Table D. 2 Proposed Barrier Along Klong Tub Chang Bon

Barrier Type : Earth embankment with slope protection of

Sodding

Height: 1.3 m
Width: 5.0 m
Slope: 1:2

2. PUMPING STATION

5 pumping stations; Lao, Huay Kwang, Bang Nang Chine, Ban Lai and Klet are proposed in the Feasibility Study. The pump capacity and operational water levels of these pumping stations resulted from hydraulic analysis are shown in the following table.

Table D. 3 Proposed Pump Capacity and Design Water Level

[unit: m MSL)

Pumping St	ation	Operation L.W.L.	Discharge H.W.L.	Klong Bed Level
Huay Kwang	(3 m ³ /s)	- 0.800	+0.900	-1.300
Saen Sab	(9 m ³ /s)	- 0.800	+0.200	-2.500
Bang Nang Chine	$(9 m^3/s)$	- 0.800	-0.180	-2.430
Ban Lai	(6 m ³ /s)	- 0.800	-0.165	-2.500
Klet	(9 m ³ /s)	- 0.800	-0.160	-2.600

^{*} Water levels are indicated under the present condition of ground level

Based on the result of hydraulic analysis, the facility planning of the pumping station is carried out and the proposed facilities are summarized in Table D.4. Maijor points considered for the planning are as follows:

(1) Equipment Type of Pump

In view point of the operational and functional conditions of pumps, existing pumping stations controlled by DDS and RID are classified into the following 3 types. (Refer to Table D.5)

a) Movable pump type (Capacity per unit: $0.01-2.00 \text{ m}^3/\text{s}$)

Only during raining season, this type of pump is installed in the pumpwell, therefore, this is of temporary nature, of the low cost and operation/maintenance easiness. Durable year of pump equipment is 7-10 years according to past experience.

b) Urgent pump type (Capacity per unit: 3.0 m³/s)

In the urgent program in 1984, submersible pump having 3.0 3 /s capacity were adopted and constructed. Total pump capacity of 202 3 /s is for the Eastern Suburban Bangkok. The construction cost of this type is about one-fourth of the permanent type. Durable life of pump seems 7-15 years.

c) Permanent pump type (Capacity per unit: $5.0 \text{ m}^3/\text{s}$)

This type (mixed flow) of pump equipment was adopted for Rama IV and Padung krung Kasem pumping stations constructed in 1970 and 1972 respectively. Except engine trouble for the Rama IV pumping station, there has been no serious problem for operation/maintenance since their construction. Durable year is assumed approximately 20 years.

Taking the above existing conditions, construction cost, economic life, operation/maintenance easiness and etc. into consideration, the submersible pump of the urgent type is adopted. Major considerations for the selection of this type are as follows:

- 1) Construction cost is very low although economic life of submersible type is expected approximately 7-15 years.
 - To meet the site condition (difficulty of land acquisition).
 - 3) Due to land subsidence at the site, the design of permanent type pump is rather difficult and such type of pump is very costly.
 - 4) To harmonize with existing pumping station constructed by urgent program.

(2) Power Source of Pump Operation

As the alternatives of pump power source, electrical motor driven type and diesel engine driven type are studied. Comparing the both types, the electrical motor driven type is adopted taken into account the availability of electricity supply in Bangkok, operation and maintenance, the problems occured in the past.

(3) Number of Pump Units to be installed

In view of the pump operation and maintenance, the pump units installed in a station are proposed 2 to 3 units with discharge capacity of 1.5 $\rm m^3/s$ to 3 $\rm m^3/s$. Table D.4 shows the proposed capacity and unit for the 5 proposed stations.

(4) Automatic Screen

For the protection of the pump and maintaining the high discharge efficiency, automatic screen is proposed to be installed at the intake pit.

(5) Civil Works

In view of the weak subsoil conditions and land subsidence, pile foundation is planned to support the pump facilities. The piles have to be driven into the stiff clay layer, about 20 meters below ground surface. Moreover, against the differencial settlement due to the land subsidence and seepage failure caused by different water levels of up and down-streams, cut-off wall is planned to be provided.

Table D.4 Proposed Pumping Station

Na me	Capacity per set (m ³ /s)	No.	Total Capacity (m ³ /s)	Pump type
Bang Nang Chine	3.0	3	9.0	axial flow submersible
Ban Laí	3.0	2	6.0	11
Klet	3.0	3	9.0	, II
Lao	3.0	3	9.0	11
Huay Kwang	1.5	1	3.0	11

Gate

Existing gates are classified into wooden gate, sluice gate and swing gate. Swing gate in the past had some problems in operation and maintenance work and has not been constructed in recent years. Wooden gate used only for small size gate is low in construction cost but has short durability.

On the other hand, sluice gate has already been constructed in many sites and is reported to be functionarily satisfactory. Therefore, sluice gate is adopted. Location of proposed gates are shown in Fig. D.1 and D.5.

The standard gate width of 6.0 m is adopted and the gate leaf having roller is made of steel.

Proposed Gate

Name of Gate	Width, Height of Gate (m)	No.	Ga te Ty pe	Klong Width (m)
Song	6 x 5	1	Sluice	32.0
Lolae	6 ж б	1	Slu i ce	15.0
Saen Saeb	6 x 6	1	Sluice	42.0
Phra Khanong	6 x 6	1	Sluice	35.0

Existing Pump Controlled by DDS and RID

Table D.5

4. Klong Improvement

Under the conditions of present klong network systems, hydrological and hydraulic analysis is carried out in Appendix C to evaluate the existing discharge and storage capacity of the klongs. As a result of the analysis, the necessary klong improvement is clarified in order to obtain the condition of almost no innundation in urbanized area for the design rainfall.

The improvement of the klongs is confined, in principle, to the existing klong right-of-way to avoid land acquisition as much as possible and two type (rectangular shape with retaining wall and trapezoidal shape with 1:2 slope) klong cross section are considered. Fig. D.6 shows flow chart of study on the klong improvement works.

Tables D.7 and D.8 summarize the klong improvement works, consisting of retaining wall and dreding. Main points considered for improvement planning are as follows:

1) Historically many houses have been constructed along the klong and it is practically difficult to widen the klong and to acquire the enough right of ways in the urbanized area owing to the social and economic impact. Therefore, the widening is confined to the existing klong and land acquisition for right-of-way is, in principle, limited.

From the viewpoint of the klong improvement plan, however, it is desiable to set out the right of way in the both sides of klong for the maintenance of the klong and the emergency flood fighting.

It is required to remove houses, illegally built within the right-of-way of klongs to avoid the disturbance of discharge and maintenance of klong.

2) As for the improvement planning in this stage, existing retaining walls are utilized as much as possible except timber wall and damaged or dangerous concrete wall. At the places needed dredging in front of existing retaining wall, the reconstruction is planned because of the structural weakness.

The proposed retaining wall having the rectangular section is classified as follows:

Table D.6 Classification of Retaining Wall Construction

	Classification	Existing Re	taining Wall	Doggania
	Classification	Туре	Dama ge	- Deepening
1.	Utilizing Existing Wall	Conc. wall	Not damaged	Not planned
2.	Reconstruction	Conc. wall	n	Planned
2.	Reconstruction	Conc. wall	Damaged	· <u>-</u>
2.	Reconstruction	Timber wall	No.	~
3.	Construction	None of Wall	~	

At present, in many places, due to siltation and dumped garbage the klong capacity is reduced. Therefore, it is required to dredge and clear up the klong. Considering the stability of retaining wall and embankment, however, it shall be carefull to lowering the klong bottom. Furthermore, remnant and superfluous structures have to be demolished and removed in order to maintain the proper function of the drainage system.

3) For the klongs which have or be able to acquire sufficient space, the trapezoidal section is adopted from the economical point of view.

For the strapezoidal section, three alternatives of typical sections are studied as shown in Fig.D.7 and the alternative A-2 is adopted which has sodding protection for the 1:2 side slope.

4) In case that the trapezoidal section can not be adopted because of difficulty in land acquisition, the rectangular section is adopted which requires the construction of retaining wall. For the design of retaining wall, several alternatives are studied i.e., concrete panel wall type, sheet pile type and gravity type as shown in Fig.D.7. And the concrete panel wall type and sheet pile type as shown in Fig.D.8 are adopted considering followings:

a) Concrete panel wall type

Under the soft soil conditions of the Bangkok clay, many types of retaining wall were constructed along the river and klongs. Among these types, the concrete panel wall type was adopted for the major part of the klong retaining wall.

Considering the past experience, construction cost and utilization of local materials, this concrete panel wall type is adopted in this project.

For the anchoring of this type, alternatives B-l of Fig. D.7 (cantilever type) and B-4 (pile anchor type) are principally recommended taking into account the stability and reliability of the structure under the soft soil conditions. Bracing beam method (alternative B-2) is recommended for small klongs with width of less than 6 to 8 m. For the narrow places where anchoring in B-4 is difficult, batter pile method (alternative B-5) is recommendable although it is rather weak against land subsidence comparing with other types due to included batter pile.

b) Concrete sheet pile type

For the concrete panel wall type higher than 3.5 m sheet pile type is adopted due to stability problem.

For this type, alternatives as shown in Fig.D.7 are studied. From the view point of land acquisition, easiness of material purchase, construction cost, alternative C-1 of concrete sheet pile type is adopted. Anchoring is basically adopted same as the concrete panel wall type (B-4 type).

c) Gravity type

Gravity type has an advantage to the durability of the structure comparing with other types. However, since it will be costly type under the soft soil conditions, it is not recommendable in this study.

5) Drains

The project area is geometrically low and plain, and consequently gradient of drains to be installed is inevitably limited to lower values, 0.3% for instance. This brings the low flow velocity in the drains, and consequently sedimentation of of sand in the drains will occur. Thus the effective cross section of pipes will be largely reduced.

Furthermore, differential settlement of the pipes due to weak subsoils and land subsidence will promote sedimentation of sand by the change of gradience. Therefore, one of the most significant factors for the drain planning is to construct the firm foundation to avoid the differential settlement.

Considering above mentioned conditions, following 4 types of drain foundation are studied, and wooden ladder foundation and friction pile foundation are adopted for the drains

Typical sections for these types are shown in Fig. D.9.

1) Wooden Ladder Foundation

This method is to lay drains on the wooden ladder in order to distribute the loads, such as self weight of the pipe and weight of above soils, uniformly to the base ground. This foundation has been adopted, in the past for a long time, as a highly reliable pipe foundation in a weak subsoil.

2) Reinforced Concrete Panel Foundation

This foundation has been widely adopted in Thailand and its idea is fundamentally the same as wooden ladder foundation.

3) Soil Cement Foundation

This method is one of the subsoil improvement methods and is utilized as a pipe foundation. Improved subsoil is made by mixing the soil and cement at site in order to increase the strength of soils.

4) Friction Pile Foundation

For the construction of box culvert, friction pile foundation is preferable to be adopted preventing differential settlement of structure and subsoil.

For the installation of drains in case of crossing highway, horizontal jacking method is proposed at the crowded highway, where particularly open cut method is difficult to apply.

This method requires sufficient earth covering of min. 2.5 times of the pipe diameter, for avoiding the collapse of the ground surface. In this case manholes are to be installed on both sides of the road.

Standard cross sections of this method are shown in Fig.D.10.

Some of existing main and middle scale roads, which drain pipes with the diameter 600mm to 1500mm are installed, have been raised in elevation and ground elevation of these roads have become higher than the private land nearby.

In spite of the fact that, consequently, the storm water inlets of the drains installed on the road have been utilized only for drainage discharging on the road, existing drains from the private land are not fully fulfil the role.

The location and elevation of the inlet of the drain should be coodinated with the ground elevation of peripheral private land in order to discharge storm water smoothly on the both side of the road.

Table D.7 Summary of Proposed Retaining Wall and Dredging for Klong Improvement (1)

	Proposed			ining Wal			Dredging		
Klong	Shape	Length (m)	Exist.	Exist. Uti- lized	Re- const.	Const.	(x10 ³ m ³)	Acquisi- tion(m ²)	Remarks
Phra Khanong Polder	(Priamar	y Facility	y) ?						
Phra Khanong	T,RC,RD	7,600	5,360	810	1,980	3,010	74.7	-	
	(T)	(3,900)	(2,620)	_			(38.1)	· _	
	(R.C)	(2,000)	(1,440)	(810)	(680)	(2,610)	(12.5)		
	(R. D)	(1,700)	(1,300)	-	(1,300)	(400)	(24,1)		٠
Tan	RC,RD -(R.C)	3,600 (800)	1,490 (310)	-	1,490 . (310)	2,100 (490)	. 91.9 (22.4)	1,100	
a. Cach	(R.D)	(2,800)	(1,180)	-	(1,180)	(1,720)	(69.5)	(1,100)	
San Saeb	T,RC,RD (T)	7,400 (1,800)	7,980 (1,060)	_	6,940	4,260	186.1	11,700	
	(R,C)	(1,600)	(1,860)	_	(1,860)	(1,340)	(47.9)	(1,500)	
•	(R. D)	(4,000)	(5,060)	• _	(5,080)	(2,920)	(100.2)		
Sub-Total (1)	, , , , , , , , , , , , , , , , , ,	18,600	14,830	810	10,410	9,380		12,800	·
	(T)	(5,700)	(3,680)	(-)	(-)	(-)	(86.0)	(-)	
	(R.C)	(4;400)	(3,610)	(810)	(2,850)	(4,440)		(1,500)	
	(R.D)	(8,500)	(7,540)	(-)	(7,560)	(4,940)	(193.8)(
Ramkhamhaeng Draina	ige Area	·	•						
Chit	R.A	1,300	_	_		2,600	3.3	-	Et
Gig	T,RA	1,540	1,440	100	1,270	470	8.7	· 🚗	
	(T)	(570)	· -	- ;	, _		(1.2)	•	
	(RA)	(970)	(1,440)	(100)	(1,270)	(470)	(7.5)		
Kacha	T,RA	4,400	800	***	800	2,400	28.9	_	
	(T)	(2,800)	-	_	_	-,	(17.3)		
	(RA)	(1,600)	(800)	_	(800)	(2,400)	(11.6)		
Sub-Total (2)		7,240	2,240	100	2,070	5,470	40.9	1 4	
	(T)	(3,370)	(-)	(-)	(-)	(-)	(18.5)	=	
	(RA)	(3,870)	(2,240)	(100)	(2,070)	(5,470)	(22.4)		
West Huay Kwang Dr			•						
Sam Sen	T.RB	6,200	3,300	2,600	500	1,300	20.0	2,700	
	(T)	(5,100)	(2,400)	(2,200)	_	-		(2,700)	
	(RB)	(1,100)	(900)	(400)	(500)	(1,300)	(7.5)		
Lat Phrao	Т	5,470	1,000	600	·	-	140.4	1,920	
Yai Soon	Т	1,600	200	200	_	-	4.4	2,800	
Chao Khun Sing	T	2,600	600	600	_	-	4.6	1,800	
Sub-Total (3)		15,870	5,100	4,000	5C0	1,300	169.4	9,220	
•	(T)	(14,770)	(4,200)	,	_	÷		(9,220)	
	(RB)	(1,100)	•		(500)	(1,300)	(7.5)		

Table D.7 Summary of Proposed Retaining Wall and Dredging for Klong Improvement (2)

	Propos-	Klong	Reta	ining Wal	1 Length	(m)	Dredging	Land	
Klong	ed Shape	Length (m)	Exist.	Exist. Uti- lized	Re- const.	Const.	(x10 ³ m ³)	Acquisi- tion(m ²)	Remark
Bang Na Polder									
Klet	R.A, RC	6,200	0	-	٠ _	12,400	113.3	_	
	(R. A)	(2,700)	(0)	· <u> </u>		(5,400)	(66.1)	_	
	(R. C)	(3,500)	(0)	-	-	(7,000)	(47.2)	. **	
Bang Na	T,RA,RC	6,200	2,800	400	2,100	6,500	59,8	400	
	(T)	(2,000)	(800)	(400)	-	-	(10,1)	-	
•	(RA)	(600)	(0)	***	(0)	(1,200)	(4.6)	-	
	(RC)	(3,600)	(2,000)		(2,100)	(5,300)	(45.1)	(400)	
Ban Lai	T,RA	3,500	0	-	-	6,000	35.5	-	
	(T)	(400)	(0)		-		(0)	-	
	(RA)	(3,000)	(0)	-		(6,000)	(35,5)	→	
Kwang Bon	R. A	2,600	0	•••	_	5,200	20,2		
Suan Aoi	T	600	0	_	-	_	10.2	-	
Kwang Lang	T	1,000	0	-	_	-	6.7	***	
·Bang Ao	T,RA	2,100	2,200	1,400	800	. 1,200	14.6		
	(T)	(500)	(0)	_	-	~	(4.9)	••	
21	(RA)	(1,600)	(2,200)	(1,400)	(800)	(1,200)	(9,7)	-	
Bang Nang Chine	T,RA	3,860	3,840	2,240	600	3,480	. 17.4	-	
	(T)	(600)	(0)	(0)	_	***	(1.6)	-	
	(RA)	(3,260)	(3,840)	(2,240)	(600)	(3,480)	(15.8)	-	
Bang Na-Trad Rd.Kl	T	1,350		-	-	_	5.7	-	
Bang Na-Trad Rd.K2	T	600	-		-	_	2.5	-	
Bang Na-Trad Rd.K3	T	600	-	***	-	_	2,5	-	
Bang Na Chak(1)	RA,RC	2,350	600	-	600	4,100	27.1	-	
	(RA)	(1,850)	(0)	-	-	(3,700)	(16.5)	-	
	(RC)	(500)	(600)	-	(600)	(400)	(10.6)	-	
Bang Na Chak(2)	R.A	1,750	_		***	3,500	21.0	-	
Sub-Total (4)		32,710	9,440	4,040	4,100	42,380	336.5	400	
	(T)	(7,750)	(800)	(400)	(~)	()	(44.2)	(-)	
	(RA)	(17,360)	(5,040)	(3,640)	(1,400)	(29,680)	(189.4)	· (-)	
•	(RC)	(7,600)	(2,600)	(-)	(2,700)	(12,700)	(102.9)	(400)	

Table D.7 Summary of Proposed Retaining Wall and Dredging for Klong Improvement (3)

	Propos-	Klong	Reta	ining Wal	1 Length	(m)	Dredging	Land	
Klong	ed . Shape	Length (m)	Exist.	Exist. Uti- lized	Re- const.	Const.	(x10 ³ m ³)	Acquisi- tion(m ²)	Remarks
Bang Sue Drainage	Area		v						
Bang Sue	T.RC.RD	7,440	2,400	800	1,200	3,000	104.8	5,200	
	(T)	(3,840)	(600)	(200)	-	-	(45.1)	(3,100)	
	(RC)	(2,600)	(1,400)	(600)	(800)	(2,400)	(38.1)	(1,300)	
	(RD)	(1,000)	(400)	_	(400)	(600)	(21.6)	(800)	
Ratchada Ditch	RA	5,200	-	-	-	10,400	52.0	-	
Kasesart	RA	1,750	_	-	-	3,500	11.3	—	
Lat Yao	RA	2,150	-		-	4,300	3.2		, •
Rhya Wake	RA	2,000	500	500		3,500	13.2	-	
Sub-Total (5)	,,,,,	18,540	2,900	1,300	1,200	24,700	184.5	5,200	
	(T)	(3,840)	(600)	(200)	_	-	(45.1)	(3,100)	
	(RA)	(11,100)	(500)	(200)	(-)	(21,700)	(79.7)	(3,100)	
	(RC)	(2,600)	(1,400)	(600)	(800)	(2,400)	(38.1)	(1,300)	
•	(RD)	(1,000)	(400)	(500)	(400)	(600)	(21.6)	(800)	
Total		92.96				83.33	1,084.0	27,600	-

Table D.8 Proposed Retaining Wall and Dredging for Klong Improvement (1)

pu	juisi- Remarks	(m ²)						,										-																										
Dredging Land				1.7	3.4	2.8	2.0	1.0	۳ ا د	, ,	† ·	0 0	, ·	寸	0-) r-		2.2	1.6	8	1.4-	8 0	2.0	1.7	0.8	1.5	1.2	0.8	9.7	٠,٠	7.7	\ 	7.7	١٠,٢) c	2.5	000	2.4	1.4	8	3,3) 	1.00	
Q		Const.		D 100		1	i	0Z G		ב ה ה		D 80	ı	ı	1 1	_ <u> </u>)	. I	. 1	C 120		1	ı	c 150	1	ı	ı	i	1					200			<u>,</u> 1	ı		ı	1			
	Bank	Re-	• 1000	- gv	D 200							D 120		ı	1 :	l (! !	1	. 1	C 80	} 1	ı	ŀ	ı	1	1	C 200	1	ı	1	1 9	ر د 40	ı	L,	! !	1	ı	1	ı	ı				
1	Right	Exist.	lized	. 1	ı	ŀ	• 1		. 1		ı	ŀ	ı	ı	1 3	1 0 7 1	200	0 1	ı	ı	ı	1	ı	50	. 1	1	1	ı	1	ı	ı	ı	1	1 5	700	1	, ,	ı	1	1	1	ı.		
Wall Length	•	Exist.		C	200	200	200	130		071	F + 40	120	700	170	200	140 140	200	130		007	20.5	200	50	50	170	90	200	100	0	0	0 (40	0 (0 0	700	o c	o c	o 6	20	9	0	•		()
eraining		Const.														C 40	C 150) 	1	C 200	1	ı	t	C 200	1	ŀ	I	t	1	1 6	200		בר ה ה ה	200) 1	1	1	ŀ	1	1	ı		- 1	
Proposed Recaining Wall	Left Bank	Re- const.						Project"							1	C 160		1	1	i	1	ı	1	ŀ	1		c 200		1	ŀ	I	1	1 , !	ı !	1	ı	1	ı	1	1	1			
P		Exist. Uti-	lized	•				Core							ì	1	150	 	ı	1	1	ı	ı	1	ı	1	1	ı	ι,	1	ł .	1 0	770	0 H		ı	1	ì	ı	1	i			
		Exist.					:	"C1ty							100	160	150	140	100	0	0	0	0	0	0	30	150	110	160	-)) C	200	2	° &	0	10	200	70	70	0			100
Proposed	Section	Shape		×	æ	œ	ద	x	섫	Ж	24	· 64	F	· £-	+ E-	י בצ	: #	í t-i	£-4	· 24	T	Ę	H	24	H	E⊣	pd	[:	E-4	[⊷i t	x; p	ጃ 6	z p	4 P	4 €	ı [-	ı [+	ı [=4	H	H	Ħ			•
		(m)		0	200	200	200	200	200	200	000	007	007	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	202	200	200	202		
	Sta.	No		ò	٦	2	m	7	ιń	٠.٠) r	~ o) (ν ç	3 ;	7 7	7 6	7 -	†	J 5	1 1	. ec	0 -	20	21	22	23	24	25	26	27	28	29	8 8	31	7 7 6 6	ر د د	† K	2 %	9 6	3 8	ว		
	Block	No.		84	(1.5Km)							ć	ά,	(1.5Km)						ć	82	•					81	(1.0Km)				80	(1.9Km)					•						
	Klong			Phra	Khanong	1															-	D	-	1.						٠														

Table D.8 Proposed Retaining Wall and Dredging for Klong Improvement (2)

	•				8					:					
		: 				Pr	oposed Re	taining	Proposed Retaining Wall Length	Ì			Dredging	Land	
Klong	Block	Sta.				ц	Left Bank		-	Right	Bank		103.3	Acquist-	Remarks
•	No.	No	(E)	Shape	Exist.	Exist.	Re-	Const.	Exist.	Exist.	Re-	Const.	(xmonx)	tion (m ²)	
						Uti-	const.			IJtí−	const.				
						lized				lized					
Ton	77	Ö		~					0	1	ı	D 100	2.4		
	(2.0Km)	П	200	M					20	1	D 50	D 150	5.6	٠.	
		2	200	범		٠			30	I	D 30	D 170	5.6	e.	
		ო	200	ጽ					30	ı		D 170	2.9	٠	
		4	200	œ					0	1	1	D 200	3.8		
		<u>د</u>	200	辉					0	1	ı	D 200	5.8		
		9	200	껉					0	1	ľ	D 200	6.8		
		۲,	200	æ					0	ì	1	D 200	5.4		
		∞	200	ĸ					0	1	ı	C 200	8.9		
		9	200	æ	מאיט אנא דיווו	ore Preject			200	i	D 200	ı	6.4	1,100	
	٠	01	200	4	CTLY		, !		06	1	C 90	C 110	5.4		
	76	11	200	æ					40	ı	C 40	C 160	5.8		
	(1.6Km)	12	200	앮					180	1	C 180	C 20	7 7	:	
		13	200	'æ					200	1	D 200	ı	2.8		
		14	200	œ					170	I	D 170	D 30	3.4		
		15	200	24					160	1	D 160		5.0		
		9.	200	æ					120	ı	D 120	D 80	9.9		
		17	200	껖					120	ı	D 1.20	D 80	5.0		
		18	200	ሌ					100	ı	D 100	1	2.0		
Sub-total															
	,,,,		800	υ. Ο	1	ι	ı	ı	310	ı	310	490	22.4	1	
(2)			2,800	R.D	ı	ι	ı	1	1,180	I	1,180	1,620	69.5	ı	
TOTAL			3,600		•	ι	i	4	1,490	ı	1,490	2,110	91,9	1,100	
											1		•		

Table D.8 Proposed Retaining Wall and Dredging for Klong Improvement (3)

;	;	į	; 	Proposed	Ę.		Pro	posed Re	caining	Proposed Retaining Wall Length	1	- - - -		Dredging	Land	() ()
KLong	BLOCK No.	No.	Length (m)	Shape	I √	Exist.	Exist.	Lert Bank Re-	Const.	Exist.	Exist.	Kignt bank st. Re-	Const.	(×10 ³ m ³)	$rion (m^2)$	Kema L K S
		 					Uci- lized	const.			Uti- lized	Const.	•			
Saen Saep		0	0	æ		100		D 100		100		D 100		2.9		
•		년 (200	8 44		0	ı	1	D 200	70		D 70	D 130	9.8	2,000	
		7	200	జ	<i>:</i>	150	1	D 150	D 50	200	1	D 200	ı	5.2	1,300	
		m -	200	eć i	₹.	06	ı	υ 30	D 110	70	I	D 70	D 130	4.2		
-		4	200	ra		2	t	C 70	C 130	40	1	0† D	C 160	4.8		
		'n	200	rzi		50	t	D 50	D 150	120		D 120	D 80	9.4		
		۱. ف	200	(-4)		၉	1		1	20	1	ŀ	1	5.0		
		-	200	껇		200	•	C 200	1	50	1	C 20	C 150	4.8		
		∞ :	200	Z.		200	1		í	200	Ļ	D 200	ı	5.6	900	
		o (200	es i		130	١.	D 730		100	ı	D 100	D 100	6.8	1,200	
		10	200	മ്		120	1	D 120	D 80	90		06 Œ	D 110	6.8	1,200	
		를 :	200	[-1		0	I	1	1	200	1	1	1	4.4		
		12	200	æ		0	1	1	D 200	150	1	D 150	D 50	5.6		
		13	200	K		0.	ı	1	Ď 200	150	I	D 150		5.4	1,400	
		14	200	£		0	ı	1	ſ	200	1	1	l	4.8		
1		15	200	H		60	í	i	í	120	1	i	1	4.6		
1	M	16	200	м		120	1	D 120	D 80	170	1	D 170	D 30	5.3	006	
	. •	17	200	ĸ		40	ı	D 40	D 160	170	1	D 170	D 30	3.4		
24		18	200	ĸ		130	1	D 130	D 70	100	1	D 100	D 100	2.4		
1		13	200	ρť		200	1	D 200	١	200	1	D 200	ſ	4.4		
-		20	200	I		0	1	l	ĭ	0	1	i	1	4.4		
	-	21	200	ĘI		200	ı	1	ſ	0	1	1	ı	4.4		
		22	200	£4		0	I	1	1	200	ļ	1	ı	5.5		
		23	200	ĸ		200	1	D 200	ſ	0	1	l	D 200	4.4		
		24	200	쏪		200	1	D 200	ſ	200	0	D 200	1	3.8		
		25	200	R		120	ľ			200	ı	D 200	1	3.8		
		56	200	ద		130	ı	D 130	D 70	130	1	D 130	D 70	5.2	1,300	
		27	200	R		120	1	D 120	D 80	0	1	1	D 200	9.4		
		28	200	ಜ		0	ı	Ì	C 200	9	1	C 60	C 140	9.4		
		29	200	ಜ		0	1	1	C 200	20	1	C 20	C 180	9.4		
		9	200	ᅜ		100	1		C 100	120	1		C 80	4.6		
		31	200	ra		200	1	C 200	1	200	1	C 200	1	۳. ۳.		
		32	200	×		200	ı		ſ	200	ì		1	6.8	1,500	
-		33	200	ĸ		200	1	C 200	1	200	1	C 200	C 200	4.0		
		34	200	€-i		0	1	ı	1	0	ï	1	1	5.8		
		35	200	[1		0	ı	1	1	0	ı	ı	1	0.6		
		36	200	æ		200	ı	D 200	ſ	200	ı	D 200	ı	3.8		
		37	200	٠ د			1	1	D 100	100	ı.	D 100	1	2.2		
Sut	Sub-Total (1)		1,800	H		290	ı	-	í	770	1	I	ì	6.74		
	(3)		1,600	R. C	,	970	1	970	630	890	ı	890	710	38.0	1,500	
Ė	(3)		4,000	R. D	2,	340	1	2,360	1,640	2,720	l	2,720	1,280	148.1	10,200	
			007.	1	'n	3,600	-	1	-	4,380	-	***	1	186.1	11,700	

Table D.8 Proposed Retaining Wall and Dredging for Klong Improvement (4)

				Proposed		Pro	posed Re	taining	Proposed Retaining Wall Length	gth (m)			Dredging	Land	
Klong	Block	Sta.	Length	Section		Le	Left Bank			Right Bank	Bank		(5-103-3)		Remarks
í	No.	No.	(m)	Shape	Exist.	Exist.	Re-	Const.	Exist.	Exist.	Re-	Const.	(_m_OTX)	tion (m^2)	
	4					Uti-	const.			Uti-	Const.				
						lized				lized					
Klet	165	0		æ	0		1	C 500	0	ı	١	c 500	9. 6		
		- -4	1,000	æ	0	.1	,	CI,000	0	1	1	C1,000	16.0		
	166,167	7 2	1,000	ద	0	t	4	C1,000	0	1	1	C1,000	18.7		Survey
	168	3	1,000	rs.	٥	ı		C1,000	0	1	1	CI,000	22.0		in M/P
	169	4	1,000	ద	O.	1	J	A1,000	0		i	A1,000	20.0		
	170	'n	1,000	ద	0	-	J	A1,100	0	i	ì	A1,100	17.6		
	171	ω	1,200	æ	o		J	A 600	0	•	1	A 600	9*6	ر ا	
Sub-Total	(E)		2,700	R.A	0	ı	j	2,700	0	1	1	2,700	66.1		
(2)	. (2)		3,500	R. C	0	1	J	3,500	0	ı	ſ	3,500	47.2		
TOTAL			6,200	,	0	ı)	1	0	l	ŀ	1	113.3		

Table D.8

	S
	$\overline{}$
Keraining Wall	\mathbf{H}
ketaini	Klong
	for
roposed	Dre
	and

										- 1					
K1000	B100k	ς. 1	Lenoth	Proposed Section		Pr	Proposed Retaining Wall Left Bank	aining W	all Length	- 1 -	(m) Richt Bank		Dredging	Land	Remarke
9::014	No.	No.	(m)	Shape	Exist.	Exist.	Re-	Const.	Exist.	Exist.	Re-	Const.	(×10 ² m ²)	tion (m ²)	Part District
						Uti-	const.			Utie	Const.				
						lized				Tized					
Bang Na	177	0	0	껖	.001	ı	C . 200	I	100	1	C 200	I	1.6		
	(1.0Km)		200	E.	200	200	ı	1	0	i	1	1	2.0		
-		7	200	H	200	200	1	ı	0	1	1	ı	1.3		
		m	200	Я	0	ı	· 1	C 200	0	1	1	C 200	2.6		
		4	200	R	0	1		C 200	0	1	1		2-8		
		Ŋ	200	x	0	1	ľ		0	1		C 200			
	176	9	200	~	0	1	1	C 200	200	1	C 200		1.6		
	(1.1Km)	7	200	æ	0	1	I		0	1	• 1	C 200	3.0		
		œ	200	ద	0	I	i			I	1	C 200	3.4		
		φ	200	ద	0	1	1	C 200	0	ł	1		2.2		
		10	200	젒	200	1	C 200	l	200	1	C 200		8.4		
	175	11	200	Ж	200	ı	C 200	1	0	ı	1	C 200	3.2		
	(I.1Km)	12	200	x	200	1			0	1	١	C 200	2.7		
I		13	200	H	200	ı	1	ı	0	1	1	1	2.2		
ס		14	200	껖	200	1	C 200	ı	0	1	1	C 200	2.1		
e desertion of the second		15	200	×	0	ı	1	c 200	0	ı	1	C 200	2.4		
2:		16	200	H	0	1	1	1	0	l	ì	1	1.8		
2	174	17	200	Н	200	ı	1	ı	0	ı	ì	1	0		
	. (1.0Km)	18	200	ĸ	0	l	ľ	C 200	0	1	١	C 200	2,1		
		19	200	rz;	0	Ì	ı	C 200	b	I	1	C 200	2.8	-	
		20	200	æ	200	ŀ	C 200	t	200	1	C 200	Ί	2.4	400	
		21	200	×	200	1	C 200	ı	0	1	1	C 200	2.5		
	173	22	200	H	0	1	ı	1	0	1	١	ı	1.7		
	(1.0Km)	23	200		a	1	I	1	0	ı	١	ı	0.2		
		24	200	ĸ	0	ı	ļ	A 200	0	ı	١	A 200	0.8	٠	
		25	200	н	0	1	I	ì	0	ı	١	ı	0.2		
	172	56	200	H	0	į	1	I	0	ı	1	I	0.7		
	(1.1Km)	27	200	~	0	I	1	A 200	Ó	ı	1	A 200	1.9		
		28	200	H	0	1	1	1	O	-1	1	4	0		
		53	200	α	0	1	1	C 200	0	I	1	C 200	2.7		
•		30	200	R	0	1	ı		0	. 1	1	A 200	1.9		
4 2	172	31	200	ద	0	ı	1	c 100	0	I		C 100	1.0		
Sub-Total (1)			2,000	T	800	400	١	ı	,	 	,	 	10.1		
(2)			009	R.A	0	i	0	009	1	ŀ	0	900	9.4		
(3)			3,600	R.C	1,300	1	1,400	2,300	700	ı	800	2,900	45.1	400	
TOTAL			6,200	ı	2,100	400	1	. 1	200	ı	ı	ı	59.8	400	

Table_D.8 Proposed Retaining Wall, and Dredging for Klong Improvement (6)

					1									
100 LH	ŭ,	Tenerh	Sertion		rro	Toff Bank	Froposed Retaining Wall Length	11 Lengt	H (m)	Jank		Dredging	Land	
				100	70,40		TOPPET	That or to	The state of the s	Dan	1000	(x103m3)	Acquist-	Kemarks
			1	18141	4 🕽	const.		ם ה ה ה ה		const.	const.		Elon (m+)	
		•			lized·	-			lized					
Kwang Bon-1 197		0	ĸ	0		t	A 100	0	ı	ı	A 100	0.8		
	1) 1	200	ద	0	ı	1	A 200	0	1	1		1.2		
	•	200	떠	a	1	ı		0	1	ı				
	'n	200	ĸ	0		1		0	t	1		1.2		
196	-4	,200	ĸ	0		1		0	ï	ŀ		i m		
	•	•	,	. (9.0		
Ban Lai-1	Λ	200	ᅿ	0	I,	1 .		>	ı	1		9.0	7	
	·w	200	E H	0	1	i	1	0	ı	1		0		
192	~	200	H	0	ı	1	1	0	1	ı	ı	0		
(0.53代用)		200	4	0	1	1	A 200	0	j	ı	A 200	1.3		
		200	p≰	0	1	ı	A 200	0	1	1	A 200	e H		
191	10	200	æ	0	1	.1	A 200	0	.1	ι	A 200	0.7		
(0,69代用)		200	æ		1	·ł	A 200	0	1	1		1.2		
		200	. ⊭	0.	1	1	Δ 200	0	. 1	1		1.0		
	13	200	ĸ	0		ı		0	ı	1		1.6		
D 130	14	200	pd	0	1	t	A 200	0	ş			5.0		
,		200			ļ	ì	A 200	· c	1	1		2.0		
٠		200	, pd	· 'O	1	1	A 200	· c	1	I		2,3		
23	2 -	200	i pr	· C	ı	t	100 100	, c	ı	1	001 Y	6.0		
		1	•	•			2)			1	\ •		
Sub-Total(Kwang Bon-1).		1,000	1		. 1	ı	A1,000	o .c	1	i	A1,000 A2,000	7.5		
מחבות המדורים המדבות				•			200	•			200) }	,	
Ban Lai-2	Ħ	0	K	0	. 1	1	A 500	0	1	r	A 500	10.1	,	LSurvey
	7	1,000	떮		ı	ı	A 500	0	I	1	A 500	9*9		Jin M/P
Sub Total(Bang Lai-2)		1,000	1 -	0	ı	1	A1,100	0	I	1	Al, 00	16.7		
Kwang Bon-2 195	0	0	æ	0	ı	ì	A 100	0	i	1	A 100	0.7		
		200	æ	0	1	1	A 200	0	ı	t		1.4		-
	7	200	ద	0	1	1	A 200	o	ı	1		1.6		
	m ·	200	ed i	0	1	1		0	ı	1	A 200	ω ·	-	
• • • • • • • • • • • • • • • • • • • •	-3 7 1	200	x 1	0	1	1	A 200	0 (۱.	1		2.4		
194		200	≃ (5 (1	ı	A 200	> •	ı	1	A 200	n • 1 •		
(MX8.0)		200	× t	.	į	i	A 200	-	1	1		T (-	
	~ (200	∡ i ;	5 (1	t	A:200	5 0	i	1	A 200	7.7		
	xO	700	¥	.	۱.	i	A 100	>	ı.	Ļ	A 100	× • •		
Sub Total(Kwang Bon-2)	. !	1,600	ı	0	1	1	Al,600				AI,600	12.7		
TOTAL(K.Kwang Bon,1+2)		2,600	R.A	0	1	!	2,600	0	-	1	2,600	20.2		
Total (1) (K.Ban Lat)		500	H	0	1	l	1	0	. 1	1	1	0		
		3.000	R. A	0	ı	1	3,000	0	:	1	3,000	35.5	,	
				C	1	1	1	c	1	t	ł	7. 25	٠	
TOTAL (1)+(2)		3,500		,				;			-	1		

Table D.8 Proposed Retaining Wall and Dredging for Klong Improvement (7)

			Proposed		Pro	posed Re	taining	Proposed Retaining Wall Length (m)	(m)			Dredging Land	Land	
Block Sta. Length St		က်	ection		Le	Left Bank			Right Bank	. Bank		(=103-3)	Acquisi-	Remarks
		Sp	ape	Exist.	Exist.	Re-	Const.	Const. Exist.	Exist.	Re-	Const.	(- III - O T X)	tion (m^2)	
					ucı- lized	const.			Uti- lized	Const.				
T 0 0 T	0 I	H		0	ì	I		. 0	ı	ı	1	1		
(0.6Km) 1 600 T	T 009	E⊸ŧ		0	i		I	0	1	1	1	10.2	,] Survey
T 600	T 009	H		0	ī	1	. I -	0	1	1	I	10.2		Jin M/P
	0 T	H		0	ı	1	<u>.</u> 1	0	1		1	1		٠
(1.0Km) 1 1,000 T	1,000 I	H	•	0	I	1	1	0	1	I	1	6.7		Survey
. 1,000 T	1,000 T	E		0			1	0	1	1	•	6.7		_ in M/T

Table D.8 and Dredging for Klong Improvement (8)

					- 2000											
			,	Proposed		Pro	Proposed Retaining Wall Length	aining W	all Lengt	(m)			Dredging	Land		
Klong	Block	Sta.	Length	Section	f		ft Bank			KI gnt	Bank		$(x10^3m^3)$	Acquist-	Remarks	
	o Z	No.	(E)	Snape	exist.	urist.	Re-	Const.	EXIST.	rxist. Uti-	Ke- Const.	const.	•	Eron (m+)		
						lized			٠	lized						1
Bang Ao-1	215	0	0	H	0	- -	1	ı	0	1	ι	."	1.6			
•	(1.0Km)		200	₽	0	.1.	ı	1	0	ŧ	1 ;	ı	ლ ლ			
		2.	200	ಜ	200	ı	A 200	I 	200	:	A 200	l	J.7			
		m	200	떠	200	ı	A 200	1 6	700 700		Å 200	1 00	O (
	317	3 U	200	rd t	0	1	1 1	A 2006	>	ı ı	1 5	A 200.	7 6			
	214 (0 07m)	ם ר	000	¥ F	o c	l	i _ ¹	007 #	o c	1	1	2 1	9.0			
	(no over)	- α	200	- E	200	200	. 1		200	200	t	1)		To be	
		0 0	200	4 A	200	200	ı	ı	200	200	1	1	1		Construct	ļ,
	213	10	200	i et	200	200.	1	1	200	200	ı	ï	1		ed in 1986	986
Bang Nang Chine-1	(0.4Km)	11	200	¤	100	100	ı	1	100	001	1	1	 I		,	
0	ì	c r	Ċ	ţ.	100	007	!	İ	200	200	١	t	ı		•	
	919	7 -	007 2002	X p	200	200	1 1	1 1	200	200	1	. 1	1		•	
	(0.76Km)	14	160	: 64	9	09	ı	١	09	09	ı	. (*	ı			
CtTotal (Base As1)	. (["		001 6	ı	1 100	. 700	4 400	A 600	1,100	200	A 400	A 600	14.6			
Sub-Total (Bang	Nang Chine-1)	-1)	660	: 1	099	099			099	099	1	1	1			
Bang Na Chine-2	208	0	0	×	100	100	1	ŀ	100	100	1	1	0.1	-		
	(1.0Km)	٦	200	æ	200	200	t		200	200	1	i	1.2			
		7	200	П	0	ı,	1.	ı	0	ı	ı	1	9.0			
		ო -	200	껖	200	1	A 200	1	0	1	i,	· A 200	3.6			
		4 r	200	M 1	0 (1	ı	A 200	0 (1	ı Î		2.0			
	209	nω	700 700	× 1×	- 0	1 1	i j	A 200	- - -	ı .	1 I	A 200	2.0 0.1	•		
	(0.8Km)	7	200	н	0	i	1	1	0	1	1		0	•		
		<u>.</u>	200	IJ	0	ı	1	1	0	1	ı	I	1.0			
	,	ט ל	200	m 1	0 (1 6	i	~	0 (C	1		9.0			
	(n 6km)	3 =	200	4 ¤	150	2	1 1	200	200	<u> </u>) 1	A 500	- 0			
		12	200	: rx	200	1	t	A 200	200	1	. 1		-			
	21.1	13	200	æ	200	ı	A 200	1	200	1	A 200		0.8			
	(0.6Km)	14	200	K F	0 (. 1	1	A 200	٥,	1 6	1		M.F			
	213	J 7	200	K P	. 001	1 0	ı :	06T ₩	3 5	3 5	1	A 190	ਜ਼ ਜ਼		Lio De	ļ
	(0.76Km)	2	2	4	2	9		l) 1	9	i	l	Þ		ed in 19	1986
Sub-Total (Bang Nang Chine-2)	ang Chine	-5)	3,200		1,360	260	A 400	Al,640	1,360	260	A 200	A1,840	17.4		1	.
K. Bang Ao	:	£	500	. T R.A	1.100	700	- 4 400	- 4 600	1.100	700	- A 400	- 009 Y	4.9	· . ·		
TOTAL		· ·	2,100		1,100	700			1,100	700			14.6			
									2016-							1
K. Bang Nang Chine	e de	33	600 3,260	T R.A	0 1,920	0 1,120	A 400	- A1,640	0 1,920	0 1,120	_ A 200	- A1,840	1.6			
TOTAL			3,860		1,920	1,120	· !,	. 1	1,920	1,120		ı	17.4			

D - 25

Table D.8 Proposed Retaining Wall and Dredging for Klong Improvement (9)

				Proposed		Pre	posed Re	Proposed Retaining Wall	Wall Length	gth (m)		-	Dredeine	Land	
Klong	Block	Sta.	Length	Section		Ţ	Left Bank			Right	Bank		2 60 5	Acquisi-	Remarks
1	No.	No.	(m)	Shape	Exist.	Exist. Uti-	Re- const.	Const.	Exist.	Exist. Uti- lized	Re- const.	Const.	(x10/m/)	tion (m ²)	
10]	7.66	 -	0	<u></u>	ļ.	'	•								
4	(1 00-1)	۰,	,	: p			l	1	6	1 6	ı	: I	I		
	(EXO.T)	- ∔ (007	4 F	200	300			300	300	1	ř	o .		,
		7	200	¥	700	700			200	200	ı	1	0		To be
		m	200	1 24	200	200	I .	1	200	200	.,	1	O	~	· Construct-
		7	200	ద	200	200			200	200	ı	ı	0		ed in 1986
`		ıΛ	200	x	200	200			200	200	1	ı	0		
	226	9 1	200	മ	290	290			290	290	ı	ı	0 (-	
	(U.) ONAMI)	,	200	4	190	190			190	190	_	-	0	ا ب	
Total			1,580	ı	1,580	1,580	1	1	1,580	1,580	1	1	0		
Bang Chak(1)	230	0	0	ĸ	1	ı	1	ı	1	1	1	t	1		
	(1.0Km)	H	200	ಭ	300	ı	C 300	1	300	1	C 300	ı	4.9		
		7	200	⊯	0	ı	ı	C 200	0	ŧ	t	1	5.7		
		ო	200	×	0	1	1	A 200	0	ı	i	C 200	1.4		
· .		7	200	ĸ	0	ı	1	A 200	0	i	ı		2.4		
		Ŋ	200	&	0	ı	ı	A 200	0	ı	1	A 200	2.0		
2(229	Q	200	ద	0	t	I	A 200	0	1	ı	A 200	2.0		
-	(0.8Km)	7	200	~	0	ı	1	A 200	0	1	ľ	A 200	1.3		
		α,	200	ĸ	0	1	1	A 200	0	1	1	A 200	1.4		
	,	0	200	rs.	0	ı	ı	A 200	0	1	1	A 200	2.4		
-	228	10	200	ద	0	1	į		0	ı	1		1.6		
	(0.55Km)	= ;	200	≃ :	0	1	I	A 200	0	ı	ı	A 200	1.7		
		12	150	ಜ	0	1	1	A 50	0	1	ŀ	A 50	0.3		
Sub-Total (1)			1,850	R.A	١	ı	1	1,850	ł	1	ı	1,850	16.5		1
(2)			200	R.C	300	1	300	200	300	1	300	200	10.6		
TOTAL			2,350	ı	300	1	ı	,	300	ı	1		27.1		
Bang Chak. (2)	232	0	0	ĸ,	0	ı	1	A 425	0	1	1	A 425	5.1		Survey
		1	850	ਲ	0	1	ı	A 875	0	1	1	A 875	10.5		in M/P
	231	2	006	В	0	ı	ı	A 450	0	1	1	A 450	5.4		
TOTAL			1,750	R.A	0	J	1	A1,750	0	1	ŀ	A1,750	21.0		

Table D.8

Proposed Retaining Wall and Dredging for Klong Improvement (10)

				Proposed		Pro	Proposed Retaining Wall	taining W	all Length	ch (m)			Dredeine	Land	
Klong	Block	Sta.	Length			Le	Left Bank			24	Bank			Acquisi-	Remarks
1	No.	No.	(m)	Shape	Exist.	Exist. Uti-	Re- const.	Const.	Exist.	Exist. Uti- lized	Re- const.	Const.	(omportx)	tion (m ²)	
Gig	145	0	0	М	100	100	ı	1	100	ı	1	1	0		
o ^	(1.54Km)		200	ద	. 200	J	A 200	1	200	1	A 200	1	1.7,		
		2	200	쌆	200	1	A 200	1	200	i	A 200	1	1.8		
		٣	200	æ	200	1	A 200	1	0	t	1	A 200	1.7		
		7	200	Ţ	0	,	1	1	0	I	i	1	0.3		
		ŀΩ	. 200	¤	0	ı		A 270	270	ı	A 270	1	2.3		
		9	340	T	0	,	I	1	0		ı	ı	9.0		
		7	200	H	0	,		1	0	1		1	0.3		
Sub-Total (1			570	F	ŀ	, 	ı	ı	1	1	•	ı	1.2		
(2)	· C		970	R.A	700	100	009	270	770	1	670	200	7.5		
TOTAL			1,540		700	100	I	ı	770	1	l	ı	8.7		
Kacha	150	0	0	Ι	0	J	ı	i	0	, 1	ı	1	0.4		
D.	(1,0Km)		200	H	. 0	,	1	ı	0	1	I	ı	9.0		
ı –		. 2	200	T	0	,	ı	ı		1		ı	0.8		
. ;		'n	200	H	0	J	1	1	0	ı	1	1	0.3		
2 7		77	200	ĸ	0		ı	A 200	0	t		A 200	1.6		
		Ś	200	ξ - i	0	1	ı	1	0	ì	1	ı	6.0		
	149	9	200	Ι	0	J	ı	ı	0	1	I	1	0		
		_	200	[H :	0	1	I	1	0	1	ı	ı	0.8		
		∞ .	200	Ţ	0		l	1	0	ı	I	1	1.6		
		σ,	200	K	0	1	I		0	1	I		0.9		
	,		200	전 1	0	1	ı		0	ı	I		1.		
	148		200	1 4 (0	ļ	l	A 200	0 0	ŧ	t		ч.		
	(Z.4KM)	77	200	x p	i occ		۰ د) (1	1 000	A 200	-i -		
		71	200	4 p	200	' 1	007 d	ı	200	ı I	A 200		· · ·		
		15	200	; _{[-1}	0	1		ı	0	1) 1 	I	2.3		
		16	200	ж	0	ı	1	A 200	0	ı	I	A 200	2.7		
		17	200	Ţ	0	,	I	1	0	ı	ı	1	3.2		
		18	200	H	0	ı	1	1	0	ı	I	I	1.5		
		19	200.	H	0	1	ı	t	0	1	1	i	3.4		
		20	200	₽	0	1	1	ı	0	ı	I	ı	1.1		
		21	200	Ę⊶	0	1	1	ι	0	1	1	I	0		
		22	200	E	0		ı	1	0	1	•	1	0.4		
Sub-Total (1)	99		2,800	T R.A	400	1 1	700	1,200	400	l 1	400	1,200	17.3		
1400			7.00		007				007			•	c		
TOTOT			, i		200	j	l	1	204	I	I	1	6.07		

Table D.8 Proposed Retaining Wall and Dredging for Klong Improvement (11)

Klone	Block	Sta.	Leneth	Section		1	Left Bank		Left Bank	Right	Bank			Aconisí-	Remarks
0 .	No.	No.	(m)	Shape	Exist.	Exist. Ut1- Ilzed	Re- const.	Const.	Exist.	Exist. Uti- lized	Re- const.	Const.	(x10°m²)	tion (m ²)	·
Lao	96	0	100	E	I	:	ı	'		ı	1		0.1	ı	
	•	p=4	200	۲	ł	ı	1	1	l	1	1	1	0.1	1	٠
		5	200	H	ŀ	1	ı	1	I	ı	1	ı	! • 1	ı	
		ന	200	H	1	ı	ı	I	200	200	ł	.1	1.0	1	
-		7	200	£	1	ı	1	1	1	1	1	ı	7.0	1	
-		Ŋ	200	F	1	1	ł	I	200	200	ł	ı	1	1	
-		9	200	: [-1	I	1	1	I	200	200	1	1	0.2	1	
	95	7	200	H	1	1		1	200	200	ı	1	0.5	ı	
		ø	200	₽	I	1	ŀ	I	200	200	1	1	0.3	1	
		σ,	200	I	l	1	ı	I	200	200	1	1	0.3	1	
		10	200	[-4	I	ı	1	1	ı	ı	1	1	0.4	ı	٠
		11	200	Ħ	ì	1	1	1	1	1	I	ı	0.2	ı	
		12	200	T	ı	1	l	1.	1	i	i	1	0.1	1	
	94	13	200	£-4	I	1	ı	1	1	ı	•	1	9.0	200	
7"		14	200	H	1	ı	1	I	1	ı	Ì	1	8.0	. 1	
1		15	200	H			1	1	I	I		,	8.0	1	
		16	200	H	200	200	1	1	200	. 200		1	7.0	1	
2.0		17	200	E	ı	I	I	1	I	i	1	I	1.9	800	
2	93	18	200	IJ	1	ı	ı	1	200	ı	ŀ	ı	0.7	900	
		19	200	Ξ	1	1	ı	ı	1	ı	ı	1	1.2	•	
	93.92	20	200	T	1	ı	ı	į	200	200	ı	I	1.8	400	
	92	21	200	Ŀι	1	ı	!	ı	ı	I	1	t	0.3	400	
		22	200	Ħ	1	I	I	I 	1	1	ı	I	9.0	ı	
	91	23	200	₽		ı	1	I	I	1	l	I	0.9	ı	
		24	200	L	200	200	1	ι .	ı	ı	1	1	0.1	ı	
-	91.90	25	200	П	1	1	i	l	200	200	1	l	1	ι	
	06	26	200	æ	ı			B 200	1	1	I	B 200	2.1	I	
		27	200	R	1			B 200	t	1	1		0.8	t	
		28	200	æ	200	200		l	200	200	1	1	1.2	ı	
		29	200	æ				B 200	t	ı	1	B 200	2.1	1	
		&	200	ద	200	t	B 200	l ,	200	1	B 200	1	0.3	ı	
,		31	100	Я	1	1		B 100	100	ı	B 100	1	1.0	-	
Sub-Total (1)			5,100	H	700	400			2,000	1,800			12.5	2,700	
(2)			1,100	œ	400	200	B 200	B 700	200	200	в 300	B 600	7.5	I	
TOTAL			6 200		800	009	000	000	000	000	000	002	0	000	

Table D.8 Proposed Retaining Wall and Dredging for Klong Improvement (12)

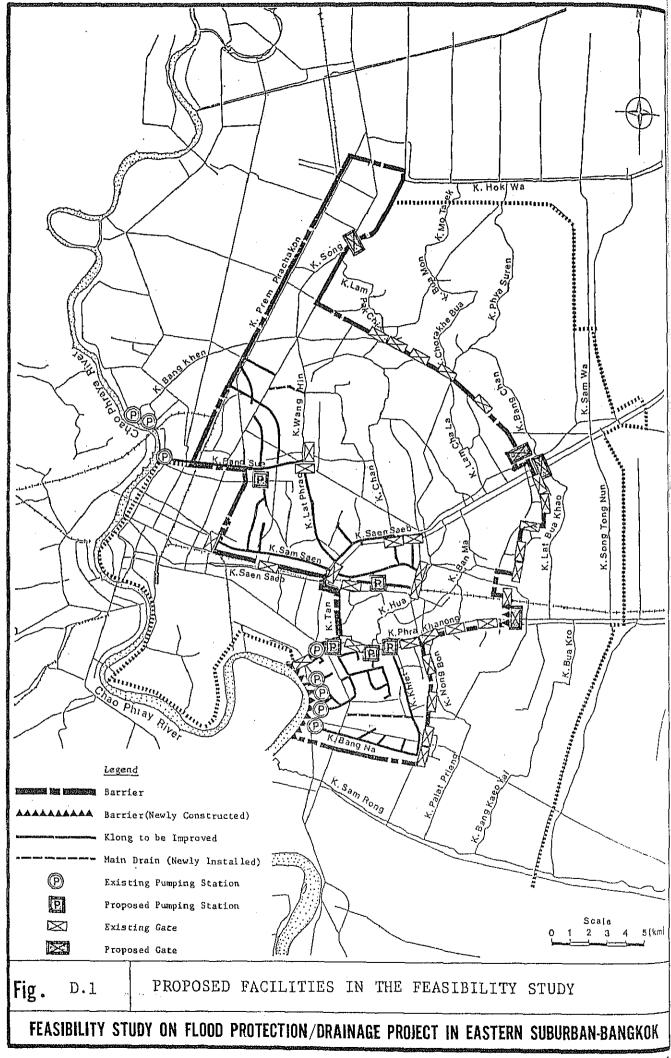
							,			1					
				Proposed		Fre	Proposed Retaining Wall Length	arure "	all Leng	- 1			Dredging	Land	
Klong	Block	Sta.	Length	Section		Le	Left Bank			Right Bank	Bank		(5)	Acquist-	Remarks
·	No.	No.	(m)	Shape	Exist.	Exist. Uti- lized	Re- const.	Const.	Exist.	Exist. Uti-	Re- const.	Const.	· · ·	tion (m ²)	
Lat Phrao	68	0	100		100	100	l	I	100	100	-1	,	6.3	1	
	;	-	200	Ħ	200	ı	1	1	1	1	ı	I	0.01	1,000	
			200	Ę-ri	. 200	1	1	I	t	ı	1	1	9:1	ı	
		ന	200	£	ı	1	I	1	ı	1	1	l	8.3	1	
-		7	200	Ţ	1	ı	I	1	1	1	1	1	6.8	1	
		ιΛ	200	T	ı	ı	ı	ı	ı	ı	ì	ı	7.0	ı	
-		9	200	Ţ.	1	l	l	١	ı	ı	1	l	8.9	ı	
		7	200	13	l	ı	t	I	1	1	1	ı	7.2	1	
		œ	200	[-	1	1	I	I	i	ı	I	1	7.9	ì	
	88	6	200	[-1	1	1	,	ı	ı	ı	1	ı	4.8	l	
		10	200	H	1	ı	1	1	1	ı	ı	1	8-9	1	
	88.87	11	200	H	1	l	!	ı	ı	1	ì	1	6.5	ı	
		12	200	L	1	1	1	1	1	1	1	1	4.5	I	
		13	200	H	200	200	1	, I	200	200	I	1	3.6		
D		14	200	H	ŀ	ı	ı	1	ı	ı	I,	1	4.3	360	
		15	200	H	1	1	ι	I	1	1	ı	ı	4.2	1	
2		16	200	E	1	1	i	ı	ı	1	I	ŀ	3.9	ı	
9		17	200	H	l	1	1	1	l	t	1	l	4.2	1	
		18	200	H	1		I	1	1	1	1	ı	4.0	ı	
		19	200	€~i	ŀ	ı	ı	i	ı	I.	ŀ	1	2.2	ı	
		20	200	[4	1	1	1	1	1	ı	1	1	1.4	1	
		21	200	Ęų	ı	1	1	t	ì	1	•	1	2.6	200	
	I	22	200	Ę-i	l	ī	1	ı	ı	ı	1	1	4.3	360	
	ı	23	200	H	ı	I	1	ı	1	1	1	1	2.4	1	
	ı	24	200	Н	1	1	ı	ı	ı	1	ı	I	3.0	1	
	t	25	200	H	1	i	ı	1	1	ı	I	I	3.9		
	ι	26	200	I	1	ı	ı	ı	ı	ı	i	ı	2.4	1	
	1	2.7	135	Ħ		ı	1	1	1	1	1	. 1	1.4	ı	
	1	28	35	₽	ı	I	I	I	1	1	I	ı	9.0	1	
TOTAL			5,470	E-4	700	300	1	1	300	300	ı	1	140.4	1,920	
														٠	

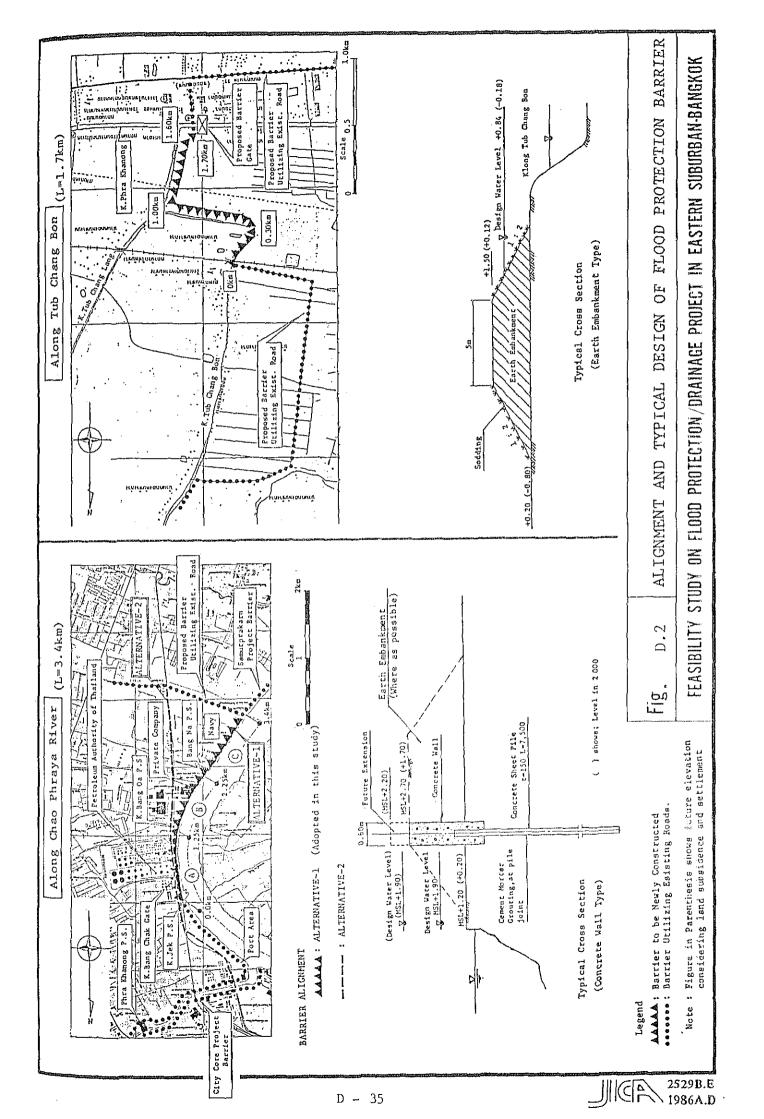
Table D.8 Proposed Retaining Wall and Dredging for Klong Improvement (13)

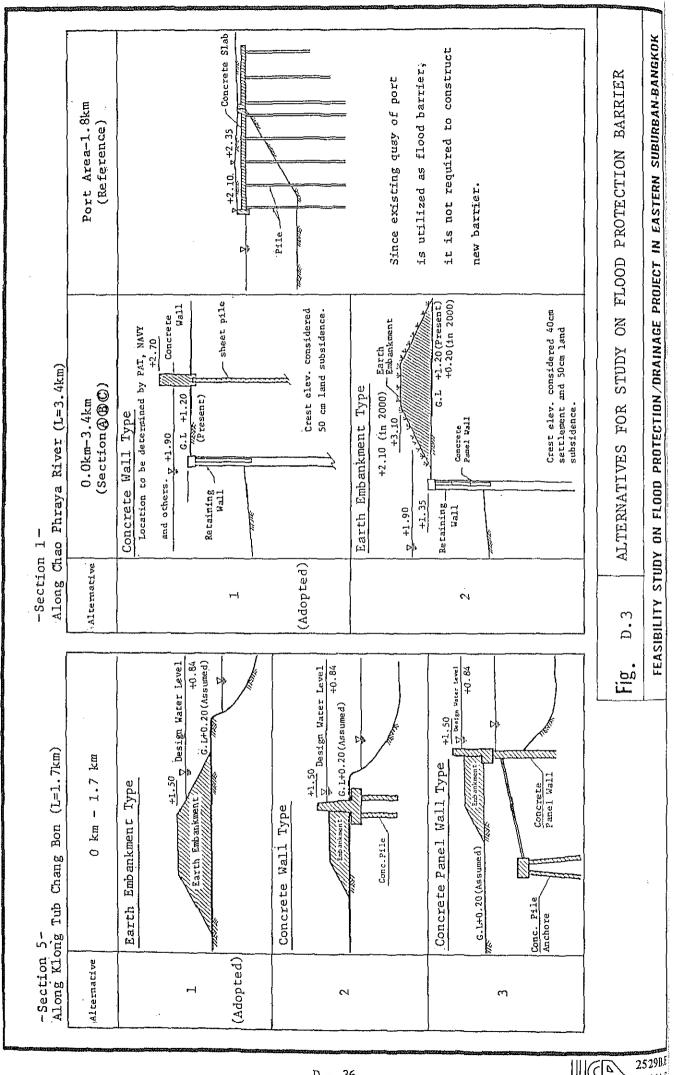
				7.000						1					
	, , , , , , , , , , , , , , , , , , ,	ć	1 1 1 1 h			11.	riolosed veraturus i all rengru	SHILLE	STT PENE				preaging	Land	,
Klong	No.	2 C	Length (m)	Shane	Pyfer		Lerr Bank	Concr	Total	K1gh Fyfer	Kight Bank	7,730	$(x10^{3}m^{3})$	Acquist-	Remarks
	• •		Ĵ			Uti-	const.		• 1	Utf- lized	const	· comp		רדמו ליייב	
Yal Soon	139	0	100	E		1		'	1			1		200	
***************************************	,			. 6									•	1	
		⊣	7007	Ή.	\$	ı	١	1	ı	1	1	ı	۲ . 0	1	
		7	200	Ę	1	ı	1	1	1	1	ı	1	F.3	300	-
		ന	200	H	1	1	ļ	I	1	í	1	1	0.3	700	
		4	200	Ę	1	1	!	I	1	•	ţ	Ì	0.2	400	
		'n	200	H	ı	l	ı	ı	200	200	1	1	9.0	I	
		9	200	Ţ	t	1	i	ı	i	ı	1		0.2	400	
		7	200	[←	1	t	ı	ι	1	ı	1	ı	1.4	900	
		83	100	[1	!		1		1	1	1	1	0.3	200	
TOTAL			1,600	T	1	1	ı	1	200	200	1	I	4.4	2,800	
; D		c	i i				٠						-		
Cliao Khunsing	120	0	100	ı	1	1	ı	ı	t	ı	1	l	ł	ı	
•		~	200	H	1	ļ	1	ı	1	ı	1	I	0.0	1	
3		7	200	H	ı	ı	1	1	i	1	1		0.2		
0		m	200	Н	ı	ı	1	ı	ı	1	1	1	0.2	ŀ	
		4	200	H	ı	1	i	1	ı	ı	1	1	0.1	1	
	120,119	'n	200	Ħ	1	1	1	1	ı	1	1	•1	1.3	1,000	
	119	9	200	Ħ	l	1	ı	1	ı	1	l	1	1.8	200	
		~	200	H	ı	1	1	J	1	ı	l	i	9.0	009	
		∞	200	Ŧ	I	1	1	1	200	- 200	1	t	7.0	ı	
		σ'n	200	Exist,	1	1	1	J		1	1	1	J	1	
	119,118	10	200	=	ī	1	1	I	1	I	ı	1	1	1	
	118		200	=	1	1	1	ı	1	1	ı		ı	ı	•
		77	200	=	ı	1	ı	1	ı	1	1	*	1		
		E E	100	2	200	200	1	1	200	200	ľ	1	1	1	
TOTAL			2,600	Ľ	200	200	١,	1	400	400	1	t	9.4	1,800	

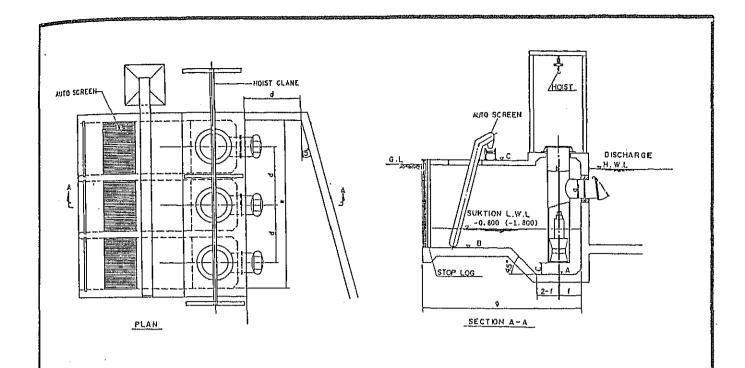
Table D.8

Dredging Land $(x10^{3}m^3)$ Acquist Remarks tion (m^2)
Bank Re- Const.
(m) Right xist. Jri-
Proposed Retaining Wall Length Left Bank Re- Const. Exist. E Const.
Const.
pposed Re ift Bank Re- const.
Exist.
Exist.
Proposed Section Shape
Length (m)
Sta. No.
Block No.
Klong


Table D.8 Proposed Retaining Wall and Dredging for Klong Improvement (15)


				Proposed		Pro	posed Re	taining V	Proposed Retaining Wall Length	l l			Dredging	Land	
Klong	Block	Sta.	Length	Section			Left Bank			Right	Bank		(2-103-3)	Acquisi-	Remarks
1	No.	No.	(m)	Shape	Exist.	Exist. Uti- lized	Re- const.	Const.	Exist.	Exist. Uti- lized	Re- const.	Const.	(~m~nTx).	tion (m ²)	
Ratchada	55	0	100	24	ł	I	1	100	1	1	1	100	1.0	1	
Ditch		⊷	200	ద	I	1	1	200	ı	I	•	200	2.0	I	
		2	200	¥		I,	I	200	I	I	I	200	2:0	ı	
		m	200	ĸ	I		1	200	ı	ι	1	200	2.0	1	
•		7	200	×	ı	1	1	200	I	1	1	200	2.0	I	
		5	200	24	I	ı	1	200	I	ı	ı	200	2.0	1	
ě.		9	200	æ	ı	1	1	200	ı	ι	ı	200	2.0	ı	
		7	200	æ	1	i	1	200	I	J	1	200	2.0	ι	
		80	200	ĸ	1	I	1	200	1	ı	ı	200	2.0	1	
		6	200	~	1	ı	1	200	Ì	ı	ı	200	2.0	ı	
		10	200	~	•	t		200	ı	1	1	200	2.0	ı	-
		11	200	æ	1	ι	1	200	1	1	1	200	2.0	ι	
		12	200	æ	ı	1	1	200	1	1	1	200	2.0	ı	
		13	200	p 2	ı	ı	1	200	1	i	ı	200	2.0	1	
٠		14	200	æ	13	1	1	200	I	1	1	200	2.0	I	
		15	200	ps;	· I	1	1	200	1	ı	ı	200	2.0	1	
	54	16	200	æ	I	ŧ	ı	200	ı	1	1	200	2.0	t	
	54.53	17	200	×	1	ı	ı	200	I	I	ı	200	2.0	ı	
	53	18	200	ĸ	1	1	ļ	200	1	i	ı	200	2.0	1	
	53.52	19	200	ρď	ı	1	1	200	ı	1	ı	200	2.0	ı	
	52	20	200	æ	1	ı	I	200	. 1	ı	1	200	2.0	i	
		21	200	pr:	ı	1	1	200	ι	1	i	200	2.0	ı	
	51	22	200	æ	I	ı	•	200	I	1	1	200	2.0	ı	
		23	200	R	ı	1	1	200	I	1	1	200	2.0	1	
		24	200	æ	1	l	1	200	1	i	ı	200	2.0	1	
		25	200	ĸ	1	I	1	200	ı	I	I	200	2.0	ı	
		26	100	24	1	i	1	100	ı	-	1	100	1.0	ı	
TOTAL			5,200	Ж	ı	1		5,200	1	I	1	5,200	52.0		
Kasesart	45	0	100	ĸ	1	i	ţ	100	ı	ı	ı	100	0.1	ı	
			200	~	t	ı	1	200	1	1	ı	200	1.4	ı	
		7	200	R	ı	I	ı	200	ı	1	ŧ	200	1.5	1	
		Э	200	œ	1	1	١	200	I	1	1	200	1.3	t	
		~†	200	æ	I	1	ı	200	ı	ł	ı	200	1.2	1	
		5	200	æ	1	1	I	200	1	ı	1	200	1.4	ı	
		9	200	æ	1	ı	1	200	1	ı	ŀ	200	1.4	1	
		7	200	R	ı	ı	1	200	1	ı	1	200	1.5	1	
		83	250	ድ	1	ı	İ	250	I	1	ı	250	1.1	1	


Table D.8 Proposed Retaining Wall and Dredging for Klong Improvement (16)


				Proposed		Pro	posed Re	Proposed Retaining Wall Length	lall Leng	th (m)			Dredging	Land	
Klong	Block	Sta.	Length	Section		1	ft Bank			~	Bank			Acquisi-	Remarks
0	No.	No) (E)	Shape	Exist.	Exist.	Re-	Const.	Exist.	Exist.	Re-	Const.	(xIO~m~)	tion (m ²)	ı
						Uti- lized	const.			Uti- lized	const.		*		
Phys Wake	58	0	100	R	100	100	ı	I	100	100	<u>1</u>	ł	1	, 1	To be con-
200	• 1	1	150	R	150	150	I	ı	150	150	I	1	ı	, I	structed in this year
		5	250	Ж	1	ı	1	250	I	1	ı	250	0.4	1	•
		٣	200	×	1	ı	1	200	1	ı	I	200	1.3	1	
		~3	200	ĸ	ı	ı	ı	200	1	1	1	200	1.3	1	
	58.57	5	200	ĸ	I	1	1	200	1	1	1	200	1.3	1	
		9	200	ĸ	I	1	ι	200	1	1	l	200	1.3	1	
		7	200	æ	ι	1	1	200	1	1	ı	200	1.3	ı	
		∞	200	Ж	1	1	1	200	ı	ı	İ	200	2.1	1	
		σ	200	Ж	I	1	1	200	ı	1	1	200	2.1	1	
τ.		10	100	æ	ı	1	I	100	1	1	1	100	2.1	1	
TOTAL			2,000	Я	250	250	1	1,750	250	250	ı	1,750	13.2	1	
Lat Yao	67	0	100	æ	I	ı	I	100	1	ŀ	I	100	0.1	1	
		~	200	œ	.1	1	1	200	1	1	1	200	0.3	1	
		2	200	Я	ı	ı	l	200	ı	1	1	200	0.3	I	
		m	200	Я	I	ŧ	ŧ	200	1	i	1	200	0.3	I	
		4	200	æ	ı	ı	1	200	1	ī	1	200	0.3	ı	
		5	200	æ	I	I	1	200	I	I	I	200	0.3	1	
		9	200	Я	I	ı	I	200	ı	ı	I	200	0.3	ı	
		7	200	R	ı	ı	ı	200	i	ı	1	200	0.3	ı	
	49.48	8	200	æ	ı	•	i	200	ı	I	1	200	0.3	ı	
	48	6	200	R	ı	1	1	200	ı	1	t	200	0.3	ı	
		10	200	ĸ	1	ı	1	200	1	l	ı	200	0.3	ŀ	
		11	20	ρX	ı	1	1	20	ı	1	ı	20	0.1	,	
TOTAL			2,150	X		ı	1	2,150	ı	1	1	2,150	3.2	 	

D - 33

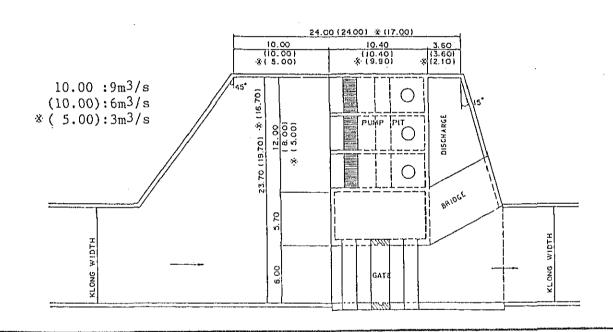
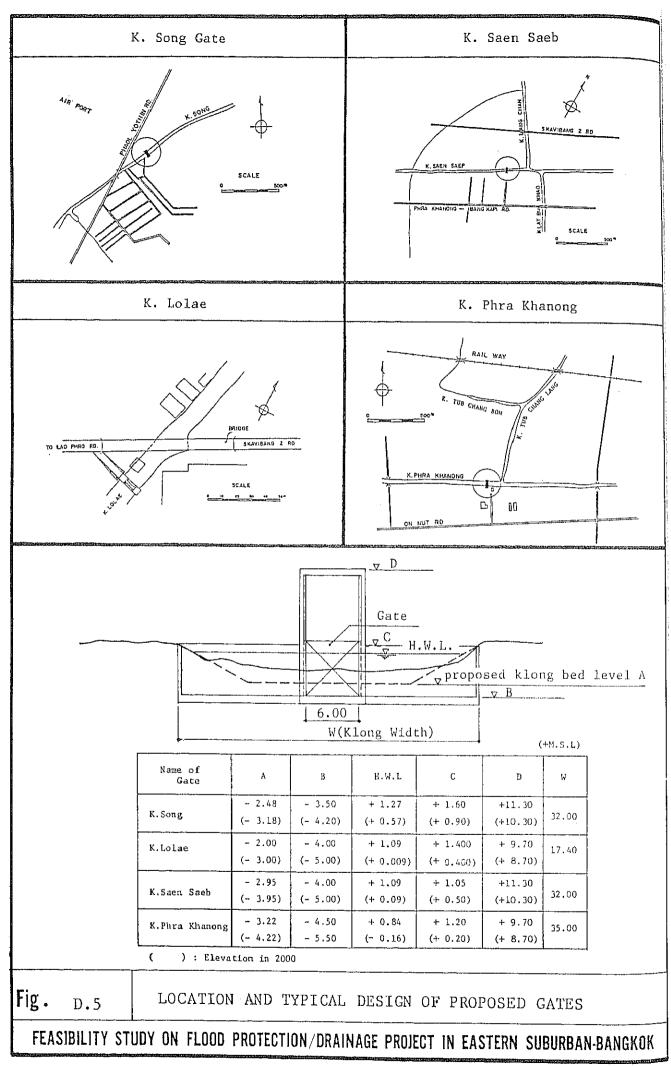


Table of Elevation and Dimension

[Unit:m MSL]

NAME OF PUMPING	NO. S OF	TOTAL	E	LEVATI	ON				DIM	ENS	ION		1	DISCHARGE
STATION	PUMP	CAPACITY	G. L.	Α	В	С	a	Ь	Ç	d	e	1	a	·HMT
K, BANG NA CHINE	3	9 m ³ /S	+0.600	-4.800 (-5.800)	-3,430 (-4,430)	+1.100 (+0.100)	1.200	1.400	0.700	3.600	12.000	1400	10000	-0.180 (-1.180)
K.KLET	3	9	+0.800	-4.800	-3,600	+1, J00 (+0, J00)			-	•	*	*	"	-0.160 (-1.160)
K. SAEN SAB	3	9	+0.600	-4.800	-3.500	+1.100 (+0.100)		•	.4	•	+	,	1	+0.200 (~0.800)
K. BANG LAI	2	6 m ³ /S	+0.700 (-0.300)	-4.800	-3.500	L		-	-		8.000	~	•	-0.165 (-1.165)
K.HUAY KWANG	2	3 m ³ /S	+0.700	~3.600 (-4,300)	-2.000 (-2.700)	+1.500	0.700	0.900	0.450	2.100	5.000	1500	9.500	+0.900 (+0.200)


0.700:Elevation at present (m MSL)

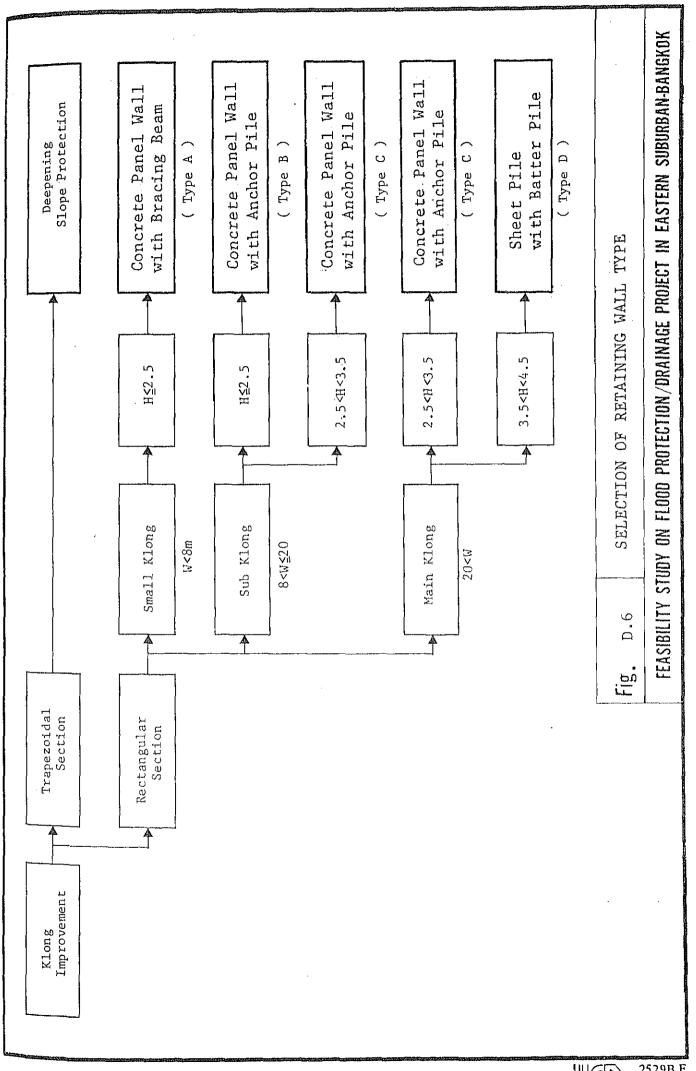
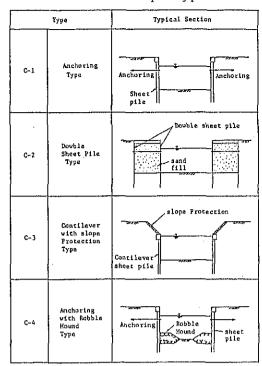

(-0.300):Elevation in 2000 (m MSL)

Fig. D.4

TYPICAL DESIGN OF PUMPING STATION

FEASIBILITY STUDY ON FLOOD PROTECTION/DRAINAGE PROJECT IN EASTERN SUBURBAN-BANGKOK


A. Trapezoidal Type

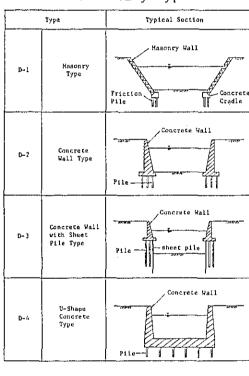
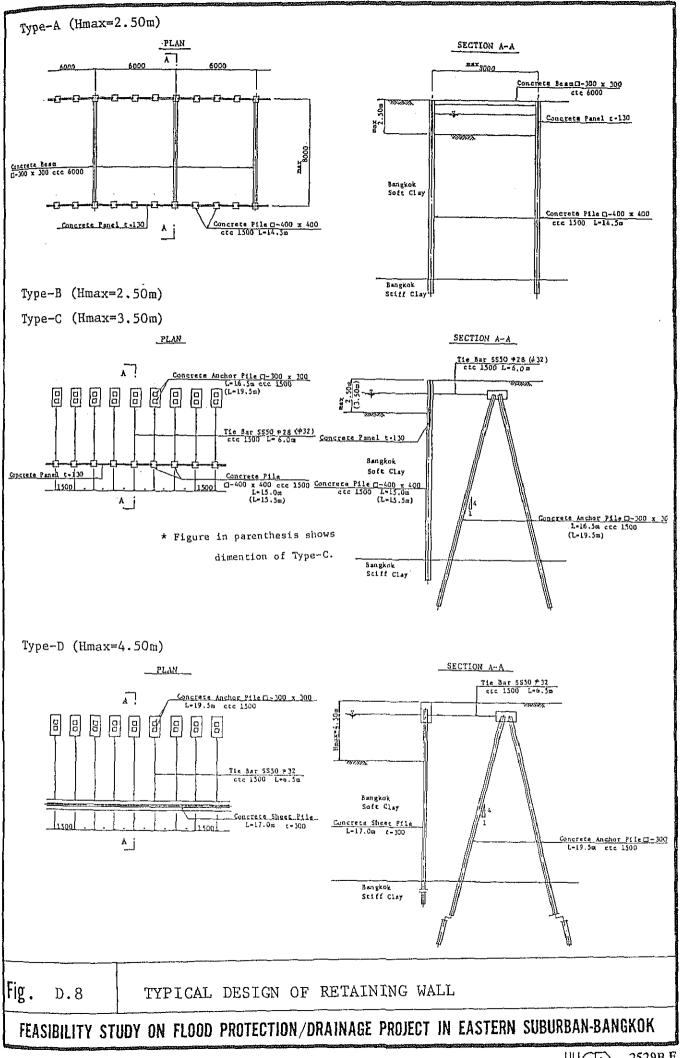
	Type	Typical Section
A-1	No Protection Type	
A-2	Sodding Protection Type	Sodding
A-3	Concrete Protection Type	Concrete plate

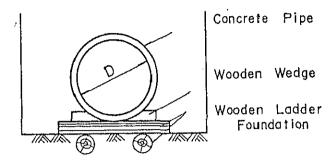
B. Concrete Panel Wall Type

.D.	Concrete	= ramer warr type
	Туре	Typical Section
B-1	Cantilever Type	
B2	Bracing Type	Bracing Beam
B-3	Double - Bracing Type	Bracing Beam
B-4	Pile anchor Type	File anchor Tie Bar
B-5	Batter Pile Type (1)	Exist Buildings
B-6	Earth Anchor Type	Existing Buildings Earth Ancher
B-7	Concrete Block Anchore Type	Concrete block Anchor

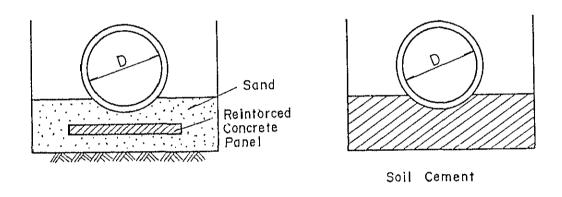
C. Sheet Pipe Type

D. Gravity Type


Fig. D.7

TYPICAL SECTION OF RETAINING WALL


FEASIBILITY STUDY ON FLOOD PROTECTION/DRAINAGE PROJECT IN EASTERN SUBURBAN-BANGKOK

Type (1) Wooden Ladder Foundation

Type (2) Concrete panel Foundation Type (3) Soil Cement Foundation

Type (4) Friction Pile Foundation

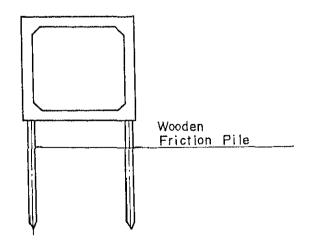
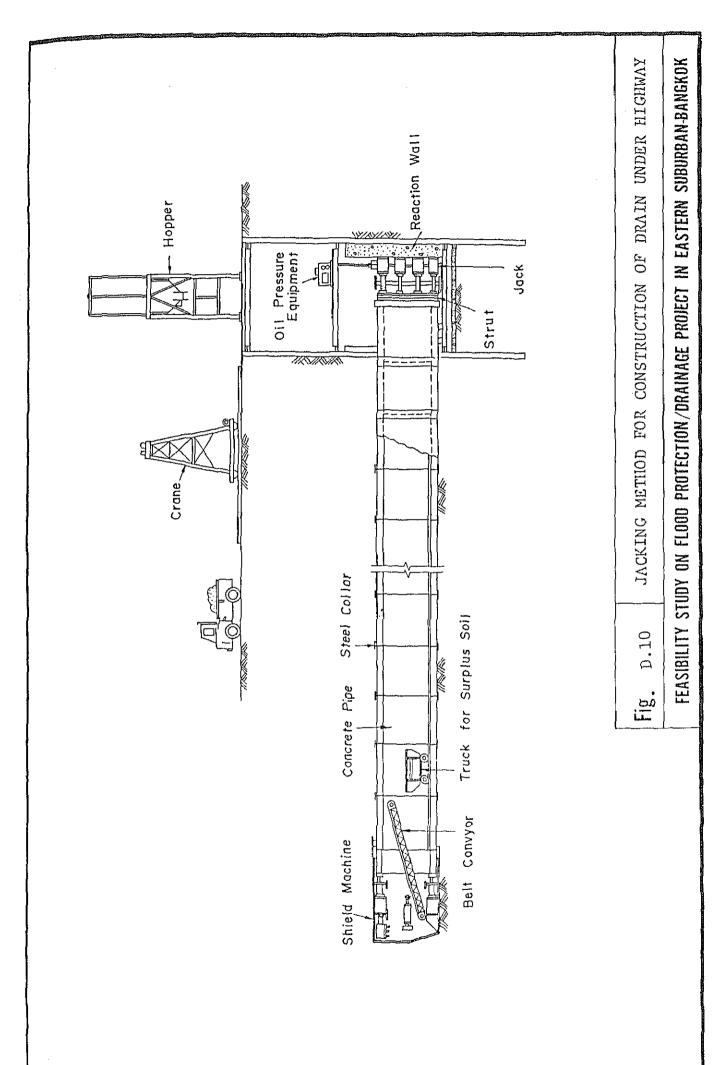



Fig. D.9 FOUNDATION FOR DRAIN

FEASIBILITY STUDY ON FLOOD PROTECTION/DRAINAGE PROJECT IN EASTERN SUBURBAN-BANGKOK

2529B.E 10861 D

APPENDIX E

PROJECT COST

APPENDIX E PROJECT COST

Table of Contents

1. Gen	eral .		E-1
2. Uni	t Cost		E-3
3. Lan	d Acqu	isition	E-3
4. Con	struct	ion Cost	E-3
5. Ope	ration	and Maintenance Cost	E-3
5.1 5.2 5.3 5.4 5.5	Opera Opera Opera Opera	ation and Maintenance Cost-Klong Improvement	E-5 E-7 E-7 E-8 E-8
6. Imp		ation Schedule	E-10
		<u>List of Tables</u>	
Table E	.1	Price Escalation Rate	E-2
Table E	. 2	Summary of Construction Cost	E-11
Table E	.3(a)	Construction Cost for Flood Protection Barrier	E-12
Table E	.3(b)	Construction Cost for Control Gate	E-12
Table E	.3(c)	Construction Cost of Pumping Station	E-13
Table E	.3(d)	Construction Cost for Klong Improvement (1)	E-14
Table E	.3(d)	Construction Cost for Klong Improvement (2)	E-15
Table E	.3(e)	Construction Cost for Drain	E-16
Table E	.3(f)	Construction Cost for Flood Control Operation Center	E-17
Table E	•4	Labour Wage	E-18
Table E	.5	Material Price (1)	E-19
Table E	. 5	Material Price (2)	E-20

Table E.6	Unit Price (1)	E-21
Table E.6	Unit Price (2)	E-22
Table E.6	Unit Price (3)	E-23
Table E.7	Unit Construction Cost (1) Flood Barrier-Concrete Wall	E-24
Table E.7	Unit Construction Cost (2) Flood Barrier-Embankment	E-25
Table E.7	Unit Construction Cost (3) Retaining Wall-Type A	E-26
Table E.7	Unit Construction Cost (4) Retaining Wall-Type B	E-27
Table E.7	Unit Construction Cost (5) Retaining Wall-Type C	E-28
Table E.7	Unit Construction Cost (6) Retaining Wall-Type D	E-29
Table E.8	Implementation Schedule	E-30
Table E.9	Klong Improvement	E-31
Table E.10	Implementation Schedule (Drain)	E-32
•		

1. General

Based on the facility plans, the costs of construction, land acquisition and operation maintenance were estimated. The estimation was conducted in accordance with the following conditions.

- The estimates are made on the assumption that all construction works will be contracted to general contractors by internatioal tender.
- 2) The costs were computed under the economic conditions prevailing in Aug., 1985.
- 3) The cost was classified into foreign currecy and local currency portions.

Foreign currency and local currency portions were computed based on the following clasification.

. The foreign currency portions consist of the costs of;

- -- Imported equipment, materials and supplies;
- -- Domestic materials of which the country is a net importer;
- -- Wages of expatriate personnel; and
- -- Overhead and profit of foreign firms.

The local currency portions include the costs of:

- -- Domestic materials and supplies of which the country is a net exporter;
- --- Wages of local personnel;
- -- Overhead and profit of local firms; and
- -- Taxes.

- 4) The unit cost of each work item is obtained by totaling the labour cost, equipment cost, material cost, etc.
- 5) Land acquisition cost are adopted 3,000 Baht/m² based on the unit cost of current data obtained by the real estate study report published by TISCO.
- 6) For all unit costs, a constant allowance of 30% for overhead and profit was added to the direct unit prices.
- 7) Contingency allowance was made of 9% of the total construction cost.
- 8) The engineering design and supervision fees etc. were assumed to be 4% of the construction cost.
- 9) Annual price escalation was considered 5% for both foreign and local currency. Based on the implementation schedule as described in Paragraph 6, total price escalation was taken 22.1% against 1985 construction costs.

Table E.1 Price Escalation Rate

Year	Escalation	Const. Cost				
rear	Escaracion	W/O Escal.	W/ Escal.			
1983	10.3	46	51			
1988	15.8	825	955			
1989	21.6	825	1,003			
1990	27.6	805	1,027			
1991	34.0	154	206			
Total	Ave. 22.1%	2,655MB	3,242M			

2. Unit Cost

The unit cost by work items is calculated from the material cost, labour cost, equipment cost, etc. analyzing the data on the construction cost of recent similar projects such as the Urgent Project and the City Core Project as well as taking into consdieration the local conditions in Bangkok. The unit costs by items are as listed in Table E-6.

Table E-7 shows the summary of the breakdown of these components by each type of works.

3. Land Acquisition

Unit prices of 3,000 Baht/ m^2 for land acquisition are obtained from the real estate study report published by TISCO. The breakdown of these costs by facilities is given in Table E-2.

4. Construction Cost

The construction cost estimates for the feasibility study have been based on the quantities calculated and on the unit costs for each work item. The summary of the cost is presented in Table E-2.

5. Operation and Maintenance Cost

The operation and maintenance costs comprised the cost of yearly operation and maintenance of klong, pumping station, gate, pipe/box culvert, barrier and flood control operation center. Routine operation and maintenance is confined to the costs of wage, electricity, cleaning and minor repairs.

(1) Wage

This includes the wage of operation for pumping station, gate facilities and services.

(2) Electricity Cost

This includes the cost of electricity for pumping station, gate facilities and services.

- (3) Cleaning Cost
 This includes the cost of cleaning the klongs, drainage pipe,
 and other services.
- (4) Repair Cost

 This includes the cost of facility repairs, painting of gate,

 pump and inspection of structures.

The operation and maintenance costs are summarized as follows;

	Items	Cost	Quntity	
(1)	Klong	35.8 мр	91.04 km	
(2)	Pumping Station	2.7	5 stations	
(3)	Gate	0.5	4 stations	
(4)	Pipe and Box Culvert	0.3	4.33 km	
(5)	Barrier	0.3	5.20 km	
(6)	Flood control O.P center	2.0	1 center	
16 017	Tota1	41.6 MM		

The result of the calculations mentioned above indicates that annual operation and maintenace cost per year amounts to approximately 1.83% of total construction cost.

5.1 Operation and Maintenance Cost - Klong Improvement

Operation and maintenance cost items for the klong improvement:

- (i) Reparing cost of retaining wall : 101.51 km
- (ii) Dredging cost for siltation : 91.04 km
- (iii) Grass cutting cost : 40.29 km
- (iv) Garbage cleaning cost : 91.04 km
- (v) Repairing cost of earth embankment: 40.29 km
- (vi) Others : -

(i) Repairing Cost of Retaining Wall

Reparing cost of retaining wall is assumed as 1.25% of construction cost under the consideration of site condition such as weak subsoil condition, accessibility to site etc.

$$1,789.3 \text{ MB } \times 1.25\% = 22.3 \text{ MB/Year}$$

(ii) Dredging Cost for siltation

Dredging works for siltation will be done once per 10-years. Average dredging depth and width of klong are 0.20m and 20m.

101.51 km + 10 year x 0.20m x 20m x 50
$$\%$$
 = 2.0 M $\%$ /Year

(iii) Grass Cutting Cost

For the trapezoidal section of Klong, grass cutting works will be done with 10m avarage width along Klong, twice a year.

$$(85 \ \text{$\slashed{B}/day} - 50 \ \text{$m2/day} \times 1.3 = 2.2 \ \text{$\slashed{B}/m2}$$

(iv) Garbage Cleaning Cost

Garbage cleaning works including removal of water hyacinth will be done twice a year. It is assumed 30% of klong water surface will be covered by the hyacinth.

$$(85 \text{ B/day} \div 20 \text{ m2/day} \times 1.3 = 5.5)$$

(v) Reparing Cost of Slope for Trapezoidal Section

$$40.29 \text{ km} \times 10 \text{m} \times 1.1 \text{ B/m}2 = 0.4 \text{ MB}$$

$$(1 \text{ th} 3 \text{ x} 110 \text{ B/m} 3 - 100 \text{ m} 2 = 1.1 \text{ B/m} 2$$

(vi) Total Operation and Maintenance Cost for the Klong

- i) 22.3
- ii) 2.0
- iii) 1.8
- iv) 6.0
- v) 0.4
- vi) 3.3 (10% of i) v)

Total 35.8 MB/Year (= 2% of 1,843.2 MB)

5.2 Operation and Maintenance Cost-Pumping station (Const. Cost 123.3 MB)

Labour 2 Main/Place x 3000 \$/M~M x 12 Month = 0.1 M\$

Electricity 500 hr/year

1 KWhr = 2 K

					Electricity	Labour	To tal
				kw set	Мß	МВ	МВ
Bang Nang Chi	ine (Q=	9m ³	/s)	132×3	0.4	0.1	0.5
Bang Lai	(Q= 6	11)	132 x 2	0.3	0.1	0.4
Klet	(Q=9	11)	132×3	0.4	0.1	0.5
Lao	(Q= 9	11)	132 x 3	0.4	0.1	0.5
Huay Kwang	(Q=3	11)	55 x 2	0.1	0.1	0.2
							2.1 MB
Reparing Cost				123.3x0.005			0.6 MB
							2.7 MB

5.3 Operation and Maintenance Cost-Gate Station (Const.Cost 48.2 MB)

Labour 1 Man/Place x 3000 $\mathbb{R}/M-M$ x 12 Month = 0.05 M \mathbb{R}

time KW hr day day man MB Electricity $18.5 \times 0.5 \times 2 \times 30 \times 8 \times 2 = 0.01$

	Electricity	Labour	To ta 1
	мв	МЖ	МВ
K. Song	0.01	0.05	0.06
K.Lolae	II	П	11
K.Saen Saeb	11	11 .	11
K. Phrakhanong	н	11	H
Repairing Cost	48.2 x 0.005		0.5 MB
			/

5.4 Operation and Maintenance Cost-Pipe & Box Culvert

(Const.Cost 147.6 M#)

Cleaning (L = 4.3 km V= $13,000 \text{ m}^3$)

m3 year B/m3 M
$$\beta$$

13,000 ÷ 5 x 100 = 0.3

- 5.5 Operation and Maintenance Cost-Flood Protection Barrier
 - (1) Along Chao Phraya River (Concerete Wall Type-3.4 km)
 - 0.5% of the construction cost is assumed

MB MB/year
$$40.3 \times 0.5\% = 0.2$$
 (0.5%)

- (2) Along Klong Tub Chang Bon
 - 0.5% of the construction cost is assumed

$$MF$$
 M $2.3 \times 0.5\% = 0.1$

(3) Total Operation and Maintenance Cost for the Flood Protection Barrier

5.6	Operation	an d	Ma in tenance	Cost-Flood	Control	Operation	Center

- (1) Operator Salary
 2 persons x 12 persons x 16,700 ₺ ... 0.4 ₦₺
- (2) Operating Expense
 Telephone, Electric 1.0 M\$
- (3) Patroling Expence
 Repairing, Patrol 0.4 MB
- (4) Office Work Expence
 Stationary, Others 0.2 MW
- (5) Total O/M Cost for Flood Control Operation Center
 - i) 0.4
 - ii) 1.0
 - iii) 0.4
 - iv) 0.2

Total 2.0 MW

6. Implementation Schedule

The degree of flood flood protection should be upgraded stage by stage. The high priority measures is the exclusion of river overspill and overland flow from outside land. This suggests the early construction of a flood protection barrier, which would protect area from outside flooding and inland drainage facilities later or in parallel, depending on usefullness of the work.

The facilities for the Feasibility Study are ranked as shown in Fig. 5.6. The flood protection barrier and its gates are ranked as high priority. Then primary dranage facilities, which contribute to alleviate overall flooding are ranked at next priority generally, followed by secondary and tertiary drainage facilities. Effects of these facilities are shown in Appendix from which implementation order is decided.

Considering the time for preparation of detailed design and particularly financial procurement, construction can be started in 1988, one year later than the Master Plan proposal, and completed in 1991. The flood protection barrier, gates, pumping stations and control center are planned to be implemented in 1988. Construction of primary facilities are scheduled in 1988 and 1989, followed by secondary facilities in 1990 and tertiary facilities in 1991 as shown in Table E.8.

(Million Baht)

					(Million B	aht)	
	Construction Cost				Land		
Facility	Description	F/C	L/C	Total	Acquision	Remarks	
A. Flood Barrier	L=3400m,H=1.5m	(50)	(50) 19.0	38.0	-	Conc.Wall	
2,K.Tub Chang Bon	L=1700m,H=1.3m	(25)	(75) 1.7	2.3	-	Enbankment	
Sub-Total		19.6	20.7	40.3			
B. Control Gate	H W No. 6x 6x 1	(65) 7.7	(35)	11.8	_		
2.K.Lolae	6x 6x 1	6.4	3.5	9.9	_		
3.K.Saen Saep	6x 7x 1	9.2	5.0	14.2	_		
4.K.Phrakhanong	6x 6x 1	8.0	4.3	12.3			
Sub-Total		31.3	16.9	48.2	-	~~ ~ ~~ ~ ~	
C. Pumping Station	Q = 9 m ³ /s	(70) 19.8	(30)	28.3	2.0		
2.Ban Lai	Q = 6 H	15.4	6.6	22.0	0.9		
3.Klet	Q`=9 II	19.2	8.2	27.4	0.9		
4.Saen Sab	Q = 9 "	19.3	8.3	27.6	2.0		
5.Huay Kwang	Q = 3 n	12.6	5.4	18.0	0.9		
Sub-Total	Q =36 m ³ /s	86.3	37.0	123.3	6.7		
D. Klong Improvement 1.Retaing Wall 2.Dredging Sub-Total	L=92.96 km L=101.51 km V=1,084,000m ³	(45) 805.2 (60) 32.3 834.5	(55) 984.1 (40) 21.5 	1,789.3 53.9 1,843.2	82.9 - 82.9		
E. Pipe/Box Culvert	L=4;330 m	(50) 73.8	(50) 73.8	147.6	-		
F. Flood Control Operation System		68.0		68.0	-		
Sub-Total (A-F)		1,116.5	1,154.1	2,270.6	89.6		
G. Phisical Contingency	·	100.4	103.8	204.2	•		
H. Engineering /Supervision		44.6	46.2	90.8	4		
Sub-Total (A-H)		1,261.5	1,304.1	2,565.6	89.6	Total 2,655.2 \$	
I. Price Escalation		278.8	288.2	567.0	19.8		
Total (A-I)		1,540.3	1,592.3	3,132.6	109.4	Total 3,242 MW	

Table E-3(a) Construction Cost for Flood Protection Barrier

Barrier	Unit	Quantity	Uni	t Cost (度) Total	Constr F/C	uction C	ost (MK)	Land Acc
1)Chao Phraya River	L.m	3,400	50	50	11,200	i			
2) Tub Chang Bon		1,700	25	75	1,350	1			
Total		gram star.	SLOPPA.	ham single	P-S PANE	19.6	20.7	40.3	

Table E-3(b) Construction Cost for Control Gate

			Uná t	: Cost ((km)	Const	ruction	Cost (Hil)	
Gate	Unit	Quantity	F/C		Total	F/C	L/C	Total	Land As
						6.5	35		ļ
1) K.Song	L.S	1.	7.7	4.1	11.8	7.7	4.1	11.8	
-Civil	[]		(3.5)	(3.1)	(6.6)				ļ
-Gate Leaf			(4.2)	(1.0)	(5.2)]
						65	35		ļ
2) K.Lolae	L.S	1.	6.4	3.5	9.9	6.4	3.5	9.9	
-Civil		•	(2.3)	(2.5)	(4.8)				
-Gate Leaf			(4.1)	(1.0)	(5.1)				l ;
						65	35		
3) K.Saen Saep	L.S	1.	9.2	5.0	14.2	9.2	5.0	14.2	
-Civil	} }		(4.2)	(3.8)	(8.0)				, ;
-Gate Leaf	1 1		(5.0)	(1.2)	(6.2)				1
						65	35		
4) K.Phrakhanong	L.S	1	8.0	4.3	12.3	8.0	4.3	12.3	
-Civil			(3.7)	(3.2)	(6.9)				
-Gate Leaf			(4.3)	(1.1)	(5.4)				
						65	35		
Total		 .	_		~	31.3	16.9	48.2	

Table E.3(c) Construction Cost of Pumping Station

					ლიე	truction	Construction Cost of Pumping Station	ing Stati	no						
	Bang Na Chine Pumping Station K.Bang Lai Pumping Station Construction Cost x10 ³ g Construction Cost x10 ³ g	ne Pumping A Cost xiC	g Station	K.Bang Lat Construction	Pumping St 1 Cost x10		K.Klet Pumping Station Construction Cost x10 ⁻³	ing Static	122	K.Saen Sab Pumping Station Construction Cost x10 ³ k	Pumping St 1 Cost x10	ĺ	Kiluay Kwang Pumping Station Construction Cost x1038	1g Pumping	Station
LEems	F/C	1/0	Total	F/C	1/ر	Total	F/C	1/C	otal	F/C	1/0		F/C	5/7	Total
Civil works	4,859	3,240	8,099	3,946	2,631	6,577	4,454	2,969	7,423	4,954	3,302	8,256	2,135	3,157	5,292
Mecanical and electrical facilities	·	2,248	11,239	6,045	1,151.	7,556	8,991	2,248	11,239	8,991	2,248	11,239	4,396	1,099	5,495
aubmarged pump	132KW unit #1,200x3		(3,500)	132KW unit #1,200x2	unic 2	(2,400)	132KW unic \$1,200x3	infr 3	(3,600)	132KW um ¢1,200×3	unit G	(3,600)	55KW un ¢ 700x2	unte x2	(1,320)
discharge pipe			(219)			(9)[)			(219)			(612)			(88)
flap valve			(270)			(180)			(270)			(270)			(52)
oparation panel			(028)			(580)			(028)			(870)			(005)
licist			(280)			(250)			(280)			(- 280)			(225)
auto screen			(6,000)			(4,000)			(000'9)			(000,9)			(3,340)
			·				٠		·•••			•.			
steel gate width; 6.0m (C.I.F)	2,948	1,246	4,212	2,948	1,264	4,212	2,948	1,264	4,212	2,457	1,053	3,510	2,948	1,264	4,212
Instration and miscellancous works	3,297	1,413	4,710	2,568	1,101	3,669	3,203	1,372	4,575	3,221	1,380	4,601	2,100	006	3,000
total	20,095	8,165	28,260	15,507	6,507	22,014	19,596	7,853	27,449	19,623	7,983	27,606	11,579	6,420	17,999
										1					

Table E.3(d) Construction Cost for Klong Improvement (1)

	<u></u>	· · · · · · · · · · · · · · · · · · ·					(Unit: Mi	Llion Baht
K	long	Reta	ining V	Wall (ß)		Dredging	Land	Remark
		A	B	С	D		Acquision	
Α.	Main Klong							
1.	Phra Khanong	-	-	68.1	85.3	3.4	-	
2.	Ton	-	-	16.6	140.6	4.6	3.3	
3.	Sean Seap	-	-	66.2	401.6	9.3	35.1	
	Sub-Total	_	-	150.9	627.5	17.3	38,4	
В,	Bang Na Drainag	ge Area						
1.	Bang Na	10.8	-	153.2	-	3.0	1.2	
2.	Bang Nang Chine	e 36.7	-	· -	-	0.9	-	
3.	Jek	0			-	0	_	
4.	Bang Oa	18	-			0.7		
5.	Bang Chak (1)	33.3	_	20.7	~	1.4	-	
6.	11 (2)	31.5	-	_		1.1	-	
7.	Kwang Bon	46.8	-	-	~	1.0	-	
	Ban Lai	54.0	_	_		1.8	-	
8.	Suan Aoi	-	_	-	~	0.5	-	
9.	Kwang Lai	-			~	0.3		
10.	Bang Na-Trad (K1)		•••	-	~	0.3	- ·	
11.	Bang Na-Trad (K2)	-	-	-	~	0.1		
12.	Bang Na-Trad (K3)				<u>-</u>	0.1	-	
13.	Klet	48.6	_	144.9	-	5.7		
,	Sub-Total	279.7		318.8		16.9	1.2	
С.	Rhamkhamhaeng I	Orainage	e Area				***	
1.	Kacha	28.8		- -		1.4	~	
2.	Gi g	15.7	-	_		0.4		
3.	Chit	23.4	-	_	-	0.2	~	
	Sub-Total	67.9		-	-	2.0	~	

Table E.3(d) Construction Cost for Klong Improvement (2)

	·····					Unit: Mil	lion Baht)
Klong	Retain	ing Wal	1 (18)		Dredging	Land	Remarks
	A	В	С	D	(⅓)	Acquision	
D. West Huay Kwan	g Drain	age Are	<u>a_</u>				
1, Sam Sen		32.8	-	-	1.0	8.1	
2. Lat Phrao		-	-	-	7.0	5.8	
3, Chao Khun Sing	-	-			0.2	5.4	
4. Yai Soon	-			_	0.2	8.4	
5. Huay Kwang	••••	-	_	-	~	-	
6. Nasong	_	-		***		-	
Sub-Total		32.8	-		8.4	27.7	
E. Bang Sue Drain	age Are	<u>a_</u>	45.5		- 0		
1. Bang Sue	-		66.2	50.2	5.2	15.6	
2. Ratchada Ditch	93.6	-	_	-	2.6	-	
3. Kasesert	31.5	-	-	-	0.6	-	
4. Lat Yao	38.7	-			0.2		
5. Huay Kwang Bon	31.5	-	_	-	0.7	-	
Sub-Total	195.3	- ·	66.2	50.2	9.3	15.6	
Total	542.9	32.8	535.9	677.7	53.9	82.9	
				1,789.3		1,926.1	

Total Cost of Retaining Wall 1,789.3

Table E-3(e) Construction Cost for Drain

		11 ,	T	Construc	ction (M	以)
Location	Description	Unit	Length(m)	F/C	L/C	Total
Bang Na Polder						············
1. Cross of Bang Na- Trad Rd.	2@B3x3	L.m	1.75	3.15	3.15	6.30
2. Cross of Highway	<pre>\$ 2.5</pre>	11	35	3.60	3.60	7.20
3. Sukhumvit Soi 50	B2.5x2.5	H	700	10.60	10.60	21.20
4. Connecting with K. Bang Jek and side ditch along Sukhumvit Soi 50	B2.5x2.5	11	150	2.25	2.25	4.50
Sub-Total			1,060	19.60	19.60	39.20
Ramkhamhaeng Polder			A market and a second control of the second	<u> </u>		
5. From Ramkhamhaeng University to K. Saen Sep	ø 1.5	L.m	200	0.55	0.55	1.10
Sub-Total			200	0.55	0.55	1.10
West Huay Khwang Drain	nage Area		J	<u> </u>		
6. Highway Ditch	2@B2x2	L.m	900	23.95	23.95	47.90
Sub-Total			900	23.95	23.95	47.90
Bang Sue Drainage Are	a	·				
7. Sena Nichom Rd.	1@B2x2	L.m	2,000	26,00	26.00	52.00
8. Ratchada Ditch	2@B2x2	11	100	2.65	2.65	5.30
9. K. Lat Yao	1@B2x3	11	70	1.05	1.05	2.10
Sub-Total			2,170	29.70	29.70	59.40
Total (1-9)			4,330	50 73.80	50 73.80	147.60

Table E.3(f) Construction Cost for Flood Control Operation Center

(unit: Thousand yen)

	Stage	Fe	asibility	Stage			Future Stage			
		P	riority Pa	ckage	s	econd Pack	age	Whole	Package	
	Descripcions Package	Unit	Account	Remark	Vnit	Amount	Romark	Unit	Απουης	Remark
	MASTER STATION 1. Host Computer 2. Han-Machine sub-system Color Copier, 70" projector Minic Panel, TV Camera, VTR Cask, etc	1 set:	76,000	Without Back up machine	l set l unit		With Back up Machine	l set: l unit	,	
	3. Communication Sub-system 4. Application Soft Ware 5. Power Supply System 6. Cables	1 uniț 1 " 1 " 1 "	60,000 100,000 39,400 10,000		1 unit 1 " 1 "	71,000 120,000 50,000 11,000		1 unit 1 " 1 " 1 "	71,000 150,000 50,000 11,000	·
(2)	SUB MASTER STATION 1. Computer system 2. Application Soft Ware 3. Power Supply System 4. Cables		1111		5 secs 5 " 5 "	(297,500) 160,000 100,000 25,000 12,500		8 sets 8 " 8 " 8 "	(476,000) 256,000 160,000 40,000 20,000	
(3)	OUT STATIONS 1. OTU (STC-1000) 2. Cabinet 3. Water Level Gage 4. Rainfall Gage 5. OTU Soft Ware 6. Cable 7. Yedification of Existing panel 8. DC Battery charger	15 sets 15 sets 28 " 13 " 15 " 1 unit 1 "	(109,500) 33,750 14,400 25,200 3,250 4,500 8,600 4,800		41 sets 41 " 69 " 31 " 41 " 1 unit 1 "	(291,360) 92,250 39,360 62,100 7,750 12,300 24,600 12,000 41,000		75 sets 75 " 119 " 61 " 75 " 1 unit 1 "	(525,130) 168,750 72,000 107,100 15,250 32,500 34,530 20,000	
(4)	OUT FOR RID, MD EGAT PA 1. OTU and Capiner 2. OTU Soft Ware 3. DC Battery charge		. -		4 sets 4 " 4 "	(52,000) 32,000 16,000 4,000		7 sets 7 " 7 "	(91,000) 56,000 28,000 7,000	
(5)	OTHERS 1. Haster Station Installation 2. Sub-Master Installation 3. OTU Installation 4. Site Testing 5. Spare Parts 6. Test Equipments 7. OTU House 8. TOT Telephone Line 9. One year Maintenance 10. Operation Training		(190,200) 12,000 		1 unit 1 " 1 " 1 " 1 " 1 " 1 " 1 " 1 "	(453,500) 17,000 20,000 67,500 160,000 42,000 15,000 ,41,000 25,000 30,000 36,000		1 unit 1 " 1 " 1 " 1 " 1 " 1 " 1 " 1 "	(656,930) 20,000 35,000 113,130 180,000 76,300 20,000 72,000 45,000 40,000 50,000	
(6)	Total of Initial Cost	1	.11	thousand yen	¥ 1	.11	thousand yen	¥ 2	,188,060 , ` 235 }	thousand yen
(7)	Operation & Maintenance 1. Salary of Operator 2. Operating Expense (NOT.ECAT.ETC) 3. Patroling Expense 4. Office Bork Expense T O T A L	2 Mamb. 1 " 1 "	0.2 1.0 0.2	00 MB 00 MB 00 MB 00 MB 00 MB	3 Memb. 1 unit 1 " 1 "	0.4 3.7 0	50 MB 10 MB 50 MB 50 MB	3 Memb. 1 unit 1 " 1 "	0.60 3.90 1.00 0.50	EN E

Table E.4 Labour Wage

Type of Labour	Labour Wage per Day (3)
Unskilled Labour	85
Mason	120 - 140
Bar Bender	85 - 120
Concretor	100 - 140
Asphalter	100 - 130
Carpenter	100 - 180
Painter	120 - 150
Welder	130 - 150
Foreman	300 - 400
Chief Forman	350 - 600
Car Driver	100 - 150
Equipment Operator	200 - 250
Boat Crew (low)	90 - 290
" (middle)	120 - 430
" (high)	400

Ţcem	Description	Unit	Price (\$)	Foregin (%)	Local (%)
ready mixed concrete	100kg/cm ²	m ³	1,000	35	65
11 11	160 "	1,1	1,150	35	65
і н п	210 "	11	1.300	35	65
cement	portland	Ē	1,640	40	60
sand .	use of concrete	m ³	140	30	70
n .	, backfill	11	110	30	70
laterite		11	110	30	70
riprap	50-150mm	h	170	30	70
crusher-run	0- 40 "	1)	140	30	70
deformed bar S D 30	13mm & below	t	9,500	70	30
11	16 " & over	11	8,900	70	30
sheet pile			9,620	70.	30
H-shaped Steel	H-300x300	ıı	9,200	70	30
Soft wood		m3	5,500	20	80
hard wood		11	11,000	. 20	80
Wooden pile	∲ 75mm x 3m	ea.	32	20	80
n 11	∮100 mm × 4m	, II	59	20	80
rá n	³ 125mm x 5m	lt .	100	20	80
ir ir	∮150mm x бл	11	180	20	80
gasoline		L	12	80	20
diesel oil		11	7	80	20
light oil		11	7	80	20
1					

I tem	Description	Unit	Price (%)	Foregin (%)	Local (7
R.C.Pile	□ 200 mm × 200 mm × 10 m	_ec_	1,180	40	60
	" x 12	+11	1,416	FF	n n
	" x 15	11	1,920	н	11
	" x 20	l If	3,260		11
	□ 300 × 300 × 10		2,520	i f	11
	" x 12	11	3,024	f†	11
	" x 15	11	4,140	u.	11
	" x 20	п	6,140	IT	11
	□ 350 x 350 x 10	11	3,430	11	п
	0 x 12	11	4,120	n	11
	" x 15	ft	5,150	"	11 .
	" x 20	11	6,860	11	4r
	☐ 450 × 450 × 10	11	6,240	"	11
	" x 12	и.	7,490	11	,,
	" x 15	rt	9,360	11	11
	u x. 20	11	12,480	11	II.
	\$ 600 mm x 1 m	11	275	. 11	11
R.C.Pile	ø 700 × "	īt	370	TT .	н
	ø 800 × "	ir	450	11	11
	ø 1000 x "		700	(1	11
	ø 1200 × "	11	925	11	и
	ø ₁₅₀₀ x "			11	11
R.C.Box Culbert	□ 2.0 ^m × 2.0 ^m × 1 ^m	;; 	1,500	TI .	11
K.C.BOX Curbert	· ·		15,800	1f	н
	2.5 x 2.5 x 1 3.0 x 3.0 x 1	······································		11	"
		11	20,500 25,900	11	"
	3.5 x 3.5 x 1		23,300		

Item	Description	Unit	Price (B)	Foregin (%)	Local (%)
concrete work	100 kg/cm ²	m3	1,650	25	75
	160. ''	11	1,800	25	75
	210 "	11	1,950	25	75
steel bar bending	13 mm & below	ΤΓ	14,750	45	55
	16 mm & over	11	14,430	45	55
forming	steel	m ²	190	45	55
	wooden	11	290	10	90
hydraulic crane	10 t	day	2,300	95	5
	20	11	4,500	H	11
	35	11	7,500	11	11
	45	11	8,500	11	n .
	80	ΙŤ	23,000	11	11
truck crane	35 t	13	7,000	11	11
	45	11	10,000	[1	rt
	70	ιτ	20,000	11	11
	80	11	25,000	11	11
back hoe	0.3 m ³	11	2,700	11	11
	0.6	11	3,000	11	11
	0.9	11	3,500	11	u .
dump truck	6 ^t	ff	800.	90	10
	8 ^t	11	1,600	11	18
	10 ^t	IŤ	1,800	u	11 '
pile driver	drop hammer	11	2,000	11	11
5.					

Item	Description	Unit	Price (B)	Foregin (%)	Local
excavation	back hoe 0.35 m3	_m 3	85	60	40
11	" 0.60 m ³	ř:	72	60	40
11	man power	11	43	0	100
back filling	back hoe 0.35 m3	11	102	80	20
Allows Hirt VI promps and a MANY Approximated the land and a second an	" 0.60 ^{m3}	14	80	80	20
	man power	11	20	0	100
Sheet pile driving	L = 3.5 m	tn	600	85	<u>15</u>
	5.0	11	790	T L	11
	6.0	IT	910	11	. н
	8.0	11	2,310	11	11
	10.0	11	2,640	11	11
	12.0	11	3,150	11	11
	15.0	t t	3,830	t t	
wooden pile driving	L = 3.0 ^m	ec.	55	1.5	85
	4.0	11	70	H	11
	5.0	11	90	11	11
	6.0		110	!1	!1
concrete pile driving	L =10.0	ft	780	85	15
	11.0	11	840	tt	11
	12.0	Ш	900,	11	11
	13.0	11	950	lt .	!!
	14.0	11	. 970	11	II .
	15.0	Ħ	1,010	tt.	11
attaching & Dettaching of steel	truck crane 16 ^t	t	1,290	75	25
concrete pipe lying	ø 800 mm	m	210	80	20
	ø 1,000	. 11	250	tī	H
	ø 1,200	11	280	ţ I	II
	ø 1,500	11	310	†1	11

Item	Description	Unit	Price (฿)	Foregin (%)	Local (%)
wooden ladder foundation	ø 800-1,000 mm	m	190	20	80
All 1 and a second seco	ø 1,200	11	240	11	11
	ø _{1,500}	11	360	r q	17
box culvert lying	2,000 x 2,000	11	1,010	75	25
	2,500 x 2,500	tt	1,350	11	11
g, eq. (1) -	3,000 x 3,000	11	1,800	11	H
	3,500 x 3,500	11	2,250	†I	п
					war and the state of the state

					A-11
· ·					

No.					
The same of the sa					

Flood Barrier - Concrete Wall

(For 1.0 L.)

		Unit Cost				Construction Cost		
Item	Unit	Total	F/C	L/C	Quantity	F/C	L/C	Total
A. Concrete Wall							···	
1. Concrete	m ³	1,950	25	75	0.7	341	1,024	1,365
2. Re-Bar	Kg	14.4	45	55	105.0	680	832	1,512
3. Form	m ²	190	45	<u>55</u>	3.6	308	376	684
4. Leveling Conc		1,650	25	75	0.1	41	124	165
Sub-Total			37	63		1,370	2,356	3,726
B. Sheet Pile	(L=7.5	[™] ,□150 ≥	50ء د	0)				
1. Material	Piece	1,650	40	60	2.0	1,320	1,980	3,300
2. Driving	11	1,140	85	15	2.0	1,938	342	2,280
Sub-Total			58	42		3,258	2,322	5,580
C. Grauting	place	440	29	71	2.0	255	625	880
D. Miscellaneous	L.S.	1,019	48	52	1.0	489	530	1,019
Total						5,372	5,833	11,205
								11,205//
	L		<u> </u>	<u></u>	<u> </u>			<u> </u>

Flood Barrier - Embankment (For 1.0 L.M.) Unit Cost Construction Cost F/GL/C Quantity F/C L/C Unit Total Total Item_ \mathfrak{m}^3 ·Embankment 110 30 70 9.9 327 762 1.089 m^2 0 100 120 120 20 Sodding 6.0 ·Miscellaneous L.S. 36 27 73 1.0 10 26 36 Total 27 73 337 908 1,245

Retaining Wall - Type A

(For 6 L.M.)

	<u> </u>	Unit	Cos	t		Con	struction Cost (B)	
Item	Unit	Total		L/C	Quantity	F/C	L/C	Total
A. Cap Beam								
1. Concrete	_m 3	1,950.0	25	75	1.6	780	2,340	3,120
2. Re-Bar	Kg	14.4	45	55	240.0	1,555	1,901	3,456
3. Form	m ²	190.0	45	55	9.0	770	940	1,710
Sub-Total			37	63		3,105	5,181	8,2%
B. Bracing Beam								
1. Concrete	_m 3	1,950.0	25	75	0.4	195	585	78)
2. Re-Bar	Kg	14.4	45	55	60.0	389	475	864
3. Form	_m 2	190.0	45	55	2.4	205	251	456
4. Installation	L.S.	480.0	75	25	1.0	360	120	480
Sub-Total			45	55		1,149	1,431	2,580
C. Concrete Panel	_							
1. Concrete	m3	1,950.0	25	75	1.9	926	2,779	3,705
2. Re-Bar	Kg	14.4	45	55	285.0	1,847	2,257	4,410
3. Form	_m ²	190.0	45	55	2.0	171	209	380
4. Installation	L.S.	2,280.0	75	25	1.0	1,710	570	2,28
Sub-Total			44	56		4,654	5,815	10,469
D. King Pile (L=14.5 [™]	₩ 40 x	. 4(0)				
1. Material	Piece	6,820.0	40	1	4.0	10,912	16,368	27,28
.2. Driving	11	990.0	85	15	4.0	3,366	594	3,9%
Sub-Total			46	_54		14,278	16,962	31,24
E. Miscellaneous	L.S,	1,580.0	44	<u>56</u>	1.0	695	885	1,58
Total			44	56		23,881	30,274	54,15
		(54,155 -	6.	0 =	9,026)			9,0

Retaining Wall - Type B

(For 6 L.M.)

		Unit	Cos	t		Cor	struction Co	ost
Item	Unit	Total	F/C	L/C	Quantity	F/C	L/C	Total
A.Cap Beam								
1. Concrete	_m 3	1,950	25	75	1.6	780	2,340	3,120
2. Re-Bar	Kg	14.4	45	55	240.0	1,555	1,901	3,456
3. Form	m ²	190	45	55	9.0	770	940	1,710
Sub-Total			37	63		3,105	5,181	8,286
B.Concrete Panel								
1. Concrete	_m 3	1,950	25	75	1.9	926	2,779	3,705
2. Re-Bar	Kg	14.4	45	55	285.0	1,847	2,257	4,104
3. Form	m ²	190	45	55	2.0	171	209	380
4. Installation	L.S.	2,280	75	25	1.0	1,710	570	2,280
Sub-Total			44	56		4,654	5,815	10,469
C. King Pile (L=14.5 ⁿ	, # 0.40 x	0.	40)				
1. Material	Piece	. 6,820	40	_60	4.0	10,912	16,368	27,280
2. Driving	11	990	85	15	4.0	3,366	594	3,960
Sub-Total			46	54		14,278	16,962	31,240
D. Anchor								
1. Concrete	m ³	1,950	25	75	1.3	634	1,901	2,535
2. Re-Bar	Kg	14.4	45	55	195.0	1,264	1,544	2,808
3. Form	m ²	190	45	55	7.0	599	731	1,330
4 Leveling Conc.			25	75	0.2	82	248	330
5. Tie-Bar	set	1,100	45	55	4,0	1,980	2,420	4,400
6. Batter Pile	(L=16.	5 ^m , # 0.30	x	0.30				
' Material	Piece	4,740		60	8.0	15,168	22,752	37,920
· Driving	Ħ	1,040	85	- !	8.0	7,072	1,248	8,320
Sub-Total			46			26,799	30,844	57,643
E _{L.Miscellaneous}	L.S.	1,580	,		1.0	711	869	1,580
Total			45	55		49,547	59,671	109,218
		(109,218	÷ 6	.0 =	= 18,203)			18,20 ¹ /n

Retaining Wall - Type C

(For 6 L.M.)

		Un i t	Cos	t		Co	nstruction C	ost
Item	Unit	Total_	F/C	L/C	Quantity	F/C	r/c	Total
A. Cap Beam								
1. Concrete	_m 3	1,950	25	75	1.6	780	2,340	3,120
2. Re-Bar	Kg	14.4	45	55	240.0	1,555	1,901	3,456
3. Form	m ²	190	45	55	9.0	770	940	1,710
Sub-Total			37	63		3,105	5,181	8,28
B. Concrete Panel								
1. Concrete	_m 3	1,950	25	75	2.5	1,219	3,656	4,87
2. Re-Bar	Kg	14.4	45	55	375.0	2,430	2,970	5,40
3. Form	_m 2	190	45	55	2.5	214	261	475
4. Installation	L.S.	3,000	75	25	1.0	2,250	750	3,00
Sub-Total			44	56		6,113	7,637	13,75
C. King Pile (L=15.0,	# 0.40 ж	0.40))				
l. Material	Piece	7,050	40	60	4.0	11,280	16,920	28,20
2. Driving	11	1,010	85	15	4.0	3,434	606	4,040
Sub-Total			46	54		14,714	17,526	32,240
D. Anchor								
1. Concrete	_m 3	1,950	25	75	1.3	634	1,901	2,535
2. Re-Bar	Kg	14.4	45	55	195.0	1,264	1,544	2,808
3. Form	m ²	190	45	55	7.0	599	731	1,330
4. Leveling Corc.	m ³	1,650	25	75	0.2	82	248	333
5. Tie-Bar	set	1,100	45	55	4.0	1,980	2,420	4,40)
6. Batter Pile	(L=19.	5 ^m ,¤300 2	30	0)				
. Material	Piece	5,940	40	60	8.0	19,008	28,512	47,520
· Driving	tī	1,090	85		8.0	7,412	1,308	8,72
Sub-Total			46	54		30,979	36,664	67,64
E. Miscellaneous	L.S.	2,440	45	55	1.0	1,098	1,342	2,440
Total	,		45	55		56,009	68,350	124,355
		(124,359) ÷	6 =	20,727)			20,70

Retaining Wall - Type D

(For 1.5 L.M.)

		Unit			g warr - rype	 		T 1.5 L.M.)
		<u> </u>					struction (
Item	Unit	Total	F/Q	L/C	Quantity	F/C	L/C	Total
A. Cap Beam								
1. Concrete	_m 3	1,950	25	75	0.4	195	585	780
2. Re-Bar	Kg_	14.4	45	55	60.0	389	475	864
3. Form	m ²	190	45	55	1.8	154	188	342
Sub-Total			37	63		738	1,248	1,986
8. Conc.Sheet Pile	(L=17	7.0m, 0.30) x	0.50))			
1. Material	Piece	7,860	40	_60	3.0	9,432	14,148	23,580
2. Driving	11	4,410	85	1.5	3.0	11,246	1,984	13,230
Sub-Total						20,678	16,132	36,810
C. Anchor								
1.Concrete	m ³	1,950	25	75	0.3	146	439	5.85
2. Re-Bar	Kg	14.4	45	55	45.0	292	356	648
3. Form	m ²	190	45	55	3.2	274	334	608
4.Leveling Conç	m3	1,650	25	75	0.1	41	124	165
5. Tie-Bar	set	1,420	45	55	1.0	6 3 9	781	1,420
6. Batter Pile	(L=20.	Om, □0.30) x	0.30))			
' Material	Piece	6,140	40	60	2.0	4,912	7,368	12,280
Driving	11	1,100	85	1.5	2.0	1,870	330	2,200
Sub-Total			46_	54		8,174	9,732	17,906
D. Grauting	place	440	25	75	3.0	330	990	1,320
E. Miscellaneous	L.S.	17,400	52	48	1.0	9,048	8,352	17,400
Total			52	48		38,968	36,454	75,422
			<u></u>					
		(75,422	? ÷_	1.5	= 50,281)			50,200/m
			<u> </u>	<u> </u>		· · · · · · · · · · · · · · · · · · ·		<u> </u>

Table E.8 Implementation Schedule

Item Year	Total	1987	1988	1989	1990	1991	
Flood Barrier (km)	6.2	<u></u>	6.2	_	-	_	
Gate (place)	4		4				
Pumping Station (station)	5		5	-	•		
Klong Improvement (k Trunk Klongs Other Klongs	m) 26.0 66.9	- -	18.6	7.4 14.5	- 33.6	- 18.8	See Table
Drain Improvement (k	m) 4.3	-	-	0.0	3.2	1.1	See Table
Flood Control Operat Center (set)	ion 1	-	1	_	2-7		
Detailed Design	1	1	-	-	-	-	
Project Cost (millio Baht at 1985 price)	n 2,655	46	825	825	805	154	
Foreign Portion	1,261	23	450	353	372	63	
Local Portion	1,394	23	375	472	433	91	

Table E.9 Klong Improvement

(Uint: meter)

Year	1988	1989	1990	1991
Phra Khanong Polder	3,600 Tan 7,600 Phra Khanong	7,400 Saen Saep		
Bang Na Polder		6,200 Bang Na 2,100 Bang Oa	3,860 Bang Na Jen 3,500 Bang Lai 2,600 Kwang Bon 2,350 Bang Chak 1 1,750 Bang Chak 2 6,200 Klet	600 Suan Aoi 1,000 Kwang Lai 1,350 Bang Na Trad(k1) 600 Bang Na Trad(k2) 600 Bang Na Trad(k3)
Ramkhamhaeng Polder			4,400 Kacha	1,540 Jik 1,300 Chit
West Huay Kwang Drainage Area		6,200 Sam Sen		5,470 Lat Phrao 1,600 Yai Soon 2,600 Chao Khun
Bang Sue Polder	7,440 Bang Sue		5,200 Ratchada 1,750 Kasesert 2,000 Phya Wake	
Total	18,640	21,900	33,610	18,810
Construction Cost (million Baht)	440.2	696.6	611.7	87.3

Table E.10 Implementation Schedule (Drain)

(Unit: meter)

Year	1988	1989	1990	1991
Bang Na Polder		35 Cross of Highway		175 Cross of Bang Na Trad Road 700 Sukhum- vit Soi 50 150 Klong Jek to Suku- mvit Soi 50
Ramkhamhaeng Polder			200 Universi- ty to Klong Saen Saep	
West Huay Kwang Drainage Area			900 Highway Ditch	
Bang Sue Polder			100 Ratchada 2,000 Sena Nichom	70 Lat Yao
Total Cost (million Baht)	О	35 7.2	3,200 106.3	1,095 34.1

APPENDIX F

FLOOD PLAIN MANAGEMENT

APPENDIX F FLOOD PLAIN MANAGEMENT

1. Necessity	of Flood Plain Management	F-1
	es of Flood and Flood Damage of Flood Plain Management	F-1 F-2
2. Zoning Re	gulation	F-5
2.2 Floo	rald Risk Evaluation	F-5 F-5 F-9
3. Implement	ation Procedure of Non-Structural Measures	F-13
	ent Stage of the Greater Bangkok Planon Plan for Non-Structural Measures	F-14 F-15
	<u>List of Tables</u>	
Table F.1	Concept of Comprehensive Flood Damage Mitigation Plan	F-4
Table F.2	Concept of Zoning Regulations	F-6
Table F.3	Population Project in Four Districts	F-11
Table F.4	Population Projection in the Study Area	F-12
Table F.5	Action Plan for Non-Structural Measures	F-17
Table F.6(1)	Measures for Establishment of Retention Area	F-22
Table F.6(2)	Measures for Establishment of Retention Area	F-23
	List of Figures	
Fig. F.1	Comprehensive Flood Damage Mitigation Measures	F-24
Fig. F.2	Proposed Zoning in Eastern Suburbs	F-25
Fig. F.3	Flood Area in Greater Bangkok in 1983	F-26
Fig. F.4	Flood Area in Feasibility Study Area in 1983	F-27
Fig. F.5	Flood Area, Depth and Duration in Study Area (1983)	F-28
Fig. F.6	Flood Risk Map (Observed Flood Area in 1984)	F-29

Fig. F.7	Ground Elevation in Feasibility Study Area	F-30
Fig. F.8	Progression of Land Subsidence	F-31
Fig. F.9	Klong Network in Eastern Suburbs (1910)	F-32
Fig. F.10	Klong Network (1910) and Ground Elevation (1984)	F-33
Fig. F.11	Estimated Flood Area in 1984 (for 5-year Return Period Rainfall by Urgent Flood Protection Measures)	F-34
Fig. F.12	Estimated Flood Area in 2000 (for 5-year Return Period Rainfall by Urgent Flood Protection Measures)	F-35
Fig. F.13	Progression of Urbanization in Bangkok	F-36
Fig. F.14	Example of Retention Pond (1)	F-37
Fig. F.15	Example of Retention Pond (2)	F-38

APPENDIX F FLOOD PLAIN MANAGEMENT

"Flood plain management" or "non-structural measures" is much required in Lower Chao Phraya Plain, including eastern suburban Bangkok, in addition to the proposed structural measures. Experiences in such countries as United States, Australia and Japan have shown that the combination can be highly effective and cost less than structural measures alone.

- 1. Necessity of Flood Plain Management
- 1.1 Causes of Flood and Flood Damage

The causes of flood are heavy rainfall and high tide/high water levels of the Chao Phraya river. The floods used to bring no substantial damages for the residents living in stilt-elevated houses and relying on boat transportation through an extensive network of klongs (canals).

Modernization of life-style and rapid urbanization has, however, changed the susceptibility to damage by seasonal floods as indicated rising damage of the severe floods which have hit Bangkok since the 1950s, that is, houses have been recently built on elevated-land in order not to suffer flood damage, resulting in loss of natural retention area/capacity and increase of run-off discharge.

Furthermore, provision of infrastructure could not keep pace with rapid urbanization. Water supply system was not an exception. Groundwater abstraction increased particularly in pipe-water unserviced eastern suburbs and Samut Prakan Province, resulting in severe land subsidence. The center of land subsidence is located in eastern suburbs and Samut Prakan Provicee.

This land subsidence has greatly aggravated the flood problem. Firstly, much flood water in the vast, flat Lower Chao Phraya Plain inflows easily into the depressed eastern suburbs. Secondly, the inflowed water is difficult to be drained out into the Chao Phraya river because water levels of the river during end of rainy season, exceed occasionally subsided ground elevations. These phenomena as shown in Fig. F.1. increased so that flood problem became serious recently like 1980 and 1983 floodings.

1.2 Role of Flood Plain Management

On the occasion of 1983 flooding, urgent (structural) measures have been provided. If the proposed high-standard structural measures are provided in the eastern suburbs, although it will take a long time, flooding problems will be resolved to much extent. Nevertheless, residual flooding problems will still remain for a smaller segment of the community because of drainage difficulty in the very flat eastern suburbs.

Consequently, comprehensive flood damage mitigation plan, consisting of both structural and non-structural measures, should be adopted to solve flood problems in the eastern suburbs.

Flood damage mitigation plan consists of structural and non-structural measures as illustrated in Table F.1. and Fig. F.1.

Since few non-structural measures have been introduced as urgent measures much effort of their introduction will be required.

Their objectives are to:

- ensure, through appropriate zoning, the usage of flood prone land is compatible with the degree of the flood hazard;
- . implement a management plan aimed at:
 - containing the problem by development and building controls;
 - reducing the extent and severity of the hazard by removal of development from the flood plain (as well as by structural measures);
 - ensuring adequate flood warning procedures.

Particularly, as demand of land in eastern suburbs is growing at the highest rate (discussed in section 2.3), non-structural measures are considered effective not to increase flood damage.

More importantly, they tend to pass the burden of costs from the public at large to those who reap the advantages of flood plain location because flood protection responsibility is shared between the governments (on structural measures) and those who live in the eastern suburbs (on non-structural measures) on the other hand, their execution requires a strong leadership and public support. This matter is discussed in section 3.

Table F.1.

Concept of Comprehensive Flood Damage Mitigation Plan

Reason	Difficulty in Provision o	f Drainage Facilities
Component	Structural Measures	Non-Structural Measures
Objective	REDUCTION OF FLOOD	REDUCTION OF FLOOD DAMAGE
	.To block inflow from outer area	.To prohibit flood-prone area from urban development
	.To increase drainage capacity	.To guide urban development to flood-free area
Measures	·Polder dyke and gate	.Land use guidance according to flood risk
	.Pumping station	.Flood proofing
	.Klong and pipe improvement	
	Retention area (pond)	Retention basin

2. Zoning Regulation

2.1 General

Eastern suburbs is generally divided into two zones as shown in Fig. F.2 from the view point of flood portection; One is flood protection area and another is retarding area. Flood protection area is defined as the existing urbanized area and promoting urbanization area where both structural and non-structural measures are provided. Feasibility Study area (same as the Master Plan area) falls in this category. On the other hand, retarding area is defined as an agricultural area and prohibiting urbanization area. Eastern part of the Preliminary Study Area (between the Feasibility Study area and the Green Belt area) as well as the Green Belt area falls in this category. Appropriate measures for each area is shown in Table F.2 which intend land use to comply with flood risk in each area.

However, there are a variety of factors to be considered in zoning decisions in more detail. Many of these factors are be in conflict. In order to encourage the wisest land use coping with the flooding situation, the flood risk evaluation, is explained, followed by the required land size for future urbanization.

2.2 Flood Risk Evaluation

Preparation of flood risk mapping in eastern suburbs has just started in this study and we have prepared maps, though preliminarily.

Table ${\tt f}$.2 Concept of Zoning Regulations

	·		
Classification	Urban Development	Scope of Area	Measures
Protection Area	Urbanized Area Promoting Urbaniza- tion Area	A*	To form a polder To improve drainage capacity To make retention pond, compensating retention area lost with urban development Prohibition of ground water withdrawal To improve surface water supply system Provision of Infranstructure
Retarding Area	Prohibiting Urbani- zation Area	B**	To adjust drainage condition for agriculture and open space Prohibition of landfill To encourage flood-proofing Prohibition of Infrastructure Provision

^{*} Master Plan and Feasibility Study Areas

^{**} East half of eastern suburban Bangkok between Green Belt and Master Plan Areas

2.2.1 Past Flood Data

Flood areas of 1983 flooding have been prepared as shown in Fig. F.3 by the National Statistical office through the direct interviews. As heavy rainfall continued to fall during August and October, entire Lower Chao Phraya Plain suffered from flooding. In the depressed eastern suburbs, collecting much rainwater from the neighboring areas, flooding lasted one to four months. Flooding started in late August and ended in early December (See Figs. F.4 and F.5 which were surveyed by our team). These figures reveal that southern and eastern parts of eastern suburbs suffered more from flooding.

After this flooding, dyke and gates along the border of the eastern suburbs with the Green Belt Area have been constructed or installed as the urgent measures in order to block inflow from the outer area into the inner area. As a result, type of flooding has changed from long-duration, large-area one to short-duration, small area one. Our study team surveyed flooded areas after the urgent measures, as shown in Fig. F.6.

2.2.2 Topography

Topographical maps of scales 1:20,000 and 1:50,000 are available for the eastern suburbs. However the maps were prepared in 1969 and 1974 respectively when severe land subsidence did not take place and the contour intervals are 20 meters with supplementary lines of 10 meters. Therefore, spot levelling surveys were conducted through the Preliminary Study, Master Plan and Feasibility Study by our study team in order to grasp the topographic terrain of the very flat eastern suburbs.

Based on these surveys, topographic map is prepared as shown in Fig. F.7.

This map reveals that;

- (1) urbanized areas are higher by 50 to 100 cm than the neighboring non-urbanized areas, which are original swamp lands, and
- (2) southern part (downstream of Klong Phra Khanong) is the lowest in topography due to land subsidence.

Land subsidence can be stopped when groundwater pumping up is limited to an appropriate amount. Such measures as reducing pumping up and extension of surface water service area have been already planned. However, as it will take a time to stop land subsidence even after those measures, 70 to 100 cm land subsidence is estimated to occur by the year 2000 according to AIT study. Figs. F.7 and F.8 show progression of land subsidence and estimated ground elevation in 2000 respectively.

2.2.3 Morphology

The Study Area is located in the vast Chao Phraya delta, with ground elevation of less than 2.5 m MSL. For example, ground elevation in Ayutthaya, 100 km off from the river mouth is only 2 m MSL. As the delta is very flat, water coming down from the upstream spread and is accumulated, reaching 50 to 100 cm high during rainy season. On the other hand, during dry season accumulated water is gradually flown downstream and is heavily evaporated, resulting in like desert.

However, in this vast, flat delta, there is slightly difference in vulnerability to flooding. Extensive klong (canal) network has been developed in the Study Area, densely in southeastern part and sparsely in western part of the Study Area as shown in Figs. F.9 and F.10.

This map is reproduced from 1910 map of the Royal Thai Survey Department, and superimposed with the existing contour lines. This may indicate that southeastern part is vulnerable to flooding through klongs from upstream of the delta.

On the other hand, northern part (Bang Kapi district) seems a backswamp portion of the Chao Phraya river. Because of physiographic position, water accumulates here by the inflow from the surrounding area and stays for a prolonged period. LANDSAT imagery clearly reveals that this part holds water for a much longer period than its eastern and western neighbors.

2.2.4 Estimation of Flood Area

Storage basin model (Bi-dimensional model) has been developed in order to examine an approximate flooding status and to identify the poor drainage areas. The eastern suburbs (the Preliminary Study Area of 501 km² plus other area of 104 km²) is divided into 9 basins. Details are expalined in Appendix H of the Master Plan.

Using this model, flood areas are estimated for a 5-years frequency rainfall under the condition of the execution of 1984 urgent measures, presenting in Figs. F.11 and F.12.

2.3 Urbanization

Required urbanized areas in future is an important factor for delineating sound land use pattern, in addition to flood risk mapping. Therefore, to begin with, urbanization trend is explained, followed by estimation of future population and urbanized area.

2.3.1 Urbanization Trend

The city's population increased slowly to reach 890,000 in 1937 and one million in 1953. As shown in Fig. F.14, growth since then has been extremely rapid as a consequence primarily of high fertility and migration rates. Population has increased during the period 1937-1983 by more than 500 percent to its current total of more than 5 million. Even more dramatically, the urbanized area has increased to 300-500 square kilometers.

Bangkok is concluding a period of high rates of growth of population and entering a period of more moderate rates of growth which will, however, continue to yield large absolute increases in population. The urbanized area has also been expanding rapidly but would in the future grow more slowly.

2.3.2 Development Patterns

Between 1968 and 1979, residential area which constitutes large part of the urbanized area in the BMA increased from 41.5 to 114.3 square kilometers, an annual growth rate of 11%, higher than the rate of population growth. This high rate of consumption of land is due to both the increase in population and the relocation of population from high density areas to areas of lower densities.

Most of paddy land in east side of Chao Phraya River in Bangkok had been bought by absentee landlords and speculators whereas rather small land holdings of the orchard belt in the Thonburi have continued to belong to a large number of owner-occupiers. Although increases in residential use occured in all directions, the main thrust of expansion was in the direction of Bang Kapi, Bang Khen, and Min Buri in the north, Muang Samut Prakan and Phra Khanong to the south and east of the Bangkok.

The development pattern has been virtually unplanned. To a great extent the conversion of paddy land at the urban fringe were made along major roads, with very little attention to secondary and lower roads, resulting in ribbon development. From the standpoint of private developers and their customers, this ribbon development has been economical because the cost of the far flung infrastructure necessary has, for the most part, not been borne by them. Roads built for the purpose of connecting Bangkok with distant places made an unintended ribbon of development and large vacant areas remain among thin ribbons of development along major roads.

2.3.3 Population Projection

The future population in BMA was estimated in the Master Plan study based on the following four data (see Appendix E of Master Plan):

- (1) Projection based on regression curve
- (2) Estimated figures of "Population projections for Thailand, whole Kingdom and Regions, National Statistical Office".
- (3) Estimated figures of "The General Plan of Bangkok Metropolis and its Vicinity, 2000, DTCP", and
- (4) Estimated figures of "The Research Center of Chulalongkorn University".

Results of these projections vary from 7,260,000 to 7,800,000 in the year 2000. It is considered reasonable to adopt 7,700,000 as the medium projected population. This figure coincides with that of Bangkok Metropolitan Region Development Study (Table 2.1 of interim report, August 1985).

This study also projects populations in each district.

Populations in four districts in eastern suburbs, i.e., Huay

Kwang, Bang Khen, Bang Kapi and Phra Khanong grow at the highest
rate among BMA as shown in Table F.3.

Table F.3 Population Projection in Four Districts

Name of Districts	Рорс	1000's	
Name of Districts	1980	1985	2000
Huay Kwang	192	233	359
Phra Khanong	498	587	840
Bang Khen	367	492	80 9
Bang Kapi	244	377	710
Total	1,301	1,689	2,718

As the Feasibility Study Area do not cover the whole four districts, population in the Areas was projected in the Master Plan as shown in Table F.4.

Table F.4 Population Projection in the Study Area

Area	Population : 1000's		
	1980	1990	2000
Fesibility Study Area and Master Plan Area	1,060	1,660	2,350
Preliminary Study Area	1,160	1,790	2,500

2.3.4 Future Land Demand

Future urbanized areas are estimated from the Development Policy (See Appendix E of Master Plan) and the projected population.

In order to project the future urbanized area in the Master Plan Area in the year 2000, the urbanized area in the Preliminary Study Area is first estimated. The following two methods are adopted to estimate the future urbanized area in the Preliminary Study Area:

- (1) Study of the relationship between the existing population density and the proportion of built-up area.
- (2) The trend of urbanized areas from 1960 to 1980.
 Results of these projections are summarized in Appendix E of Master Plan.

It is considered reasonable to adopt 230 km² as the projected urbanized area for the Preliminary Study Area.

On the other hand, the future urbanized area in the Master Plan Area is estimated as follows:

- (1) Present urbanized area in the outside of the Master Plan Area which included in the Urban Control Area (retarding area from viewpoints of flood protection) is 14 km².
- (2) The outside of Master Plan Area should not be developed till 2000 by the definition of Urban Control Area.
- (3) According to these measures, the future urbanized area in the outer Master Plan Area will be reserved as 14 $\,\mathrm{km}^2$ in 2000.
- (4) 216 km^2 (230 km^2 -14 km^2) is adopted for the future urbanized area in the Master Plan Area in 2000.
- 3. Implementation Procedure of Non-Structural Measures

Zoning regulations are the most effective measures but their enforcement is considered difficult. The management of existing properties at flood risk area is a more difficult problem in terms of the social and economic consequences to affected property owners. A good and sound communication needs to be established between management authorities and local communities if the social and economic controls are to be dealt with in rational and equitable fashion.

Fortunately, as inter-governmental coordination and cooperation for flood protection has become easy through the recently set up national-committee, zoning control as well might become possible in near future.

On the other hand, enforcement of zoning regulations will take a considerable time to reach decision of zoning because of time—consuming preparation of more precise flood risk mapping,

getting concensus from the residents. Therefore, even during preparation of zoning regulations, other alternate non-structural measures, which are considered applicable at an early stage, are necessary to be applied in order not to increase flood damage (which is explained in section 3.2).

3.1 Present Stage of the Greater Bangkok Plan

History of city planning, which should be the base of zoning regulations, is reviewed here.

Planning commenced in 1959 both in terms of national economic planning and comprehensive city planning. The Greater Bangkok Plan which has since been referred to as the Litchfield Plan was presented in 1960. At the same time (in 1961/1962), the Department of Town and Country Planning (DTCP) was established as a central city planning agency. The Department has since been in charge of updating and revising the Greater Bangkok Plan. However, the Plan was never officially adopted.

Since 1975, Thailand has had a new Town Planning Act which superseded the one of 1952. The stipulation of the law required a new revision of the Plan, especially with respect to procedures of submission, public inspection, and approval. So the DTCP began working on the second revision, called the Greater Bangkok Plan 2000, which was also prepared in connection with the objectives of the Fourth National Economic and Social Development Plan (1977-1981). The proposed land use pattern showed a marked shift away from the previous plans: from the concentric pattern to a polycentric development pattern.

Although this Plan was neither adopted, as a result of coordination among the NESDB, the DTCP and the BMA, the present metropolitan development concept comprises three levels: