
THE KINGDOM OF MUTATIAN

TRACK ELEVATION FROJECT, I CF EXISTING RALWAY LING IN THE BANGKOR METROPOLITAN ARE

EEASIBILITY, STUDY.

JULN 1984

JAPAN INTERNATIONAL COOPERATION ACTICS

.

THE KINGDOM OF THAILAND

TRACK ELEVATION PROJECT OF EXISTING RAILWAY LINES IN THE BANGKOK METROPOLITAN AREA

FEASIBILITY STUDY

JULY 1984

JAPAN INTERNATIONAL COOPERATION AGENCY (JICA)

SDF CR (3) 84-087

No.

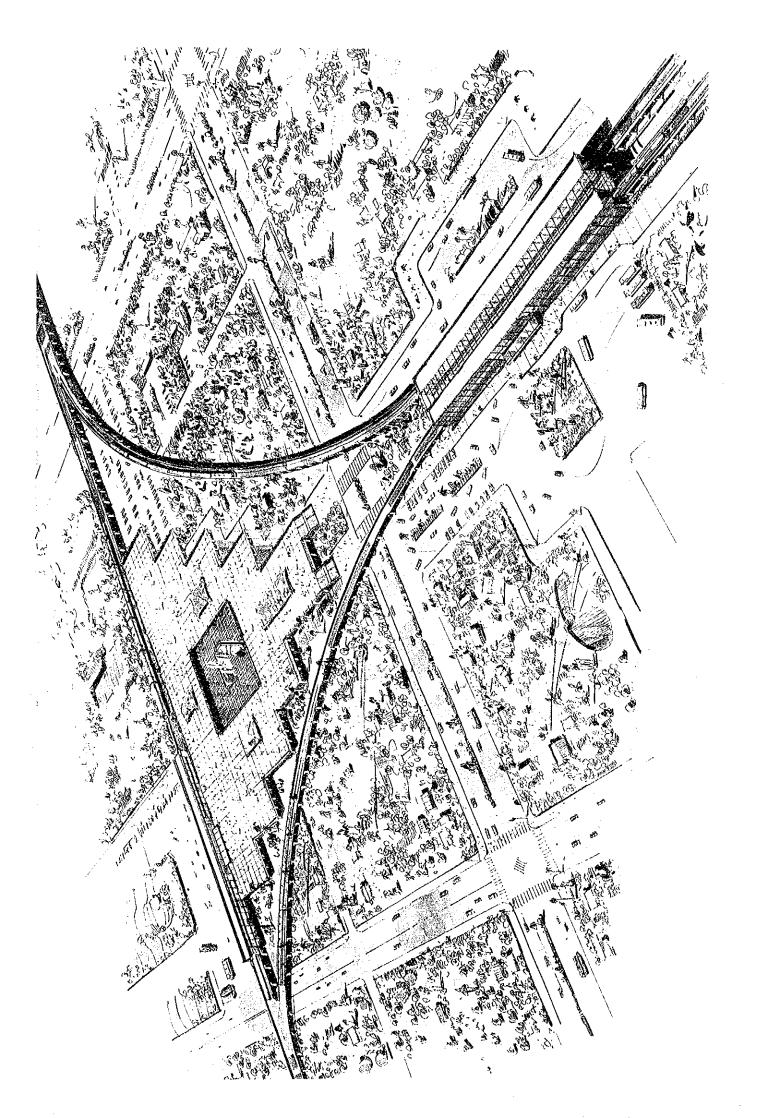
国際協力事業団	
受入 '84 11.16 122	
月日 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
登録No. 10858 SDF	

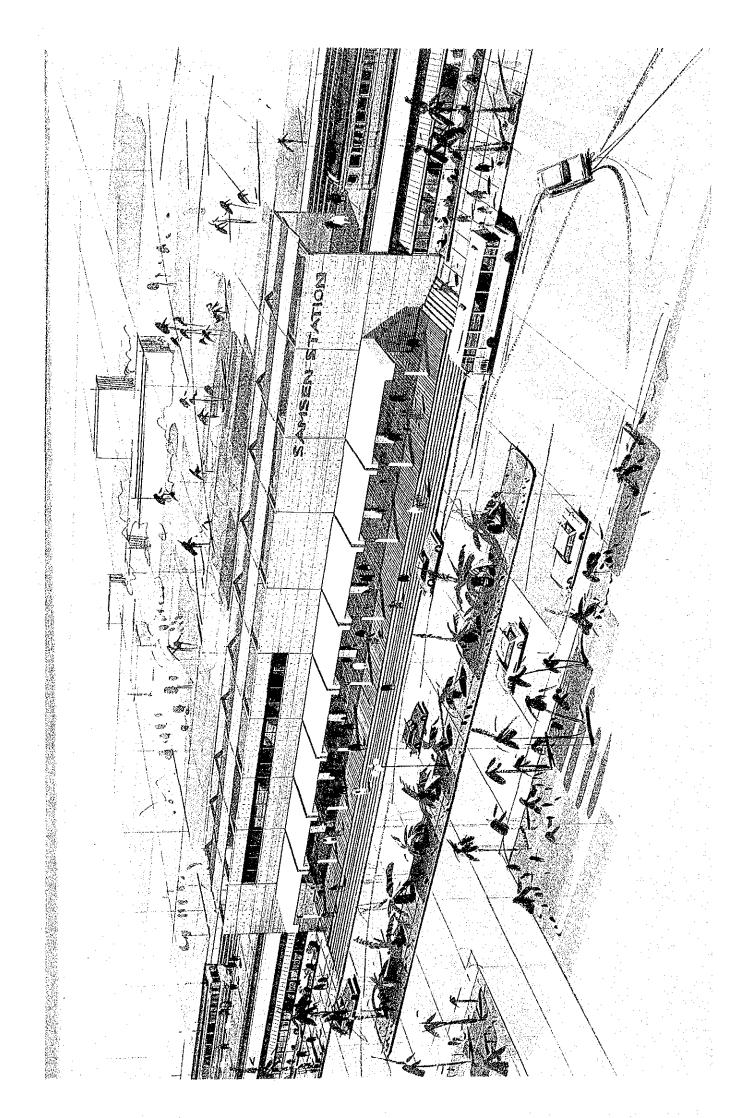
PREFACE

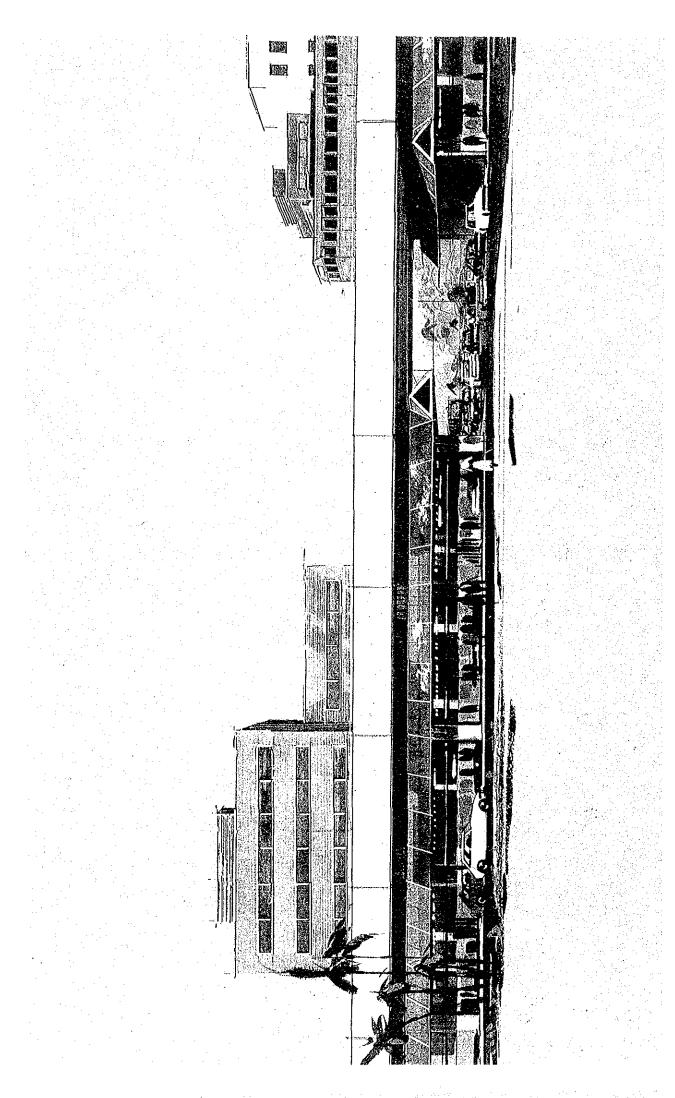
In response to the request of the Government of the Kingdom of Thailand, the Government of Japan decided to conduct a feasibility study on the Project for Track Elevation of the Existing Railway Lines in the Bangkok Metropolitan Area and entrusted the study to the Japan International Cooperation Agency (JICA).

The JICA sent to Thailand a study team headed by Mr. Masashi Hatori, Director of the Japan Railway Technical Service, in August 1983, under the guidance of the Advisory Committee chaired by Mr. Ryosuke Hirota, Director of Facilitles Division in National Railway Department, Secretariat to the Minister, Ministry of Transport.

The team held discussions with the authorities concerned of the Government of Thailand on the Project and conducted a field survey in the country. After the team returned to Japan, further studies were made and the present report has been prepared.


I hope that this report will serve for the development of the Project and contribute to the promotion of friendly relations between our two countries.


I wish to express my deep appreciation to the authorities concerned of the Government of the Kingdom of Thailand for their close cooperation extended to the team.


July 1984

Krisule

Keisuke Arita President Japan International Cooperation Agency

SUMMARY AND CONCLUSION

SUMMARY & CONCLUSION

CHAPTER 1 INTRODUCTION

1. Objective of the Study

Urban traffic in the Bangkok Metropolitan Area depends mostly on roads. It is difficult, however, to deal with increasing urban traffic demand only by roads.

Furthermore, railway does not function effectively as an urban transport system due to the grade crossings with major urban road intersections.

The Study was conducted to evaluate the Track Elevation Project for eliminating railway grade crossings as a means of increasing train operation efficiency and safety as well as solving the ever worsening urban traffic problem in the Bangkok Metropolitan Area.

2. Outline of the Study

Upon request by the Government of the Kingdom of Thailand, the section for the proposed track elevation was determined as shown in Fig. 2.

An improvement of transport capacity, including additional train operation, was studied for the Greater Bangkok Area, taking into consideration the future public housing plan and land use plan.

Study cases are as follows:

Table 1 Cases to be Considered

		Proposed Ele	vated Section
		Alternative I (three lines)	Alternative II (two lines)
und tast	Case I (Natural Trend Type)	Case-I-3	Case-I-2
Demand Forecas	Case II (High-level Service Type)	Case-II-3	Case-II-2

Notes: 1. Demand Forecast

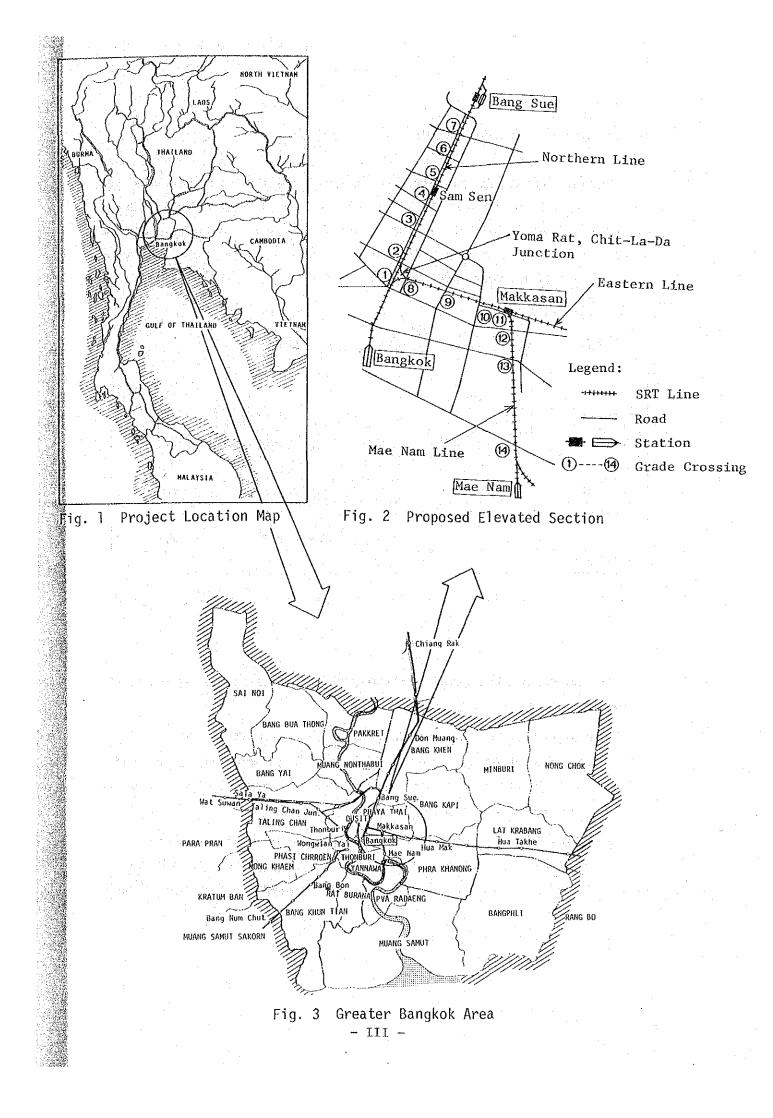
Case I: The present railway service level remains coping with the demand side. (Natural Trend Type)

Case II: High-level service is provided to urban railway passenger in accordance with changes on the supply side (High-level Service Type)

2. Proposed Track Elevation Section

Alternative 1:

Northern Line; Bangkok ~ Bang Sue Station


Eastern Line ; Yoma Rat, Chit-La-Da Junction ~

Makkasan Station

Mae Nam Line ; Makkasan ~ Mae Nam Station (3 lines: Total length is about 13 km) Alternative II:

Northern Line and Eastern Line (2 lines: Total length is about 10 km)

II -

CHAPTER 2 SOCIO-ECONOMIC FRAMEWORK

During the 20-year period between the First National Economic and Social Development Plan in 1961 and the Fourth Plan, the Thai economy achieved a remarkable 7% average annual growth. However, in the course of such economic growth, the problem of 'regional gaps in economic and social development occurred as shown in Table 2.

Area	Total (Million Baht)	Per-capita National Income (Baht)
Bangkok Metropolis	281,317	50,779 (2,208)
East	121,372	33,518 (1,457)
West	84,391	25,847 (1,124)
Central	61,046	20,999 (913)
South	87,275	14,376 (625)
North	114,366	1,434 (497)
Northeast	109,603	6,390 (278)

Table 2 National Income by Region (Nominal in 1982)

Notes: 1. Data; NESDB "Gross Regional and Provincial Product 1982" 2. () is US\$.

In the Fifth Plan (1981 to 1986), the Government has stressed the following targets:

(1) To reduce the population growth rate to 1.5% by 1986.

(2) To decentralize economic and industrial activities, assuming a 6.6% per annum GDP growth rate, in order to minimize the regional income gaps.

Thailand had a population of approximately 48.6 million at the end of 1982. The birth rate has gradually decreased to less than 2% annually within the last 5 years. The population in the Bangkok Metropolitan Area, in contrast, has been growing at an average annual rate of more than 3.3% in the past 10 years, pointing to a trend towards more centralization of the population in the capital as seen in Table 3.

Table 3 City Population (as of the End of December 1982)

(Unit: 1,000 persons)

1. Bangkok Metropolis	5,468	$\overline{\mathbf{J}}$
2. Hat Yai	108	-
3. Khon Kaen	108	н
4. Chiang Mai	104	
5. Nakhon Sawan	93	
6. Nakhon Ratchasima	89	. .
7. Udon Thani	82	
8. Song Khla	78	
9. Phitsanulok	71	
10. Nakhon Si Thammarat	69	

1,000 2,000 3,000 4,000 5,000 6,000

CHAPTER 3 TRANSPORTATION

In the Bangkok Metropolitan Area, private cars and buses are typical means of transportation, comprising a greater than 88% share of the total number of trips. (Table 4.)

The railway traffic utilization rate of 0.3% is small in comparison with that of the more developed countries. Hence, more emphasis must be placed on the railway transport system.

Item	Composition (%)	Item	Composition (%)	
1. Private means		2. Public means		
(1) Car	21.7	(1) Small bus	6.2	
(2) Motorcycle	6.4	(2) Heavy bus	60.1	
(3) Samlor	0.9	(3) Train	0.3	
(4) Taxi	0.8	(4) Boat	0.5	
(5) School bus	2.3	····		
(6) Truck	0.8	Subtotal	67.1	
Subtotal	32.9	Total	100.0	

Table 4 Result of Person Trip Survey

At present, however, it is difficult to increase train operation for urban transportation for the reasons cited below:

- Obstacles created by grade crossings in the Bangkok Metropolitan Area
- Restrictions in track capacity due to present signalling system
- Lack of train operation capacity in Bangkok Station Yard

CHAPTER 4 DEMAND FORECAST

Passenger flow in the Greater Bangkok Area fluctuates according to the railway service level provided by SRT.

A demand forecast, taking these fluctuations into consideration, was carried out for the final target year of 2003 assuming that the proposed elevated section would be opened to traffic in 1991.

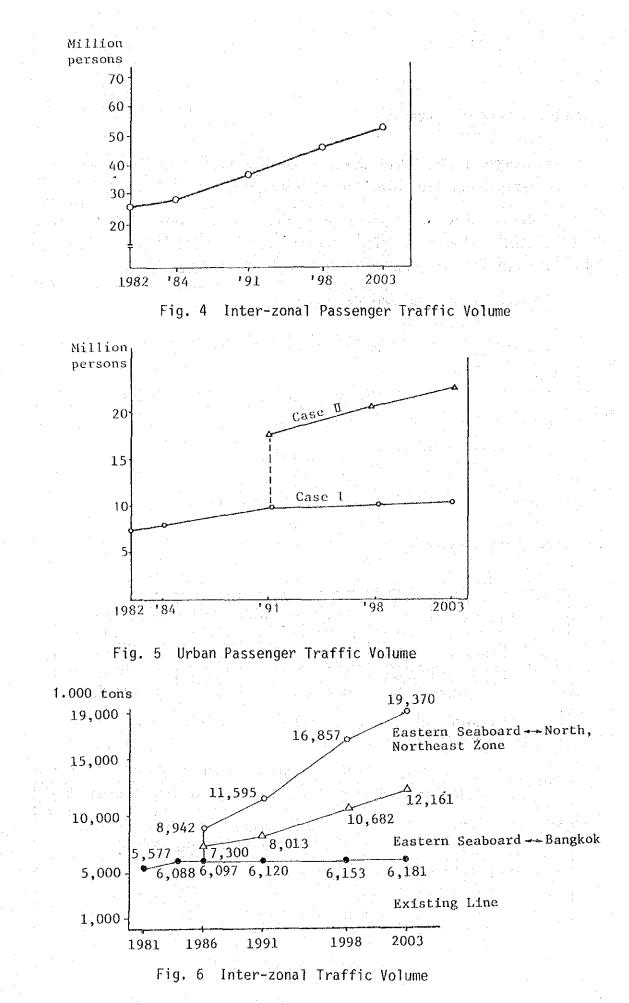
The following were considered:

-Inter-zone

The estimate results are as follows:

Table 5 Summary of Results of Demand Forecast

	Year	1982	1991	1998	2003	(2003)/(1982)
Inter-	zone	25,606	37,661	46,907	53,105	2.07
Urban	Case I	6,836	9,070	10,175	10,793	1.58
	Case II	6,836	17,329	21,330	22,636	3.31


(1) Passenger traffic demand

(2) Freight traffic demand

(Unit: 1,000 tons)

(Unit: 1,000 persons)

	Year	1981	1991	1998	2003	(2003)/(1981)
Existing	Lines	5,577	6,120	6,153	6,181	1.11
Eastern	Bangkok		1,870	. 4,530	6,008	
	Northern Link Line		3,605	6,174	7,181	
Tot	al	5,577	11,595	16,857	19,370	3.47

- VIII -

CHAPTER 5 TRANSPORTATION PLANNING

In accordance with the traffic demand forecast in CHAPTER 4, transportation planning was set up. The basic principles for calculating the required number of trains and rolling stock are listed as follows:

• This planning is conducted on the basis of the existing motive power tractive system.

Short-distance passenger trains for urban passenger traffic are planned using 6-car train consist with loading factor of 150%.
Long/intermediate-distance trains for inter-zonal passenger traffic are planned to maintain the present level of service (e.g. loading factor and train consist.)

• Normal hauling capacity per freight train is to be set at the present level.

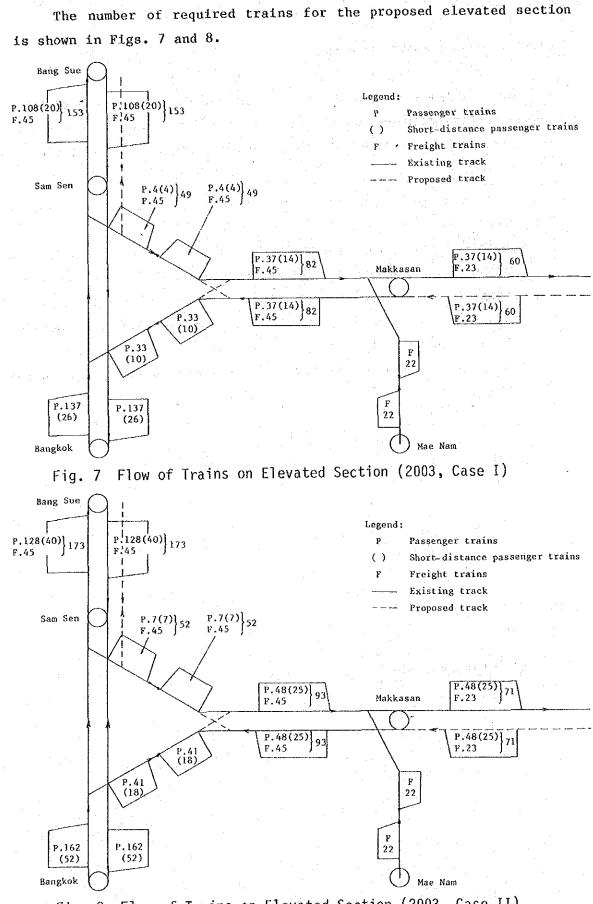


Fig. 8 Flow of Trains on Elevated Section (2003, Case II)

- X -

The number of passenger trains per hour during peak time at Bangkok Station is shown in Table 6.

Table 6 The Number of Passenger Trains per Hour during Peak Time at Bangkok Station

(each direction)

Year		1983		1991				2003							
				Case I		Case II		Case I		Case II					
Line	A	В	Total	A	В	Total	A	В	Total	A	B	Total	A	B	Total
Northern	3	1.	4	3	2	5	3	3	6	5	2	· 7	5.	4	9
Southern	0	0	0	1.	0	1	1	1	2	1	0	1	1	1	2
Eastern	2	Ò	2	2	1	3	2	2	4	2	2	- 4	2	3	5
Total	.5.	1	6	6	3	9	6	6	12	8	. 4	12	8	8	16
Headway (min.)			10		•.	7			- 5			5			4

Notes: A Intermediate/long-distance passenger trains (Sphere beyond 30 km from Bangkok station)

B Short-distance passenger trains
 (Sphere within 30 km from Bangkok station)

The required number of rolling stock in the Bangkok Metropolitan Area is shown in Table 7.

Table 7 Required Number of Rolling Stocks

(Unit: Cars)

		1981		I	Case II			
		(in service)	1991	2003	1991	2003		
	DL	13	16	21	. 16	21		
ĮA	DRC	(4) 22	(18) 71	(24) 103	(36) 89	(48) 127		
BMA	PC	38	54	74	54	74		
	FC	654	660	908	660	908		

Note: () is the number of DRCs for short-distance passenger Trains (included in the required number).

CHAPTER 6 SOILS AND ENVIRONMENTAL IMPACT STUDY

1. Structure of Foundation

Based on the geological survery, concrete piles should be used for the foundation, driven down to the stiff clay strata 20 to 30 m below the ground surface.

2. Noise and Vibration Countermeasures

The following measures should be taken to reduce noise to levels comparable to or below those of peripheral areas.

° Provision of noise insulation walls

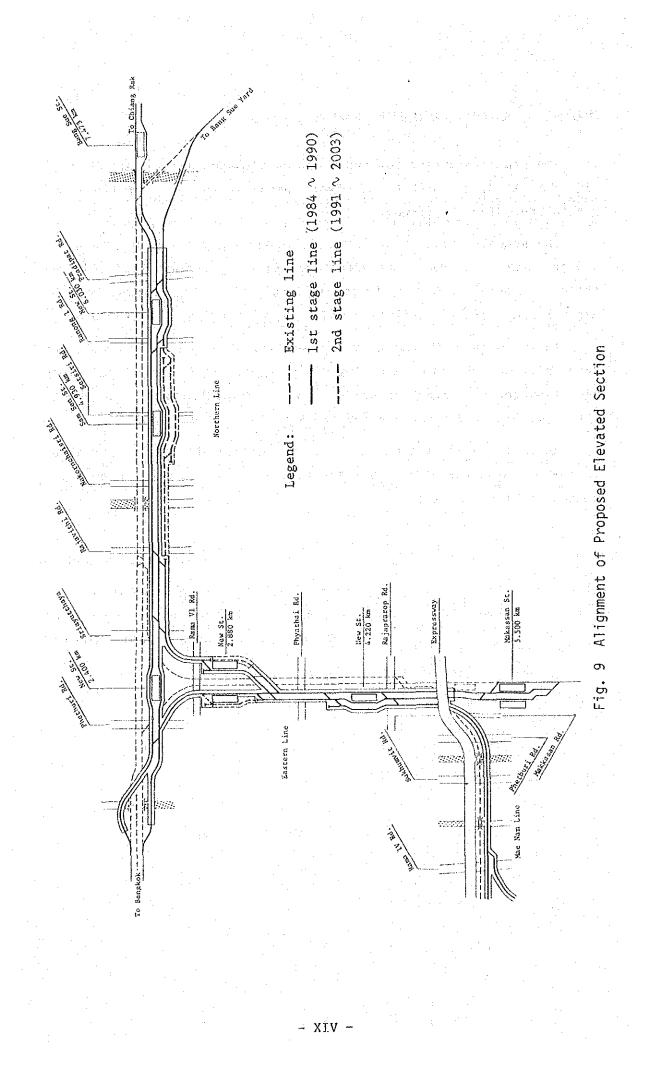
° Rail length extension

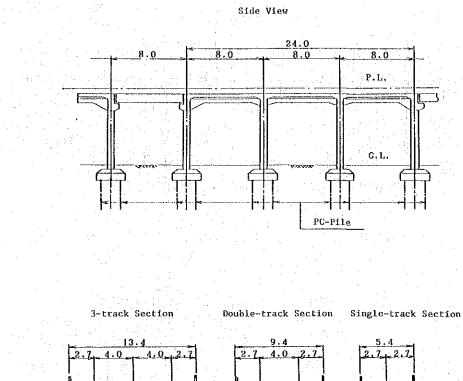
° Use of PC sleeper and rubber pads

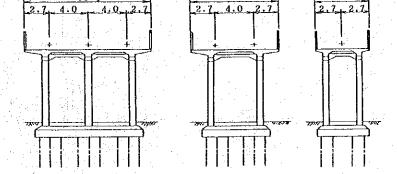
No extraordinary measures to prevent vibration are called for at present. Utilization of deep piles for viaduct foundations will ameliorate conditions.

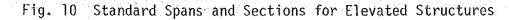
3. Height Limitations

The elevated structures will be approximately 10 m in height (at top of noise insulation walls). They will easily conform to local ordinances limiting height to 12 m or 20 m.

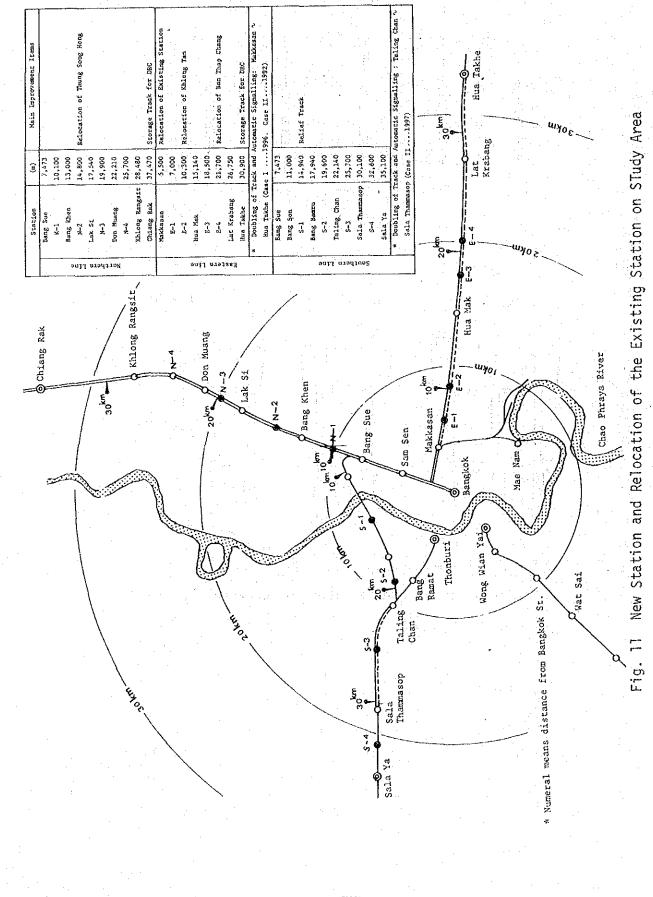

CHAPTER 7 RAILWAY FACILITIES PLAN


The track alignment for the proposed elevated section is shown in Fig. 9. It is planned to be almost parallel to existing lines and within the SRT right of way.


The standard type of viaduct is illustrated in Fig. 10. The planned structure, the most cost-effective, is a rigid-frame bridge of reinforced concrete. It will be possible to locate various station, commercial and business facilities under the elevated track structure.


In areas outside the elevated section plans should be made for such major facilities as doubling of track, repair equipment and storage track for shuttling service as shown in Fig. 11. This will promote effective use of the various functions of the elevated track.

Automatic block system and three-aspect signals will be installed on the double-track line. A tokenless block system will be employed on the single-track line.



- XV -

- XVI -

CHAPTER 8 INVESTMENT SCALE AND SCHEDULE

The First Stage is the completion of Track Elevation work in 1990 as shown in Fig. 9. The Second Stage is the investment on the required facilities in accordance with the increase in railway transportation after 1991 as shown in Figs. 9 and 11. The investment scale and schedule are shown in Table 8.

Table 8 Investment Scale and Schedule

(Unit: Mil. Baht)

an geographication			<u>a an an an an an an a</u>	1
	Item			Total
Alter-	Elevated Section	2,412.9	324.1	2,737.0
(3 Lines)	Unelevated Section	493.0	410.9	903.9
Alter- native II (2 Lines)	Elevated Section	1,964.6	324.1	2,288.7
	Unelevated Section	493.0	410.9	903.9
Alter-	Elevated Section	2,412.9	324.1	2,737.0
(3 Lines)	Unelevated Section	624.4	501.6	1,126.0
Note that the second se	Elevated Section	1,964.6	324.1	2,288.7
	Unelevated Section	624.4	501.6	1,126.0
	native I (3 Lines) Alter- native II (2 Lines) Alter- native I (3 Lines) Alter- native II	Alter- native I (3 Lines)Elevated SectionAlter- native II (2 Lines)Elevated SectionAlter- native II (3 Lines)Elevated SectionAlter- native I (3 Lines)Elevated SectionAlter- native I (3 Lines)Elevated SectionAlter- native II (3 Lines)Elevated Section	Item(1984 $\sqrt{1990}$)Alter- native I (3 Lines)Elevated Section2,412.9Matter- native II (2 Lines)Unelevated Section493.0Alter- native II (3 Lines)Elevated Section1,964.6Alter- native I (3 Lines)Elevated Section2,412.9Matter- native I (3 Lines)Elevated Section624.4Alter- native IIElevated Section1,964.6	Item(1984 \sim 1990)(1991 \sim 2003)Alter- native I (3 Lines)Elevated Section2,412.9324.1Unelevated Section493.0410.9Alter- native II (2 Lines)Elevated Section1,964.6324.1Unelevated Section493.0410.9Alter- native I (3 Lines)Elevated Section2,412.9324.1Alter- native I (3 Lines)Elevated Section2,412.9324.1Alter- native IIElevated Section2,412.9324.1Alter- native IIElevated Section624.4501.6

The rolling stock costs for increases in demand are shown in Table 9. It is to be noted that these costs would be required regardless of the implementation of the Track Elevation Project.

Table 9 Rolling Stock Costs

(Unit: Mil. Bhat)

·	· · · · · · · · · · · · · · · · · · ·			
Case	Alternative	Cost		
Case I	Alternative I	1,577.8		
	Alternative II	1,577.8		
Case II	Alternative I	1,813.0		
	Alternative II	1,813.0		

- XVII -

CHAPTER 9 UTILIZATION PLANNING UNDER ELEVATED TRACKS

Several locations along the proposed track elevation (e.g. the area around Sam Sen Station and Chit-La-Da Junction in Northern Line, wayside area on the Eastern Line and the area surrounding the grade crossing on the Mae Nam Line) are available for commercial use. Other locations can be utilized as business areas.

With the track elevation, wayside areas presently separated by the present railway line can be integrated to facilitate their development. As these areas play an important role in the economy, side road plans should be established, and public facilities should be introduced under the track elevation.

Table 10 Utilization Planning under Elevated Track

(Unit: m²)

	Station Facilities	Commercial Facilities	Business Facilities	Other Facilities
Northern Line	1,200	10,600	8,600	24,000
Eastern Line	1,200	25,400	3,500	0
Mae Nam Line	0	1,500	12,800	0
Total	2,400	37,500	24,900	24,000

CHAPTER 10 GRADE SEPARATION AS ALTERNATIVE TO RAILWAY TRACK ELEVATION

Grade separation by flyover and/or underpass has been considered as an alternative to the railway track elevation.

When the flyover and the underpass are compared, the flyover is found to be superior. Flyover construction would be difficult, since the Northern Line and the Eastern Line are parallel to and very close to roads, especially the expressway running along the Mae Nam Line. Disadvantages of constructing flyovers are that land purchase and the demolition of some commercial and residential areas would be unavoidable.

The construction costs for flyovers are listed for each railway line as follows:

Table 11 Construction Costs

(Unit: Mil. Baht)

	Road Name and No. of Flyovers		Cost	
Northern Line	Phetburi, Sriayutthaya, Rajavithi Nakornchaisri, Setsiri/Ranong I, Pradipat	6	788.7	
Eastern Line	Rama VI, Phyathai, Rajaprarop	3	441.8	
Mae Nam Line	Makkasan, Phetburi, Sukhumvit, Rama IV	4	1,104.2	
Total		13	2,334.7	

Note: Land purchase and compersation cost, engineering fee and contingency are included.

-XIX -

CHAPTER 11 ECONOMIC ANALYSIS

1. Economic Analysis Methods and Study Cases

In this economic analysis, a "With/without the Project" analysis method was adopted to evaluate the economic viability of the Project from the viewpoint of the national economy.

The net flow, which is the difference in investment, operating and maintenance costs, and benefit between "With the Project" and "Without the Project" (Flyovers construction being implemented), was used to calculate the Economic Internal Rate of Return (EIRR) in the following four cases, as shown in Table 13.

For reference, the case in which no flyovers are constructed in "Without the Project" was also analyzed.

· ·		Name of Case	With the Project	Without the Project
CASE-1	Alternative I	Case-1-3	e-1-3 Track elevation in Flyovers	
	Alternative II	Case-1-2	"Natural Trend Type"	Trend Type"
CASE-II	Alternative I		Track elevation in line with the "High- level Service Type"	Flyovers in line with the "High-
	Alternative 11	Case-II-2		level Service Type"

Table 12 Alternative Matrix

2. Benefit

Quantified Benefits	Unquantified Benefits		
 (1) Time saving benefit (1) for road vehicles at railway grade cross-ings (11) for railway passen-ger (2) Fuel saving benefit (3) Benefit of averting accident at railway grade crossings (4) Land use benefit 	 Benefit from promotion of more productive use of land around railway stations Dissolution of areal di- vision Relief of road conges- tion based on modal shift from bus to rail- way Job generation 		

3. Evaluation

(1) EIRR

Case	Case-I-3	Case-I-2	Case-II-3	Case-II-2
EIRR	16.2%	20.4%	16.3%	20.1%

(i) It can be concluded that the implementation of the Project is reasonable and viable from the viewpoint of the national economy, since the EIRR of each case surpasses the internationally acceptable level of 12 or 13 percent.

(ii) The relatively high level of EIRR in Case-I-2 and Case-II-2 indicates that each "net flow" from the Mae Nam Line in Case-I-3 and Case-II-3 is relatively lower than that of the other 2 lines (Northern, Eastern Lines).

- XXI -

(iii) There is little difference between the EIRR of Case-I and Case-II. However, taking into consideration unquantified benefits in Case-II, the EIRR of Case-II is superior.

(Case of no flyovers constructed in "Without the Project")

Case	Case-I-3	Case-1-2	Case-11-3	Case-II-2
EIRR	17.7%	19.3%	18.6%	20.4%

Even in this case, the EIRR also indicates that the Project is feasible.

(2) Sensitivity analysis

The sensitivity analysis was conducted for Case-I-2 as follows.

No.	Base Case	20.4%
1	Construction cost: +10%	19.5%
2	Road traffic volume: -10%	20.9% (Note)
3	1 + 2	20.0%

Note:

Sensitivity Analysis No. 2

Despite a 10% decrease of road traffic volume, the EIRR increases by 0.5% due to the difference in when the time saving benefit occurs in the "With/Without" case. CHAPTER 12 FINANCIAL ANALYSIS

1. Financial Analysis Method and Study Cases

The marginal analysis method was adopted, for the financial analysis conducted on the following two cases considering the scale of the capital investment:

Case-I-2	Case of the lowest investment amount among four cases
 Case−11-3	Case of the highest investment amount among four cases

2. Cash Flow Analysis

Assuming that SRT obtains subsidies according to the assumed finance plans, the results of the cumulative net cash flow are shown as follows:

			(Unit: Mi	llion Baht)
Finance plan Case	Base	Plan No. 1	Plan No,2	Plan No. 3
Case-1-2	-6,496.4	-3,634.1 (2,862.3)	-771.7 (5,724.6)	+582.3 (7,078.7)
Case-II-3	-8,075.9	-4,581.7 (3,494.2)	-1,087.4 (6,988.5)	+435.8 (8,561.7)

Notes: 1. Figures in () show subsidies

2. Finance Plan

(i) Base Plan: No subsidies for SRT

(ii) No. 1: Governmental subsidies will be

made for 50% of domestic currency portion

(iii) No. 2:

Governmental subsidies will be made for 100% of domestic currency portion . (iv) No. 3: In addition to No. 2, subsidies

> will be made for 100% of interest on foreign currency portion

In plan No. 3, the cumulative net cash flow changes from minus to plus for the first time.

3. Evaluation

Both cases produce operating income sufficient to cover working costs; however, they cannot become profitable at the level of operating profit through the whole project life due to the heavy burden of interest and depreciation.

Considering the national economic benefits of the Project, it may be desirable to implement some form of government financial support such as subsidies for SRT.

CHAPTER 13 CONCLUSION

- The Project is feasible from a national economic standpoint. National or municipal government support and special consideration may be indispensable in promoting the Project.
- (2) The proposed track elevation section consists of the Eastern and the Northern Lines, a total length of approximately 10 km. The Mae Nam Line will be considered for elevation depending on the future circumstances.

With this improvement, railway transport system shall contribute to the whole urban transportation picture. Service improvements will include additional train operation, construction of new stations and shortening of the access/egress to the railway stations.

Moreover, the following improvements should be made in addition to the track elevation:

- ^o Improvement of railway facilities to meet the increasing railway traffic demand (e.g. Bangkok Station Yard, Bang Sue Yard and Makkasan Workshop).
- Improvement of other transportation facilities such as railway station access roads, station plazas and bus networks.

° Security devices at grade crossings outside the elevated section.

° Effective land utilization alongside the elevated track.

(3) To make the Project more effective, it is essential to establish an urban transport Master Plan for the Greater Bangkok Area, with its population of over 6 million, as soon as possible. This will enable the railway transport system to function as one of the major urban transportation modes.

- XXV -

CONTENTS

	Page
CHAPTER 1 INTRODUCTION	
1.1 Background of the Study	1
1.2 Objective of the Study	2
1.3 Outline of the Study	4
1.4 Basic Policy of the Study	<u>7</u>
1.4.1 Sequence of the Work	a. 7 .
1.4.2 Traffic Demand Cases to be Considered	10
1.5 Organization for the Study	10

CHAPTER 2 SOCIO-ECONOMIC FRAMEWORK

2.1 Nature and Socio-economy	15
2.1.1 Nature and Geography	15
2.1.2 Socio-economic Background	15
2.2 National Economic and Social Development Plan	19
2.2.1 Achievement in the First to Fourth Plans	19
2.3 Fifth National Economic and Social Development Plan	22
2.3.1 Summary of the Overall Development Targets	23
2.3.2 Transportation	24
2.3.3 Eastern Seaboard	25

CHAPTER 3 TRANSPORTATION

2	.1 Transportation Outline	27
÷	.2 Urban Transportation	30
	3.2.1 Outline of Urban Transportation	30
	3.2.2 Traffic Survey	37
	3.2.3 Future Scheme for Urban Transport	48
•	3.2.4 Establishment of Commuter Area	48

		Page
3.3 Pre	sent Condition of Railway Transportation	55
3.3.1	General Status of Train Operation	55
3.3.2	Present Condition of Rolling Stock	60
3.3.3	Current Condition of Railway Facilities	66

CHAPTER 4 DEMAND FORECAST

•

4.1 Bas	ic Concept	73
4.2 Pre	conditions	75
4.2.1	Establishing the Forecast Cases	75
4.2.2	Zoning	76
4.2.3	Future Population and Products by Zone	81
4.2.4	Transport Conditions by Mode	83
4.3 Act	ual Demand Forecasting	83
4.3.1	Inter-zonal Passenger Traffic	84
4.3.2	Urban Passenger Traffic	89
4.3.3	Inter-zonal Freight Traffic	98
4.4 An	Examination of the Results	106

CHAPTER 5 TRANSPORTATION PLANNING

5	.l Tra	in Operation Planning	109
	5.1.1	Assumptions	109
	5.1.2	Required Number of Trains	115
5	.2 Rol	ling Stock Planning	125
	5.2.1	Calculation Basis	125
	5.2.2	Required Number of Rolling Stocks	128
	5.2.3	Basic Principles of Rolling Stock Inspection and Repair	129

- ii -

		· · ·			· .	•		Page
5.3 Tra	in Operation	Facilitie	s				* * * * * * *	 130
5.3.1	Elevated Se	ction	•••		• • • • • •			 130
5.3.2	Unelevated	Section in	the	Study	Area	• • • •	* * * * * * *	 135

CHAPTER 6 SOILS AND ENVIRONMENTAL IMPACT STUDY

6.1 Soils	and Hydrological Study	141
6.1.1 So	ils Survey	141
6.1.2 Hy	drological Study	150
6.2 Enviro	nmental Survey	153
6.2.1 No	ise	157
6.2.2 Vi	bration	160
6.2.3 Pr	eservation of the View and Height Limitations	161

CHAPTER 7 RAILWAY FACILITIES PLAN

•	7.1 Ele	vated Track Planning	163
	7.1.1	Basic Concept	163
	7.1.2	Design Standard	163
	7.1.3	Alignments	168
	7.1.4	Elevated Structure	173
	7.1.5	Station Facilities	178
	7.2 Fac	ilities Plan for Neighboring Sections	181
	7.2.1	The Terms of Planning	181
	7.2.2	Concept of Doubling Track	181
	7.2.3	Establishment of New Stations	183
	7.2.4	Station Facilities	183
	7.3 Ele	ctric Facilities Planning	183
	7.3.1	Signalling	183
	7.3.2	Telecommunication System	185
	7.4 Imp	lementation Planning	188
	7.4.1	Implementation	188
	7.4.2	Work Schedule	188

CHAPTER 8 INVESTMENT SCALE AND SCHEDULE

8.1 Construction Cost Estimation	Page
8.1 Construction Cost Estimation	191
8.1.1 Preconditions for Calculation of Construction Cost	192
8.1.2 Investment Scale	192
8.2 Investment Schedule	192

CHAPTER 9 UTILIZATION PLANNING UNDER ELEVATED TRACKS

9.1	Pre	sent Land Use Situation 20	01
9.2	Uti	lization Planning under Elevated Tracks 2	10
9	.2.1	Major Facilities under Elevated Tracks 2	10
9	.2.2	Side Road Planning 2	14

CHAPTER 10 GRADE SEPARATION AS ALTERNATIVE TO RAILWAY TRACK ELEVATION

10.1 Pre	sent Condition around Grade Crossing	217
10.1.1	Grade Crossings	217
10.1.2	Roads around Grade Crossing	217
10.2 Stu	dy of Grade Separation	218
10.2.1	Basic Concept	218
10,2.2	Planning of Grade Separation	222
10.2.3	Design Standard	229
10,2.4	Type of Structure	231
10,2.5	General Description of Flyovers	234
	imated Construction Cost	
10.3.1	Criteria for Cost Estimation	245
	Construction Cost	
10.4 Imp	lementation Plan	246
10.4.1	Implementation Schedule	246
10.4.2	Priority of Construction of Each Flyover	247
10.5 Uti	lization Planning under Flyovers	248

CHAPTER 11 ECONOMIC ANALYSIS

		Page
11.1 Methodology		250
11.1.1 "With/Without" Analysis		250
11.1.2 Study Cases		250
11.1.3 Alternatives for Track Elevation	Sections	251
11,1.4 Assumptions		252
11.1.5 Evaluation		252
11.2 Economic Cost Estimation		253
11.2.1 Investment Cost		253
11.2.2 Differences in Maintenance and O	perating Costs	255
11.3 Benefit Estimation		258
11.3.1 Time Saving Benefits		258
11.3.2 Fuel Saving Benefit	• • • • • • • • • • • • • • • • • • • •	261
11.3.3 Benefit of Averting Accidents at		
Crossing Points		261
11.3.4 Land Use Benefit		262
11.3.5 Secondary Benefits		264
11.4 Evaluation	• • • • • • • • • • • • • • • • • • • •	264
11.5 Sensitive Analysis		266

CHAPTER 12 FINANCIAL ANALYSIS

12.1 Purpose and Assumptions 2	67
12.1.1 Purpose of Financial Analysis 2	67
12.1.2 Assumptions 2	67
12.2 Financial Analysis Method 2	68
12.3 Revenue and Expenditure 2	68
12.3.1 Revenue	68
12.3.2 Operating Expense 2	69
12.3.3 Operating Profit and Net Profit 2	70
12.4 Investment and Fund Raising Plan 2	70
12.4.1 Investment Plan 2	70
14.2.2 Fund Raising Plan 2	71

		Page
12.5 Net	Cash Flow Analysis	272
12,5.1	Result of Operating Income and Expense (Profit & Loss)	273
12.5.2	Net Cash Flow	277
12.6 Eva	luation	278
12.6.1	Profitability	278
12.6.2	Necessity of Government Financial Support for SRT	278

CHAPTER 13 CONCLUSION

13.1	Study Findings	279
13.2	Measures to be Taken along with Track Elevation	280
13.3	Suggestions for Future Urban Transportation	281

APPENDIX	3.2.1	Traffic Volume on Railway Crossing (6:00 to 18:00)	283
	3.2.2	Amount of Traffic Blocked by Barrier Time (6:00 to 18:00)	284
	3.2.3	Interview Survey Schedule	285
	3.2.4	Purpose of Journey by Origin Station	286
	3.2.5	Origin/Destination Place from/to Railway Station (Distance)	287
	3,2,6	Origin/Destination Place from/to Bus Stop (Distance)	288
	3.2.7	Origin/Destination Place from/to Railway Station (Time)	289
	3.2.8	Origin/Destination Place from/to Railway Station (Time)	290
·	3.2.9	Requirement for Improvement of Railway Transport	291
	3.2.10	Reason for Not'Using Railway Transport	292
	3.3.1	(1) General Status of Train Operation	293
	3.3.1	(2) General Status of Train Opeartion	294

- vi -

•			
			Page
Annondia	2 2 1	(3) General Status of Train Operation	
Appendix	3.3.1		295
	3.3.2		296
	5.3.2	(Northern Line)	297
	3.3.2	(2) Table of Train Operation Chart (Northeastern Line)	298
	3.3.2	(3) Table of Train Operation Chart (Eastern Line)	299
	3.3.2	(4) Table of Train Operation Chart (Southern Line)	3001
	3.3.3	Train Kilometers per Day by Line (1982 Year)	301
			JOT
	3.3.4	Monthly Number of Passengers by Each Line (Average per Day) (Total number of boarding	
		passengers at stations with more than 1,000 passengers per day.)	302
	3.3.5	Train Running Speed by Kind of Train and by Line	303
	3.3.6	Train Diagram in Track Elevation Section (as of 1983)	304
	3.3.7	(1) Diesel Locomotive Load Curves (ALSTHOM)	305
	3.3.7	(2) Diesel Locomotive Load Curves (G E)	306
	3.3.7	(3) Diesel Locomotive Load Curves (KRUPP)	307
	4.3.1	(1) O.D. Table of Inter-zonal Passenger Traffic (1984)	.308
	4.3.1	(2) O.D. Table of Inter-zonal Passenger Traffic (1991)	309
	4.3.1	(3) O.D. Table of Inter-zonal Passenger Traffic (2003)	310
	4.3.1	(4) Inter-zonal Passenger Traffic Volume (Figure)	311
	4.3.2	(1) O.D. Table of Urban Passenger Traffic(1984)	312
	4.3.2	(2) O.D. Table of Urban Passenger Traffic for Case I (1991)	313
	4.3.2		314
	4.3.2		31.5
	4.3.2		316
		ror Case II (5003)	

			Page
Appendix	4.3.2	(6) Urban Passenger Traffic Volume (Figure)	317
	4.3.3	(1) O.D. Table of Inter-zonal Freight Traffic (1984)	318
	4.3.3	(2) O.D. Table of Inter-zonal Freight Traffic (1991)	319
	4.3.3	(3) O.D. Table of Inter-zonal Freight Traffic (2003)	320
	4.3.3	(4) Inter-zonal Freight Traffic Volume	321
	5.1.1	Present Conditions of Intermediate-distance Commuter Train	322
	5.3.1	Formula to Calculate Track Capacity of Double-track Section	323
	5.3.2	Track Capacity of Freight Line	324
	5.3.3	Example of Obstruction by Rail-rail Grade- crossing at Chit-La-Da (October 5, 1983)	32 <u>5</u> .
	7.1.1	Evaluation of Locomotive Hauling Capacity on Gradient	326
	9.1.1	Land Use Composition	327
	10.3.1	Construction Cost of Each Flyover	328
	11.4.1	Economic Analysis for Track Elevation Project, State Railway of Thailand (Case-I-3)	332
	11.4.2	Economic Analysis for Track Elevation Project, State Railway of Thailand (Case-I-2)	334
	11.4.3	Economic Analysis for Track Elevation Project, State Railway of Thailand (Case II-3)	336
	11.4.4	State Railway of Thailand (Case-II-2)	338
	11.4.5	Economic Analysis for Track Elevation Project, State Railway of Thailand (Case-I-3)	340
	11.4.6	Economic Analysis for Track Elevation Project, State Railway of Thailand (Case-I-2)	342
	11.4.7	Economic Analysis for Track Elevation Project, State Railway of Thailand (Case-II-3)	344
	11.4.8	Economic Analysis for Track Elevation Project, State Railway of Thailand (Case-II-2)	346
	12.5.1	Financial Analysis for Track Elevation Project, State Railway of Thailand (Case-I-2)	348
	12.5.2	Financial Analysis for Track Elevation Project, State Railway of Thailand (Case-II-3)	350
	12.5.3	Net Cash Flow by Finance Plan (Case-1-2)	352
	12.5.4	Net Cash Flow by Finance Plan (Case-II-3)	353

TABLE LIST

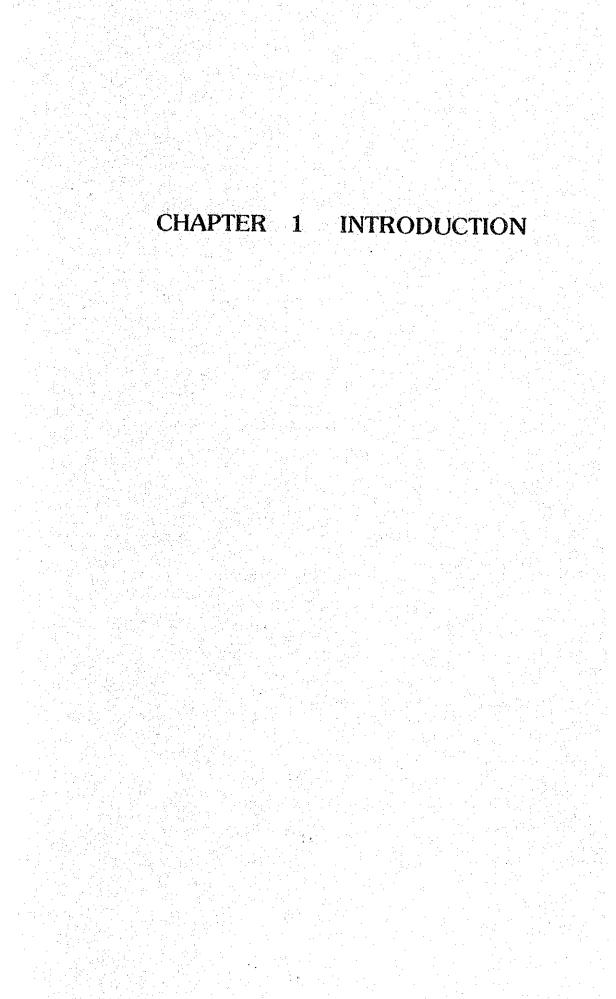
•

•			Page
Table	1.4.1	Case to be Considered	10
	2.1.1	City Population (as of the End of December 1982)	16
	2.1.2	Per-capita National Income Nominal	17
	2.1.3	Per-capita National Income in Asian Countries (1982)	17
	2.1.4	National Income by Region (Nominal in 1982)	18
	2.2.1	Export Value by Major Commodity	20
:	2.2.2	Consumer Price Increase Rate	21
	2.2.3	External Trade Trend	22
	3.1.1	Transport Share by Mode (1978)	- 27
	3.1.2	Road Maintenance Conditions Current State of Road (1980)	28
	3,1.3	Passenger and Freight Traffic	29
	3.2.1	Result of Person Trip Survey	31
	3.2.2	Number of Passenger	35
	3.2.3	Result of Traffic Volume Servey (6:00 to 18:00)	41
	3.2.4	Purpose of Journey by Origin Station	44
	3.2.5	Access Mobility by Transport Means	45
	3.2.6	Result of Interview for Railway Transportation	47
	3.3.1	General Status of Railway Transportation	56
	3.3.2	Number of Trains and Average Number of Cars per Train Consist from Bangkok Station	57
	3.3.3	Record of Rolling Stock Usage	60
	3.3.4	Present Condition of Rolling Stock Depots	63
	3.3.5	Number of Rolling Stocks Inspected/ Repaired per Day at Makkasan Workshop	64
	3,3.6	Average Number of Rolling Stocks In-shop and Out-shop per Day (1983)	64

			Page
Table	3.3.7	Operating Performance of Major Types of Locomotives	64
	3.3.8-	Maximum Allowable Speed by Type of Rolling Stocks	65
	3.3.9	Average Age of Each Type of Rolling Stock	65
	3.3.10	Bridge List	67
	3.3.11	List of Grade Crossings	69
	4.2.1	Zoning	77
	4.2.2	Estimate of Population by Zone	81
	4.2.3	Estimate of Products by Zone (1972 prices)	82
	4.3.1	Headway Improvement in SRT (Case II)	89
	4.3.2	Urban Passenger Traffic Volume	92
	4.3.3	Freight Traffic Volume by SRT Related to the Eastern Seaboard Plan	101
	4.4.1	Summary of Results of Demand Forecast	107
	5.1.1	Required Number of Trains Departing/ Arriving at Bangkok Station	115
	5.1.2	Required Number of Short-distance Passenger Trains Departing/Arriving at Bangkok Station	116
	5.1.3	Required Number of Freight Trains in Proposed Elevated Section	1 19
	5.1.4	The number of Passenger Trains per Hour during Peak Time at Bangkok Station	121
	5.2.1	Required Number of Rolling Stocks	129
	5.3.1	Number of Trains (Each Direction per Day)	130
	5.3.2	Obstruction Ratio of Rail-rail Grade-crossing	133
	5.3.3	Required Number of Trains in Bangkok Metropolitan Area	137
	6.1.1	Method of Drilling, Sampling, Field	
		and Laboratory Tests, and Quantity	143
	6.1.2	Stratification	145
	6.1.2	Stratification	

6.1.3	Summary of Natural Water Content,	Page
	Specific Gravity and Unit Weight	149
6.1.4	Summary of Strength Characteristics	149
6.1.5	Summary of Temperature, Rainfall and Wind Data (1951 to 1980) in the Study	
	Area	151
6.2.1	Measured Data of Noise and Vibration by Rolling Stock	153
6.2.2	Measured Data of Noise and Vibration by Vehicles	155
6.2.3	Examples of Measured Data	156
6.2.4	General Noise Level	158
6.2.5	Feeling with Vibration Level	160
7.1.1	Construction Standard	165
7.1.2	Comparison of Viaducts by Type	173
7.4.1	Construction Schedule	187
8.1.1	Investment Scale (BMA) Case I	193
8.1.2	Investment Scale (BMA) Case II	194
8.1.3 (1)	Investment Scale Breakdown (Civil Engineering) Case I	195
8.1.3 (2)	Investment Scale Breakdown (Electrical Facilities) Case I	196
8.1.4 (1)	Investment Scale Breakdown (Civil Engineering) Case II	197
8.1.4 (2)	Investment Scale Breakdown (Electrical Facilities) Case II	198
8.2.1	Investment Schedule Case I	199
8,2.2	Investment Schedule Case II	200
9.1.1	Land Use Composition in Study Area	201
9.2.1	Utilization Planning Under Elevated Track	212
9.2.2	Proposed Redevelopment Area	212
10.1.1	Present Condition of Grade Crossings	219
10.2.1	Appraisal of Flyover and Underpass	222
10.2.2	Traffic Capacity Analysis (Based on "Road Design Standard, Japan")	225
10.2.3	Number of Flyover Lanes	227
10.2.4	Traffic Volume Loop Roads	227
	6.1.5 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 7.1.1 7.1.2 7.4.1 8.1.1 8.1.2 8.1.3 (1) 8.1.3 (2) 8.1.4 (1) 8.1.4 (2) 8.1.4 (1) 8.1.4 (2) 8.2.1 8.2.2 9.1.1 9.2.1 9.2.2 10.1.1 10.2.2 10.2.3	Specific Gravity and Unit Weight

			Page
Table	10.2.5	Design Standards	230
	10.3.1	Summary of Project Costs (1983 Prices)	246
	10.4.1	Implementation Schedule	247
	10.4.2	Priority	247
	10.5.1	Utilization Plan	248
	11.1.1	Alternative Matrix	252
	11.2.1	Summary of Economic Values of Investment	254
	11.2.2	Maintenance Ratios and Durable Years of Assets	256
	11.2.3	Fuel Consumed per Train	258
	11.3.1	Time Value of Road Vehicles	260
	11.3.2	Comparison of Passenger-hours Difference	260
	11.3.3	Additional Fuel Consumed per Vehicle	261
	11.3.4	Benefits Actual	262
	11.4.1	Comparison of EIRR	264
	11.4.2	EIRR (Case of no flyovers constructed)	265
	11.5.1	Sensitivity Analysis (EIRR)	266
	11.5.2	Sensitivity Analysis (EIRR)	266
	12.3.1	Additional Traffic Volumes	268
	12.3.2	Land Rental and Market Price	269
	12.4.1	Financial Cost of Investment (Case-I-2)	270
	12.4.2	Financial Cost of Investment (Case-II-3)	271
	12.4.3	Estimated Finance Plans	272
	12.5.1	Profit & Loss Statement (Case-I-2)	275
	12.5.2	Profit & Loss Statement (Case-II-3)	276
	12.5.3	Major Items for Cash Flow Projection (Case-I-2)	277
	12.5.4	Major Items for Cash Flow Projection (Case-II-3)	277
	12.5.5	Cumulative Net Cash Flow by Finance Plan	278


FIGURE LIST

			Page
Fig.	1.2.1	Proposed Elevated Section	3
	1.3.1	Flow of the Study	4
	1.4.1	Sequence of the Work	8
	2.2.1	Gross Domestic Product by Sector in 1981	21
	3.2.1	Travel Time Survey	32
	3.2.2	Location of Temporary Platform	34
	3.2.3	Result of Survey at Bangkok Station	38
	3.2.4	Result of Survey at Thon Buri Station	39
	3.2.5	Hourly Traffic Volume	42
·	3.2.6	Access Distance	46
	3.2.7	Access Time	46
	3.2.8	Planning of Urban Transport System	49
	3.2.9	Location of Housing Projects	50
	3.2.10	Structural Plan of Bangkok Metropolis	52
	3.2.11	Land Use Planning in the Year 2000 Draft (1982)	53
	3.3.1	Total Number of Passenger Trains per	د ر
		Day as of 1983	58
	3.3.2	Total Number of Freight Trains per Day as of 1983	59
	3.3.3	Locations of Rolling Stock Depots and	
		Points Related to Train Operation	62
	3.3.4	Existing Alignment	66
	3.3.5	Classification of Interlocking Stations and Block System	71
	4.2.1	Zone Map	78
	4.2.2	Stations in Urban Area	79
	4.2.3	Location of New Stations	80
	4.3.1	Flow Chart of Inter-zonal Passenger Traffic Demand Forecasting	84
	4.3.2	Inter-zonal Passenger Traffic Volume	86
	4.3.3	Inter-zonal Cross-sectional Passenger	00
	(1)	Traffic (1984, 2003)	87

				Page
	Fig.	4.3.3 (2)	Inter-zonal Cross-sectional Passenger Traffic (1991)	88
		4.3.4	Flow Chart of Urban Passenger Traffic Demand Forecasting	91
		4.3.5	Urban Passenger Traffic Volume	93
		4.3.6 (1)	Urban Cross-sectional Passenger Traffic (Case I: 1984, 2003)	94
÷	·	4.3.6 (2)	Urban Cross-sectional Passenger Traffic (Case II: 1984, 2003)	. 95
		4.3.6 (3)	Urban Cross-sectional Passenger Traffic (Case I: 1991)	96
		4.3.6 (4)	Urban Cross-sectional Passenger Traffic (Case II: 1991)	97
	·	4.3.7	Flow Chart of Inter-zonal Freight Traffic Demand Forecasting	99
		4.3.8	Inter-zonal Freight Traffic Volume	102
		4.3.9	Inter-zonal Cross-sectional Freight Traffic (1984)	103
		4.3.10	Inter-zonal Cross-sectional Freight Traffic (1991)	104
		4.3.11	Inter-zonal Cross-sectional Freight Traffic (2003)	105
		5.1.1	Number of Long/Intermediate-distance Passenger Trains	117
		5.1.2	Number of Short-distance Passenger Trains	118
		5.1.3	Number of Freight Trains	120
		5.1.4	Flow of Trains on Elevated Section (as of 1983)	122
		5.1.5	Flow of Trains on Elevated Section (1991, Case I)	123
		5.1.6	Flow of Trains on Elevated Section (2903, Case I)	123
	·	5.1.7	Flow of Trains on Elevated Section (1991, Case II)	124
		5.1.8	Flow of Trains on Elevated Section (2003, Case II)	124
		5.3.1	Obstruction Points by Rail-rail Grade- crossing at Junction Point	1.32
		5.3.2	Operation Headway (4 minutes)	135

	· .		
Fig.	6.1.1	Location of Boreholes	Page 142
e	6.1.2	Longitudinal Soil Profile	144
	6.1.3	Longitudinal Soil Profile	147
	6.2.1	Location of Noise and Vibration Survey	154
	6.2.2	Areas with Building Height Restriction	162
	7.1.1	Roadway Diagraph	163
	7.1.2	Truck Clearance (in general),	164
	7.1.3	Embankment with Retaining Wall	164
	7.1.4	U-20 Loading (Loading in Metric Tons)	165
	7.1.5	Track Clearance for Railway Bridge	166
	7.1.6	Planned Section of Platform	167
	7.1.7	Location of Proposed Elevated Track	170
	7.1.8	Alignment of Proposed Elevated Section	171
	7.1.9	Profile Alignment	172
	7.1.10	Standard Spans and Sections for Elevated Structures	174
	7.1.11	Rough Sketch of Section A-A	175
	7.1.12	Rough Sketch of Section B-B	176
	7.1.13	Overroad Bridge	177
	7.1.14	Makkasan Station Layout	178
	7,1,15	Station Facilities Layout	180
	7.2.1	Embankment of Track Addition Section	181
	7.2.2	New Stations and Relocation of the Existing Stations on Study Area	182
	7.3.1	Automatic Block System	187
	7.3.2	CTC System	187
	9.1.1 (1)	Characteristics of Existing Land Use along the Study Area (Northern Line)	203
	9.1.1 (2)	Characteristics of Existing Land Use along the Study Area (Northern Line)	204
	9.1.1 (3)	Characteristics of Existing Land Use along the Study Area (Northern Line)	205
	9.1.2 (1)	Characteristics of Existing Land Use along the Study Area (Eastern Line)	206
	9.1.2 (2)	Characteristics of Existing Land Use along the Study Area (Eastern Line, Mae Nam Line)	207

Fi.	g. 9.1.3 (1) 9.1.3 (2) 9.2.1	Characteristics of Existing Land Use along the Study Area (Mae Nam Line) Characteristics of Existing Land Use along the Study Area (Mae Nam Line)	208
	(2)		
	9.2.1	atong the study area (hae Nam hine) ,	20
		Utilization Planning under Elevated Tracks	21
	9.2.2	Concept of Side Road and Utilization Planning under Elevated Tracks	21
	10.1.1	Diagram of Traffic Flow at Intersections near Grade Crossings (12 hours) in Oct., 1983	22
	10.2.1	Flow Diagram to Calculate Design Traffic Capacity	22
	10.2.2	Modified Profile of Mass Transit System Line	22
	10.2.3	General View of Flyover	23
	10.2.4	Standard Span Arrangement	23
	10.2.5	Embankment with Bearing Unit and Retaining Wall	23
	10.2.6	Connection of Expressway Ramps	23
	10.2.7	General Plan of Flyover	23
	10.2.8	General Plan of Flyover	23
	10.2.9	Typical Cross Sections	24
	10.2.10	Typical Cross Sections	24
	10.2.11	Typical Cross Sections	24
	10.2.12	Joint Planned Projects at Grade Crossing No. 8	24
	11.1.1	Flow Chart of Economic Analysis	24
	12.5.1	Profit & Loss (Case-II-2)	27
	12.5.2	Profit & Loss (Case-II-3)	27

CHAPTER 1 INTRODUCTION

1.1 Background of the Study

Bangkok is well known not only as a center of politics, economy and culture in the Kingdom of Thailand, but also as an economic and transportation center in Southeast Asia.

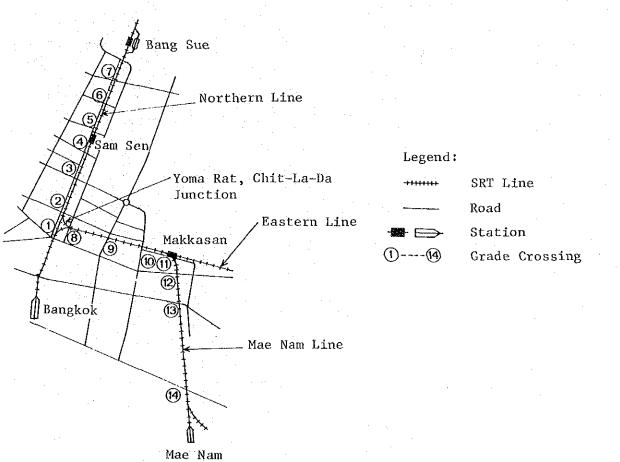
Bangkok originally developed owing to an extensive canal transport system. With the advent of motorization, the canals were replaced by roads, shifting the major mode of urban transportation to the automobile. Nevertheless, improvement of roads has not kept pace with the increase of automobiles and this has created chronic traffic congestion.

Railway transportation has had drawbacks in having poor access to railway stations as a result of the city development pattern along canals (roads at present). Also, railways have grade crossings with major roads in the central part of the city which aggravate traffic congestion, increase the risk of accident and obstruct efficient and normal train operation. As a result, the railway fails to sufficiently achieve its major functions of mass transportation, scheduled operation and safety.

Moreover, the population is expected to further concentrate in the Bangkok Metropolitan Area (hereinafter referred to as "the Study Area") in line with the economic development of the country. This will increase traffic volume in the Study Area, and thereby further aggravate traffic congestion.

Under these circumstances, the Government of Japan decided, upon request by the Government of the Kingdom of Thailand, to carry out a feasibility study on "Track Elevation Project of Existing Railway Lines in the Bangkok Metropolitan Area" (hereinafter referred to as "the Project").

- 1 -


Prior to commencement of this study, the preliminary study team (Contact Mission) visited Thailand in November 1982 and had discussions with the concerned parties. Based on these discussions, another preliminary study team (Scope of Work Mission) visited the country again in June 1983, at which time the Scope of Work of this study was concluded.

This study was carried out on the basis of this Scope of Work.

1.2 Objective of the Study

The objective of this study is to carry out "A Feasibility Study on the Track Elevation Project of the Existing Railway Lines in the Bangkok Metropolitan Area" (hereinafter referred to as "the Study"). Under the Project, sections between Bangkok Station and Bang Sue Station (Nothern Line), Yoma Rat, Chit-La-Da Junction and Makkasan Station (Eastern Line), and Makkassan Station and Mae Nam Station (Mae Nam Line), with a total length of approximately 13 km, will be elevated to eliminate grade crossings. The proposed elevated section is shown in Fig. 1.2.1. The aim is to help the normal development of the Study Area and to increase train operation efficiency in order to shift the major mode of transportation from automobiles to railway by improving railway transport service.

2.

Proposed Elevated Section Fig. 1.2.1

3

1.3 Outline of the Study

The Study is made up of roughly seven phases as shown in Fig. 1.3.1.

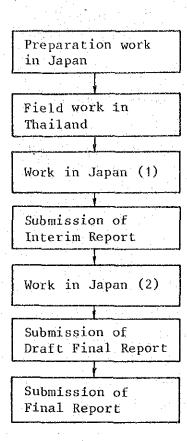


Fig. 1.3.1 Flow of the Study

Major items of work at each phase are listed as follows:

First Phase: Preparation work in Japan

- (1) Examination of collected data and information
- (2) Examination of general policy of the Study
- (3) Preparation of Inception Report

Second Phase: Field work in Thailand

Field work was carried out for 70 days between August 29 and November 6, 1983. The following work was carried out in this phase:

- Submission, presentation and discussion of Inception Report and request on assistance from SRT in connection with the Study
- (2) Hearing of opinions from related organizations and discussion
- (3) Data and information collection and analysis
- (4) Land use survey, traffic volume survey at grade crossings and stations, and interviewing survey at stations and bus terminals
- (5) Soil survey, noise survey, vibration survey and land surveying around grade crossings
- (6) Establishment of basic scheme
- (7) Preparation and presentation of Progress Report

At the end of field work period, a joint meeting of Thai and Japanese government officials was held and Progress Report was submitted and explained.

Third Phase: Work in Japan to prepare Interim Report

Work to prepare Interim Report was carried out in Japan between the beginning of November 1983 and the end of January 1984, with the following items:

- (1) Reconsideration of basic scheme of the Study
- (2) Demand forecast on the basis of traffic volume and transport analysis
- (3) Transportation planning on the basis of demand forecast
- (4) Establishment of design standards for the Project on the basis of transport plan
- (5) Examination of individual grade separation of roads which is an alternative to the track elevation

- 5 -

Fourth Phase: Submission and explanation of Interim Report

The study team stayed in Thailand for 9 days between January 26 and February 3, 1984, submitted and explained Interim Report to the joint meeting of Thai and Japanese government officials. After discussion, policy on preparing Draft Final Report was approved.

Fifth Phase: Work in Japan to prepare Draft Final Report

After submission of Interim Report, work to prepare Draft Final Report was carried out between the beginning of February and the middle of April 1984, with the following items:

- Reconsideration of transport plan by each case of demand forecast
- (2) Design and cost estimation of railway facilities in connection with transport plan
- (3) Examination of individual road grade separation which is an alternative to the track elevation
- (4) Planning of land use under elevated tracks
- (5) Economic analysis
- (6) Financial analysis
- (7) Examination items to be carried out along with the Project

Sixth Phase: Submission and explanation of Draft Final Report

The Draft Final Report was submitted and explained to the joint meeting of Thai and Japanese government officials, held in the end of April 1984, and was approved.

Seventh Phase: Submission of Final Report

The Final Report was submitted to the Government of Thailand at the end of July 1984.

- 6 -

1.4 Basic Policy of the Study

As most urban transportation in the Study Area depends on automobiles, traffic congestion occurs throughout the city all day long, especially during morning and evening rush hours. Furthermore, the existing railway transportation makes a minimum contribution to the Study Area and is not efficiently utilized. This is mainly because normal operation of trains is disturbed by obstructions and accidents with automobiles at grade crossings as well as frequent train delays.

In general, construction of the elevated railway, as a way to eliminate grade crossings, is planned and carried out to develop urban areas from the city planning point of view. Major considerations include integration of urban areas, effective land use and harmony with existing built-up areas.

In the Study Area, where further population increases are expected with economic growth, it is very difficult to continue to depend on automobiles due to inadequate road improvement in the area.

Thus, the Project is considered to be rather useful not only in helping to solve the ever-worsening traffic problem but also in making train operation by SRT more efficient.

Under such policies, the work proceeded in the following sequence.

1.4.1 Sequence of the Work

Sequence of the work is described in Fig. 1.4.1. Main items are as follows;

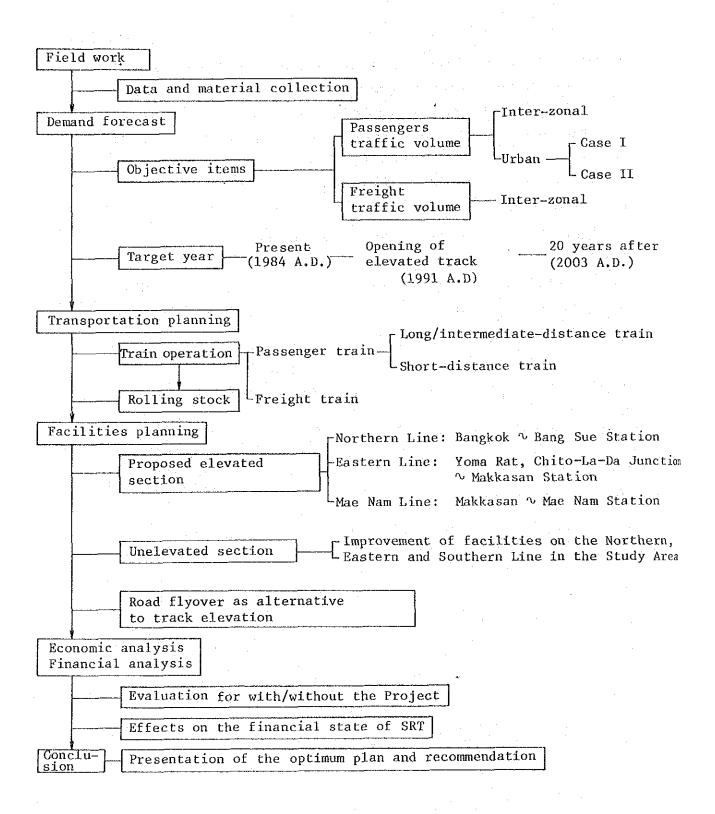


Fig. 1.4.1 Sequence of the Work

- 8 -

(1) Demand forecast

- (i) Forecast of passenger traffic in the Greater Bangkok Area is studied for two cases:
 - Case I: Natural trend type which follows changes on the demand side deriving from the changes in future socio-economic conditions.
 - Case II: High-level service type which means that railway offers relatively high level of service to passengers.

Passenger flow among zones, in addition to intra-urban flow, is calculated separately.

- (ii) Forecast of freight traffic demand assumes that a new line from Klong Sip Khao to Ban Pachi or Kaeng Khoi will be completed in 1991, upon request by Thai authorities.
- (2) Scope of track elevation

Scope of track elevation will be studied for each case in the following two alternatives.

Alternative I:

: Track elevation in three lines of which length is about 13 km: Northern Line (Bangkok St. to Bang Sue St.), Eastern Line (Yoma Rat, Chito-La-Da Junction to Makkasan St.), and Mae Nam Line (Makkasan St. to Mae Nam St.).

Alternative II:

Track elevation in two lines of which length is about 10 km: Northern Line and Eastern Line.

This is because the Mae Nam Line operates only freight trains and thus has different characteristics from the other two lines.

- (3) Establishment of with/without cases for the Project
- In the Study, track elevation is considered to be "with the project" and flyover by roads "without the project".

1.4.2 Traffic Demand Cases to be Considered

First, two cases of intra-urban passenger flow, differing by service level, are assumed. Second, two cases of proposed elevated section are assumed, for a total of four possible cases. Then these four cases are compared with corresponding cases of individual road grade separation projects.

Thus, relatively many cases are examined in the Study, as shown in the table below:

\square		Proposed Elevated Section		
		Alternative I (three lines)	Alternative II (two lines)	
nd cast	Case I (Natural Trend Type)	Case-I-3	Case-I-2	
Demano Foreca	Case II (High-level Service Type)	Case-II-3	Case-II-2	

Table 1.4.1 Cases to be Considered

In addition, for unelevated section, traffic demand in the Greater Bangkok Area and studies for corresponding rolling stock and facilities are conducted in parallel with the main work.

1.5 Organization for the Study

The JICA Advisory Committee and the Study Team as well as the Thai Coordination Committee and the Counterpart Personnel are as follows;

(1) JICA Advisory Committee

Ryosuke Hirota Chairman:

Hisao Uchiyama Member:

Kazuyoshi Matsumoto Member:

Kunihiko Harada Member:

Norio Fukushiro Coordinator:

(2) JICA Study Team

Masashi Hatori; Kimiaki Ijuin: Tanehiko Aibara: Kenji Maeda: Kazunaga Kurauchi;

Norishige Ohtaka: Iwao Tsuruda: Torao Tokozumi: Akihiko Hayashi: Keiichi Egawa: Masanori Arita:

Masami Shigematsu: Hiroo Yanai:

Director

Facilities Division National Railway Department Secretariat to the Minister Ministry of Transport

Associate Professor Faculty of Science and Technology Science University of Tokyo

International Cooperation Officer International Cooperation Division International Transport and Tourism Bureau

Ministry of Transport

Deputy Director Street Division City Bureau Ministry of Construction

Social Development Cooperation Department JICA

Leader

(Traffic Demand Forecast)

Traffic Demand Forecast

Traffic Planning

Train Operation & Rolling Stock Planning

Elevated Structure Planning

Elevated Structure Planning

Elevated Structure Plannig (Road)

Construction Execution Planning

Development Planning

Electrification, Signalling and Telecommunication Planning

Economic and Financial Analysis Economic and Financial Analysis

(3) Thai Coordination Committee

Manus Corvanich Chairman:

Chomsin Dhabbhasuta Vice Chairman:

Kamrob Warachat Member:

Vichai Pornsiriponge Member:

Ura Sunthonsaratool Member:

Prapon Vongvichien Member:

Phanlop Ongchareon Member:

Pisanuroj Plubrukarn Member:

Sansern Wongcha-um Member:

Chomsak Saradatta Member:

Somjate Archaviboonyobone Member:

Pichai Pananickabud Member:

Somjai Vatanavanichkul Member:

Vichitr Vatcharindr Member:

Damri Ratanawong Member:

Voravit Lohthong Member:

Thawee Dhammaraksa Member and Secretary:

Vanich Pansuwan Member and Assistant Secretary: Deputy Permanent Secretary of Communications

Chief Civil Engineer State Railway of Thailand

Ministry of Communication

Ministry of Communication

Ministry of Interior

Ministry of Interior

Department of Town and Country Planning

Department of Town and Country Planning

National Economic and Social Development Board

National Economic and Social Development Board

National Economic and Social Development Board

National Environment Board

National Environment Board

Expressway and Rapid Transit Authority of Thailand

Bangkok Metropolitan Administration

Bangkok Metropolitan Administration

State Railway of Thailand

State Railway of Thailand

- 12 -

(4) Thai Counterpart Personnel

Thawee Dhammaraksa: Wayupol Chaisiri: Vichit Chanarakao: Prasert Netrapukana:

Ukrit Sirisalee:

Suthee Ploysook:

Sompong Bunnag: Saravudh Dhamasiri: Aphai Phadermchit:

Vanich Pansuwan: Prasert Attanand: Jain Boonsue: Chatchai Koomsup: Somkiat Piriyakakul: Thavee Thongpan: Deputy Chief Civil Engineer

Chief, Passenger Marketing Division

Chief, Transportation Division

Mechanical Engineer I/C Locomotive Technical Section

Engineer I/C Telecommunication Section

Project Analysis Development Coordinating Bureau

Superintending Engineer

District Engineer, Bangkok

Architect Attached to Civil Engineering Department

Civil Engineer I/C Planning Section

Assistant Engineer Assistant Engineer Assistant Engineer Assistant Engineer Assistant Engineer

13 -

CHAPTER 2 SOCIO-ECONOMIC FRAMEWORK

CHAPTER 2 SOCIO-ECONOMIC FRAMEWORK

2.1 Nature and Socio-economy

2.1.1 Nature and Geography

The Kingdom of Thailand is situated in the central part of the Indo-China Peninsula, from 5° to 21° of north latitude and from 97° to 106° of east longitude. The Bangkok Metropolitan Area (hereinafter referred to as "the Study Area") is near the country's center, nearly 13.7° of north latitude and about 100.6° of east longitude.

The country has a total area of 514,000 km². The Study Area is 1,549 km² which is only 0.3% of the whole country.

The climate is divided into the rainy season (May thru October) and the dry season (November thru April). During the rainy period, there are often heavy squalls lasting 1 or 2 hours. Average annual precipitation is about 1,600 mm. In some areas of the country's southern region, annual precipitation reaches more than 3,000 mm.

The Chao Phraya River, flowing through the central part from north to south, forms a large delta zone in the plain, which is noted as a rich granary region. In this region, rice is produced in large quantities as the major agricultural product in this country. Other main products in the agricultural sector are represented by tapioca, sugar cane, maize, rubber and pineapple.

Marine products are also in abundance there, recently with particular emphasis on lobster culture. Teak wood is the main forest product and tin is so in mineral products.

2.1.2 Socio-economic Background

Thailand had a population of approximately 48,600,000 at the end of 1982, with a population density of 95 persons per km². The birth rate has been gradually decreased, becoming less than 2% on the

- 15 -

average in the last 5 years. Approximately 30% of Thailand's population is distributed in the Central region, 34% in the Northeastern region, 24% in the Northern region and 12% in the Southern region.

As shown in Table 2.1.1, city population is highly concentrated in the Study Area; Bangkok Metropolis has a population of over 5 million, while other major cities below the second rank have populations of around 100,000.

The population in the Study Area has been growing at an average annual rate of more than 3.3% in the past 10 years, to further widen the difference between small cities.

The population density in the Study Area exceeds 3,400 persons per km², being 36 times as high as the national average.

	(Unit: 1,000 persons)
1. Bangkok Metropolis	<u> </u>
2. Hat Yai	108
3. Khon Kaen	
4. Chiang Mai	
5. Nakhon Sawan	8 93
6. Nakhon Ratchasima	89
7. Udon Thani	82
8. Song Khla	78.
9. Phitsanulok	71
10. Nakhon Si Thammarat	69
	1,000 2,000 3,000 4,000 5,000 6,000

Table 2.1.1 City Population (as of the End of December 1982)

Thailand's economy has been achieving a steady growth since the start of a series of Five-year plan, beginning under the First Eco-

nomic Development Plan in 1961.

- 16 --

This steady growth may be attributed to the relatively stable political situation over a long time, an agricultural diversification and increased industrial production resulting from industrial development as an import substitution.

The average annual GDP growth rates were 7.3% for the period of the First Plan (January 1961 to September 1966), 7.2% for the Second Plan (October 1966 to September 1971), 6.2% for the Third Plan (October 1971 to September 1976) and 7.3% for the Fourth Plan (October 1976 to September 1981), as shown in Table 2.1.2. This development growth compares well to that in other countries, as shown in Table 2.1.3.

Ľ,		
	Year	Per-capita National Income
	1960	1,989 Baht
	1965	2,633 "
	1970	3,600 "
	1979	11,843 "
•	1980	14,475 "
	1981	16,096 "
	1982	17,212 "
1		<u></u>

Table 2.1.2 Per-capita National Income (Nominal)

Table 2.1.3 Per-capita National Income in Asian Countries (1982)

ASEAN countries	Per-cap	oita National Income	÷ : .
Singapore		US\$5,743	
Malaysia		1,862	
Philippines	· · · · · · · · · · · · · · · · · · ·	809	
Thailand		749	
Indonesia	· , ·	578	
(Japan)		(8,970)	
(U.S.A.)		(13,242)	

Note:

Relevant data as available from countries. Conversion rate is based upon annual average rate taken from IMF's "International Financial Statistics." However, in the process of such economic growth, the problem of regional gaps in economic development occurred.

The Government has established regional development and agricultural promotion as one of the major policies with a view to reducing the income gap. In reality, however, the gap still remains as shown in Table 2.1.4 and actually tends to grow larger.

Area	Total (Million Baht)	Per-capita National Income (Baht)
Bangkok Metropolis	281,317	50,779 (2,208)
East	121,372	33,518 (1,457)
West	84,391	25,847 (1,124)
Central	61,046	20,999 (913)
South	87,275	14,376 (625)
North	114,366	11,434 (497)
Northeast	109,603	6,390 (278)

Table 2.1.4 National Income by Region (Nominal in 1982)

Notes: 1. Data: NESDB "Gross Regional and Provincial Product 1982" 2. () is US\$.

In the distribution pattern of 1982's GDP by region, the GDP in the Study Area takes a large share (33%) of the nation's total. From this fact, it is believed that the centralized trend of population and industry in Bangkok would further continue in the future as well as at present, unless effective measures are taken by giving priorities to implement the regional development program. 2.2 National Economic and Social Development Plan

2.2.1 Achievement in the First to Fourth Plans

The Thai economy has been developing in a relatively stable manner from World War II to the present. This post 1960 development has been achieved by agricultural diversification and industrial development which have been integrally linked to a traditional agricultural base depending on rice production.

Fundamental factors to achieve this economic development are considered to be introduction of the Development Plan, improvement and expansion of the infrastructure, diversification of agricultural production and development of import substitute industries.

The Thai Government introduced a comprehensive Economic and Social Development Plan in 1961, accepting the recommendation from the World Bank. This has established a foundation that makes aid and assistance from international organizations smoother and more effective.

At the same time, improvement of the road network and expansion of the electric power generating capacity, which are the main components of the infrastructure, have provided not only the foundation for industrial development in later years but also a great increase in agricultural production.

In agriculture, Thailand has successfully diversified from heavy dependence on rice and rubber to new crops such as maize, tapioca and sugar, which have become major export items, as shown in Table 2.2.1.

19 -

			(Unit: Mi	llion baht)
	1960	1970	1980	1981
Rice	2,570	2,516	19,508	26,353
	(29.8)	(17.0)	(14.6)	(17.2)
Tapioca	288	1,223	14,887	16,434
	(3.3)	(3.8)	(11.2)	(10.7)
Rubber	2,579	2,232	12,351	10,839
	(29.9)	(15.1)	(9.3)	(7.1)
Sugar	8	94	2,975	9,571
	(0.1)	(0.6)	(2.2)	(6.3)
Tin	537	1,618	11,347	9,099
	(6.2)	(11.0)	(8.5)	(5.9)
Maize	551	1,969	7,299	8,328
	(6.4)	(13.3)	(5.5)	(5.4)
Others	2,087	5,120	64,830	72,406
	(24.2)	(34.7)	(48.7)	(47.3)
Total	8,612	14,772	133,197	153,030
	(100.0)	(100.0)	(100.0)	(100.0)

Table 2.2.1 Export Value by Major Commodity

Note: () is percentage of total value.

Industrial development has greatly advanced on account of the policy change in the First Development Plan from public leading type to private leading one. Export manufacturing industries are emphasized at the present.

It is an undeniable fact that the economic development owes much to political stablity in the 1960s.

However, in 1970s the country encountered international economic fluctuations, political instability and drought. Under these circumstances, the Third Plan failed to achieve sufficient results and was succeeded by the Fourth Plan. During the Fourth Plan, the Thai economy has grown at an average annual rate of 7.3%, a remarkable achievement considering the large fluctuations of the global economy. Gross domestic product by sector (as of 1981) is shown in Fig. 2.2.1. Various problems, however, such as high inflation rate, worsening of trade balance and widening of income differences are left unsolved as shown in Tables 2.2.2 and 2.2.3.

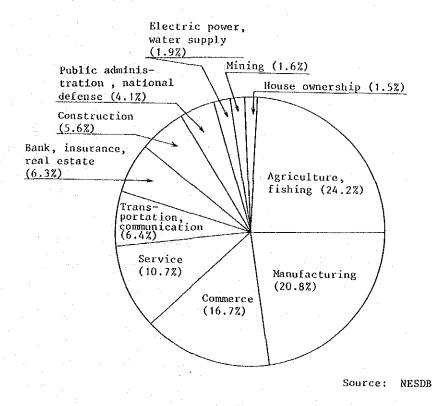


Fig. 2.2.1 Gross Domestic Product by Sector in 1981

			· · · · · · · · · · · · · · · · · · ·	·····
Area	1978	1979	1980	1981
Bangkok Metro- politan area	8.8%	10.3%	19.9%	13.4%
National average	7.9%	9.9%	19.7%	12.7%

Table 2.2.2 Consumer Price Increase Rate

- 21 -

		and the second			
	Export	(FOB)	Import	(CIF),	Balance
Year	(Mil. baht)	GDP Ratio (%)	(Mil. baht)	GDP Ratio (%)	(Mil. baht)
1960	8,614	16	9,622	18	Δ1,008
1965	12,941	15	15,433	18	∆2,492
1970	14,772	11	27,009	20	∆12,237
1975	45,007	15	66,835	2.2	∆21,828
1976	60,797	18	72,877	22	∆12,080
1977	71,198	18	94,177	24	∆22,979
1978	83,065	18	108,839	23	∆25,834
1979	108,179	19	146,161	26	∆37,982
1980	133,197	19	188,686	28	Δ55,489
1981	153,001	19	216,746	27	۵63,745

Table 2.2.3 External Trade Trend

Data: The Bank of Thailand Note: " Δ " means deficit

In summary, during the 20-year period between the First Plan and the Fourth Plan, the Thai economy has achieved a remarkable 7% average annual growth accompanied by structural change in the field of production, trade and income distribution. At the same time, however, economic development has brought about rapid deterioration of forest, land, water and fishing resources. Economic development has not been evenly distributed among regions and sectors, further widening income inequities. The Thai economy has become increasingly affected by international economic conditions.

2.3 Fifth National Economic and Social Development Plan

The future socio-economic framework of the Kingdom of Thailand is inferred in the Fifth National Economic and Social Development Plan (1981 to 1986) published by NESDB in October 1981. The Fifth Plan is a policy plan that should be broken down into operational plans.

- 22 -

In the Fifth Plan, the Government stresses the following six main points:

- (1) The adjustment of the economic structure rather than economic growth
- (2) Equality in national economic and social development efforts
- (3) The alleviation of poverty for people in backward rural areas
- (4) Closer coordination between economic and social development efforts and national security management
- (5) The advancement of the Fifth Plan into operational plans
- (6) The role and cooperation of the private sector
- 2.3.1 Summary of the Overall Development Targets

To accomplish the above main themes, the Government has formulated the following overall development targets.

- (1) Targets for restoring the country's stability
 - . Increase the export of goods by 22.3% per annum
 - . Limit the growth rate of import to no more than 18.1% per annum
 - . Reduce the oil import volume by an average of 3% per annum
- (2) Economic production targets
 - GDP growth of 6.6% per annum
 - Agricultural growth of 4.5% per annum
 - Manufacturing industry growth of 7.6% per annum
 - . Mining output increase of 16.4% per annum
 - \cdot Natural gas production of 525 million cubic feet per day in 1986
- (3) Reduction of oil import volume by 3% per year

(4) The Government's fiscal targets

- Increase Government revenues by 22.3% per annum (or an average of 16.7% of the GDP)
- 'Increase Government expenditures by 20.2% per annum (or an average of 18.2% of the GDP)

Limit the Government budget deficit to no more than 22,000 million baht per year

(5) Social development and service target

'Reduce the population growth rate to 1.5% by 1986

2.3.2 Transportation

During the past 20 years, the so-called "inexpensive oil era", the Government has emphasized the development of the road transportation system. Overburdening of the road transportation system caused many problems, especially traffic congestion in the Study Area.

In the so-called "expensive oil era" at present, a more balanced transportation system should be established not only to save energy but also to facilitate the sound development of socio-economic activities.

Targets for the development of land transportation which is related to the Track Elevation Project are as follows:

- Increase rail transportation capability by improving tracks, bridges and station capacity, and by building double tracks and elevated tracks
- (2) Construct another expressway and, at most, two kinds of mass transit systems in order to alleviate traffic congestion in the Study Area.

2.3.3 Eastern Seaboard

In accordance with the policy of decentralizing economic and industrial activities, the Eastern Seaboad sub-region will be established as a new center to alleviate congestion in the Bangkok Metropolitan Area.

The necessary infrastructure for this new center includes the following:

- (1) Deep-sea port
- (2) Water
- (3) Road network
- (4) Railway lines
- (5) Electricity

CHAPTER 3 TRANSPORTATION

CHAPTER 3 TRANSPORTATION

3.1 Transportation Outline

Representative inland transportation in Thailand is road transportation, which carries 85 percent of the freight and 93 percent of the passengers. Transport share by mode is shown in Table 3.1.1.

	Freight		Passenger		
Transport mode	Million tons	%	Million passenger-km	%	
Road	79.0	85	83,700	93	
Railway	8.4	9	6,030	6.7	
Water	5.6	6	n na an an Thaga tha an		
Air	-	-	270	0.3	
Total	93.0	100	90,000	100.0	

Table 3.1.1 Transport Share by Mode (1978)

Data: NESDB "The Fifth National Economic and Social Development Plan"

(1) Road transportation

The existing road network throughout the country consists of national freeways and highways, provincial roads, rural, municipal roads, and town roads. Main roads are maintained in good conditions.

The road improvement is performed on the Fifth Plan. The highway network has been nearly completed all over the country by the Fourth Plan. The future improvement program stresses the necessity of construction of feeder roads to contribute to agricultural development, improve road sections where the increase of traffic volume is noticeable, and upgrade road maintenance level. The road maintenance conditions as of 1980 are shown in Table 3.1.2.

- 27 -

	No. of Area			Popula-	In	service (Kms)	1	planning ruction (Grand
1 · · · ·	(1000 sq. Kms)	tion (million)	Paved	Unpaved	Total	National highway	Provin- cial highway	Total	total (Kms)		
Northern	17	170	9	5,608	1,025	6,633	442	5,187	5,629	12,262	
North- eastern	16	170	16	6,221	2,389	8,610	163	3,565	3,728	12,338	
Central	-25	104	15	5,628	1,486	7,114	340	2,485	2,825	9,939	
Southern	14	70	6	4,875	. 847	5,722	35	2,842	2,877	8,599	
Total	72	514	46	22,332	5,747	28,079	980	14,079	15,059	43,138	

Table 3.1.2 Road Maintenance Conditions Current State of Road (1980)

Note: According to data of the Highway Department.

(2) Railway transportation

The railway network radiates from Bangkok. The trunk lines comprise the Northern Line to Chiang Mai, Northeastern Line to Nong Khai near the Loas border and to Ubon Ratcha Thani near the Cambodian border, Eastern Line to Aranya Prathet near the Cambodian border, and Southern Line to Sungai Kolok near the Malaysian border.

Total route length in service is 3,735 km, transporting mainly intermediate/long distance traffic.

Passengers carried by rail increased 1.52 times in number and 2.15 times in passenger-km during these ten years as shown in Table 3.1.3. Freight traffic increased only 1.13 times in tonnage and 1.16 times in ton-km during the same period.

·····		***		
:	No. of passengers $(\times 10^3)$	Passenger-Km (× 10 ⁶)	Tonnage $(\times 10^3)$	Ton-Km (× 10 ⁶)
	(~ 10)		······	(10)
1972	51,952 (100)	4,412 (100)	5,354 (100)	2,242 (100)
1973	55,507 (107)	4,694 (106)	5,020 (94)	2,070 (92)
1974	61,409 (118)	5,376 (122)	5,117 (96)	2,296 (102)
1975	61,567 (119)	5,640 (128)	5,052 (106)	2,353 (105)
1976	55,759 (107)	5,628 (128)	5,351 (100)	2,505 (112)
1977	57,974 (116)	5,649 (128)	6,310 (118)	2,912 (130)
1978	59,035 (114)	6,039 (137)	6,096 (114)	2,651 (118)
1979	64,398 (124)	7,029 (159)	6,366 (119)	2,747 (122)
1980	74,286 (143)	8,861 (201)	6,230 (116)	2,805 (125)
1981	78,824 (152)	9,483 (215)	6,041 (113)	2,601 (116)

Table 3.1.3 Passenger and Freight Traffic

Note: () indicates indices when the traffic in 1972 is 100.

(3) Other transportation

The inland waterway has been developed principally along the Chao Phraya River and played a major role in domestic inland transportation. Since the transportation is required to be rapid and reliable, the river transportation with extremely slow speed may be said to be rather outdated.

There are three international airports, Bangkok, Chiang Mai and Hat Yai, and 27 local airports. The Bangkok airport facilities are now being expanded in order to cope with air transport demand for 15 years in the future. Meanwhile, in anticipation of further increases in air traffic demand, construction of a new airport is under planning. The location is about 25 km east of Bangkok.

3.2 Urban Transportation

3.2.1 Outline of Urban Transportation

(1) Transport situation

Bangkok began to take an urban form as the nation's capital with the establishment of the present Dynasty in 1782. Since the city was formed basically with the traffic network consisting of rivers and waterways, it still remains somewhat unsuitable for the prevailing trend of motorization as is seen today.

According to the result of person trip survey conducted in 1982 throughout the Greater Bangkok Area, the typical pattern of transport means is represented by buses and private cars, as shown in Table 3.2.1, which takes a greater share of 88% in the total number of trips. In contrast with that, the railway traffic shows a very minor utilization rate of 0.3%, the lowest urban transport contribution rate.

	and the second secon		
Item	No. of trips	Composition (%)	Composition (%)
1. Private means	persons		
(1) Car	1,853	65.8	21.7
(2) Motorcycle	553	19.6	6.4
(3) Samlor	76	2.7	0.9
(4) Taxi	71	2.5	0.8
(5) School bus	207	7.1	2.3
(6) Truck	59	2.3	0.8
Subtotal	2,819	100.0	32.9
2. Public means			
(1) Small bus	532	9.3	6.2
(2) Heavy bus	5,142	89.6	60.1
(3) Train	25	0.4	0.3
(4) Boat	42	0.7	0.5
Subtotal	5,741	100.0	67.1
Total	8,560		100.0

Table 3.2.1 Result of Person Trip Survey

Data: Feasibility Study of the Second Stage Expressway System in The Greater Bangkok Area, 1983.

Notwithstanding the fact that the greater majority of the existing urban traffic depends solely upon road traffic, the total length of roads existing within the Study Area is no more than about 1,150 km, and the road area is less than 10% of the urban area. This causes traffic congestion all day long throughout the whole urban area.

To measure the extent of influence from traffic congestion, car travel time survey was conducted in September 1983.

- 31 -

As shown in Fig. 3.2.1, while speed from the suburban area up to the outskirt of Bangkok City is relatively high, 56 to 70 km per hour, it is acutely slowed down to 5 to 25 km per hour inside the city.

· · · · · · · · · · · · · · · · · · ·		·	and the second second
Survey Section	Survey Time	Length	Average Speed
 Sukhumvit Soi 5 → Bangkok Station 	7°15' - 7°37'	2.7km	7.4km/h
② Sukhumvit Soi 5 → Wong Wien Yai	8°08' - 8°33'	6.0km	14.4km/h
③ Mahachai → Bangkok Station	13°47' - 14°56'	53.4km	46.4km/h
④ Ayutthaya -> Sukhumvit Soi 5	12°50'- 14°03'	77.8km	63.9km/h
⑤ Chachoeng Sao → Sukhumvit Soi 5	13°23'~ 14°59'	82.9km	51.8km/h

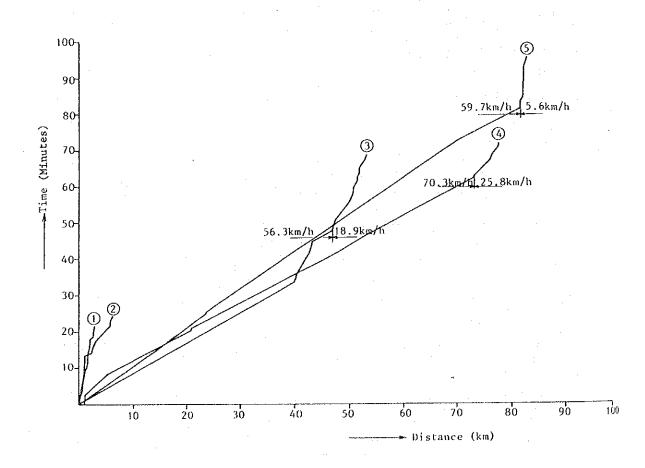


Fig. 3.2.1 Travel Time Survey

- 32 -

- (2) Railway transportation in the urban area
 - (i) Railway transportation

Trains available for the genuine purpose of commuter transportation within the Study Area are limited solely to between Don Muang and Hua Takhe. As indicated in Fig. 3.2.2, temporary platforms made of sleepers are provided alongside each main road for the sake of passengers' convenience.

Train operation in that section features such railway benefits as high efficiency, energy saving and transportability throughout all weather conditions. In full recognition of those benefits, the railway initiated its operation on November 5, 1979 to comply with the governmental request.

In the said section, trains are operated with a very low frequency of three round trips per day. The loading efficiency is shown in Table 3.2.2. Passengers utilize the railway at a loading efficiency of 134% (at Khlong Tan Station) during the morning rush hours and 218% (at Khlong Tan Station) during the evening rush hours. During the day time, off-peak loading efficiency is as low as 40% or so.

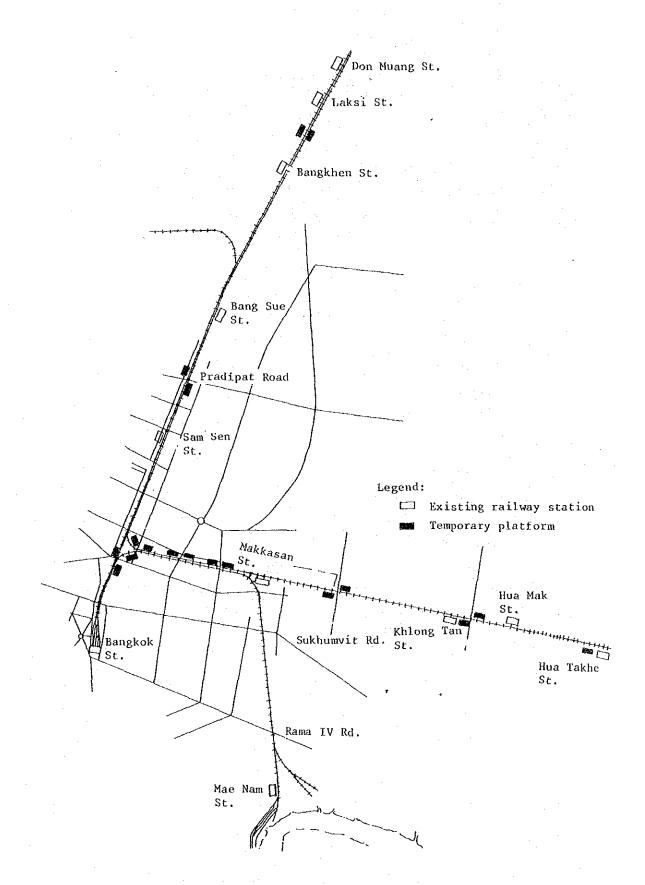


Fig. 3.2.2 Location of Temporary Platform

- 34 -

Table 3.2.2 Number of Passengers

(77.) 64) 68). 93) 63) 85) 64) 87) 21) 68) 18) 6 holiday (Unit: person) 9 1 1 141 129 103 104 <u>6</u>2 132 27 32 117 97 97 8 1982 (61); (147) day (218)(9TT) 54) 98) (124)30) (11) (I34) (182) (91) on week 189 223 177 149 277 331 26 24 204 . ЭЭ 82 46 53) (101) 62) 33) 67) 60) 93) 92) 17) 32) holiday 6 6 102°. 163 140 g . Н Ц 92 49 141 26 с Ц 94 5 1981 56) 28) 88) (185) 32) (132) (67) 95) (72) week day (01) (13) (116) \smile ŝ 74 145 176 110 134 78 20 200 83 43 281g 6:00) Train No. 196 (15:00) (6:53) Train No. 191 (8:38) Train No. 194 (10:15) Train No. 194 (11:20) Train No. 196 (15:58) Train No. 191 (8:05) (12:40) Train No. 195 (16:50) (13:13) (17:23)Year 193 193 192 Train No. 192 Train No. 195 Train No. Train No. Train No. Train Khlong Tan Khlong Tan Don Muang Hua Takhe Station gueuM nou or со ниа Такће From Hua Takhe From Don Muang

Survey was provided by the State Railway of Thiland in June of each year. ---1 Notes:

2. Commuter train operated by 1 set of diesel railcar.

3. () shows the loading factor by %.

Fixed number is 152 persons per diesel railcar set.

- 35 -

(ii) Train operations in urban areas

(a) Safety

There are 14 grade crossings in the proposed elevated section, and the average distance between grade crossings is about 1.0 km. On the other hand, 1,490 grade crossings are located in the whole country, with an average interval of 2.5 km.

On average, 7 accidents happened annually at these 14 grade crossings (0.49 cases per crossing) during the past 6 years (1977 to 1982). This figure is 7 times higher than that of the country's average (0.07 cases per grade crossing). There are certain problems as to the safety at these grade crossings.

(b) Train operating speed

Road traffic congestion obstructs the normal train operation at the grade crossings in the proposed elevated section, so that, the scheduled speed (23.5 to 28.0 km per hour) is set lower than that in the outside area (40.3 to 54.3 km per hour). (Appendix 3.3.5)

However, it is difficult to maintain the present scheduled train speed because of frequent train stoppage and slow-down due to road traffic congestion.

(c) Train operating capacity

A double-track line on the proposed elevated section is restricted in track capacity because of grade crossing disturbance and present operation system. Also, dead-end terminal of Bangkok Station greatly restricts the number of trains because its departure track yard and arrival track yard are located separately.

It will be difficult to increase train operation on the proposed elevated section and in Bangkok Station.

3.2.2 Traffic Survey

(1) Passenger survey at stations

The survey was conducted to obtain information such as the number of trains and that of passengers utilizing each train. It was conducted on October 7 at two selected stations, Bangkok and Thon Buri.

The period of survey coincided with the rainy season, during which several areas in Bangkok were flooded and some schools were already closed for vacation. It seems, therefore, that the result of survey may differ, to some extent, from that during the dry season. Figs. 3.2.3 and 4 compare the survey results with those taken in December 1978.

The present number of passengers at Bangkok Station amounts to 47,422 persons per day, 2.10 times those in 1978. Peak load during the morning rush hours may be divided into two time zones: 05:00 to 06:00 and 07:00 to 08:00. All the trains scheduled for arrival during the time zone of 05:00 to 06:00 travel all night over long distances, while the trains for arrival between 07:00 and 08:00 are operated within a medium distance of 100 km for commuting services. A total of 3,651 passengers arrived between 07:00 and 08:00 with an increase of 1.30 times as compared with the total in 1978.

Meanwhile, the number of passengers at Thon Buri Station totals 5,821 a day, only a negligible increase as compared with the total of 5,788 in 1978. This is apparently due to road expansion in the west of Thon Buri.

~ 37 ~

Concentration	%) rate per day %) 10 20 30 40		78 78			, I.		<u>^</u>	, <u>'</u>			/	\wedge			~~~		- - :		· · ·		
Arrivals	rers 183	1,682	5,805	1,185	3,651	2,621	737 6	1,627	V °	1,065	0	1,291 🗸	0	1,711	689	895	843	769T	0	0	0	3,971
Arriva No. of	78	2,078	1,986	801	2,732	845	0	563	230	147	97	160	287	598	623	245	65	0	0	0	0	1,457 2:
,	183	2	0	4	Ń	4	7	7	0	m	·O	т	0	4	7	Ń	ς	н	0	0	0	51 1
+ 	1 28	5	ς	4	ŝ	7	0	ŵ.	5	н ;		C 1	7	Ś	Ś	7	7	0	0	0	0	43.
E	1	4:00~ 5:00	5:00~ 6:00	6:000 7:00	7:00~ 8:00	8:00~ 9:00	00:0100:6	00:11~00.01	11:00~12:00	12:00~13:00	13:00~14:00	14:00~15:00	15:00~16:00	16:00~17:00	17:00~18:00	00:6T.00:8T	19:00-20:00	20:00 21:00	21:00~22:00	22:00~23:00	23:00~24:00	Total
	183	r-I	ŝ	4	7	2	4	2	2	7	ε Γ	4	1	ι Υ	4	- S	0	5	н	r-1		50
ب ا	178 I	-1	-1	t		ო	ŝ		5	5	m	2	7	4	ŋ		1	5	61		0	42
	183 N	14	102	1,777	427	796	1,335	527	762	932	874	l,375	1,553	2,621	2,904	3,928	0	977	565	739	1,243	23,451
Departures	78 .	6	93	684	213	670	373	129	283	748	321	459	737	1,648	1,808	1,373	198	381	402	149	0	10,678 2
ntration	rate per day (%) - 40 30 20 10 (%)	,	82	2				-7-									1			\sim		

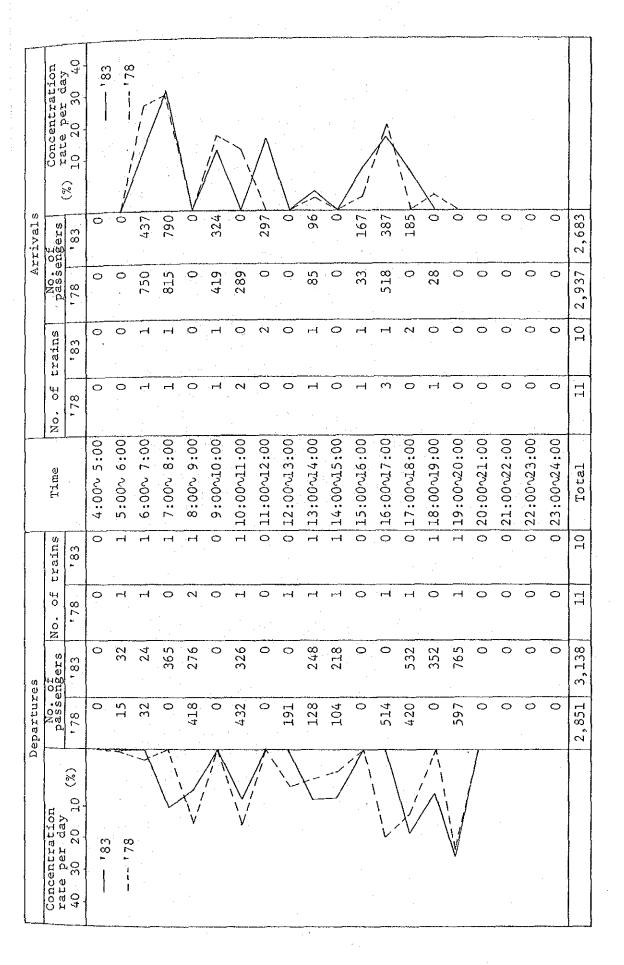


Fig. 3.2.4 Result of Survey at Thon Buri Station

- 39 --

(2) Traffic volume at grade crossings

Traffic volume at the grade crossings was surveyed to monitor how and to what extent the vehicle traffic flow is impeded at each grade crossing. Thus, the traffic volume at the grade crossing and the barrier time during train passage were surveyed at 14 grade crossings in the proposed elevated section.

Total volume measured in the surveyed section amounted to 401,707 vehicles per 12 hours. The blocked traffic volume was calculated on a basis of the suspension probability sought from barrier time at the grade crossing. It accounts for 12% in the total traffic volume. This means that 47,826 vehicles per 12 hours have been blocked by passage of trains at the grade crossings. The result of traffic survey is shown in Table 3.2.3 (Appendixes 3.2.1 and 2).

The grade crossings with a large volume of blocked traffic are Phetburi, Sriayutthaya, Rajavithi and Phayathai. In particular, the blocked traffic adversely affects road congestion during the morning and evening rush hours. Furthermore, it tends to hamper train operation because such traffic jams frequently occur on the grade crossing itself.

The Mae Nam freight line crosses Phetburi, Sukhumvit and Rama IV Roads with a heavy traffic volume at each grade crossing. However, because train operation is restrained during the morning and the evening rush hours, the road traffic is not affected in the least.

Hourly traffic fluctuation on the main roads is shown in Fig. 3.2.5. At peak hours both in the morning and evening, private cars with a small number of passengers constitute a large percentage of the total vehicle traffic. This is deemed as a big factor causing the traffic congestion in many instances.

- 40 -

50,000 (Unit: Vehicles per 12 hours) (No. of Vehicles) No. of Vehicles Blocked by Barrier Time 40,000 30,000 20,000 (316) (I,330) (2,538) (1,905) (765) (3,463) (5,239) (3,311) (1,115) (7,590) (5,386) (1,930) (3,767) (9,146) 10,000 4. Nokornchaisri Sriayutthaya Name of Road Rajaprarop Sukhumvit Rajavithi ы 11. Makkasan Phetburi Phetburi Pradípat Phyathai ΔŢ Setsiri Rama VI Ranong Rama 10. . ი 12. 13. 14. . 8 5. . . . ف ч. С 10,000 Traffic Volume on Railway Crossing (12,206) (10,259) (5,000) 33,61Ó) 9,881) 44.362) 42,284 , 931 387 20,000 30,000 (No. of Vehicles) 40,000 50,000

Table 3.2.3 Result of Traffic Volume Survey (6:00 to 18:00)

- 41 -

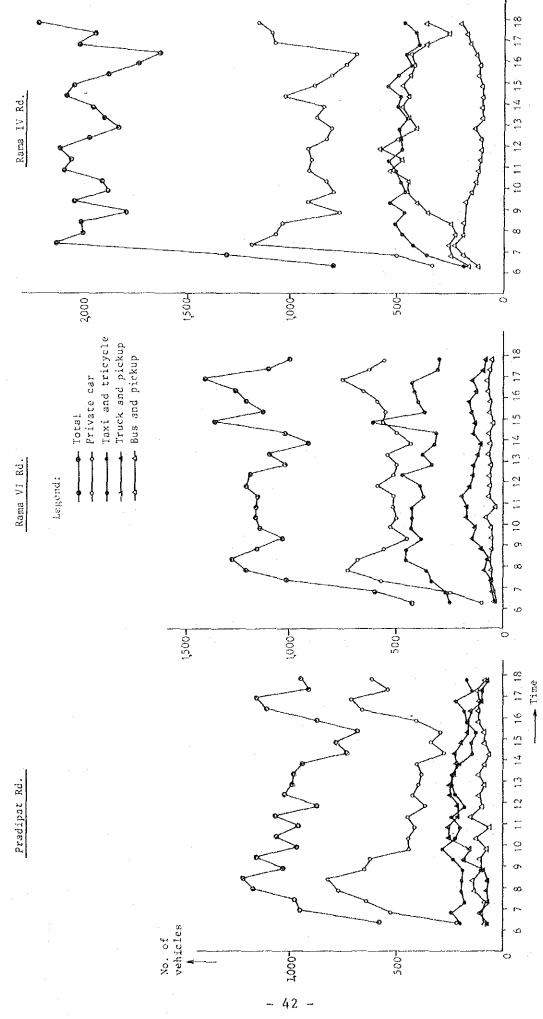


Fig. 3.2.5 Hourly Traffic Volume

(3) Interview survey

Interview surveys for railway and bus passengers were made to obtain the information on railway improvement. Major interview questions include trip purpose, access traffic means available and desire for railway transportation.

The time zone for this interview survey was set from 06:00 to 18:00 with a concentrated effort for enquiry during the rush hours for those passengers utilizing trains and buses alike. Bus passengers were selected for this survey from the service lines interconnecting Bangkok with Nakhon Pathon, Ayutthaya and Chachoeng Sao.

The survey continued from October 3 to 18 (Appendix 3.2.3). During the full period, roads were covered with water and schools were closed for vacation. Because of this, it seems that the pattern of utilization for that survey period may differ somewhat from the dry period pattern.

(i) Purpose of journey

Except for commuting and leisure travel, as shown in Table 3.2.4, the results of trip purpose surveys for bus passengers and train passengers turned out to be almost the same ratio.

This is due to the fact that passengers were selected for the survey from railway and bus routes available within the traffic radius of 20 to 30 km for railway and of 60 to 70 km for bus. The survey of the BMTA's service routes in urban and suburban Bangkok will indicate that a utilization rate by bus passengers for commuting purpose is as high as that of the railway traffic.

By trip purposes of railway passengers, the survey result reveals that the commuters going to work and school during the morning and the evening rush hours account for 61.3% of the total, thus signifying the pattern of urban traffic. (Appendix. 3.2.4)

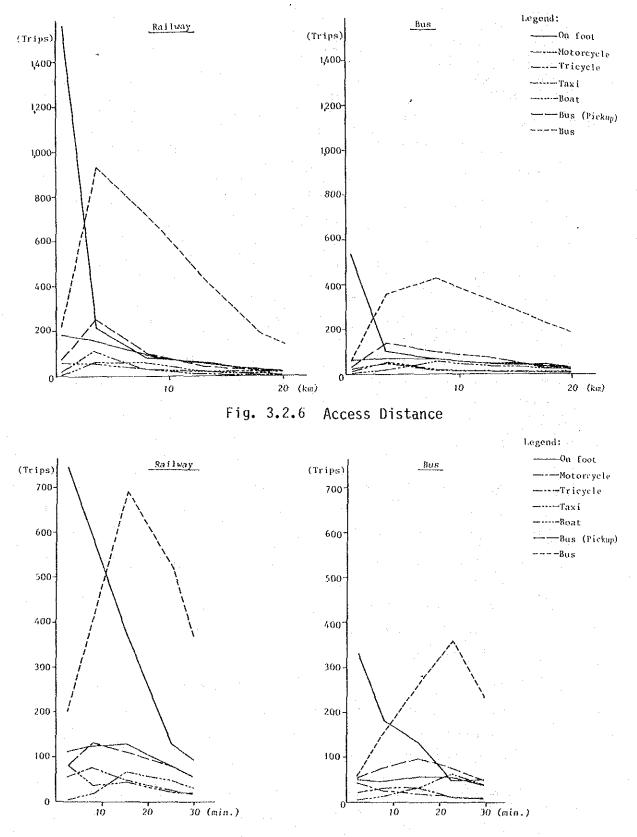
Table 3.2.4 Purpose of Journey by Origin Station

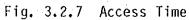
(ii) Access transport means

The typical access means of traffic to railway stations or the bus stops is mainly by bus or on foot, as shown in Table 3.2.5, for both railway and bus passengers alike. Those access means are utilized at a high rate of 83% of the total.

		(Unit: person)						
		Railway	passenger	Bus passenger				
1.	On foot	1,990	(31.9)	845	(23.1)			
2.	Bicycle	52	(0.8)	37	(1.0)			
3.	Motorcycle	93	(1.5)	106	(2.9)			
4.	Tricycle	222	(3.6)	101	(2.8)			
5.	Car	149	(2.4)	84	(2.3)			
6.	Taxi	201	(3.2)	175	(4.8)			
7.	Bus (pick-up)	544	(8.7)	428	(11.7)			
8.	Bus	2,693	(43.1)	1,785	(48.9)			
9.	Truck	3	(0.0)	2	(0.0)			
10.	Train	89	(1.4)	11	(0.3)			
11.	Boat	210	(3,4)	79	(2.2)			
Sam	pling total	6,246	(100.0)	3,653	(100.0)			

Table 3.2.5 Access Mobility by Transport Means


Note: () indicates % of total volume.


By distances within the accessible range, the number of passengers moving on foot reach, as shown in Fig. 3.2.6, a maximum within the range of 1 km; 78% accounted for by railway passengers and 64% by bus passengers. The number of passengers utilizing buses for access reaches a maximum within the range of 5 to 10 km; 62% accounted for by railway passengers and 64% by bus passengers. (Appendixes 3.2.5 and 6)

The accessible range by the required time length is shown in Fig. 3.2.7; the maximum number of walkers within a distance of 10 minutes reached 66% for railway passengers and 62% for bus passengers.

As for the access by bus, the maximum number of passengers is reached within a range of 10 to 30 minutes; 43% for railway passengers and 35% for bus passengers. (Appendixes 3.2.7 and 8)

- 45 -

46 ~

(iii) Comments to the railway transport system

Railway passengers were asked to what extent they desired improvement of the present railway transport system and bus passengers were asked why they are reluctant to utilize the railway service.

Table 3.2.6 summarizes the result of survey. It is particularly noteworthy that the main reasons for reluctancy to utilize the railway transportation by those bus passengers are time consuming travel by train (31.5%), uncomfortable riding quality (16.7%), and unavailability of train operation when they wish to travel (14.5%).

With regard to the desires for railway improvement by the passengers, the request for increased number of cars for each train formation ranks at the top (22.9%), followed by the request for an increase in the total number of trains in operation (21.0%). (Appendixes 3.2.9 and 10)

Table 3.2.6 Result of Interview for Railway Transportation

⁽Unit: person)

Reason for not railway transpo	<u> </u>	1	Requirement for improvement of railway transportation						
Item		• of mples	Item No. of samples						
1. Time consuming	1,132	(31.5)	1. Increase passenger cars 1,373 (22.	9)					
2. No train*	773	(21.4)	2. Increase number of trains 1,264 (21.	0)					
3. Not comfortable	603	(16.7)	3. Cleanliness 1,109 (18.	5)					
4. No train during trip	521	(14.5)	4. On time operation 944 (16.	2) 2)					
5. Another alternative*	464	(12.9)	5. Increase speed 741 (12.	3)					
6. Crowded	58	(1.6)	6. Safety 190 (3.	2)					
7. Expensive	23	(0.6)	7. Improve ticket price 150 (2.	5)					
8. Dangerous	19	(0.5)	8. No need of improvement 120 (1.	5)					
9. Other	12		9. Other 88 (2.0	0)					
Sampling total	3,605	(100.0)	Sampling total 6,009 (100.0	0)					

Notes: * mark is outside of railway influence area. () indicates percentage of total volume.

- 47 -