Table 2-20 Existing Situation of Agricultural Cooperatives in Chon Buri Province (1980)

Amphoe Cooperative Coops official	Ban Bung	
	pau nuny	
1 000b0 Orracial		Livestock
Coops staff	4	·
Agriculture		11
household	8,946	2
Member's number	1,200	
(Ratio)	13%	
Puchasing	13%	
Agri-chemical	_	
Chemi-fertilizer F	900,000	
Agri-machine	700,000	· · · · · · · · · · · · · · · · · · ·
Seeds (paddy)		
Others		
Marketing		
Paddy		
Fruits		
Vegetable		
Livestock		
	garcane	
	ssave 1,000 t	
Storage house	1,000 0	
Capacity (ton)		
Credit		
Short-term used		
number	65%	
amount 6	,500,000 B	
Middle-term used		
number	35%	•
amount 3	,500,000 B	
Long-term used		
number	- [•
Rice mill		
Banana processing		
Agriculture		
household	8,946 (6	3.9%)
Total		
household	13,990	ļ
Total	· - • · · · · · · · · · · · · · · · · · · 	
population	76,348	1
Agricultural		
population	48,821 (6	3.9%)

Table 3-1 Production by Year in Nong Pla Lai Area

Unit: Area - ha Yield - kg/ha Production - ton

No. 1 Paddy Wet Season

Item	1, 1	2,2	5, 3	7	S	9	7	Remark
	1,260 ha	1,260 ha	3/ 1,320 ha	i	1	·		
Present Planting Area Yield Production	2,580	1,320	-	l 1	3 (1 1	1 1	
Project Planting Area Yield	1,200	1,200,	1,200	1,200	1,200	1,200	1,200	
Production	2,340	2,652	3,264	4,188	4,800	4,800	4,4000	
Planting Area Yield		1,200	1,200	1,200	1,200	1,200	1,200	
Production		2,340	2,652	3,264	4,188	4,800	4,800	
Planting Area			1,250	1,250	1,250	1,250	1,250	
Production			2,438	2,763	3,400	3,490 4,363	5,000	
Total Production	2,340	4,992	8,354	10,215	12,388	13,863	14,600	

1/2/3/: Land Consolidation Area by year

No. 2 Paddy Dry Season (Continued)

Item	lst	2nd	3rd	7	۶	9	7	8	Remark
Planting Area Yield Production		325 2,190 712	325 2,490 809	325 3,060 995	3,930	325 4,500 1,463	325 4,500 1,463	325 4,500 1,463	
Planting Area Yield Production			325 2,190 712	325 2,490 809	3,060 995	3,930	325 4,500 1,463	325 4,500 1,463	
Planting Area Yield Production				325 2,190 712	325 2,490 809	325 3,060 995	3.930 1,277	325 4,500 1,463	
Total Production		712	1,521	2,516	3,081	3,735	4,203	4,389	

No. 3 Groundnuts (Continued)

115.14	lst (1,200)	2nd (1,200)	3rd (1,250)	4	5	9	7	oc	1
Planting Area		645	645	645	645	645	645	645	ŀ
Yield Production		1,215	1,335	1,500	1,740	1,900	1,900	1,900	
Planting Area			650	650	650	08.4	, O V		
Yteld			1,215	1,335	1,500	1,740	1,900	1,900	
Production			790	868	. 975	1,131	1,235	1,235	
Planting Area				650	650	650	650	650	
Yield Production				1,215	1,335 8,88	1,500	1,740	1,900	
					} .	<u>`</u>	4) 4 *	7,41	
Total Production		784	1,651	2,626	2,965	3,332	3,592	3,696	

Table 3-2 Tendency of Population by Industrial Development

Unit: 1,000 person

Location	(1) 1980	(2) 1990	(3) 2000	(4) (2) - (1)	(5) (3) - (1)
Rayong					
Municipality	37	57	80	20	43
Muan	84	161	203	77	119
Sub Total	121	218	283	97	162
Chon Buri					
Municipality	50	53	56	3	6
Am. Chon Buburi	119	150	180	31	61
Am. Si Racha	85	124	166	39	81
Sattahip	85	105	123	20	38
Am.Phanat Nikhon	110	126	142	16	32
Phattaya	35	5 9	84	24	49
Sub Total	484	617	751	133	267
Total	605	835	1,034	230	429

Table 3-3 Agricultural Material

Wet S. Paddy	Kg/ha	Area (ha)	Quantity (t)	Unit	Price	Value 1,000 ₿
Nursery Seed	800	256	204.8	ς	B/kg	1,024.0
Fertilizer	250	256	64.0	5.200	•	332.8
Padan Mipcin.	25	256	6.4		B/kg	128.0
Paddy Field						-
Fertilizer Co.	225	3,650	821.25	5.200	B/t	4,270.5
A.S.	190	3,650	693.5	3.600		2,496.6
Padan Mipcin.	25 x 2	3,650	182.5		B/kg	3,650.0
Saturn D.G. Sub Total	25	3,650	91.25	17.5	₿/kg	1,597.0 13,498.9
Dry S. Paddy				-		
Nursery Seed	800	50	40	5	B/kg	200.0
Fertilizer	250	50	12.5	5.200		65.0
Padan Mipcin.	25	50	1.3	20	B/kg	26.0
Paddy Field						
Fertilizer Co.	240	975	234	5.200	B/t	1,216.8
A.S.	200	975	195	3.600	B/t	702.0
Padan Mipcin.	25 x 2	975	49		B/kg	980.0
Saturn D.G.	25	975	25	17.5	B/kg	437.5
Sub Total						3,336.3
Groundnut		•				
Seed	125	1,945	244	20	B/kg	4,880.0
Fertilizer						
N. 20%	94	1,945	183	3.600	B/t	658.8
P. 46 - 48%	120	1,945	234	8.400		1,965.6
K. 60%	63	1,945	123	5.800	₿/t	713.4
	ce					
Asodrin	2,500 x 2	1,945	9,800 1.	220	B/1.	2,156.0
Dimethoate	2,500 x 2	1,945	9,800 1.	220	B/1.	2,156.0
						12,529.8

Table 3-4 Machinery Requirement

tor 65 sp 66 345 tor 35 sp 7 190 ler 2 t 20 40 up 2 t 10 70 up 4.6 m 13 66 up harrow w 4.0 12 80 tater 5 row 35 35 up by hand 200 4.6 her 5 sp 24	Hachinery	Capacity	Ouantity	Unit Cost (1000k)	(4,0001)
Ler 2 t 20	Tractor		09		20.200
Ler 2 t 20 -up 2 t 10 line w 1.4 t 16 vay harrow 26 x 7 14 Sy w 1.6 m 13 r 13 r 200 1. 6 tater 500 1. 6 tater 5 row 35 r 5 sp 24	Tractor		7	190	1,330
Tup 10	Trailer		20	40	800
Ine w 1.4 t 16 w 33 way harrow 26 x 7 14 13 13 15 w 1.6 m 13 w 4.0 12 6 12 6 13 15 w 4.0 12 6 15 row 35 row	Pick-up		10	70	700
vay harrow 26 x 7 14 ry w 1.6 m 13 r harrow w 4.0 12 lcaster 500 l. 6 r 3 row 23 tater 5 row 35 r by hand 200 her 5 sp 24	Combine	1.4	16	350	5,600
there s sp	One way harrow	×	14	24	336
caster 500 12 6 12 6 12 6 13 14 15 15 15 15 15 15 15	Rotary	1.6	en 	99	780
caster 500 1. 6 :r 3 row 23 tater 5 row 35 r by hand 200 her 5 sp 24	Drive harrow	0.4-W	12	80	096
tater 3 row 23	Broadcaster		. 0	19	114
tater 5 row 35	Ridger		. 23		069
r by hand 200 her 5 sp . 24	Cultitater		35	35	1,225
her 5 sp . 24	Duster	by hand	200	7.6	096
	Thresher		24	30	720
() 77	Total		440	1,277.6	34,875

Table 3-5 Efficiency of Farm Operation

Notitinery Opc. Considering Constitution			E	(2)	(3) (1) (3)	(7)	(5)	(9)	(7)	1
Ope- Ope- Theoretic Efficiency Capacity Hours Ope- Ope- Capacity Invest Ope-	Machinery				01//2/8/11		(3)×(4) Ope			
(m) lar/he hather 1.2 ind/he het/ha hather 1.2 ind/he het/ha hather 1.6 ind/he het/ha hather 1.6 ind/he het/ha hather 1.6 ind/he hate 1.6 ind/			Ope. Width	Ope. Speed	Theoretic Open Canadity	Efficiency in Field	Capacity	Hours	Ope. Hours	
tary harrow 26" x 7 1.7 7.0 1.19			(E)	lan/hr	ha/hr	7,1 5,7	ru/pu	hr/ha	per days (7 hr) ha/day	
1.6 m 1.6 m 4.0 0.64 80 0.51 1.96 (2.2) 3.6 harrow 4.0 m 5.0 2.00 m 80 1.60 m 0.63 (0.7) 11.2 ascar 1,000 l. 8.0 m 7.0 m 5.60 m 65 m 3.64 m 0.27 (0.3) 25.5 facer 3 row 1.8 m 4.0 m 0.72 m 70 m 0.47 m 2.03 m 2.03 m 3.5 m ator 3 row 1.8 m 4.0 m 0.72 m 70 m 0.50 m 2.00 (2.3) m 3.5 m A fortilizor 4.0 m 0.25 m 60 m 0.48 m 2.0 m 2.0 m 2.0 m A fortilizor 4.0 m 2.0 m 0.8 m 60 m 0.48 m 2.0 m 2.0 m A band (certilizer 0.5 m 2.0 m 0.0 m 0.0 m 0.0 m 0.0 m 0.0 m 0.0 m B sowing 0.5 m 0.0 m	One way harrow	×	1.7	7.0	1.19	80	0.95	1.05 (1.2)	6.7	
barrow 4.0 m 5.0 m 2.00 m Rn 1.60 m 0.63 m 1.60 m 0.63 m 1.50 m 0.72 m 0.55 m 3.64 m 0.72 m 0.55 m 2.03 m 2.55 m izer 3 row 1.8 m 4.0 m 0.72 m 70 m 0.47 m 2.13 m 2.5 m ator 3 row 1.8 m 4.0 m 0.72 m 70 m 0.50 m 2.00 m 2.0 m 2.0 m 2.5 m ator 1.4 m 0.72 m 70 m 0.34 m 2.70 m 2.70 m 2.5 m 2.5 m ator 1.4 m 0.26 m 65 m 0.48 m 2.00 m 2.70 m 2.5 m 2.5 m ator 1.5 m 4.0 m 0.2 m 0.1 m 80 m 0.48 m 2.4 m 2.5 m 1.12 ator 1.5 m 4.0 m 0.2 m 0.1 m 80 m 0.14 m 2.2 m 1.12 2.4 m 1.12 ator 1.2 m 0.1 m 0.1 m 0.1 m 0.1 m	Rotary		1.6	0.4	0.64	80	0.51	1.96 (2.2)	9°¢	
aster 1,000 1. 8.0 7.0 5.60 65 3.64 0.27 (0.3) 25.5 fact 3 row 1.8 4.0 0.72 65 0.47 2.13 (2.4) 3.3 ator 3 row 1.8 4.0 0.72 70 0.50 2.00 (2.3) 3.5 ator 3 row 1.8 4.0 0.72 70 0.50 2.00 (2.3) 3.5 c 1.4 4.0 0.56 65 0.36 2.70 (3.1) 2.5 d fertilizer 4.0 2.0 0.8 60 0.48 2.08 (2.4) 3.5 ator 6.0 0.4 2.0 3.0 3.6 3.6 min 4.0 2.0 1.0 80 0.2 80 0.1 5.6 min 4.0 2.0 0.1 60 0.8 0.0 3.6 1.12 y band (critilizer 0.5 2.0 0.1 60 0.1 60 0.1 </td <td>Drive harrow</td> <td>a 0.4</td> <td>0.4</td> <td>2.0</td> <td>2.00</td> <td>ç</td> <td>1.60</td> <td>0.63 (0.7)</td> <td>11.2</td> <td></td>	Drive harrow	a 0.4	0.4	2.0	2.00	ç	1.60	0.63 (0.7)	11.2	
12cF 3 row 1.8 4.0 0.72 50 0.47 2.13 (2.4) 3.3 3 row 1.8 4.0 0.72 70 0.50 2.00 (2.3) 3.5 3 row 1.8 4.0 0.72 70 0.50 2.00 (2.3) 3.5 4 c	Broadcaster	1,000 1.	8.0	7.0	5.60	6.5	3.64	0.27 (0.3)	25.5	
3 row 1.8 4.0 0.72 70 0.50 2.00 (2.3) 3.5 of the state o	Fortilizor	3 row	1.8	0.4	0.72	65	6.47	2,13 (2,4)	e.	
ator 3 row 1.8 4.0 0.72 70 0.50 2.00 (2.3) 3.5 c 1.4 m 4.0 0.56 65 0.36 2.70 (3.1) 2.5 d fertilizer 4.0 2.0 0.8 0.6 0.48 2.08 (2.4) 2.5 seing ator (G.N.) 5 row 2.0 1.0 80 0.48 2.08 (2.4) 5.6 ny; 4.0 0.2 4.0 0.2 80 0.16 4.25 1.12 y hand fertilizer 0.5 2.0 0.1 60 0.03 12.5 " sowing 0.5 2.0 0.1 60 0.48 2.4	ldger	3 row	œ.	0.4	0.72	20	0.50	2.00 (2.3)	3.5	
c 1.4 m 4.0 m 0.56 m 65 m 0.34 m 2.70 (3.1) 2.5 m d fortilizor ssing 4.0 m 2.0 m 0.8 m 60 m 0.48 m 2.0 m 2.0 m 2.6 m ator (G.N.) 5 row my) 2.0 m 1.0 m 80 m 0.8 m 1.12 m 5.6 m y hand fertilizer my) 4.0 m 0.1 m 60 m 0.16 m 4.25 m 1.12 m " sowing 0.5 m 2.0 m 0.1 m 60 m 0.48 m 2.4 m	Sultivator	3 row	& ~	0.4	0.72	02	0.50	2.00 (2.3)	ဟ "	
# fortilizer 4.0 2.0 0.8 60 0.48 2.08 (2.4) ssing ator (G.N.) 5 zow 2.0 5.0 1.0 80 0.8 1.25 (1.4) y hand fertilizer 0.5 2.0 0.1 80 0.03 12.5 " sowing 0.5 2.0 0.8 60 0.48 2.4	Sombine	1.4 3	7.1	0.4	0.56	8	0.36	2.70 (3.1)	8 hr/day 2.5 2.0	 -
ator (G.N.) 5 row 2.0 5.0 1.0 80 0.8 1.25 (1.4) ny; y hand fertilizer 0.5 2.0 0.1 60 0.03 12.5 " sowing 0.5 2.0 0.1 60 0.48 2.4	addy by hand fortilis topdressing	u o z	7.0	2.0	د د	9	0.48	2.08 (2.4)	8 g 8	
y hand fertilizer 0.5 4.0 0.2 80 0.16 4.25 " sowing 0.5 2.0 0.1 60 0.03 12.5 " 4.0 2.0 0.8 60 0.48 2.4	Jultivator (G.N (Ridging)	,) 5 row	2.0	ν, C•	C . T	e «	& O	1.25 (1.4)	5.6	
" sowing 0.5 2.0 0.1 AO 0.03 12.5	.N. by hand fer	rtilizer	2.0	0-7	0.2	08	0.16	6.25	1.12	
4.0 2.0 0.8 60 0.48	:	sing	5.0	2.0	0.1	80	0.08	12.5		
	Juster		4.0	2.0	0.8	909	0.48	2.4		

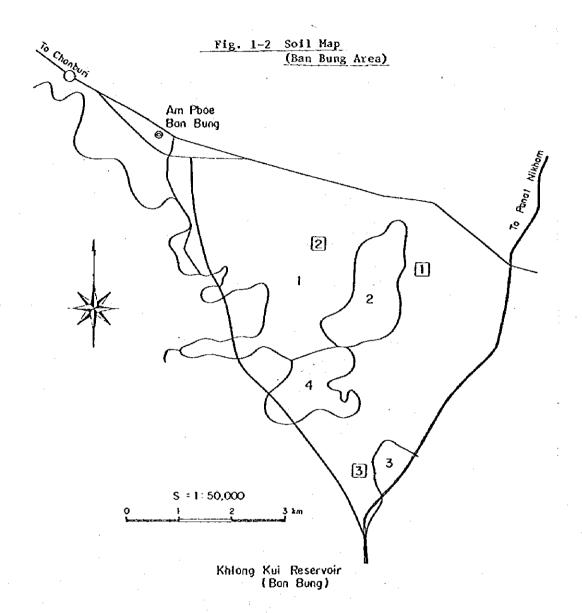
Note: Figure in parenthesis are man-power

Table 3-6 Labour Requirements by Farming Practice (Paddy Wet Season)

Trom	Vork.	of No.	7.000	Liorkin	Corking hour					Honthly Labour	Labour	(1,5/1,0)				
	Season	times	- ACMINGEY	ringhian. ery	. Tan	Jan	No.	1,41	۸٥٢	Ya.	7,113	Jul A	νν	Son	, i	-
Seedbod			9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		,				┢	+-			+	╁	+-)
preparation	Nay-Jun		one way harrow	1.2	7 6 7	•				2.3						
Forcilizing	Jun		Pick-up	2.0	12.0			- -			(3°0)			•		
Management Pulling &	Jub-Jul	71	Distor	10.0	440.0			<u>-</u>			(7.0)	(3.0) 176.8				
hauling seed	J.11.2		Tractor, Trailer Pick-up	3.0	. 83							6.5				
Mursery Teral				18.4	549.8					(2.3)	(10.1)	(6)				
Plowing	May-Jul		Tractor One way Natrow	1.2	1.2											
Puddling	May-Jul		" Drive										<u>-</u> _	- -		
Fereilizing			harrow Tractor Broad-	0.7	0.7							9.0			<u> </u>	
(bosal) Irrigation &	•		caster, etc.	0.5	5.0							4.0				
etc.	Jul-200		By hand		243							30 42			62 30	
Transplanting Veeding	Jul	~	2 C C C C C C C C C C C C C C C C C C C		80											
Herbicide	200	,	Chemical Mistor		¥•							2.4	<u>.</u>		S	
Insecticide Fortilizing (Topdressing)	Aug-Sep	n	By hand, T. Trailer		2.2					·		2: 2:	2.4	1.2		
Harvesting	Mov		Combine Traccor Trailer, Truck	e	6.2										7.8	(6.1)
Harresting	Nov		By hand		120.5										120.5	. v
Bunding	No.v		By hand		30.0										30.0	c
Thrashing	Nov-Dec		Thrasher	2.6	11.7			·						·	(0.0)	(3-7)
Trans portation	Nov-Dec		Pick-up. T. Trailer	4.0	20.0			-			 		<u>-</u>		5,6	
e E				C R.S by hend	\$10.6		· ·		- 	(0.0)	(a.a)	(0.1)	1	- 	(6.1)	3.5
*C*Wi				C.	9.080					·	<u>۔</u> د	7 511	,,,		25.	22

Table 3-7 Labor Requirements by Farming Practice (Paddy Dry Season)


Seedbed Seedbed Dec Sowing Jan Hauagement Jan-Feb Pulling 6	Times	flachthery	- וייים -	1												
t ta			640	Ilan	San	٦ و	, la	Anr	201		-					
ئا بر		T. One way larrow Rotary	3.4	3.4										į.	<u>o</u>	(3.4)
		T. Trailor	2.0	12.0	(2.0)		· 				····					·
Pulling &	<u></u>	Mister	0 * 01	11.4	274.6	(3.0)	-									
hauling Jan-Feb	ą.	T. Trailer	C	83.0	27.72	(2)										
Hursery Total			18.4	540.8	(10)	(5)					-					(3.4)
Plowing Nec-Jan		T. One way harrow	1.2	1.2	(9.0)			-								(9°0)
Harrowing Dec-Jan	e c	T. Rotary	1:1	.:1	(v)			·	•							(S - S
Puddling Jan-Feb		T. Drive harrow	0.7	0.7	င် င	(7.0)	-									
Fortilizing Jan-Peb		T. Broadcaster	5.0	0.5	0.2					-					×.	
Irthating & Jan-May etc. Jan-May Transplanting Jan-Feb Weeding Feb-Apr Herbicide Jan-Feb	<u> </u>	By hand		184 80 160 2.6	10.0	26 55.0 40 1.4	29	09	56		 					
Insectaide Fortilizing	•n			7.2	-	2.2	2.4	2.6								
(Topdressing)		By hand		2.4			2.4									_
lla tvesting		Combine, I. Trailer	1.9	12.2		,			(6.1)							
TOTAL			9.6	451.7	37.7	125.3	102.4	6,1						·		


Table 3-8 Labor Requirements by Farming Practice (Groundauts)

ę ö	1	Machinery	Vorkin	Vorking bour					Honth)	Tyoner.	Honthly Labour (hr/ha					
times		_ †	:Inch1	ĭlan	'lun	Foh	Mar	APF	May	Jun	Juj	Aur	Sep	Dog.	Nov.	J.c
Tractor, One way	sctor, One way		1,2	1.2					<u> </u>						(0.2)	(1.0)
Tractor, Potary	setor, Borary		2.2	2.2						•					0.2	
Tractor Cultivator	actor		8.1	A.	0.6				•					•		(0.2)
T. Trailer By hand	Trailer		n.0	9.9	(n° 0)					· <u>-</u>				-		
By band	band		-	12.5	12.5											
T. Milker	14 dge r		2.3	2.3	(2.2)	(0.1)				·	<u>:</u>	-	•			
T. Cultivator	Gultivator		9.7	4.6	(0.6)	(n.6) (3.7) 0.6 / 3.7	6.0				•••			-		
By hand	hand .			40.0		20.0	20.0									
Duster	th FI		0,	0,7	(2.0)	(25.0)	(13.0)				 .					
T. Ridger	Ridger		2.3	2.3				(2.3)	· 							
By hand	hand	:		n*081				0.06	0.00			 ,		-		
Pick-up			0.4	4.0	·····			62.0	2.0							
	,		58.7	297.5	6.7	28.8	13.3	94.3	92.0		—— - .				7.0	ان در در

Table 3-9 Labor Requirement by Month

Torol		140,748.8	\$10,600	1,803,590	2,454,938.8	306,867		2,291	607*077	742,700	55,338	578,639	72.331	437, 536	
noti									143,130	143,130	17,891	64,769	9,096	25,987	
1,01								296	122,168	123,135	15,392	94,168	11.865	27,257	
10.7								1,310	36,758	38,068	4,759	49,598	۸.200	10,959	
Doc				55,650	55,650	956,9		17	1,073	1,087	136	6,224	778	7,870	
l'ov			42,200	504,680	548,880	68,610						778	97	68,707	
Oct			112,000	296,800	408,800	51,100						•		51,100	
deg		-	123,800	328,070	451,870	56,484								56,484	
Aug			115,600 123,800	306,340 328,070	421,940	52,743								52,743	
Cm,		66,508.8	115,600	306,340	688,668.8	61,056								61,056	
Jun	·	538.8 73,651.2	800.0	2,120	2,778.8 76,571.2	9,571								9,571	
NAV		538.8	0.009	1,590	2,778.8	347		/ -	37,245	37,245	4,656	178,940	22,371	27,371	
Apr									100,035	100,035	12,504	183,414	22,927	35,431	
	Paddy W. S.	Nursery (256 ha) hr	Well Combine (1,000 ha) hr	Without Combine (2,650 ha) hr	Sub Total he	Man/day	Paddy P. S.	Mursery (50 ha) hr	With Combine (975 ha) hr	Sub Total hr	Man/day	Groundhut (1945 ha) hr	tan/day	Total Man/day	

SOIL LEGEND

<u>No.</u>	<u>Series Name</u>	Area (ha)	
}	Ban Bung Series	1,958	Test pit
2	Sattahip Series	214	(1) ~ (3)
3	Hup Kopeng Series	50	(i) (g)
4	Nong Mot Strong Brown Variant	98	
	Total	2,320	

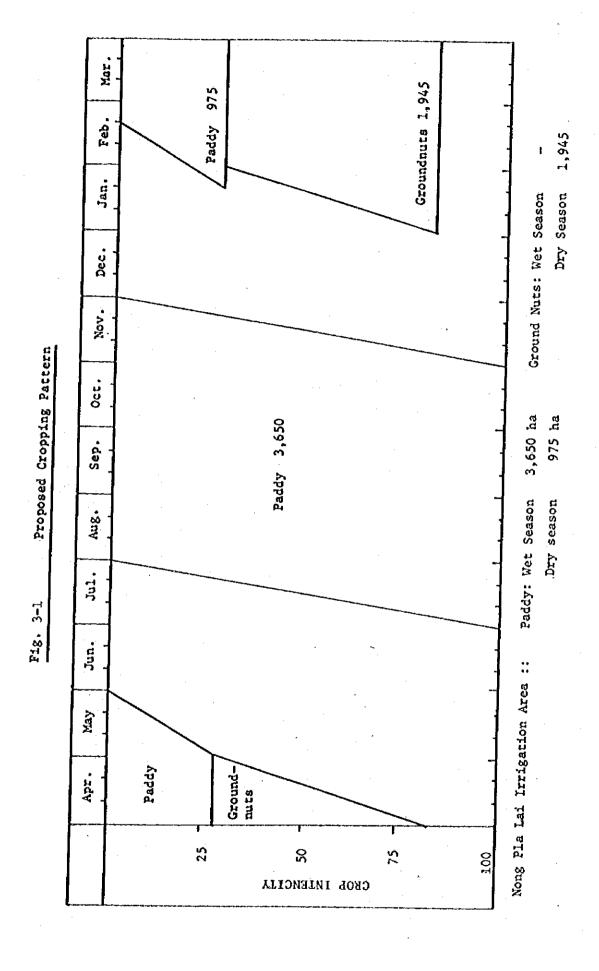
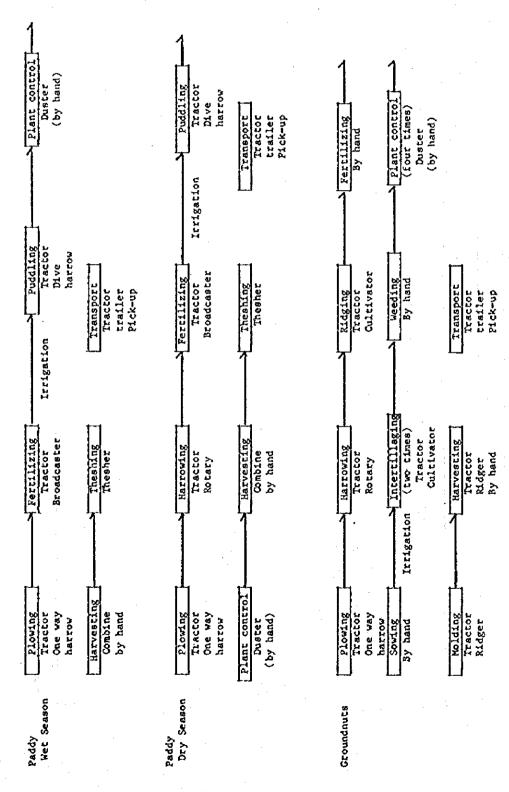



Fig. 3-2 System of Farming Practice by Machinery

Mar. 23 Cultivating Ridging Ridging Fertilizing Feb Harrowing Puddling Jan. Plowing Plan Plowing 4 4 Harrowing Harrowing Plowing 12 R Dec. Harvesting (Combine) No Y F18. 3-3 Schedule for Machinery Operation ن 0 4 Sep Aug. Fertilizing Puddling Jul. Jan. Harrowing Harvesting (Combine) Plowing Plowing May Harve sting ADT. 23 Nursery Crops Nursery 50 ha 975 ha wet s. 3560ha Paddy 1945 ha 256ha field Ground field dry s. Padey Paddy nuts

General Affairs Sec. General Affairs Div. Accounting Planning Meeting Credit Sec. Purchasing Sec. Economic Div. Marketing Sec. Managing Director Board of Director General Meeting Manager Repairing Sec. Agri.Machinery Div. Operation and Manage-ment Sec. Farming Sec. Extension Div. Living Utilization 60

Fig. 3-4 Proposed Organization Chart for Agricultural Cooperative

V. WATER RESOURCES DEVELOPMENT

TABLE OF CONTENTS

OPN	ERAL
WAT	ER DEMAND 5
2.1	METHOD AND CONDITION FOR DEMAND ESTIMATE 5
	2.1.1 Municiplal water
÷	2.1.2 Industrial Water
	2.1.3 Irrigation Water 5
2.2	ESTIMATED FUTURE WATER DEMAND
WAT	ER RESOURECES DEVELOPMENT PLAN I
3.1	GENERAL 5
3.2	PROPOSED DAM DEVELOPMENT
3.3	PRIORITY OF DAM CONSTRUCTION
3.4	WATER DEMAND AND SUPPLY 5
	3.4.1 Phasing of Water Supply
	3.4.2 Water Balance
WAT	R RESOURCES DEVELOPMENT PLAN II
4.1	GENERAL 5
4.2	WATER DEMAND AND SUPPLY
	4.2.1 Water Demand
	4.2.2 Water Supply Plan

LIST OF TABLES

CHAPTER Z	
Table 2-1 2-2	Projection of the Induced Population and Labor Force by Area (1990)
2-3	Projection of the Induced Population and Labor Force by Area (2000)
2-4	
2-5	
2-6	Water Demand for Industrial and Municipal Use
2-7	in the second of
2-8	(Cropping Intensity 180%) Water Demand of Thap Ma Irrigation Area (Cropping Intensity 180%)
CHAPTER 3	
Table 3-1	Water Balance of Supply and Demand
	LIST OF FIGURES
CHAPTER 2	
Fig. 2-1	Industrial & Municipal Water Demand
CHAPTER 3	
Fig. 3-1	Location of Existing and Proposed Reservoir
3-2	Water Balance in Dok Krai Reservoir (First Stage)
3-3	Schematic Diagram of Water Utilization System (Second Stage: 2 Dams)
3-4	Water Balance in Dok Krai Reservoir (Second Stage)
3-5	Water Balance in Nong Pla Lai Reservoir (Second Stage)
3-6	Water Balance in Ban Bung Reservoir
3-7	Schematic Diagram of Water Utilizatin System (Third Stage: 3 Dams)
38	Schematic Diagram of Water Utilization System (Forth Stage: 4 Dams)
3-9	Water Supply and Demand
CHAPTER 4	
Fig. 4-1	Schematic Diagram of Water Utilization System [PLAN II] (2 Dams)

WATER RESOURCERS DEVELOPMENT

1. GENERAL

To supply a sufficient industrial and municipal water to meet the future water demand in Changwats Chon Buri and Rayong in the east coast area, it is required to conduct a comprehensive study including the estimation of the future water demand and the potentiality of water resources development, and the stepwise water resources development scheme is to be proposed and determined in accordance with the incremental demand of water.

Basic concepts for the study to attain and justify the above substance are as follows:

- 1) Target year for the water resources development is to be established for the water demand of the year 2000.
- As for the design drought year, the extraordinary drought year is not to be the design year and the second severest drought year during ten or more years in adopted as the design year.
- 3) Countermeasure for the water resources development is to be considered by dams.
- 4) Concerning the target areas to be supplied with the newly developed water, two plans, namely PLAN I or base plan and the alternative PLAN II are studied. In PLAN I, they are the four development centers of Rayong Area, Sattahip Area, Lean Chabang Area and Ban Bung Area and in PLAN II, they are three development conters of Rayong, Sattahip and Ban Bung Area.
- 5) Agricultural development areas to be taken into consideration are the area in downstream side of the proposed dam, Nong Pia Lai Irrigation Area (3,650 ha) and Thap Ma Irrigation Area (6,400 ha), the required irrigation water is to be supplied by using the proposed reservoir volume.
- 6) Stepwise water resources development scheme is to be proposed to cope with the incremental water demand, and to be secured by water balance by the year 2000.
- In order to cope with the severe drought, such a large reservoir that does not every year reach to the full stage, is proposed.

2. WATER DEMAND

The future water demands is to be estimated from the population, living standard, industrial production activities and irrigation requirement. The purpose of this estimate for water demand is to study the structure of water demand caused by the Government's guideline for the regional development.

2.1 METHOD AND CONDITION FOR DEMAND ESTIMATE

2.1.1 Municipal Water

Macro-scale estimate based on the future population estimate has been adopted and conducted until the target year 2000 year by using the following formula:

 $MWD = [(Pn \times UIp \times Wp) + IP] \times PCC \times 365 \text{ days } \times RC$

here,

MWD = Municipal water annual demand

Pn = Population

Up = Urban population ratio

Wp = Water pervasion

PCC = Per capita consumption

IP = Induced population

RC = Raw water converter (1.1)

Factors in the above formula are as mentioned below:

Population (Pn)

According to the 1976 - 1980 statistics in Changwats Chon Buri and Rayong, the average population growth rate is 2.14% and 2.00% respectively, and the total population is estimated at about 1,300 thousands in 1990 and at about 1,500 thousands in 2000 in Changwats Chon Buri and Rayong (refer to Table 2-1).

Urban Population Ratio (Up), Water Pervasion (Wp) and Per Capita Consumption (PCC)

Parameters of Up, Wp and PCC in the above equation are shown below:

Year	Area	Uр	Wp	PCC /1
		(%)	(%)	(t)
1980	Chon Buri	30.0	45.3	0.345
	Rayong	9.9	58.6	0.220
1990	Chon Buri	35.0	60.0	0.350
	Rayong	30.0	70.0	0.300
2000	Chon Buri	45.0	75.0	0.350
	Rayong	40.0	80.0	0.350

^{/1:} Per capita consumption is estimated from the data of actual consumption compiled by PWWA.

Induced population

Tables 2-2 and 2-3 show the projection of the induced population and labor force by areas in the year 1990 and 2000 respectively.

The induced population consists only of manpower for port and industry sectors where skilled labor is required.

The induced population of port and industry sector are 20 and 80% of the total employed work force. The service sector related to the above two sectors is assumed to rely on local manpower and thus excluded from induced population. Also, the induced population is assumed to settle in planned residential areas where Wp is 100%. Further, the intraregional movement of local work force due to port or industry to be developed has not been accounted for induced population.

2.1.2 Industrial Water

The estimate for water demands of industrial and port use in the project area has been based on the figures released in the Final Report of the Committee /1, except Laem Chabang and Rayong Areas.

Among the figures thus released, the one for soda ash industry in Sattahip is different from what has been published in its feasibility report by JICA. The larger figure of feasibility report has been adopted here for the planning on safer side.

In Laem Chabang and Rayong Areas where no estimate is released, the water demand is estimated by multiplying the area of development by unit water requirement in ton/ha.

The area of development in Rayong industrial complex is estimated in the Final Report as 96 to 160 ha which has no account for aspects of potential as sub-sectoral industries of proposed basic industry and possible airport oriented industry around U-Tapao. With full account of such development potentials, the estimate of required land development would be 320 ha. The Laem Chabang industrial complex of IEAT has an area of 448 ha. Water requirement for these two industrial complexes will be calculated from an average water requirement per unit area of five representative industrial parks of Thailand, which is 90 ton/ha.

^{/1:} Basic Industries Development Committee, Secretariat Office, Thailand.

2.1.3 Irrigation Water

The diversion water requirement will be estimated by the following procedure. Crop consumptive use is the depth of water to meet the water loss through evaportranspiration; it is estimated from the climatic data and crop growing stage for each crop. The percolation is also taken into account for the paddy cropping. The water needed for land preparation is considered. The detailed procedure and results are shown in IX IRRIGATION AND DRAINAGE, while the irrigation water for the existing Ban Khai area and the proposed Thap Ma area is estimated in the manner that these areas have the same unit demand.

2.2 ESTIMATED FUTURE WATER DEMAND

Other municipal

The estimated future water demand by aforementioned four target areas, Rayong, Sattahip, Laem Chabang and Ban Bung Area, are obtained as below mentioned:

Rayong Area

	•		
	1990	1995	2000
Industrial Industry-related	23.1 MCM/year	23.1 MCM/year	27.9 MCM/year
municipal	8.5	8.5	15.5
Other municipal	4.4	6.8	12.6
Irrigation	69.4	128.1	194.7
Sattahip Area			
	1990	1995	2000
Industrial Industry-related	13.7 MCM/year	14.3 MCM/year	17.2 MCM/year
municipal	0.8	0.9	1.5
Other municipal	3.1	4.2	5.3
Laem Chabang Area/1		•	
	1990	1995	2000
Industrial Industry-related	6.6 MCM/year	12.0 MCM/year	16.8 MCM/year
municipal	3.4	6.0	7.0

5.5

2.9

^{/1:} In PLAN II, Laem Chabang area is not supplied with water but the water is transferred to Rayong Municipality.

Ban Bung Area

Municipal water demand is based on the population projection without taking into consideration the induced population by the industrial and urban developments. As for industrial water demand, it is assumed that the current consumption of 1.8 MCM will increase by 10% per annum.

* .	1990	1995	2000
Industrial	2.9 MCM/year	3.8 MCM/year	4.8 MCM/year
Municipal	2.5	3.2	

Breakdown of the above estimation results are as shown in Tables 2-4, 2-5, 2-6, 2-7, 2-8 and Fig.2-1.

3. WATER RESOURECES DEVELOPMENT PLAN I

3.1 GENERAL

The Water Resources Development Plan is studied to meet the industrial and municipal water demand of the target year 2000 in the area to be developed in accordance with the Regional Development Plan formulated by the Government as well as to supply irrigation water to proposed irrigation area.

In this Chapter, the Water Resources Development Plan is studied to supply water to four development centers, that is, Rayong, Sattahip, Laem Chabang and Ban Bung, and to Nong Pla Lai and Thap Ma irrigation areas.

3.2 PROPOSED DAM DEVELOPMENT

Dam development program for the east coast area has already been prepared by RID. It includes, as main dams, Nong Pla Lai, Khlong Yai, Thap Ma, Khlong Luang and Prasae Dams and expansion of Ban Bung Dam (refer to Fig. 3-1). Among above dams, Nong Pla Lai, Thap Ma, Khlong Yai and Ban Bung Dams are nominated to be studied for their high development potentiality and vicinity to the demand area.

Dam	Catchment Area	Storage Capacity
Nong Pla Lai	426 km ²	144.4 MCM
Thap Ma	154	35.0
Khlong Yai	223	45.0
Ban Bung	53	8.0/1

^{/1:} Proposed Capacity (10 MCM) - Existing Capacity (2MCM) = Increased Capacity (8 MCM)

Features of the above selected four dams are as follows:

Nong Pla Lai Dam

With a largest catchment area in the project area, Nong Pla Lai Dam is located in the upstream of Rayong River, the stream that flows down the center of A.M. Rayong. The developed water can be conveyed to A.M. Rayong, a principal development center in the east coast, to Mab Ta Pud with proposed industrial complex, and to Sattahip and Laem Chabang where industrial complex and deep sea port development is planned. The water can also be supplied for municipal and industrial use and for irrigation purpose to the newly developed tract in the middle reaches.

The flooding water in Rayong River could be lessened by flood control function of the dam, which would protect the property assets in the river basin.

Khlong Yai Dam

The proposed dam is located in the upstream tributary of the Rayong River, and supply the water to the same area mentioned in the above Nong Pla Lai Dam.

The flood damage in the mid-low reaches of the river may also be mitigated by the dam.

Thap Ma Dam

The dam is proposed in a tributary of the Rayong River, that meets the main course in its middle reaches. Developed water can be supplied for municipal-industrial use in A.M. Rayong and its vicinity as well as for irrigation.

Ban Bung Dam

The proposed dam is located in the Ban Bung River, the secondary tributary of the Ban Pakon River. The existing Ban Bung Dam will be expanded to 10 MCM from 2 MCM. This developed volume of water is meant to ease the acute shortage of municipal-industrial supply to A.M. Ban Bung Area. The latent demand and future demand to be induced by regional development will also be met.

3.3 PRIORITY OF DAM CONSTRUCTION

For the priority ranking of the proposed dams in the Project area, phasing of water supply for municipal, industrial and irrigation demand was carried out, and water resources development was studied based on the below mentioned aspects,

 To ensure the development capacity of the reservoirs to make the water supply meet the increased future demand in the target areas.

- 2) To develop the water resources stepwise in accordance with the development efficiency.
- To give the priority of dam construction taking the urgency of water demand in the respective area into consideration.

Nong Pla Lai, Kholong Yai and Thap Ma Dam

The most urgent demand is to supply the industrial water to the Nab Ta Pud Development Center by 1984, and Nong Pla Lai Dams which is expected to cope with the future demand with its big reservoir capacity, cannot successfully supply the required amount of water on time, because its construction period requires rather long.

The existing Dok Krai Dam, which was constructed in 1975, is for the irrigation purpose to supply the water to the Ban Khai Area, and it has still leeway reservoir capacity beside the actual irrigation requirement on the ground that water is not taken to the whole irrigation area due to the insufficient secondary and tertialy irrigation canals.

Therefore, Dok Krai Dam can be utilized to meet the urgent municipal and industrial water demand by construction of appropriate water supply system until the year 1986. Nong Pla Lai Dam is for the demand until 1995, and Thap Ma and Khlong Yai Dams both with rather small reservoir capacity are for the long range demand until the target year 2000.

Ban Bung dam

With regard to Ban Bung Area, the only expansion of Ban Bung Dam can meet the required municipal and industrial water demand until the target year 2000.

3.4 WATER DEMAND AND SUPPLY

As the result of the simulation of water demand and supply, the scale of the dams and phasing of water supply are determined. Though the severest drough occured in 1980, it is considered as an extra ordinary drought and the second serverest drought year or the year 1978 is adopted as the design drought year.

3.4.1 Phasing of Water Supply

Detailed stepwise water resources development scheme for water supply is as follows:

First Stage

According to the industrial development schedule, the Natural Gas Separation plant in Mab Ta Pud, Rayong will come into operation in 1984 and the water demand for this plant will take place, but the proposed dams can not be completed up to the year because of longer construction period.

In place of the proposed dams, utilization of surplus water of existing Dok Krai Dam is proposed. Dok Krai Dam was constructed in 1975 for the purpose of irrigation water supply to Ban Khai Irrigation Area (4,800 ha) located in the middle reaches of the Rayong River. As the irrigation systems are not fully completed yet, there exists surplus water of 22.8 MCM/year at Dok Krai Dam. Through the proposed water transmission system, this surplus water can be conveyed to Mab Ta Pud and meet the water demand up to 1986. (Refer to Fig. 3-2

Second Stage

1) Completion of Nong Pla Lai

Nong Pla Lai Dam will be completed by year 1986 with storaged capacity of 144.4 MCM taking physical and economical conditions into considerations.

After completion of Nong Pla Lai Dam, Dok Krai Dam is utilized fully to meet to industrial and municipal water demand in Rayong, Sattahip and Laem Chabang area.

Nong Pla Lai Dam is utilized to ensure the vested water right of Ban Khai Irrigation Area which is transferred from Dok Krai Dam to Nong Pla Lai and meet the irrigation demand in proposed Nong Pla Lai Irrigation Area.

As the result of the simulation of dam operation, Dok Krai Dam can meet the water demand of 80 MCM/year in following areas and Nong Pla Lai Dam can supply irrigatin demand of 69.4 MCM/year in Nong Pla Lai Irrigation Area in case of cropping intensity 100% for paddy in wet season and 80% for combination of paddy and grandnuts in dry season.

Location	Water Demand at 1995
	MCM/year
Rayong Municipality	8.4
Mab Ta Pud	30.0
Sattahip	19.2
Laem Chabang	22.2
Nong Pla Lai Irrigation	Area 69.4

The schematic diagram of water utilization system on the second stage and water balance in Dok Krai Dam and Nong Pla Lai Dam are shown in Fig. 3-3, 3-4 and 3-5.

2) Completion of Ban Bung Dam

In order to save the Ban Bung area from seriously chronic water shortage and to meet the increasing industrial-municipal water demand at target year of 2000, the expansion of existing Ban Bung Dam is completed with storage capacity of 12.5 MCM by 1986.

Based on the simultation of dam operation, proposed Ban Bung Dam can meet the industrial-municipal water demand at year 2000 including vested right water.

Industry and Municipality including vested right water

9.0 MCM/year

Vested right of irrigation water

0.8 MCM/year

Water Balance in Ban Bung Reservoir is shown in Fig. 3-6.

Third Stage

In order to meet the increase of water demand after 1995, construction of Khlong Yai Dam is proposed in 1995 with storage capacity of 45 MCM.

Khlong Yai Dam can meet the industrial-municipal water demand of 22.2 MCM/year which is expected to occur in the period from 1995 to 2000 in Rayong and Sattahip area.

As for the water demand in Laem Chabang area, the volume of 22.2 MCM/year which is the water demand in 1995, only can be supplied because of limited water transmission capacity.

Simultaneously with the supply to industry and municipality, Khlong Yai Dam can meet the irrigation water demand of 58.7 MCM/year in Thap Ma Irrigation Area of 3,000 ha.

Location Water Demand

Rayong Municipality	22.2 MCM/year (Demand in 2000)
Hab Ta Pud	33.8 MCM/year (- ditto -)
Sattahip Area	24.0 MCM/year (- ditto -)
Laem Chabang Area	22.2 MCM/year (Demand in 1995)
Nong Pla Lai Irrigation	
Area (3,650 ha)	69.4 MCM/year
Thap Ma Irrigation	•
Area (3,000 ha)	58.7 MCM/year

Schematic Diagram of Water Utilization System is shown in Fig. 3-7.

Fourth Stage

Thap Ma dam will be completed by 1998, in order to meet the irrigation water demand increasing in Thap Ma Irrigation Area. Utilizing developed water from Thap Ma Reservoir, Thap Ma Irrigation Area can be expanded to 6,400 ha from 3,000 ha in case of cropping intensity 100% for paddy in wet season and 80% for combination of paddy and grandnuts in dry season.

Schematic Diagram of Water Utilization System is shown in Fig. 3-8.

3.4.2 Water Balance

The balance calculated from estimated water demand and supply is tabulated in Table 3-1 and Fig. 3-9. It is apparent from the table that 17.3 20 MCM/year of shortage would occur in 1985 for the total area of Rayong, Sattahip and Laem Chabang. It would be difficult to expedite the completion of Nong Pla Lai and Ban Bung Dams because they require long construction periods. The delay, on the other hand, of the operation at start of these two dams would cause shortage of industrial and municipal water in 1986 by about 26.5 MCM/year.

After the year 1987 until the target year 2000, required water demand can be satisfactorily supplied.

The result of water balance calculation shows the severest drought will occur in the year 1979 in Nong Pla Lai dam, but this drought year is considered as the extraordinary one and not taken as the design year. The adopted design year is the year 1978 or second severest drought year.

4. WATER RESOURCES DEVELOPMENT PLAN II

4.1 GENERAL

The formulated Nong Pla Lai Sub-project consists of the Nong Pla Lai Dam, Water Transmission System comprising three routes to Mab Ta Pud (Rayong Area), Sattahip and Laem Chabang and Nong Pla Lai Irrigation System.

In the course of study, however, supply system to Laem Chabang area is likely to be excluded from the Sub-project since the cost of conveyence is very high and alternative water source can be found in the vicinity of Laem Chabang area.

The present project formulation in PLAN II has been carried out excluding the water supply to Laem Chabang and contains specifically Nong Pla Lai Dam, water transmission routes to Mab Ta Pud (Rayong Area) and Sattahip, and Nong Pla Lai Irrigation Area. The target year is set to 2000.

4.2 WATER DEMAND AND SUPPLY

4.2.1 Water Demand

Industrial and Municipal

Demand for industrial-municipal water in the two supply areas of Rayong and Sattahip in the year 2000 has been estimated on the basis of the foregoing study as shown below.

unit: MCM/year

Rayong Area

	Rayong Municipality	Mab Ta Pud	Sattahip
IndustryIndustry-related	6.4	21.5	17.2
municipality - Other municipality	3.2 12.6	12.3	1.5 5.3
Total	22.2	33.8	24.0

The increase of water demand in Rayong and Sattahip areas from 1996 to 2000 is equivalent to Laem Chabang's demand in 1995.

Irrigation

The irrigation water demand in the Nong Pla Lai irrigation area in the size of 3,650 ha is estimated at 69.4 MCM/year when the croppping intensity is 100% in wet season and 80% in dry season. Cropping pattern and other conditions of production are assumed to be the same as discussed in the PLAN I.

4.2.2 Water Supply Plan

The water supply plan in the areas are broadly divided into two stages utilizing the surplus volume of the existing Dok Krai Reservoir which is exploited for Ban Khai Irrigation System and by constructing the proposed Nong Pla Lai Dam. The two stages are summarized below.

First stage

The surplus water from Dok Krai Dam with storage capacity of 49 MCM will be utilized to meet the water demand in Mab Ta Pud through the water transmission system until 1986, when the construction of Nong Pla Lai Dam is completed. The water demand in 1986 is estimated at 22.8 MCM/year.

Second stage

The Nong Pla Lai Dam will be developed by 1986 with storage capacity of 144.4 MCM taking physical and economical conditions into consideration.

After completion of Nong Pla Lai Dam, the Dok Krai Dam will be fully utilized to meet the industrial-municipal water demand in Rayong and Sattahip areas and the function of water supply to Ban Khai irrigation area is transferred from Dok Krai Dam to Nong Pla Lai Dam.

Nong Pla Lai Dam is utilized to meet to vested right of water in Ban Khai irrigation area and new demand of 69.4 MCM/year to proposed Nong Pla Lai Irrigation Area of 3,650 ha.

Schematic Diagram of Water Utilization System is shown in Fig. 4-1.

Table 2-1 Future Population Based on Current Trend

Unit: Person

	Future Population			Population Increase	
Changwat Rayong	1980	1990	2000	1980- 1990	1980- 2000
Rayong Municipality 1/	37,305	56,629	79,773	19,324	42,468
A. Muang 1/	83,693	90,474	93,065	6,781	9,372
A. Klaeng	100,484	127,383	154,338	26,899	53,854
A. Ban Khai	71,190	77,522	83,524	6,332	12,334
K.A. Pluak Daeng	25,791	30,804	35,676	5,013	9,885
K.A. Ban Chang $\underline{1}$	27,594	28,264	29,047	670	1,453
K.A. Wang Chang	12,839	21,414	29,834	8,575	16,995
Total	358,896	432,490	505,257	73,594	146,361

Unit: Person

				onit: reison	
	Fu	ture Popi	ulation	Population Increa	
Changwat Chon Buri	1980	1990	2000	1980- 1980	1980- 2000
Chon Buri Municipality	50,106	52,897	55,557	2,791	5,451
Panat Nikhon M.	13.411	14,408	15,392	997	1,981
Tambon Si Racha M. 1/	21,632	32,611	43,339	10,979	21,707
A. Muang Chon Buri	119,281	150,115	180,290	30,834	61,009
A. Panat Nikhon	110,203	126,154	142,024	15,951	31,821
A. Pan Thong	38,289	42,069	45,957	3,780	7,668
A. Ban Bung 2/	78,262	83,894	89,555	5,632	11,293
A. Si Racha <u>1</u> /	84,516	100,426	116,795	15,910	32,279
A. Ban La Mung	43,789	45,824	47,765	2,035	3,976
A. Sattahip	85,112	98,377	111,528	13,265	26,416
K.A. Ko Si Chang	2,955	3,553	4,157	598	1,202
K.A. Nong Yai	17,386	20,486	23,491	3,100	6,105
K.A. Bo Thong	24,779	36,579	48,372	11,800	23,593
Muang Pattaya	34,706	59,380	84,173	24,674	49,467
Total	724,427	866,773	1,008,395	142,346	283,968

1/: Nong Pla Lai Sub-Project

2/: Ban Bung Sub-Project

-
9
-
•
\ \ \ \ \ \ \
<
- 3
Ċ
}
,
μ
1
Ċ
ع,
q
٦-
70
Ç
•
_
ò
127101
1
α
-
ีกี
ົດ
ρŢ
70
i O
u Sed
duced
nduced
Induced
e Induced
he Induced
the I
ection of the I
ection of the I
ection of the I
rojection of the I
rojection of the I
rojection of the I
Projection of the I
Projection of the I
Projection of the I
Projection of the I
Projection of the I
Projection of the I
Projection of the I
Projection of the I
Projection of the I
Projection of the I
rojection of the I

			3		:		- 1 - C 1	100 100
Area	Projects	direct	indirect	induced	local	1980-1990 net natural growth 4/	expected work force (40%)	L
Sattabip	Soda Ash 1/	800	004	079	560	13,265		
	Sea port 2/	5,280	1,186	1,056	5,410	335		
	SUB TOTAL	6,080	1,586	1,696	5,970	13,600	5,440 - 6,800	6,784
Taen Charles	Sea port /3	1]	1	1	10,979		
Citabang	Industrial Estate 2/	7,500	3,750	000.9	5,250	15,910		
	SUB TOTAL	7,500	3,750	6,000	5,250	26,889	10,756 - 13,445	24,000
Rayong	Sponge Iron 1/					335		
	Natural Gas Separation					19,324		
	Petro Chemical Chemical Fert.	6,464	4,732	7,571	6,625	6,781		
	Industrial Estate	12,500	6,250	10,000	8,750			
	SUB TOTAL	21,964	10,982	10,571	15,375	32,772	13,109 - 16,386	70,284

Note:

1/ 100% operation : 2/ 50% operation : 3/ 0%
4/ Sattahip .. A. Sattahip + 1/2 K.A. Ban Chang, Laem Chabang .. Si Racha M. + A. Si Racha
Rayong-Sattahip.. 1/2 K.A. Ban Chang + Rayong M. + A. Muang + A. Ban Khai
Syong-Sattahip.. 1/2 K.A. Ban Chang + Rayong M. + A. Muang + A. Ban Khai
5/ The long term plan of Chonburi states that the labor force is 46% of the population and employment
is 16% of the total population. Population & Housing Census-1970 indicates that employment population
for Chonburi and Rayong are 41.9%, 43.6% of the population respectively.

Projection of the Induced Population and Labor Force by Area (2000)

_								בשלמס	Unit: Person	- 1
L	Area	Projects	direct	indirect	induced	local	1980-2000 net natural growth	expected work force	net induced population	
	Sattahip	Soda Ash	800	007	079	560	26,416			
		Sea port	10,560	2,371	2,112	10,819	726			
1		SUB TOTAL	11,360	2,771	2,752	11,379	27,142	10,857 - 13,571	11,008	
	Laem	Sea port /1	2,112	727	422	2,164	21,707			
	Chabang	Industrial Estate	15.000	7,500	12,000	10,500	32,279			
L		SUB TOTAL	17,112	7,974	12,422	12,664	53,986	21,594 - 26,993	49,688	
	Rayong	Sponge Iron					726			
		Natural Gas Separation					42,468			
		Petro Chemical	797,6	4,732	7,571	6,625	9.372			
		Chemical Fert.					12,334			
		Industrial Estate	25,000	12,500	20,000	17,500				
		SUB TOTAL	34,464	17,232	27,571	24,125	64,910	25,964 - 32,455	110,284	-3

/1.20% operation

Table 2-4 Water Demand for Industrial Use (Nong Pla Lai Sub-Project)

											Und	Unit: MCK/Year	ar
— -	Каус	Rayong Area		Satta	Sattaliip Area		Sub-	Sub-total	Caem C	Laem Chabang Area	rea		Total
Year	Planc	Demand	Increase Demand	Flant	Demand	Increase Demand	Demand	Increase Demand	Plant	Demand	Increase Demand	Demand	Increase
1984	Gas Separation Petrochemical	7.8	7.8				7.8	7.8				7.8	7.8
1985		1.0	8.8				1.0	8.8				1.0	8,8
	Chemical Fertilizer	9.5	18.3	Soda Ash	10.2	10.2	19.7	28.5	Induscrial Estate	3.3	n. n	23.0	31.8
1986	Industrial Estate	2.4	20.7	Sattahip Port	2.1	12.3	4.5	33.0				4.5	36.3
1990	Industrial Estate	2.4	23.j	Sattahip Port	1.4	13.7	3.8	36.8	Industrial	3.3	6.6	7.1	43.4
1995									Industrial	3.6	10.2	3.6	47.0
				Sattahip Port	9.0	14.3	9.0	37.4	Laem Chabang Port	1.8	12.0	2.4	7.67
1996				Sattality Port	1.2	15.5	1.2	38.6	Industrial Estate	3.0	15.0	4.2	53.6
2000	Industrial Estate	8.4	27.9	Sattahip Aren	1.7	17.2	6.5	45.1	Laem Chabang Port	8.1	16.8	8.3	61.9

Table 2-5 Water Demand for Industrial and Municipal Use (Nong Pla Lai Sub-Project)

	<u> </u>		Ta		~~					~							-2	~					
/Year	-	¥	2.1 1980	2.9 1981	3.7 1982		13.2 1984	40.1 1985	49.3 1986	50.2 1987	51.0 1988	51.8 1989	66.5 1990	67.5 1991	65.3 1992	69.4 1993	70.3 1994	80.0 1995	87.2 1996	88.8 1997	90.6 1998	92.2 2999	109.3 2000
Unic: MCV/Year		Total				· *	2	- 64	67	<u>ې</u>	- 3		\$	62	65	69	5	⊗	87	e0 e0		35	109
Unit		Other	2.1	2,9	3.7	4.5	5.4	6.3	7.0	7.9	8.7	9.5	10.4	11.4	12.2	13.3	7 7	15.2	16.9	13.5	20,3	21.9	23.4
	Total	Industry -related municipal		•		,		2.0	0.9	6.0	6.0	6.0	12.7	12.7	12.7	12.7	12.7	15.4	16.7	16.7	16.7	16.7	24.0
		Industry	-	1	,	t	7.8	.31.8	36.3	36.3.	36.3	36.3	7.67	7.67	43.4	7.67	4.5.4	7.67	\$3.6	53.6	53.6	53.6	67.9
		Total	0.3	0.5	6.3	1.0		9.9	8.9	7.1	7.4	7.6	12.9	13,2	13.4	13.7	13.9	22.2	26.5	26.7	27.0	27.2	29.3
:	Loem Chabang	Ocher	0.3	٠ <u>٠</u>		0.1	7.3	7.6	1.8	4.	2.4	2.6	2.9	3.2	3.4	3.7	3.9	4.2	4.5	4.7	5.0	5.2	5.5
	2 mags	Industry -related municipal	•	,	٠,	,	•	1.7	۲.,	17	1.7	1.7	3.4	3.4	3.4	7.7	3.4	0.9	7.0	7.0	7.0	7.0	7.0
		Industry			,	•	 i	 	3.3	3.3	3.3	3.3	3.9	9.6	9.9	6.6	9.9	12.0	15.0	15.0	15.0	15.0	16.8
		Total	1.8	2.4	3.0	3.5	11.9	37.5	42.5	1.3.1	43.6	44.2	53.6	2, 3	34.9	55.7	56.4	57.8	2.09	62.1	63.6	65.0	80.0
	Sub-Total	Other Municipal	1.8	2.6	0.0	3.5	4:4	4.7	5.2	5.8	6.3	6.9	7.5	8.2	80.	9.6	10.3	11.0	12.4	13.€	15.3	16.7	17.9
	Sub-	Industry *related Bunicipal		1	•			e.0	6.3	6.4	4.3	4.3	9.3	9.3	6,3	9.3	9.3	7.6	6.7	7.7	9.7	9.7	17.0
		Induscry		,	,	,	7.8	28.5	33.0	33.0	33.0	03.0	36.8	36.8	36.8	36.8	36.8	37.4	38.6	38.6	38.6	38.6	45.1
		Total	0.3	9.0	6.0	1.1	1.6	12.2	6 7	15.2	15.4	13.7	17.6	17.8	18.0	18.3	8.	19.4	21.1	21.3	21.6	21.8	24.0
	Succellisp	Ochec municipal	0.0	9.0	0.0	7.7	4.4	1.7	2.0	2.3	2.5	2.8	3.2	3.3	3,5	3.8	4.0	4.2	7.7	9.,	6.4	5.1	5.3
	SHEE	Industry -related municipal		.1			ı	0.0	9.0	3.0	0.6	9.0	9.0	9.0	9.0	8.0	8.0	6.0	1.2	3.2	1.2	1.2	1.5
		Total Industry	,	'	•	•	,	10.2	32.3	12.3	12.3	12.3	13.7	13.7	13.7.	13.7	13.7	14.3	15.5	15.5	15.5	15.5	17.2
		Total	3,5	æ.	2.1	2.4	0	21.3	27.6	27.9	28.2	28.5	36.0	36.5	36.9	37.4	37.9	38.4	39.6	8.07	75.0	43.2	56.0
	Rayong	Other	1.5	3.8	7.7	2.6	2.7	0.0	3.2	3.5	80	4.1	7.7	6.4	5.3	8, 38	6.3	6.8	0,8	9.5	10.4	11.6	12.6
		Industry -reloted municipal	•	1	•	•	,	•	3.7	2.7	7.	3.7	8.5	8.5	\$ 5	8.5	8.5	8.5	8,5	*,	8.5	Š,	15.5
		Industry	•	•	•	•	7.8	18.3	20.7	20.7	20.7	20.7	23.1	23.1	23.1	23.1	23.1	23.1	23.1	13.1	23.1	23.1	27.9
	^	Year	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1398	1999	2000

Note: Rayong Includen Rayong Municipality, Ampline Munng Rayong, King Ampline Ban Chang, Ampline Dan Khai, Sactulify includes Amphoe Sattably, Laem Chabang includes Amphoe SI Racha, Si Racha Municipality.

Table 2-6 Water Demand for Industrial and
Municipal Use (Ban Bung Sub-Project)

Unit: MCM

Year	Industry	Municipality	Total
1980	1.8	1.3	3.1
1981	1.8	1.4	3.2
1982	1.8	1.5	3.3
1983	1.8	1.6	3.4
1984	1.8	1.7	3.5
1985	1.8	1.8	3.6
1986	1.8	2.0	3.8
1987	2.0	2.1	4.1
1988	2.3	2.3	4.6
1989	2.6	2.4	5.0
1990	2.9	2.5	5.4
1991	3.0	2.6	5.6
1992	3.2	2.7	5.9
1993	3.4	2.9	6.3
1994	3.6	3.0	6.6
1995	3.8	3.2	7.0
1996	4.0	3.4	7.4
1997	4.2	3.6	7.8
1998	4.4	3.8	8.2
1999	4.6	4.0	8.6
2000	4.8	4.2	9.0

Table 2-7 Water Demand of Nong Pla Lai Irrigation Area (Cropping Intensity 180%)

															
ANNUAL		71.14	53.59	60.93	72.58	73.34	67.33	55.80	62.09	70.61	61.43	69.41	78.69	66.88	
MAR		10.9	6.98	8.79	9.67	6.77	8.77	7.31	8.25	9.68	10.05	99.6	7.13	8.56	
FEB		7.16	2.30	8.15	8.84		7.42	78.8	6.80	48.8	4.70	97.9	8.84	8.04	
JAN		0.67	1.45	4.47	4.47	3.47	4.47	1.31	4.47	3.45	1.27	4.47	4.47	4.47	
DEC		0.00	00.0	00.00	0.00	0.00	0.00	0.00	00.00	0.00	00.00	0.00	00.0	00.00	
NOV		6.63	5.55	5.21	7.40	4.86	5.10	5.87	6.35	6.41	7.14	6.91	7.40	6.10	
OCT		87.6	5.72	9.48	96.9	10.46	7.26	0.00	3.53	5.19	6.35	9.54	10.12	6.82	
SEP		9.38	5.92	7.19	5.57	3.21	4.72	4.19	6.37	7.21	7.25	6.44	6.26	8.37	
AUG		11.59	8.56	8.67	8.26	14.77	10.22	67.6	10.02	6.47	12.70	11.29	14.97	8.12	
JUL		12.35	10.33	12.89	14.92	15.83	12.58	14.56	12.80	17.24	5.23	8.21	12.84	10.16	
אטנ		00.00	0.51	0.27	0.56	0.29	0.29	97.0	0.43	0.61	0.49	0.28	0.25	0.28	
MAY		1.13	0.88	0.95	1.01	1.93	0.74	0.91	06.0	0.98	1.18	1.21	1.84	1.76	
APR		6.68	5.33	2.81	4.87	2.85	5.72	2.83	5.10	4.50	5.00	7.90	4.53	4.20	
YEAR		1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	
	APR MAY JUN JUL AUG SEP OCT NOV DEC JAN FEB MAR	APR MAY JUN JUL AUG SEP OCT NOV DEC JAN FEB MAR	APR MAY JUL AUG SEP OCT NOV DEC JAN FEB MAR 6.68 1.13 0.00 12.35 11.59 9.38 9.48 6.63 0.00 0.67 7.16 6.01	APR MAY JUN JUL AUG SEP OCT NOV DEC JAN FEB MAR 6.68 1.13 0.00 12.35 11.59 9.38 9.48 6.63 0.00 0.67 7.16 6.01 5.33 0.88 0.51 10.33 8.56 5.92 5.72 5.55 0.00 1.45 2.30 6.98	APR MAY JUN JUL AUG SEP OCT NOV DEC JAN FEB MAR 6.68 1.13 0.00 12.35 11.59 9.38 9.48 6.63 0.00 0.67 7.16 6.01 5.33 0.88 0.51 10.33 8.56 5.92 5.72 5.55 0.00 1.45 2.30 6.98 2.81 0.95 0.27 12.89 8.67 7.19 9.48 5.21 0.00 4.47 8.15 8.79	APR MAY JUN JUL AUG SEP OCT NOV DEC JAN FEB MAR 6.68 1.13 0.00 12.35 11.59 9.38 9.48 6.63 0.00 0.67 7.16 6.01 5.33 0.88 0.51 10.33 8.56 5.92 5.72 5.55 0.00 1.45 2.30 6.98 2.81 0.95 0.27 12.89 8.67 7.19 9.48 5.21 0.00 4.47 8.15 8.79 4.87 1.01 0.56 14.92 8.26 5.57 6.96 7.40 0.00 4.47 8.84 9.67	APR MAY JUN JUL AUG SEP OCT NOV DEC JAN FEB MAR 6.68 1.13 0.00 12.35 11.59 9.38 9.48 6.63 0.00 0.67 7.16 6.01 5.33 0.88 0.51 10.33 8.56 5.92 5.72 5.55 0.00 1.45 2.30 6.98 2.81 0.95 0.27 12.89 8.67 7.19 9.48 5.21 0.00 4.47 8.15 8.79 4.87 1.01 0.56 14.92 8.26 5.57 6.96 7.40 0.00 4.47 8.84 9.67 2.85 1.93 0.29 15.83 14.77 3.21 10.46 4.86 0.00 3.47 8.84 6.77	APR MAY JUN JUL AUG SEP OCT NOV DEC JAN FEB MAR 6.68 1.13 0.00 12.35 11.59 9.38 9.48 6.63 0.00 0.67 7.16 6.01 5.33 0.88 0.51 10.33 8.56 5.92 5.72 5.55 0.00 1.45 2.30 6.98 2.81 0.95 0.27 12.89 8.67 7.19 9.48 5.21 0.00 4.47 8.15 8.79 4.87 1.01 0.56 14.92 8.26 5.57 6.96 7.40 0.00 4.47 8.84 9.67 2.85 1.93 0.29 15.83 14.77 3.21 10.46 4.86 0.00 4.47 8.84 6.77 5.72 0.74 0.00 4.47 8.84 9.67	APR MAX JUN JUL AUG SEP OCT NOV DEC JAN FEB MAR 6.68 1.13 0.00 12.35 11.59 9.38 9.48 6.63 0.00 0.67 7.16 6.01 5.33 0.88 0.51 10.33 8.56 5.92 5.72 5.55 0.00 1.45 2.30 6.98 2.81 0.95 0.27 12.89 8.67 7.19 9.48 5.21 0.00 4.47 8.15 8.79 4.87 1.01 0.56 14.92 8.26 5.57 6.96 7.40 0.00 4.47 8.84 9.67 2.85 1.01 0.56 14.92 8.26 5.57 6.96 7.40 0.00 4.47 8.84 6.77 2.85 1.93 0.29 15.83 10.22 4.72 7.26 5.10 0.00 4.47 8.84 6.77 2.83 0.91 0.	APR MAY JUN JUL AUG SEP OCT NOV DEC JAN FEB MAR 6-68 1.13 0.00 12.35 11.59 9.38 9.48 6.63 0.00 0.67 7.16 6.01 5.33 0.88 0.51 10.33 8.56 5.92 5.72 5.55 0.00 1.45 2.30 6.98 2.81 0.95 0.27 12.89 8.67 7.19 9.48 5.21 0.00 4.47 8.15 8.79 4.87 1.01 0.56 14.92 8.26 5.57 6.96 7.40 0.00 4.47 8.84 9.67 2.85 1.93 0.29 15.83 14.77 3.21 10.46 4.86 0.00 4.47 8.84 6.77 5.72 0.74 0.00 4.47 8.84 6.77 5.72 0.74 4.19 0.00 4.47 8.84 6.77 5.72<	APR MAY JUM JUL AUG SEP OCT NOV DEC JAN FEB MAR 6-68 1.13 0.00 12.35 11.59 9.38 9.48 6.63 0.00 0.67 7.16 6.01 5.33 0.88 0.51 10.33 8.56 5.92 5.72 5.55 0.00 1.45 2.30 6.98 2.81 0.95 0.27 12.89 8.67 7.19 9.48 5.21 0.00 4.47 8.15 8.79 4.87 1.01 0.56 14.92 8.26 5.57 6.96 7.40 0.00 4.47 8.84 9.67 2.85 1.93 0.29 15.83 14.77 3.21 10.46 4.86 0.00 4.47 8.84 6.77 5.72 0.74 0.29 15.83 14.77 3.21 10.46 4.86 0.00 4.47 8.84 6.77 5.10 0.90 <td< td=""><td>6.68 1.13 0.00 12.35 11.59 9.38 9.48 6.63 0.00 0.67 7.16 6.01 5.33 0.88 0.51 10.33 8.56 5.92 5.72 5.55 0.00 1.45 2.30 6.98 2.81 0.95 0.27 12.89 8.67 7.19 9.48 5.21 0.00 4.47 8.15 8.79 4.87 1.01 0.56 14.92 8.26 5.57 6.96 7.40 0.00 4.47 8.84 6.77 2.85 1.93 0.29 15.83 14.77 3.21 10.46 4.86 0.00 3.47 8.84 6.77 5.72 0.74 0.29 12.58 10.22 4.72 7.26 5.10 0.00 4.47 8.84 6.77 5.72 0.74 0.29 12.58 10.22 4.72 7.26 5.10 0.00 4.47 8.84 6.77 5.10 0.90</td></td<> <td>6-68 1-13 0.00 12.35 11.59 9.38 9.48 6.63 0.00 0.67 7.16 6.01 5.33 0.88 0.51 10.33 8.56 5.92 5.72 5.55 0.00 1.45 2.30 6.98 2.81 0.95 0.27 12.89 8.67 7.19 9.48 5.21 0.00 4.47 8.15 8.79 4.87 1.01 0.56 14.92 8.26 5.57 6.96 7.40 0.00 4.47 8.84 9.67 4.87 1.01 0.56 14.92 8.26 5.57 6.96 7.40 0.00 4.47 8.84 9.67 2.85 1.03 0.29 15.83 14.77 3.21 10.46 4.86 0.00 4.47 8.84 6.77 2.83 0.91 0.46 14.56 9.49 4.19 0.00 4.47 6.89 8.25 5.10 0.90 0.44 0.64</td> <td>6.68 1.13 0.00 12.35 11.59 9.38 9.48 6.63 0.00 0.67 7.16 6.01 5.33 0.88 0.51 10.33 8.56 5.92 5.72 5.55 0.00 1.45 2.30 6.98 2.81 0.95 0.27 12.89 8.67 7.19 9.48 5.21 0.00 4.47 8.15 8.79 4.87 1.01 0.56 14.92 8.26 5.57 6.96 7.40 0.00 4.47 8.15 8.79 4.87 1.01 0.56 14.92 8.26 5.57 6.96 7.40 0.00 4.47 8.84 9.67 2.83 1.93 0.29 15.83 14.77 3.21 10.46 4.86 0.00 4.47 8.84 9.67 5.72 0.74 0.29 15.83 14.77 3.21 10.46 4.86 0.00 4.47 8.84 9.67 5.10 0.90<td>6-68 1.13 0.00 12.35 11.59 9.38 9.48 6.63 0.00 1.45 2.30 6.98 5.33 0.88 0.51 10.33 8.56 5.92 5.72 5.55 0.00 1.45 2.30 6.98 2.81 0.95 0.27 12.89 8.67 7.19 9.48 5.21 0.00 4.47 8.15 8.79 4.87 1.01 0.56 14.92 8.26 5.57 6.96 7.40 0.00 4.47 8.15 8.79 4.87 1.01 0.56 14.92 8.26 5.57 6.96 7.40 0.00 4.47 8.15 8.67 2.85 1.93 0.29 15.83 14.77 3.21 10.46 4.86 0.00 4.47 8.84 6.77 5.72 0.74 0.29 15.83 14.77 3.21 10.46 4.86 0.00 4.47 8.84 6.77 5.73 0.74</td></td>	6.68 1.13 0.00 12.35 11.59 9.38 9.48 6.63 0.00 0.67 7.16 6.01 5.33 0.88 0.51 10.33 8.56 5.92 5.72 5.55 0.00 1.45 2.30 6.98 2.81 0.95 0.27 12.89 8.67 7.19 9.48 5.21 0.00 4.47 8.15 8.79 4.87 1.01 0.56 14.92 8.26 5.57 6.96 7.40 0.00 4.47 8.84 6.77 2.85 1.93 0.29 15.83 14.77 3.21 10.46 4.86 0.00 3.47 8.84 6.77 5.72 0.74 0.29 12.58 10.22 4.72 7.26 5.10 0.00 4.47 8.84 6.77 5.72 0.74 0.29 12.58 10.22 4.72 7.26 5.10 0.00 4.47 8.84 6.77 5.10 0.90	6-68 1-13 0.00 12.35 11.59 9.38 9.48 6.63 0.00 0.67 7.16 6.01 5.33 0.88 0.51 10.33 8.56 5.92 5.72 5.55 0.00 1.45 2.30 6.98 2.81 0.95 0.27 12.89 8.67 7.19 9.48 5.21 0.00 4.47 8.15 8.79 4.87 1.01 0.56 14.92 8.26 5.57 6.96 7.40 0.00 4.47 8.84 9.67 4.87 1.01 0.56 14.92 8.26 5.57 6.96 7.40 0.00 4.47 8.84 9.67 2.85 1.03 0.29 15.83 14.77 3.21 10.46 4.86 0.00 4.47 8.84 6.77 2.83 0.91 0.46 14.56 9.49 4.19 0.00 4.47 6.89 8.25 5.10 0.90 0.44 0.64	6.68 1.13 0.00 12.35 11.59 9.38 9.48 6.63 0.00 0.67 7.16 6.01 5.33 0.88 0.51 10.33 8.56 5.92 5.72 5.55 0.00 1.45 2.30 6.98 2.81 0.95 0.27 12.89 8.67 7.19 9.48 5.21 0.00 4.47 8.15 8.79 4.87 1.01 0.56 14.92 8.26 5.57 6.96 7.40 0.00 4.47 8.15 8.79 4.87 1.01 0.56 14.92 8.26 5.57 6.96 7.40 0.00 4.47 8.84 9.67 2.83 1.93 0.29 15.83 14.77 3.21 10.46 4.86 0.00 4.47 8.84 9.67 5.72 0.74 0.29 15.83 14.77 3.21 10.46 4.86 0.00 4.47 8.84 9.67 5.10 0.90 <td>6-68 1.13 0.00 12.35 11.59 9.38 9.48 6.63 0.00 1.45 2.30 6.98 5.33 0.88 0.51 10.33 8.56 5.92 5.72 5.55 0.00 1.45 2.30 6.98 2.81 0.95 0.27 12.89 8.67 7.19 9.48 5.21 0.00 4.47 8.15 8.79 4.87 1.01 0.56 14.92 8.26 5.57 6.96 7.40 0.00 4.47 8.15 8.79 4.87 1.01 0.56 14.92 8.26 5.57 6.96 7.40 0.00 4.47 8.15 8.67 2.85 1.93 0.29 15.83 14.77 3.21 10.46 4.86 0.00 4.47 8.84 6.77 5.72 0.74 0.29 15.83 14.77 3.21 10.46 4.86 0.00 4.47 8.84 6.77 5.73 0.74</td>	6-68 1.13 0.00 12.35 11.59 9.38 9.48 6.63 0.00 1.45 2.30 6.98 5.33 0.88 0.51 10.33 8.56 5.92 5.72 5.55 0.00 1.45 2.30 6.98 2.81 0.95 0.27 12.89 8.67 7.19 9.48 5.21 0.00 4.47 8.15 8.79 4.87 1.01 0.56 14.92 8.26 5.57 6.96 7.40 0.00 4.47 8.15 8.79 4.87 1.01 0.56 14.92 8.26 5.57 6.96 7.40 0.00 4.47 8.15 8.67 2.85 1.93 0.29 15.83 14.77 3.21 10.46 4.86 0.00 4.47 8.84 6.77 5.72 0.74 0.29 15.83 14.77 3.21 10.46 4.86 0.00 4.47 8.84 6.77 5.73 0.74

Table 2-8 Water Demand of Thap Ma Irrigation Area (Cropping Intensity 180%)

MAX JUL AUG SEP OCT NOV DEC 1.98 0.00 21.65 20.32 16.45 16.62 11.62 0.00 1.54 0.89 18.11 15.01 10.38 10.03 9.73 0.00 1.57 0.47 22.08 15.20 12.61 16.62 9.14 0.00 1.77 0.98 26.16 14.48 9.76 12.20 12.96 0.00 1.77 0.98 26.16 14.48 9.76 12.20 12.96 0.00 1.30 0.51 22.06 17.92 8.28 12.73 8.94 0.00 1.50 0.81 25.53 16.64 7.35 0.00 10.29 0.00 1.58 0.75 22.44 17.57 11.17 6.19 11.13 0.00 1.72 1.07 30.23 11.34 12.64 9.10 11.24 0.00 2.12 0.49 14.40														Ì
1.98 0.00 21.65 20.32 16.45 16.62 11.62 0.00 1.54 0.89 18.11 15.01 10.38 10.03 9.73 0.00 1.67 0.47 22.08 15.20 12.61 16.62 9.14 0.00 1.77 0.98 26.16 14.48 9.76 12.20 12.96 0.00 1.30 0.51 27.76 25.90 5.63 18.34 8.52 0.00 1.30 0.51 22.06 17.92 8.28 12.73 8.94 0.00 1.60 0.81 25.53 16.64 7.35 0.00 10.29 0.00 1.58 0.75 22.44 17.57 11.17 6.19 11.13 0.00 1.72 1.07 30.23 11.34 12.64 9.10 11.24 0.00 2.07 0.86 9.17 22.27 12.71 11.13 12.52 0.00 2.12 0.49 14.40 19.80 11.29 16.73 12.98 0.00 2.0	e	MAY	NOD	Sur	AUG	SEP	DOCI	NOV	DEC	JAN	FEB	MAR	ANNUAL	
1.54 0.89 18.11 15.01 10.38 10.03 9.73 0.00 1.67 0.47 22.08 15.20 12.61 16.62 9.14 0.00 1.77 0.98 26.16 14.48 9.76 12.20 12.96 0.00 3.38 0.51 27.76 25.90 5.63 18.34 8.52 0.00 1.30 0.51 22.06 17.92 8.28 12.73 8.94 0.00 1.60 0.81 25.53 16.64 7.35 0.00 10.29 0.00 1.58 0.75 22.44 17.57 11.17 6.19 11.13 0.00 1.72 1.07 30.23 11.34 12.64 9.10 11.24 0.00 2.07 0.86 9.17 22.27 12.71 11.13 12.52 0.00 2.12 0.49 14.40 19.80 11.29 16.73 12.12 0.00 3.23 0.44 22.51 26.25 10.98 17.74 12.98 0.00 3.23 0.44 22.51 26.25 10.98 17.74 12.98 0.00	.71	1.98	0.00		20.32	16.45	16.62	11.62	0.0	1.17	12.55	10.70	124.74	
1.67 0.47 22.08 15.20 12.61 16.62 9.14 0.00 1.77 0.98 26.16 14.48 9.76 12.20 12.96 0.00 3.38 0.51 27.76 25.90 5.63 18.34 8.52 0.00 1.30 0.51 22.06 17.92 8.28 12.73 8.94 0.00 1.60 0.81 25.53 16.64 7.35 0.00 10.29 0.00 1.58 0.75 22.44 17.57 11.17 6.19 11.13 0.00 1.72 1.07 30.23 11.34 12.64 9.10 11.24 0.00 2.07 0.86 9.17 22.27 12.71 11.13 12.52 0.00 2.12 0.49 14.40 19.80 11.29 16.73 12.12 0.00 3.23 0.44 22.51 26.25 10.98 17.74 12.98 0.00 3.23 0.44 22.51 26.25 10.98 17.74 12.98 0.00			0.89		15.01	10.38	10.03	9.73	0.0	2.54	4.03	12.24	93.97	
1.77 0.98 26.16 14.48 9.76 12.20 12.96 0.00 3.38 0.51 27.76 25.90 5.63 18.34 8.52 0.00 1.30 0.51 22.06 17.92 8.28 12.73 8.94 0.00 1.60 0.81 25.53 16.64 7.35 0.00 10.29 0.00 1.58 0.75 22.44 17.57 11.17 6.19 11.13 0.00 1.72 1.07 30.23 11.34 12.64 9.10 11.24 0.00 2.07 0.86 9.17 22.27 12.71 11.13 12.52 0.00 2.12 0.49 14.40 19.80 11.29 16.73 12.12 0.00 3.23 0.44 22.51 26.25 10.98 17.74 12.98 0.00 3.23 0.44 22.51 26.25 10.98 17.74 12.98 0.00			0.47	22.08	15.20	12.61	16.62	9.14	0.00	7.84	14.29	15.41	106.84	
3.38 0.51 27.76 25.90 5.63 18.34 8.52 0.00 1.30 0.51 22.06 17.92 8.28 12.73 8.94 0.00 1.60 0.81 25.53 16.64 7.35 0.00 10.29 0.00 1.58 0.75 22.44 17.57 11.17 6.19 11.13 0.00 1.72 1.07 30.23 11.34 12.64 9.10 11.24 0.00 2.07 0.86 9.17 22.27 12.71 11.13 12.52 0.00 2.12 0.49 14.40 19.80 11.29 16.73 12.12 0.00 3.23 0.44 22.51 26.25 10.98 17.74 12.98 0.00		1.77	0.98	-	14.48	9.76	12.20	12.96	00.0	7.84	15.50	16.96	127.26	
1.30 0.51 22.06 17.92 8.28 12.73 8.94 0.00 1.60 0.81 25.53 16.64 7.35 0.00 10.29 0.00 1.58 0.75 22.44 17.57 11.17 6.19 11.13 0.00 1.72 1.07 30.23 11.34 12.64 9.10 11.24 0.00 2.07 0.86 9.17 22.27 12.71 11.13 12.52 0.00 2.12 0.49 14.40 19.80 11.29 16.73 12.12 0.00 3.23 0.44 22.51 26.25 10.98 17.74 12.98 0.00	80		0.51	27.76	25.90	5.63	18.34	8.52	0.00	6.08		11.87	128.60	
96 1.60 0.81 25.53 16.64 7.35 0.00 10.29 0.00 94 1.58 0.75 22.44 17.57 11.17 6.19 11.13 0.00 89 1.72 1.07 30.23 11.34 12.64 9.10 11.24 0.00 77 2.07 0.86 9.17 22.27 12.71 11.13 12.52 0.00 59 2.12 0.49 14.40 19.80 11.29 16.73 12.12 0.00 94 3.23 0.44 22.51 26.25 10.98 17.74 12.98 0.00	.03		0.51	\circ	17.92	8.28	12.73	8.94	0.00	7.84		15.38	118.06	
94 1.58 0.75 22.44 17.57 11.17 6.19 11.13 0.00 89 1.72 1.07 30.23 11.34 12.64 9.10 11.24 0.00 77 2.07 0.86 9.17 22.27 12.71 11.13 12.52 0.00 59 2.12 0.49 14.40 19.80 11.29 16.73 12.12 0.00 94 3.23 0.44 22.51 26.25 10.98 17.74 12.98 0.00 85 2.00 2.00 2.00 2.00 2.00 2.00 2.00	96*	1.60	0.81	25.53	16.64	7.35	00.00	10.29	0.00	2.30	15.50	12.82	97.84	
89 1.72 1.07 30.23 11.34 12.64 9.10 11.24 0.00 77 2.07 0.86 9.17 22.27 12.71 11.13 12.52 0.00 59 2.12 0.49 14.40 19.80 11.29 16.73 12.12 0.00 94 3.23 0.44 22.51 26.25 10.98 17.74 12.98 0.00 85 2.00 2.00 2.00 2.00 2.00 2.00	3.94	1.58	0.75	22.44	17.57	11.17	6.19	11.13	0.00	7.84	11.92	14.47	114.13	
77 2.07 0.86 9.17 22.27 12.71 11.13 12.52 0.00 59 2.12 0.49 14.40 19.80 11.29 16.73 12.12 0.00 94 3.23 0.44 22.51 26.25 10.98 17.74 12.98 0.00 85 2.09 0.00 17.01 17.01 17.01 17.01 17.01	. 89	1.72	1.07	30.23	11.34	12.64	9.10	11.24	0.00	6.05	15.50	16.97	123.81	
59 2.12 0.49 14.40 19.80 11.29 16.73 12.12 0.00 94 3.23 0.44 22.51 26.25 10.98 17.74 12.98 0.00	.77	2.07	0.86	9.17	22.27	12.71	11.13	12.52	00.0	2.23	8.24	17.62	107.71	
3.23 0.44 22.51 26.25 10.98 17.74 12.98 0.00	. 59	2.12	0.49	14.40	19.80	11.29	16.73	12.12	00.0	7.84		16.94	121.71	
2 00 0 00 00 00 00 00 00 00 00 00 00 00	.94	3.23	77.0	S	26.25	10.98	17.74		0.00	7.84		12.50	137.98	
3.03 0.49 1.7.01 14.24 14.68 11.96 10.70 0.00	7.36	3.09	0.49	17.81	14.24	14.68	11.96	10.70	0.00	7.84	14.10		117.27	

Table 3-1 Water Balance of Supply and Demand

Year Water Demand Water Supply Balanc 1980 2.1 - 2.9 - 2.9 81 2.9 - 2.9 - - 2.9 82 3.7 - 4.5 - - 2.9 83 4.5 - 4.5 - <t< th=""><th></th><th>Nong</th><th>Pla Lai</th><th>Sub-Project</th><th>ct Area</th><th></th><th>Ban Bung Su</th><th>Sub-Project</th><th>t Area</th></t<>		Nong	Pla Lai	Sub-Project	ct Area		Ban Bung Su	Sub-Project	t Area
1980 2.1 — 2.9 — 81 2.9 — 2.9 — 82 3.7 — 2.9 — 83 4.5 — 4.5 — 84 13.2 — 4.5 — 85 40.1 — 4.5 — 86 49.3 69.4 118.7 149.4 87 50.2 69.4 118.7 149.4 88 51.0 69.4 120.4 149.4 89 51.8 69.4 135.9 149.4 90 66.5 69.4 135.9 149.4 91 67.5 69.4 135.9 149.4 92 68.3 69.4 135.7 149.4 94 70.3 69.4 138.8 149.4 95 80.0 128.1 215.3 230.3 96 87.2 128.1 215.3 296.9 98	Year		Water Demand		Water	Material Control	Water Demand	1	
1980 2.1 — 2.9 — — 2.9 —		Ind.&Mun.	Irrigation		Supply	Balance	Ind. &Mun.	Supply	water Balance
81 2.9 - 2.9 - - 3.7 -<	1980	2.1	ı	2.1	1	- 2.1	3.1		
82 3.7 - 4.5 - - 4.5 -<	81	2.9	ı	2.9			3.2	ı	•
83 4.5 - 4.5 - - 4.5 -<	82	3.7	1	3.7	1	ധ	e. e.	1	ł
84 13.2 - 13.2 22.8 1 85 40.1 - 40.1 22.8 1 86 49.3 69.4 118.7 149.4 3 87 50.2 69.4 118.7 149.4 2 88 51.0 69.4 120.4 149.4 2 89 51.8 69.4 120.2 149.4 1 90 66.5 69.4 135.9 149.4 1 91 67.5 69.4 135.9 149.4 1 92 68.3 69.4 135.9 149.4 1 93 69.4 138.8 149.4 1 94 70.3 69.4 138.8 149.4 1 95 80.0 128.1 208.1 230.3 1 96 87.2 128.1 215.3 230.3 1 97 88.8 128.1 216.7 286.9 296.9 98 90.6 194.7 286.9 296.9 1 <td>83</td> <td>4.5</td> <td>1</td> <td>4.5</td> <td>1</td> <td>4</td> <td>3.4</td> <td>1</td> <td>ı</td>	83	4.5	1	4.5	1	4	3.4	1	ı
85 40.1 - 40.1 22.8 86 49.3 69.4 118.7 149.4 87 50.2 69.4 119.6 149.4 88 51.0 69.4 120.4 149.4 89 51.8 69.4 121.2 149.4 90 66.5 69.4 135.9 149.4 92 68.3 69.4 136.9 149.4 93 69.4 69.4 136.9 149.4 94 70.3 69.4 138.8 149.4 95 80.0 128.1 208.1 230.3 96 87.2 128.1 215.3 230.3 97 88.8 128.1 215.3 230.3 98 90.6 194.7 285.3 296.9 99 194.7 285.9 296.9		13.2	ı	13.2	22.8	9.6	3.5	1	:
86 49.3 69.4 118.7 149.4 87 50.2 69.4 119.6 149.4 88 51.0 69.4 120.4 149.4 89 51.8 69.4 121.2 149.4 90 66.5 69.4 135.9 149.4 92 68.3 69.4 136.9 149.4 94 70.3 69.4 138.8 149.4 95 80.0 128.1 208.1 230.3 96 87.2 128.1 215.3 230.3 96 87.2 128.1 215.3 230.3 96 87.2 128.1 216.9 230.3 97 88.8 128.1 216.9 230.3 98 90.6 194.7 285.9 296.9 99 194.7 285.9 296.9	85	40.1	ı	40.1	22.8	17.3	3.6	•	1
87 50.2 69.4 119.6 149.4 88 51.0 69.4 120.4 149.4 89 51.8 69.4 121.2 149.4 90 66.5 69.4 135.9 149.4 91 67.5 69.4 136.9 149.4 92 68.3 69.4 137.7 149.4 94 70.3 69.4 138.8 149.4 95 80.0 128.1 208.1 230.3 96 87.2 128.1 215.3 230.3 97 88.8 128.1 216.9 230.3 98 90.6 194.7 285.3 296.9 99 92.2 194.7 286.9 296.9		49.3	7.69	118.7	149.4	30.7	တ္	0.6	5.2
88 51.0 69.4 120.4 149.4 89 51.8 69.4 121.2 149.4 90 66.5 69.4 135.9 149.4 91 67.5 69.4 136.9 149.4 92 68.3 69.4 137.7 149.4 93 69.4 69.4 138.8 149.4 94 70.3 69.4 139.7 149.4 95 80.0 128.1 208.1 230.3 96 87.2 128.1 215.3 230.3 97 88.8 128.1 216.9 230.3 98 90.6 194.7 285.3 296.9 99 92.2 194.7 286.9 296.9	87	50.2	7.69	119.6	149.4	7.69	4.1	0.6	5.9
89 51.8 69.4 121.2 149.4 90 66.5 69.4 135.9 149.4 91 67.5 69.4 136.9 149.4 92 68.3 69.4 137.7 149.4 93 69.4 69.4 138.8 149.4 94 70.3 69.4 139.7 149.4 95 80.0 128.1 208.1 230.3 96 87.2 128.1 215.3 230.3 97 88.8 128.1 216.9 230.3 98 90.6 194.7 285.3 296.9 99 92.2 194.7 286.9 296.9	80 80	51.0	7.69	120.4	149.4	29.0	9.7	0.6	4.5
90 66.5 69.4 135.9 149.4 91 67.5 69.4 136.9 149.4 92 68.3 69.4 137.7 149.4 93 69.4 69.4 138.8 149.4 94 70.3 69.4 139.7 149.4 95 80.0 128.1 208.1 230.3 96 87.2 128.1 215.3 230.3 97 88.8 128.1 216.9 230.3 98 90.6 194.7 285.3 296.9 99 92.2 194.7 286.9 296.9	68	51.8	4.69	121.2	149.4	28.2	5.0	0.6	0.4
91 67.5 69.4 136.9 149.4 92 68.3 69.4 137.7 149.4 93 69.4 69.4 138.8 149.4 94 70.3 69.4 139.7 149.4 95 80.0 128.1 208.1 230.3 96 87.2 128.1 215.3 230.3 97 88.8 128.1 216.9 230.3 98 90.6 194.7 285.3 296.9 99 92.2 194.7 286.9 296.9	06	66.5	69.4	135.9	149.4	13.5	4.8	0-6	9.4
92 68.3 69.4 137.7 149.4 93 69.4 69.4 138.8 149.4 94 70.3 69.4 139.7 149.4 95 80.0 128.1 208.1 230.3 96 87.2 128.1 215.3 230.3 97 88.8 128.1 216.9 230.3 98 90.6 194.7 285.3 296.9 99 92.2 194.7 286.9 296.9	<u>بر</u> و	67.5	4.69	136.9	149.4	12.5	5.6	0.6	4.4
93 69.4 69.4 138.8 149.4 94 70.3 69.4 139.7 149.4 95 80.0 128.1 208.1 230.3 96 87.2 128.1 215.3 230.3 97 88.8 128.1 216.9 230.3 98 90.6 194.7 285.3 296.9 99 92.2 194.7 286.9 296.9	95	68.3	7.69	137.7	149.4	11.7	6.5	0.6	4.1
94 70.3 69.4 139.7 149.4 95 80.0 128.1 208.1 230.3 96 87.2 128.1 215.3 230.3 97 88.8 128.1 216.9 230.3 98 90.6 194.7 285.3 296.9 99 92.2 194.7 286.9 296.9	გ	7.69	7.69	138.8	149.4	10.6	6.3	0.6	3.7
95 80.0 128.1 208.1 230.3 96 87.2 128.1 215.3 230.3 97 88.8 128.1 216.9 230.3 98 90.6 194.7 285.3 296.9 99 92.2 194.7 286.9 296.9	76	70.3	7.69	139.7	149.4	7.6	9.9	0.6	3.4
96 87.2 128.1 215.3 230.3 97 88.8 128.1 216.9 230.3 98 90.6 194.7 285.3 296.9 99 92.2 194.7 286.9 296.9		80.0	128.1	208.1	230.3	22.2	7.0	0.6	2.0
97 88.8 128.1 216.9 230.3 98 90.6 194.7 285.3 296.9 99 92.2 194.7 286.9 296.9	96	87.2	128.1	215.3	230.3	15.0	7.4	0-6	9-1
98 90.6 194.7 285.3 296.9 99 92.2 194.7 286.9 296.9	97	ω ω ω	128.1	216.9	230.3	13.4	7.8	0.6	1.2
92.2 194.7 286.9 296.9		9.06	194.7	285.3	296.9	11.6	8.2	0.6	8.0
	66	92.2	194.7	286.9	296.9	10-0	8.6	0-6	7.0
2000 109.3 194.7 304.0 296.9 - 7.1	2000	109.3	194.7	304.0	296.9		0.6	0.6	0

/3 Completion of Khlong Yai Dam /1 Completion of Dok Krai Transmission System /2 Completion of Nong Pla Lai Dam and Ban Bung Dam

Fig. 2-1 Industrial & Municipal Water Demand

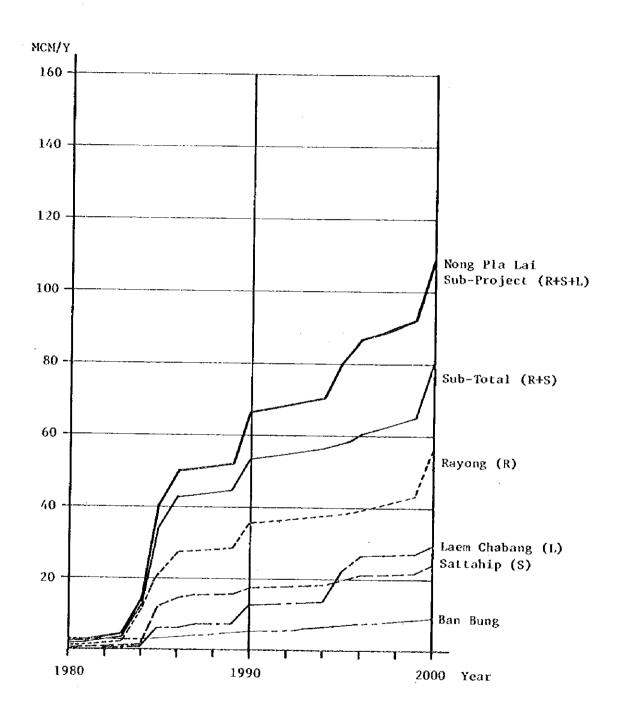
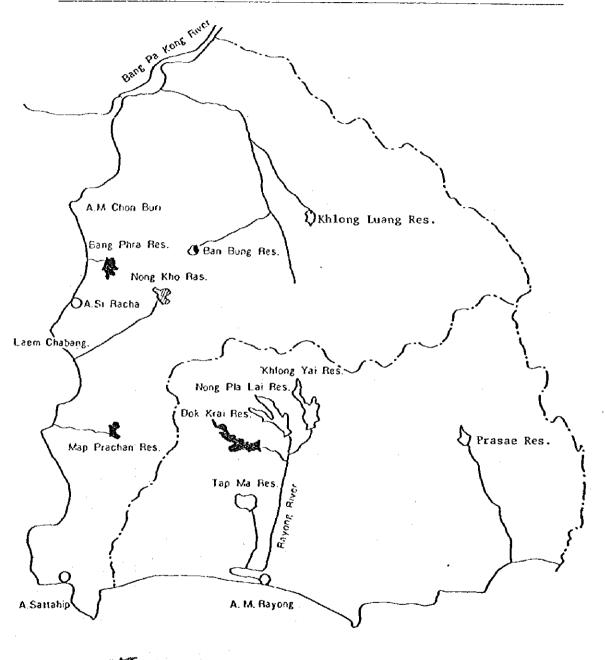



Fig 3-1 Location of Existing and Proposed Reservoir

Existing Reservoir

Under Construction

Proposed Reservoir

Regend:

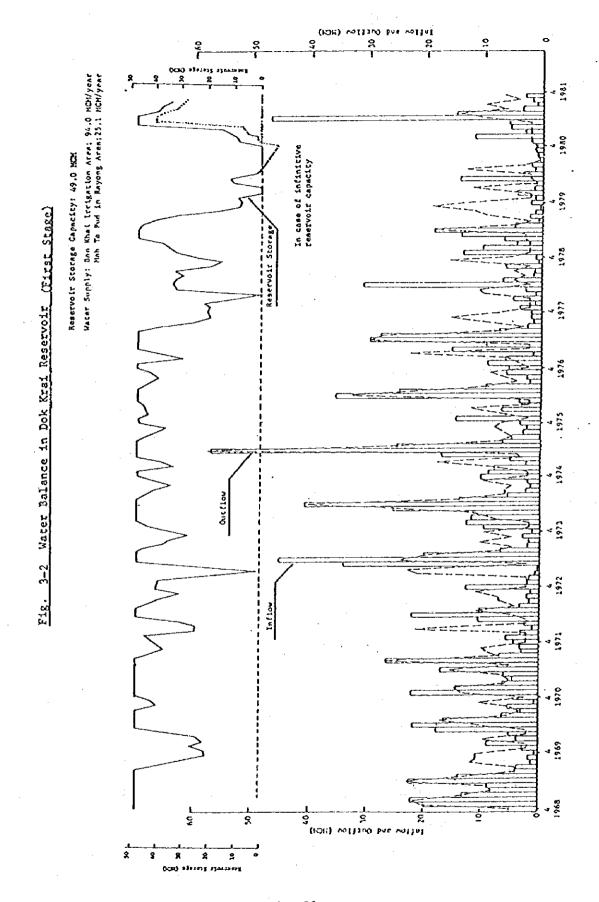
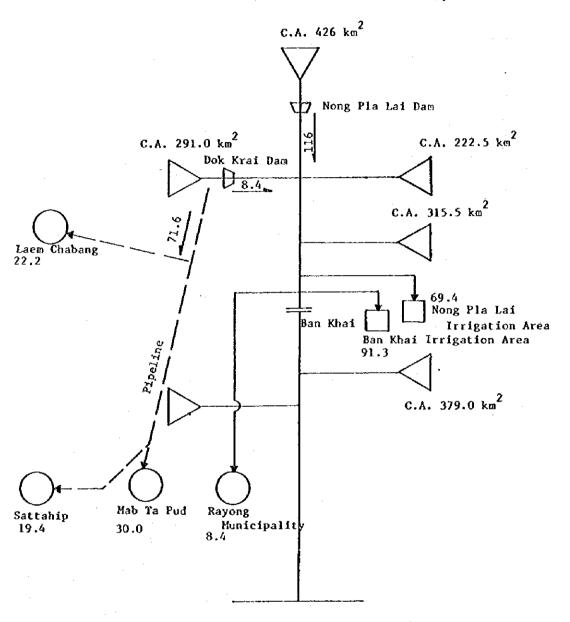
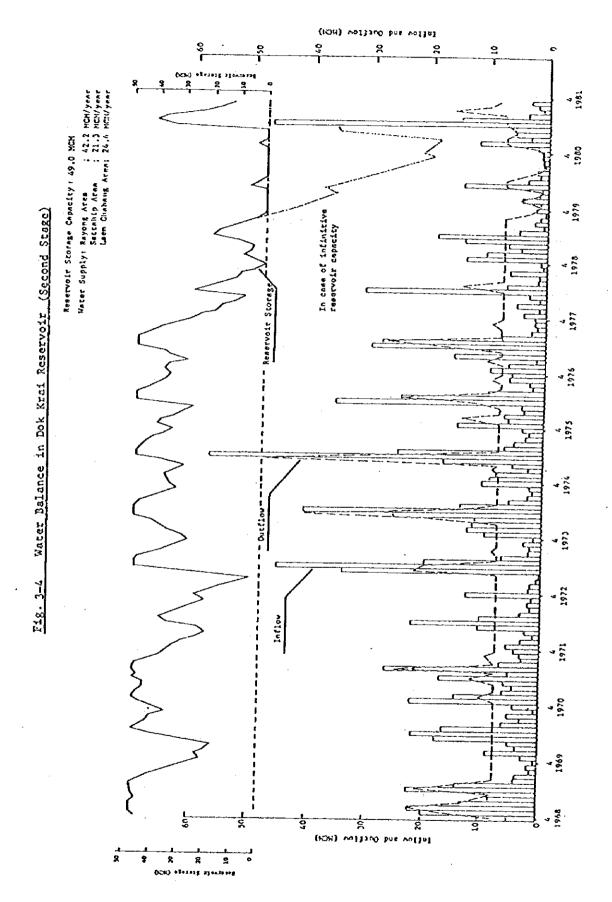



Fig. 3-3 Schematic Diagram of Water Utilization System
(Second Stage: 2 Dams)


Industrial and Municipal Water Demand

Irrigation Water Demand

Note:

Figures in the parenthesis stand for the water supply from dam including water loss.

C.A. Catchment Area

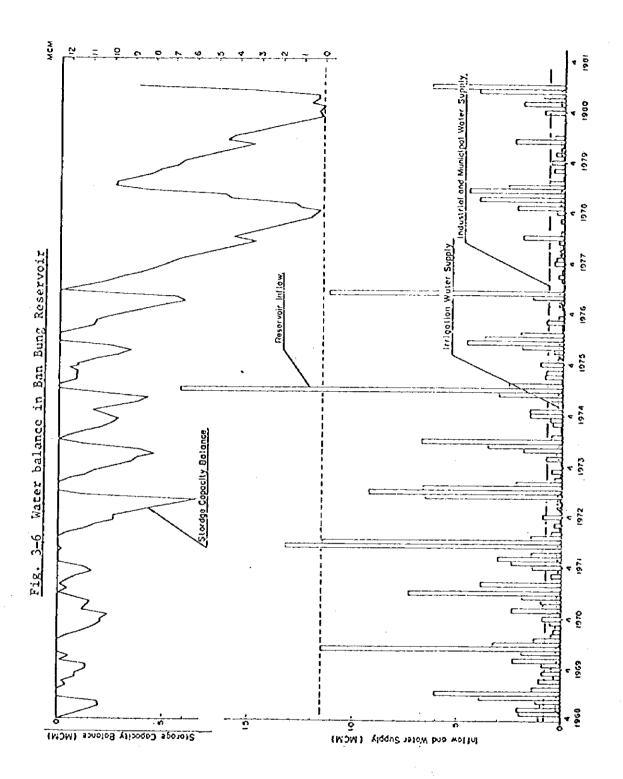
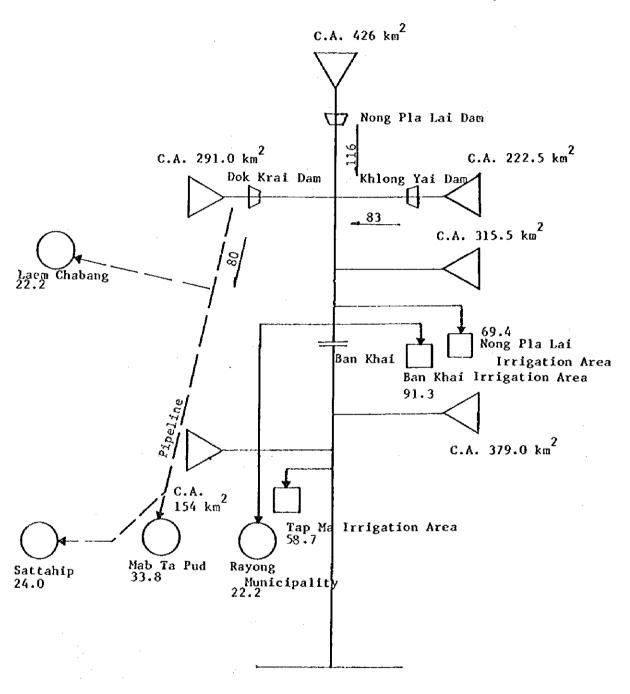
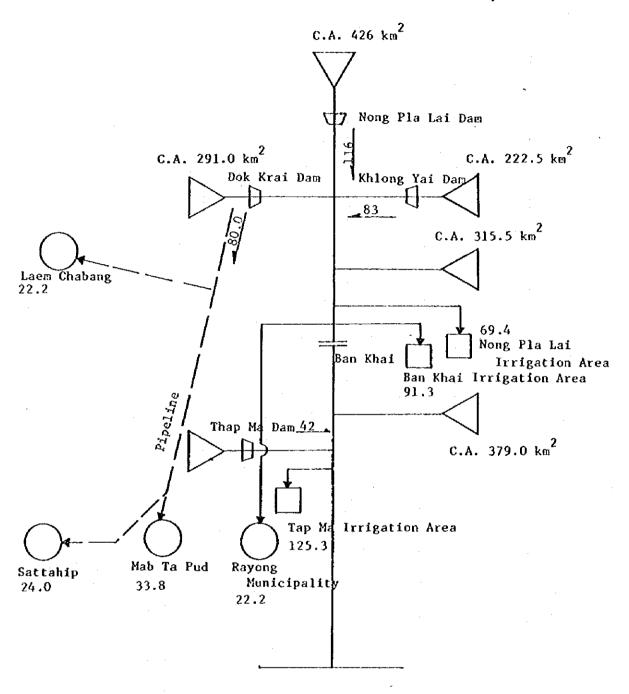



Fig. 3-7 Schematic Diagram of Water Utilization System
(Third Stage: 3 Dams)

Industrial and Municipal Water Demand


Irrigation Water Demand

C.A. Catchment Area

Note:

Figures in the parenthesis stand for the water supply from dam including water loss.

Fig. 3-8 Schematic Diagram of Water Utilization System
(Fourth Stage: 4 Dams)

Industrial and Municipal Water Demand

Irrigation Water Demand

Note:

Figures in the parenthesis stand for the water supply from dam including water loss.

C.A. Catchment Area

Fig. 3-9 Water Supply and Demand

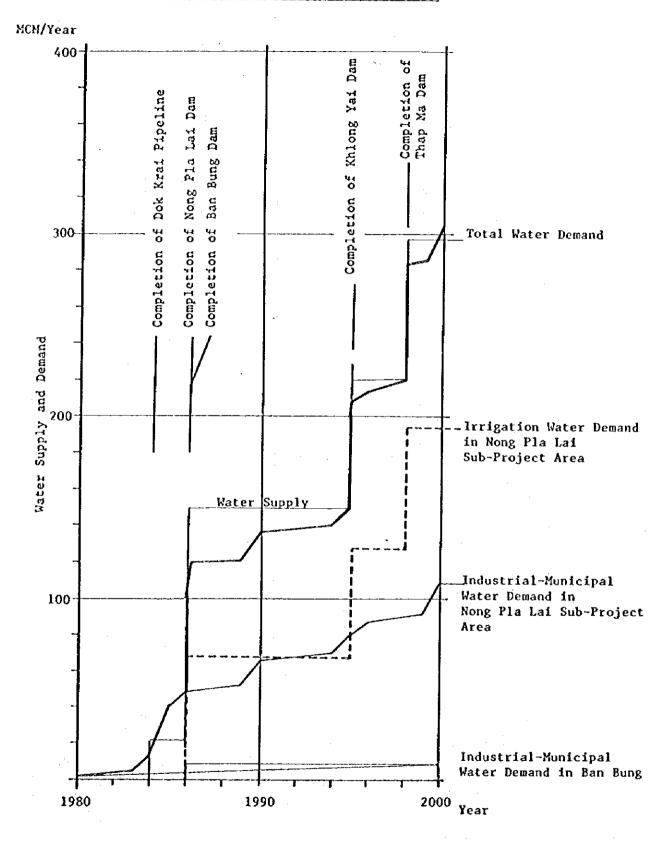
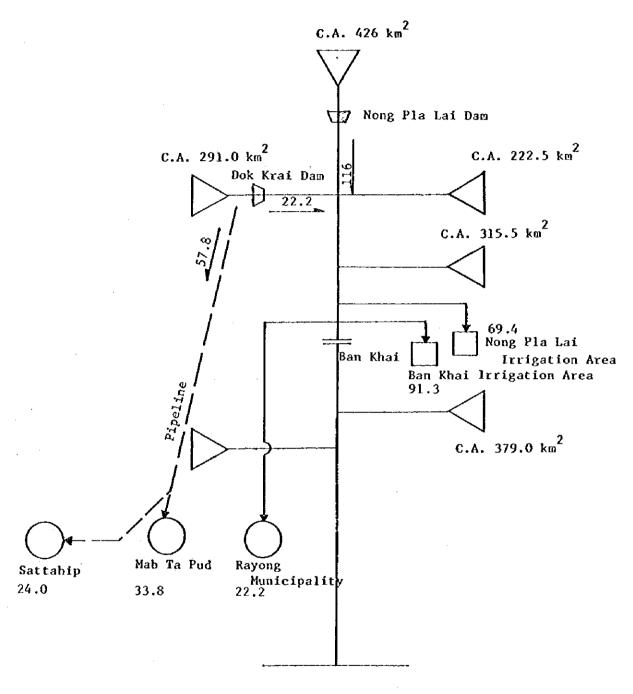



Fig.4=1 Schematic Diagram of Water Utilization System [PLAN II]
(2 Dams)

Industrial and Municipal Water Demand

Irrigation Water Demand

•

C.A. Catchment Area

Note:

Figures in the parenthesis stand for the water supply from dam including water loss.

TABLE OF CONTENTS

							•		*	Page
				*.				i		
1.	NON	CPIAÌ	AI DAM							
- •		<u> </u>	MI DAT	• • • • • • •	• • • • • • •			* * * * *		5-l
		DROTO			100					
	1.1	DESTG	N CONDI	LION						. 6-1
		1.1.1	Funct	lon of 1	Dan and	Reserv	oir .			. 6-1
		1.1.2	Design	ı Formul	lation					6-1
	1.2	DESCR	IPTION (F PRO.II	ecr				• • • • • •	4-C
		1.2.1	Princi	ipal Fea	sturaa	of Dom	and D			0~)
		1.2.2	Cooler	rpar rez	icures	or ban	and K	eserv	01r	. 5-5
		1.2.3	GEOLOS	y		• • • • • •	• • • • •	• • • • •		5-6
		· · · · · · · · · · · · · · · · · · ·		id Reser	voir.	• • • • • •	• • • • •			6-8
		1.2.4	Spill	ay						. 6-10
		1.2.5	Intake	and Ou	itlet .					6-10
		1.2.6	River	Diversi	ion					6-11
		1.2.7	Road F	lelocati	on and	Land A	cante	ition		
		1.2.8	Destor	Drawin	100	Batta A	cquis	101011	• • • • • •	0-11
	1.3			DIAN	.60	• • • • • • •		• • • • •	• • • • • • •	• 0-12
		1.3.1	RUCTION	LPWN ••		• • • • • • •	• • • •	* * * * *	• • • • • • •	• 6-12
		1.3.1	basic	Conside	ration					. 6-12
			Constr	uction	Materi	als				. 6-12
		1.3.3	Constr	uction	Facili	ties				6-14
		1.3.4	Reloca	tion Ro	ad					6-14
,		1.3.5	Constr	uction	Schedu	le				6-34
	1.4	COST F	STIMATE		·			• • • • •	• • • • • • •	0-14
		1.4.1	Conetr	notion	Cánh	• • • • • • •	• • • • •	• • • • •	• • • • • • •	6-15
		1.771	CONSCE	uction	COSL	• • • • • • •	• • • • •		• • • • • •	6-15
2.	D A AT	DIDIO 54								
۷.	DAN	DUNG DA	<u>M</u>	• • • • • • •	• • • • • •					6-16
		-								
	2.1	DESIGN	CONDIT	ION						. 6-16
		2.1.1	Functi	on of D	am and	Reservo	dr			4-16
		2.1.2	Design	Formul.	ation				• • • • • •	• 7-10
	2.2		PCION O	r pyński Spiński	acton (• • • • • •	6-17
		2.2.1	Princi	o Al Post	OX		* * * * *			6-20
		2.2.2	Carlon	pal Feat	cures o	r Dan a	ınd Re	servo	oir	6-20
			georog.	y	• • • • • • • •	• • • • • •				6-21
		2.2.3	vam and	l Reser	voir			• • • • •		6-23
		2.2.4	Spillwa	ау						6-25
		2.2.5	Intake	and Out	tlet					6-25
		2.2.6	River 1	liversi	on					6-26
		2.2.7	Road Re	locatio	on and	Land Ac	aniei	tion		426
		2.2.8	Design	Drawing	70	Dana ne	darar	C LOII	*****	0-20
			0002611	OLGWIN	50	• • • • • • •	• • • • •	• • • • •	*****	6-26
	2.3	CONCTO	CTTON 1	NT 4 NY						
	213		UCTION 1	LAN		• • • • • • •	• • • • •		*****	6-27
		2.3.1	Basic (onsider	cation	• • • • • •				6-27
		2.3.2	Constru	iction M	lateria	ls				6-27
		2.3.3	Constru	ction F	acilit	ies				6-28
		2.3.4	Relocat	ion Roa	nd					420
		2.3.5	Constru	iction 9	Chedul.		****	••••		0-29
	2.4	COST	ያው ያለያው ር	CCION D	Cucant	c	• • • • •	• • • • •	• • • • • • •	5-29
	~. 7	2.4.1	STIMATE			• • • • • •	• • • • •	• • • • •	• • • • • • •	6-30
		4.4.1	Constru	ction C	ost					6-30

LIST OF TABLES

CHAPTER 1

- Table 1-1 Cost Comparison of Compensation
 - 1-2 Financial Cost (Nong Pla Lai Dan)
 - 1-3 Disbursement Schedule of Financial Cost (Nong Pla Lai Dam)
 - 1-4 Economic Cost (Nong Pla Lai Dan)
 - 1-5 Disbursement Schedule of Economic Cost (Nong Pla Lai Dam)

CHAPTER 2

- Table 2-1 Financial Cost (Ban Bung Dan)
 - 2-2 Disbursement Schedule of Financial Cost (Ban Bung Dan)
 - 2-3 Economic Cost (Ban Bung Dan)
 - 2-4 Disbursement Schedule of Economic Cost (Ban Bung Dam)

LIST OF FIGURES

CHAPTER 1

- Fig. 1-1 Comparison of Dam Axis (Plan)
 - 1-2 Comparison of Dam Axis (Reservoir Capacity Curve)
 - 1-3 Alternatives of the Alignment of Spillway and Diversion
 - 1-4 Reservoir Capacity and Area (Nong Pla Lai Reservoir)
 - 1-5 Geological Map of Nong Pla Lai Dam Site and Resevoir
 - 1-6 Geological Cross Section of Nong Pla Lai Dam Site
 - 1-7 Geological Map of Nong Pla Lai Dam Axis
 - 1-8 Geological Profile along Nong Pla Lai Dam Axis
 - 1-9 Geologic Log of Drill Hole
 - 1-10 Geologic Log of Drill Hole
 - 1-il Geologic Log of Drill Hole
 - 1-12 Geologic Log of Drill Hole
 - 1-13 Nong Pla Lai Borrow Pit Gradation Test
 - 1-14 Nong Pla Lai Borrow Pit Gradation Test
 - 1-15 Nong Pla Lai Borrow Pit Gradation Test
 - 1-16 Result of Laboratory Test for Borrow Materials (After 1973 reports)
 - 1-17 Summary of Test Results (Nong Pla Lai)
 - 1-18 Sunmary of Test Results (Nong Pla Lai)
 - 1-19 Summary of Test Results (Nong Pla Lai)
 - 1-20 Results of Stability Analysis of Nong Pla Lai

- 1-21 Inflow and Outflow Hydrograph for Extraordinary Flood
- 1-22 Inflow and Outflow Hydrograph for 30 Year Flood (Nong Pla Lai Dan)
- 1-23 Conduit Diameter vs. Maximum Reservoir Stage
- 1-24 Road Relocation
- 1-25 Alternative I of Resettlement Plan
- 1-26 Alternative II of Resettlement Plan
- 1-27 General Plan of Nong Pla Lai Dan
- 1-28 Longitudinal Profile of Nong Pla Lai Dam
- 1-29 Standard Cross Section of Nong Pla Lai Dan
- 1-30 Plan of Spillway of Nong Pla Lai Dan
- 1-31 Longitudinal Profile of Spillway of Nong Pla Lai
- 1-32 Waterway of Nong Pla Lai Dam
- 1-33 Details of Spillway of Nong Pla Lai Dan
- 1-34 Construction Schedule of Nong Pla Lai Dan

CHAPTER 2

- Fig. 2-1 Comparison of Dam Axis (Plan)
 - 2-2 Comparison of Dan Axis (Reservoir Capacity Curve)
 - 2-3 Reservoir Capacity and Area (Ban Bung Reservoir)
 - 2-4 Geological Map of Ban Bung Dan Site and Reservoir
 - 2-5 Geological Cross Section of Ban Bung Dam Site
 - 2-6 Geological Map of Ban Bung Dan Axis
 - 2-7 Geological Profile along the Ban Bung Dan Axis
 - 2-8 Ban Bung Borrow Pit Gradation Test
 - 2-9 Ban Bung Borrow Pit Gradation Test
 - 2-10 Summary of Test Results (Ban Bung)
 - 2-11 Summary of Test Results (Ban Bung)
 - 2-12 Results of Stability Analysis of Ban Bung Dan
 - 2-13 Inflow and Outflow Hydrograph for Extraordinary Flood
 - 2-14 Inflow and Outflow Rydrograph for 30 Year Flood (Ban Bung Dan)
 - 2-15 Road Relocation
 - 2-16 General Plan of Ban Bung Dam
 - 2-17 Longitudinal Profile of Ban Bung Dan
 - 2-18 Standard Cross Section of Ban Bung Dan
 - 2-19 Plan of Spillway and Waterway of Ban Bung Dan
 - 2-20 Details of Spillway of Ban Bung Dan
 - 2-21 Longitudinal Profile of Waterway of Ban Bung Dan
 - 2-22 Construction Schedule of Ban Bung Dan

1. NONG PLA LAI DAM

1.1 DESIGN CONDITION

1.1.1 Function of Dam and Reservoir

Nong Pla Lai Dam is to be designed so as to have the following functions and facilities.

1) Storage Capacity

Utilization	144.4 MCM
Surcharge	43.5
Sediment	12.8
Gross	200.7

- 2) Spillway for inflow of 1.2 times 200-year flood
- 3) Intake and outlet
- 4) Facilities for emergency draw-down of water level
- 5) Branch Valve for Power Generation (in future)
- 6) Diversion Conduit for 10-year flood

1.1.2 Design Formulation

The proposed plan of Nong Pla Lai Dam and Reservoir scheme has been refined through alternative study on various structures.

Dam

1) Type

The geological and topographical conditions of the dam site don't accept concrete gravity type.

Rockfill type dam, that is structually superior to earth-fill type dam, is not suitable for this dam because of the difficulty of economical securement of rock materials in the vicinity of the dam site.

It appears that earth-fill type dam would be the only type recommendable for this dam site from the view points of abundant availability of embankment materials and relatively small height of the dam. A series of investigations and laboratory tests up to date reveals that the embankment materials that are classified into clayey sand or silty sand are distributed widely in the vicinity of the dam site with the quality enough to be the embankment materials for a earth-fill type dam.

The foundation of the dam will be excavated to the impervious strata on the dam axis so as to prevent leakage over permissive amount through the foundation.

Grouting method, an alternative treatment of improving permeable foundation, is eliminated because grouting is technically difficult under grouting the unsuitable soil condition.

2) Dan axis

Studies are carried out to find the most recommendable dam axis in the proposed site from the view points of topography, geology and economy.

The followings are the results of the comparison among the proposed and two alternative axes that are shown in Figs. 1-1 and 1-2.

- There are no great difference among the three axes in geology and topography.
- The embankment volumes are estimated roughly under the condition that the crest elevation of dam is set at 2 m above H.H.W.L. that corresponds to the total storage volume of the reservoir of 200.7 million cubic meter.

·	Proposed	Alternative I	Alternative II
Total storage volume (MCM)	200	200	200
H.H.W.L. (EL.m)	47.0	46.5	48.0
Crest elevation of dam (EL.m)	49.0	48.5	50.0
Embankment volu	me 3.2	3.1	3.9

- The proposed dam axis, on which the geological profile has been revealed through the geological investigations, is finally recommended in spite of the slight inferiority of embankment volume compared to alternative I. As for the Alternative I and II, such a detailed geological investigations on the proposed axis have not been performed.

Spillway |

l) Type

As the types of spillway, the following 4 alternatives are studied.

Type of Spillway

Alternative	Control Structure	Discharge Carrier	Energy Dissipator
Proposed	Slide Overflow type	Chute type	Hydraulic jump type
Alt. I	Center overflow type	Chute type	Hydraulic Jump type
Alt. II	Seni-circular overflow type	Chute type	Hydraulic jump type
Alt. III	Morning glory type	Conduit type	Hydraulic jump type

Proposed Side overflow - Chute - Hydraulic jump types are adopted in consideration of the following matter.

- Other types less the proposed one for control structure are not suitable for such a wide width of 120 m required for this spillway.
- Conduit type for discharge carrier has some problem to be cleared such as:

Safety against leakage through the contact face of concrete and embankment, resulting in piping action due to the vibration of the structure when big amount of discharge flow. This problem will be amplified when the foundation is not composed of rock like this dam site.

Safety against blockade by floating matters that make the flow capacity lessen.

 Morning glory type of control structure has also the problem to be blockaded by floating matters in the reservoir.

2) Location and alignment

From the viewpoint of the dam site topography, it is desirable to select the left abutment of the dam for the location of the spillway. It can provide a satisfiable foundation in bearing power for the spillway structure.

The proposed alignment shown in Fig. 1-3 has the shortest total length compared with two alternative alignments.

Size and capacity

Size and capacity of spillway relates to the height of dam. If a spillway of larger discharge capacity is provided, it will require less flood control capacity of the reservoir and resulting in the construction of lower dam. Conversely, small spillway capacity will require a higher dam.

Nong Pla Lai Reservoir is required to store water to a maximum extent for the purpose of larger development of the Rayong river basin and the normal high water level is determined at EL 45.0 m.

The followings are considered for the determination of the size and capacity of the spillway:

- Gate is eliminated from the spillway for easy operation and maintenance.
- Normal high water level is EL. 45.0 m.
- Possible highest high water level is limited to EL. 47.0 m because a relatively big municipality will be submerged at the water level over EL. 47.0 m.
- The spillway has a role of flood control. The higher the highest high water level is, the bigger the flood control effect.

The highest high water level of EL. 47.0 m is finally adopted in consideratin of the above conditions.

Diversion Conduit

The dam site is located 3 km upstream of the confluence of two rivers, namely Khlong Ra Woeng (left side river) and Khlong Pong Nam Bit. The river flows through these two rivers have to be diverted into diversion conduit during the construction works of the dam for the sake of smooth and safe execution of works.

The proposed plan is that the river flow through Khlong Pong Nam Bit will be firstly diverted through an open channel into Khlong Ra Woeng and then conveyed into a diversion conduit together with the river flow of Khlong Ra Woeng. Therefore, in this plan, only one diversion conduit will be constructed beneath the dam embankment.

An alternative is to construct two diversion conduits for the exclusive use of two rivers.

The construction cost comparison between the proposed plan and the alternative show the superiority of the proposed one.

Construction Cost

	Proposed	Alternative
Open Channel Conduit	US\$32,000 US\$800,000	US\$1,600,000
Total	US\$ 832,000	US\$1,600,000
RIPTION OF PROJ	ECT	

1.2 DESC

1.2.1 Principal Features of Dam and Reservoir

Reservoir

Catchment area Reservoir area at H.H.W.L.	426 km ² 23 km ²
Reservoir stage - Highest high water level (H.H.W.L.)	EL. 47.0 m
- Normal high water level (N.W.L.)	EL. 45.0 m
- Low water level (L.W.L.)	EL. 33.3 m

Reservoir storage

_	Gross	200,700,000 m ³
	Surcharge	$43,500,000 \text{ m}^3$
-	Utilization	$144,400,000 \text{ m}^3$
-	Sediment	12,800,000 m ³

Dam

-	Dan	Earth-fill type with	cut-off trench
-	Crest elevation	• •	EL. 49.0 m
-	Max. dam height	•	31.0 m
-	Crest length		4,000.0 n
	Slope gradients	Upstream slope	1:3.0
-		Downstream slope	1:2.5
-	Embankment volume		$3,200,000 \text{ m}^3$

Spillway

- Туре Side overflow weir with emergency gate $700~\text{m}^3/\text{s}$ at H.H.W.L
- Capacity
- Gate Roller gate B 5.0m x H 5.0m x 1 No. (Emergency gate for draw-down of water level)

Intake & Outlet

Intake Type: Vertical Tower

- Outlet for irrigation water

Regulating valve Jet flow gate \$1,500 mm x 1 No.

14 m³/s at L.W.L Discharge capacity

The reservoir capacity and area curve is shown in Fig. 1-4.

1.2.2 Geology

Geology of the Proposed Area

The geology of the project area is granite-based with flood plains covered with alluvium. (Refer to Figs. 1-5 and 1-6) Granite is of biotite type extensively eroded to form superficial strata of residual soil. No exposure of fresh granite is observed in the project area.

Boring test results and topographical distribution of the alluvium in flood plain show that the strata is old rather than new. The new alluvium strata is widely spread over the present flood plain with semi-compact alternating layers of clay, silt and sand. The old strata is observed in the center of the riverbed in the proposed damsite as well as in terrace which is elevated 3 to 5 meters above river bed at both banks of downstream area. The old strata is of semi-compact clayey sand.

Geology of Dam Site

Geology of dam site is composed of coarse-biotite granite as basement with alluvium spread over the river beds. (Refer to Figs. 1-7 and 1-8). This basement granite is exposed on both right and left bank, and the surface has been weathered down to residual soil. The residual soil is distributed as such the depth is in the range of 3 to 6 meters, with deposit thicker on the right bank than on the left. The feature of the soil is that of clayey sand with N-value not greater than 20. Beneath this residual soil decomposed granite is distributed. Decomposed granite is also dominated by clayey sand with N-value greater than 50 owing to high density.

Alluvium distribution in the valley area comprise either clayey sand or silty sand with old stratum having the deposit thickness as much as 15 meters and the young stratum 6 meters. Both strata have wide range of N-value which are found to be between 1 and 20 for the young, and between 2 and 50 over for the old one.

Test Boring and Permeability Test

Test boring of 15 pits along the proposed dam axis has been conducted by S.P.I. (Sverdrup & Parcel International, Inc.) in 1973, the results of which are presented as geological profile in Figs. 1-9 to 1-12. To confirm this previous test for continuation and permeability of strata, auger boring was carried out along dam axis, and the results have revealed that geological section of dam site was adequate. The results of four test boring conducted for the present study are presented as Figs. 1-9 and 1-12. Geologic Log of Drill Hole. The log shows that alluvium layers have thickness of 11 to 15 meters, running continuously from upper to lower reaches of dam.

The permeability test by means of gravity method was carried out in boring holes. The results as shown on boring log indicate that the permeability coefficients are relatively low or in the range of $K=1\times 10^{-5}$ cm/sec in the decomposed granite layer and $K=1\times 10^{-5}$ to $K=1\times 10^{-4}$ cm/sec in the sand or silt of alluvium layer. It may be concluded from the boring tests that permerbility of foundation is generally low and presents no problem.

Underground water level detected at boreholes or nearby wells is in the range of 1.0 to 1.5 meter below surface at river banks and 3 to 6 meters on hills.

Soil Survey and Laboratory Test

For both up and down stream area of the dansite recommended by S.P.I., auger boring tests were conducted for soil survey. Characteristics of soil as well as depth of weathering of foundation were studied. Some soil samples were collected and analysis was entrusted to the Research and Laboratory Division of the RID. The results are shown in Figs. 1-13 to 1-15 Graduation Test. According to the test soils are classified into either SC or SM, which are well usable as fill materials. The borrow areas proposed are large enough to supply quantity for the construction of embankment.

Concrete aggregates and rip rap materials may be obtained in a large quantity at a quarry located 12 km north of Sattahip. Other sources of these materials could be found in the highlands of granite rock located 8 km to the east or 20 km to the north east.

In addition to the above test results, the summary of soil tests conducted by S.P.I. in 1973 is shown in Figs. 1-16 to 1-19.

Engineering Geological Analysis

1) Foundation of Dam

In the flood plain area the foundation of dam is to be the top layer of granite. The alluvium in this area have poor N-value, and relatively permeable sand layer found by boring test may have to be stripped. The elevation of the foundation is expected to be EL. 18 meters.

As for the abutments, a top layer of decomposed granite is to be accepted for the foundation after removal of loose layer in residual soil distributed for 3 to 6 meters thick.

1.2.3 Dam and Reservoir

Reservoir

The reservoir created by the construction of the dam will have a surface area of 23 km^2 (14,400 rai) at the highest high water level (EL. 47.0 m) during the inflow of extraordinary flood and a gross storage capacity of 200.7 million m^3 .

The normal high water level is EL. 45.0 m and the low water level is EL. 33.3 m. The storage between them will be 144.4 million $\rm m^3$ which is an effective storage for the supply of irrigation water.

The surcharge storage of 43.5 million m³ above the normal high water level is expected to perform flood control.

Highest high water level (H.H.W.L.) will be EL. 47.0 m which is 2.0 m above the normal high water level. The extraordinary flood discharge will be discharged at H.H.W.L through the spillway.

Dan

The dan will be of earth-fill type dam with such principal features as: Crest elevation - EL. 49.0 m; Height of dam - 31 m; Crest length - 4,000 m and Embankment volume - 3.2 million m^3

The crest elevation of the dam of EL. 49.0 m provides a freeboard of 2.0 m above the highest high water level and 4.0 m above the normal high water level. The freeboard required for the dam can be calculated as below.

Hf > hw + hi

- hw is a height of wave due to wind and is estimated at 1.0 m in the case of wind velocity of 20 m/s and fetch distance of 9.0 km by means of the combining method of S.M.B and Saville methods.
- hi is an additional allowance according to type and importance of dam. For fill type dam, 1.0 m is adopted.

Therefore the freeboard required for the dam crest elevation is 2.0 m above the highest high water level.

The main embankment material will be clayey sand and silty sand which are found in plentiful supply in the vicinity of the dam site.

The slopes of the dam body to both up and down stream are 1:3.0 and 1:2.5 with the protection against erosion by rip-rap and sodding, respectively.

The foundation of the dam will be cut-off to the impervious strata with the bottom width of 6.0 m to 8.0 m on the dam axis. No curtain grouting will be provided for the improvement of the foundation.

A part of the excavated material from the spillway will be used for the dam embankment after temporary storage.

The stability analysis of dam was carried out for the preliminary design of standard cross-section of dam.

Stability analysis was made for the following cases:

- 1) Normal high water level without earthquake,
- 2) Normal high water level with horizontal earthquake acceleration,
- Empty reservoir just after completion of dam embankment without earthquake acceleration,
- 4) Rapid draw-down of reservoir water level from normal high water level to low water level.

Assumptions and constants used in the analysis are given below:

1) Unit weight

Water pw = 1.0 t/m^3 Embankment material (core & shell) wet Wt = 1.8 t/m^3 saturated Wsat = 2.0 t/m^3

Angle of internal friction of material

$$\phi = 25^{\circ}$$

3) Cohesion of material

$$c = 3.0 \text{ ton/m}^2$$

4) Seismic coefficient (horizontal directin)

$$K = 0.05$$

The result of calculation is shown in Fig. 1-20.

The safety factor is the smallest in the case of just after completion of embankment.

Rather high pore pressure in embankment was assumed in this analysis standing on the safety side analysis. Therefore, actual safety factor will show more stable condition of the dam embankment.

No problem in other cases are found in this stability analysis.

1.2.4 Spillway

The proposed Spillway, on the left bank, consists of an side overflow weir of 120 m wide, concrete lined discharge carrier with energy dissipator of 200 m and downstream channel of 750 m. The total length of the spillway including the downstream channel reaches to about 1,000 m.

The design flood discharge of the spillway is estimated at $700 \text{ m}^3/\text{s}$ that is based on the figure which is 1.2 times the discharge of 1/200 probability. Storage effect of the reservoir is then taken into consideration to derive the outflow peak discharge of $700 \text{ m}^3/\text{s}$.

	Inflow peak discharge	Outflow peak discharge	Storage volume	
	(m ³ /s)	(n^3/s)	(m ³)	
Design			************	
flood (1.2 x 1/200 pm	l,050 robability)	700	43,500,000	

Fig. 1-21 shows the inflow-outflow hydrograph of the extraordinary flood.

The spillway will also be used as a flood control facility. The surchrge capacity for the 30-year flood is as follows and shown in Fig. 1-22.

	Inflow peak discharge	Outflow peak discharge	Storage volume
	(n^3/s)	(m ³ /s)	(m ³)
30-year Flood	695	475	34,200,000

A roller gate of 5.0 m wide and 5.0 m high is provided for the emergency draw-down of water level of reservoir. The water level will be drawn down from the natural high water level to the low water level through the spillway and the intake facilities within 20 days.

1.2.5 Intake and Outlet

The intake and the outlet erected at the upstream and downstream ends of the diversion conduit will serve to tap irrigation water and to cope with emergency draw-down of water level of the reservoir.

The diversion conduit will be diverted to a part of the tapping irrigation water facilities after it is plugged with concrete on the dam axis and provided with a penstock.

Maximum intake volume based on monthly mean water requirement would be $10~\text{m}^3/\text{s}$. When the daily fluctuation of irrigation requirement and the capacity for emergency discharge are considered, the capacity of the facilities would be $14~\text{m}^3/\text{s}$ at the low water level.

The discharge volume will be controlled by a valve (jet flow gate ϕ 1,500 m/m) installed at the outlet. Another gate (slide gate ϕ 1,500 m/m) provided on just upstream of the jet flow gate is for the maintenance of the jet flow gate.

The discharged water will be dissipated in the stilling basin and conveyed to the existing river through a channel of $510\ m$ long.

1.2.6 River Diversion

The river flow will be diverted through the diversion conduit during the construction works of the dam for the sake of smooth execution of the works.

The main facilities of the diversion works are diversion conduit, upstream channel, downstream channel, connection channel of two rivers, upstream of the dam site, primary upstream coffer dam, upstream main coffer dam and downstream coffer dam.

The facilities are designed to be safe against the estimated flood of 1/10 probability. This flood discharge will be controlled in the reservoir resulting in rising of the water level to EL.38.0 m. The diameter of the conduit is 3.0 m.

The diversion conduit is erected on the left bank of Khlong Ra Woeng river (left side river). Another river, namely Khlong Pong Nam Bit (right side river) is diverted to the Khlong Ra Woeng river through the open channel connecting two rivers.

Upon completion of the dam construction, the conduit will be plugged with concrete on the dam axis and diverted to a part of the tapping irrigation water facilities.

Fig. 1-23 shows diameter of conduit vs. maximum reservoir water level to be raised in case of the floods of 1/5 and 1/10 probability.

1.2.7 Road Relocation and Land Acquisition

The reservoir area of $24.6~\rm km^2$ at EL. $48.0~\rm m$ which is $1.0~\rm m$ high above the highest high water level should be acquired before the completion of the dam construction.

When other areas such as dam site, borrow area and right of way for road to be relocated are added to the above areas, the total land acquisition will be $31\ km^2$.

Most of this land is presently under cassava production. Approximately 200 houses now occupy the area.

Local roads to be submerged have to be relocated. The relocated road will be on the right bank of the reservoir with the total length of some 17.3 km as shown in Fig. 1-24.

As for the compensation problem of the people in the reservoir, they will receive compensation money to move in other places.

Two alternatives are to make land for resettlement in the reservoir by embankment or to get compensation land. The costs required for both alternatives are roughly estimated as shown in Table 1.1 on the basis of the assumptions that each compensation house is to be provided with 1.6 ha (10 rai) of land.

Figs. 1-25 and 1-26 shows the illustration of these alternative plans.

1.2.8 Design Drawings

The drawings are shown in Fig. 1-27 to Fig. 1-33. They include general plan, longitudinal profile and standard cross-section of dam, plan and longitudinal profiles of spillway and waterway and details of spillway.

1.3 CONSTRUCTION PLAN

1.3.1 Basic Consideration

The construction plan of the Nong Pla Lai Dam is to be formulated taking availability of construction materials on the site, weather conditions, topographic and geologic conditions, etc., into consideration.

Wherever practically possible, mechanical execution of work is to be adhered in major items of the work. The commencement of the construction work will be in May 1984 for the earliest possible start of impounding water. The work will be performed by 2-shift of 8 hours (actual work hours of 7), i.e., 2-shift 16 hours (actual work hours of 14) per day.

1.3.2 Construction Materials

Embankment Materials

The volume of earth materials to be embanked for the main dam and main coffer dam is estimated at about 3,195,000 m³ in total consisting of core, shell, filter and rip-rap materials.

Item	Main dam	Main coffer dam	Total
Core Shell)	2,220,000	604,000	2,824,000
Filter	120,000		120,000
Rip-Rap	163,000	88,000	251,000
Total	2,503,000	692,000	3,195,000

The results of boring survey and field reconnaissance show that abundant major construction materials, such as core & shell are found in the vicinity of the dam site, and no problem is expected in securement of the materials. In this plan, the borrow area is located at left and right bank abutments down-stream of the dam site.

A considerable volume of earth from the excavation of the dan foundation and spillway will be used for embankment materials after temporary storage during excavation.

Item	Total excavation volume	Coefficient of efficiency	Volume to be enbanked
Dan foundation Spillway	n 800,000 150,000	0.6 0.8	480,000 120,000
Total	950,000	0. 0	600,000

For the filter material (drain material), sand obtained from the upper layer of the borrow area is expected to be used. Prior to securing the earth for core and shell, this will be temporarily stored in the shed and then embanked in compliance with the work schedule.

Rip-rap material which is estimated at about 250,000 in total, is to be purchased from the local source.

Concrete Materials

The total amount required of concrete for spillway, intake, etc., is estimated at about $48,000~\mathrm{m}^3$. Coarse aggregate and fine aggregate are to be purchased from the local source.

Item	Q'ty (m ³)	
Diversion	13,400	T
Spillway	31,000	İ
Intake & Outlet	1,000	48,000 m ³
Hiscellaneous	2,600	

As for cement (12,000 tons) and reinforcement bars (3,000 tons), it is also possible to get these materials locally.

Construction Equipment

Construction equipment to be used in the construction work consist of motor scraper, (Capacity: $16~\text{m}^3$ heaped) bulldozer (Capacity: 21~and~32~tons), wheel loader (Capacity: $3.3~\text{m}^3$), Crawler loader (Capacity: $3.3~\text{m}^3$), heavy dump truck (Capacity: 20~tons), etc. These construction equipments are imported by the contractor.

Metal

Cates and valves of spillway and intake facilities are all imported.

Local Materials

Local materials will be utilized to the maximum extent. The major items are cement, steel bars, wooden materials, bricks, stone products, oil product, etc.

1.3.3 Construction Facilities

Such facilities as office, living quarters, storage house, motor pool, repair shop, form assembly, reinforcement fabrication, concrete batching, water supply, power supply, rip-rap materials, temporary shed for aggregate and rip-rap materials, etc., and construction road are required for the smooth execution of the construction work.

A part of the office will remain after completin of construction of the dam and will become parmamently a part of the administration office building.

1.3.4 Relocation Road

Upon completion of the dam construction, the existing road will be submerged in the reservoir. The relocation road, about 17.3 km in length, are constructed along the right bank of the reservoir.

1.3.5 Construction Schedule

The construction works of this dam involve preparatory works, construction works of river diversion, main coffer dam, main dam, spillway, intake and outlet structures.

All works are scheduled to be completed in about 2.5 years starting in May 1984 and ending in September 1986.

The construction works are to be executed on contract bases and to be performed by 2 shift (1 shift of 8 hours, actual work hours of 7).

The construction time schedule is shown in Fig. 1-34 and the main works in each year are described below.

First year (1983)

Land acquisition work is to be started in this year.

Second year (1984)

Major preparatory works such as the construction of camps and shops and construction road etc., are to be executed. These works shall be completed by the end of this year except a part of construction road.

Prior to the commencement of main works, diversion conduit and open channel construction works are to be executed starting in September and ending up in March of next year.

Excavation works of the main dam are to be started in October. Road relocation work is also started in this year.

Third year (1985)

The main work of this year is embankment of the main dam including the main coffer dam.

The embankment work is scheduled to be started in February. Approximately 70% of dam volume is to be embanked in this year.

The main portion of the spillway and about a half length of the downstream channel are also to be constructed.

The road relocation work is continued in this year.

Fourth year (1986)

The main dam embankment, construction of spillway and downstream channel are continued in this year.

Erection works of spillway gate is to be done in this year.

An intake tower and outlet valve house are constructed in this year and valves and penstock are erected following the completion of the main dam embankment and plugging of the diversion conduit.

All works are to be completed at the end of September of this year.

1.4 COST ESTIMATE

1.4.1 Construction Cost

The construction cost to be financed for Nong Pla Lai Dam is estimated at US\$66,550,000 equivalent consisting of US\$29,850,000 equivalent of foreign currency and US\$36,700,000 equivalent of local currency, respectively.

The cost estimate is based on the following considerations.

- 1) Exchange rate US\$1.00 = \$230 = \$23
- 2) The unit cost for each item is estimated in the price level of February, 1981.
- 3) The costs equivalent to CIF prices of construction equipment, metal, steel bar, fuel and oil, and cement are included in the foreign currency portion. Duty and Imposts and misc., local expenses are included in the local currency portion.

As for cement, steel bar, fuel and lubrications these are included in the foreign currency portion in spite of the possibility of securement in the local market, considering that their raw materials must be imported.

4) Contingencies consist of price and physical contingencies. Price escalation ratio of 7% and 12% per annum are adopted for foreign and local currency portions respectively. Physical contingency of 15% is adopted.

The breakdown of the cost estimate by each work item and the annual disbursement schedule are shown in Tables 1-2 to 1-5.

- 2. BAN BUNG DAM
- 2.1 DEISN CONDITION
- 2.1.1 Function of Dam and Reservoir

Ban Bung Dam is to be designed so as to have the following functions and facilities.

1) Strage Capacity

Utilization	12.5 MCM
Surcharge	7.8
Sediment	1.6
Gross	21.9

- 2) Spillway for inflow of 1.2 times 200-year flood
- 3) intake and Outlet for vested irrigation water/1
- 4) Facilities for emergency draw-down of water level

The existing pumping stations for industrial-manicipal water are transferred to the right abutment of the new dam. The new water transmission system including pumping station for Ban Bung Municipality is to be constructed by the beneficiary and not included in the project.

- 5) Branch Valve for Power Generation (in future)
- 6) Diversion Conduit for 10-year flood

2.1.2 Design Formulation

Dan

1) Type

The geological and topographical condition of the dam site do not accept concrete gravity dam. The difficulty of economical securement of rock material makes Ban Bung Dam difficult to adopted rock-fill type as the dam type.

Earth-fill type dam would be the only type recommendable for this site from the viewpoints of abundant availability of embankment materials and relatively small height of the dam.

From the series of investigations and laboratory tests up to date, it is revealed that the embankment materials with abundant quantity and enough quality can be provided in the vicinity of the dam site.

Homogeneous earth-fill type dam is then adopted for Ban Bung Dam.

For the foundation treatment, cut-off method to impervious strata of foundation shows suitability for this dam site. It is superior than grouting method in technical and economical viewpoints.

2) Dam axis

The proposed dan axis is set at 100 m down-stream of and in parallel with the existing Ban Bun Dan.

An alternative of the dam axis is the existing one. The existing dam body will be used in this case with some triuming of the surface of the slope. (Refer to Figs. 2-1 and 2-2)

From the results of comparative studies of these two dam axes, it is said that the alternate axis will require a smaller embankment volume of about 85% to the proposed one. However, the alternate axis causes such technical by difficult problems during the construction works as:

- Leakage through the foundation of the existing dam will cause trouble to the excavation and embankment works of the cut-off portion just downstream of the existing dan body.
- The execution of the construction works such as spillway, intake & outlet, diversion conduit are very difficult under full reservoir condition of the existing reservoir.

The proposed dam axis, on which a series of geological investigations have been carried out, is therefore recommendable in spite of the slight inferiority of the embankment volume.

Spillway |

1) Type

Among the spillway types mentioned in 1.1.2 (Nong Pla Lai Dam), the following types are judged to be the most suitable for Ban Bung Dam's spillway.

Control structure : Center overflow type without

gate

Discharge carrier : Chute type

Energy dissipator : Hydraulic jump type

The followings were taken into consideration for the above judgements.

- For the control structure, center overflow type of the width of 20 m will fit enough to the dam with easy construction works.
- Morning glory type of control structure, as one of alternative, has the problem to be blockaded by floating matters in the reservoir resulting in less flow capcity.
- When the center overflow type is adopted, chute and hydraulic jump types are defined for discharge carrier and energy dissipator, respectively.
- Gate is eliminated from the spillway for the sake of easy operation and maintenance.

2) Location and alignment

From the viewpoint of the dam site topography, it is desirable to serect the spillway on the right bank of the river. The geology of this portion can provide a foundation for it with sufficient bearing power and imperviousness.

The proposed alignment of the spillway is the only recommendable one, therefore, no alternative was studied.

3) Size and capacity

Size and capacity of spillway relate to the height of dam. If a spillway of larger discharge capacity provided, it will require less surcharge capacity of the reservoir and resulting in the construction of lower dam. Conversely, small spillway will require a higher dam.

The followings are considered for the determination of the size and capacity of the spillway:

- Gate is eliminated from the spillway for easy operation and maintenance.
- Normal high water level of EL. 82.1 is set from the water balance calculation to provide a reservoir capacity of 14 MCM including sediment.
- The spillway has a role of flood control. The higher the highest high water level is, the bigger the flood control effect.

The size of the overflow weir of 20 m is finally adopted from the flood control study. The inflow peak discharge of $150~\text{m}^3/\text{s}$ will be decreased to $70~\text{m}^3/\text{s}$ of outflow peak in 30-year flood.

Diversion Conduit

A diversion conduit will be built for smooth and safe execution of the construction works of the dam together with appurtenant structures such as coffer dams.

Flood occurred in the basin firstly flows into the existing reservoir resulting in an effective peak discharge control.

The regulated discharge from the spillway and/or outlet of the existing dam will be diverted into the diversion conduit.

The proposed diversion conduit is on the right side of the existing river. This location is the only one recommendable for this site from the viewpoint of topography and geology. No alternative, therefore, was studied.

2.2 DESCRIPTION OF PROJECT

2.2.1 Principal Features of Dam and Reservoir

Reservoir

Catchment area Reservoir area at H.H.W.L	53 km ² 4 km ²
Reservoir stage	
- Highest high water level (H.H.W.L)	EL. 84.3 m
 Normal high water level (N.W.L) 	EL. 82.1 m
- Low water level (L.W.L)	EL. 76.1 m

Reservoir storage

-	Gross	21,900,000 m ³
**	Surcharge	$7,800,000 \text{ m}^3$
	Irrigation, industrial & municipal	$12,500,000 \text{ m}^3$
-	Sediment	$1,600,000 \text{ m}^3$

Dam

-	Dan	Earth-fill type with	cut-off trench
-	Crest elevation	· ·	EL. 86.3 m
	Max. dam height		21.5 m
-	Crest length		2,800.0 m
-	Slope gradients	Úpstream slope	1:3.0
-		Downstream slope	1:2.5
-	Embankment volume	•	1,400,000 m ³

Spillway

- Type Overflow weir without gate - Capacity 125 m³/s at H.H.W.L

Intake & Outlet

- Intake Type: Vertical Tower
- Outlet for vested irrigation water
 Regulating valve Jet flow gate \$1,000m/m x 1 No.

Discharge capacity 5 m³/s at L.W.L

The intake and pumping station for the industrial-minicipal water of Ban Bung Municipality is to be constructed by the beneficiary and not included in the project.

The existing pumping stations are transferred to the right abutment of the new dam.

The reservoir capacity and area curve is shown in Fig. 2-3.

2.2.2 Geology

Geology of the Proposed Area

The geology of the project area is granite-based with flood plains covered with colluvial deposit and alluvium (Refer to Figs. 2-4 and 2-5). Granite is of two mica type extensively eroded to form superficial strata of residual soil. Some exposure of fresh granite may be observed in the mountains within the project area.

Flood plain and present reservoir area is covered by loose layers of clay, silt or sand. Plains and foothills among the nearby hilly land are covered by colluvial deposit of loose sandy clay, spread over the basement of granite.

Geology of Damsite

Geology of dansite is composed of two mica granite as basement with alluvium spread over the river beds. (Refer to Figs. 2-6 and 2-7). This basement granite is exposed on both right and left bank, the surface being weathered down to residual soil. Fresh rock is observed only in boreholes taken at the river beds.

The residual soil is distributed as such the deposit is thicker on the right bank than on the left ranging from 4 to 8 meters. The feature of the soil is that of clayey sand with N-value between 10 and 50.

Colluvial deposit carried over from surrounding highlands is mostly semi-compact fine grain sandstone and covers the residual soil deposited underneath. The layer is 1 to 3 meters thick and thicker at slopes.

Alluvium distribution in the valley comprise mainly the clayey sand which is up to 7 meters thick. N-value is below 10 characterized by loose layer.

In addition to the above, small hill of slate may be observed which interferes with the granite.

Of the bed-rock in the dam site area, residual soil, decomposed granite and fresh rock are semi-impervious to impervious in permeability while the alluvium is permeable to semi-permeable.

Test Boring

Test boring of 13 pits along the proposed dam axis has been conducted by S.P.I. (Sverdrup & Parcel International, Inc.) in 1973, the result of which is presented as geological profile in Fig. 2-7. To confirm this previous test, auger boring was carried out along dam axis, and the results have revealed that the geological profile of damsite was adequate.

The permeability test by S.P.I. for soil samples collected at the dansite show that except for some sections permeability coefficient is generally small which is less than $K = 1 \times 10^{-5}$ cm/s. The foundation poses no problem concerning permeability.

Underground water level at the riverbank is 1.0 meter below surface and at left and right abutments, 2 to 3 meters below.

Soil Survey and Laboratory Test

For both up and down stream area of the damsite recommended by S.P.I., auger boring test was conducted for soil survey. Characteristics of soil as well as depth of weathering of foundation was studied. Some soil samples were collected and analysis was entrusted to the Research and Laboratory Division of the RID. The results are shown in Figs. 2-8 and 2-9 as gradation test.

According to the testresults, the soils are classified into either SC or SM, which are well usable as fill materials. The borrow areas proposed is large enough to supply quantity for construction of embankment.

As for the core material, a small hill of laterized surface layer located 2 km down-stream of damsite would be a good source.

Aggregates and rip-rap materials may be acquired in a large volume at a quarry of limestone 7.5 km south of Chon Buri. Another source is found in a hill of granite rock adjacent to the right bank of the damsite.

In addition to the above test results, the summary of soil tests conducted by S.P.I. in 1973 is shown in Figs. 1-16 and 2-10 to 2-11.

Engineering Geological Analysis

- Foundation of Dam

In the flood plain area, the top layer of granite is enough to be the foundation of dam. The alluvium present in this area have small N-value, and relatively permeable sand layer found by boring test may have to be excavated. The elevation of the foundation is expected to be EL. 64 to 65 meters.

As for the abutments, a layer having N-value of more than 50 is to be accepted after removal of loose layer in residual soil distributed for thickness of 1 to 5 meters.

2.2.3 Dam and Reservoir

Reservoir

The reservoir created by the construction of Ban Bung dam will have a surface area of $4.0~\rm km^2$ (2,500 rai) at the surcharge water level (EL. 84.3) during the inflow of the extraordinary flood and a gross storage capacity of 21,900,000 m³.

The normal high water level (N.N.L.) of EL. 82.1 can provide an effective storage of 12,500,000 m³ for vested and new water demands of irrigation, municipal and industrial water supply.

A storage capacity for sediment is also provided below the low water level (L.W.L.) of EL. 76.1 m. This capacity can store 1.6 MCM of sediment that corresponds to 100 years sedimentation.

For flood control purpose, a surcharge capacity of 7,800,000 $\rm m^3$ is provided between the highest high water and normal high water level.

Highest high water level will be EL. 84.3 m.

Dam

The dam will be of earth-fill type dam with such principal features as: Crest elevation EL 86.3 m - Height of dam - 21.5m; Crest length 2,800 m and Embankment volume - 1.4 million m^3 .

A freeboard of 2.0 m is provided above the highest high water level for the determination of the dam crest elevation. The freeboard is for the wave due to wind and additional allowance given for earth-fill dam.

Hf > hw + hi

where, Hf : freeboard (m)

hw : height of wave due to wind (m)

hi : additional allowance according to type

and importance of dam (m)

- hw is estimated at 0.6 m in the case of wind velocity of 20 m/s and fetch distance of 3.0 km by means of the combining method of S.M.B. and Saville methods.

hi is 1.0 m for fill-type dam.

Therefore the freeboard required for the dam is determined to be 2.0 m above the highest high water level by making round computed Hf.

The main embankment material will be clayey sand and silty sand which is found in plentiful supply in the vicinity of the dam site.

The slopes of the dam body to both up and down streams is 1:3.0 and 1:2.5 with the protection against erosion by rip-rap and sodding, respectively.

The foundation of the dam will be cut-off to the impervious strata with the bottom width of 6.0 to 4.0 m on the dam axis. No curtain grouting is to be provided to improve the foundation.

A part of the excavated material from the foundation may be used for the dam embankment after a temporary storage.

The stability analysis was carried out for the preliminary design of standard cross-section of dam.

The stability analysis was made for the following cases:

- 1) Normal high water level without earthquake,
- 2) Normal high water level with horizontal earthquake acceleration,
- Empty reservoir just after completion of dan embankment without earthquake,
- 4) Rapid draw-down of reservoir water level from normal high water level to low water level.

Assumptions and constants used in the analysis are given below:

1) Unit weight

Water $pw = 1.0 \text{ t/m}^3$ Embankment material (core & shell) wet $Wt = 1.8 \text{ t/m}^3$ saturated Wsat = 2.0 t/m³

2) Angle of internal friction of material

3) Cohesion of material

 $C = 3.0 \text{ ton/m}^2$

4) Seismic coefficient (horizontal directin)

K = 0.05

The result of calculation is shown in Fig. 2.12. The safety factor is the smallest in the case of just after completion of embankment.

Rather high pore pressure of embankment was assumed in this analysis standing on the safety side analysis. Therefore, actual safety factor will show more stable condition of the dam embankment.

No problem in other cases are found in this stability analysis.

2.2.4 Spillway

The proposed spillway on the right bank consists of an center overflow weir of 20 m wide, concrete lined discharge carrier and energy dissipator of hydraulic jump type. The total length of the spillway including the downstream channel is about 250 m.

The design flood discharge of the spillway is estimated at $125 \text{ m}^3/\text{s}$ that is based on the figure which is 1.2 times the discharge of 1/200 probability. Storage effect of the reservoir is then taken into consideration to derive the outflow peak discharge of $125 \text{ m}^3/\text{s}$.

•			Storage volume
• • • • • • • • • • • • • • • • • • •	discharge (m ³ /s)	discharge (m ³ /s)	(m ³)
Design flood			
:	245	125	7,800,000
(1.2 x 1/200 pro	bability)		• •

The spillway will be used as a flood control facility. For example surcharge capacity for the 30-year flood is as follows.

	Inflow peak discharge	Outflow peak discharge	Storage volume
	$(m^3/s)^3$	(m ³ /s)	(m ³)
30-year-flood	150	70	5,200,000

The Inflow-outflow hydrographs of the extraordinary flood and 30-year flood are shown in Fig. 2-13 and Fig. 2-14, respectively.

2.2.5 Intake and Outlet

The intake and the outlet erected at the upstream and downstream ends of the diversion conduit will serve to tap irrigation water and to cope with emergency drawdown of water level.

The diversion conduit will be diverted to a part of the tapping irrigation water facilities after it is plugged with concrete on the dam axis and provided with a penstock.

The capacity of the facilities are determined to drawdown the reservoir water level in emergency. The required volume of water for the vested irrigation is small.

A main valve of 1,000 m/m in diameter is provided at the outlet for the said purpose. It is accompanied by a slide gate of 1,000 m/m in diameter on the upstream for the maintenance and repair.

The discharged water will be dissipated in the stilling basin and conveyed to the downstream channel.

2.2.6 River Diversion

The river flow will be diverted through the diversion conduit during the construction works of the dam.

The main facilities of the diversion works are diversion conduit, upstream channel, downstream coffer dam.

The facilities are designed to be safe against the discharge released from the existing reservoir when 10-year probable flood occurred.

The diversion conduit with 3 m in diameter is erected on the right side of the river. Upon completion of the dam construction, the conduit will be plugged with concrete on the dam axis and works as a permanent structure for tapping irrigation water. A steel penstock will be installed.

2.2.7 Road Relocation and Land Acquisition

The reservoir area of 2.7 $\rm km^2$ at EL. 85.3 m which is 1.0 m high above the highest high water level should be acquired before the completion of the dam construction.

Most of this land is presently under cassava production except the existing reservoir area. Approximately 40 houses now occupy the area.

Local roads to be submerged have to be relocated. The relocated road is to be on the right bank of the reservoir with the total length of some 3.7 km as shown in Fig. 2-15.

2.2.8 Design Drawings

The design drawings are shown in Fig. 2-16 to Fig. 2-21. They include general plan longitudinal profile of and standard cross-section of dam, plan of spillway and waterway details of spillway and longitudinal profile of waterway.

2.3 CONSTRUCTION PLAN

2.3.1 Basic Consideration

The construction plan of the Ban Bung Dan is to be formulated taking availability of construction materials on the site, weather conditions, topographic and geologic conditions, etc., into consideration.

Wherever practically possible, mechanical execution of work is to be adhered in major items of the work. And the commencement of the construction work will be in May 1984 for the earliest possible start of impounding water. The work will be performed by 2-shift of 8 hours (actual work hours of 7), i.e., 2-shift 16 hours (actual work hours of 14) per day.

2.3.2 Construction Naterials

Embankment Materials

Earth materials to be embanked for the main dam and coffer dams is estimated at about 1,400,000 m³ in total consisting of core, shell, filter and rip-rap materials.

<u>Item</u>	Main dam	Coffer dam	Total
Core Shell)	1,140,000	40,000	1,180,000
Filter Rip-Rap	80,000 140,000	-	80,000 140,000
Total	1,360,000	40,000	1,400,000

The results of boring survey and field reconnaissance show that abundance of major construction materials, such as core & shell are found in the vicinity of the dam site, and no problem is expected in securement of the materials. In this plan, the borrow area is located at left and right bank abutments of the proposed dam site.

A volume of earth from the excavation of the dam foundation and spillway will be used for embankment materials after temporary storage during excavation.

Item	Total excavation volume	Coefficient of efficiency	Volume to be embanked
Dam foundation Spillway	400,000 25,000	0.6 0.8	240,000 20,000
Total	425,000		260,000

For the filter material (drain material), sand obtained from the upper layer of the borrow area is expected to be used. Prior to securing the earth for core and shell, this will be temporarily stored in the shed and then embanked in compliance with the work schedule.

Rip-rap materials which is estimated at about $140,000~\mathrm{m}^3$ in total, is to be purchased from the local source.

Concrete Materials

The total amount required of concrete for spillway, intake, etc., is estimated at about 12,000 m³. Coarse aggregate and fine aggregate are to be purchased from the local source.

Item	Q'ty (m ³)	•
Diversion	2,100	j
Spillway	8,500	
Intake & Outlet	800	12,000 m ³
Miscellaneous (5%)	600	
		•

For cement (3,000 tons) and reinforcement bars (700 tons), it is also possible to get these materials locally.

Construction Equipment

Construction equipment to be used in the construction work consist of motor scraper, (Capacity: 16 m³ heaped) bulldozer (Capacity: 21 and 32 tons), wheel loader (Capacity: 3.3 m³), Crawler loader (Capacity: 3.3 m³), heavy dump truck (Capacity: 20 tons), etc. These construction equipment are imported by the contractor.

Metal

Gates and valves for outlet facilities are all imported.

Local Materials

Local materials will be utilized to the maximum extent. The major items are cement, steel bars, wooden materials, bricks, stone products, oil product, etc.

2.3.3 Construction Facilities

Such facilities as office, living quarters, storage house, motor pool, repair shop, form assembly, reinforcement fabrication, concrete batching, water supply, power supply, rip-rap materials, temporary shed for aggregate and rip-rap materials, etc., and construction road are required for the smooth execution of the construction work.

The part of the office will remain after completion of construction of the dam and will become parmanently a part of the administration office building.

2.3.4 Relocation Road

Upon completion of the dam construction, the existing road will be submerged in the reservoir. The relocation road, about 3.7 km in length, is constructed along the right bank of the reservoir.

2.3.5 Construction Schedule

The construction works of this dam involve preparatory works, construction works of river diversion, main coffer dam, main dam, spillway, intake and outlet structures.

All works are scheduled to be completed in about two years starting in May 1984 and ending in May 1986.

The construction works are to be executed on contract bases and to be performed by 2 shift (1 shift of 8 hours, actual work hours 7).

The construction time schedule is shown in Fig. 2-22 and the main works in each year are described as follows:

First year (1983)

Land acquisition work will be started in this year.

Second year (1984)

Major preparatory works such as the construction of camps and shops, construction facilities and construction road, etc., are to be executed. These works shall be completed by the end of this year.

Diversion conduit with the appurtenant open channels are constructed.

Third year (1985)

The main works of this year are excavation, embankment and spillway construction.

The excavation work which is started at the end of the previous year shall be ended in April.

The embankment work is scheduled to be commenced in March and ending in February of the next year. Approximately 80% of the total volume shall be embanked this year.

As for the spillway, excavation and concrete works shall be completed within this year.

The intake tower and outlet valve house works are also executed.

Fourth year (1986)

The remaining embankment shall be completed by February.

Metal works of intake tower and outlet valve shall be executed mainly this year.

All works including miscellaneous works are to be ended by the end of May this year.

2.4 COST ESTIMATE

2.4.1 Construction Cost

The construction cost to be financed for Ban Bung Dam is estimated at US\$23,590,000 equivalent consisting of US\$12,470,000 equivalent of foreign currency portion and US\$11,120,000 equivalent of local currency portion, respectively.

The breakdown of the cost estimate by each work item and the annual disbursement schedule are shown in Tables 2-1 to 2-4.

The cost estimate is based on the following considerations.

- 1) Exchange rate US\$1.00 = 4230 = \$23
- 2) The unit cost for each item is estimated in the price level of the beginning of 1981.
- 3) The costs equivalent to CIF prices of construction equipment, metal, steel bar, fuel and oil, and cement are included in the foreign currency portion. Duty and imposts and misc., local expenses are included in the local currency portion.

As for cement, steel bar and fuel and oil, these are included in the foreign currency portion in spite of the possibility of securement in the local market, considering that their raw materials must be imported.

4) Contingencies consist of price and physical contingencies. Price escalation ratio of 7% and 12% are adopted for foreign and local currency portions respectively. Physical contingency of 15% is adopted.

Table 1-1 Cost Comparison of Compensation

Unit: Militon US\$

Alt. 2	ı	320ha × 7005 = 0.2 1,000,000 m ³ × 2.5 = 2.5	2.5				10.7	1.6	
Alt. 1	ı	10,000,000 m3 x 2.5\$	5,000 m x 500\$	200 houses x 10,000\$	10,000 m × 100\$	2.5	33.0	5.0	
Proposed	6.6	ı	l	ı	ı		g.°	9.0	
Item	1. Compensation for Resettlement	2. Land Acquisition 3. Earth Work Embankment (incl. Excavation	and transportation) 4. Drainage Channel	5. House	6. Road	7. Water Supply Electricity and Others	(Sub-Total)	o. Contingency 15%	

Costs for land acquisition and earth work required for Alternative 2 have been broadly estimated. Note:

Table 1-2 Financial Cost (Nong Pla Lai Dam)

1 US\$ = 23 B = ¥ 230

	 	·	+		
Item	Q [†] ty	Unit	Total	MILLION U	JS\$
Item	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	onic	Total	F.C	L.C
1. Main Civil Works			24.62	14.07	10.55
1.1 Preparatory Works	1	L.S	1.61	0.81	0.80
1.2 Diversion Works	Con. 13,400	ъ3	1.84	0.99	0.85
1.3 Main Coffer Dam	ա ա թ. 690,000	₁₂ 3	3.54	1.87	1.67
1.4 Main Dan	Enb. 2,500,000	₁₃ 3	12,48	7.63	4.85
1.5 Spillway	Con. 31,000	$\mathbf{a}_{\mathbf{m}}$ 3	4.92	2.66	2.26
1.6 Intake & Outlet	Con. 1,000	_m 3	0.23	0.11	0.12
	,	-			3112
2. Equipment & Materials	1	L.S	0.93	0.70	0.23
3. Road Relocation	17.3	km	2.08	1.30	0.78
(Sub-Total 1 - 3)	•		(27.63)	(16.07)	(11.56)
4. Land Acquisition & Compensation	3, 100 200	ha houses	9,37	5 g -	9.37
5. Engineering Service	1	L.S	3, 15	3.02	0.13
6. Contingencies					
6 1 Physical Cont. (15%)	1	L.S	201	2 07	
6.1 Physical Cont. (15%) 6.2 Price Cont.	-		6.04	2.87	3.17
0.2 Frice Cont.	1	L.S	19.22	6.75	12.47
		i			
Total			65.41	28.71	36.70
7. Interest during Construction (3%)	1	L.S	1.14	1.14	_
OD AND MONEY					
GRAND TOTAL		!	66.55	29.85	36.70

Table 1-3 Disbursement Schedule of Financial Cost (Nong Pla Lai Dam)

	Total	T NOT TITM	70.0				Annual I	Of shirteen	r-t	US\$ = 23 y	¥ = ¥ 230
Item	70-04	z	\$50	15	1983) I	1984	1985	nent 985	31	1986
	Total	F.C	r.0	я. С	r.c	F.C	D.1	υ U	r.c	υ. Ω.	r.c
1. Main Civil Works	24.62	14.07	10.55			1.60	1.34	8.39	6.28	4.08	2.93
 Equipment & Materials 	0.93	0.70	0.23		hamman and an		••	- <u>-</u>		0.70	0.23
3. Road Relocation	2,08	1.30	0.78			0-65	0.39	0.65	0,39	·	
(Sub-Total 1 - 3)	(27.63)	(16.07)	(11.56)			(2.25)	(1.73)	(9.04)	(6.67)	(4.78)	(3.16)
4. Land Acquisition & Compensation	9.37		9.37	1	2.34		4.69	l	2.34		
5. Engineering Service	3,15	3.02	0.13	1.90	0.03	0.40	0.03	0.39	0.03	0.33	0.04
6. Contingencies						:					
6.1 Physical Cont. (15%) 6.2 Price Cont.	19.22	2.87	3.17	0.29	0.36	0.40	3.01	1.41	1.36	0.77	0.48
Total	65.41	28.71	36.70	2.51	3.42	3.74	10.43	14.21	16.37	8.25	6.48
7. Interest during Construction (3%)	1.14	1.14	ı	0.03	1	60.0	ı	0.35	i	0.67	1
CRAND TOTAL	66.55	29.85	36.70	2.54	3.42	3.83	10.43	14.56	16.37	8.92	87.9

Table 1-4 Reonomic Gost (Nong Pla Laf Pan)

Table 1-5 Disbursement Schedule of Economic Cost (Nong Pla Lai Dam)

1 US\$ = 23 N = X 230

(1.87)1.83 0.04 0.04 0.29 2.20 ပ ဦး 986 (4.78) 4.08 0.70 0.33 0.77 5.88 Ċ, (4.32) 4.08 0.24 1.08 0.03 0.81 6.24 i, Disbursement 1985 (9.04) ŧ 0.65 8.39 0.39 1-41 10.84 C) (1.21)0.97 0.24 2.15 0.03 0.51 3.90 Annual , C 984 (2.25)1.60 0.65 0.40 0.40 3.05 F. 1.08 0.03 0.17 1.28 , C ı 1.90 0.29 2.19 C) (L) (1.40) 6.88 0.48 0.04 0.13 1.78 4.31 13.62 . C Total Million US\$ (16.07)1.30 0.70 3.02 21.96 14.07 2.87 C) (23.47)Total 20.95 1.78 0.74 3.15 4-65 35.58 6.1 Physical Cont. (15%) Engineering Service Land Acquisition & (Sub-Total 1 - 3) Main Civil Works Road Relocation Contingencies Compensation Equipment & Item Materials 9 ... 4 4. ๙ 'n

Table 2-1 Financial Cost (Ban Bung Dam)

1 US\$ - 23 B - X 230

1	1			· 										
ပ ပ	4.65	0.57	3.27	0.51	0.08	0.20	(4.93)	1.26	0.14		0.0 88.88	11.12	•	•
F.C	5.31	0 4 8	3.93	0 0 0	0.28	0.30	(5.89)		2.25		1.23	11,09	0.48	
Total	96.6	1.05	7.20	1.11	0.36	0.50	(10.82)	1.26	2.39		2.19	23,11	0.48	C
-					. ഗ പ്	Ē		houses	r.s		w w Li		r. S	
	·				ं न्न	3.7		40	⊶		ਜਜ		r.	
	-	 	ਬੁੱ ਰ 	3 §								· ·		
	. Main Civil Works				. Equipment & Materials	. Road Relocation	(Sub-Total 1 - 3)	• Land Acquisition & Compensation	. Engineering Service	. Contingencies	Physical Cont. Price Cont.	Total		GRAND TOTAL
	Total F.C L.	Total F.C L. 9.96 5.31 4.	Main Civil Works Preparatory Works Diversion Works Con. 2,100 m3	Main Civil Works Preparatory Works Diversion Works Main Dam Shillesy Main Civil Works Preparatory Works 1 L.S 1.05 0.48 0.22 Preparatory Works 2,100 m3 0.43 0.22 0.43 Main Dam Emb. 1,360,000 m3 7.20 3.93 3.93 Spillway Con. 8,500 m3 1.11 0.60 0.00 Sintake & Outlet Con. 800 m3 0.17 0.08 0.00	Main Civil Works Preparatory Works Diversion Works Diversion Works Main Dam Spillway Con. 2, 100 m3 0.43 0.22 Emb. 1,360,000 m3 7.20 3.93 Con. 8,500 m3 1.11 0.60 Bquipment & Con. 800 m3 0.17 0.08	Main Civil Works Total F.C Preparatory Works 1 L.S 1.05 0.48 Diversion Works Con. 2,100 m3 0.43 0.22 Main Dam Emb. 1,360,000 m3 7.20 3.93 Spillway Con. 8,500 m3 1.11 0.60 Intake & Outlet Con. 800 m3 0.17 0.08 Rquipment & Materials 1 L.S 0.36 0.28 Road Relocation 3.7 km 0.50 0.30	Main Civil Works 1 Preparatory Works 2 Diversion Works 2 Diversion Works 2 Diversion Works 3 Main Dam 4 Spillway 5 Spillway 5 Intake & Outlet Con. 8,500 m3 7,20 3,93 6,02 3,93 7,20 3,93 7,20 3,93 7,20 3,93 7,20 3,93 7,20 3,93 7,20 3,93 7,20 3,93 7,20 3,93 7,20 3,93 7,20 8,500 m3 7,20 7,20 7,20 7,20 7,20 7,20 7,20 7,20	Main Civil Works Preparatory Works	Main Civil Works Preparatory Works 1	Main Civil Works Preparatory Works 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	Main Civil Works Total F.C Preparatory Works Emb. 1,360,000 m3 1.05 0.48 Preparatory Works Con. 2,100 m3 7.20 0.22 Main Dam Emb. 1,360,000 m3 7.20 3.93 Spilway Con. 8,500 m3 1.11 0.08 Squipment & Materials 1 L.S 0.36 0.28 Road Relocation 3.7 km 0.50 0.30 Sub-Total 1 - 3 (10.82) (5.89) Land Acquisition & 40 houses 1.26 Compensation Engineering Service 1 L.S 2.39 2.25 Ontingencies Physical Cont. (15%) 1 L.S 2.19 1.23 Physical Cont. 1.5% 1 L.S 2.19 1.23 Price Cont. 1 L.S 2.19 2.62 Price Cont. 2 L.S 2.62 Price Cont. 2 L.S 2 L.S Price Cont. 2 L.S 2 L.S	Yain Civil Works	Main Civil Works	

Table 2-2 Disbursement Schedule of Financial Cost (Ban Bung Dam)

		Total	Million	uss				nual	Disbursement	lent		
	Item				15	1983	19	984	19	1985		1986
		Total	ъ.С	I.C	F.C	r.c	ក ភ ុ	r.c	F.C	r. c	O jr,	r.c
	1. Main Civil Works	96.6	5.31	4.65	-		0.89	0.83	3.36	2.89	1.06	0.93
- 1	2. Equipment & Materials	0.36	0.28	0.08					0.14	0.04	0.14	0.04
	3. Road Relocation	0.50	0.30	0.20			0.15	0.10	0.15	0.10		
	(Sub-Total 1 - 3)	(10.82)	(5.89)	(4.93)		•	(1.04)	(0.93)	(3.65)	(3.03)	(1.20)	(0.97)
<u> </u>	4. Land Acquisition & Compensation			1.26	ı	0.63	1	0.63				
	5. Engineering Service	2.39	2.25	0.14	1.57	0.07	0.27	0.02	0.26	0.02	0.15	0.03
 -	6. Contingencies											
<u> </u>	6.1 Physical Cont. (15%) 6.2 Price Cont.	2.19 6.45	1.23	3.83	0.24	0.11	0.20	0.24	0.59	0.46	0.20	0, 15
	Total	23.11	11.99	11.12	2.07	1.02	1.85	2.55	5.90	5.52	2.17	2.03
	7. Interest during Construction (3%)	0.48	0.48	ı	0.02	1	0.07	1	0.18	i	0.21	ı
	GRAND TOTAL	23.59	12.47	11.12	2.09	1.02	1.92	2.55	6.08	5.52	2.38	2.03

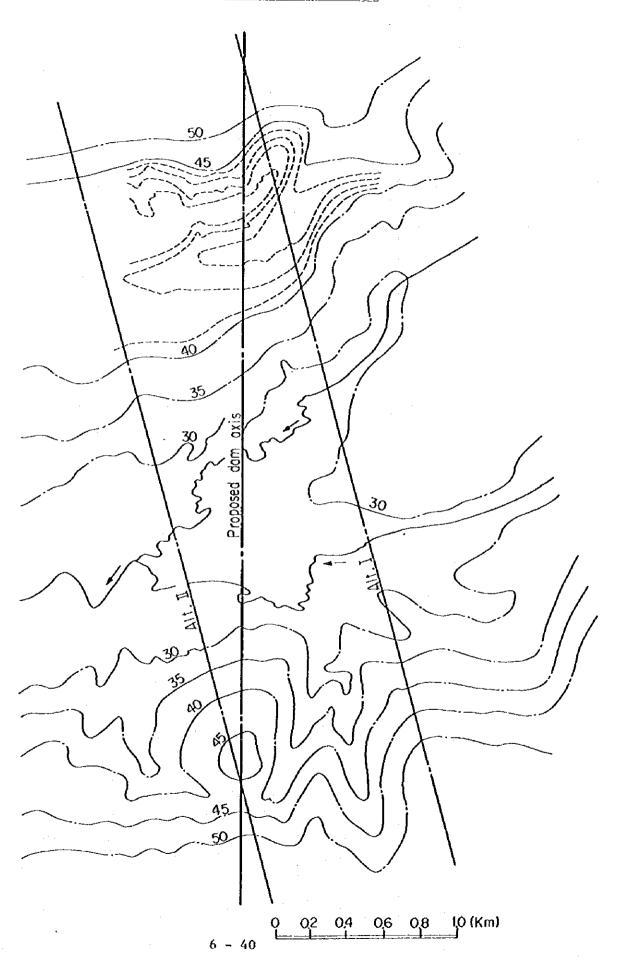
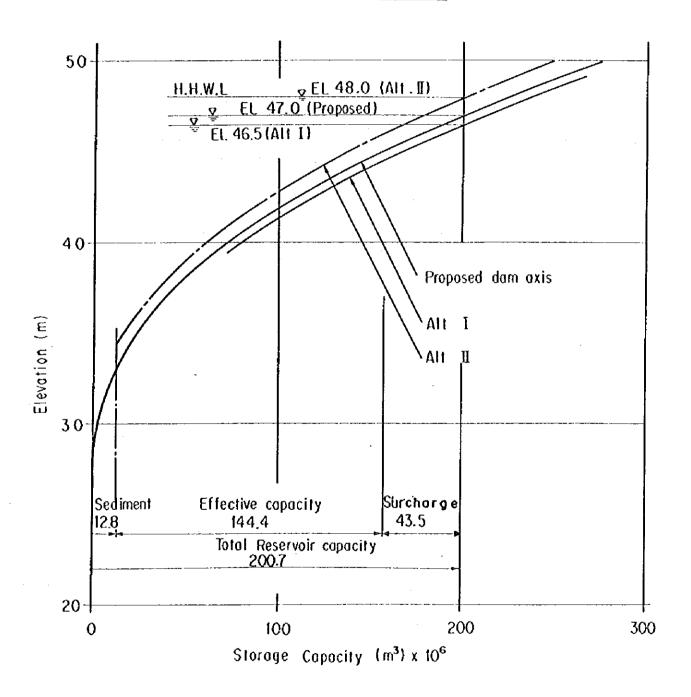
Table 2-3 Economic Cost (Ban Bung Dam)

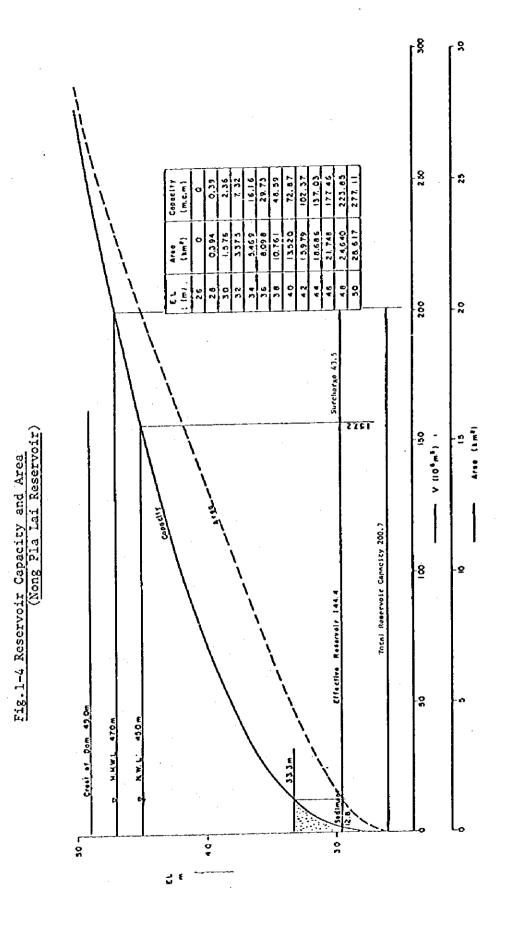
	.	·										
US\$	L.C	3,14	0.41 0.15 2.17 0.35	0.06	0.02	0.12	(3.28)	0.81	0.14		0.63	4.86
Total Million	F. C	5.31	0.22	0.08	0.28	0.30	(5.89)	I	2.25	-	1.23	9.37
Total	Total	8.45	0.89 0.37 0.10 0.95	0.14	0.30	0.42	(9.17)	0.81	2,39		1.86	14.23
Unit			は ま い で で で で で で で に の に り に り に り に り に り に り に り に り に り	ក្ខ		Ē		pouses	۲. د		۲. د	
	-			008		3.7		40			H	į
0, t.y	,		Smb.	000								
Item		1. Main Civil Works	ភ្លួចខ្	I.5 Intake & Outlet	2. Equipment & Materials	3. Road Relocation	(Sub-Total 1 - 3)	4. Land Acquisition & Compensation	5. Engineering Service	6. Contingencies	6.1 Physical Cont. (15%)	TOTAL

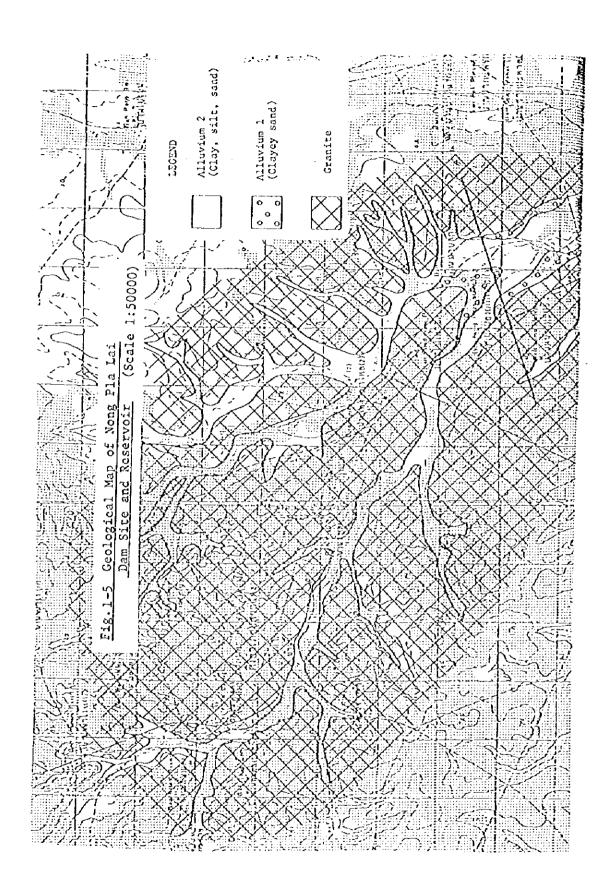
Table 2-4 Disbursement Schedule of Economic Cost (Ban Bung Dam)

										ssn I	23	B = ¥ 230
		Tota	Total Million	USS				Annual D	Disbursement	ent		
··	Item				19	1983	19		61	1985	10	1986
		Total	F.C	r.o	F.C	r.c	F.C	n,	٠ ننڌ	r.c	D E	0,3
(Main Civil Works	8.45	5.31	3.14			0.89	99*0	3.36	1.87	1.06	0.61
2	Equipment & Materials	0.30	0.28	0.02	:	:			0.14	0.01	0.14	0.01
ຕໍ່	Road Relocation	0.42	0.30	0.12			0.15	90.0	0.15	90.0		
	(Sub-Total 1 - 3)	(6.17)	(5.89)	(3.28)		:	(1.04)	(0.72)	(3.65)	(1.94)	(1.20)	(0.62)
4	Land Acquisition & Compensation	0.81	: !	0.81	1	0.41	1	0.40		· · · · · · · · · · · · · · · · · · ·		
ท่	Engineering Service	2.39	2.25	0.14	1.57	0.07	0.27	0.02	0.26	0.02	0.15	0.03
ģ	Contingencies		·	-							·	
6.1	6.1 Physical Cont. (15%)	1.86	1.23	0.63	0.24	0.07	0.20	0.17	0.59	0.29	0.20	0.10
	TOTAL	14.23	9.37	4.86	1.81	0.55	1.51	1.31	4.50	2.25	1.55	0.75

Fig. 1-1 Comparison of Dam Axis (Plan)


Fig. 1-2 Comparison of Dam Axis


(Reservoir Capacity Curve)

Diversion diternative instead of the 09 ςb proposed openchannel Ob Khlong Ra Woeng Diversion open channel proposed 32 Alignment of diversion conduit Alignment of open channel Alignment of spillway O.E Legend

Fig. 1-3 Alternatives of the Alignment of Spillway and Diversion

60 (MSL.) 0+00 စ္က 9 œ 0+200 Surface soil Weathered granite Residual soil 8 1 + 500 2+000 0 Alluviem 2 2+500 /Alluviem I 8 + 80 3+000 4+000 (\SW) 09 4+500 9 30 8 <u>o</u>

Fig. 1-6 Geological Cross Section of Nong Pla Lai Dam Site

6 - 45

Fig. 1-7 Geological Map of Nong Pla Lai Dam Axis

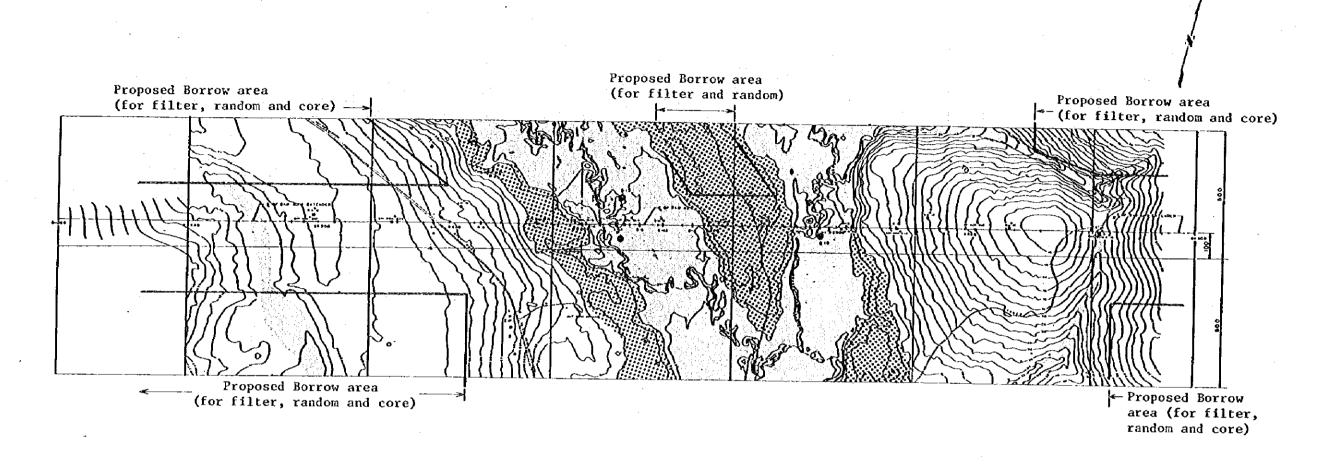
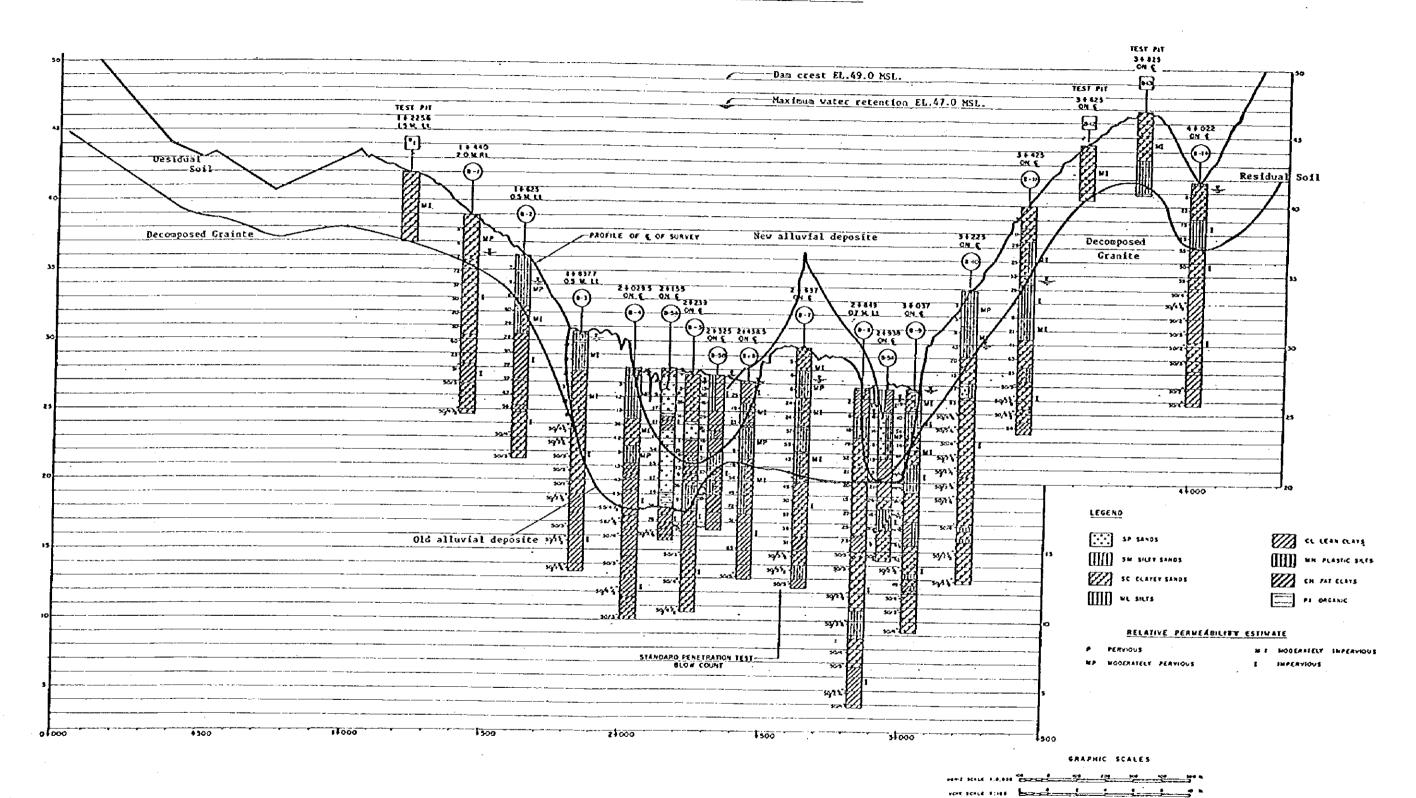



Fig. 1-8 Geological Profile along Nong Pla Lai Dam Axis

6 ~ 47

Fig. 1-9 Geologic Log of Drill Hole Hole No. B.15 (1/2)

Division of Soil and Geology Royal Irrigation Department

1.6.1-01 (1x.8.2519)

Hole No. 8 13

GEOLOGIC LOG OF DRILL HOLE Sheet 1 of 8

, 	:											·	1	
FEATURE PESE	3 y 10 s	ł		#	DRC	N	CN5	PLALA	١	€×v.		٧٥		
HOLEND 8.15	100	ATION.	UP-\$	TREA	AM.	6100	かつまし	EVATION			INGLE FROM VE	OKAL O	L	
ноце но. 8.15		CEDINAT	£5	• •	:	-		101					ľ	
¥GUNMAY.5, €¹														
DEFIN OF LITE OF MY	TER TA							an sickol		(*!'' I	CATEDAN A	Y.U.5 Y	Į	
NOTES On water today	137	Core	h		MOITA		7	1	ļ	106				Coefficient of
levels, waler	ais a	CD. #7	DIVIN	(W	Lou .	Fr m	-	EU14F1:3+2	DIFTH	50-0		CATION AND LEONOTION	1	Permeability
esturn, shorocter of dilling ato.	No.	(%)	(r, C ₁)	ī.	(LPM)	m cut	lar 1- a.1				¥".		ĺ	(cm/sec)
	i	1	1 (- :				i	1	//			1	
Overburden]	} !	i		,	ŀ]			30 s. HL	ĺ	
was drilled	-	}	1 ;			. 1		!	1 1	//	(silt)			ŀ
by soil sam-	1	}	{	į					1	//		to medium,		
pling equi-]	0.00	1.30	.65	G	10	,]			90% sligh- lasticity		6.96 x 10 ⁻⁵
poent and	-	{						İ	i =			10% fine		
wash boring	:	į į		!		:			1. 1			brown.mois	ļ,	1
Dropped Bx-	2 -	!				ن ن		1	ls 🗄	//r	N		•	2.11 x 10 ⁻⁵
casing at	1 3		0.00	2.30	-53.	G	10			1/_5	₽2.30-3	.30 m.sP-sM		
depth 0.00 -	3	} !	!	!	! !	!					(LOOL)	y graced		
3.00 E.	3 -	1 i	5×c\$	ľ	i	Ì			3-4		(bnas	المفعد وأحد		
3.00-4.50 m.		1 i	3.00	3.30	.03	ان	10		1	\cdots \bowtie	Loose	about 90%		1.64 x 10 ⁻⁶
4.50-6.00 m	-	1				_		1	- 1		i e	to coarse and some		•
6.00-7.50 m] =	}]						3		- •	gravel,10%		· ·
7.50-9.00 m.	4	} !	LI	_		_			⁴ -}	//		lasticity		1.52 x 10 ⁻⁶
Permeability	Ì	1 !	3.00	4.30	.08	6	10		}			brown wat.		1 1172 11 11
test by gra-	- 3	11	Bxcs							//		•	١.	
vity	5 -	1 1	1 1						5-3	$/\!/$.30 E.HL(S1)		
Standard	[':	1 1	4.50	5.30	.42	6	10		′			m, about 859		8.33 x 10 ⁻⁶
penetration] -	}	1 !						-	$/$ λ		tly plasti- fines,15%		•
resistance test :-	-	}	B×C5		{	Ì				71	_	amo,brown,		5.62 x 10 ⁻⁶
-dropped	6-3	} !	4.50			- 1	10		6-	/ 6	aoist			
meight 1401ba	Į. :	{	4.50	b.30	.3	G.	10		1	//	=,,			3:06 x 10 ⁰
-free fall 30	}u =	1 1	!]					//		.30 m SH		Ι,
-N=number of		1	600	7 30		G	10		7-3	/		y sand)		3.14 x 10 ⁻⁶
blow		}	600				10	<u> </u>		$\angle F$	N LOOSE	about 60%		2.30 x 10 ⁻⁶
At depth] =	}	Bxcs	ادر]	- 3	· · · [11በቂ / «ጎዲታኑ	about 60% sand, 40% tly plas-		2.50 x 10
11.30-15.00 g		} }	1					[{		0.4784	fines.		1
during drill-	9	1			i	i			8[moist.		
ing there	3	1-1] !											1
were flood	3	1			{			į į				.00 = .SP-SK		i
water over	ا ، ا				1				ا وا			ly graded		
top of casing	{ -		1			 			7 3	//\alpha	aand) Vadtu) %.about 90%		ĺ
pipe,soil Samples were	=	}	1						-₹	//]]		to coarse		
oumbres sera	! :	}							{ر ا		****			[
i i	<u> 10 -</u>)_L	LL		لـــــــا	الل			[10]		 	T		<u> </u>
	4 -	داستا فيرون				EXPLA!		N 1 4 Hayereller		w. C + Fk	ura.			NOTE:Calculted
(set use	H.	a sector			• • • - •	f + face	r, Ca	· Consulad,	(lo	أعديه أتو حودا	~	Angle Kalle 💮		by
Contains	Ap		1:20 0 4	re (M-	e.e1-	1 7	1	* 1 3/15, 1 ** * 1 1/15, 1	L- 41	1/1°, 1~	• 2 1/1-	Varical Hala		the JICA
E	Ç.	15:00 5.00		s>c (X		Ec - 1 1	3/14*,	44 + 25 % 14 1 20/02 % 14	* 27/2	*, N, - 3 i	'	1 ************************************		Survey
		0 0 0 0 0							- 1 0.0		 	l		team

Fig. 1-9 Geologic Log of Drill Hole Hole No. B.15 (2/2)

Division of Soil and Geology Royal Irrigation Department

ป. 6. 1-- 01 (เม.ช.2519)

Hole No. 8.15

		GEOLOG	IC LOG OF DRI	Ef ROfe	Sheet s of s	
FEATURE	LOCATIO	PORCE NAMES	GPOUND ELEVATIÓN.	TAI	ANGERION VEHICAL .O.	
		NAY 6, 61 DEPIK OF C	HOLE LOGGED BY NIR	ин, 15 ормка Ин атміт, і	FCPEMANAMNUAY	
NOTES On value table levels, water return, character at drilling six	lyce Cor and le size cor of 1% hole	DEPTH (M.)	- `` ` 	N DEFIN	CLASSIFICATION AND PHYSICAL CONDITION	Coefficient of Permeability (cm/sec)
collected by diamond core bit wi double tube core barrel	1 3			7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	sand, predominantly fine sand, low non plasticity fines, brown, wet. 9.00-11.30 c. KL (Silt) Very stiff to hard about 90% slightly plasticity fines 10% fine sand, greenish gray, moist. 11.30-13.50 m. SM (Silty sand) About 60% fine to coarse sand, predominantly fine sand, 40% low plasticity fines, greenish gray, moist. 13.50-15.00 m. CL (lean clay) About 90% wedium plasticity fines, 10% fine sand, green, moist. *11.30-15.00 m. Decomposed Granite	
	<u> </u>	<u> </u>	L	<u> </u>		
Core factority	Approxima Ounide d	gig in a second for a femoral particle of the properties of the pr	Eur > 7/81, Avn + 1 1/81, Cq < 8 13 161, Av + 791, Bi	, Co + Norton of Cour for + 23 B*, France for + 23/B*, France a + 27/B*, No + 23,	3 13: C3	NOIE:Calculted by the JICA Survey

Ceologic Log of Drill Hole Fig. 1-10 Hole No. B.16 (1/2)

Division of Soil and Geology Royal Irrigation Department

ป. ธ. 1-- 01 (IN.D.2519)

team

Hole No. ... B. 18. GEOLOGIC LOG OF DRILL HOLE Sheel i of a PENTAL RESERVIOR NONC NONC PLANAL CHY RAYONG CATION DOWN STREAM GROUND ELEVATION . ANGLE FROM VERTICAL O HOLL NO. B. ID LE CHOINATES MOUNTMAX 3, QL TINISHED MAY 4,81 DEFIN OF OVERBURDEN DEFIN 15 BO M. MARING OF ANGLE HOLE DEPIH OF LLEY, OF WATER TARE ... 9. 59 M. HOLE LOGGED BY NIRUTH & TWIT FOREMAN AMNUAY Type Corn PERCOLATION TESTS

ond Recovery From I in 1 seek Jeri (P. Co. To (E.P.M.) (FSE) (min.) --- NOIES On voier toble Texab, sester Coefficient of CLASSIFICATION AND Permeability Sumple for feeling PHYSICAL CONDITION (cm/sec) 0.00-1.30 m. HL Overburden was drilled (silt) -mas fios vd Stiff, about 80% pling equip-0 00 (30) - 6 10 slightly plastiment and wash city fines, 20% 8xcs fine sand, brown, boring method. Dropped Bx-2 moist. casing at 160 2 30 - 6 10 depth 0.00 -1.30-2.30 a. SP-SK 1.50 m,1.50-4.50 m,4.50-(Poorly graded sand) Hedium about 95% 1.18×10^{-4} 6.00 m,6.00-60 3.30 .05 G 7.50 = 7.50plasticity fines 9.00 0,9.00light brown, moist. 12.00 a. 7,30-7.00 m. sp 4.00 4.30 .22 6 Percenbility 10 2.27×10^{-4} test by gra-(Poorly graded sand) vity; Medium about 100 I fine to coarse . Standard 4.50,5.30 .15 G 4.58 x 10⁻⁵ 10 penetration sand, predominantly resistance t medium sand browas test :- 2.6×10^{-5} 600 630 .05 6 10 7.00-8.00 m. HL wst. -dropped 600630 02 6 9.75 x 10⁻⁶ reight 140 lbs. -free fall 30" 6 00 7 30 .1 6 -Nanusber of 7. Stiff, about 100% slightly plas- 2.23×10^{-5} 1.57×10^{-5} 10 0 00 7.30 .07 G 10 ticity fines. brown,moist to 7.50 8.30 .03 6 8-3 10 | | wet. | 8.00-9.00 m. sp 9.16×10^{-6} 9.16×10^{-6} 8 7.50 8.30 .03 Ġ 10 (Poorly graded sand)
Kedium about 1005
S fine sand, brown 9×65 7-50 9.30 -35 6 10 6.06 x 10⁻⁵ 9 750 9.30 .32 10 5.51×10^{-5} NOTE:Calculted Corribor Angle Hele D by the JICA Core tecorny Versel Hele Survey

Fig. 1-10 Geologic Log of Drill Hole Hole No. B.16 (2/2)

Division of Soil and Geology Royal Irrigation Department

GEOLOGIC LOG OF DRILL HOLE

ป. 6. 4-- 01 (เม.ย. 2519)

Hole No. Bio

HOLE NO	B.1 FINISH	ed MA	B), Deeth Ci	OVERSUPDEN HOLE LOGGE	ELEVATION DUTH	ANGLE PROM VERTICAL BOM. BEARING OF ANGLE HOLE TWIT TOLEMAN AMNUAY LOG CUSSIFICATION AND Some of all Physical Condition	Coefficient of Permeability (cm/sec)
	13-		9 00 13 00 .1 9 00 13 00 .1 12 00 13 30 .2	5 6 10	12	(Silty sand) Redium to dense, about 80% fine to coarse some, predominantly coarse sand, and some fine gravel, 20% slightly plasticity fines, greenistorwn, moist. 10.30-11.60 m. ML (Sandy silt) Rard, about 70% low plasticity fines, 30% fine sangreen, moist. 11.60-15.80 m. SM (Silty sand) Very dense, about 70% fine to coarse sand, and some fine gravel, 30% slightly plasticity fines, greenish brown, moist. *11.60-15.80 m. Becomposed Granite	$\begin{array}{c} 1.42 \times 10^{-5} \\ 3.23 \times 10^{-5} \end{array}$ 3.20×10^{-5} 2.25×10^{-5}
Core Loss	Ho Ap Ap Ox	ia spoied prosimote prosimote psida sip	stee of fote (Mineria) stee of core (Mineria) halor of coring (Kineria) the of coring (Kineria)	F & Pack pr. Co) East = 13°, Aa 2 East = 7/1°, A n.)- En = 1 33/16°,	th A Maystellite, 5 + 1 th T Comunted, Co. th B th A 1 7/8", Book 2 / Jun 4 8 1/8", Builte 1 Jun 4 8 1/8", Builte 1 Jun 4 8 1/8", Builte 2 7/1	often of eating Angle Kala	NOTE:Calculted by the JICA Survey team

Fig. 1-11 Geologic Log of Drill Hole Hole No. B.17 (1/2)

Division of Soil and Geology Royal Irrigation Department

1.6.1-01 (12.0.2519)

GEOLOGIC LOG OF DRILL HOLE Sheet 1 of 2

							<u> </u>		, <u> </u>	,
FEATURE,									a i	
носе но., 8,37		LENCOPPE, Carriera	UP- 5.	t Mc v.⊸t.	GROUND 1			ANGEL FLOW YE	IIKALQ	
EGUN MAY 9 B	e Consta	an MA	Y IO BEC	i i i i i i i i i i i i i i i i i i i	eren in den.	101 60	AL IN 15 (5A) N	UNISG DEANGEL	FOU	*
SEPTE OF ELEV. OF Y										
	τ	T Co.		COLLINON		1	1	1		
NOTES Con-star toble	Type Ive	£ .					106	CIASSE	CATION AND	Coefficient of
faveful weter	4124	(%)	1237	1 ~~		ECENATION			CONDITION	Permeability
esturny characters of drifting stes	ef Nels	(")	(P.C. To	P (CPM)	, iPSI) Teir	,	1 1 2-	[وا	1	(cm/sec)
	i .	1	1		:	i		1		
Overburde	ก่	1		:		į	1 1/1	0.00-2-	00 - KF	
vos drilled		1 1		:		i	1 3// /	(Sandy,	silt)	
by soil san		1 1] }			į	五式湾	Soft,	about 60%	1
pling coul-		3 :	00013	0.14	6 10	, j .	2.7	Solt. Splightl	y fines,	4.16 x 10 ⁻⁴
paent and		į ,		;	i	•	1 -1/	40% fir	e sand,	
wash boring		₹ :		;			1 7/2	ого≍и.ъ	ct.	
nethoed.	s –	3	į į	•			2	8 No 00-5	42-42 .a 00	1
Dropped		j ,	C 60 S	30, 2.5	6 10	1	1 37.1	(Poorly	graded	3.61 x 10 ⁻⁴
Bx-casing	1	i :		ì	!	1	3	sand)	Ş	
at depth	1.	1 ;	axcs.	i	: j	ł	1. 3. 1		about 90%	
0.00-3.00 E	, 3 -	1 !		. O. 1.55	6 10		3-1:	X fine to	Cearse	8.39 x 10 ⁻⁴
3.00-4.50 E	ļ	1 1	13 4 2 3	30, , , ,		1	3.771		edominantly	0.37 X 10
4.50-6.00 s	آ إر:	1 1	İ	į	:	1 .	1 334		nd 10% nen	
6.00-7.50 r	· • a _	រឺ <u>ទ</u> ាំស	4 00 4	30, 16	6 10		4-1	blastic	ity fines,	8.78 x 10 ⁻⁵
7.50-9.00 m	i•[4 00 4				1 1	Egray,	et.	9.1 x 10 °
Permenbil	liky .	1	Bxcs	-	1		1 3 3		-	
test by gra	네 :]	'		1 1		1 367		.00 m. SK	
vity	5 -	4 :	4.50 5.	· ·	: !		5	J (Silty	ema)	5.49 x 10 ⁻⁵
≲tandard	i	1	4,50,5	30j.15	10 10	' [1 3/		about 65%	4.58 x 10 ⁻⁵
penetrati*s	.	3		1			1 3//		Centse	1
resistance	1 .	1	3×65	30 18	0:10		.3/4	sona,	55% low plas-	
test :-	6-	1	1	•	• •		["]	ticity	naist	5.49 x 10 ⁻⁵
-dropped		1	4 50 b	30 -10	0 10] 3]	l	1	5.49 x 10 ⁻³
reight 140	'! [3 1		i	1				00 n. SP	
lbs.	1,-	1 !	6 00 7	30 .12	6 10		7.3	[[Poorly	r grnded sand	2.62 x 10 ⁻⁵
-free fall	ľ	1 .	1	÷	6 10	.	1 3 - 1		leese to	2.23×10^{-5}
30"	1 .	1 !	8×65	1	1 1	1	4 3 : 1		about 100%	***********
-N=number of blow.	}	1	;	1	! !	1	}		and, brown.	
01 010#.	8-	∄			6 10		6 150	wet.	}	1.96×10^{-4}
		∮	7.20.8.	9. 23	6 10			δ.00-8.	22 m. GP-GH	1.96 x 10 ⁻⁴
	1 -	}				1	1 37.7	. 1	graded	
}		1	3×65	.30 AS	6 10	.]	1. 1/1	gravel)		1.48×10^{-4}
·	9-	3		30.6		l l	173 37	ga very	dense, seneb	1 .
		∄ l	17.50 9	ه ارد	" "] 3: 1	ี 50% ธนอย	angular fine	1.48 x 10 ⁻⁴
	•	3					1 \$ %1	gravel	40% sub-	1
ļ	10	Ш.		l	Jl	.J	1.64%	_		<u> </u>
					EXPLANAT			_	1 _1	NOTE:Calculted
Coston	1,	اما او بدر مانستان			- Performe.) و درو سو) ه ه	na, 8 + Shor, C + I, Ca + Boston of c	.a.ng	Angle Hels 🔲	by
	, Ä	51. 31c.,	ates of hote	(Maria)-	ة ر"وا = مع] ه	₩ + 17/2°.	10-1337, No	· • 1·		the JICA
G Cortectory	c	on An Ass	متروع أأع مواعد	o : X 'm'	∟[••113/16	2].1	Ban #1391, N 6 #2781, Na f	31/1	Varical Hate 🗹	Survey
] [1-	i de d'on	re of counq	(America) -	- Lo 4 1½°, As	* 1 % A2 . 1	h + 2 3/2°, No 4	3-]	team
										\

Fig. 1-11 Geologic Log of Drill Hole Hole No. B.17 (2/2)

Division of Soil and Geology Royal Irrigation Department

1.6.1-01 (14.0.2519)

> Survey Leam

					Hole No. B.17	
		GEOLOG	GIC LOG OF DRI	ILL HOLE	Sheet e of e	
						•
staturt				LAELL LECH	Y RAYONG	
носе но 3.17 .	LOCATION.	UP-STREAK	A GROUND ELEVATION		ANGLE FROM VERTICAL O	·
HGUN MAY 9 81	ENISHED ME	N. 10) 81 CEPTH OF	overskroere e ee	⊼a. सन् 15 व5 स्थ	ANNG OF ANGLE HOLE	
DEFIN OR ELEV. OF WA	ATER TABLE	. 2 . 57 . 13	RIM, VEDECOSTADON.	TINT & RTU	FOREMANAMINOAY	
NOTES On water toble	Type Core	DEPSH (M.) Loc		100	CLASSEICATION AND	Coefficient of
latura, churoclar	size covery of (%)	From in the transfer of the tr	Test RESTATION		MYSICAL CONDITION	Permeability
of dritting ute.	No!#	1900 10 20 4				(ca/sec)
		1400.050		77	rounded fine to	9.30×10^{-5}
	4			1/2	cearse sand, 10%	1
	113			"	non plasticity fines.brown.wet.	
	1 4	9.00 11.70 .4	6 10		8.22-10.00 n. CL	-5
	12-3			12	(Lean clay)	5.14 x 10 ⁻⁵
		9.00 12 25 .5	2 6 0		[전] Hard,about 90% medium plasticity	5.80 x 10 ⁻⁵
	🗐			1 1/1	figes, 10% fine	
	13	00000		13-1/	te cearse sand,	1
		9.0013.66 .5	4 6 10	1 1/1	greenish brewn,	4.92 x 10 ⁻⁵
	1 3 1				10.00-10.20 m. CL	
	14-	9 00 14 10 .6	5 6 10	14-	[10:00+10.20 m. CL 독교(Sandy Clay)	5.06 x 10 ⁻⁵
]]]			1 1/	Hard, about 70%	J.00 x 10
]] [medium plasticity fines 30% angular	
	15 15	9.00 15 15 11	5 6 10	15 /	diline sand greenish	7.76 x 10 ⁻⁵
	4				gray, noist.	
	_{				10.20-15.15 E. SK	
]]	(Silty sand) Very dense about	
÷	1				70% fine to coarse	
	4			4	sand 30% slightly	
]				fines, gray, moist.	
]				*14 00 15 15	
	-			-	*14.60-15.15 m. Decamposed Granite	İ
				3	John Posts Chairle	
		{				
]			-		
	! 4					1
				<u> </u>]	
	1		EXPLANATION	-		•
Care Lou	Ho's control	***************************************	- D + Dignord, h + hapte! - P + factor, Cm + Congnis	1. Co . tomor of co	mina Argie Neis L.F.	NOTE: Calculted
di Cartesone	Approximat	s alon of hole (Majories) a alon of own (Majories)	Em + 15", Am + 17/1",	1a+11/15 No	-1314	by

Fig. 1-12 Geologic Log of Drill Hole Hole No. B.18 (1/3)

Division of Soil and Geology Royal Irrigation Department

1.6.1-01 (1x.8.2519)

Hole No. B.18

80% les plastic ty

Angle Hele 🔲

Variationale 🛭

NOTE:Calculted

Survey team

by the JICA

			GEOI	OGIC 1	LOG	OF DRIL	L HO	OLE She	eet 1 of 3	•.	
EEATURE RESE			00411-57		. NON	5ELASAI	·	Ску	BAYONG.]	
HOLE NO	cor	"HOHTA TANIGRO	DONN-51	REAM GE	IOUND LI	UVATION			EHONVERCH O		
HOUNIMAXILLE BL.	FINNSH	ED MA	N 12,51 CH	IN ÓF GVERE	WDIN.	DEPT	tH, J.5	ESM HARING	CF ANGLE HOLE	1	
DEFIN OF THEY, OF WA									WN AMNUNY		
NOTES On - orer toble levels, moter rahins, character of diffing etc.	lype ord size of bote	Corn to- to-sey (%)	DEPTH (M.)	-• •. • .	- 1000	ELEVATION.	жи	too	ENZZEKATION AND	Coefficient o Permeability (cm/sec)	
Overburden res drilled by soil see-				1					0.00-3.00 m. SP (Peorly graded) sond)		
pling equi- paent and			0.00 1 50		: 5	•	1	됨자 3월	Leose to mediu about 100% fine	2.23 x 10	-5
wash bering	1 3	i i		!	:	i	i j		to coarse sand, predeminantly	1	
aetb•d.	2 –	4 1	Bxcs :	r		:	į 2 –		predeminantly coarse sind bres	.[]	E
Dropped	į <i>3</i>	1	5 00 5 30) ,1 - 6 	10	;	ij	B21	vot.	5.53 x 10	.)
Bx-cosing at depth	1 3	ŧ '	1 ! '	•	İ	1 1]				
0.00-2.00 m.	3-3	()	BXCS			,	3-3		3.00-4.00 m. SM (Silty sand)		
2.00-3.00 E,	1 3	$i \mid \cdot \mid$	3 00 3 30	.5 6	10	1 ']		(Silty sand)	2.70 x 10	4
3.00-4.50 b		kij i	1 1 3		İ	Į ,	1 7		about 60% fine	1.	
4.50-6.00 p.	1 3		3.00 4.30	. 6		} · 1	1 3		sand, and seme		٠,
Permeabi-	4 -		3.00 4.30	1 1.	1	1	173	XX	fine gravel 40%	2.23 x 10	
lity test by	1 3	(\cdot)	8×C5	1" "	'`	. !	1 3	77	slightly plasti-		•
gravity.	1 3	i I '		1 1		<i>'</i>	1 3		city fines, brown	ų, i	~
Standard	5-3	1 1 7	4.50 5.30	.12 G	10	1	5 -		wet.	3.66 x 10	<u>خ</u>
penetration	[]	1 '	4.50 5.30	.12 6	. 10	, <i>t</i>			4.00-4.30 c. SP	3.66 x 10	>
resistance test :-	1 - 3	$L \mid \cdot \mid \cdot \mid$	i i	1 i .	1	1 1	1 3	Z[I]	(Foorly graded]]	
test :- -drepped	1 : 3	$i \mid 1 \mid 1$	8×65 6.00 6.30	03 6	, 10	\perp . t	3		sand)	1 1 , (2 = 30=	5
-crepped weight	* -	3 :	600 630			1 /	6-3	// [3]	Leese, about 10	0% 1.63 x 10 2.28 x 10	5
140 1bs.	1 . 3	/ i '	000 0.00	1.07	'-	1 1	1 3		fine to pedium	4.40 X IV	
-free foll	1 3			i i		1	1 3		sand, brown, wet.		5
30"	7-	$i \cdot 1 = 1$	0.00 7 30	1 7	•	1 1	7-		4.30-6.00 m. SK	1.31 x 10	٠
-N=number	! • 3	. i '	0 00 7 30	.04 G	10	1 1	1 3	1/139	(Silty sand)	9.18 x 10	6
of blos.	1. 3	i,1,1	1	i '	ĺ	i ,	1 3	K31 -	Leese, absut	//AU A 10	
ļ	8		0 00 8.30	ی ور	. 10	! !	8-1	21	60% fine sand,	2.42 × 10	5
	*]		6 ∞ 8 30		- 1	1 1	l°]		40%slightly place	2.42 x 10	5
	1 3	I = I	1000		'`	1 1	1		ticily fines	****	
	1 3	$i \mid i \mid l$	$\{-1, -1\}$	1		1 1	3		brewn, moist.		'
	9-	L = I	00 9 30	1 :	1	1 1	9-	/ 200	6.00-7.30 m. NL (Silt)	6.71 x 10	5
	. 3	, '	0.00 9.30	1.0 6	10	1 1	1	1,43	(Silt) (Stiff,about	5.05 x 10	ا د
•	∠ . ⊸ 7	. 1 7	1	4 1	1 .	1 ,		//	Strintones	1 1	- 1

EXPLANATION

Fig. 1-12 Geologic Log of Drill Hole Hole No. B.18 (2/3)

Division of Soil and Geology Royal Irrigation Department

년. 0. 1-- 01 (1보.8.2519)

The state of the s	Itale No. Bie
GEOLOGIC LOG OF DRILL HOLE	Sheet t of a

HATURE	8 100 COO	ATION PANIDES		O STREA	M GROUI	∾D IUIV	NON.TAY	AL 15 25 MEERING OF ANGLE HOLE.
,			.000		HOLE LO			YANAW
On water toble levels, water return, choracter of drilling etc.	sizs hola	14- (%)	DEPEK (M.) tou In (LPU)	7/m- 1/751)	Tar.	HOITAYE	CLASSFICATION AND Sergia to PHYSICAL CONDITION Taking CLASSFICATION AND Permeability (cm/sec)
	13 14 15 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		6 00 13	2 25 76	6 6 6	10 10 10		fines, 20% fine send, green, soist. 12. 7.30-8.30 s. CL (lean clay) Very stiff, about 90% medium plasti- 20city fines, 10% fine send, yellevish bfewn, meist. 13. 30-9.30 m. SM (silty sand) Medium, about 70% fine send, 30% ner plasticity fines, light green, soist. 15.25 15.25 15.25 10.30-10.30 s. ML 10.30-13.00 s. SM (silty sand) Very dense, about 65% fine send, 35% slightly plasticity fines, green, meist. 13.00-13.20 m. NL (silt) Hard, about 100% slightly plasticity fines, green, meist.
Corstan S Corstanorory	Hel Apo Apo Out	a suctud Hosimote Hosimote Bide Bion	size of bote size of core elector cor	(Maris) (Maris) ing (Xaria)	- - Fack o - - 13* - 10* + 7/1 - 13.	ord, H + r, Cn + ', A or = l', A rn /16', A r	Cemented, -1.7/E , Bo = 1.1/11, 1 = 4.231, 1s	NOTE: Calculte A. 5 + 5 hop, C + Chies

Fig. 1-12 Geologic Log of Drill Hole Hole No. B.18 (3/3)

Division of Soil and Geology Royal Irrigation Department

ป. ธ. 1—01 (เม.ช. 2519)

					`	(E)				Hole No.	aa.		
			G	EOLC)GIC I	LOG	OF DRIL	l RO	LE		of <u>3</u>		
EEATURE	RESER	, JR		PRO	ACI .	NONG.	PALA		Сну	, say) vs		
HOLE NO 20 18									•	ANGLE FROM V			
BEGUNIMAXILLES	EUC EINISH	en MA	12. 7 12,81	CEPTH	Of Overb		TOT.	A1		Iting of Angi			
CEPTH OF ELEV. OF V		kt			-0t!	15668		TR & 1	F.W.T	FCREMAN	YNUAY		
NOTES On water toble	1754 004	ta-			ION HST				106	£	FICATION AND		Coefficient of
levels, worse return, character of drilling etc.	siza of hote	(%) (%)	e. C.	lo fr	PM) (PS)	165	ELEVATION	DEFIN	Somp	THE PROPERTY.	NORTH-003 JA		Permeability (cm/sec)
	1		<u>(</u>	:			i	1		<u> </u>			(11/320)
	1 1			-		:	!	7	.	fines,	green,m	oist	
	-		İ				!	-4	ì		15.00 m. r graded		
		:		•	•	i.		1		(basa	-		
	1			•						Yery	dense, al	beut	
	1 1					:		1			ereva, w		
	1 1	:	İ	!	÷			3					
	-	İ			į	į		-					
•	4				:			1	- 1				İ
] _{}							4					
	}	i	li		İ			3				ŀ	1
	{	1	!			ł		1111					•
		-	:	ļ				4					
	1 4		;					4					
	4			i		į							
	4	•	;					3					
•	{	:		İ	1	!		3			•	ļ	1
				•	1			1					
	1 1				i	;		1				1]
	-	· []	;		į	İ		4					1
	3					Ì		4				i	
	1 4		i	i		}		4					
	! 1		:	ı		i		3					
	1 1			İ				1					
	1	_11		Ł-	L [x? ₁	J	اــــــا ب	t			<u> </u>		<u> </u>
Corton	×o's	include:		•	D + D	chord, h cker, Ce	A Haystallite • Comented, 1	College	عوالو بد	ne	Ang ^t a Hala		NOTE: Calculted
Continuery	A par A par	Daimple :	size of ho: I:24 of cor	e (Majeria e (Majeria	n]••E±n = ⊴•••E±n =	13" A.	- 1 7/8- . 1 1/8-	7 3/3 1 1/	Nam •	4 2 1/11	Vertical Note		by the JICA
	Incid	le d'anes		ленан ЕОли		j*, A,	1, 12, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	21/2	Ny + 31	/e-		7	Survey
											~		team

Fig. 1-13 Nong Pla Lai Borrow Pit Gradation Test

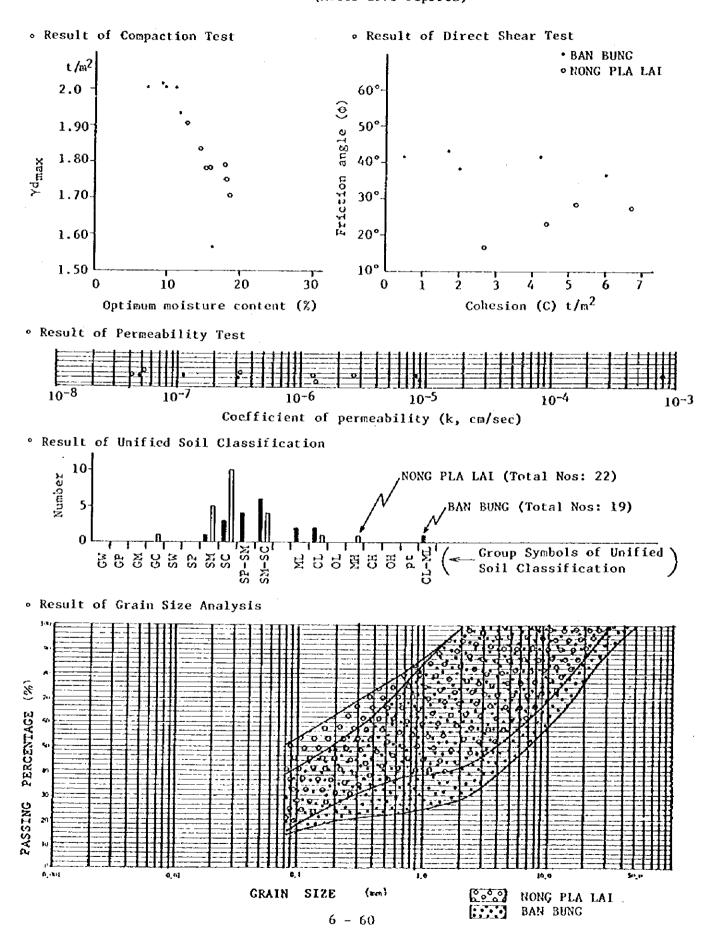
(%.n.2517) A				9	2		2		8		ç			8 1n3) J	3		ဥ		8		8		5	<u>3</u>								
5 3		N. 0. 18	1 2	П			Ľ		\perp			·		Γ		-			-	Ţ	•	Ť	7-		- •	122		<u></u>	ī	<u> </u>			┨
Ű		ž	-	•	:		╁							 		i		ļ.,		L		1	1		Ĺ	12		1	-		2	٠ŀ	
75		ŏ.			į	1	1			٠,٠		1.					!		•		. :		. : .	-	83			S I S I	ľ	3	13.75 %	3.69%	
() 		CKR.		!		.	T	:			-		:		:	Ī	h . ,			+	-	十			S05288	76.2		П	၂:	2	õ	10	4
ž		CLEAR SOLMRE OPENING 1 1/2" 3" 5" 6	111	<u>.</u>	1					!	;		! 1	1							:	•	:	-	OS C>	 8.				Not-Moisi Ure Confer			
						:				• •			. :		i						. :			-	Œ			1 .;			; 	<u> </u>	1
		3,			*				Ī				1	:				-		-			 -		œ	19.1		OR VE	-[]	Soil Classification	i -		
	S	3/8	: ;		-		<u> </u>		<u> </u> :	1			,		· .	ļ. —		Ĺ				!			σι	9.52					. i	-	1
	ANALYSIS		,			;	1		1	į.	1		•	**********		i	•	•	1.						01	•	Ì		Ž	5	š	ပ္တ	
	-	<u>\$</u>		ij		· 	L		1	!			<u>:</u>		1	i		<u> . ;</u>	1	<u> </u>	i .	1	İ		ç	4.7	ł	Ц			ı		
) :										ļ			'					 				•	. *			į	משונים			
	SIE	10/8	7	-!			١,		1	<u> </u>	_			<u> </u>		_				1	!		1			3.30				5			-
			/								į		1			•									2		TERS		155	: a	1	0 e	1
7. E S T	ı	22	-	\mathbf{i}	\		1,	_	T	;	-		1	İ	<u>. </u>	İ		<u> </u>	:	†-		Ī	1		οţ	-:	DIAMETER OF PARTICLE IN MILLIMETERS		MEDIUM VG LIMITS	. D. L.	2		1
H 15		SERIE	٠.	i	٠,			72	1											1					00.00	_	2		Afterberg	ū.	ž,	50.3	:
罗š		PARU S	- : -	. !			1-		\geq	1	\subseteq	· ·	:							1			į		٤.	8	픨	S NO	ey6	1.7.9	5 - 2 .	٠.	1
罗云		57A NG		_]			L	. `	Ţ		``					<u> </u>				<u> </u>			;	֓֞֞֞֞֞֞֞֞֞֞֞֓֓֡֓֡֓֓֡֓֡֡֡	€.	782	*		¥	•	2 .	ر ا	1
"KADATION	l	U.S. STANDARU SERIES *50 *40*30					İ		1.		ļ	· (<u>ල</u>	1	$\widehat{\omega}$	Υ.	-)		i	l					Ś.	~	្ន័	İ	٤] ا	٤ (2.20	S 0	
3	l	, 001		-			-		-	<u> </u>	_ !		<u>, </u>	<u>\</u>					<u>!</u>	Ш	Ш	Щ	11	_	•	7	1		Ž	= 5	i i	ાં ન	
÷		-										٠,)	\	. `		· ,							017	•	á		Electorion (m.	9	2 8	4.00-4.10	
Ē	-	- <u>8</u>		_			<u>!</u>		<u> </u>	:		-				: 	_7		• •	∇		i	- 1	_	₹9. ₹9.	7,0	ļ		ā	֓֞֞֞֜֞֜֞֞֜֞֜֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֜֝֟֜֜֝֓֓֓֓֝֜֜֝֓֓֜֝֝֓֡֓֝֜֝֡֝֓֡֝].
Development				-					<u> </u>	 		- -				,		: :	!!				! !	_	8 8 8 8 8 E	.83					E 033	Ť	
	l	¥ .	: :	i									:				•	i	٠.			١		1	€0.	Ö			5		i i	0 4 17	۱
Ž	Ę	∑.×.	:				-		+	-	-		:				,	<u> </u>	-	ļ	<u> </u>	Į.		4	ZO.	620						iā	
Coast Water Resources	HYDROMETER ANALYSIS	ING TIME			:										:		-	:	•		:	;	: 1		OI Ó'			aria)		10+00	à	α ο/ς pit *	
/atev	WE TER	N S			: .		ļ	!					:		:			. :	; ;	1	;		· · ·]	9000	8		CLAY (plante) TO SILT (mon-plante)	<u>ا</u> ۽ ا		Ì	<i>χ</i> 'α	
≤ mi	Ž	¥ 09,	1:		:	: !	T		Ť.	- :	i								, .	i .		Ť.	4)	4	>00. 200. \$00.	8	1	SILT	ۇ ئىر	9	,		ò
ပိ	-	Z				i			li						!	!			: .		1	!	• •	 - -	ECC.	•	-	9	Samoles From	None Plate	λ.	' {	
Poject The East Co		Η, 15	111	-	11	11	1	1 [+	<u> </u>	-	7	-	• •		<u> </u>			<u>: :</u>	۱.,	4	1:	<u> </u>	4	200	8		≨eyd)	Š	Š	} ! '	= =	
Ö.		READ 25HR, 45MIN, 7HR, 15MIN, , 60MIN, 100								1						1		: ;			:		:			•		7	Š)(<u>)</u>))
Polect The		÷.8		8			3		8		3		ء ۾	:	3	2	-	•	-	 P.		نا د			100.		L			Ž			'
<u> </u>		<u>.</u> ā,										3311	AMZ	INI	25k															Z			

Fig. 1-14 Nong Pla Lai Borrow Pit Gradation Test

Technical Olvisian Reyal Irigation Department

2,71, 4~30 (x,0,2317)

5							:						1	139	ΊY	12	430	#34	!																				
	1		. •	>		<u> </u>		3		ន			ŝ	٠		8			3			2			2		8			8	_							- 1	*1
Č ,	4	o	3.6.		1	11	!!			Ţ	:	; :	I	<u>:</u>	:	1		. •		i		Ţ	٠,		Ŀ	•	Ţ	1		T.	5 3		1		-	-	i	\dashv	4
	3	Ž	*			1::				+	-	* :	+		•	╀	<u>. </u>		L			<u> </u>			Ļ		<u>:</u>	i_		<u>;</u>	. 2		П	3	Ę	:			Ų
	Mamo. 13 / EDE 4.	CLEAR SOLUNE OPENING		:			; ;				1	:	j	•				•		•	: :		•			:	i	:	•	8.38838	1 ~			COSSIES	Nat. Moisture Content	•		1	Sheel
1	١	¥		1			i	,			;	;	1		:	Ī		:	ī	,		Ì			i-	-	-i	į		יאָ וֹ יַ	76.2			П	Ž	9	<u>.</u>	۲	â
\$	٤	ğ	, 7, 1		1	ļįi	•					i;		: !	•	1	;	: :	ŀ		٠:	į			İ		ĺ		1	os G				35	9:5	o		희	
	۱	3	1		11		l :			Ī	!	: :	Ī	٠	; ;	Ì	:	;	T		,	Ī		•	Ì	:	1	: ;	: -	oc	3		l	CORES	Σ.	1	ļ		
			3/4"	4	11	!		ļ				-	ľ	:		İ			<u> </u>			i			<u>:</u>					Į Q			CIMVEL	Ī					
			C.	.		; ;	1			li	i	;	1	, i		ļ	ŀ		İ		:	i			:		•	: '	,		2		3		Š			-	
	Ī	ANALYSIS	3/6	· 1	1 ;	1	<u>' </u>		•	<u> </u>	1	`	<u> </u>		<u>.</u>	1	:		L	-	<u>-</u> -	Ļ	<u>:</u>	_	<u> </u>		4	: 	• ;	O1	9.52		U	FIRE	Classification				
		₹ ≺		\							ļ		ļ		•	l			ŀ	:			•			•	-		•	9	•			Ĭ.	333			İ	į
	-		7	1	4			-		ļ,			1			H	1	: [L	;	<u>.</u>	<u> </u>	: ! -				- -	1	-	S	4.78		Ц		Ž	S	\$		=
	ĺ,	٠. بو		!	13			:							:	H		į	ľ		:		. !						! !	Ι,	7	•		COARSE	Soil			Ì	186, (58)
	ŀ	Z.	8,01,	7			\langle	· -		+			╁-	;	! i -	<u>!</u>			-	•	· -	<u> </u>	<u> </u>	-	<u> </u>	: :	1	<u> </u>	<u> </u>	Į	8,			9	Calfied		.		
					ी	\	\bigcup	-,			•		١.	•	i	-		•		: :	: :		•						:	`		TERS] [ļ		P. April
1 13 14		4	\$	1:	. 1			7	<u>)</u>	ì	7	\vec{c}	Ţ		Į	T	į	•	Ì	-		T	<u> </u>	i	<u>.</u>		†	<u>.</u>	:-	oi	÷.	3		ME OF LIVE	2	26.4	إو]
		U.S. STANDARD SERIES	g	i		٠.		Ì	_	\	1	J	\	(_©	ኢ	Ĺ		•	ì			1		i			İ			01. 8.4.9	_	ž		3		61	ğ.		Š
λ_{2}^{2}		ş	40,30		<u> </u>	-				-	. : _	-	1		\ <u>`</u>	Ι.	٠.	_						ī	<u> </u>			Ė		ş.	8	3	S	_];	1		σį		
CRADATION		oz ≤	×	•		· į	-!		٠.	1	İ		١.		``	7	٠,			`\				Ц		;				6. 1.	~	ART				_	S V		•
2		2	-	ţ	• •	: ;	4		;	1	ŀ	,	1	ŗ	ŧ		1	-	<u> </u>	:	-			ī		: ;	1	1		ł	82	ð	li	17.7	-	47.7	~ :		,
U	•	oʻ	8	: !	11			:		Ϊ.	!	_		!	1	<u> </u>	!	/)	<u> </u>	'	1		!				-		Ş.	- 149	DIAMETER OF PARTICLE IN MILLIMETERS	$\ \ $		È	اً	ĺ	1	
	ı		•	1	٠					1		:			:		<u>!</u> .	:	ıλ			Ų	١			! :		-				4		-11		9 60			İ
4	· -	<u>-</u>	8	= i	•	<u> </u>				<u> </u>	!	_	_	<u> </u>	;	L	;	:	!	7	:	N	7	;		! !		;	-	85855	.074		Ц		E evation		•	·l	ļ
Development				į			-			İ.	i		١.	- }	•				:	٠,	:		•	:]	iji	: 1		1		80.	•			1	3	8	9 :		,
Š	1		7 X						•	-			-	-		1		-	·	:	[-				- '		ю.	,co.	i		į	ıi —	1	<u> </u>		Osche
	ı				: :	. ,	1	•	;					. !		١.			:	: :			į	` [٠.	1.		;		co.	٠.				,	r l	3	ᅝ	0
Ş	1;	2	A MIN	-			+			\vdash		<u> </u>	ŀ	- ;	-	-		-		ف	-		~	. <u> </u>	·		H			0	Ş				Š			2	
ò		ž		í		:	,							•		-	. į		į		-		:		:	ì];					Ì	E	1	ocation-	ر ا ۵	دا د	3	Ì
œ		Ž	ZWEZ	:			+	:	 :	İ-	-:		-		-	-	•		<u> </u> -			-:	<u>.</u>	╣	: :	•	<u> </u>			600 600 800	ŝ		ģ	-		مد <i>لي</i> 	ر <u>ا</u> در -	4	-
ò	Įį	*EADING TIME	ž į	i į		: .		!		Ŀ	:	ì		:				•	7	;	ļ		:	ļ	• :	• ;		.	·	50 50 50 50 50 50 50 50 50 50 50 50 50 5	8) 		£ 0.	<u>ā</u>	5		
*	Ş		3		- : -	1:					į				;		: 1	;	:	. !	:		 :	i	i	: 1		: [-	100	. 8		O SE	ľ	ម្តី (<u>გ</u>		'	IK.
S	l		<u>z</u>	il				H		Ì		'		, '		:	. :			. ,		٠.	. ,	j	, .		į	٠,	اً ،	'(';		i	CLAY (planne) 10 Sitt (mon-plants)	-	Ë.	0 640 N		i	-
450			<u>*</u> }	Ħ		III	$\dagger \dagger$	Ħ	İ	li		:	;	;		-	÷	! ,		:	-			1			┞	<u> </u>	{	200	8		9	1		- 1	+	$\left\{ \right.$	ļ
Poject The East Coast Water Resources			25HR, 45MIN, 71R, 15MIN.,0	li							:	;		ī		÷	·į		:	!	. :	. :	٠.	į	: ;		Ĺ						Ś	1	ė	3(X	*	i E
ţ		!	₹.8		8	!	2		8	5		7	3		9	!		3			5			ج	_		5		د ت	100		٠			ž Š			1	
9	L		Ř									_	73	13 Y	ws —	١M	190 d 	*					•	_															


Company of All Land States of the All Land States of the All Land States of

Test	
Gradation	
P Pr	
Borrow	
Lai	
Pla	
Nong P	
Fig. 1-15	

ž.	į							_									7	35) II (n	Į,	130	33	4	~		-		_	_									·									1
(%.A.2517)	į		<u>.</u> (2		:	2			8			Я	l .	_	:	\$			S	₹			3				R			2			8	?			<u>3</u> .		N.								ŀ
5	3	٥		H	11	Ţ	Ц	ļ	Ιį	1	<u> </u>	1		1	11	į		l i	ī	•	<u> </u>	1	Ī	1	Ţ	i	•	Ŀ	Ī	:	1	١		٠	Ţ	<u> </u>		1,	Υ :	2	ſ	150	T	Ē	Π	i	Т	1
	**************************************	CLEAR SQUARE OPENING	4	H	ii		H	t	<u>: :</u>	t	 	i		ì	<u>: </u> i	<u>:</u>	f	1	<u>:</u>	÷	١.	-	<u>: </u>	i	÷	1	i		÷	1	1	• !	; 		H	<u>:</u>	- <u>:</u>	ł.,	. :	2	ı	COMPLES	ŀ	Classification (Nat.Moisture Content	Į.	١.,	L,	ľ
	'n	ō	į.	U	11	1	Ш	1	<u>li</u>	1	l	:				1	L		Ĺ	ļ	Ш	į	İ		Ì		i				۱	į	i		ļ	1:		-¦8	Ϊ,	76.2 127	1	S	9	ĭ	C	1	1	
	į	¥.		11	П	1	H	!	H	I	1	1			ĪĬ	İ		i	ļ	1		Ī	İ	Ī	!	•	1	1			Ī	-	:		Ī	i		98888 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	>	2	Ì	T	1.	5	11.58 %	قوا نا	1 . 5	1
	ž	ğ		П	Ш		Ш	l				1	۱	ļ		İ	H	1			ļ	İ	i	ŀ	Ì	: 1	Ţ		į	; '	Ì	-	ŧ	ı	-		i	05	ī	_			× .	ē	Ĭ .	•	1	ĺ
		E A	ž.	ÌÌ	Ϊİ	Ì	li	Ī	Ϊi	T	; -	į :	: †	İ	ī	ì	ti	:	Ť		li	i	ij	T	1			<u>.</u> ;	÷	Ti	t	ij	:	:		<u>.</u>	<u> </u>]″		3	ļ		3	2				
		U		ļ	Ш	ı		1		ı	;		:	1	I	į	li	i	Ì		li			1	:	: :	-	ľ		į .	1	: !	!	1	i		•	ł		_	1	٦.	1	ž	!	<u> </u>	<u> </u>	Į
		ļ	/	i	Ħ	i	li	Ì	ΪĪ	†		٠,	-	i	Ĩ	i		-	÷	1	Ť	Ť	٠.	+	÷	i	ì		:	. .	t		-		•		-1	×	•	<u>.</u>	1	Š	┨.	0		ļ		
	i	Įς			Ш	İ	Н	İ		١	ì	; :	:	ļ	1	!	֓֞֝֟֝֟֜֝֓֓֓֓֓֓֓֓֓֟֟֝֓֓֓֓֓֓֓֓֓֓֜֟֜֓֓֓֓֓֡֝֡֓֓֡֡֡֡֡֡֓֡֡֡֡֓	į	•	1	ļ			۱		!		١.		ļ.	ı		•	:		:	į	ł	_			Ĭ		Ö			l	İ
		ANALYSIS	3/8-	<u>;</u>	ii	i	i	i	i	t	i	H	1	i	i	;			1		i	t	_	1	1	H	i	-	i	-	\dagger	! !	1		1	11	1	0.000.00		Ž.	ł	30	۶	2517			ŀ	
		2		H	П	l	П	П	П	l				П			:	,	į.		Ì	l			ļ	!	!	ļ	i		l				į		1	į			1	ľ	₹	3	ű	ů	ដ	
			7	Ž.	끆	+	-	1.	<u> </u>	Ł	[;		+				ļ -	-	<u>!</u>	-	1	<u> </u>		1	ļ		÷		1	1	╀	!!	-	-	1	1	j -	ļ,	ì	?	ŀ	4		ጰ		ľ	۳	
		۱.,		V	1	1	į		;		:				ļ	•	li	1	١	: ا		Ì		1	:	i	Ì	П		ı	İ		l	i	1	ij	Ì.	ľ	•	•		3	_					إ
		SIEVE	₽)		Ń	7	<u>Σ</u>	<u> </u>	_ ·	1			_	Ц		!	_	_i	<u> </u>	<u>'</u>	!	:	! !	1	1	I Į	1	Ц	Ţ	11	Ţ	Ш	;	Ц	1	!!	i	ļ.		8		200	; [ביונה ל				١,
			110/8		Ïi	ï		Y	ം)		i	÷.,				Ī		-			i	į	ï	1	;	Ì	÷ 1	- - -	ľ	Ħ		•	}	il	t	1 :	į	٤.	•	` ;	٥	r	1-	51				-
			91,	1	Ш	1	Ŀ			7	:	·	ļ		1	1	L	!			!	Ŀ		1		•	: 	!	<u> </u>	ii	1	1	:	:	<u> </u>	:	!		9		ř	1	1	H	-	6	0	
	TEST				١i	ı	H	li	l i`	Ž,					ļ			Ì				1	i	Į	1	1	1	1		11			ļ	П		П	1:	Ģ!	-	•	DOME ICA OF TAKINGE IN MILLIMOTERS	W. CO.	1	4	3	0.03	5 0	
		SER	Ω			1	11	П			1	i	J		ı		ļ	ļ	H	!	ı	١	:	١	į			Ì			I	ļ	ļ	<u> </u>	l	Ш		0	ė	, :	٤			f 7.	9	•	o	'
١	CRADATION	U.S. STANDARD SERIES	00,07	į	$\overline{\prod}$	1	Ī		Į				Ž	. !		<u>;</u> -	i	!	Ĺ		Į.	Ī	Ŀ	1	L		:	Ì	Ţ.	Ì		H	1		Ì	ij	1:	ç.	Ş		3	Ž Š	Afferberg	4	64.0	15.0	25.0	
ij	7	Ž	•	•		i	j			П		($\dot{\gamma}$	المرا	<u>.</u>	.				!	1	l	1	l	1		i	l	l	H	l	i	İ		l	П	Ĺ	ç.		. :	Š	ı	1	Ī	7	6)	0.0	
	ΔV	75.	ક	Ť	Ħ		i	H	ī		i	. 1	ì	\angle	ľ	V	Γ,	_		j	i	i		Ť	Ì	<u> </u>		i	†	i	ti	ii	ì	il	†	i	ļ	ľ	ĝ	;	5	ſ	K	1	؋	45.9	40	
	۲ د	2.5	_				ļ	į Į	1			1			V.	/	\			,	1		Î	ļ	ļ						li	H	ļ	П		lĺ	-	ζ,	_	Ì	5	Ž		~:			0	9
			\$	i	ii			: :	÷	İ		: :	i	i	7	ζ,	/	}	·	:		:	<u></u>	t	: 1	_ <u>:</u>		i	<u>:</u>	i÷	H	H	+	╢	+	! 	<u>:</u>	1	971		Š	1	Grand 12	2	C.00 - C.10	ن 5	ç	
				ļ				•	•		·	:	j		:	: }		1	Ų		į		i	l	Ц		1		П	П	Ш	П			١	П	-	했	•	•	1	l	E	-		5	00.3	
_	_		8	1	1:		-			:		<u>:</u> -	last	- :		<u> </u>		1,	7,	H	<u>.</u>	. 1	j 1 1	1	1 :	:	<u>, </u>	<u> </u>	1	: ! : 1	H		1	-	<u> </u>	; ;	-	85.8899 F	Ž	\$	ŀ	1	٤	5	밁	3	ز	
	اغ				H	:	:	:	:	l	i	i	1	إ .	į			į	İ		:			ļ		į	-					ij	Ì	įĮ				50	•		l		Ľ	1	_			,
	d		z s	+	1:	<u>.</u>	-	<u>.</u> 1 i		Ë	i	H	╁	-:	÷		1	_	<u> </u>	+	i	•	:	╁		-	1	+	1) : : I	i	+	!	; ;		100	. 5	•	ı		١.		ı	٠	ġ	
-	2		-	ì			i	Ì	ĺ	ļ	!	iΙ	ı	¦ ¦	!	۱,	1	:			ŀ			ı	ij	i	П		П		H	i		П			i	m	•		ı		1.5	,	<u>رب</u>	œ.	님	•
•	ě	ş	KIN. JAIN	+	<u>i i </u>	-	4	<u> </u>	<u>.</u>	!!	:	H	+	! !	1	<u>: </u>	1	<u>:</u>	<u> </u> :	ļ	-			ļ	<u>! !</u>	ļ	ij	ļ	Ц	Ŀ.	1	1	Ц	4	1	1	! -	₹0	. 5	:	I		900	}	٠ <u>٠</u> ا.	L 0/s -	9	
	Š	¥.¥	•	į	1	i	١	П	1	li			1	į	i	i	İ	1	į		į	1	i	l	:	į	١	i	li		١.	i					i			•		ទ	ŀ	Í	ï	-	Ē	
	ξ	Z =	7	1	<u>II</u>		1	Ц	1	<u> </u>	1		1	!!	1	1	1	1	į	_	1		ţ	ļ	!	1	<u>:</u>	1		ļ	<u> </u>		1	Ц	H		1	919	?: <u>8</u>		ı	2	L		_		鱼	
•	ä	HYDROMETER ANALYSIS READING TIME	7. 19MIN.	İ	H	H	1	1	İ	li	i	İi	l		i	i l	İ	:	í	f	:		İ		i		اا	I	łİ	į	ŀ	!	!			i	14	80), 6), 6), 6	•	ı	(non-plassic)	Ş	į	ē			٠
_	<u>.</u>	ខ្ញុំ ភ្ន	2	ļ	<u>!!</u>	Ц	!	!!	Ļ	<u> </u>	!	Ц	4	<u> </u>	ļ	<u>' </u>	-	:	i	4	Ŀ		-F	ļ	!!	—	<u> </u>	<u>i</u>	!!			•		1		!	Ц	900 500)- 8	}			Į,		9	"	١١	ò
	፮	Š	ું.	l			1	П		li	ĺ	Ш		l	İ	!	i	:	1	ı	1	1	1	١	i	į	:			i	H	ŧ	ĺ		i	İ		10	3.	•	ı	Ö	١٠٥	֓֞֞֞֝֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞	딝	Ш	H	
-	<u> </u>		Z	ĺ	ĺ	Ш		П		11		$\ $		İİ	ĺ	: l	ļ	:	,	l	į,	•	•		, :		:			•		i			:	1	1	EC:			1	5			2008 1 2 2 3 3 4 4 5 5 5 7	À		
Š	اَيّ		, E	‡	#	뷔	+	뷰	1	H	1	뷰	+	H	<u>.</u>		:	-	+	╂	-		•	Ļ	4	<u>:</u> :	<u>. </u>	<u>i</u>	<u>! l</u>	<u>.</u>	Ļ÷	-	-	ļ	_	+	뷔	65	2. g		1	9	_				4	
t	elect the Edst Coost, Water, Resources, Development		25HR, 45MIN, 7HR, 15MIN., 60MIN			Ш		П		H		$\ $	1		ĺ	ا ز	ļ			l	! !	! i	!		,	i			¦	•		! i	: !							•		CLAY (plante) TO SILT	g	(Ŕ	<u>ම</u>	đ)
٠	9		3	J.	Ш	П	T	Ц	Ţ	Ų	1	Ц	1	11	1	Π	1		!!	Ţ	Į.	ij	Ĺ	Į.	L	!	Ц	;	L	i	Ŀ	1	I	Ţ		Ц	Ц	100	•		L	0	J_				_	į
•	١٠					8			8	6			R			3		11		3				Ş			3			1	\$			2			c	,						Ž			İ	

Fig. 1-16 Result of Laboratory Test for Borrow Materials

(After 1973 reports)

