TACHRITATY REPORT

STERE, RETEX BLEST ATTION OF SWARS PREMATION PROJECTIVE

Child Miles Day and a second

· CANAL MARCH 1985

n Secretaria de Maria de Carta de Cart La composição de Carta de Car

raban Nobel Comment Complete Andrews

THE DEMOCRATIC SOCIALIST REPUBLIC OF SRI LANKA

FEASIBILITY REPORT ON THE REHABILITATION OF TANK IRRIGATION PROJECT

VOLUME II: ANNEX-I

MARCH, 1986

JAPAN INTERNATIONAL COOPERATION AGENCY

Table of Contents

Volume II: Annex - I

- 1. Approach and Methodology adopted in the Field Survey
- 2. Climate Conditions and Water Resources
- 3. Soil
- 4. Socio-Economy
- 5. Irrigation and Drainage
- 6. Agriculture

Volume III: Annex - II

- 7. Water Management
- 8. Livestock
- 9. Road System
- 10. Rural Water Supply
- 11. Rural Indstries
- 12. Operation and Maintenance
- 13. Cost Estimates
- 14. Economic Evaluation

ANNEX 1 APPROACH AND METHODOLOGY ADOPTED IN THE FIELD SURVEY

1.1	APPROA	СН	1 -	- 1
	1.1.1	Basic Concept	I -	- 1
	1.1.2	Selection of Sample Areas for Intensive Investigations	Ι -	- 2
		Maria de la Carlo de Carlo de la Carlo Carlo de la Carlo de la Ca		
1.2	METHOD	OLOGA		
	1.2.1	Socio-Economic Survey	I -	- 9
	1.2.2	Soil Survey	I -	- 12
	1.2.3	Irrigation and Water Utilization Survey .	1 -	- 13
	1.2.4	Agricultural Survey .,	I -	. 23
	1.2.5	Livestock Survey	ī.	- 25
	1.2.6	Road Survey,	ı.	- 25
	1 2 7	Domestic Water Survey	1 -	- 28

1. APPROACH AND METHODOLOGY ADOPTED IN THE FIELD SURVEY

1.1 APPROACH

1.1.1 Basic Concept

From the very commencement of the Field Survey for the Phase II the Study Team has conceptualised its basic approach upon the foundation of its understanding and appreciation of the Sri Lanka Government's policy regarding the development of the rural economy.

The optimum project plan has to be formulated keeping in constant focus the ultimate objective which is the upgrading of income and living standards of the villagers in the Minipe and Nagadeepa areas. For this purpose it is necessary that all the relevant factual data pertaining to the two Schemes should not only be carefully perceived and accurately recorded, but that their total significance should be fully appreciated both as individual factors taken in isolation and as interconnected components of a cohesive whole.

The various aspects of our basic approach may be summarised in the following terms:

- (a) to identify all the relevant conditions and all the physical features as exist within the Proejct Areas by actual observation in the field;
- (b) for this prupose to establish and maintain contact during the period of the study not only with Government Officers, non-Government-Organisational officials, but also with the villagers themselves with a view to getting information at first hand through mettings and discussions with them;

- (c) to use scientific methods to measure wherever possible and record quantitatively all the relevant data and generally to make as objective an analysis as possible;
- (d) to select representative sample areas for intensive investigation with a view to obtaining a deep and through understanding of such areas that would serve the purposes of the total Study, (details of the mode of selecting sample areas being given in the succeeding paragraphs) and
- (e) finally, to examine and report on all aspects of the Project in its totality against the background of, and in relation to, similar Projects in Sri Lanka without restricting the study to the Project Areas themselves.

1.1.2 Selection of Sample Areas for Intensive Investigations

Time did not permit us to undertake a comprehensive survey of each of the two project areas in entirety. We therefore, decided to select a few representative Sample Areas within each of the two Schemes for an intensive and in-depth study of the various aspects covered by this Report. We intended by so doing to be enabled to comprehend, and grasp the full significance of, the somewhat complex social and economic situation prevalent as effectively and as accurately as possible. As would be evident from the later sections, some of the aspects that we so studied in depth are the irrigation system, the water management activities, land tenure, agriculture and employment among others. The actual method we employed in selecting the Sample Area, (six for Minipe and two for Nagadeepa) is indicated in the succeeding sub-paras.

(1) As is generally known and as is indicated hereafter the different stages (i.e. Stage I, Stage II and Stages III, IV) differ among themselves not only in terms of year of Settlement and unit of alienation, but in respect of other aspects as well. We have, however, used the water distribution system as the criterion for determining the six blocks to which the Minipe Scheme could be demarcated for purposes of selecting sample areas:

The water distribution system sustained by the respective distributary canals (D-canals, while conferring homogeneity on those governed by one system, also distinguishes them from those governed by another system.

The six Blocks are:

Stage I - Section I (I-1), Stage I - Section 2 (I-2)

Stage II - Section I (II-1), Stage II - Section 2 (II-2)

Stage III, and Stage IV

Having determined the six Blocks the next step was to select a typical D-canal in each such Block. The criteria for selecting D-canal were as follows:

- (a) largeness of extent of area benefitted by the canal;
- (b) suitability and convenience of the area for the water balance survey; and
- (c) extent of development of the area towards a cohesive village unit.

Block I-1 - the D-canal No. 21 was selected from among 43 canals. This is a relatively large area compared with the other D-canal areas. It is part of the village called Handagamuwa and is a typical old settlement area in this Scheme.

In Block I-2, there are some temple lands in which the conditions of land tenure are different from elsewhere. In order to use a typical area in terms of farm management and water use, the largest D-canal area (107 ha) D47, where there is no temple land, was selected out of 30 turnouts in this Block. This area is part of the village of Gurulupotha.

From Blocks II-1 and II-2, for the same reason, the D-7 area (130 ha) and the D31/32 area (68 ha/80 ha) were chosen respectively for detailed investigation. D-7 area is the village called Keenapalessa, and D-31/32 areas are in the Weragama and Kolongoda villages both of which are typical areas in Stage II from a socio-economic point of view.

There are 7 minor reservoirs for irrigation in Stage III, and the area served by them covers over 800 ha which is more than half of the total irrigated area in this Block. For this reason an irrigation area by a reservoir, the Mahawatenne Wewa area (170 ha), which is the largest among the reservoir areas was chose for intensive survey. This area is one of the parts of the Wilgamuwa region called Mahawatenna village.

From Stage IV, the tail-end zone of the Minipe main canal D-3 (272 ha) a typical tail-end area was selected in consideration of water distribution. This area called Madaganda village is representative of areas severely hampered by lack of irrigation water and characterised by the backwardness of the socio-economic infrastructure.

The location and general feature of each selected area mentioned above are indicated in Figure 1.1.1 and Table 1.1.1.

(2) Nagadeepa

The concept of the village rather than the water distribution system is the predominant factor in Nagadeepa.

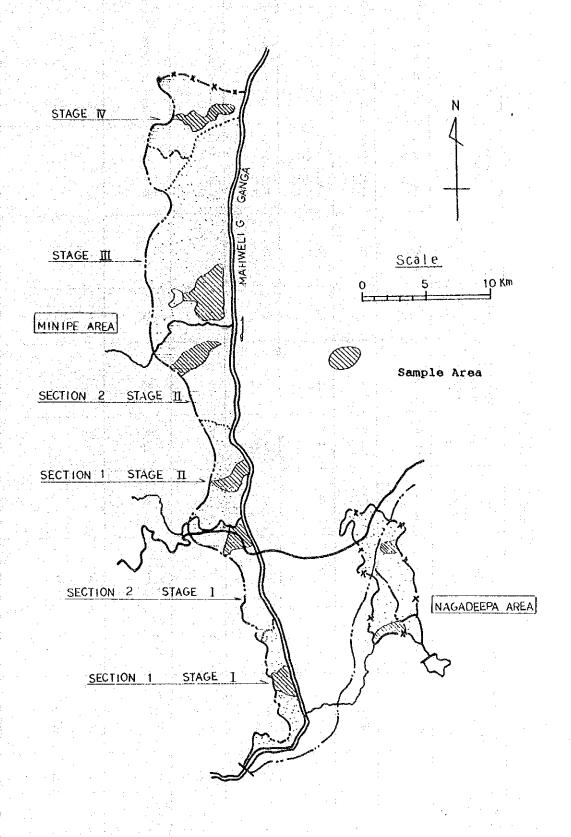


Fig.1.1.1 SAMPLE AREA

Table 1.1.1a

OUTLINE OF SAMPLE AREA

F.Canal date of Paddy Other. Nos. tasue ha		`			11 . 2) 4 4 5 .		SOW 2D P
Apr 25 143.8 Apr 25 105.0 Apr 25 53.6 Apr 25 63.6 Apr 27 56.7	of D/Ca: f.Canal. KM Nos.		<u></u>		Paddy	period	period
Apr 25 105.0 Apr 25 128.0 Apr 25 63.6 May 01 145.0		25	6.1	10	94/1,34/8, 34/6 380	Apr 28 to May 15	May 20 to Jun 05
Apr 25 128.0 Apr 25 63.6 Apr 25 79.0 Apr 27 56.7		25	2.0	- 100	94/1,400/1 34/6	Apr 28 to May 20	May 20 June 05
Apr 25 63.6 79.0 May 01 145.0	The section	25	1.6	20 80	380/2,279/2 94/1,34/8, 90/2	Apr 30 to May 25	May 25 to June 10
May 01. 145.0 Apr 27 56.7		25	1.2	30 20	34/8,34/6, 94/1	Apr 28 to May 20	May 20 to May 30
Apr 27 56.7				1000	276/5, 34/6 34/8	Мау 10 to Мау 31	May 20 to June 10
	2(D.C) 33(FC) Ap	27	17.0	100	34/8,275/5	Apr. 28 to May 15	May 20 to May 30
	25 44 55						

rable 1.1.1b

ILINE OF WATER BALANCE STUDY AREA

į	[. · · ·						·			· · · · · · · · · · · · · · · · · · ·
	Sowing	· OBTO		May 10 to Water Distributor May 20 A.K.B. Samarakoon	May 20 to W.M. Gunasekera June 05	May 30 R.M.D. Sanarakoon	May 30 to 5.B. Dissanayake	May 20 to H.B. Thilakereine June 10	May 12 to A.M. Kuda Banda May 24	Мау 20 to Мау 30
	Land Preparation	period		Apr 25 to May 10	Apr 28 to May 20	Apr 30 to May 30	Apr 28 to May 20	May 10 to May 31	Apr 27 to May 10	Apr 28 to May 15
	Variety	(Paddy)		34/8, 94/1 380	94/1,400/1	380/2,379/2	34/8, 34/6 94/1	34/8, 34/6 276/5	34/8,275/5	34/8,275/5
	Cultivation method	Trans-	PS	\$6	160	0	09	1	10	1
	Cultivat	Direct	ક્ષ્	90		10	40	100	06	100
	No. of	Measuring	Nos.	13	14	17	24	80	05	80
	Related	Canal		FC 1 FC 2	LB 1-3			D.Canal RBS-11	FC24-27	FC33~39
	Water	Balance	ha	13.0	20.0	13.4	53.0	71.9	28.6	14.2
	Irrigable	Area	ha	149.8	0.701	129.6	6.36/80.2	1.071		271.7
	Name of	Sample		D 21	D 47	D 7	ze'18/a	Mahawa~ tenne- Yewa		εα
	Survey	Block		I - 1	1 - 2	I-II	11-2	111		ΛI

It is guided by this consideration that Tract 3 (174 ha) and Tract 12 (192 ha) at the head end and the tail-end of the main canal were selected, the two ends been favoured for purposes of regional comparison. These two areas not only exhibit the characteristics of the village but are also representative of the surrounding areas.

1.2 METHODOLOGY

1.2.1 Socio-Economic Survey

The Socio-economic conditions of the Project Areas have been analysed in terms of the human population, financial status, the input/output of agricultural production and other economic activities in these areas.

The main object of this Phase II Study has been to identify existing constraints on development. In the identification of these socio-economic problems, we have tried to be as objective as possible by using accurate figures and satistical data.

(1) Data Collection and Analysis of the Collected Data of the Various Administrative Levels

It is essential to understand the socio-economic condition in terms of human beings and their circumstances.

The Project Areas come under the administrative control of various authorities at the District Level and at the Divisional Level and are subject to influence at the village level. These authorities may be tabulated as follows: (see Table 1.2.1.)

Table 1.2.1

Project	Formal		Informal
Area	Authori	ties	Authority
	Administrative	At Divisional	At Village
	District Level	Level	Level
Minipe	Government	Asst.Government	village Leader
I/Ii	Agent,	Agent,	
	Kandy	Hasalaka	
Minipe	Government	Asst.Government	Village Leader
III/IV	Agent	Agent,	-
	Matale	Wilgamuwa	·
Nagadeepa	Government	Asst.Government	Village Leader
-	Agent,	Agent,	-
	Badulla	Ridimaliyadda	

It is only by a satistical analysis of the human population that one can get to know the socio-economic conditions of the people in the Project Areas. Close contact with the officials and persons mentioned above had to be established to obtain the data required for determination of population trends and employment prospects.

(2) Visits to Offices and Service Centres for Collection of Data and Their Analysis

There are several offices and service centres located in both Areas as follows: (see Table 1.2.2.)

Table 1.2.2

Institution	Ī		Minipe III	<u>iv</u>	Nagade	epa
Agrarian Service Centre					1	
Agriculture Extension Office	1	1			1	
Colonisation Officer's Office	1	with His Co	2 2	SAME WHY	2	
Co-op Main Office	1	1		1	-	ch -5
Rural Bank	5	5.	1		1	
People's Bank		1	1		_	
Bank of Ceylon		1	1		_	
Paddy Marketing Board Stores	7	2	4	1	 	
	1	1, 4, 4,	法保护 医二重	100	l	

In order to ascertain the situation obtaining at present, the Team visited these offices/centres as frequently as possible to meet with local officers who are well acquainted with the conditions prevalent in the Project Areas. Agricultural service functions such as the supply of inputs, agricultural credit, the marketing and processing of agricultural products and the price trends for agricultural commodities were intensively studied by visiting the Co-operatives, Banks, and, in particular, the Agrarian Service Centres in both Minipe and Nagadeepa.

(3) Holding Inter-organisational Meetings through the Key Person (Project Manager)

Both the Minipe Scheme and the Nagadeepa Scheme have each a Project Manager who is responsible for the management of the Scheme. They are

for the Minipe Scheme

Mr. P. Nawalage, Project Manager with his office at Morayaya; and

for the Nagadeepa Scheme

Mr. H. W. Panyadasa, Agricultural Officer, with his office at Mahiyangana.

The Project Manager is empowered to call meetings of government officials involved in the Scheme and of farmers at times and places indicated. One of the basic methodologies adopted for investigating agricultural services, including credit, marketing, extension, input supply and their inter-relationships was to hold an inter-organisational meeting in each Scheme with the assistance of the Project Manager. The inter-organisational meeting enabled the Team very effectively to deepen their understanding of the functions, and the relationship of the several

organisations with one another. Such meetings were held twice during the field survey in each Project Area.

(4) Intensive Investigations and Analysis in the Sample Areas

Sample Areas were selected in each Scheme in order to conduct detailed investigations of the employment opportunities, land tenure, and the surrounding circumstances of rural life. The actual survey was carried out with the participation of the Project Manager, village leaders, farmer representatives and water distributors in each Sample Area.

(5) Multi-personal Interviews with the Farmers in the Project Areas

For comprehensive study on the socio-economic conditions it is desirable that an in-depth study should be made not only from the point of view of governmental authorities but also from the point of view of the farmers The device of the multi-personal interview themselves. was availed of both in the Sample Areas and in the other areas to ascertain at first hand the problems with which farmers are confronted. The multi-personal interview was the basic method used to deepen our understanding of the situation in which the farmers in This was done by Team both Areas find themselves. Members participating as observers in the meetings of the Project Committee and Sub-Project Committees in each Area.

1.2.2 Soil Survey

The main purpose of this soil survey, in the light of the overall objectives of this Study, was understood to be the provision of fundamental data on the mechanism of water use in paddy fields in the Project Areas. In the soil survey therefore, the following items were selected for investigation from the various factors which are connected with the control of water movement in the field. The components of the soil survey so investigated were as follows:

- (1) To confirm the soil texture constituting the soil profile and to investigate the soil layer sequences and their depth;
- (2) To measure water percolation in the paddy fields;
- (3) To undertake the field surveys, special attention being paid to the reduced and oxidized layers containing iron oxides and manganese dioxide and to confirm their colour development.
- (4) To measure water permeability of soil samples taken from paddy fields; and
- (5) To measure redox potential (oxidation reduction potential) in fields.

Soil Survey points in Minipe and Nagadeepa Area are shown in Figure 1.2.1.

1.2.3 Irrigation and Water Utilization Survey

(1) Causes of Water Wastage

Irrigation Water is a scarce resource and its procurement under major irrigation schemes involves not only considerable financial outlay for intial construction, and but also annual expenditure on operation and maintenance of irrigation systems. Quite apart from its financial implications, irrigation water is the very lifeblood of agricultural production in the Dry Zone and the Intermediate Low Country Zone in which Minipe and Nagadeepa are located.

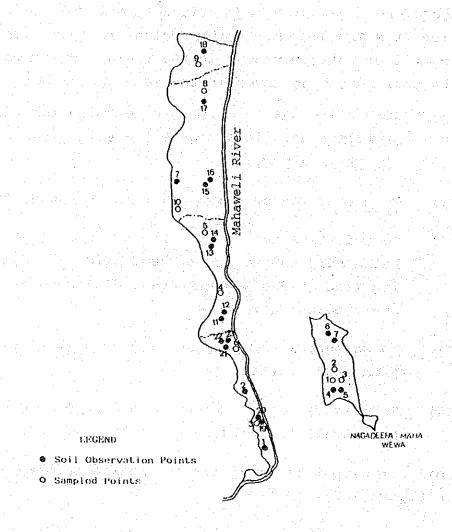


Fig. 1.2.1 SOIL SURVEY POINTS

In view of these factors, considerable attention has been focussed over the last few decades on water management to ensure the efficient and equitable use of irrigation water, particularly under the Major Irrigation Schemes such as Minipe and Nagadeepa. Furthermore, as is shown elsewhere in this Report, Government has devised various institutional forms to achieve this same objective and Minipe has been the focal point of operation of such institutions. Particular attention has been paid to this matter in the Minipe Scheme in view of the fact that wasteful

use of water by the head-end farmers (in Stages I & II) would result in farmers at the tail-end (Stages III & IV) being partially or totally deprived of irrigation water even in Maha.

There has been a tendancy to treat the farmers alone as the culprits for the misuse of irrigation water without paying sufficient heed to other factors that could lead to wastage of irrigation water. We have tried in this Study to identify, and describe in some detail, the causes of such waste in order to affix responsibility therefor and to take such remedial measures as necessary to prevent the occurrence of such waste.

- (2) The Team accordingly undertook an intensive and scientific observation and measurement under the following heads to assess accurately the present condition of irrigation water utilization in the Schems:
 - Acreage of Cultivated Area
 - Water Requirement Survey
 - Irrigation System Loss Survey
 - Deterioration Survey
 - (a) Acreage of Cultivated Land

The Acreage of cultivated land was verified for each turnout on the main canal, Branch Canals and Tanks, reference being made to the 1: 10,000 scale topographical map, the Blocking-Out Plan (BOP) and field investigations.

Considerable attention was paid to the location and assessment of the extent of encroachments.

Lands set apart as reservations, i.e. for channels, roads and for common purposes were checked with the BOP first and then verified by site investigations.

- (b) Water Requirement Survey in Minipe Area

 The field investigations on water requirement
 were conducted in respect of the following
 aspects. i.e.
 - Water Requirement in depth;
 - Percolation; and
 - Water Balance
 - i) Investigations of Water Requirement in depth
 The investigations on Water Requirement in
 depth were conducted in the Water Balance
 Study Area (Study Area) first, with 12
 numbers of bottomless oil drums cut in two
 pieces and cleaned. The drums were installed
 on the basis of two points for each Study
 Area, i.e. one was installed at the upper
 end of the terraced field, and the other in
 the middle section, since the water requirement at the upper end would be greater than
 in the middle section of the field.

The next step was taken late in July in the light of the investigations on the water requirement referred to above and the soil investigations. The drums were installed in Stage I and Stage II along the same contour so as to cover a wider area. Measurement was done by the "Jalapalakas" (Water Distributors) under the guidance of the Team Members, the water depth readings being taken from the bottom nail at peg in drum with 1 mm graduated scale. Measurement in the Study Area was generally taken around 6 AM and 6 PM, except in the case of ten drums installed late in July 1985, where it was around 9 AM.

ii) Percolation

The investigation was conducted in the fields where the drums were installed in the Study Area, with the quick percolation measuring apparatus.

iii) Water Balance

Study Areas surrounded by roads, irrigation canals and drainage canal at the downstream were selected for each Sample Area to minimize number of inflow and outflow points for easy study. Measuring devices; such as the V-notch weir, the Rectangular weir, were installed at the diversion point of the canals and of the drainage canal of the area.

Existing concrete canals and drops were also considered as measuring devices in cases where it was difficult to measure by weir. Measurement of water depth was done by the Jalapalakas around 6 AM and 6 PM with stuff gauge installed near the weirs, since water flow would be stable at these times.

(c) Irrigation System Loss Survey

i) Measurement of Water Depth in Main Canal
The Water depth of the main canal was measured
to assess the canal loss and time-lag of flow.
The measurement of water depth in the main
canal had been started by the Irrigation
Department at Hasalaka in April 1983. The
water depth had been measured on 17 numbers
of Gauging Stations at 6 AM daily.

The team checked the daily record of water depth, and found that it was difficult to

assess the canal loss and time-lag merely by the variation in water depth.

Accordingly it was decided that further investigations were required to obtain a more detailed variation of water depth.

This investigation was done by the Team during the Period 16th to 31st July, measurements being taken every three hours from 6 AM to 6 PM at the following locations viz: G1, G4, G6, G7, G9, G12, G13, G14, G16, G17

ii) Canal Loss in the Main Canal

The following sections were utilized to assess the Canal Loss in the main canal.

Stage I : Between Gl and G6

Stage II: Between G6 to G12

The discharge conditions at G1, G6 and G12 to be evaluated were selected between 16th July and 22nd July from hydrograph over three hours observed as follows:

- Maximum flow at Upstream Gauging Station (UGS) and maximum flow at Downstream Gauging Station (DGS) corresponded to maximum flow at UGS at the time the turnouts were closed.
- Maximum flow at UGS and minimum flow at DGS when the turnouts were opened.

Discharge to D-canal was assumed with average value stated in para 3.2.3 (3) (v), during evaluation of Canal Loss.

The leakage from the canal facilities was measured as follows:

- Amount of leakage was measured on Turnout and Canal Spillway when the turnouts were closed.
- Amount of leakage was measured with measuring cylinder, weir or current meter, taking into account the condition of leakage at site.

The absorption loss of wetted perimeter was estimated with the following equation developed for Punjab soils:

$$K = 2.11 \times 0^{0.065} \times 10^{-6}$$

where K is absorption loss in Cumec per Sq. meter of wetted perimeter.

Q is discharge in Cu.m/sec

The evaporation from the water surface was estimated for the total extent of the water surface of main canal and the river crossings taking into consideration the pan evaporation at Girandrukotte.

Canal Loss has been indicated in two modes as follows:

- Indicated in Cumec

The difference between upstream discharge and downstream discharge is considered as Canal Loss.

- Indicated in percent

Canal Loss can be worked out by the following equation.

$$P = (1 - (Ad/Qu)^{1/L}) \times 100$$

where, P is Canal Loss in percent per km.

Qd is discharge at downstream in Cumec

Qu is discharge at upstream in Cumec

L is canal length in km

The deterioration loss was estimated as the difference of the canal loss during opening and closing time of Turnout. Deterioration Loss of main canal was assessed, comparing the estimated loss with observed leakage discharge from canal facilities.

- iii) Time-lag in Main Canal
 - Time-lag has been taken as the difference between the time of maximum discharge at upstream and the time of maximum discharge at downstream corresponding to the upstream discharge.
- iv) Canal Loss in D-canal in Minipe Area

 It is necessary to estimate canal loss in
 D-canal for designing canal discharge. Discharges were measured at two cross-sections
 of the D-canal at a distance of 300 meters
 approximately, and discharge to F-canal were
 measured at the same time if water issues
 were being made. The canals investigated
 were D-21 in Stage I, D-7 in Stage II, D-47
 in Stage III and D-3 in Stage IV.
 - v) Irrigation Water Delivery to D-canal in Minipe Area

The discharges through the Turnout on main canal were measured a further four times during the field work to estimate amount of water issued. Measurement was executed in the following cases, considering the rotational issue of irrigation water from main canal:

Case 1, Turnout gates were opened in Stages I, II, III, IV

Case 2, - do - in Stages I, II, IV

Case 3, Turnout gates were opened in Stages I, III, IV

Case 4, - do - in Stages III, IV

Conditions of D-canal selection were:

- i) More than 50 ha of irrigable area
- ii) Easy for measurement of water velocity

The number of D-canals selected are as follows:

Stage I : D12, D16, D21, D25, D31, D34, D45, D47

Stage II : D4, D7, D11, D17, D25, D27A, D30, D31, D32

Stage III : D43, D47, D57

Stage IV : D1, D2, D3, FC76

- vi) System Loss Survey in Nagadeepa Area
 No survey on System Loss in Nanadeepa Area
 has been done, since no water was issued
 during the period of the Teams visit.
- (d) Deterioration Survey

The investigations on irrigation facilities were executed to check number, location, dimension, magnitude of deterioration, defects and problems that had occurred due to deterioration, the rehabilitation efficiency expected on following items:

Longitudinal and Cross-section survey of main canal

The Minipe Area 75 km
The Nagadeepa Area 20 km

- Inventory Survey of Facilities

The Minipe Area

Main Canal

75 km

D-canal (7 Numbers) 16 km

F-canal (93 Numbers) 43 km

- Nagadeepa Area

Main & Branch Canal

20 km

D-canal (2 Numbers)

5 km

F-canal (33 Numbers)

12 km

- Data was collected at the following office:

Irrigation Department (I/D) Head Office

Kandy D.D. Office

Hasalaka I.E. Office

Mapakada I.E. Office

Project Manager Office:

Morayaya

Mohiyangana

- Discharge Survey of Main Canal
- Discharge Survey of D-canal
- Functional inspection of irrigation facilities and leakage from the facilities

Present condition of facilities was graded to four rank with the magnitude of deterioration as follows:

Rank

Condition

- A Good condition No deterioration
 - No serious problems will occur within 10 years
 - No defect
 - No need for rehabilitation

Rank

Condition

- B Some parts are bad partly deteriorated
 - Need partial repair
 - No problems at present but no guarantee in future
 - Small defect
 - C Deteriorated. In Need of entire rehabilitation
- Defects to be corrected
 - D No functioning Deteriorated seriously
 - Need reconstruction or replacement entirely
 - Need urgent repairs entirely

1.2.4 Agricultural Survey

We have already indicated in the previous section the basic concept in terms of which this study has been undertaken.

The whole spectrum of functions and activities extending from land use to farm incomes had to be reviewed. They included various aspects of agriculture such as the cropping pattern, crops cultivated, diseases and pests afflicting paddy, factors affecting paddy yields, animal power and mechanization, use of fertilizer and other inputs, credit, marketing and processing prices of agricultural commodities etc. We also reviewed the data relating to agriculture which we had collected in Phase I.

Again, the agricultural survey involved a great deal of personal contact with both government officials and farmers. Agriculture and, in particular, paddy cultivation has been accorded top priority by Government. Consequently there are several governmental institutions concerned with agriculture in settlement schemes.

Firstly, there are the Colonization Officers and Field Instructors belonging to the Land Commissioner's Department. Then we have the staff of the Department of Agrarian Services such as the Divisional Officers and the Cultivation Officers who have a big role to play in agricultural production in settlement Schemes. The Agriculture Department too have their own staff in the field i.e. the Agricultural Officers and under their control the Range Agricultural Instructors and under them the K.V.S.S. (the agricultural extension workers) who in fact maintain contact with the farmers at the field level.

Most of these officers are, however, located at the Agrarian Services Centres, of which there are two in Stages I/II of the Minipe Scheme (Morayaya and Ulpothagama) and two in Minipe Stages III/IV (Hettipola and Handungamuwa) and one at Ridimaliyadda in the Nagadeepa Scheme. The team met with officials of the Departments concerned as well as with farmers and obtained useful information from them relating to the various aspects of agricultural production in the respective areas.

In-depth investigation into the several aspects of agriculture were conducted by the Team in the six Sample Areas in Minipe and the two Sample Areas in Nagadeepa: (see also para 3.1.2).

The team also visited, and obtained information and advice from the staff of, the three Kachcheries (Kandy, Matale and Badulla), the Offices of the Irrigation Department, the Co-operative Development Department, the Central Agricultural Research Station at Peradeniya, the Agricultural Research Station at Maha Illupalama, and the Centre Rice Breeding Station at Batalagoda. We also visited the Branches of the State Banks, the Co-operatives and the Regional, and local, offices of the Paddy Marketing Board and also the Range Veterinary Surgeons' offices.

As indicated, we considered the several aspects involved in agricultural development in the final analysis as the components of an integrated whole within the framework of the overall developmental plans of government for the whole island in relating to all aspects of economic development and not merely in relation to agricultural development in these two Areas alone.

1.2.5 Livestock Survey

The Team met with the field staff of the respective Kachcheries, the Department of Agrarian Services, the Department of Agriculture and the Department of Animal Production and Health. We also interviewed several farmers in both segments of the Minipe Scheme, (Stages I & II and Stages III & IV respectively), as well as in the Nagadeepa Scheme to obtain information at first hand both in relation to the present position relating to crop agriculture and livestock keeping and the interest the farmers themselves had in any future plans for livestock development in these two Schemes.

The team also met key officials of the Kachcheries and the Government institutions intimately connected with the promotion of livestock development in Sri Lanka. These institutions included the Department of Animal Production and Health, the National Livestock Development Board, the Mahaweli Authority of Sri Lanka's Livestock and Dairy Development Programmes and the Ministry of Rural Industrial Development.

We also obtained from these Governmental authorities the necessary data and had recourse to several studies on the subject of livestock development in Sri Lanka.

1.2.6 Road Survey

The condition of maintenance of all roads, (i.e. main roads, the canal operation and maintenance roads and the

village roads) was evaluated by traversing the roads by vehicle. In the case of sites where the roads were in a poor condition, road width and reservation area for the roads were investigated on foot. Highlands along the Mahaweli River were investigated to determine the feasibility of the construction of a new road and the connection of the proposed road with exisitng roads.

Mahaweli System C area was investigated to evaluate the usefulness of a new bridge across the Mahaweli River and select the location of the bridge. Only two roads, the Minipe Bund Road and the Hettipola-Matale road, link Stages III and IV with neighbouring areas. The condition of the Hettipola road was checked by traversing by vehicle. A new road is under construction as a part of the Integrated Rural Development Project (IRDP) in Stages III and IV. The route was verified on the ground.

A traffic survey was carried out to evaluate the traffic situation in the Minipe Scheme. Enumeration was made at four locations, i.e. Handaganawa in Stage I, Weragama at T junction, Hasalaka junction and Hettipola T junction because the number of roads which link the Scheme to the outside world is limited due to topographical conditions.

The enumeration was carried out at 11 points on the four locations from 06.00 hours through 19.00 hours on 25th July 1985 avoiding the Friday when there is market fair at Mahiyangana. Enumeration time was restricted up to 19.00 hours because preliminary survey showed that traffic would reduce quickly at nightfall due to the difficulty of negotiating the Hasalaka - Kandy road and the Hettipola - Matale road by night.

The survey was carried out in respect of government buses, private buses, trucks, cars and motorcycles. A survey sheet, as in Format at Table 1.2.3 was used to evaluate hour by hour fluctuation. The Enumerators were labourers selected two days in advance of the day of at the start of the survey

Table 1.2.	3 TRAFFIC	SURVEY FORM	
Tantin		Paula	

Time	Bus	le fatters nest næte Grif i Helle planske	Truck	Car	Motorbike	Bicycle
	Big	Mini				
6:00 - 7:00						80.00
7:00 - 8:00						
8:00 - 9:00						
9:00 - 10:00						
10:00 - 11:00						
11:00 - 12:00						i
12:00 - 13:00						
13:00 - 14:00						
14:00 - 15:00						
15:00 - 16:00						
16:00 - 17:00						
17:00 - 18:00						
18:00 - 19:00						

at each locations to monitor progress. The survey sheets were collected at the end of the same day.

1.2.7 Domestic Water Survey

The Minipe Scheme is located on a long and narrow strip of land along the Minipe main canal, 74.2 km. It was not possible to carry out a detailed survey in both Schemes, Minipe and Nagadeepa. A detailed field survey, however, was conducted in the sample areas selected for the irrigation agricultural, and socio-economic, surveys, to facilitate evaluation of those factors.

The study of procurement and use of water for domestic purposes was done by interview of villagers in the sample areas. At the same time, data on fluctuation of ground water levels were collected because the features likely to be most relevant include climate, topography and water discharge in the canals.

Improvement of public health is the strongest, and most frequently advanced, argument for expenditure on domestic water supply. Initially, a school was selected to obtain information on the condition of health of the children. Physical examination, however, could not be carried out in either Area due to lack of a doctor. Information on health conditions was also obtained by interviewing the staff and patients at four hospitals and a dispensary in the Minipe Scheme, and from a dispensary in the Nagadeepa Scheme.

Water quality was evaluated, samples taken from the Minipe main canal and from wells existing in the sample areas being used for the purpose. The water samples were taken at several points along the Minipe main canal to evaluate the effect of water travel through the Canal on 10th July, 1985. Fluctuations of quality in one day were measured at the Anicut at Hasalaka and at the 72 km point of the main canal. Existing water distribution system was investigated in the Minipe Scheme. Information was also collected on administration, water quality control method and amount of supply.

ANNEX 2 CLIMATE CONDITIONS AND WATER RESOURCES

2 CL	IMATE CONDITIONS AND WATER RESOURCES	II	ę~	. 1
2.	l Climate Conditions	II.	p-4]
2.	2 Water Resources (Minipe Scheme)	ΙΙ	bas	9
	2.2.1 Discharge Analysis	ΙÏ	=4	9
	2.2.2 Heen Ganga Dam	II		9
	2.2.3 Existing Tanks	II		14
2	2 Water Resources (Nagadeepa Scheme)	II		20

2. CLIMATE CONDITIONS AND WATER RESOURCES

2.1 CLIMATE CONDITIONS

Meteorological data, collected during the study, are shown in Table 2.1.1 through Table 2.1.14.

Table 2.1.1 MONTHLY MEAN MAXIMUM TEMPERATURE AT GIRANDRUKOTTE Unit: Centigrade

Year JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC Mean 1976 34.1 36.9 38.0 36.6 36.4 37.3 35.0 32.0 29.6 -1977 30.2 30.7 32.5 35.6 34.5 36.2 37.4 37.1 37.2 33.7 33.8 30.6 34.1 1978 31.4 32.2 33.0 35.2 35.5 35.3 34.8 35.4 34.9 32.5 30.4 28.1 33.2 29.9 31.4 33.1 36.0 35.2 36.4 35.2 35.4 31.8 31.9 30.1 28.1 32.9 1979 29.1 32.1 33.9 33.2 35.8 36.1 36.2 36.7 37.3 33.3 31.7 30.8 33.8 1980 1981 31.0 31.1 33.6 35.2 36.0 33.4 35.7 35.7 32.6 32.0 31.3 30.1 33.1 1982 30.1 33.3 34.9 35.4 35.5 36.7 36.7 35.8 36.6 32.4 30.0 28.5 33.8 1983 29.6 33.3 36.2 37.6 37.3 37.8 37.4 37.1 35.2 34.6 31.9 29.2 34.8 1984 29.2 29.4 32.3 33.0 35.5 35.8 - -1985 28.8 30.0 32.6 33.8 34.9 33.5 29.9 31.5 33.6 34.9 35.7 35.9 36.3 36.2 35.3 33.2 31.3 29.4 33.6

Table 2.1.2 MONTHLY MEAN MINIMUM TEMPERATURE AT GIRANDRUKOTTE Unit: Centigrade

 Year
 JAN
 FEB
 MAR
 APR
 MAY
 JUN
 JUL
 AUG
 SEP
 OCT
 NOV
 DEC
 Mean

 1976
 21.8
 23.9
 23.7
 22.1
 21.4
 21.2
 19.6
 22.7
 20.5

 1977
 22.5
 23.0
 22.4
 22.9
 21.8
 19.7
 18.3
 24.1
 23.3
 21.7
 22.0
 20.5
 21.9

 1978
 21.5
 19.9
 21.8
 24.3
 24.6
 23.3
 20.9
 23.8
 22.1
 22.2
 21.5
 21.0
 22.2

 1979
 21.0
 20.9
 20.6
 21.0
 21.1
 21.3
 21.6
 22.6
 22.2
 21.5
 21.1
 20.7
 21.3

 1980
 19.3
 18.8
 18.9
 21.1
 20.9
 19.4
 20.7
 22.2
 23.3
 23.1
 22.4
 21.4
 21.0

 1981
 20.1
 18.5
 21.3
 21.6

Table 2.1.3 MONTHLY MEAN RELATIVE HUMIDITY AT GIRANDRUKOTTE
Unit: Percent

Year	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Mean
1976		-	-	74	-		-63	58	56	67	80	84	-
1977	73	82	77	73	73	58	61	63	59	79	80	86	72
1978	80	80	78	69	70	60	57	53	54	70	76	85	69
1979	. 78	77	70	66	63	60	55	52	71	76	83	86	70
1980	79	66	65	73	67	55	50	50	55	70	78	75	65
1981	74	₹ 73	70	71	72	59	65	63	76	79	83	86	73
1982	79	70	72	75	78	62	57	58	60	90	90	89	7.3
1983	85	77	70	71	70	59	58	58	62	74	78	91	71
1984	90	91	81	83	75	63	=	. · · · ·	73	73	87	80	-
1985	87	84	81	78	72	64	,				s in the		i, F
Mean	81	7.8	74	73	71	60	58	57	63	75	82	85	71

Table 2.1.4 MONTHLY MEAN EVAPORATION AT GIRANDRUKOTTE
Unit: mm/day

JUL AUG SEP OCT NOV DEC MAY JUN Mean Year JAN MAR APR 6.3 3.3 1976 5.0 6.4 6.5 4.6 4.9 4.8 3.9 1977 3.2 5.7 4.7 5.6 6.3 2.8 4.0 2.1 4.00 3.3 3.2 3.3 3.8 1978 5.2 4.7 6.4 6.2 7.5 6.4 4.9 4.2 2,7 5.00 3.3 3.8 4.7 7.7 3.4 3.4 3.2 3.9 5.00 1979 5.5 7.8 7.6 3.4 4.3 4.7 5.1 1.6 0.6 4.84 1980 4.8 5,1 6.1 8.3 6.5 6.6 4.4 3.8 5.5 4.8 1981 3.0 3.9 5.1 4.7 5.7 5.9 6.0 6,5 4.6 6.0 7.5 6.8 6.8 5.1 3.2 1982 3.3 5.3 5.6 5.5 4.1 6.8 3.7 3.7 3.5 5.6 3.8 4.0 4:1 2.9 1983 2.8 3.8 5.8 2.7 4.0 3.9 2.9 2.9 1984 3.8 3.0 2.8 2.5 1985 3.1 2.4 2.3 2.9 2.7 2.8 6.1 5.3 4.2 3.3 3.8 4:3 5.6 6.4 Mean

Table 2.1.5 MONTHLY MEAN SUNSHINE HOURS AT GIRANDRUKOTTE
Unit: hrs/day

Year	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Mean
1976		-		7.9	8.9	8.3	7.4	6.7	7.6	6.0	4.2	3.4	-
1977	6.3	4.9	5.7	7.0	6.1	7.1	4.0	6.9	6.0	4.4	4.3	2.5	5.4
1978	4.5	5.9	6.7	7.0	6.5	6.0	6.4	6.2	6.3	6.4	5.8	3.6	5.9
1979	5.0	6.8	8.0	8.3	8.2	8.0	7.9	7.8	6.0	6.8	3.5	2.4	6.6
1980	4.9	7.6	8.3	6.1	7.3	6.6	6.8	6.1	7.1	5.9	4.7	4.0	6.3
1981	6.4	7.2	7.6	6.4	_	p -4	_	6.1	9.0	5.0	5.6	4.1	
1982	4.9	8.2	6.6	7.3	5.9	5.5	6.5	6.6	6.2	5.3	3.1	2.9	5.8
1983	4.8	9.1	8.8	7.8	8.0	7.6	6.9	5.9	6.6	7.3	5.2	1.5	6.6
1984	2.0	2.9	6.8	4.9	8.7	6.7	خوا	-	6.0	6.8	2.8	3.9	7
1985	4.2	5.2	7.2	8.2	6.6	5.7							+
Mean	4.8	6,4	7.3	7.1	7.4	6.8	6.6	6.5	6.8	6.0	4.4	3.1	6.1

Table 2.1.6 MONTHLY MEAN WIND VELOCITY AT GIRANDRUKOTTE Unit: km/hr

4 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4.0				16 1 2 2		5.0 (4.0)							
Year	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	ИОЛ	DEC	Mean	
1976	· -	_	:	2.08	2.54	3.15	4.99		3.29	4.10	2.68	2.34		
1977	2.19	2.11	1.99	2.01	2.18	4.01	4.17	4.10	4.38	2,02	1.97	2.23	2.78	
1978	2.02	2.27	2.17	2.44	2.77	5.30	5.28	5.40	4.21	2.66	3.45	2.24	3.35	
1979	2.17	2.19	2.23	2.35	2.83	6.34	5.72	5.42	3.36	2.81	2.43	2.41	3.36	
1980	3.34	2.91	2.68	2.40	2.19	4.03	5.97	4.34	3.52	2.76	2.33	2.25	3.23	
1981	2.26	2.18	2.70	2.84	1.68	5.82	4.73	5.47	3.30	3.36	3.66	2.87	3.41	
1982	2.68	3.33	3.42	3,35	3.25	5.21	6.09	5.50	5.82	2.88	3.02	3.69	4.02	
1983	3.03	3.13	3.85	4.46	3.99	3.94	5.24	5.28	5.20	4.92	3.90	3.43	4.20	
1984	3.78	2.87	2.40	2.16	2.33	4.06	_		2.53	2.39	2.26	2.26	<u></u>	
1985	1.91	1.68	1.88	1.63	2.44	3.24							jee	
Mean	2.60	2.52	2.59	2.57	2.62	4.51	5.27	5.07	3.96	3.10	2.86	2.64	3.36	

Table 2.1.7 MONTHLY RAINFALL AT GIRANDRUKOTTE

									U	nit :	mm			Şeriya Şeriya	
	YEAR	JAN	FEB	HAR	APR	HAY	JUN	JUL	AUG	SEP	ост	юу	DEC	TOTAL	
٠,	1976				124.5	21.6	0.0	91.4	81.7	9.0	50.5	193.4	365.6***		١.
	1977	61.7	118.4	167.1	150.7	70.7	4.7	49.0	12.4			505.1		2262.9	٠.
	1978	155.5	173.8	117.2	214.7	79.8	1.2			51.0	318.7		649.1	2083.1	
	1979	201.7	80.8	147.5	115.7	36.2	7.0						411.6	2252.6	
	1980	76.8	0.0	101.2	241.7	40.2	36.5	0.0	43.0			47.000	145.6	1498.6	
	1981	154.0	276.1	68.3	75.0	193.4	1.4	166.0	39.6	105.6		194.3		1659.1	Ċ
	1982	11.9	0.0	125.5	52.9	113.1	3.0	17.5		70.5	257.4		606.1	1685.7	
	1983	112.0	0.0	0.0	17.5	39.5	11.7	85.7	0.0		387.5		760.4	1672.0	٠
	1904	637.7	592.5	566.8	104.0	23.7	0.0	156.8		298.1		331.5		2987.5	
	1985	331.2	160.5	88.5	100.2	109.8	16.4							*****	
ŀ	1EAN	193.6	155.8	153.6	119.7	72.8	8.2	75.8	38.9	126.1	255.2	353.3	430.8		

Table 2.1.8 MONTHLY RAINFALL AT ARAWA

				-				Uni	- it :	mm			at the second
11.	9 g %		1,1					011.		mm .		Santa Santa	
YEAR	JAN	FEB	HAR	APR	HAY	JUN	JUL	AUG	SEP	ост	VOM	OEC	TOTAL
1925	*****					-				·		256.3**	****
1926	327.1	31.7	87.4	50.8	236.5	0.0	0.0	60.4	19.6	119.9	321.6	463.5	1718.5
1927	1060.2	173.5	534.9	42.9	76.7	18.5	12.4	75.7	88.1	120.4	631.7	590.8	3425.8
1928	514.1	84.3	53.6	266.9	96.8	0.0	77.0	0.0	8.1	249.9		344.4	2162.4
1929	17.8 520.2	100.6	174.7	220.5	144.3	9.9	0.0	15.2	269.2	36.1	348.5	516.1	1854.9
1931	702.8	56.4 153.2	123.4 16.5	176.8	201.7	53.8	0.0	59.2	57.9	409.9	375.7		2207.0
1932	208.5	121.2	169.7	207.0	36.6	0.0	0.0	29.7	123.7	127.2	631.9	699.0	2727.6
1933	1364.9	124.5	54.9	11.4 51.3	51.6 184.7	45.2	0.0	346.7	31.7	279.4	217.7		
1934	244.1	152.9	79.5	125.0	54.4	0.0	41.9	106.2		196.3	251.7	83.6	2486.4
1935	408.2	105.9		105.4	43.9	15.5 37.3	0.0	0.0	2.0	278.6	232.7	114.7	1801.2
1936	210.0	43.2	171.4	21.6	76.2	27.2	0.0 4.3	49.5 42.4		181.6	336.5	626.1	2039.5
1937	632.4	209.3	98.5	109.5	7.4	ð.0	9.7	89.9	125.5	2.665	240.0	829.3	2057.3
1938	432.8	309.1	129.5	144.5	23.9	0.0	153.2	58.2	93.0 139.9	86.1	337.6 221.7	69.3	1742.7
1939	235.4	102.1	55.4	375.4	66.5	11.2	3.3	90.4		69.8	250.4	622.0	2304.6
1940	71.1	213.1	5.6	146.0	224.0	4.8	0.0	0.0	50.5	203.7	278.1	477.8	1922.1
1941	608.1	346.4	450.0	260.1	40.6	4.1		12.7	92.5 76.7	197.9	385.3	568.4 218.9	1801.5 2737.9
1942	369.0	the standard for	123.9	110.2	40.9	3.8	12.7	52.3	84.6	329.7 167.9	191.5	580.1	1961.9
1943	145.8	374.6		119.1		0.0	17.0	5.1	81.0	148.8	284.2	545.6	1825.9
1944	205.5	554.5	103.6	147.3	107.0	.13.5	1.3	117.3	115.1	162.3	513.6	317.7	2360.9
1945	116.6		240.3	83.3	38.9	9.9	102.6	12.7	0.0	231.6	436.4	172.5	1449.4
1946	281.4	348.0	250.2	168.9	29.7		4.8	46.2	84.0	198.6	328.9	623.3	2365.0
1947	527.8	46.0	201.7		78.0	12.7	58.7	97.8	0.0	182.9	109.7	398.3	1911.7
1948	307.1	19.0	145.5		15.2		51.8	and the second second	66.0		245.9	678.7	1965.1
1949	430.3	160.5		159.8	5.6	0.0	29.5	202.2	18.3	140.5	580.6	809.0	2659.2
1950	366.3	125.2	226.6	59.2	: 114.0	0.0	11.7	48.8	45.0	186.4	54.4	201.4	1439.0
1951	1041.1	316.5	204.7	163.8	105.9	15.0	4.3	67.6	135.4	169.4		695.4	3307.7
1952	684.8	122.7	111.0	140.7	127.0		45.5		120.6	112.3	277.4	353.0	2098.8
1953	497.1	216.1	163.3	71.6	0.0	3,8	95.8	0.0	66.5	242.8	142.0		2167.0
1954	407.7	243.8				0.0		57.1 49.5				614.7	
1955	857.0			143.5	41.9	0.0	0.0		27.9	225.8	364.0	591.8	2644.0
1956	210.8	563.6 76.2	175.8 59.9	104.4	0.0	8.9 251.5	27.7 3.0	173.0 29.2	228.6 3.3	49.5 168.1	105.2	261.9 505.2	2090.5
1957	384.3		29.7	66.5	59.2	8.6		27.9			724.6	1418.8	3330.6
1958	425.7	132.8	404.4	178.0	74.7	10.4	9.7 3.6	56.6	81.3 47.8	143.3 128.3	278.6	650.0	2370.9
1959	338.8	268.0	30.5	246.4	141.2	37.8	37.8	9.7	53.8	361.7	430.0	356.3	2342.0
1960	531.6	807.9	30.2	296.4	76.5	0.0	130.0	2.5	101.3	187.2	184.7	201.7	2550.0
1961	372.3	316.5	222.2	1.593	19.0	10.2	0.0	2.0	143.0	201.9	653.5	658.9	2861.6
1962	469.6	153.7	303.0	132.8	81.8	0.0	0.0	106.2	2.5	208.3	230.6		2146.4
1963	676.4		67.3	131.1	95.8	16.5	17.6	100.2	152.1	283.7	504.7		*****
1964	628.9	588.0	205.2	27.2	47.0	0.0	102.6	0.0	97.5	150.1	239.3	427.7	2513.5
1965	184.4	419.1	98.3	238.0	143.8	0.0	0.0	159.5	34.5	229.6	523.2	548.1	
1966	443.5	113.8	213.1	231.4	0.0	0.0	24.4	78.5	62.0	326.4	230.4	364.2	2007.7
1967	424.2	353.8	109.7	29.0	27.9	28.4	0.0	0.0	112.5	206.2	643.4	347.7	2202.8
1968	185.0	36.8	300.7	29.5	42.9	33.0	3.6	0.0	50.8	216.4	372.3	524.2	1795.2
1969	429.0	202.7	10.4	175.3	23.4	9.0	55.4	152.6	41.4	190.2	104.9	683.2	2068.5
1970	415.3	357.6	4	1,5,5		******	33.4	136.0	71.9	170.6			*****
1EAH	442.6	225.5	150.5	143.0	72.5	15.7	26.3	60.8	74.7	196.2	350.5	492.2	2236.0

Table 2.1.9 MONTHLY RAINFALL AT HASALAKA

									Un	it:	mm		
1982 1983 1984	128.0 57.0 139.0 547.5	216.0 0.0 23.0 166.0	HAR 84.0 176.0 0.0 150.0 71.0	36.0 114.0 50.0 29.0	77.0 180.0 4.0	0.0 0.0 25.0 0.0	105.0 13.0 75.0 31.0	0.0 0.0 0.0	0.0 51.0 0.0	28.0 243.0 179.0	239.0	DEC 331.0 585.0 578.0 229.0	TOTAL 972.0 1725.0 1488.0 1648.0
1. 2	217.3	123.8	96.6	73.2	65.6	7.2	44.8	0.0	50.8	141.0	217.9	430.8	1458.3
	경기를 받는다. 기계기를										٠		
	Alfalia Januari												

Table 2.1.10 MONTHLY RAINFALL AT HEMBARAWA Unit: mm

YEAR	JAN FE8	HÜR	APR HAY	JUN	JUL AUS	. SED	ост	NOV	DEC TOTAL
1984	373.4 205.9	444.3 14	6.0 86.9	0.0	110.0 0.0	184.9	49.9 24	4.3 1	15.7********
	그림 그들은 사람들이 살아왔다.		Salada ar ar ar		100.4 0.0				建妆 C 菜 C
BCAU	2/3.4 3/1.8	274.5	3.1 62.1	5.5	100.4 0.0	184.7	49.9 24	4.3 1	15.7 1875 4

Table 2.1.11 MONTHLY RAINFALL AT MINIPE
Unit: mm

	Sept. 1	a yar		무리를 밝	Section 1		100	1.0	Onte	. i mu		250
YEAR	JAN	FED	HAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	VOV	DEC TOTAL
1936		المستقارة إنارا	145.8	337.8	40.9	21.6	3.3	5.6	77.2	224.8	93.2	847.6*******
1937	ala e e e co		80.0	97.8	9.1		15.0	135.6	79.2	129.3	237.2	196.84******
1938	470.4	358.1	187.7	198.4	33.8	6.6	102.9	28.4	113.5	67.1	118.4	584.2 2289.5
1939	151.9	68.6	65.5	368.3	57.7	27.4	4.1	120.1	86.9	230.1	340.9	374.1 1895.8
1940	52.6	348.5	31.0	135.6	263.4	23.9	4.8	0.0	50.5	115.3	157.2	471.7 1654.5
1941	612.6	388.1	79.2	154.9	81.3	0.0	0.0	1.0	80.0	279.6	295.9	348.7 2321.3
1942	375.7	97.3	95.0	193.3	36.8	0.0	2.3	45.7	58.4	343.9	263.6	576.6 2088.6
1943	234.9	320.5	20.3	244.3	168.4	0.0	0.0	0.0	81.8	93.5	255.0	923.8 2342.5
1944	398.3	667.0	281.9	232.9	11.2	0.0	0.0	47.2	110.5	387.8	556.2	399.0 3092.0
1945	43.4	0.0		, 	47.5	46.5	68.3	14.2	17.8	325.9	364.5	219.04******
1946	249.2	561.3	261.4	262.4	82.8	0.0	0.0	8.9	96.5	233.7	414.0	703.3 2873.5
1947	894.8	39.1	192.3	243.3	53.1	0.0	58.9	143 0	0.0	136.6	150.4	334.8 2246.3
1948	453.9	68.1	207.3	287.0	18.0	0.0	143.0	0.0	33.5	176.0	278.4	715.2 2380.4
1949	452.9	185.4	112.5	199.4	0.0	0.0	19.3	141.2	63.5	82.0	318.8	466.6 2041.6
1950	296.7	206.0	72.6	0.0	48.3	0.0	0.0	12.2	14.0	139.2	30.2	243.3 1062.5
1951	1007.1	267.2	80.8	187.4	156.2	0.0	0.0	264.1	98.8	124.5	325.4	497.1 3008.6
1952	741.1	193.5	136.6	189.0	58.9	0.0	66.6	0.0	64.0	19.6	430.6	305.3 2205.6
1953	477.5	270.8	145.5	88.1	0.0	0.0	128.5	24.4	74.4	175.8	271.8	663.7 2320.5
1954	492.7	- 97.8	168.4	156.5	10.2	0.0	49.5	41.9	40.6	441.7	145.8	555.2 2200.3
1955	913.3	476.7	324.6	133.1	8.9	0.0	0.0	119.6	152.9	145.0	177.0	383.5 2834.6
1956	375.4	74.7	101.6	113.3	1.0	92.5	7.9	63.5	0.0	112.0	626.6	453.4 2021.9
1957	127.8	131.1	37.1	135.1	34.8	6.9	18.8	2.3	76.5	146.3	689.3	1248.6 2656.6
1958	414.0	201.4	231.6	228,1	60.4	3.3	8.9	8.9	58.9	137.9	252.5	514.8 2120.7
1959	299.5	113.5	7.6	151.4	73.9	17.8	5.6	15.0	16.5	440.2	286.5	401.6 1829.1
1960	544.8	774.2	13.7	208.3	63.3	0.0	221.7	66.5	16.5	162.3	303.3	195.3 2589.9
1961	356.6	210.8	179.1	107.4		-	· · · · · · · · · · · · · · · · · · ·	0.0	59.7	181.1	579.9	835,6##########
1962	290.3	318.2	171.4	190.0	146.8	0.0	63.5	195.1	0.0	233.7	287.3	649.2 2545.5
1963	460.7	420.4	74.7	158.2	45.0	3.8	25.1	0.0	169.4	191.0	545.8	813.5 2907.6
1964	814.5	785.6	189.2	127.5	94.0	0.0	81.3	31.0	62.0	157.2	286.8	234.9 2864.0
1965	410.4	660.6	37.8	461.2	296.7	0.0	43.7	150.4	0.0	128.0	5.66	566.2 3441.2
1966	502.6	transfer of a	276.3	177,5	9.7	0.0	0.0	10.4	69.8	400.3	358.1	591.0H########
1967		(, <u>ज</u>			' ''' '			<u> </u>	· ·			
1968		16.5		·				• •				
1969	191.5	520.7	185.7	75.7	51.1	0.0	0.0	122.9	0.0	385.6	.91.7	748.3 2373.2
1970	755.6	691.9	0.0	29.7	61.0	0.0	0.0	0.0	43.4	75.9	495.8	602.5 2755.8
1971	535.7	53.8	0.0	143.5	28.2	2.5	64.5	0.0	131.3	428.2	242.6	3888888888
1972	101.6	62.0	8.4	42.4	17.5	0.0	0.0	869.2	753.6	622.3	867.6	*********
17/6	101.0	62.0	0.4	46.4	17.5	0.0	0.0	009.2	122.0	044.3	007.0	****
1EAN	439.5	292.4	123.6	178.3	64.4	7.7	35.5	76.8	81.5	219.8	337.3	535.9 2391.6

Table 2.1.12 MONTHLY RAINFALL AT HORABORAWEWA

			, see							Ţ	Jnit	: mm		
	YEAR 1909	JAN	FEB	HAR	APR	HAY	JUN	JUL	AUG	SEP	/:>. 0CY	HOV	DEC	TOTAL
100	1910	314.9	118.9	82.9	77.0	15.2	0.0	72.9	5.8	0.0	107.2	166.1	185.4** 223.5	1156.4
	1911 1912	167.6 38.1	05.3	5.8 9.4	2.5 211.3	50.4 87.9	25.3 22.9	30.5	17.8	22.9	223.3	546.3	626.8	1782.0
6 62	1913	1116.5	147.6	31.7	125.7	61.0	6.1	0.0	0.0	24.9	189.2 296.7	184.2	387.1 446.3	1138.2 2430.0
	1914 1915	313.9 384.8	63.5 63.8	82.5 241.3	61.5	30.1	0.0	0.0	2.01	138.4	217.2	250.7	626.6	1802.6
	1916	107.2	44.4	91.4	44.4	36.8	0.0	90.2	82.5	47.0 134.9	212.6 125.5	347.2	308.9	1606.4 1321.2
	1917	614.7	396.2	292.1	66.0	121.9	0.0	86.4	193.0	77.5	198.1	530.6	305.3	8.1665
	1918 1919	414.0 202.9	12.7 30.5	99.1 83.8	46.0 99.1	48.8 106.7	2.5	98.5	2.5	24.1 35.0	352.5 322.6	175.8 304.3	402.6 319.3	1676.6 1550.9
	1920	172.2	138.7	48.3	205.7	74.9	55.9	0.0	0.0	8.9	227.6	371.0	295.1	1599.1
	1921 1922 :	555.5 160.5	0.0 152.4	20.3	148.6	0.0 12.7	76.2	22.9	200.4	78.7	346.2	287.0	366.1	2121.9
	1923	506.2	0.0	101.6	45.7	48.3	8.9			.0.0 36.8	671.5 186.9	214.1 57.7	99.1 627.4**	1417.0
	1924 1925	300.7 374.9	81.8 132.1	120.0	39.1	73.7	0.0	0.0	0.0	21.6	226.3	213.9	887.7	1964.8
	1926	325.4	30.0	406.9	133.6	77.0 210.6	5.1 0.0	7.6	5.1 39.6	0.0 123.4	315.2 223.6	392.7 395.0	502.9 448.3	2353.1 1950.5
	1927	375.1	211.6	353.6	120.1	113.0	6.3	29.2	79.5	94.7	98.3	256.0	276.3	1983.9
	1928 1929	369.0 94.5	84.3 72.6	41.9 3.531	249.7 301.0	10.7 165.9	0.0	0.0	2.5 35.6	75.9 145.8	149.3 63.5	605.0 239.0	245.1	1996.0
. :	1930	370.3	159.0	47.2	91.2	80.3	19.8	0.0	35.3		332.5	195.3	562.6 64.3	1843.1
	1931 1932	378.4 100.3	74.7	28.7 151.6	237.7	72.1	7.1	0.0	8.6	29.7	157.7	427.2	463.0	1884.9
	1933	874.7	48.8	64.5	93.9	40.1 187.4	0.0	63.5	51.8 105.4	7.1 50.3	175.5	172.5 373.1	108.5 130.5	2036.8
	1934	337.0	204.5	174.5	176.8	55.9	44.4	0.0	0.0	25.4	192.0	194.3	348.5	1753.3
	1935 1936	320.5 430.0	146.0 288.0	137.4 300.7	100.1	33.5 70.1	18.5 0.0	0.0	63.5 41.7	109.5 90.2	169.7 52.1		788.4 537.4	2241.2 2135.3
	737	561.3	361.7	51.6	54.4	16.0	0.0	0.0	145.5	47.8	163.6	216.9	111.0	1732.0
	1938 1939	438.9 181.3	334.5 50.5	265.9	365.7	86.6 56.4	0.0 31.7	122.7	46.2 0.0	219.2	187.2	238.2	556.5 410.4	2662.4 1625.3
	1940	77.5	460.7	44.4	286.0	250.9	12.4	0.0	0.0	132.1	216.9	404.4	493.5	2378.8
	1941 - 1942	520.7 391.1	322.6	48.5 149.3	236.2	74.4 17.0	6.1	15.7	6.6 32.5	163.3 : 244.8	470.1 222.2	289.8 245.4	236.0 810.0	2383.9 2454.8
1	1943	135.4	259.1	149.3	74.2	225.3	0.0	0.0	0.0	19.3	127.8	211.8	507.2	1709.4
	1944 1945	325.6 28.4	565.4 3.8	233.2	133.9	232.7	0.0	46.7	116.3	106.2	479.8	407.4	271.5	2872.0
	1946	174.0	363.7	254.0	104.6 286.2	40.6	13.5	0.0	53.3	66.0	314.7 296.4	525.3 462.8	149.6 582.1	1458.6 2579.1
	1947	797.8	38.4	121.9	256.5	47.2	0.0	27.9	123.2	0.0	201.9	204.2	359.6	2178.6
	1948 1949	250.9	15.2 122.4	141.0	149.1	41.9	0.0	221.0 42.2	0.0	43.2	291.6 275.8	297,4 682.5	625.3 565.6	2033.4
	1950	234.9	110.5	92.7	37.6	90.7	0.0	7.6	26.7	38.1	141.0	207.8	253.5	1241.1
	1951 1952 :	1051.0 666.0	109.2 87.6	66.5 34.0	75.4 268.5	30.5 130.8	0.0	32.0 76.7	129.5 19.0	108.2	193.5 126.2	514.3 321.0	581.4 246.4	2891.5 2140.3
	1953	423.4	241.3	124.5	191.0	0.0	31.2	57.1	47.0	63.2	200.7	264.1	544.6	2188.1
	1954 : 1955	346.7 870.7	374.6	177.8	147.3	50.8	0.0	10.2	41.1	0.0	342.6	262.9	603.2	2357.2
	1956	288.5	81.0	106.9	179.3	12.7	82.8	0.0	69.3	110.2	69.8 190.2	172.5 651.5	284.0 456.4	2322.7 1998.5
	1957	376.2	281.2	16.5	33.5	33.0	6.3	32.8	8.6	88.6	301.7	1144.5	796.5	3119.4
	1958. 1959	415.5 244.8	152.4 84.1	210.6 55.6	199.9	43.2 220.7	5.8 24.9	8.4 3.3	45.2 71.1	45.5 97.0	55.6 414.0	345.2 447.3	503.4 683.2	2030.7 2551.5
	1960	568.9	843.0	9.55	259.3	143.8	0.0	151.4	25.4	13.7	247.4	362.4	173.5	2811.4
	1961 1962	515.9 393.9	195.1 174.2	194.3	343.1 244.3	54.6 174.5	6.3 4.3	14.2	5.3 339.0	52.8 46.5	197.9	603.7 275.3	560.8 338.3	2694.0
	1963	455.4	319.8	113.5	158.7	61.2	0.0	42.4	2.3	184.4	238.5	494.8	641.3	2712.3
	1964	507.2	419.3	159.0	70.4	79.2	3.8	112.8	104.4	37.3	110.2 305.8	185.2	411.5	2202.3
	1965 1966	208.5 358.1	513.8 96.5	255.3	231.4 81.0	65.0 44.2	10.2 12.2	1.5 3.3	229.9 84.1	0.0	323.6	454.9 356.9	412.2 307.6	2536.6 2034.3
	1967	275.6	299.2	130.0	54.6	11.2	49.8	2.6	4.1	54.6	251.5	749.0	379.0	2261.4
	1968 . 1969 -	287.5 362.7		290.3 35.8	88.1 253.2	8.6 43.9	6.1	10.9	182.1	26.7 120.6	365.5	200.1	342.6 704.6	1501.4 2381.6
	1970	354.6	532.9	105.2	143.0	85.1	4.3	2.5	21.1	64.3	40.1	288.3	290.8	1932.2
	1971 1972	357.6	<u> </u>	72.6			16.5	38.1			<u> </u>	427.7		******
	1973	134.1	448.8	75.2	69.1	38.6	58.4	59.9	10.7	95.2	183.4	530.3	621.5	2325.2
		3.0 225.0	139.4		176.5	109.5	6.1 11.9	38.6 147.6	26.9 49.5	46.2	52.3 67.1	85.3 194.8	522.2 317.0	1243.8 1659.7
			53.3	57.7		39.9	54.6	56.4		30.5	78.5	310.4	224.5	1425.2
	1977.	60.4	66.3	181.6	67.3	84.1	9.1	107.9	29.7	173.0	255.8	280.7	290.6	1601.5
	1978 1979	130.3		72.4		43.7 9.4	0.0 18.5	22.1	5.1 0.0	70.4	237.2 300.6	189.2 384.0	565.1 319.3	1460.7 1561.3
	1980	53.3	0.0	53.3	285.2	44.2	0.0	0.0	17.9	4.3	253.5	336.5	89.7	1134.0
		135.1	j. — :	107.2	76.5	127.2	0.0		2.5 28.4	17.8 49.7	171.2 288.3	302.8	317.0** 489.8	1652.1
	1983	22.6 236.7	3.0	0.0	36.6	75.4	11.7	89.4	2.5		262.6	264.7	708.9	1710.8
a tradici	1989	433,3	337.8	402.6	171.7	31.7	4.3	98.0		· 1/4		4. - 	Hi	****
HE	AH	343.1	177.6	122.4	144.7	72.1	11.2	36.2	48.7	63.8	220.8	328.8	418.6	1993.0
		e de la companya de La companya de la co		ing the	en de la companya de La companya de la co	e e	1 /	- 4						\$ ¹¹
						-	<u></u>							
				•			II -	- 6					* *	
					•								•	

Ta	ble	2.1	.13		MON'	ՐΗΓΑ	RAI	NFAL	L A		BONE Unit		nm		
1000 1001 1001 1001 1001 1001 1001 100	261.9 173.0 262.7 261.6 310.1 310.6 310.6 310.6 310.6 310.6 310.6 310.6 210.6	93.2 473.2 386.1 307.1 636.5 307.4 636.5 157.4 152.7 75.9 122.7 159.3 363.0 95.6 179.3 363.0 95.6 100.3	603-1 82:5 52:3 273:0 131:0 151:3 190:6 174:5 190:6 176:0 168:2 176:0 168:2 176:0 168:2 176:0 176:	626.6 702.0 306.6 235.6 237.0 240.7 490.5 374.5 112.0 324.6 490.5 112.0 324.6 112.0 324.6 112.0 324.6 112.0 324.6 112.0 324.6 112.0 324.6 112.0 324.6 112.0 324.6 112.0 324.6 112.0 324.6 112.0 324.6 112.0 324.6 112.0 324.6 112.0 324.6 112.0 324.6 112.0 324.6 112.0 324.6 112.0 324.6 112.0 326.6 112.0 326.6 112.0 326.6 106.0 10	100 8 524 9 524 9 525 9 512 6 525 9 67 3 136 6 133 6 67 3 135 6 67 3 135 6 67 3 137 6 67 3 137 6 67 3 137 6 67 3 137 6 67 3 138 6 122 9 137 7 135 6 122 9 123 9 127 7 133 6 125 3 151 9 127 7 138 9 137 7 138 9 137 7 138 9 137 7 138 9 137 7 138 9 138 9 137 7 138 9 13	366 6 122 123 123 123 123 123 123 123 123 123	108.2 78.7 109.5 199.5 52.8 222.2 224.1 96.5 93.7 71.9 93.7 71.9 321.0 257.8 121.0 257.8 105.1 49.3 70.6 70.6 70.6 70.6 70.6 70.6 70.6 70.6	293.2 92.2 170.9 237.2 100.3 41.9 118.4 237.2 371.1 68.3 224.3 76.7 86.5 76.7 76.7 369.6 174.7 369.6 174.7 186.5 255.0 186.5 26.5 26.5 26.5 26.5 26.5 26.5 26.5 2	123.7 271.3 271.3 271.3 271.3 271.3 26.7 25.7 26.7 25.3 27.6 172.3 28.2 29.7 20.2 20.2 20.2 20.2 20.7 20.2 20.7 20.3	073 440, 354, 474, 474, 474, 474, 474, 474, 474, 4	NOV 458.9 4 402.5 349.0 169.4 400.1 741.5 341.9 422.5 341.9 422.5 367.1 741.1 467.1 472.5 467.1 472.5 467.1 472.5 467.1 472.5 467.1 472.5 467.1 472.5 467.1 472.5 467.1 472.5 467.1 472.5 467.5 472.5	05.3 97.3 38.4 3 3 3 4 4 4 5 3 3 4 4 4 5 3 4 4 6 6 6 5 6 7 3 3 5 4 7 6 4 1 8 1 8 5 6 5 6 1 8 1 8 5 6 5 6 1 8 1 8 5 6 5 6 1 8 1 8 5 6 5 6 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1	701AL 4145.2 3435.1 3179.6 3744.7 3131.9 3256.3 3259.5 5272.3 3556.5 3272.3 3556.5 3272.3 3556.5 3272.3 3372.8 4404.9 3342.7 3562.6 4176.6 2799.1 3142.2 3142.6 4080.2 3093.2 4403.1 306.8 3043.1 306.8 3043.1 306.8 3043.1 306.8 3043.1 306.8 3070.4 3070.7 3265.1 4080.2 3273.2 4183.7 3265.3 3265.4 3265.6 3276.7 3276.7 3276.7 3276.7 3276.8 3276.8 3276.8 3276.9 3276.9 3276.9 3276.9 3276.1 3276.1 3276.1 3276.1 3276.1 3276.1 3276.1 3276.1 3276.1 3276.2 3276.3 3276.1 3276.3 3276.1 3276.3 3276.1 3276.3 3276.1 3276.3 3276.1 3276.3 3276.1 3276.3 3276.1 3276.3 3276.1 3276.3 3276.1 3276.3 3276.1 3276.1 3276.3 3276.1 3276.3 3276.1 3276.3 3276.1 3276.3 3276.1 3276.3 3276.1 3276.3 3276.5 3276.5 3276.7 3276.7		
1785 HEAN	419.3	316.2 247.1	123.4	277.4	264.5 180.3	466.9 164.9	163.2	153.4	183.1	424.9	478.0	* 648.1	3625.4		

	÷				e e e e e e e e e e e e e e e e e e e
				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
and the second s	MONTHLY RAI	NFALL AT MAPAKA	DAWEWA	·	

						2			Ur	nit :	nm		
YEAR 1909	JAN	FEB	HAR	APR .	HAY	JUN	JUL	AUG	SEP	007	HOV 84.1	DEC	JATOT HERHERE
1910 1911	354.6	19.8 8.4	7.6	14.2	6.1	0.5	2.5	9.7	0.0 34.5	27.7 150.6	107.7	239.0	789.4
1912	61.0	0.0	9.1	103.9	108.5	3.0	0.0	5.6	30.7	131.6	352.8	566.7	1856.1 1372.9
1913 1914	1387.5 581.9	111.5 30.5	25.9 71.6	49.0 27.9	9.1	5.6 0.0	0.0	0.0 1.5	17.8	97.0 230.4	130.6 705.1		2657.1 2623.5
1915	684.2 160.5	24.6 11.4	447.0 21.1	151.9 110.7	12.7 103.4	20.1	74.4	34.5 57.1	13.2	61.0 72.4	35.1	2 2 2 2 2 2	1354.7
1917 1918	523.2	234.9	339.1	65.0	43.2	0.0	80.0	69.1	145.3	374.6	301.7	211.1	2467.2
1919 1920	<u> </u>				-							****	######## #######
1921	-	أأحضروا ال		الأشهيا				-				+ *	****
1923			=		-				managa Marama				*****
1924 1925	<u>-</u> -	=	Ξ.		<u> </u>						Santana Santana		******** *********
1926 1927	401.3	252.0	233.7	39.4	14.5	0.0	2.5	24.1	42.7	67.3	25.4		********
1928 1929	367.3	33.0	7.9.	127.0	6.9	0.0	6.3	0.0	2.8	11.7	122.7	119.4	805.0
1930 1931	192.0	21.3	39.4	143.8	11.7	0.0	0.0	0.0	30.7	52.8	377.7		1341.1
1932	110.0	71.1 85.1	68.1	21.8	14.5	8.4	1.5	47.5	10.2	85.3	121.9	143.8	704.1
1934	1001.2 285.5	140.5	77.5 78.7	91.7	130.3 120.4	3.3	0.0	76.7	34.3 15.5	78.7 103.6	265.7 49.0	89.2 375.7	1674.7 1263.9
1936	404.9 578.8	131.8 256.8	312.9	82.8 208.5	17.5 15.7	10.2 0.0	0.0	10.4	23.9		355.6 362.7	560.8 505.7	1762.5 2779.3
1937 1938	538.2 481.6	240.0 271.8	54.4 333.2	87.6 173.5	5.3 0.0	0.0	0.0 25.9	35.1 0.0	43.7 128.0	193.0 209.8	181.3	129.5 680.4	1508.1 2365.7
- 1939 1940	271.8	47.0 350.0	105.9 20.1	326.9 190.2	0.0 201.9	18.8 15.2	0.0	28.4	39.1 28.4	127.0 127.5	330.2 228.3	357.9 297.2	1653.0 1657.2
1941 1942	499.1 285.5	224.8 79.2	0.0 145.8	48.3 84.3	59.4 71.4	0.0 57.7	0.0	0.0 35.1	43.7 84.6	164.6 74.7	185.4	208.0	1433.3 1343.2
1943	76.2 211.8	135.9	0.0 69.1	43.2 114.8	0.0	0.0	0.0	0.0	21.1	59.7	222.2	517.9	1076.2
1945	0.0	0.0	217.2	123.2	0.0	0.0	0.0 31.5	18.8	4.1	186.7 154.7	481.1	289.0 112.3	2113.7 1083.7
1946 1947	157.5 464.8	304.3 20.8	177.8 107.4	254.2 169.9	43.9	0.0	0.0	14.7 40.9	0.0	168.6	253.2 173.5	376.7 340.1	1749.4 1486.0
1948 1949	213.4	14.5 75.4	120.1 26.2	147.8	42.2 7.6	0.0	192.8 36.6	0.0 114.3	0.0 22.4	272.3 192.8	294.4	522.5 635.0	1820.0 1960.0
1950 1951	223.5 672.1	96.3 79.2	77.2 61.0	8.4	35.1 26.9	0.0	0.0 39.6	8.1 75.9	24.9 72.9	109.7 128.3	166.4	163.8	913.4 2104.0
1952	637.8	76.2	30.5	232.9	85.8	0.0	18.5	0.0	152.9	8.1	179.8	225.3	1647.8
1953 1954	392.2 240.8	238.2 338.1	103.6	115.1	0.0 43,2	0.0	45.7 12.7	0.0 4.8	36.1 0.0	134.1 81.8	198.1 142.7	480.9 372.9	1752.0 1471.9
1955 1956	388.9 218.2	290.8 78.0	107.2	110.7 50.5	0.0	0.0 182.4	0.0 21.3	111.5 23.6	175.3	74.4 284.0	120.1 459.2	166.1 462.0	1545.0
1957 1958	240.5 349.2	306.6 102.6	57.1 264.9	85.3 197.9	56.1 63.0	6.3 2.5	38.9 0.0	2.3 36.8	129.0 90.2	250.7 129.8	496.0	1039.3	2708.1 1934.6
1959 1960	185.2 466.6	75.9 741.4	50.8 0.0	170.7 84.1	152.6	34.3	5.1 139.2	23.1	33.0 20.3	242.1 140.5	400.3	423.1 197.6	1796.2 2118.3
1961	342.4	145.0	105.9	187.4	57.7	0.0	0.0	0.0 74.2	56.6	150.1 148.1	605.8	550.7 277.9	2201.6 1578.8
1963	279.6 348.2	232.7 323.6	76.7 91.4	275.8 92.2	18.5 87.6	4.3	1.3 3.6	8.9	22.1 52.3	. , , , , , , , , , , , , , , , , ,	537.2	604.244	***
1964 1965	230.4 193.0	517.4	319.5 56.4	41.9 95.2	76.7 98.3	13.2 0.0	74.2 26.9	82.5	27.4	111.2		317.0 448.8	1930.0 2193.6
1966 1967	344.9 154:4	116.1 263.4	353.8 62.0	126.2 35.3	36.1 32.8	4.6 35.6	0.0	149.9	59.4 56.1	192.0 173.0	260.3	256.0 320.8	1899.3 1545.8
1968	181.9 323.3	6.9 188.2	181.9		22.1 11.9	51.1 0.0	0.0 14.2	26.4 89.4	69.8 45.5	107.2 322.6	223.0 63.5	294.9	1208.1 1820.8
	411.0 495.5	509.0 78.0	56.9 105.2	72.1 96.5	33.0	0.0	0.0 39.4	61.0	70.1	55.1 150.9	366.3		********
1972	,,,,,	0.0	10.2		5.6					115.3	. (<u>==</u> ;	#1	*****
	0.0			14.7	98.5 72.9	38.1	12.7	31.7	68.6	30.1	460.5	524.0	1606.0
1975 1976	258.6 561.1	118.1 45.2	24,4	94.7	60.2	84.6	17.5	93.7 58.7	318.2 15.0	158.5 102.1	218.9 370.8	273.5	1707.8
1977 1978	67.3 174.2	64.8 237.2	61.3 50.3	80.0 98.8	66.8	0.0	76.7 53.8	14.5	131.1 7.6	392.9 212.6	295.5	520.9 539.5	1791.7
1979	115.6	20.1	26.7 61.0	73.2 113.0	0.0 79.0	0.0	0.0 3.0	0.0 25.5	87.6 15.0	177.3 205.5	219.5		**************************************
1980 1981	133.0 62.0	0.0 120.0	4.0	18.5	37.5				-	* ************************************		K1	*********
1982 1983	سند. سنده	===											******
1984 1985	369.3	211.9	146.3	127.5	54.4	37.6		54.3	156.3	78.7			· 苏男华农园安安 • 华安克莱克·
HEAN	333.4	161.8		109.2	46.3	11.0	19.6	33.8	57.0	148.3	275.2	407.1	1703.3
į								- 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		. 1		· (•
			· ·				75 ·				. *	**	
			•			II ~	8						

2.2 WATER RESOURCES

2.2.1 DISCHARGE ANALYSIS

Discharge Analysis is carried out using TANK MODEL to evaluate yield from the Heen Ganga. Computer Programme for discharge analysis is composed of two parts, TANK1 and TANK2:

TANK1: programme for estimating the parameters of TANK MODEL TANK2: programme to estimate a long term yield using the estimated parameters.

Discharge record from Heen Ganga is not available, and there is no meteorological station in the basin. In this limitation, parameters of the model were determined using TANK1. Following values were used to make TANK MODEL of Heen Ganga:

Catchment area: 113.9 sq.km

Rainfall : records of Hembarawa.

Estimated result is shown in Fig. 2.2.2. Bottom hole of the lowest tank, which denotes groundwater seepage, is selected to be 0.0001, the lowest because the riverbed is bedrock of granite and granite gneiss.

It was informed through the interviews with village people that discharge in April and May, in June and in July will be 5,3,1 cu.m/sec, respectively in normal year.

2.2.2 HEEN GANGA DAM

Heen Ganga will be diverted to the main canal by the anicut for the irrigation of Stage III and IV. Diversion discharge is 3 cu.m per sec. It is expected that annual rainfall and rainy season will be fluctuated due to fluctuation of monsoon wind. It is recommended to construct new reservoir upstream the anicut considering the fluctuation.

Dam site is selected at 2 km upstream of the existing anicut considering the topographical conditions. The location is shown in Fig. 2.2.4.

Catchment Area: 101.3 sq.km

Sedimentation: 4.1 x 10⁶ cu.m

Effective Storage: 17.1 x 106 cu.m

(2 cu.m/sec x 86,400 sec/day x 90 days x 1.1)
Resevoir area and capacity curves are shown in Fig. 2.2.5, which gives

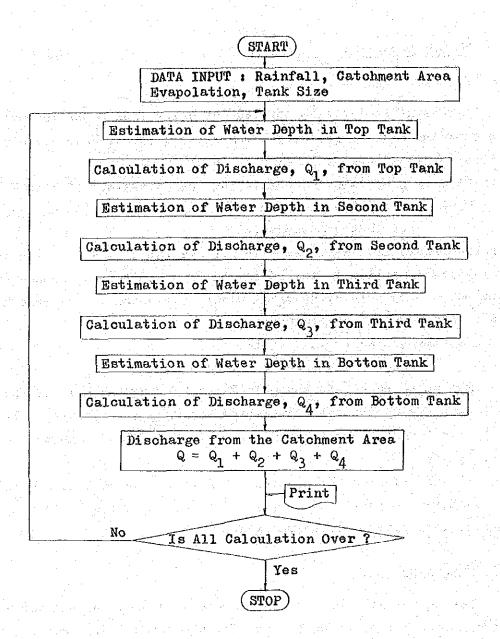
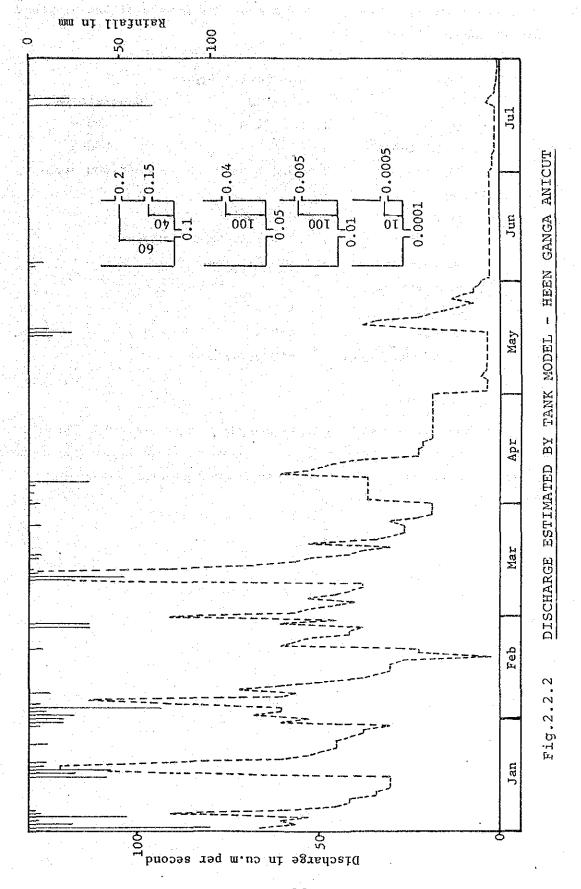
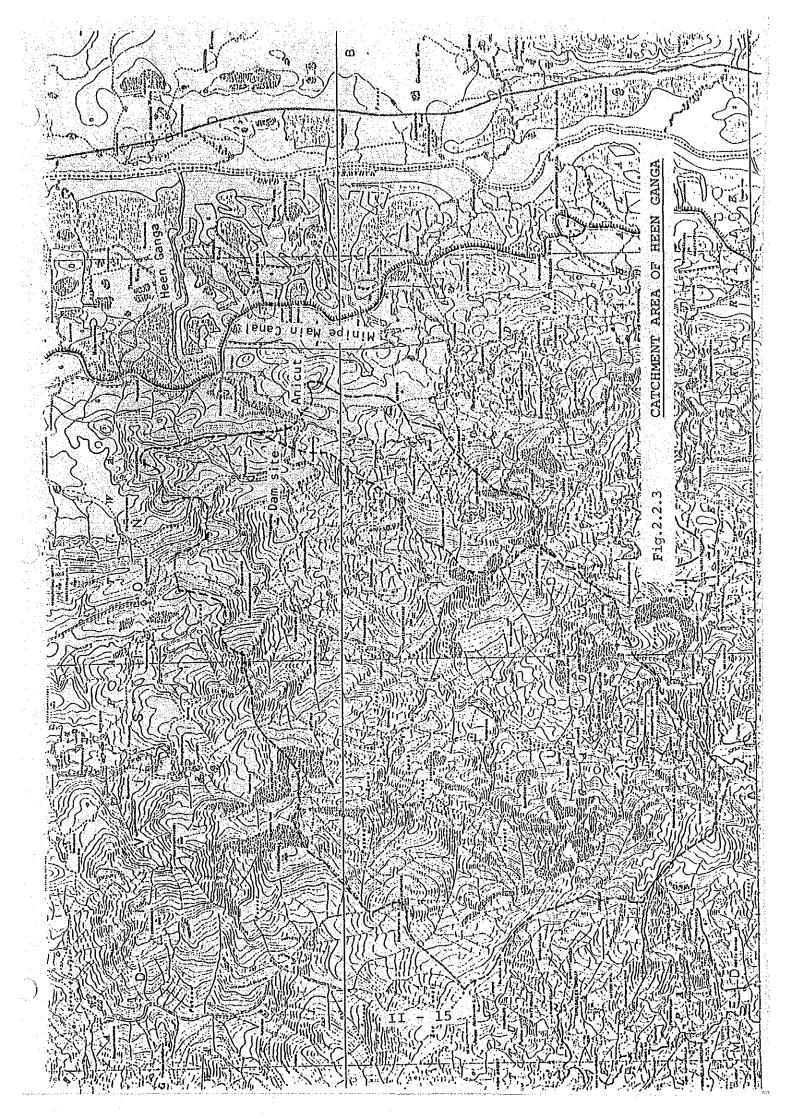



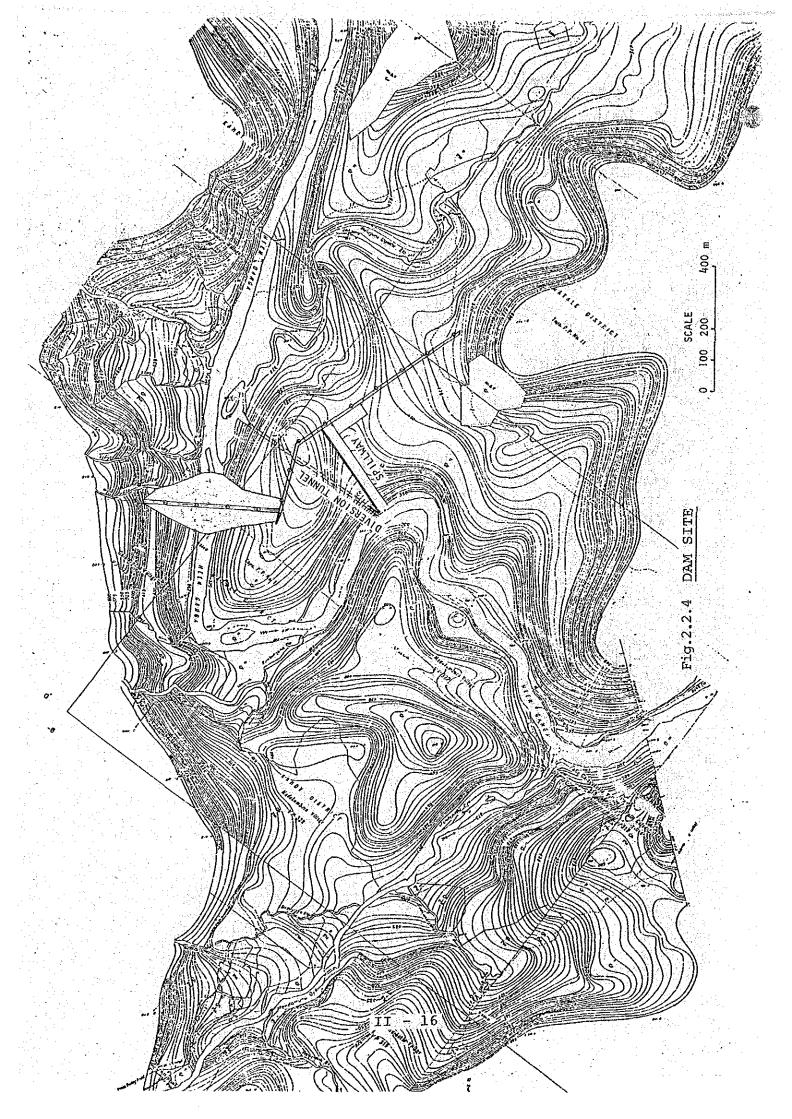
Fig. 2.2.1 TANK MODEL FLOW CHART

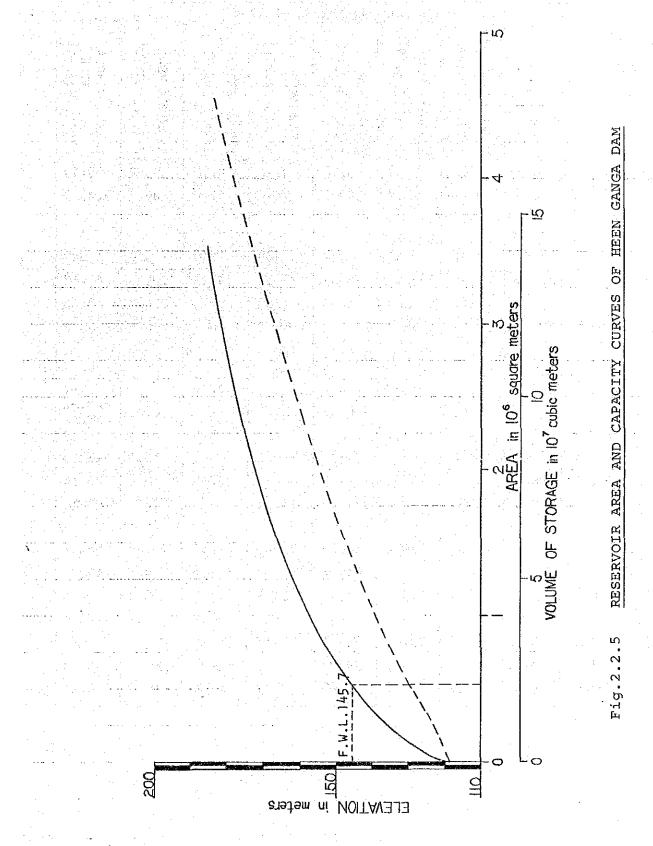
			Table	e 2.2.1	RAI	INFALL AT	THEMBAR	AWA - 19	85	Unit:	mm	•	
• .•	Σ γ τ + α ο Σ γ	<u>-</u>	0	M	4	ហ	υ	<u>.</u>	8	ຫ	10	11	12
	/\eU/)									
	; }	ຫ້		0.0		·		0.0	0.0			0.0	
٠.	7			0.0								0.0	
	M	ហ			4 1 27			500.2				0.0	
	4					-						0	
	ហ	o v	0.0	0.0	2.8	0.0	8	0	0	0.0	0.0	0.0	0.0
	.			_		- 1						1.8	
	· ·				٠.			0.00				14.0	
	œ											0	
	m			7.14	_							0.0	
	10			m				200				ю ю	
	सर्व पर्न				12							16.9	
	12					-						0	
	H W			5 m	44 F 🖳							0.0	
	ए				- 4			31 ×				0	
Ι	ស							100				16.2	
I	16			٠								23.4	
-	17	4										0.0	
<u>.</u>	9			. L	4	**		40.00				20.0	
1	0				٠.							30.4	
	20					~ .						ы ы	
	21			٠.	٠.							7.2	
	22		_	2								0.0	
	23			_	· -							 B	
	24											0	
	25			_								21.3	
	28				10.0							. 26.1	
	27			:. ·	_							30.2	
	28			_	2.5			-				21.1	
	29	່ ເນ				1						0	
	30			_				_				0	
	in H	18.7										0	
										4.0		71 2.3 4.1	1
	XE!	373.4	205.9	104.8	40.3	37.3	11.0	თ დ	0.0	184.9	ტ თ თ	244.3	115.7
	AUE	12.0	7.4	ų 4	1.3	1.2	4.0	2.9	0.0	6.2	1.6	φ. 1	3.7
	NEN-GOUKE	KEI =	1458.4			:				:			

																	Jag			٠.	:1		٠.				÷									
Sec	е	45, 514	41.721	37.928	37. 928	41.721	37.928	37.928	34, 135	30.342	30.342	45.514	37.328	34, 135	26.550	26.550	28.820	26.550	15 171	15.171	10.171	15 171	1/1	15, 171	113.784	7.00 0.00 0.00	58.270) (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0	ממים מים מים מים	n n 0 1	45.514	37,928	1000	ZUZ. 518	38.784	
cu.m/s	स् । स	N	œ	တံ		4	ä	•																	15.514								() ()	460. 404 1	47.865	
Unit	10	0	0	n	'n	0	Ņ	o)	1.895	w	œ	œ ·	ιù	1.517	ហ	1.517	ın.	n)	n.	1.517	ırı ı	יכט	7	on Co	12, 137	44.	M)	, (21.240	л :	ਜ਼: ਹ	2.7	٠ (ا	247.570 1	7, 989	
1985	on			_			-						•	· • .	•		•								7.585		•			•	•		: I	395.727	13.224	
ANICUT -	σ								_	_		_		-	- 4	- 4	_	-	-	-	- 4				0.759	•	-	-	٠.		-		ì	23, 515	0.759	
GANGA P	۲-			٠.		•			1.517	•	1.517	1.517	1.517	1.517		• •	٠.	٠. ه	•				•	•	1.138	٠	•	•	•		•			50.444	1.627	
AT HEEN	. и																								3.034								77	91.786	3.060	
CHARGE	ທ	~	~	~ ا	[~	۲.	ຫ		[~			•	[~	Ľ	[-		Γ.		Ų,	<u>.</u>	₩.		on on	in T	11.378		w	4	יי	ייי	٧.		- '	289.770	9, 347	
DIS	4		100		ำก	'n	10	in	60.685	m	m	ហ	~	N	N	N	-	÷.	တ်	ထ	œ,	œ	œ	œ	18.964	ø	18.954	œ	ω	ά	18.964	000.0	. :	789.661	26, 322	
2.2.2	m	1	'n	, ,		m	ď		٠.	٠.		t,	٠_:	ີ່ຕ	~		٠.,	:	~	~	×		_	ം	26.550	٠ň	~:	٨i	m.	m	ന	18.964		546, 704	49.834	
Table	14	077	50.15 50.05 50.05 50.05		00.000	113, 784		56. Sec. 25.	72.063	60.685	49,306	37,928	34, 135	30, 342	30.342	30.342	76, 550	2.275	22,757	22,757	60.685	55.832	53,099	41.721	41,721	37,928	60.685	45.514	91.027	000	000	000		416,990 1	50.607	9185, 403
	th/ 1	1 1 U	. u	0.0 0.0 0.0 0.0	0 0 0 0 0 0 0 0	0.00		ก กับ กับ	41.721	41 721	1 P	14. 135 135	30.342	30, 342	30 342	30.347	01.003	16	121,370		60,685	53.099	49, 306	10. 10. 10. 10. 10. 10. 10. 10. 10. 10.		45, 514	41.721	37.928	37, 928	30 342	50.00	53,099		.693.865 1	54.641	11
	/Mom/	/Day/	٠ (νŀ) t	ר, ע) u	0.0	~ α	9 0	·C) -	10	1 M) \ 1 ÷	į) <u>u</u>) [·	- œ		20) [10	1 ¢	1 7	υ.	20	27	80	o C	1 6) m		X III	AUE	NEN-GOUKE
							٠												_	_																

II - 13


full water level, F.W.L as 145.7 m MSL. Parameters of the proposed dam are shown below:


Dam


Dam		entra di materia. Per antara di mandra d Per antara di mandra
1.	Туре	: Combination type
1		Fill Dam Concrete Dam
	Height	: 37 m 19 m
	Crest Length	440 m 860 m
	Volume	: 970,400 ou.m 68,600 cu.m
Spil	llway	
	Type	Radial Gate
	Gate Size	: 6.0 m x 6.0 m x 5 Nos.
	Max. Discharge	: 1,300 cu.m/sec
Dive	ersion Tunnel	
: :	Radius	1 8.5 m
. :	Length	480 m
	Flood Discharge	: 660 cu.m/sec.

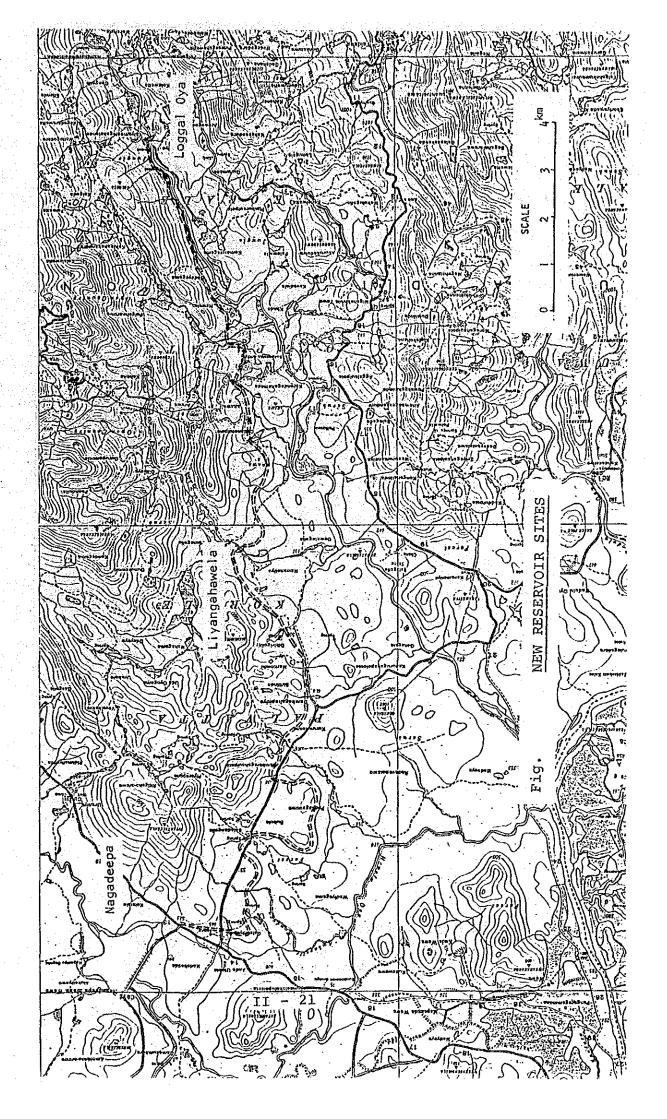
2.2.3 Existing Tanks

Parameters of existing tanks are shown in Table 2.2.3 and 2.2.4. Tanks rehabilitated by IRD Project are shown in Table 2.2.3. Tanks, shown in Table 2.2.4, were constructed recently on left bank of the Minipe main canal.

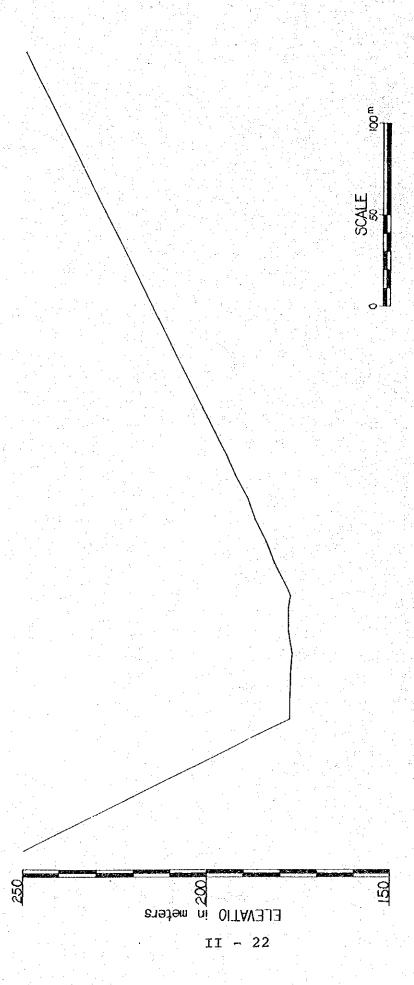
II - 17

Table 2.2.3 TANK PARAMETER

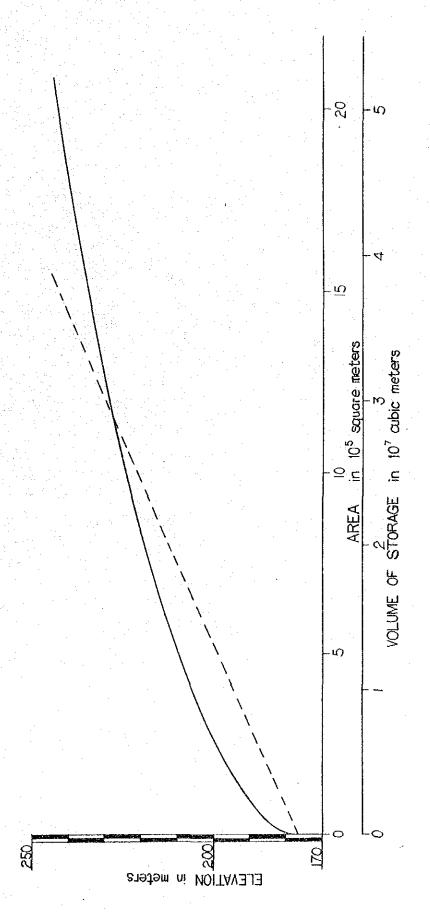
			AME & CO	ORDINAT	ES OF TA	NK		
DATA	UNIT	MAHAWATENNA WEWA J/12(1.95x3.70)	DEWACIRI WEWA J/12(1.70x6.6)	BOGAHA WEWA J/12(2,5x7,95)	Balugammana wewa J/12(3.0x8.2)	Maraka wewa J/12(3.3x8.7)	RADDUNNE WENA J/7(3.35×0.70)	Karaugahawela Wewa J/7(1.25x1.50)
CATCHMENT AREA	sq.km		1.97	5.18	0.26	0.78	0.52	29.79
CAPACITY BUND	1000 cu.m	895.5	117.2	592.1	74.0	61.0		2,245.0
Length	m	236	165	732	488	640	549	1,097
Top Level	M.S.L.	83.20	84.43	78.83	73.80	74 • 33	72.33	83,68
Top Width	m	1.83	1.83	1.83	1.83	1.83	1.83	3.66
Side Slope U/S & D/S		1 on 2	1 on 2	1 on 2	1 on 2	1 on 2	1 on 2	1 on 2
SPILLWAY					, e.			
Type L.B.		7.0	C.O.	c.o.	 G 0	C.O.	c.o.	C.O. RADIAL
R.B. Length L.B.	m	C.O.	13.7		C.O.	18.3	-	GATE 91.4
R.B.	m	61.0		51.8	12.2	_		6.1x3.0
Crest Level L.B.			83.21		-	73.15	-	82.16
R.B.	M.S.L.	81.83	-	77.77	72.54	•	71.32	82.16
SLUICE		Tower	Tower	Marram	Marran	Tower	Tower	Tower
Type L.B.	*. *	TOWEL	Tower	Tower Tower	Tower	Tower	Tower	Tower
Size of L.B.	cin	61.0	15.2	15.2	15.2	61.0	30.5	30.5
Opening R.B.	cm			15.2		15.2	15.2	61.0
Sill Level L.B.		78.47	79.85	74.81	71.17	72.24	70.10	Cut on Rock
R.B.	M.S.L.			74.22	· •	71.32	70.10	76.06
Irrigable Area	aq∙km	1.38	0.26	1.00	0,39	0.59	0.93	2.42


Table 2.2.4 Recently Constructed Tank Parameter

DATA	UNIT	TANK	NAME
		NAMINI WEWA	HIBIRIYAKADA WEWA
CATCHMENT AREA	sq.km	5•39	7.64
CAPACITY 1	000 cu.m	677.2	1,677.5
BUND			
Length	m	670	869
Top Level	M.S.L.	100.89	122.53
Top Width	m	3.05	3.66
Side Slope U/S		1 on 2.5	1 on 2.5 Breach 1 on 3
D/S		1 on 2	1 on 2 Breach 1 on 2.5
SPILLWAY			
Type L.B.		Natural with crest wall and 1:100 tail gradient	Natural with crest wall and 1:100 tail gradient
Length L.B.	m	45.7	53.3
Crest Level L.B.	M.S.L.	99•36	121.01
SLUICE			
Type L.B.		Hume Pipe Tower	und
R.B.		-	Hume Pipe Tower
Size of Opening L.B.	cm	61.0	
R.B.	cm	-	61.0
Sill Level L.B.	M.S.L.	96.01	-
$\mathbf{R}_{ullet}\mathbf{B}_{ullet}$	M.S.L.	-	114.30
Irrigable Area	ha	60.7	161.9


2.2 WATER RESOURCES

Two new reservoirs, Liyangahawela and Loggal Oya, were proposed by the Irrigation Engineer's Office, Mapakada to overcome the water shortage of every year.


Location of the proposed water resources are shown in Fig.2.2.1. Longitudinal section and reservoir area and capacity curves are shown in Fig.2.2.2 and 2.2.3, respectively.

g.z.z.g

RESERVOIR AREA AND CAPACITY CURVES OF LOGGAL OYA DAM

	talina kan Talibaran 194			
		ANNEX 3 SOIL		
		에게 보통해 보고 있다. 이 기가 되었는데 이 사고 있다. 이 사람들이 되었다. 과 대통령 경영 보통 (1988년 이 대통령) 기가 있는데 이 기가 되었다.		·
3	SOIL	(MINIPE SCHEME)	III	- 1
	3.1	General	III	- 1
	3.2	Approach and Methodology Adopted in the Field Survey	III	- 1
	3.3	Typical Soil Type	III	<u>.</u>
	3.4	Development of Reducted Condition in	1.5	
		Surface Stratum and Oxidized Deposits in Sub-soil	III	- 10
	3,5	Redox Potential in Surface Layer and		, e., e
		Sub-soil	III	- 10
	3.6	Water Percolation in Paddy Fields (by Soil Types)	TTT	- 12
	3.7	Examination on Water Permeability		- 12
	3.8	Estimation of Paddy Area of Each Soil Type		- 13
	3.9	Phisico-chemical Properties of Soil	TII	- 14
	3 10	Samples Clay Mineral Composition of Soil Samples		- 1.6
	Special Control	Soil Fertility		
		Classification of Soils		
	3.13	Conclusions	III	- 20
•			•	
3	SOIL	(NAGADEEPA SCHEME)		- 26
• -	3.1	General		
	3.2	Typical Soil Type		
	3.3	Examination on Water Permeability	III	- 28
	3.4	Physical-chemical Properties of Soil Samples	III	- 29
, W ,	3.5	Clay Mineral Composition of Soil Samples	III	- 30
	3.6	Soil Fertility		
• •	3.7	Classification of Soils	III	- 32
* .	3.8	Conclusion	III	- 32
e e				

Contents of Tables and Figures (MINIPE SCHEME)

METHODS AND NUMBER OF PLOTS OF EACH SOIL SURVEY TABLE 3.1 ITEM ITEMS OF PHYSICO-CHEMICAL ANALYSIS AND METHODS. TABLE 3.2 ADOPTED TABLE 3.3 ACARAGE OF EACH SOIL TYPE REDOX POTENTIAL OF EACH SOIL TYPE **TABLE 3.4** TABLE 3.5 FIELD PERMEABILITY TEST OF EACH SOIL TYPE WATER PERMEABILITY OF SOIL SAMPLES TABLE 3.6 ESTIMATED PADDY FIELD AREA FOR EACH SOIL TYPE TABLE 3.7 SOIL CHEMICAL PROPERTIES OF EACH SOIL TYPE (SURFACE TABLE 3.6 STRATUM ONLY) TABLE 3.9 MECHANICAL ANALYSIS OF EACH SOIL TYPE (SURFACE STRATUM ONLY) TABLE 3.10 CLAY MINERAL COMPOSITION OF SOIL TAKEN FROM EACH

STAGE AND DIFFERENT SOIL TYPES

TABLE 3.11 SOIL CLASSIFICATION OF EACH SOIL TYPE IN RELATION TO

GREAT SOIL GROUP AND USDA CLASSIFICATION

FIGURE 3.1 SOIL SURVEY POINTS

FIGURE 3.2 APPARATUS FOR MEASURING WATER PERCOLATION IN A PADDY FIELD

FIGURE 3.3 APPARATUS FOR MEASURING WATER PERMEABILITY OF SOIL SAMPLES

FIGURE 3.4 TYPICAL SOIL PROFILES

FIGURE 3.5 SOIL ASSOCIATON RELATED TO TOPOGRAPHY

FIGURE 3.6 GLEYZATION AND OXIDIZED DEPOSITS IN EACH SOIL TYPE

FIGURE 3.7 X-RAY DIFFRACTION PATTERN OF CLAY FRACTION IN SOILS

OF EACH STAGE OR SOIL TYPE

Contents of Tables and Figures (NAGADEEPA SCHEME)

TABLE 3.1	ACARAGE OF EACH SOIL TYPE
TABLE 3.2	WATER PERMEABILITY OF SOIL SAMPLES
TABLE 3.3	SOIL CHEMICAL PROPERTIES OF EACH SOIL TYPE (SURFACE
	STRATUM ONLY)
TABLE 3.4	MECHANICAL ANALYSIS OF EACH SOIL TYPE (SURFACE
	STRATUM ONLY)
TABLE 3.5	CLAY MINERAL COMPOSITION OF SOIL TAKEN FROM EACH
	SOIL TYPE
TABLE 3.6	SOIL CLASSIFICATION OF EACH SOIL TYPE IN RELATION TO
	GREAT SOIL GROUP AND USDA CLASSIFICATION

- FIGURE 3.1 TYPICAL SOIL PROFILES
- FIGURE 3.2 X-RAY DIFFRACTION PATTERN OF CLAY FRACTION IN SOILS
 OF EACH SOIL TYPE