Phya River water of which DO contents have been reduced by assimilation of pollutants originating from industrial and/or domestic wastewater.

Biochemical Oxygen Demand (BOD)

The highest BOD content of the klong waters surveyed was 240 mg/l in Klong Rajabopit of which average BOD content was also the highest, 154 mg/l, among the klongs surveyed. These figures closely represent domestic wastewater.

The lowest BOD contents, 2 to 4 mg/1, were measured in Klongs Chaeng Ron, Rat Burana, Bang Prakok, and Bang Pa Kaeo. These klongs are almost free from the domestic wastes.

The klongs receiving domestic wastewaters from town area are about 50 mg/l of BOD and almost zero of DO content. It is supposed that these klongs may be contributing as an anaerobic pond for stabilization of domestic wastewater discharged from the central area.

Suspended Solids (SS)

In temperate countries SS content of surface waters is used as an index of pollutants from municipal or industrial activities. However, in tropical countries such as Thailand, surface waters often include high SS content even in the dry weather.

Klongs Rat Burana, Bang Prakok, and Bang Pakaco have markedly higher SS content than the other klongs in spite of less pollution. This can be considered to be caused by backing up of the river water of which SS content is very high because of flooding of the up streams of the Chao Phya River.

As shown in Table H.l, the klong waters polluted by the wastewater have less SS content than comparatively clean waters in the Master Plan Area.

Chloride Ions (C1)

During low flow of the Chao Phya River seawater intrudes acrossing the Memorial Bridge.

And, the chloride content of the klong waters is also affected by the seawater intrusion. As the rainfall of the Chao Phya basin was very small in 2522 (1979), Klong Bangkok Noi which is located around 50 km from the river mouth contained more than 1,000 mg/l of chloride in April 2524 (1980).

Hydrogen Sulfide (H2S)

Odor nuisance have occurred from the klongs located in the central Bangkok, especially Klongs Ong Ang, Mahanak and Drung Kasem, and from the Pumping Stations of Krung Kasem and Rama IV which are furnished to discharge combined storm-water and wastewater from the central area.

Hydrogen sulfide is a main source of the odor nuisance from the polluted waters, and is toxic for human body and errosive for city structures. High concentration of hydrogen sulfide was observed in the heavily polluted klong waters, especially during low tide and the water running.

Coliforms

Coliforms which is an indication of contamination of human fecal material were detected in quite high concentration from the almost all of the klongs in the central area. This indicates that the klong waters are potentially hazardous on the public health especially for the people associated with the use of the water for washing, bathing and other uses.

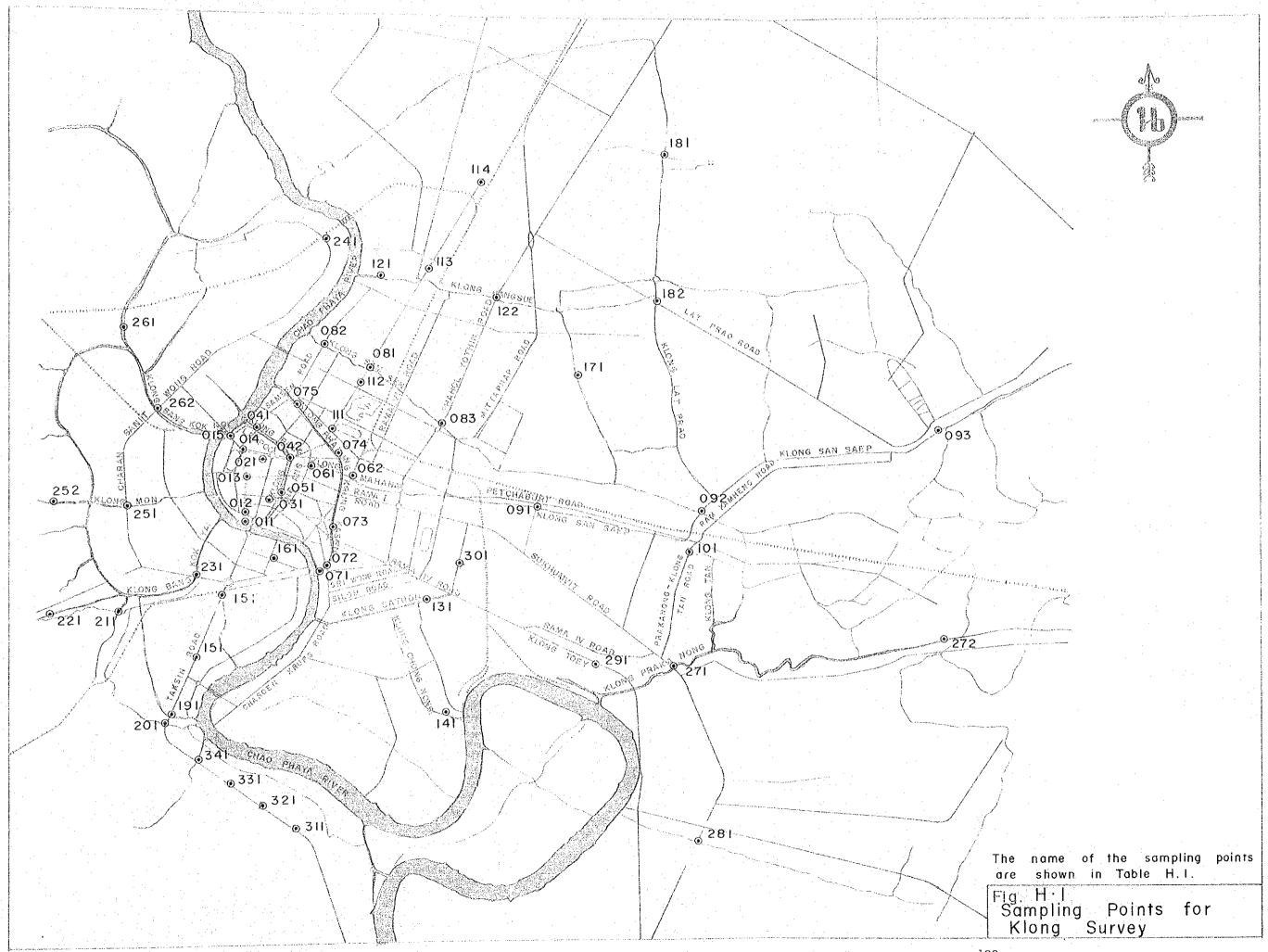

From these figures of coliforms it is suspected that the toilet systems, septic tanks and/or cesspools, of which liquid effluents are soaked into the ground as a rule are functional to remove toilet wastes from each house in Bangkok.

Table H.l List of Klongs Surveyed and Sampling Points

N	ame of	Klong	Point No.	Sampling Point
1.	Klong	Lord	011	Outside Gate near Rechinee School
			012	Gate near Rachinee School
			013	In front of Department of Land
•	-		014	In front of Royal Hotel
			015	Pra Pin Klae Bridge
2.	Klong	Wat Tep Tida	021	Behind BMA Office
ş. •,	Klong	Wat Rajabopit	031	Tre Tong Road Cross
	Klong	Bang Lam Poo	041	In front of Talat Nana
			042	Rachadamnon Road Cross
	Klong	Ong Ang	051	Chalerm Krung Road Cross
	Klong	Mahanak	061	Chakra Padipong Road Cross
			062	Talat Mahanak
٠.	Klong	Padung Krung Kasem	071	Outside Pump Station
			072	Krung Kasem Pump Station
			073	In front of Bangkok Railway Station
			074	In front of DTEC
			075.	Talat Tevaraj
•	Klong	Sam Sen	081	Boat Maepra
			082	Sam Sen Road Cross
			083	Savia Housing Community
• :	Klong	San Saep	091	Din-Daeng Asoka Road Cross
			092	Mit Mahad Thai Bridge
	•		093	Bang Kapi Bridge
0.	Klong	Tan	101	Klong Tan Pump Station
1.	Klong	Prem Prachakorn	111	Sri Ayuthaya Road Cross
			112	Srad Satien School
			113	Talat Bang Sue
			114	Cook Bang Ken
2.	Klong	Bang Sue	121	Pibool Song Kram Bridge
	. •		122	Mear by Jatujak Park

⁻ to be continued -

Name of	Klong	Point No	. Sampling Point
l3. Klong	Sathon	131	YWCA
14. Klong	Chong Nonsi	141	Ling Road Cross
15. Klong	Bang Sai Kai	151	Taksin Road Cross
16. Klong	San	161	Ta Din Daeng Bridge
17. Klong	Huay Kwang	171	Near NHA community
l8. Klong	Lad Prao	181	Soi Sena Nikom I
		182	Pibool Upatan School
19. Klong	Bang Nam Chon	191	Taksin Road Cross
20. Klong	Dao Kanong	201	Taksin Road Cross
21. Klong	Bang Kun Tien	211	Tod Thai Road
22. Klong	Pasi Jaroen	221	Wat Rang Bua School
3. Klong	Bangkok Yai	231	Fire Police Station
4. Klong	Rama VI	241	Rama VI Engineering School
25. Klong	Mon	251	Charan Sanit Wong Road Cross
	5	252	Bang Sao Tong Police Station
26. Klong	Bangkok Noi	261	Soi Wat Gaitee
		262	Suwan Naram School
7. Klong	Pra Kanong	271	Wat Yang Sutaram
		272	Sukumvit Road Cross
8. Klong	Bang Na	281	Sukumvit Road Cross
9. Klong	Toey	291	Near pig geed factory
0. Klong	Pai Sin Toe	301	Vittayu Road Cross
31. Klong	Chaeng Ron	311	Sukusawad Road Cross
2. Klong	Rat Burana	321	Sukusawad Road Cross
3. Klong	Bang Prakok	331	Sukusawad Road Cross
4. Klong	Bang Pa Kaeo	341	Sukusawad Road Cross

le E.2 Findir
Temp. DO COD (°C) PH (mg/l) (mg/l
30 - 2.1
31.7 - 0
31 1.6
31 7.3 0
30 - 1.9
ı
t
٠
7.4
7.3
9.0
1
1
ı
7.2
7
T.,
•
ĭ
L
7.3
7.
0

																					,			0				٠.	. •	
	Remarks	Klong	ord						Klong	latteptida			:			Klong	Rajabopit			· .			Klong	Bang Lam Poo					÷	
	Coliforms (MPN/100 ml)	l X	ы	ı	1.	ì		ŧ	ا کر	1	ì	1	1	72,000	72,000) <u>×</u> 1	1	1	1	•	1,700,000	1,700,000	1	1	ţ	1	1 1	1,700,000	1,700,000	continued
	H2S (mg/l)	ľ	ı	ı		ı	0	0	ı	i	ı	ı	ı	0	0	1	l			1	•	0.5	1.	i	i.	1	1	0	0	To be
	CL (mg/l)	I	I.	587	510	1	12	3.70	i	331	70	72	t	เช	134	: 1	495	210	104	ı	21.5	231	1	227	1	009	1	6 4	297	
	ss (mg/l)		1	22	30.	ı	12	21	1	118	23	40		59	5.3	ı	162	2.4	45	1	43	76	i	102	ල උ		ı	40	25	
	BOD (mg/l)	9	i	D	44	ω	7	15	50	89	18	100	112	48	99	240	144	175	150	46	168	154	<u>თ</u>	40	30	17	თ	73	30	
	COD (mg/l)		ı	ı	1	i	15	12.		1	ł	ı	ŀ	101	101	ı	ì	1	1	1	303	303		1	1	Ί	1	105	105	
-	DO (mg/l)	1.6		5.5	0	ਾ ਹ	4. 3.	ب س	0	0	0	0	0	0	0	. O	0	0	0	0	0	0	2.5	0	0	0		0	0.4	والمراجعة المتناوسة والمتناوسة والمتناوية
	Hd		ŀ	. 1	7.3	7.4	7.5		i	1	1	7.3	7.0	7.3		1	ł	. 1	•	7:3	•		ı	ł	7 3	7.5	7.5	7.6		
	Temp.	30	1	31	31	200	30		30	30	31	29	29	30.5		30	30	31	30	29	30		30	29	32	30	29	31		
	Time	14:50	ļ	9:27	* *	11:30		٠	15:15	11:15	10:30	15:00	10:55	1		C	10:50	S	Ŋ	ന		.:	့	3	13:45	4	ü.	 . i		
ಕಿರ	Date	5 Mar.		25 Apr.	9 May	3 June		. ~	Mar	l Apr.	5 Apr.	May	3. June	3 Sep.				5 Apr.	May	June		Average	Mar.		Apr.		June	2 Sep.	Average	
Continued	Sampling Point No.	015	<u> </u>		•			. •	021	 					. 4	037	!))	7				•	041	; : :						

11 12 Mar. 10:15 29	12 Mar. 10:15 13	Continued	eđ											***************************************
12 Mar. 10:15 30 - 2.5 - 5 5 - 6 5 7 2 3 7 2 3 7 2 3 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	12 Mar. 10:15 30 - 2.5 - 5 5 7 - 6 5 7 23 - 6 8 97 223 - 7 8 8 97 223 - 7 8 8 99 2 8 97 2 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	oling int o.	Date	Time	Temp.	HG.	DO (mg/l)	COD (mg/l)	BOD (mg/l)	ss (mg/l)	CL (mg/l)	H ₂ S (mg/l)	Coliforms (MPN/100 ml	
2 Apr. 10:45 29 - 0 0 - 45 97 223 - 9 Bang Lam 2 I May 10:55 29 7.5 0 0 - 56 47 - 0 - 6 20 4	2 Apr. 10:45 29 - 0 - 45 97 223 - 9 - Bang Lam 2 S Apr. 10:45 29 7.2 0 - 56 47 - 2 - 320 2 L Average 2 S Apr. 10:45 29 7.4 0 - 156 20 65 0.2 2 Average 2 S Apr. 10:50 29 7.4 0 - 116 36 55 0.2 2 Average 2 S Apr. 10:30 29 7.4 0 - 42 0.0 2 S Apr. 10:30 29 7.4 0 - 42 0.0 2 S Apr. 10:30 29 7.4 0 - 51 0.0 2 S Apr. 10:30 29 7.4 0 - 51 0.0 2 S Apr. 10:30 29 7.4 0 - 51 0.0 3 S Apr. 10:30 29 7.4 0 - 51 0.0 4 S Apr. 10:30 29 7.4 0 - 51 0.0 2 S Apr. 10:30 29 7.4 0 - 51 0.0 3 Average 3 Average 4 June 10:30 29 7.3 0 - 69 20 0 - 69 1.0 4 June 10:00 29 7.4 0 - 64 0.0 5 June 10:00 20 7.4 0 - 65 0.0 5 June 10:00 20 7.4 0 - 65 0.0 5 June 10:00 20 7.4 0 - 65 0.0 5 June 10:00 20 7.4 0 - 65 0.0 5 June 10:00 20 7.4 0 - 65 0.0 5 June 10:00 20 7.4 0 - 65 0.0 5 June 10:00 20 7.4 0 - 65 0.0 5 June 10:00 20 7.4 0 - 65 0.0 5 June 10:00 20 7.4 0 - 65 0.0 5 June 10:00 20 7.4 0 - 65 0.0 5 June 10:00 20 7.4 0 - 74 0.0 5 June 10:00 20 7.4 0 - 74 0.0 5 June 10:00 20 7.4 0 - 74 0.0 5 June 10:00 20 7.4 0 - 74 0.0 5 June 10:00 20 7.4 0 - 74 0.0 5 June 10:00 20 7.4 0 - 74 0.0 5 June 10:00 20 7.4 0 0 - 74 0.0 5 June 1	2	1	Ö	30	 		1	ın	1	1			Klong
25 Apr. 14:00 33 7.2 0 - 56 47 - 57 320 - 5 47 4	25 Apr. 14:00 33 7.2 0 - 56 47 - 52 1 320 - 5 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		N	Ö	29	ı	0	ı.	45		223	ı	ŀ	He c
21 May 10:55 29 7.5 0 - 25 - 320 - 2	21 May 10:55 29 7.5 0 - 25 - 320 - 25 - 320 - 2		ហ	4	33.	•	0	ı	56		ı		I.	
4 June 9:50 29 7.4 0 - 18 - <	A June 9:50 29 7.4 0 - 18		Н	ö	29		0	ı		1	320	ŧ	ŧ	-
2 Sep 31 7.2 0 116 67 20 65 0.2 - 1 1	Average		4 June	o,	29	•	0	1	18	l	ı	ı	1	
Average 12 Max. 10:45	Average		2 Sep.	1	31		0	116	67	20	65	0.2	1	
12 Max. 10:45 29 - 0 - 42 60 196 - 1	12 Mar. 10:45 29 - 0 - 442 60 196 2 Apr. 11:10 29 7.1 0 - 422 60 196 2 Apr. 11:10 29 7.1 0 - 51 2 70 1 2		Average					116	36	55	203	0.2	1	
2 Apr. 11:10 29 - 0 - 42 60 196 - 1 2 Apr. 14:30 33 7.1 0 - 72 13 - 0 - 72 13 - 0 - 2 Apr. 14:30 33 7.1 0 0 - 72 13 - 0 - 2 Apr. 14:30 29 7.4 0 0 - 51 - 2 Apr. 10:30 29 7.3 0 122 69 21 58 0 - 0 - 2 Apr. 10:50 29 - 0 122 69 21 58 0 0 - 2 Apr. 14:15 33 7.2 0 - 6 83 115 100 - 1 Apr. 10:05 28 Apr. 11:00 28 7.4 0 - 6 45 113 0 - 6 Apr. 10:05 30.5 7.3 0 89 56 29 69 103 0 - 6 Apr. 10:05 30.5 - 0 0 - 15 Apr. 10:05 30.5 - 0 0 - 15 Apr. 10:05 30.5 - 0 0 0 - 15 Apr. 10:05 30.5 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 Apr. 11:10 29 - 0 0 - 42 60 196 2 1		12 Mar.	10	60	: 1	0	1	ব	ı	. 1	ŧ		Klong
25 Apr. 14:30 21 May 11:30 22 May 11:30 23 7.4 0 - 71 21 May 11:30 25 Sep 30.5 7.1 0 122 89 21 58 0 7.2 Average 12 May 11:30 29 7.3 0 - 69 21 58 0 7.4 10.0 25 Apr. 10:50 25 Apr. 10:50 25 Apr. 10:50 26 Apr. 10:50 27 Average 13 May 11:00 28 7.4 0 - 64 7.4 0 - 64 7.4 0 - 64 7.4 0 - 64 7.4 0 - 64 7.4 0 - 64 7.4 0 - 64 7.4 0 - 64 7.4 0 - 7 7.5 0 89 56 7.6 0 113 7.7 0 89 7.8 0 - 69 7.8 0 - 7 7.8 0 0 - 15 7.8 0 0 0 0 7.8 0 0 0 0 7.8 0 0 0 0 7.8 0 0 0 0 7.8 0 0 0 0 0 7.8 0 0 0 0 0 7.8 0 0 0 0 0 7.8 0 0 0 0 0 7.8 0 0 0 0 0 0 7.8 0 0 0 0 0 0 7.8 0 0 0 0 0 0 7.8 0 0 0 0 0 0 7.8 0 0 0 0 0 0 7.8 0 0 0 0 0 0 0 7.8 0 0 0 0 0 0 0 7.8 0 0 0 0 0 0 0 7.8 0 0 0 0 0 0 0 7.8 0 0 0 0 0 0 0 7.8 0 0 0 0 0 0 0 7.8 0 0 0 0 0 0 0 7.8 0 0 0 0 0 0 0 0 7.8 0 0 0 0 0 0 0 0 7.8 0 0 0 0 0 0 0 0 7.8 0 0 0 0 0 0 0 0 7.8 0 0 0 0 0 0 0 0 7.8 0 0 0 0 0 0 0 0 7.8 0 0 0 0 0 0 0 0 7.8 0 0 0 0 0 0 0 0 7.8 0 0 0 0 0 0 0 0 7.8 0 0 0 0 0 0 0 0 7.8 0 0 0 0 0 0 0 0 7.8 0 0 0 0 0 0 0 7.8 0 0 0 0 0 0 0 7.8 0 0 0 0 0 0 0 7.8 0 0 0 0 0 0 0 7.8 0 0 0 0 0 0 0 7.8 0 0 0 0 0 0 0 7.8 0 0 0 0 0 0 0 7.8 0 0 0 0 0 0 0 7.8 0 0 0 0 0 0 0 7.8 0 0 0 0 0 0 0 7.8 0 0 0 0 0 0 0 7.8 0 0 0 0 0 0 0 7.8 0 0 0 0 0 0 0 7.8 0 0 0 0 0 0 0 7.8 0 0 0 0 0 0 0 7.8 0 0 0 0 0 0 0 7.8 0 0 0 0 0 0 0 7.8 0 0 0 0 0 0 0 0 7.8 0 0 0 0 0 0 0 0 7.8 0 0 0 0 0 0 0 0 0 7.8 0 0 0 0 0 0 0 0 0 7.8 0 0 0 0 0 0 0 0 0 0 7.8 0 0 0 0 0 0 0 0 0 0 0 7.8 0 0 0 0 0 0 0 0 0 0 0 0 7.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	25 Apr. 14:30 33 7.1 0 - 72 13 - 6		N	11:10	50	i	0	ŀ	42	09	196	1	1	Ong Ang
21 May 11:30 29 7.4 0 - 51 - 270 -	21 May 11:30		L()	14:30	33	7 1	0	ı	72	۳ ۲	ı.		1	
4 June 10:00 29 7.3 0 - 51	4 June 10:00 29 7:3 0 - 51 - 6		H	11:30	59		0	ŧ	2.7	ı	270	1.	ì	
2 Sep 30.5 7.1 0 122 69 21 58 0 - Average 12 Max. 10:35 29 - 0 122 48 31 175 0 - 2 Apr. 10:50 29 - 0 - 4 -<	2 Sep 30.5 7.1 0 122 69 21 58 0 - Average 12 Max. 10:35 29 - 0 - 4 8 31 175 0 - 5 2 4 8 31 175 0 - 5 2 Average 25 Average 25 Average 25 Average 26 7.4 0 - 6 89 49 66 113 0 - 6 89 Average 27 Average 27 Average 27 Average 28 Average 29 Average 29 Average 20 Avera		4 June	9	29	7.3	.0	ı	51	1	1	1	ì	
Average Average 12 Mar. 10:35	Average		2 Sep.		0	7.1	0	122	69	21	53 50 50	0	1	
12 Mar. 10:35	12 Mar. 10:35 29 - 0 - 44 25 Apr. 10:50 29 - 0 0 - 63 115 100 25 Apr. 14:15 33 7.2 0 - 53		Average				0	122	48	31	175	Ó	Ð	
2 Apr. 10:50 29 - 0 - 83 115 100 - 25 Apr. 14:15 33 7.2 0 - 53 54 170 2 Apr. 11:00 28 7.4 0 - 54 - 170 170 2 Sep.	2 Apr. 10:50 29 - 0 - 83 115 100 - 25 Apr. 14:15 33 7.2 0 - 53 - 0 - 54 - 170 - 2	Ę		0:3	29	1	0		4,	i	í	ı	ı	Klong
25 Apr. 14:15 33 7.2 0 - 53 170 - 21 May 11:00 28 7.4 0 - 54 - 170 - 2 Sep 30.5 7.3 0 89 56 29 69 0 Average 2 Sap. 10:05 30.5 7.3 0 89 66 113 0 2 Sap. 11:20 30 7.3 0 92 44 63 109 - 22 May 10:40 29 7.4 0 - 19 - 22 Average 3 Sep 30 7.4 0 - 19	25 Apr. 14:15 33 7.2 0 - 54 - 170 - 21 May 11:00 28 7.4 0 - 54 - 170 - 45 4 - 170 - 45 4 1:00 28 7.4 0 - 45 4 - 170 - 45 4 1:00 28 7.3 0 89 56 29 69 69 0 89 49 66 113 0 13 Average 3 Apr. 10:05 30.5 7.3 0 92 44 63 109 - 15 5 3 587 - 15 5 3 10:40 29 7.4 0 - 15 74 63 109 - 15 74 0 - 19 74 63 10:40 29 7.4 0 - 19 74 63 10:40 30 7.2 0 74 27 22 65 0.5 Average 3 Sep 30 7.2 0 74 27 22 65 0.5 Average 10:00 30 7.2 0 83 24 46 53 0.5 To be con			0:5	29	ı	. 0	. 1	83	115	100	1	1	Mahanak
21 May 11:00 28 7.4 0 - 54 - 170 - 2 Sep. 2 9 7.3 0 - 45	21 May 11:00 28 7.4 0 - 54 - 170 - 2 45 - 170 - 2 5 5 29 7.3 0 89 56 29 69 0 6 113 0 6 113 0 6 113 0 6 113 0 6 113 0 6 113 0 6 6 113 0 6 6 113 0 6 6 113 0 6 6 113 0 6 6 6 113 0 6 6 6 113 0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6			4:1	33		0	į	53	1	ı	1	ı	
4 June 9:55 29 7.3 0 - 45	4 June 9:55 29 7.3 0 - 45			1:0	28		0	i	54	ı	170	1	1	
2 Sep 30.5 7.3 0 89 56 29 69 0 Average 2 13 Mar. 10:05 30 - 0 - 15 53 587 - 28 May 10:40 29 7.4 0 - 19 22 - 350 - 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2 Sep 30.5 7.3 0 89 56 29 69 0 Average 2 13 Mar. 10:05 30 - 0 - 15 28 Apr. 10:05 30.5 - 0 - 15 53 587 - 5 June 10:00 30 7.4 0 - 19 - 19 350 - 5 June 10:00 30 7.2 0 74 27 22 65 0.5 Average Average Average Average			დ :	29	•	0	ļ	45	ı	. 	ı	ı	
Average 2 13 Mar. 10:05 30	2 13 Mar. 10:05 30 - 0 - 15 28 Apr. 10:05 30.5 - 0 - 15 53 587 - 28 Apr. 11:20 30 7.4 0 - 19 - 22 - 350 - 5 June 10:00 30 7.4 0 - 19 350 - 3			1		•	0	68	56	29	69	0	ı	
2 13 Mar. 10:05 30 - 0 - 15 28 Apr. 10:05 30.5 - 0 - 15 53 587 - 28 Apr. 11:20 30 7.4 0 - 22 - 350 - 350 - 5 June 10:00 30 7.4 0 - 19 3 30 7.2 0 74 27 22 65 0.5 Average	2 13 Mar. 10:05 30 - 0 - 15		Average				0	68	49	99	113	0	ı	
3 Apr. 10:05 30.5 - 0 - 15 53 587 - 28 Apr. 11:20 30 7.3 0 92 44 63 109 - 22 May 10:40 29 7.4 0 - 19 - 350 - 5 June 10:00 30 7.4 0 - 19	3 Apr. 10:05 30.5 - 0 - 15 53 587 - 28 Apr. 11:20 30 7.3 0 92 44 63 109 - 350 - 5 June 10:00 30 7.4 0 - 19 - 3	22	13 Mar.	10:05	30	1	0	ı	15	ı		ı	1	
11:20 30 7.3 0 92 44 63 109 - 10:40 29 7.4 0 - 22 - 350 - 2 10:00 30 7.4 0 - 19 30 7.2 0 74 27 22 65 0.5 0 83 24 46 278 0.5	10:40 30 7.3 0 92 44 63 109 - 10:40 29 7.4 0 - 22 - 350 - 3 10:00 30 7.4 0 - 19 - 3 7.2 0 74 27 22 65 0.5 0 83 24 46 278 0.5 To be con	ļ	3 Apr.	10:0	0	ı	0	1	15	ന ഗ	587	ı	ŧ	
10:40 29 7.4 0 - 22 - 350 - 3 10:00 30 7.4 0 - 19	10:40 29 7.4 0 - 22 - 350 - 7.4 0 - 19 - 7.4 0 - 19 - 7.5 0 7.4 27 22 65 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.		28 Apr.	11:2	30	•	0	92	44	e 9	109	1	1	
30 7.4 0 - 19 30 7.2 0 74 27 22 65 0.5 . 0 83 24 46 278 0.5	= 10:00 30 7.4 0 - 19 65 0.5 - 30 7.2 0 74 27 22 65 0.5 0 83 24 46 278 0.5 To be con		22 May	10:4	29		0	i	22	1	350	ì	ı	
30 7.2 0 74 27 22 65 0.5 0 83 24 46 278 0.5	30 7.2 0 74 27 22 65 0.5 0 83 24 46 278 0.5 To be con			10:0	30		0	ı	64	!				-
0 83 24 46 278 0.5	0 83 24 46 278 0.5 To be con				30	•	0	74	27	22	Q	•	640,000	
	pe		Average					ထိ	24	40	<u></u>	•	640,000	

гd
Ø
3
G
1
Ψ
ੁ⊏
Q

Sampling Point No.	ing Date	Time	Temp.	H Ch	DO (mg/1)	COD (L/gm)	BOD (mg/l)	SS (mg/l)	CL (mg/1)	H2S (mg/l)	Coliforms (MPN/100 ml) F	1) Remarks
0.71		14 C . Q	o c									
1	י דטקי	00:0	84	i	ω. Ο	1	4.	1	1	1	. 1	7 K J C K
	Apr	9:30	30	ı	0	ı	38	127	1	ı		510
	Apr.	10:40	31	7.4	2.1		. 7	, n	000		ŧ	Krung Kasem
	May	10:15	30	7-6	6))	ተተ	n. O) t	ı	1	
•	a	9,45	30		1 C	l	~ <		CT7	ļ	1.	
	į	. 1	. 1					t .	ı	ı	•	
	Average			l	,	į (1	: : 1	1	i	ì	
		·			↑•	35	13	115	618	. 1	1	
072	13 Mar.	9:30	29	ì	0	ı	7.5		1			
	Apr.	9:25	30		C	1	. v	o o c	1 0 1	1	1	
	Apr.	0:46	31.	7.3	0	ασ	77	7 6	/ C	ŀ	i	
٠.	May	0:05	53	7.4	. C) \	* 5	n.) 	I	ı	- 1 - 1 - 2 - 2 - 2
٠	June	9:30	20	4.7	o c		ተየ	į	740	ı	1	
	C OC			, ,	> c	- (n :	1		į.	ı	
	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1) N	7.))	10	4. N	26	61		5,400,000	
			•		0	833	42	48	150		5,400,000	
073	13 Mar.	9:55	29	ı	.0	i	84	ı	ı	:		
		9:45	30 -		0	ı	, 4 ເ	73	177	i .		
		1:10	30	7.7	0	68	43	m (, FT		t .	-
i,		0:30	29	7.4	.0	i	. 4.))	1 0 1 1 1	ı i	ł	
		9:55	30	7.4	. 0	ı	(r)	1	}		ł	
	13 Sep.	I.	30.	7.1	0	52	່ ໄ ເ <u>ດ</u> ຕ	000	o ir	່ ແ !	1 .	
	Average				0	72	47	n (2)	100) c	1 1	
074	13 Mar. 1	0:15	29	:	C	. 1	·	٠.) !		
	3 Apr. 1	10:15	00 00	ı	ر د د		7 0	ı Q		į	1	
	28 Apr. 1	2:45	23	7.7) 4	ά	, , , , , , , , , , , , , , , , , , ,) (316	i.	I,	
*	22 May 1.	11:00	29	4.		1	ዞ ሀ	0	8 0 0 T r	ı	j	
:	5 June 10	0:10	29	7.5	, C	:	1 г Јп		007	: :	1	
	3 Sep.	1	29.5	7.3) (4) C) 	u I	. (1	
	Average	 L)	6,0	יים איל) ()) ()) (1)	o (ກ ເ ວ	ı	
					• 1)	00	υ γ	ת ב	٥	•	

To be continued

•	ζ	7
	q)
	Ľ	3
	٢	1
٠	r	1
	۱	J
	Ç	1
1	Ĉ)

Conti	Continued					:		. •				
Sampling Point No.	ng Date	Time	Temp.	ਸੁੱਧ	DO (mg/l)	COD (mg/l)	BOD (mg/1)	SS (mg/l)	CL (mg/l)	H2S (mg/l)	Coliforms (MPN/100 ml)) Remarks
075	13 Mar.			i			21				1	K10ng
	3 Apr.		30.5	1	0.3	1	: .82		39.7	ı	ı	Found Appear
	28 Apr.	12:25	32	7.8	•	81	47	7 2	140	i	1 1	
	22 May		53	7.3	0	ł	23		205	į	· •	
	5. June		29	7.4	0		2 5	ı)) 	1	l (
	3 Sep.		30	7.0		96	44	73	85	0	40.000	
	Average				0.4	88	4	56	207	0 0	40,000	
081	19 Mar.		29	ļ			eri eri	ł	ı	ı		ř
	4 Apr.		59	ı	0	í	4. 1 S	7.2	7 30		i 1	Klong Sam Sam
	29 Apr.	9:55	59	7.3	0	12		0.7) } 	ı		odii sen
	20 May.		. 58	7.2	0		6	94	S			
	10 June		50	7.3	o,	. 1	22)	1	1	
	10 sep.	ı	29	7.4	O	99	32	и	78	4	000	
	Average		• -		. 0	72	42	2.5	96	. 4.	000 (9	
082	20 Mar.	10:45	31	ı	0.7	·	1.5	1	ı	. 1	. 1	
	8 Apr.		31	ı	3.2	ŀ	17	195	360	1		
	30 Apr.		30.5	7.3	0	ł	26	143	,	ŀ	۱	
	23 May		59	7.6	6.0	:	20	i	180		ı	
	li June	12:15	28	7.4		1	13	1	1 .	ı	ı	
	8 Sep.	1	30	7.2	0	24	34	94	27	0		
	Average				٥٠٢	24	21	144	189	0	i	
083	21 Mar.	9:20	. 58	į	0	1	20	ŀ		ı	ŀ	·
	22 Apr.			ı	0		. 1	28	44	ı	ı	
	6 Мау	10:20	31	7.2	0	ı	41	24	- 7	ı	ı	
é	i	ı		í	ı	ŀ	t			ı	1	
	1	1	ı	ł	ì	i	ı		ı		. 1	
	3 Sep.	ŀ	29	7.2	0	79	. 50	39	71		31,300	
	Average				0	79	37	30	53	0.5	31,300	
										To be cont	continued	

ぴ
Ø.
2
٠.
÷
ò.
O

				:				-				1.												:	. •			i a		
) Remarks	Klong	San Sep																			Klong	Tan						
		Coliforms (MPN/100 ml)		* 1	I I	. #	6,100	6,100	i .	1	1	1		1,060	1,060	1	1	1	1		191	191	. 1		- I [*]	ı		5,205	5,205	continued
		H ₂ S (mg/l)	ı	1 1	ı		9-0	9.0			i	1	• 1	0	0	1	į	· I	, 1		0	0		1	··1	1	* 1	0	0	To be
		CL (mg/l)	1	125	70		77	⊕		118	ı	165	i	4.2	108	1	128	i i	155		40	108	ì.	398		234	: : 	67	230	
		SS (mg/1)	1	თ თ. თ	124	ı	4	57		96	57	120		4	69	1	98	10	104	1	13	23	į	100	33	94		26	63	
		BOD (1/gm)	25	ω 4 υ τ	, o , u	21	18	44	23	38	14	76	11	7	28	22	25	1	37	o	Ø	20	13	09	45	32	ത	15	29	
		COD (mg/l)		10	1 5 i	i	89 10	75	ŀ	ı	8 1 8	1	Į	12	12	1	1	102	1	1	4	54	. 1	1	69	1		4.7	80	
		DO (mg/l)	0	٥ <u>-</u> بر	0	6.7	0	£. 0	0	0	2.8	o	2.7	6.0	1-0	2.1	0	9.0	0	7-7	1.5	다.	0	0.3	0	0	0.7	0	다 0	
		HQ	1	1 7	• •	•	7.3		. 1	1	7.7	•	თ. დ	φ. φ.		i	1	7.8	7.5	0.0	ထ	:	· 1	ı	7.6	7.5	7.2	7.4		
	.	Temp.	30	0 0 0 0	유	31	58		58	30.5	30	30	30	30		30	30.5	32	29	30	ဓင္ထ		30	32	29	29	30	29		
·		Time	9:45	10:00	12:45	13:40	ı		10:15	10:25	10:45	11:36	14:00			10:30	10:40	11:00	• •	14:10	ı		11:00		10:25	12:25	. ••.	ì		
	ned	g Date		Apr.		10 June	10 Sep.	Average	19 Mar.	4 Apr.	29 Apr.	20 May	10 June	10 Sep.	Average	19 Mar.	4 Apr.	29 Apr.	20 May	10 June	10 Sep	Average	19 Mar.	4 Apr.	29 Apr.	20 May	10June	10 Sep.	Average	
	Continued	Sampling Point No.	160						092							093							101							

τ	
Œ	
-	
Ç	
٠,	
÷	
۶	
•	

	1	ı:																										
Remarks	Klong brem bracha	4								-											-							
Coliforms (MPN/100 ml)	1 1			į	i	i	. 1	ŧ	ı	I	1	ı	i	I	1	1	ı	1	1,700,000	1,700,000	ı	1	ı	ı	į	60,000	000'09	continued
H ₂ S (mg/l)	1 1	. 1	I	ı	0	0		1	ı	1	i	0	0	ł	1	1		ı	0	0	ı	ı	1	ı	1	0	0	To be c
CL (mg/1)	1 248)	1	ı	40	129	1	96	ı	175	ı	55	109	1	223		85	!	55 8	122	ı		55	ı		84	49	
SS (mg/l)	1 Q	, പ	100	14	38	50	1	ტ დ	20	i	ı	31	20	1	108	20	ı	ı	19	94	1	42	46	1	ı	4	31	
BOD (mg/l)	26 24	i E	31	0	13	22	8	Ø	18	48	ω	22	21	6	.23	15	36	10	18	6 6 7	ω	7	14	Ø	1	v	თ	
COD (mg/l)	. 1 1	99	ı	ı	48	57		i	36	,l	ŧ	52	44		. 1	40	. 1		52	46	ı	ı		i	ı	32	32	
DO (mg/l)	0. 4 0. 6		5.2	4. W.	1.5	•	•	7.1	0	0	•	0.7	٠	•	J.6	.9*0	0	O.5	•	2.0	2.0	1.0	1.7		ı	0.3	٠	
нd	ł 1	7.5	7.7	7.6	7.2		1	ı	7.3	7.6	7.3	7.2		ı	ì	7.4	7.5	7.3	7.2		ł	ı	7.5	7.6	ı	7.0		
Temp.	30	30	29	29	30		30	30	30	30	28	30		30	ı	31	29	28	30		56	28	30	30	ı	29		
Time	10:00	9:50	10:30	11:20			10:00	10:00	9:55	10:45	11:40	ı		10:20	10:10	10:05	11:10	11:45	l		12:40	10:00	11:30	11:00	ı	1		
Date	20 Mar. 10 8 Apr. 9	30 Apr.	23 May	11 June	3 Sep.	verage	20 Mar.	8 Apr.	30 Apr.	23 May	11 June	з Sep.	Average	20 Mar.	8 Apr.	30 Apr.	23 May	11 June	3 Sep.	Average	27 Mar.	18 Apr.	30 Apr.	30 May	i	12 Sep.	Average	
Sampling Point No.	TTT	-				· Ai	112	÷.					7	113						7	114							

mt.i mile	
תת בשעה	7.
ntini	1
n tra	_
n tra	_
44	Ω
Ť.	
Ė	
Ċ	I.
	ç
- 0	

Coliforms (MPN/100 ml) Remarks	Klong	Band Sue				100	7,100								Klong	Sathon				19,500	500	Klong	Chong Nonsi				340	1,340
	ı	I		1	1	7.	7,	i	1	1	1	I	ı	1		1			1	19,	19,	.1	ł		1	:	H	
H ₂ S 1) (mg/l)	l	1	1	i	1		0	ł	. 1	ı		ı	0				l	1	1	0	0	1	1	1	1.		0	0 (
SS CL (mg/l) (mg/l)		5 200		185		39 38	5 141	l	38. 68	7 66		i	19 56		٠.	36 72		06	1	7 107	27 89		27 1,000	745	285	1		510
BOD SS (mg/l) (mg						18 3		35	m I	55	1		20				75	40	1	38 1		31		55	48	1	3 230	
COD (mg/l)	1	ı	1	1	ı	24	24		ı			ı,	48	48	1		t	i	l	101	101	1		ı	.i	. 1	39	36
DO (mg/l)		•	•	о. О	•	0	1.2	0	0	0	1	1.	0	0	0	0	. 0	0	ı	0	0	2.6	0,5	2.5	0	1		2.3
Hd.	1	; 	7.4	7.6		7.1		ı	i	7.2	ı	ı	7.3		i	1	7.2	7.6	1	7.4		·I	.1	7.4	7.6	1	7.3	
Temp.						30			31	31	ı	1	53		29	31	32	8	ï	37	.* .	53	31	32	8	: i	30	
Date Time	Mar. 10:30					Sep	ø	Mar. 9:35	Apr. 12:00	Apr. 10:35	a a	1	•	a)	ar. 11:50	12:	pr. 13:20	ay 9:50	i.	Sep.	O)	Mar. 11:30	_		May 10:05		Sep.	Q)
Sampling Point Da No.	121 20 M	8 A	12 A	23 M		й m	Average		22 A			1.	Š	Average	131 27 Mar.	₹ 0	9 A	27 M		16 Se	Average		9 A		27 Ma	1	16 Se	Average

; 	Comment											
Sam Po N	Sampling Point Date No.	Time	Temp.	ਸ਼ੁਰੂ:	DO (mg/1)	COD (mg/l)	BOD (mg/1)	ss (mg/l)	CL (mg/l)	H ₂ S (mg/1)	Coliforms (MPN/100	s nl) Remerks
151	25 Mar.	10:20	29	7 t	.0	-	45	•	.	1	1	Klong
	10 Apr.	9:45	30	ı	, О	· 1	26	40	78	í	i	Dang Carker
	Apr.	10:00	32	7.1	0	128		. (A)	175	ì	1	
		11:15	30	7.2	0	ı	.e.	· .	85	ı	1	
	1	ı	1	ţ	í	ı	1	ı	ı	ı	i	
	17 Sep.	9:50	29.5	7.3	0	133	62	44	107	0	60,000	
	Average				0	131	50	58	777	0	60,000	
161	25 Mar.	10:10	53	ı		ŧ	39	ı	ı	Ť	i	Klong
	Apr.	9:25	31	i	1	1	84	46	100	1	1	San
	1 Apr.	9:30	32	7.2	0	92	ខា	27	108	ı	1	
	May	11:30	30	7.2	0	·	86	ı	8	ı	1	
-	I,	1		1	ı	ı	ı				1	
	17 Sep.	9:35	30	7.2	0	133	5. 13.	95	118	0	42,526	
	Average				0	63	. 99	ም ይ	102	0	42,526	
171	21 Mar.	10:40	29	į	0	i	24	1	ı	ı	ì	Klong
-		10:50	32	t	0	ŧ	21	30	62	Í	i	Huay Kwang
		11:30	31	7.7	.0	Ĺ	62.	છ	87	ı	ı	
	į	!	ı	i.	i	1	ı	1	į	ı	ı	
	1		· .	1	J	1	ı	ı	1	1		
	9 Sep.	ı	28.5	7.3	0	19	ω	20	89	0	•	
	Average				0	6년 :	59	19	72	0	19,550	
181		9:50	58	ı	0	ı	. 88		ı	1	1	Klong
-	22 Apr.	12:20	32	1	0	i	13	30	72.	ı	ı	Lad Prao
	May	10:45	30	7.5	0	. 1	39	ı	86	ı	ı	
			ı	1:	1	1	. 1	ı	1	ţ	ı	
	i	ı	1	ı	. I,	1;	ı	ı	ı	ı	ı	
	e Sep	!	30	7.0	0	20	11	19	30	0	950	
	Average				0	20.	23	25	, C	С	Unit O	

CODE	Continued											
Sampling Point No.	ng Date	Time	Temp.	ਸੁਟਾ	DO (mg/l)	COD (mg/l)	BOD (mg/l)	SS (mg/l)	CL (mg/l)	H ₂ S (mg/l)	Coliforms (MPN/100 m	Coliforms (MPN/100 ml) Remarks
182	21 Mar.	10:10	31	1	0.1	1	29					77
	22 Apr.	12:35	32	!	0		2.42	30	62	1	1 4	ALOHA Fak basa
		11:00	31	7.5	0	1	48	9	84	ı	ı 1	Lac Frac
	1,	ı		. f	ì	1	1	1	1	ı	ı	
	i.	I.	ı	1.	ı	ţ	i	i	ı	ì	1	
	9 Sep.	1	30	7.1	0	23	თ	21	ლ ლ	С	A. 740	
	Average				0	23	78	33	09	0	4,740	
191	25 Mar.		29	ì	0	1	34	i	1		ı	19
	10 Apr.	•	29.5	1	0	ı	55.0	ខ	92	! !		ALOLIO Alemonia
	1 May		30	7.2	0	138	50	- E	1 4 H	ı	1	הייסודה וויישאי
	27 May	11:05	30	7.3	0	ı	% 4		185	. 1	· 1	
:	1	1		. 1	i	ı	1	ļ		ı	ı	
	17 Sep.	9:55	29	7.3	0	144	42	Ø	124	0	35,000	
	Average				0	141	53	24	137	0	35,000	
201	25 Mar.	10:25	30		0	. 1	ന	1	ı		. 1	74 74 74 74
	10 Apr.	10:15	31	. 1	2.1	ı	. C	რ	1,000	ı		DECT VOTO
		9:45	30	7.3	0	142	21	77	1,190	ı	I	המס המחוליו
	27 May	10:05	30	7.4	0	.1	23	1	425		Í	
	i.	1		. 1	Į.	ı'	ļ	ı	1	·.	ŀ	
	17 Sep.	10:05	30.5	7.4	4.8	10	7	272	117	0	300	
	Average				3.5	9/	<u>د</u>	147	683	0	300	
211	25 Mar.	10:55	30	. 1	0	. 1	v	ŀ	· • • • • • • • • • • • • • • • • • • •		ı	Klong
	15 Apr.	0	31	i,	3.2	.J	13	84	ł	· 1	1	Bang Kun
	1 Мау	10:35	31	7.3	0	1	14	78	154	ı		Tien
	28 May	12:00	30	7.4	0	1	•		: 1 :	I		
	1	1		ì	1	. 1			1	. 1.		
	ll Sep.	1	53	7.2	0.7	38	ω	64	67	Ö	4,850,000	
	Average				8.0	38	ത	75	80	0	4,850,000	
!												

	4	
į	τ	j
	C	Ų
	ŗ	2
	٢	
•	٢	4
	ŧ.	.1
	٢	-
	ſ)

1) Remarks	Klong Pasijaroen	Klong Bangkok Yai	Klong Rama VI	Klong
Coliforms (MPN/100 ml)	10,400,000	. 420 420	1,050	
H2S (mg/l)	1111100	1111100	1111100	HO D D D D D D D D D D D D D D D D D D D
CL (mg/1)	308 308 216 262	1 6 7 1 1 6 7 1 1 6 7 1 1 6 7 1 1 1 1 1	175	720 49 385
SS (mg/l)	129	101 108 108 108 108 108	1441188 00 88	102 40 40 127 90
BOD (mg/l)	8 4 0 1 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	921 1 1 9227 411	22 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 0 1 1 1 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0
COD (mg/l)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1111100	111112	111111111
DO (mg/1)	0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.2 0.1 4.1 8.1 8.0	000000000000000000000000000000000000000	2004 4 8 4 8 4 8 4 8
H _C C.	4.7.7.	11.77.7.	117	11.77
Temp.	30 30 30 30	330 331 239 29.5	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	30 31 31 29 30.5
Time	11:05	11:25 10:45 10:45 11:40	12:15 9:45 12:15 10:35	10:30 9:30 10:40 10:30
g Date	25 Mar. 15 Apr. 1 May 28 May 11 Sep. Averege	25 Mar. 15 Apr. 1 May 28 May 11 Sep. Average	26 Mar. 18 Apr. 12 May 30 May 11 Sep. Average	26 Mar. 10 Apr. 15 May 28 May 18 Sep. Average
Sampling Point No.	221	23 31	24.1	251

•	Remarks		Klong	Mom					7 × × × × × ×	Dawalest Mad	DALIGNON NOT											* .	1		rtak allong					
	Coliforms (MPN/100 ml)			ł i	l I	: 1	ا م) C) 	ı	i	ļ		и и г) tr) 	1 1	!		ŀ	300	1,300]	1 1			174	174	continued
	H ₂ S (mg/l)		t f	ţ 1	1	1	O	0	ì	I	ł	ı	!		0	•	1 1	. 4	1		0	· 0	ı	: •		1		O.	0	To be
	CL (mg/1)		ر ا C	1,075))	ı	in S	544		652	250	1	1	୍ ଖ	311	!	1.102	572	1 - I	ı	44	573		α σ	246	885	í	99	723	
	SS (mg/l)		۰ ۱ ص	2.7) 	ı	80	103	ī	67	64			147	6	4	101	S S S	; ;	i	154	92	ı	42	ļ: 	56	1	∞ ⊢1	29	
	BOD (mg/1)	7	· ′′	9 1	7	. 1	4	თ	'n	19	74	w		တ္	⁻ თ	ư	, s	11	و ا	ı	7	17	186	20	134	5.4	•	4 i	80	
	COD (mg/l)		1	1	i	1	18	80	i	ı	1	1	i	13	13	ı	i	ı	ı	Ļ	ம்	Ŋ	ł	. 1		1	i	. 23	23	
	DO (mg/1)	3.9	2.7	3.0	1.4	ı	3.0	2.8	6.2	2,8	0.8	2,2	1	4.3	3.7			3.3	2.5	I,	4.3	3.6		0	3.1	т Н	1	7.7	т. Т.	
	нd		ı	7.8	7.3	ı	7.2		1		ក្	7.4	1	7.3		ı	i	7.5	7.5	ı	7.3		· [ı	7.7	7.8	i	0 V		* .,
	Temp.	30	31.	31	6	i	30		30	31	32	30	ì	31		30	33	32	29		ਦ	٠	29	31	32	30.5))		
	Time	10:40	9:40	11:00	10:35	1	ı	i			9:45	11:00	1	t		12:00	10:30	10:05	11:15	i	ı		10:15	9:30	10:15	9:50	1 (ı .		
nued	ng Date	26 Mar.	10 Apr.				18 Sep.	Average	26 Mar.	16 Apr.	თ	28 May	i	18 Sep.	Average	26 Mar.	16 Apr.	9 May	28 May		18 Sep.	Average	27 Mar.	23 Apr.	8 May	16 May	ן מ רפ	• Д Э Э Н	Average	
Continued	Sampling Point No.	252			-			,	261				٠	•		262							271		:					

'O
O)
Ť
Þ
-1-1
4)
C
O

Coliforms (MPN/100 ml) Remarks	Klong Prakanong	Klong Bang Na		Klong Toey	Klong Pai Sin Toe Klong Chaeng Ron Klong Rat Burana Klong Bang Prakok Klong
Coliforms (MPN/100 m		1,260	0008	1,600	12,700 700 285 1,000 340
H ₂ S (mg/l)	111	00 11	11100	1111100	00000
CL (mg/1)	798 1,418 1,535	951	5,004 5,423 - 150 3,136	2,162 2,631 2,119 - 59 1,743	130 89 64 57 74
SS (mg/l)	1 8 1 20	544 1 2 3 5 5 5 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6	195 198 113	7 1 1 1 5 5 1 5 5 1 5 5 1 5 5 5 5 5 5 5	18 81 330 311 339
BOD (mg/l)	05 1 2 7 2 4 6 4 6 4 6 4 6 4 6 6 6 6 6 6 6 6 6 6	4 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	44 111 36	124 48 124 145 145 160	8 4 7 4 7
COD (mg/l)	11111	m m 1 i	1 1 1 4 4 E W	1111166	10 20 7 1 1 2 2 0
DO (mg/1)	00001	90 m 0 (4.0 0 1 1.0 0 0 1	0000110	0.3 1.3 5.1 5.0
Hď	7.7	7.0	0.7.7	1 1 1 1	1.7 4.7 E. 4.7
Temp.	29 31 30 -	00 00 00 00 00 00 00 00 00 00 00 00 00	30 . S 30 . S	3.2 3.2 3.0 3.1 3.1	33 29 31 30.5
Time	10:30	10:50		11:05	10:20 10:30 10:35 10:45
g Date			o May 16 May 16 Sep. Average	27 Mar. 23 Apr. 8 May 16 May - 16 Sep. Average	16 Sep. 17 Sep. 17 Sep. 17 Sep. 17 Sep.
Sampling Point No.	272	281			301 311 321 331 341
			- 113 -		

APPENDIX 1

SEWER DESIGN FOR HYDROGEN SULFIDE CONTROL

APPENDIX I

SEWER DESIGN FOR HYDROGEN SULFIDE CONTROL

In the design of sewerage system for where strong and/or high temparature occurs, the consideration should be given to the question of potential sulfide problems as well as to the provision of self-cleansing sewer velocities.

1. Hydrogen Sulfide Generation

The presence of sulfides in wastewater flows is usually caused by the bacterial reduction of sulfates normally found in the originating water supply and augmented through human use. This bacterial activity is concentrated within a layer of slimes which typically develops on the submerged surfaces of the sewer. Generation of sulfides within the body of wastewater is very small and can safely be ignored.

Bacteria require oxygen to consume organic matter and when free oxygen is not available, certain species obtain oxygen from the sulfate ion (SO_4^-) , leaving the sulfide ion (S^-) . Through reaction of the sulfide ion with water there results a mixture of the ion HS and hydrogen sulfide H₂S. At pH 5, it is nearly all H₂S; at pH 9 it is nearly all HS . After the formation of H₂S within the flowing wastewater, the following actions can be do take place when corrosion of sewer pipelines occurs:

- (1) Significant amounts of the hydrogen sulfide gas (H₂S) escapes from the flowing wastewater into the sewer air.
- (2) A significant quantity of this H_2S is transferred to the surfaces of the sewer pipeline above the water surface.
- (3) The H₂S reaching the non-submerged surfaces is oxidized (through bacterial action) with the resulting formation of sulfuric acid.

The process is shown diagramatically in Figure I.1.

When sewers are constructed of materials not immune to sulfuric acid attack, such as concrete, asbestos cement or steel, gradual corrosion results.

Inasmuch as sulfide is formed by the reduction of sulfate in the absence of dissolved oxygen, the oxygen balance of the stream is the determining factor. This is the balance between the quantity of oxygen initially available in the stream plus the rate that oxygen is supplied by aeration at the surface of the stream, as related to the rate of oxygen demand by bacterial action in the wastewater. As the wastewater flows through the collecting network, the dissolved oxygen concentration is gradually diminished by a demand which exceeds supply. At some points in the system, dissolved oxygen is exhausted and sulfides appear. When dissolved sulfides reach average concentrations exceeding 0.1 mg/l and 1.0 mg/l produce attack of ordinary concrete at rates of one inch per century to one inch per decade respectively.

2. Sulfide Controlling Method

Hydrogen sulfide associated with the operation of sanitary sewers is produced in anaerobic environment as defined above. The key to their control is, therefore, keeping the wastewater aerobic by maintaining sufficient flow velocity in sewer. On the other hand, in flat areas the control of sulfides by providing adequate sewer slopes may require excessive costs of excavation. In such cases pipe materials which are inert to sulfide attack should be considered. Taking the concept mentioned above into account, the following three methods are brought up for sulfide control.

- a. Keep sufficient flow velocity to prevent sulfide build-up without special sulfide corrosion protection measures.
- b. Use anti-sulfide corrosion pipe or linning pipe without special velocity control where sulfide build-up is expected.

c. Inject air to keep wastewater aerobic without special considerations on flow velocity and pipe material.

In the majority of cases the problem may be economically resolved by selection of proper sewer slopes and pipe diameters which produce sulfide controlling velocities.

3. Formulas for Sulfide Build-up

The fundamental principles regarding the generation of hydrogen sulfide within sewers and the resulting corrosion of sewer pipelines were first presented in the paper of Richard Pomeroy and Fred D. Bowlus in 2489 (1946) (1). This historic work was developed from extensive studies conducted in the sewerage system of the Los Angeles County Sanitation Districts, in Southern California, USA, during the years 2474 - 2488 (1931 - 1945).

Although considerable additional research has been conducted during the following thirty years, particularly in Australia by Davy (2), Parker (3), and Thistlethwayte (4), the principles delineated in the work of Pomeroy & Bowlus are applicable until today, with only minor modifications.

The most useful formulas for estimation of sulfide controlling velocity which Pomeroy/Davy developed and later modified are as following.

(1) The rate of sulfide production (and subsequent oxygen demand) in a sewer is proportional to the temperature and strength of the wastewater. Temperature and wastewater strength can be combined in a parameter called the "Effective BOD" (EBOD) defined as:

$$EBOD = BOD_5 \times (1.07)^{T-20}$$
.....(I-1)

in which "T" is the temperature in degrees centigrade and BOD_5 is the result of the usual 5-day determination at $20^{\circ}C$, mg/1.

(2) The rate of oxygen absorption at the surface of the flowing wastewater stream is determined largely by the velocity and slope of the sewer.

Marginal EBOD =
$$32,800 \text{ s}^{1/2} \text{ p}^{1/3} \text{ b/p} \dots$$
 (1-2)

where b/p : surface width/wetted perimeter

s : sewer slope

Q : sewer flow (m^3/s)

Using the Manning flow formula (with n=0.015), Formula (I-2) can be converted to Formula (I-3).

Marginal EBOD =
$$492 - \frac{A^{1/3}}{R^{2/3}} \cdot V^{4/3}$$
. b/p(I-3)

where A : flow sectional area (m^2)

R : hydraulic radius

V : flow velocity (m/s)

4. Sulfide Controlling Velocity

Using the formula (I-1) and assumption that BOD concentration of wastewater is 200 mg/l, the equivalent EBOD at 27°C of wastewater temperature in sewer is estimated as

$$200 \times 1.07^{27-20} = 321 \text{ mg/l}$$

The required velocity for sulfide controlling is expressed using the parameter of the ratio of flow depth to pipe diameter, as presented in equation (I-3). Applying equiation (I-3), required design velocities are calculated by hydraulic element of the ratio of velocity at considering flow depth to mean velocity of closed conduit flowing full (V/Vf). The required velocities for sulfide controlling and the design velocities to maintain the required velocities varied by flow depth in sewer are summarized in Table I.1 with parameters used. These calculated velocities apply to circular pipelines of any diameter.

Table 1.1 Required and Design Velocity for Sulfide controlling by Various Flow Depth in Sewer

Flow Depth/Diameter	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
Required Velocity (m/s)	0.41	0.49	0.54	0.59	0.64	0.71	0.81	0.95	1.24
Hydraulic Element (V/Vf)	0.65	0.78	0.87	0.94	1.00	1.05	1.08	1.11	1.13
Design Velocity (m/s)	0.63	0.63	0.62	0.63	0.64	0.68	0.75	0.86	1.10

The required velocity and design velocity are also expressed in velocity curves in Figure 1.2.

5. Evaluation and Conclusion for Design Velocity

Figure 1.2 shows that for an average effective BOD value of 321 mg/l, the design velocities to maintain the required velocities for sulfide controlling are ranging from 0.63 m/s to 0.64 m/s when flow depth is included between half and 10 percent of pipe diameter. In respect that design average flow is one-second or less of design peak flow, the design flow velocity for sulfide controlling be evaluated as similar as the critical velocity for self-cleansing. Then, special considerations for pipe material or ventilation for keeping aerobic condition in sewer are not necessary when flow maintains the low depth in sewer less than half of pipe diameter. In other words, sulfide corrosion problems are not occurred in initial flow and future average flow, if self-cleansing velocities are maintained.

This conclusion indicates that where self-cleansing velocity is difficult to maintain, or where the period of actual flow exceeding average, reasonable measures should be taken. In this case, sewerage practice in many areas in South-East Asia is to use vitrified clay pipes for smaller sewers and thick walled sacrificial concrete pipes for medium diameter sewers. For large pipes, of 1,200 mm and above, the use of PVC backribbed sheet lining to the upper 240° of the pipe has been employed with success and has so far proved the most economic protection method.

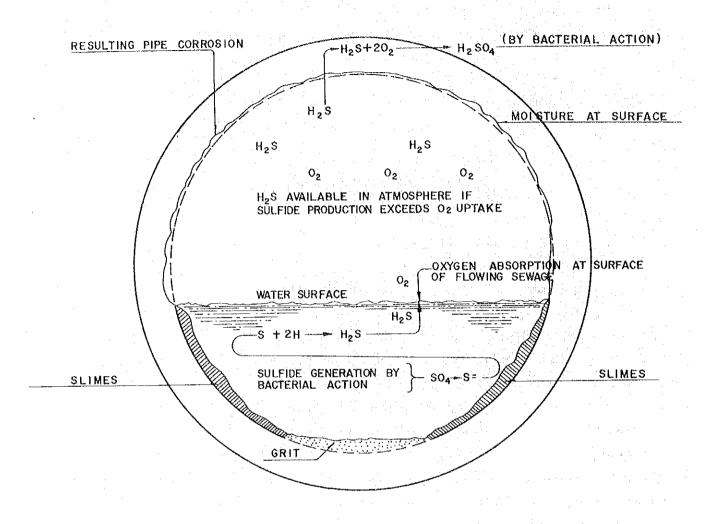


Figure I.I Sewer Corrosion Resultins From Sulfide Generation

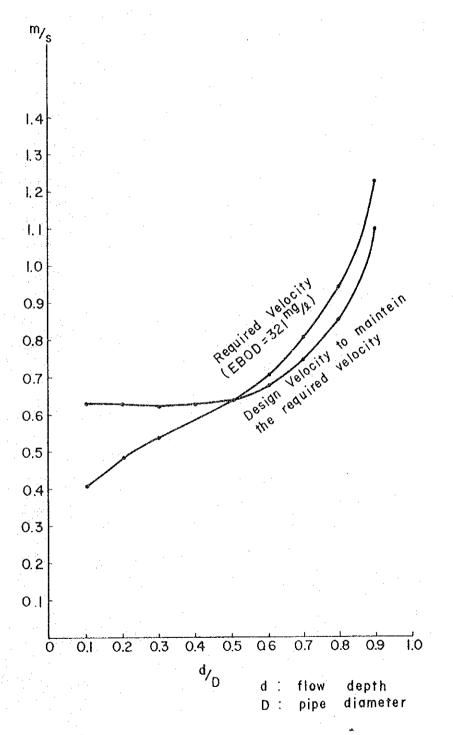


Figure 1.2 Required Velocity and Design Velocity for Sulfide Controlling

REFERENCE

- (1) Pomeroy, Richard D. and Bowlus, Fred D., "Progress Report on Sulfide Control Research", Sewage Works Journal, Vol. XVIII, No. 4 (July 1946).
- (2) Davy, W. J. "Influence of Velocity of Sulphide Generation in Sewers", Sewage and Industrial Wastes, (Sept. 1950).
- (3) Parker, C. D. "Hydrogen Sulphide Corrosion of Sewers", Technical Paper A-8, Part 2, Generation of Sulphides in Sewers; Part 6, Bacteriology of Corrosion Process, Melbourne and Metropolitan Board of Works, Melbourne, Australis, (1945-1965).
- (4) Thistlethwayte, D. K. B. "The Control of Sulphides in Sewerage Systems", Ann Arbor Science Publishers, Inc., (1972).
- (5) Pomeroy, Richard D. "Sanitary Sewer Design for Hydrogen Sulfide Control", Public Works, (October, 1970).
- (6) Pomeroy, Richard D. "Flow Velocities in Small Sewers", Journal Water Control Federation, (September, 1967).
- (7) Camp, T. R. "Design of Sewers to Facilitate Flow", Sewage Works Journal, 18, 1, 3, (January, 1946).
- (8) Russell G. Ludwig "Sanitary Sewer Design for Hydraulic Sulfide Control" (1974).
- (9) HR Oakley & JR Preston "Development of Septicity in Sewerage System", Effluent and Water Treatment Journal (December 1979).

APPENDIX J POLLUTION ANALYSIS OF CHAO PHYA RIVER

APPENDIX J

POLLUTION ANALYSIS OF CHAO PHYA RIVER

1. Chao Phya River

Catchment area of the Chao Phya River is about 177,000 km² (see Figure J.1). The overall slope of the Caho Phya River is about 5.5 cm/km. In the delta area (south of Ayuthya), where Bangkok is located, the slope is at its minimum of about 2 cm/km. At Bangkok the river has a minimum width of 180 m with depth of 20 m. The downstream width increases to 500 m at Samut Purakan, and to more than 1,000 m at near the river mouth.

Some of the physical characteristics of the river which influence to the assimilation ability of pollutional matters are described below.

1) River Flow

The Chao Phya River basin has many interconnected channels and a number of outlets as shown in Figure J.2. It is, however, reasonable to assume that the bulk of the discharge takes place through the Chao Phya River passing through Bangkok which is the principal outlet from the basin.

Additional complication to measure river flows at Bangkok is made by the tides in the Gulf of Thailand causing changes in water level and direction of flow at Bangkok. The Royal Irrigation Department measures the flow rates from the Chao Phya Dam, the Noi River, and the Pasak River which are the major tributaries of the principal outlet passing through Bangkok as shown in Figure J.3. Assuming that the sum of the flow rates represents the river flow at Bangkok, on the basis of the flow data (2509-2520), the average flow at Bangkok is 150 m³/sec with a minimum monthly average of 55 m³/sec, in dry season. In rain season, the average flow is about 1,300 m³/sec with a maximum monthly average of 4,145 m³/sec. And, the flow rates of 95 and 75 percent probability equaled or exceeded are estimated at 70 and 100 m³/sec respectively.

The confluent flows from the major klongs to the Chao Phya River between the mouth and the point upstream about 80 km were measured by AIT & NEB (2521). On the basis of the findings, it is estimated that the sum of discharge volumes from the klongs are less than 10 percent of the river flow.

2) Flow Velocity

There are two velocities which are effective in determining the effects of pollution on an estuary. One is the velocity due to tidal excursion. This velocity fluctuates from minute to minute and is influenced by river flow and tidal range. The maximum velocity was estimated at 1.18 m/sec on the flood tide by CDM 2511 (1968).

The other velocity is the mean temporal velocity which is defined as the quotient of the discharge volume divided by the river cross-section. The mean temporal velocity is 0.031 m/sec for a flow of 100 m³/sec passing through the average cross-section between the Rama VI Bridge and Prapa Daeng Ferry.

3) Tidal Effects

The mean tidal range of the Guld of Thailand varies from 1.9 to 2.6 m at the mouth of the Chao Phya River. The tidal movement affects to the water level and/or flow direction of the river up to 160 km upstream because of its flat slope.

The distance travelled in one direction during ebb or flood tide is known as the tidal excursion. The extent of the tidal excursions is governed by the flow of fresh water, tidal range and the location in the estuary. These relationships are graphically shown in Figure J.4 for the river at the Ground Palace and the mouth (NEDECO, 2508). In general the excursions increases with increasing tidal range. The ebb excursions increase and the flood excursions decrease with a rise of the river discharge. It may be seen from Figure J.4 that the tidal excursion at the Ground Palace for the river flow of 100 m³/sec is about 27 km on the ebb and about 21 km on the flood for a tidal range of 2.0 m.

4) Water Quality

NEB monitors the water quality at the different stations of the river, and the parameters measured are temperature, DO, BOD, chloride ion and nitrates. The data reported from January to April 2522 (1979), are summarized in Table J.1.

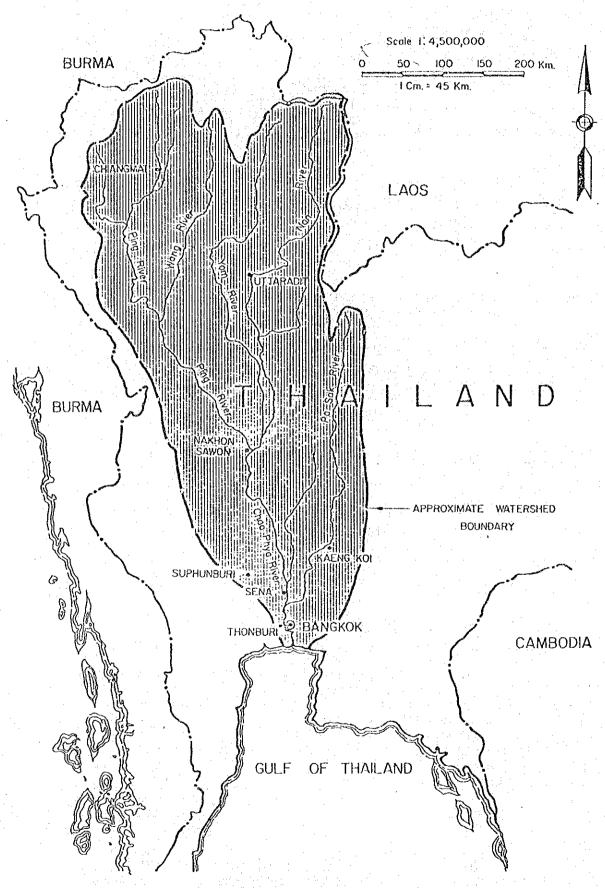


Figure J.I Catchment Area of Chao Phya River

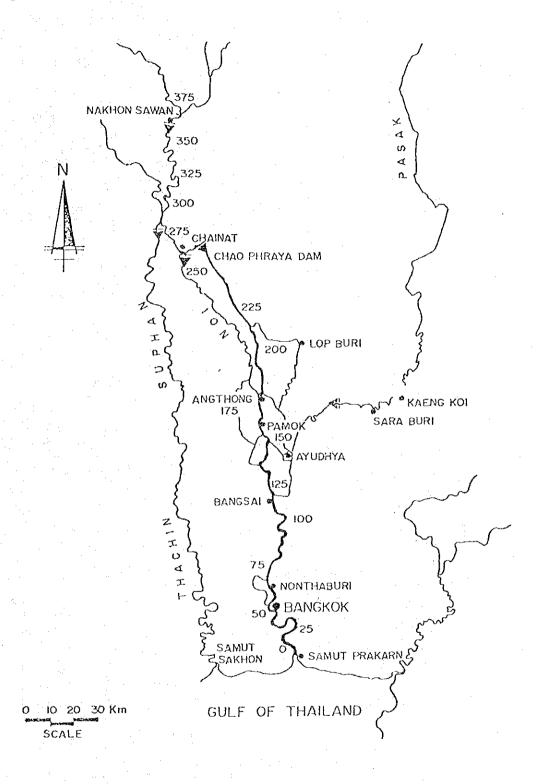


Figure J.2 Lower Chao Phya River System

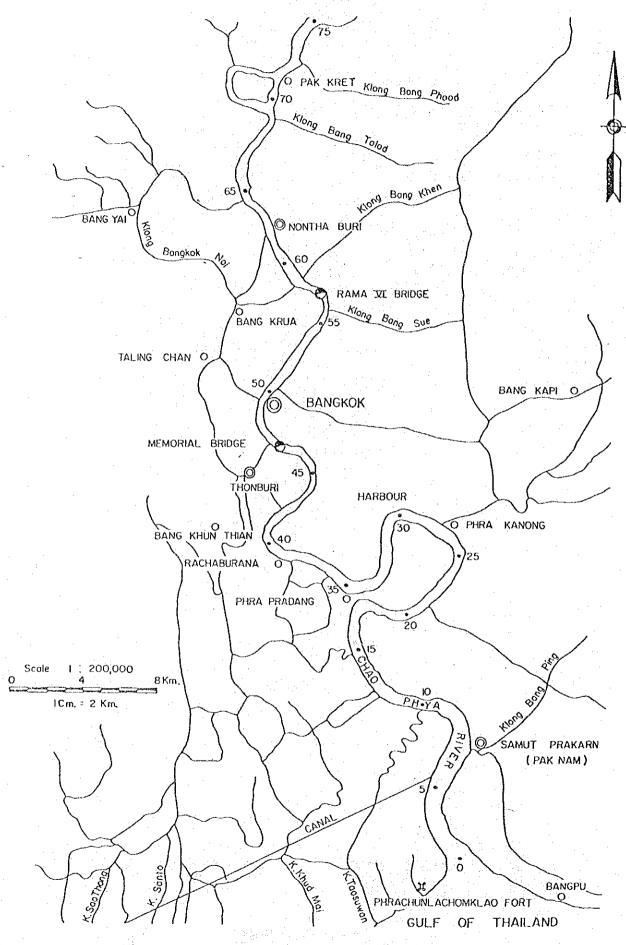


Figure J·3 Study Area of Chao Phya River

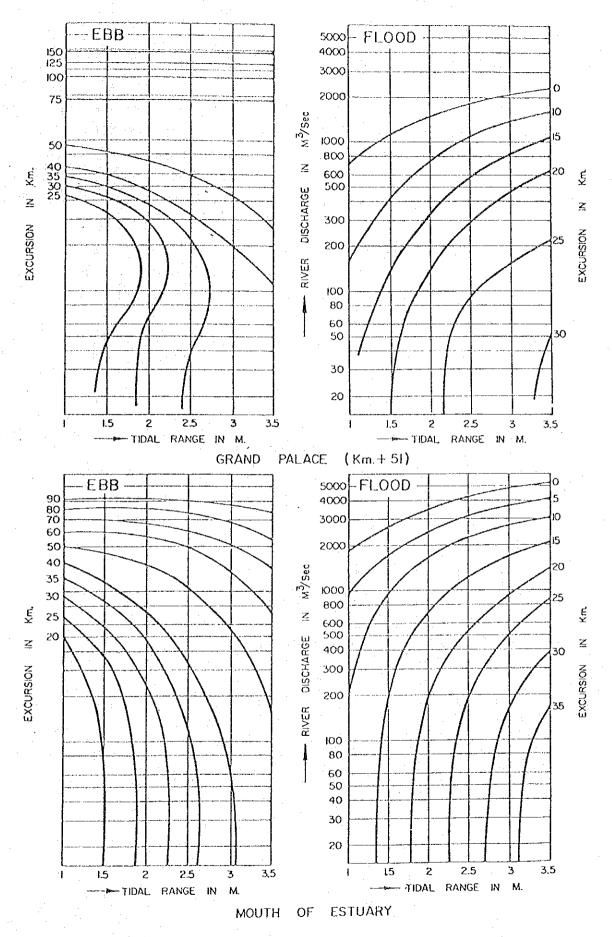


Figure J.4 Tidal Excursion V.S. River Discharge

2. Model Development

The movement and reactions of waste materials through streams and estuaries is a resultant of hydrodynamic transport and biological and chemical reactions by the biota, dissolved and suspended matter, and bottom sediments. These relationships may be expressed by a mathematical model that reflects the various inputs and outputs in the equatic system.

Considering the mass balance, on the base of assumption that the concentration of any characteristic is uniform over the stream cross-section, i.e. a 1-demention model, the general relationships are expressed as follows:

$$\frac{dC}{dt} + U \frac{dC}{dX} - E \frac{d^2C}{dX^2} + S = 0$$
(1)

where C: concentration of material

t : time at a stationary point

U : velocity of flow in the X direction

E : turbulent diffusion coefficient

S : sources and sinks of material

X : distance downstream

The sources and sinks of mass can be listed as follows:

Sources of oxygen:

- 1) Quantity in incoming or tributary flow
- 2) Reaeration
- 3) Photosynthesis

Sinks of oxygen:

- 1) Biological oxidation of carbonaceous organic matter (BOD)
- 2) Nitrification
- 3) Benthal decomposition of bottom deposits

i) Dispersion Coefficient

It is assumed that the mass flux in a given direction is proportional to the concentration gradient in that direction, where the coefficient of proportionality, E, is called the turbulent diffusion coefficient.

In a 1-dimensional model, the turbulent diffusion coefficient E of equation (1) may be replaced by the effective longitudinal dispersion coefficient, Kx, which represents the combined effects of turbulent diffusion and velocity shear.

For a conservative material such as salinity, equation (1) may be rewritten to

$$Kx - \frac{d^2s}{dx^2} - U - \frac{ds}{dx} = 0 \qquad (2)$$

and its solution is

$$S = So \ 10^{-0.434} \ \frac{U}{Kx} \ X' \ \dots (3)$$

where So : salinity at the mouth of the river

S : salinity at any distance X'upstream

X': distance upstream from the mouth, in km

So, S, X' and U are measurable quantities, and Kx may be computed.

AIT & NEB (2521) made a survey of the Chao Phya River in dry season. The results summerized in Table J.1 are applied to equation (3), and Kx can be given by

$$Kx = 9.94 \text{ U} \dots (4)$$

ii) Reaeration Coefficient

The oxygen transfer from air to water may be defined as

$$\frac{dD}{dt} = \frac{K'2As}{V} \quad (Ds - D)$$

$$= K_2 \quad (Ds - D) \quad ... \quad (5)$$

where K'2 : oxygen transfer coefficient

As : surface area of the water body

V : volume of the water body

Ds : saturation concentration of dissolved oxygen,

D : dissolved oxygen concentration of the water body

K₂ : Reaeration coefficient

The reaeration coefficient is a function of stream characteristics such as flow velocity, surface turbulency, and dissolved materials.

The average value of the reaeration coefficient for the Chao Phya River estuary in dry season is estimated at 0.205/day (base 10) by Sermpol (2511).

iii) BOD Model

The decomposition of organic matter (BOD) by the biological process in polluted water is expressed by

$$-\frac{dL}{dt} = K_1L \dots (6)$$

where L : long term BOD

K₁ : BOD decay constant

In an estuary, BOD may settle out to the bottom, and the loss of BOD from the water body by sedimentation may be expressed as

$$-\frac{\mathrm{dL}}{\mathrm{dt}} = K_3 L \dots (7)$$

where K₃ : precipitation coefficient

Equations (6) and (7) may be mathematically combined and integrated to

Lt = L
$$e^{-(K_1 + K_3)t}$$
(8)

If equations (1) and (8) are combined at steady state, relationships of BOD between any two points "1" and "2" can be mathematically defined for a stream as follows.

$$L_2 = L_1 e^{mx} + \frac{L_B}{Kr} (1 - e^{mx})$$
(9)

where

$$m = \frac{1}{2Kx} (U - \sqrt{U^2 + 4 Kr Kx})$$
(10)

 L_1 , L_2 : long term BOD at points "1" and "2"

 $L_{\rm B}$: additional BOD along the stream

e : the base of the natural logarithm

Kr : BOD removal constant which may relate to the removal of organics by biological oxidation, precipitation,

etc.

$$Kr = K_1 + K_3$$

iv) BOD-DO Model

The DO profile in a 1-dimention stream may be expressed at steady state as follows.

$$u - \frac{dD}{dx} - Kx - \frac{d^2D}{dx^2} + KrL - K_2(Ds-D) - Dp = 0.....(11)$$

where L : long term BOD

Dp : DO addition by photosynthesis and others

Combining equations (9) and (11), the following solution is obtained (Dobbins, 2507)

$$D_2 = Ds - \frac{Kr}{K_2 - Kr} (L_1 - \frac{L_B}{Kr}) (e^{mx} - e^{rx})$$

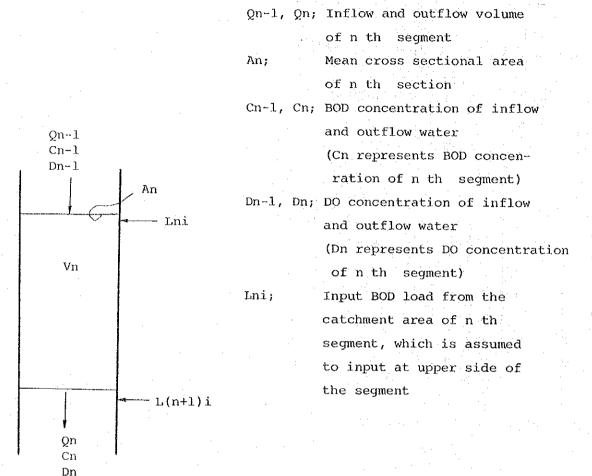
$$- (Ds - D_1) e^{rx} - \frac{1}{K_2} (L_B - Dp) (1 - e^{rx}) \dots (12)$$

where
$$r = \frac{1}{2Kx} (U - \sqrt{U^2 + 4 K_2 Kx})$$
(13)

3. River Conditions for Model Analysis

For modelling the river system, the lower reaches of the Chao Phya River is divided into 16 segments of 5 km each in length. The study area of this pollution analysis is confined as the reaches from the river mouth to 80 km upstream of the mouth.

The mean cross sectional area and volume of each segment are shown in Table J.1 together with average water quality in dry season, which are referred in the NEB & AIT's report $\frac{1}{2}$.


The pollution analysis is made on the base of the hydraulic model and mass balance as shown in Figure J.5.

^{1/} Mathematical Optimization Model for Regional Water Quality
 Management: A Case Study of Chao Phya River (Phase 1) (NEB & AIT,
 2521)

Table J.1 Mean Cross Sectional Area and Water Quality of Chao Phya River

	Remarks						Rama VI Bridge		Memorial Bridge				Bangkok Port		Prapa Daeng	Samut Prakan		River Mouth
	NO ₃	t/bu	1	2.0	н 8	ب ي.	H H	0.8	9.0	o.5	9.0	0.7	9.0	0.4	0.5	0.2	٦.0	0.4
(2521)	Ü	mg/1	ſ	12	12	13	20	27	42	121	548	1,295	2,630	3,379	4,783	6,419	8,229	9,810
Quality	BOD 20	mg/1	ŧ	3.1	1.6	2.3	2.4	2,7	3.4	ທ _ີ ຕ	2.9	2.7	2.9	2.8	2.3	2.2	2.4	1.7
Water	OO	mg/1	1	თ ო	 	3.0.	٦.6	٦.6	0.0	0.7	6.0	0.0	0.8	Ч	1.2	о П	2.7	4.2
	Temp.	o°.	· I	. 1	. I	- 1	30.7	30.6	30.6	30.5	30.5	30.5	30.5	30.5	30.5	30.5	30.5	1
Volume of Seg-	ment	(x10 ⁶ m ³)	20.4	10.3	15.4	10.3	15.5	14.3	14.1	13.1	15.7	16.8	19.3	18.6	18.0	19.4	23.2	24.3
Cross Section	Area	(m ²)	2,574	2,585	2,534	2,575	2,704	2,850	2,809	2,867	3,109	3,362	3,852	3,715	3,981	3,890	4,641	4,853
Distance from	River	(km)	75-83	71-75	65-71	61–65	55-61	50-55	45-50	40-45	35-40	30-35	25-30	20-25	15-20	10-15	5-10	0 - 5
₹ 0	ment	No.	rH	73	M	4	ហ	Ø	7	ω	თ	10	לו.	12	13	4	15	16

(after NEB & AIT, 2521)

Vn;

Volume of n th segment

Figure J.5 Schematic Hydraulic Model and Mass Balance in Each Segment of the River

4. BOD Loads

The original data on the BOD loads are obtained from NEB, AIT, Ministry of Industry, and BDS. The BOD loads coming into each segment of the Chao Phya River are estimated by each source of BOD, i.e. klongs, sewers, factories, and direct discharge. The estimated BOD loads future and present are shown in Tables J.2 through J.6.

For pollution analysis of a stream, long term BOD at field temperature is more suitable although BOD is normally obtained are analyzed by the 5 day incubation at 20°C. Most of BOD data obtained are analyzed by the normal method while the water temperature of the Chao Phya River is about 30°C averaged in dry season. So, the value of BOD loads are converted to BOD at 30°C by the following equation (Gotaas, 2491),

$$BOD_{T} = BOD_{20} [1 + 0.00131 (T - 20)]$$

where T is incubation temperature of BOD.

For verification of the model developed, the results of computation using the estimated input data are, as a normal procedure, compared with the data observed in the field. Therefore, the data on the present conditions of the river are prepared based on the data referred in the AIT & NEB report (2521), because the data on water quality of the river, BOD loads from klongs, municipal sewer discharge including pump stations, factory wastes, and direct discharge are measured and estimated in the same year. The other data are used for correction of the values estimated.

Future BOD loads are estimated by the cases of wastewater management to be made or not by the year 2543 (2000). That is,

- Case 1: No measure is made on wastewater discharge control by the year 2543 (2000).
- Case 2: Zone 2 is served by the proposed sewerage system, and industrial wastes discharge is regulated by the Factory Act 2512 (1969).
- Case 3: Zones 1 and 2 are served by the proposed sewerage system, and the other conditions are same as Case 2.

Table J.2 Estimated BOD Loads by Each Source (2521)

	Remarks					Rama VI Bridge		Memorial Bridge				Bangkok Port		Prapa Daeng		Samut Prakan	River Mouth
	Total	4,198	465	6,754	δ	3,634	72,263	8,847	8,826	30,312	5,967	20,350	20,035	15,062	22,308	39,444	∞
(Kg/d)	Direct Discharge	65	70	145	σ. «Ο	1,628	1,969	1,969	430	99	40	37	14	12	7	24	1
BOD Loading (FEOD 30°C]	Factory	314	1	6,609	t. 1 -	405	59,733	1	i i	866	1	4,063	377.	15,050	۳ ۲	1,621	ω
ā	Sewer		ì		F	1	62	556	159	Ē	5,927	ı	1	I	1	1	1
	Klong	3,825	395	i	1	1,601	10,499	6,322	8,273	29,248	ı	16,280	19,644	. I	22,288	37,799	t
Distance from	River Mouth (km)	75-83	71-75	65-71	61-65	55-61	50-55	45-50	40-45	35-40	30-35	25-30	20-25	15-20	10-15	5-10	
Segment	0 Z	ri	2	Υ	ধা	ω	9	7	ω	o o	10	T.	12	13	14 4	ភ	91

Table J.3 Estimated BOD Loads by Each Source (2543) - Case 1

Remarks						Rama VI Bridge		Memorial Bridge			Bangkok Port			Prapa Daeng		Samut Prakan	River Mouth
	Total	4,198	465	6,754	හ හ	9,417	82,966	21,285	8,930	30,312	15,325	29,002	20,035	15,062	22,308	39,444	co
/d)	Direct Discharge	(65)	(70)	(145)	(88)	(1,628)	(1,969)	(1,969)	(43)	(99)	(40)	(37)	(14)	(12)	(7)	(24)	ı
BOD Loading (Kg/d)	Factory	(314)	1	(609'9)	t	(402)	(59,733)	d	·	(866)	I	(4,063)	(377)	(15,050)	(13)	(1,621)	(8)
)ğ	Sewer	1	į	1	1	ŀ	73	655	227	I	14,925	ı	I	i	i ·	ı	ŀ
	Klong	(3,825)	(368)	1. I	1	7,384	21,191	18,661	(8,273)	(29,248)	ŀ	24,902	(19,644)	ı	(22,288)	(37,799)	0
Distance from	River Mouth (km)	75-83	71-75	65-71	61-65	55-61	50-55	45-650	40-45	35-40	30-35	25-30	20-25	15-20	10-15	5-10	0 - 0
Segment	o O Z	н	7	т	4	ស	w	7	ω	თ	10	T T	12	13	14	15	76

Case 1: No. measure is made on wastewater discharge control by the year 2543 (2000). (): The values are assumed to be same as present values.

Table J.4 Estimated BOD Loads by Each Source (2543) - Case 2

	Remarks					Rama VI Bridge		Memorial Bridge				Bangkok Port		Prapa Daeng		Samut Prakan	River Mouth
The state of the s	Total	4,111	465	206	თ თ	9,013	23;184	8,008	8,703	29,314	.7,173	46,330	19,719	3,710	22,308	37,843	ω
/d)	Direct Discharge	(69)	(70)	(145)	(68)	(1,628)	(1,969)	(1,969)	(43)	(99)	(40)	(37)	(14)	(12)	(7)	(24)	ı
BOD Loading (Kg/d) [BOD 30°C]	Factory	227	ı	61	ı	H	24	218	1	4	633	714	61	3,698	(13)	20	(8)
008]	Sewer	, 1	ŀ	`_1	I	,. 1	. 1	ı		ı	6,500	23,394	ı	i.	ì	:	i .
	Klong	(3,825)	(395)		1	7,384	21,191	5,821	(8,273)	(29,248)	ì	22,185	(19,644)		(22,288)	(37,799)	i
Distance from	Distance from River Mouth (km)		71-75	65-71	61-65	55-61	50-55	45-50	40-45	35-40	30-35	25-30	20-25	15-20	10-15	5-10	ω + 0
Segment No.		H	7	т	ঝ	ហ	Ó	7	ω	თ	10		12	13	14	15	16

Zone 2 is served by the proposed sewerage system, and the industrial wastes discharge is regulated by the Factory Act 2512 (1969). Case 2:

The values are assumed to be same as present values.

- 139 -

Table J.5 Estimated BOD Loads by Each Source (2543) - Case 3

Sewer Factory	Goa]
:	(3,825) –
i	(395)
i	1
	2,984
2,783	11,916 2,783
	3,364
	(8,273)
ı	(29,248)
6,500	6,500
23,394	22,185 23,394
1 .	19,644
3,698	· Γ
ı	22,288 -
1	37,799
ı	

Case 3: Zones 1 and 2 are served by the proposed sewerage system, and the other

conditions are same as Case 2. (): The values are assumed to be same as present values.

Table J.6 Estimated BOD Loads by Each Source (2543) - Case 4

	Remarks					Rama VI Bridge		Memorial Bridge	.			Bangkok Port		Prapa Daeng		Samut Prakan	River Mouth
The Late of the Control of the Contr	Total	4,111	465	206	80 6)	4,219	86976	4,990	8,703	29,314	3,092	15,425	19,719	3,710	22,308	37,843	ω
(a)	Direct Discharge	(59)	(70)	(145)	(68)-	(1,628)	(1,969)	(1,969)	(430)	(99)	(40)	(37)	(14)	(12)	(2)	(24)	1
BOD Loading (Kg/d)	Factory	227	l	61	1	Н	24	218	ï		633	714	61	3,698	(13)	. 20:	(8)
면 (명)	Sewer	ı	ŧ	l '	. 1	2,340	2,783	2,803	1	,ŧ	2,419	12,731	ı	ı	: !	i	1
	Klong	(3,825)	(395)		1	250	4,922	747	(8,273)	(29,248)	1.	1,943	(19,644)	1	(22,288)	(37,799)	ı
Distance from	River Mouth (km)	75-83	71-75	65-71	61-65	55-61	50-55	45-50	40-45	35-40	30-35	25-30	20-25	15-20	10-15	5-10	0 + 0
Segment			7	m	∠þ	ហ	9	7	ω	o .	10	TT	12	13	14	15	16

All of the Master Plan Area is served by the proposed sewerage system, and the others are same as Case 2.

The values are assumed to be same as present values. Case 4:

Case 4: All of the Master Plan Area is served by the proposed sewerage system and the other conditions are same as Case 2.

5. Model Fitting

To represent the observed behaviours of quality parameters in the river by the model developed, the water quality factors used in equation (12) are determined by the trial and error method. The most definitive factors on the BOD-DO model may be BOD decay constant and reaeration coefficient for the Chao Phya River, and in the lower segment the water quality is affected by seawater intrusion, i.e. dilution of BOD and addition of DO. The results are shown in Table J.7 and Figure J.6.

As a first approximation, a good description of BOD profile in the river are obtained by a set of Kr and $\rm K_2$ and correction of dilution. Representation of DO profile is also well in lower segments of the river downstream the point of 40 Km from the river mouth. But the results indicate that more accurate data on the input BOD loads are necessary to consider more details of the model verification.

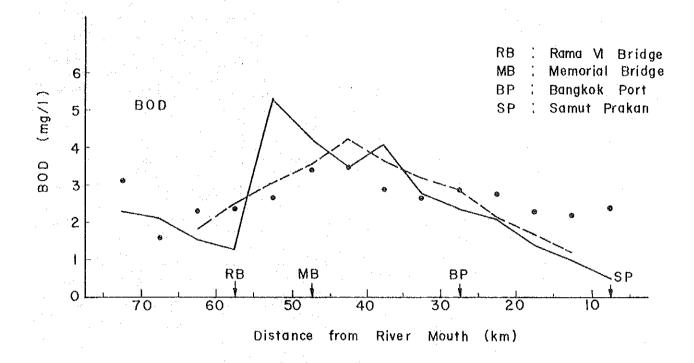
6. Future Water Quality

The future water quality are computed by each case described previously, and the computed quality are shown in Table J.7 and Figure J.7.

In Case 1 that no wastewater control measure is made, BOD content of each segment downstream Rama VI Bridge may become higher than the present value, and anaerobic condition will happen in the lower segments between 40 and 20 km from the mouth. In this case, it is not possible to escape odor nuisance rising in the area because much sulfates (SO_4) supplied by seawater intrusion are reduced to hydrogen sulfide (H_2S) under the anaerobic condition.

Table J.7 Computed Water Quality of Chao Phya River

	Remarks						Rama VI Bridge			Memorial Bridge				•	Bangkok Port		Prapa Daeng		Samut Prakan		River Mouth
	e 2') 임		ر س) (C) (C		3.7	i di Tari	3.3	3.2	O ၈	9.7	•		•	9.0	0.1	1.2	1.4		1
	e 4 Case	DO BOD		6	-	7 1.	∞		ω	.9	3.9 2.1	ιυ ω	3,5 2,3		S S	3.5 4.1	8	4.0 1.2	4.1 0.4		1
	Case	DO BOD	1	(1)	6 1.6	⊣			H	6 1.3		1 2.7	0 1.8		-	5 1.7	o	6.0.0	1 0.4		L
(2000)	Case 3	BOD	, 1		1.6 3.		1.1 3.		ന	7 3	.7	m	2.2 3.			ત	1.1 2.	.0.3.	0.4 3.		_
2543	Case 2	вор ро	1		6 3.6	2 3.7	3.7	!	m	2 3.2	m	1 2.6	3 2.5		2.	2	1 2.5	CI	4 2.8		1
	ase 1	DO BO		3.6 2.	3.4 1.	3.5 1.	3.4 1.	1	~	0.5			0 2.		М	6	0.2 1.	.5	0.7 0.		
	ပ	вор	1	2.3	2.1	S.	1.7		n 0		•	4,			ન ન ન	2.2	ქ	۲.	ი ა		
521 (1978)	Present	od	1	3.6	3.4	•	• .			L.4		0	•		ο ·		ተ ፡	•	o. -		
6	from Ri-	(km) BOD	75-83 -	1	5-71 2.	9	5-61 1.	14 14 15	יין מו	ا ا ا	0-45	5-40 4.	30-35 2.8	ر. د		0 (10-12 10-13	0	0 - 5	
	Segment No.		ं . ल	7	m	4	ഗ	ď) r	· (æ (י ת	70		1 C 1 F) t	;† u ⊢l r		16	


No measure is made on wastewater discharge control by the year 2543 (2000). Case 1:

Zone 2 is served by the proposed sewerage system, and industrial wastes discharge is regulated by the Factory Act 2512 (1969). Case 2:

Zones I and 2 are served by the proposed sewerage system, and the other condition are same as Case 2. Case 3:

All of the Master Plan Area is served by the proposed sewerage system, and the other conditions are same as Case 2. Case 4:

Case 2': Treatment facility of Zone 2 is not operated, and the other conditions are same as Case 2.

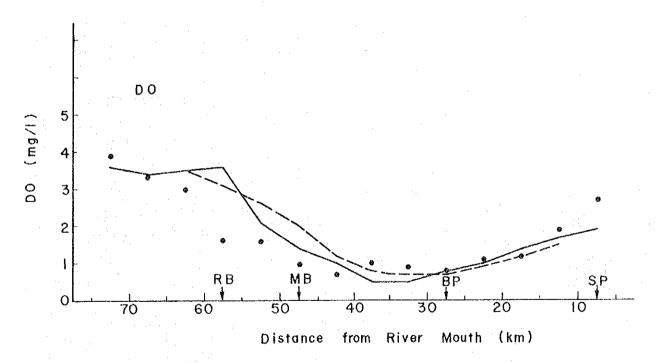
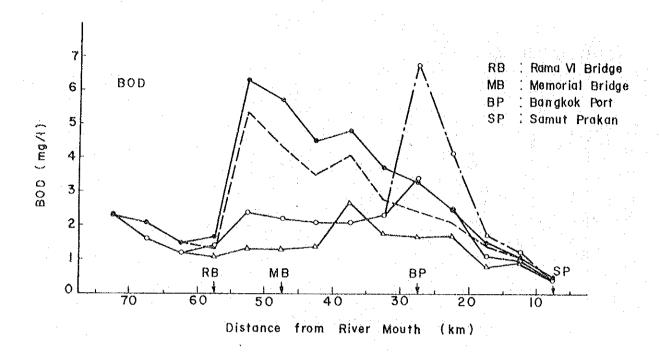



Figure J 6 Observed and Computed Water Quality in Chao Phya River

Observed
Computed
Moving Average for 20 km
Tidal Excurtion

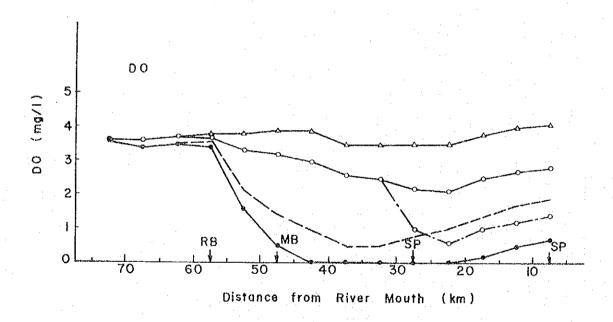


Figure J.7 Estimated Water Quality in Chao Phya River

```
Case I: No Measure (2543)

Case 2: Sewerage System is
Completed in Zone 2 (2543)

Case 2: No Treatment in
Case 2: (2543)

Case 4: Completion of Sanerge
System (2543)

Present 2523 (1980)
```

In Cases 2 and 3 that Zone 1 and/or 2 are served by the proposed sewerage system, and that industrial wastes discharge is also regulated by the Factory Act 2512 (1969), oxygen sag may be markedly mitigated in the reaches along the central Bangkok, but DO content may become lower than 1 mg/l of DO downstream the Bangkok Port, if wastewater treatment is not made. It is, however, believed that odor nuisance caused by anaerobic condition will not happen in the Chao Phya River in spite of great increase of population and industrial development in Bangkok and its surrounding area.

In Case 4 that the proposed sewerage system is completed in construction and services in whole Master Plan Area, BOD content may become lower than 3 mg/l, and DO content may be more than 2 mg/l in the estuary of the Chao Phya River even during the period of the minimum flow. The value of 2 mg/l DO is recommendable as a water quality standard value for the estuary of the Chao Phya River.

7. Conclusions and Recommendation

Using a mathematical simulation model, comparative study of future water quality of the Chao Phya River is made on the basis of assumptive BOD loads to the river, which reflect a wastewater control policy of the Government to be done by the year 2543 (2000).

As conclusion, control and/or regulation of wastewater discharge originated from domestics and/or industries is essential to control water pollution of the Chao Phya River although further study is required on the details of assimilation capacity, amount and discharge points of the wastes, and degree and process of treatment

And it is also concluded that the wastewater intercepted and/or collected by the proposed sewerage system should be treated before discharge to privent rising nuisance condition in the receiving water, and it is reasonable that the effluent quality is of BOD 60 mg/l on the initial stage of the sewerage system construction.

It is recommended that further investigation be made on the simulation analysis of the river system which includes collection data on;

- 1) BOD loads discharged into the river from the factories concerned,
- 2) Water quality and net flow of klongs and/or sewers including pump station at various flow rate of the river, and
- 3) Water quality of the river together with flow rate.

These investigation including setting the water quality standards of the Chao Phya River is already started up by NEB. It may be possible that the sewerage project is managed on the basis of the NEB's policy.

