
CHAPTER 2 SIGNIFICANCE OF SRI LANKA LONG TERM TELECOMMUNICATIONS PLAN AND SERVICE STATUS QUO

CHAPTER 2 SIGNIFICANCE OF SRI LANKA LONG-TERM TELECOMMUNICATIONS PLAN AND SERVICE STATUS QUO

- 1. SIGNIFICANCE OF SRI LANKA LONG-TERM TELECOMMUNICATIONS PLAN
- 1.1 General Conditions of Sri Lanka
- 1.1.1 Topography, Population, Climate

Sri Lanka is a tropical island country located in the Indian Ocean south-southeast of India. Geographically, the country occupies a pivotal position in East-West maritime traffic that connects Europe, Africa and the Middle and Near East, on one hand, and Southeast Asia and East Asia, on the other. In this connection, especially important is the role which Colombo, the capital city, performs.

Population as of 1985 is estimated at 15,900,000. National area totals 65,610 km². Population density is relatively high at 242/km².

Up to 73% of total population are Sinharis, 19% are Tamirs and the remainder are other tribes.

Climate is the typically tropical climate consisting of wet and dry seasons. Temperature is high in wet season, i.e., March to June, but is low in dry season of November to January. In Colombo that faces the sea, mean temperature is 27°C with annual variation limited to 6°C. At Nuwara Ehiya in the central part of the country, where height above sea level measures 1,890 meters, mean temperature is as low as 16°C.

Rainfall is plentiful in the southwestern sector where maximum annual precipitation exceeds 3,000 mm. In northern, eastern and southeastern sectors, mean annual rainfall is limited to not more than 1,000 mm. The former is called the wet zone and the latter the dry zone.

1.1.2 Economy

In Sri Lanka, Gross Domestic Product (GDP) per capita as of 1983 ranks 24th from bottom in the world list of 125 countries. This is the World Bank announcement in its world development report.

However, since the United National Party (UNP) assumed power in 1977, the national economy is attaining unprecedently rapid growth, supported by the liberalization policy introduced by the UNP administration. Average annual growth rate of real GDP, which was 2.9% during 1971 through 1977 and 4.4% during 1960s, improved to 6.0% in the period from 1978 to 1983. Since the population growth rate was at relatively low level of 1.7%, compared with other developing countries, real GDP per capita growth rate during 1978-83 stood at 4.1% or more than three times the corresponding growth rate during 1970-77. Unemployment ratio also improved from 25.0% in 1977 to 14.7% in 1983.

Sri Lanka economy remains agriculture oriented to a great extent. As of 1984, agriculture takes 28% share out of total GDP and farm workers number about half the total gainfully occupied population.

However, on account of steady progress of the administration policy to get rid of monocultural pattern of economy wherein agriculture performs central role, industrial development is pulling up momentum. In GDP record for 1984, agriculture registers annual growth by not more than 4.0% whereas mining and manufacturing industry presents good showing with 14.7% growth; even service sector follows suit with 5.6% growth.

Thus, in wide departure from traditional agriculture orientation, Sri Lanka economy has come to find its vital force in industrial production. The administration policy to promote such reorientation of economy appears to be functioning as scheduled.

The Sixth Revised Five-Year Public Investment Plan (1984 - 1988) is to make priority investment in the undermentioned sectors.

- (1) Quick yielded production. The purpose is to earn foreign currency by such export and spend it for bolstering full industrial production so as to eliminate industrial product import pressure.
- (2) Economic infrastructure. Power generation, irrigation, transport and communication.
- (3) Social infrastructure. Medical service, education, housing and food production sector where urgent investment is required.

Especially in communication sector, numerically greater expansion than in power generation, irrigation and transport sectors has been realized during the past five years. Nevertheless, the expansion still leaves room to be desired qualitatively, and this means that further investment is necessary with a view to qualitative improvement of the whole system so that it can function successfully as the foundation of economy.

1.2 Significance of Long-Term Telecommunications Plan

1.2.1 Necessity for Long-Term Plan

The foregoing report in the public investment plan indicates that the national telecommunications network improvement and expansion projects, to cater for rapid telephone demand growth during five years before 1984, is not raising as much effect as planned. The reason is that the network improvement and expansion plan is not exactly guided by clearcut long-term objectives, causing investment to be out of balance for the whole system in more cases than not. Therefore, from the viewpoint of effective work execution from now forward, it is most important for and urgently required of SLTD to formulate carefully arranged Master Plan as long-term basic plan.

1.2.2 Interrelation Between Economy and Telecommunications

As is a proven fact in the developed countries, the advancement of economy and the progress of telecommunications are intimately interrelated. As telecommunications facilities are improved by means of new technology introduction and diffusion rate increases as the result of additional installations, exchange of information with greater reliability and on more extensive basis than before becomes possible. In other words, people who utilize telecommunications can benefit a great deal from such exchange of information in the effective use of resources including partially developed and wholly undeveloped resources. Furthermore, they can perform economic activities without loss, hence, at high efficiency. A foregone conclusion is that telecommunication facilities upgrading is bound to revitalize national economy of Sri Lanka and support its further development, increasing employment opportunities in all industrial sectors.

Master Plan for telecommunications system upgrading should be all-inclusive: it should identify new technologies and new services to be introduced according to the requirement from the national industrial development as one of economic infrastructures. That is, it should identify the policy for industrial development in some cases. Thus the most important requirement in Master Plan formulation is to forecast developmental trends of Sri Lanka economy. That is to say, Master Plan should reflect future vision of Sri Lanka telecommunications services and even imply the mode of development of Sri Lanka economy.

2. SERVICE STATUS QUO

2.1 Demand Trend

These days, in Sri Lanka, such life conveniences as electricity and TV are diffused even among remote mountain areas so that daily life pattern shows signs to become diversified. Perception of inhabitants toward telecommunications is improving and demand for telecommunications service in recognition of personal and social benefits is increasing.

Telephone diffusion is spreading from among public organizations to among general households. The latter's share in telephone demand occupies ever-growing percentage. During 1982-83, telephone demand recorded rapid growth by 13.3%. Newspapers report almost everyday about demand from citizenry for expansion of telecommunications media.

To cater for such demand without delay, both qualitative and quantitative improvement of telecommunications system constitutes urgent requirement.

2.2 Operating Entity and Organization

2.2.1 Operating Entity

In Sri Lanka, telecommunications service including overseas service is under responsibility of SLTD that belongs to Ministry of Posts and Telecommunications. Formerly, both postal and telecommunications services were under control of Posts and Telecommunications Department; however, in August 1980, SLTD came into being to assume sole responsibility for telecommunications service.

2.2.2 Headquarters Organization

At present, SLTD Headquarters top management is composed of Director and seven Deputy Directors plus Chief Accountant. In-depth organizational chart appears in Figure 2-1.

Under each Deputy Director, Chief Engineer(s) with his (their) assignment is posted.

As of the end of 1982, number of SLTD staff employees were 9,549. Breakdown is as under.

Administration	734
Accounting	206
Engineering	5,911
Traffic	2,154
Transport	247
Stores	297
Total	9,549

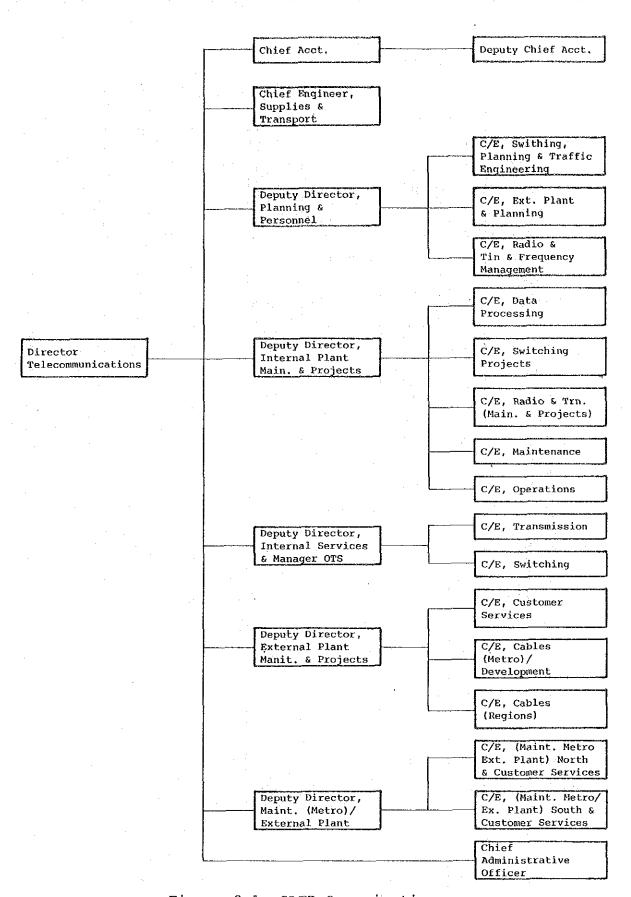


Figure 2-1 SLTD Organization

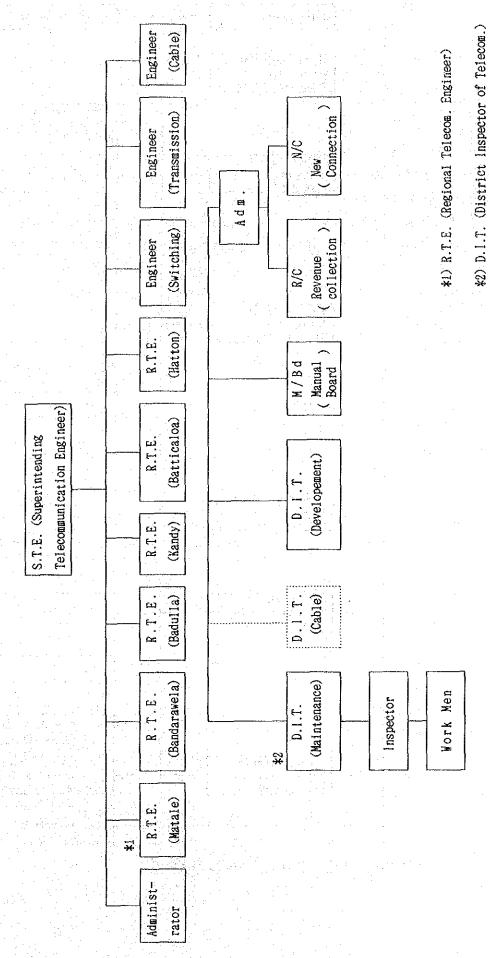


Figure 2-2 Kandy Area Maintenance/Operation Organization

2.2.3 Regional Organizations

Under SLTD Headquarters are established Regional Organizations to control several district exchange areas.

Regional Organizations are at Colombo, Kandy, Galle and Anuradapura. Organizational chart of Kandy Regional Organization as typical example is given in Figure 2-2.

Kandy Regional Organization is headed by STE (Super-intending Telecommunication Engineer). Under STE are posted RTEs (Regional Telecommunication Engineers). Besides RTEs, Engineer (Switching) who takes care of switching operation control in the whole region, Engineer (Transmission) who is in charge of transmission control, Engineer (Cable) who is responsible for construction/maintenance of cable system out of all outside plants, and Administrator are also posted under STE.

At each exchange office, RTE keeps under him responsible personnel for various engineering sections. Again, the personnel lineup at Kandy Office is used as typical The lineup consists of DIT (Maintenance) example. (District Inspector of Telecommunication in charge of maintenance of aerial cable system out of all outside plants and subscriber's premise equipment), DIT (Cable) (ditto in charge of cable system construction/ maintenance; see note below), DIT (Development) (ditto in charge of construction and development), Chief of Manual Board Operation, and Administrator. Administrator comprises two types, i.e., R/C (Revenue Collection) and N/C (New Connection). The former is in charge of billing and collection; the latter takes care of new telephone installation.

Note: At Kandy Office, DIT (Cable) is organized as upper structure so that it is not under control of Kandy RTE.

2.2.4 Service Status Quo

(1) Service Categories Provided

Service categories provided and service records are in Table 2-1.

Table 2-1 Service Categories Provided and Service Records

	Service Category	1983 Record
Telegram	Inland service Overseas service	3,008,000 messages 459,000 messages
Telephone	Inland service Overseas service	200,000,000 calls 465,000 calls
TELEX	Outgoing service Incoming service	760,000 times 1,940,000 times

Besides service categories mentioned in Table 2-1 which are provided by contract between SLTD and each subscriber, private communication service centers are operating at several places in Colombo City. These service centers provide inland and overseas telegram, telephone and TELEX services to the public through SLTD network.

(2) Operating Facilities and Diffusion Rate

Operating facilities of telecommunications and diffusion rate as of the end of 1983 are in Table 2-2.

Table 2-2 Operating Facilities and Diffusion Rate (as of end of 1983)

No. of subscriber circuits (A)	71,432
Telephone diffusion rate ((A)/100 inhabitants)	0.46
No. of telephones installed (including extensions)	109,900
No. of demand	105,005
No. of switching equipment line units	131,466
No. of subscribers on waiting list	33,573
No. of telex subscribers	967

Telephone diffusion rate of 0.46 as given in Table 2-2, when expressed in the rate against the number of telephones installed (including extensions) becomes 0.71 per population of 100. This rate is above 0.5 of India and Pakistan, respectively, but below 1.1 of Thailand.

(3) On-going Network Improvement Projects

Telecommunications development plans of Sri Lanka comprise two main types. They are:

- A. CADS (Colombo Area Development Scheme) Project
- B. OCADS (Outer Colombo Area Development Scheme)
 Project

CADS Project is for local network improvement mainly in Greater Colombo Area. As of the present, Stages II and III are in progress. For Stage IV, tender was closed in May 1984 and evaluation of submitted bids is now being carried out by SLTD. OCADS Project is for rural network and toll trunk network improvement. At present, IDA project financed by IDA (International Development Association) loan is in progress.

In all cases, project implementation is to be financed by government budget plus external, including foreign loans. However, available funds from these sources fall short of actual requirements so that SLTD cannot proceed ahead with project implementation as initially planned. Thus, for project implementation, decision has been made to begin with project for which necessary budget becomes available.

Main telecommunications network improvement plans in Sri Lanka are in Table 2-3.

Table 2-3 Main Telecommunications Network Improvement Plans in Sri Lanka (1/4)

		S IN SIL Banka (1/4)	
Project Name	Initial Year	Remarks	Completion Year
CADS-I	1960	o British loan	1968
	in and just offer one	o British GEC and STC Stroger switches installation at 20 exchanges, with cable laying	* * * * * * * * * * * * * * * * * * *
		o In the course of installation work, British contractors withdrew. SLTD succeeded and completed the work without outside assistance.	
CADS-II	1978	o CIT-ALCATEL (E10B) installation (French fund)	1981 (Phase 1)
		o Subscriber's line extension by 28,150 line units, including renewal of time-worn SXS switches in Greater Colombo Area; PCM equipment installation; local cable replacement with plastic cable	:
		o 6-digit dialing system for local calls	: : : : : : : : : : : : : : : : : : : :
CADS-III	1982	o CIT-ALCATEL (E10B) installation	- - - -
		o Havelock Town Exchange and Remote Exchange subscriber's line exten- sion, 21,750 line units	
CADS-IV (scheduled)	1984	o Tender in May 1984 o Subscriber's line extension by 32,000 line units, including renewal of time-worn SXS switches of Colombo Central and Maradana Exchange	1987 (scheduled)
			:

Table 2-3 Main Telecommunications Network Improvement Plans in Sri Lanka (2/4)

Project Name	Initial Year	Remarks	Completion Year
OCADS-I	1966	o Suppliers' credit from NEC, Fujitsu and Fujikura of Japan o Approx. 12,000 circuit XB switches installation at 18 DSCs and NSCs in 13 cities; 6-hop microwave system construction	1973
OCADS-I	1975	o Colombo DSC capacity expansion (C400); NEC Company	1976
OCADS-II	1979	o NEC and Hitachi of Japan	1982
		o Yen credit o Digital switches (2,800 T + 7,460 L) installation at 7 exchanges (Anuradapula, Badulla, Kurunegala, Ratnapuna, Trincomalee and one other DSCs and Colombo NSC); microwave system construction covering 10 exchanges (3 exchanges with addi- tional installation and 7 newly established exchanges)	
IDA		o Local switching equipment expansion and renewal in rural cities, and long distance toll transmission network expansion. Main work items: Outside plant, switches, radio system and towers. Separate contract for each work item. About 15 projects in all.	
(Switching)	1982	o NEC, Japan o Capacity expansion of 6 DSCs covered by OCADS-II; establishment of 9 new exchanges (NEAX 61, 2,527 T + 19,852 L)	On-going

Table 2-3 Main Telecommunications Network Improvement Plans in Sri Lanka (3/4)

Project Name	Initial Year	Remarks	Completion Year
(Radio, Transmission)	1983	o NEC, Japan o Digital microwave system, MUX, etc.	
India-Sri Lanka Microwave System Project	1976	o Naked financial assistance by Indian Government o Rames Walam (India) - Colombo trans-Sri Lanka microwave system	January 1982
Mount Lavinia Project	1977	o NEC, Japan o Local switches (C400, 6,000 L) and PCM transmission equipment instal- lation at Mount Lavinia o Additional 6,000 L installation in 1983	1977
FTZ Project		o Hitachi and Dainichi of Japan o Telephone and telex system provement in Katunayaka IPZ (Investment Promotion Zone)	1980
Cyclone Project	1977	o Hitachi, Dainichi, NEC and Kokusai Denki of Japan o Rehabilitation/reconstruction of cyclone-hit Eastern Region (Ampara, Batticaloa, Poloanaruwa, etc.) and STD service introduction in the region	1980
Training Center Project	1978	o New training center establishment at Welisala, in addition to the existing Moratuwa training center	On-going

Table 2-3 Main Telecommunications Network Improvement Plans in Sri Lanka (4/4)

Project Name	Initial Year	Remarks	Completion Year
WCY Project		o Digital radio network and cable PCM network construction in Gampaha and Hatton areas	On-going
		o RSU construction in Nuwara-Eliya area	
Hambantota Project		o Digital network construction in Hambatota area	Under planning
		o 5 master exchanges, 9 RSUs o Digital radio and cable PCM systems o Subscriber's line network	
Greater Colombo Project		o Junction cable network in Greater Colombo Area between 24 local exchanges o Local cable network expansion of 7 local exchange areas o Japanese loan	Under planning

(4) Maintenance Condition

As of 1983, average monthly failure rate is 39% per 100 subscribers. This high failure rate is bound to worsen further, considering time-worn subscriber's cable network, in particular. Table 2-4 presents failure rate breakdown by equipment categories.

Table 2-4 Failure Rates by Equipment Categories

Equipment Category	Failure Rate (per 100 subscribers)
Office equipment	6.0
Outside equipment, subscriber's premise equipment	71.0
Others	23.0
Total	100.0

Note: "Others" above shows equipment category where cause of failure resides is unidentifiable.

For keeping failure rate at possible minimum level and thus providing high quality communication service, optimum investment plan for project implementation is the first essential. Also indispensable is the exertion to keep project implementation program well organized and its performance at top efficiency.

ing the control per production	ar of the same	and the second	than the A
÷			

CHAPTER 3 DEMAND FORECAST

Street of Matara

CHAPTER 3 DEMAND FORECAST

1. GENERAL REMARKS

It is a known fact that telephone demand behaviors depend upon the performance of several factors. Chief among those factors are the vital force of national economy commonly expressed by GDP/GNP, telephone tariff system modus operandi, and national habits and preferences. Correlation formula for telephone demand and its determinants follows:

$$Q = F (X, N, P, d)$$

where

Q: Total telephone demand

X: Vital force of national economy, for an example, expressed by GDP/GNP

N: Total population

P: Telephone charges including subscription fee and call charge, etc.

d: Demand growth trend factor considering influence from other factors also

When the above correlation formula is divided by total population (N), the result is:

$$q = F(x, P, d)$$

where

- q: No. of telephones per unit population (demand density)
- x: GDP per capita
- P: To remain constant through the future
 (Actually, P varies according to the currency
 value fluctuation.)

Therefore, demand density correlates with GDP (x) and demand growth trend factor (d).

Demand growth trend factor is estimated from analysis of the past demand growth plus in-depth study of demand growth stages. Generally, the telephone demand growth stages are divided into initiatory stage, first half of expansion stage, second half of expansion stage, popularizing stage and popularized stage.

In Sri Lanka, telephone demand at present is considered to be in transition from the first half to the second half of expansion stage. Convenience of residence telephones in daily life has come to be widely recognized, causing residence telephone demand to increase rapidly and contributing to the remarkable growth of total telephone demand.

2. TELEPHONE DEMAND FORECAST

2.1 Macroscopic Demand Forecast

Generally employed methods for macroscopic telephone demand forecast are as under.

- Step (1) To establish correlation formula from GDP and number of telephones data of several scores of countries, estimated GDP growth of the country concerned, and obtain the number of telephones in the objective year of forecast.
- Step (2) To correlate time series data, if available, with GDP or other economic/social activity parameters and thus establish specific correlation formula for the country concerned whereby to forecast demand. And to compare with the result of step (1) and step (2).

For the long term telecommunications system improvement plan of Sri Lanka, the first step is to obtain the preliminary formula, based on records of 56 countries as of the year 1981. The estimated formula in this case is

$$Y = 0.0001154x^{1.372}$$
(1)

where

Y: Telephone density per population of 100

X: GDP per capita

Then, for the second step, formula (1) is revised, using the visible demand of 0.71 as of the end of 1983. Calculation formula in this case is

where the demand consists of the sum of the number of operating main telephones and the number of the waiting applicants.

Note: References used for compilation of formula (1) are as under.

- (1) World Development Report, 1983 (published by World Bank)
- (2) The World's Telephones, 1982 (published by AT&T)

2.2 GDP Estimation

2.2.1 GDP growth rate estimation

GDP to be used in formula (1) is the U.S. dollar equivalent of nominal GDP of the country concerned. The reason is that when GDP at constant factor cost prices is used, the relative value varies broadly, depending upon which year to use as constant year. This is why nominal GDP (at current factor cost prices) is commonly used in telephone density forecast for long term plan.

In Sri Lanka, GDP at current prices increased by annual average of 19.5% during the period from 1970 to 1981. Especially in the latter part of the period, i.e., during 1979 through 1981, growth of nominal GDP at current prices is by as much as 26% annually.

Considering the economic development policy of the Government, nominal GDP growth in Sri Lanka by 26% or thereabouts annually can be expected in the coming years also.

For the purpose of reference, GDP at current prices and GDP at constant prices of Sri Lanka during the period 1970 - 1981 are introduced below.

Table 3-1 GDP at Current Prices and constant Prices

	1970	1973	1974	1975	1976
GDP Current Prices	13,187	17,920 (21.7)	23,302 (30.0)	25,691 (10.3)	28,032 (9.1)
GDP Constant Prices	13,187	14,138 (3.7)	14,585 (3.2)	14,987 (2.8)	15,431 (3.0)

	1977	1978	1979	1980	1981
GDP Current Prices	34,684	40,479	49,782	62,246	78,506
	(23.7)	(16.7)	(23.0)	(25.0)	(26.1)
GDP Constant Prices	17,078	17,401	18,501	19,575	20,706
	(4.2)	(8.2)	(6.3)	(5.8)	(5.8)

(Growth rate compared with the year before in parentheses) (Source: Central Bank of Ceylon)

GDP expressed in Rupees is then to be changed into the U.S. dollar equivalent.

Since 1977, the Rupees into U.S. dollar conversion is by the floating rate. The Rupees devaluation rate from 1977 to 1982 is 7.3%. Especially during two years from January 1980 to December 1981, the devaluation rate is 15.1%. Considering the progress of inflation in Sri Lanka, the uptrend of Rupees devaluation will continue for some time to come.

To change nominal GDP expressed in Rupees into the U.S. dollar equivalent, the Rupees value of the year concerned is to be divided by the effective rate of exchange for that year. This, in effect, means (nominal GDP growth rate) - (Rupees devaluation rate again U.S. dollar), or, more precisely,

Thus, for the present long term telecommuncations system improvement plan, the U.S. dollar equivalent of nominal GDP of Sri Lanka is assumed to grow by 10% annually, as under.

Year			1995	2000
GDP (US\$)	350	530	800	1,212

2.2.2 Verification by past data

When the demand forecast formula, $Y = 0.000329X^{1.372}$, is applied paradoxically to 1980 through 1983 actual demand (accommodated subscribers + waiting subscribers), x (GDP) can be obtained as under.

Year	Y Value (Actual)	X Value (By calculation)	Growth Rate
1980	0.53	218	9.2%
	0.60	238	1.3
1982	0.61	241	13.3
1983	0.72	273	(Average: 7.8)

Average GDP growth rate of 7.8% as obtained above is estimated to become higher in the future.

2.2.3 Future GDP verification

For verification of GDP to be used in the demand forecast formula, GDP at current prices (expressed in Sri Lanka Rupees) for the year concerned as announced by the Government (or Central Bank) has only to be changed into the U.S. dollar equivalent by the effective rate of exchange at the time of conversion.

2.3 Population Forecast

The population forecast for Sri Lanka is in Table 3-3. This forecast is based on population data for the past 11 years (1971 - 1981) (Table 3-2) and utilizes the logistic curve.

Logistic Curve:

$$Y = \frac{K}{1 + me^{-at}}$$

where

K: $30,000 \times 10^3$

a: 0.0315

m: 1.4262

t: Number of years after 1971 as initial year

(Reference)

Statistical Pocket Book of the Democratic Socialist Republic of Sri Lanka 1982, published by Department of Census and Statistics, Ministry of Plan Implementation

Table 3-2 Total Population in Sri Lanka

				المراسدية ومرسد المستوارية	gi internativamenta anta apara di 1800 politico.	
Year	1971	1972	1973	1974	1975	1976
Population (x 103)	12,608	12,861	13,091	13,284	13,496	13,717
Growth Rate (%)	-	2.0	1.8	1.5	1.6	1.6

Year	1977	1978	1979	1980	1981
Population (x 10³)	13,942	14,190	14,472	14,738	14,988
Growth Rate (%)	1.6	1.8	2.0	1.8	1.7
	Suppose (1980)				
Table 3-3	Popul:	ation Fo	recast	in Sri I	anka

Table 3-3 Population Forecast in Sri Lanka

Year	1985	1990	1995	2000
Population (x 10³)	15,900	17,100	18,200	19,300
Average Annual Growth Rate (%)	1.5	1.3	1.2	1.2

A STANDARD AND AND A STANDARD AND A

2.4 Nationwide Macroscopic Telephone Demand Forecast

Nationwide macroscopic telephone demand forecast obtained by the previously mentioned assumption is as under.

Table 3-4 Nationwide Macroscopic Telephone Demand Forecast

Year	1985	1990	1995	2000
Nationwide Demand Density (%)	1.0	1.8	3.2	5.6
Nationwide Demand	159,000	307,800	582,400	1,080,800
Greater Colombo Area	100,170	193,914	366,912	680,904

- 3. DEMAND FORECAST FOR TELEX, TELEGRAM AND OTHER NEW SERVICES
- 3.1 Existing TELEX and Telegram Services

In Sri Lanka, TELEX subscribers as of 1984 number 1,100. Out of them, up to 93% are concentrated in Greater Colombo Area and its suburbs.

Year by year changes in the number of TELEX subscribers during 1977 through 1984 are in Table 3-5. The average growth rate, compared with the year before, is as high as 29.3%.

Table 3-5 TELEX Subscribers in Sri Lanka, 1977 - 1984

Year	1977	1978	1979	1980	1981	1982	1983	1984
Number of TELEX Subscribers	190	262	335	528	719	853	967	*1,100
Growth Rate Over Preceding Year (%)	_	37.9	27.9	56.7		19.3	13.4	13.8

^{*} including 92 telegraph terminals and 200 international trunks.

TELEX exchanges, besides catering to TELEX subscribers, take care of telegram service also. As of 1984, such service is in practice to 92 terminals of 56 post offices.

International and domestic telegram services are available at 1,950 Telegraph Post Offices in the country.

Among them, 1,100 Post Offices can offer the delivery services. Colombo Central Telegraph Office only serves 24 hours reception and others offer day-time service.

The past data for number of telegram in recent years are as follows:

Table 3-6 Number of Telegram Calls Handled

Year	Domestic	International	Total
1982	5,206,416	503,294	5,709,710
1983	3,008,496	459,334	3,467,830

There is no exclusive telegraph network in the country. TELEX exchange (NEDIX-510A) is used for the telegraph services as GENTEX by adding the stored and forward switching functions.

For telegraph service, terminal to terminal message exchange by paper tape is also in practice. In this case, telegraph terminal equipment is installed at telegraph handling offices. However, the telegraph network will be integrated by ISDN. Therefore, the demand for telegraph/telegram services is to be included in TELEX demand in this study.

3.2 Macroscopic Demand Forecast for TELEX and Telegram

Generally, TELEX subscribers increase rapidly before the service reaches a certain degree of diffusion. Then, as bothway communication type computer network (data communication network) develops, the number of TELEX subscribers who transfer to computer network increases, bringing TELEX subscriber growth to a stop or even causing the number of TELEX subscribers to decrease. This fact is proven by the situation in the countries where communication is developed.

While the telephone diffusion rate in the year 2000 still remains at a low level of 5.6 per population of 100, TELEX and telegraph service will be utilized in place of telephone service. Therefore, TELEX service demand is considered not to decrease in the future.

Assume that the penetration factor at the time the growth rate has reached the saturation point is 0.7 per population of 1,000, judging from the situation in the developed countries. when this number of TELEX subscribers is plotted on the logistic curve, the result obtained is as under.

$$Y = \frac{K}{1 + me^{-ax}}$$

where

- Y: Number of TELEX subscribers X years after 1977 as initial year
- K: Number of TELEX subscribers when the growth rate has reached the saturation point.

Assumption:

Growth saturation to take place in the year 2003

(estimated population: $20,000 \times 10^3$)

x: Number of years after 1977 as initial year

Consequently,

$$a = 0.2715$$
 $m = 86.630$

Therefore,

K = 14,000

Accordingly, TELEX service demand can be estimated as under.

Table 3-7 TELEX Service Demand Forecast

Year	1984	1985	1990	1995	2000
Demanđ	1,100	1,642	4,768	9,344	12,410

As previously stated, 93% majority of TELEX subscribers is concentrated in Greater Colombo Area including Free Trade Zone. Therefore, even in the event the TELEX service at local post offices pulls up momentum, TELEX service concentration in Greater Colombo Area will remain unchanged. Thus, from the angle of demand, no need arises and will arise in the future to introduce the TELEX exchange other than Greater Colombo Area.

3.3 Demand Forecast for Public Pay Telephone Service

At present, in Greater Colombo Area, several outdoor type public pay telephones are installed. Private telephone service offices are also operating at several places.

Demand for public pay telephone service is to grow in proportion to ordinary telephone diffusion. Since public pay telephones are for use by indeterminate majority, theoretical forecast of demand size is difficult. This demand forecast should rather be identified as a policy line in National Communication Development Program to be implemented by the Government.

In this study, public pay telephone diffusion as under is recommended.

Table 3-8 Public Telephone Demand Forecast

Year	Year 1985		1995	2000	
Penetration Rate per Population of 1,000	0.1	0.3	0.6	1.0	
Number of Public Pay Telephones	1,590	5,130	10,920	19,300	
Additional Installations	1,590	3,540	5,790	8,380	

3.4 Demand Forecast for New Services

3.4.1 Classification of new services

In this study, new services are provisionally defined as services in general not provided by SLTD up to the present. Such new services include pocket bell paging, call waiting, telephone facsimile, call transfer and cellular mobile telephone which can be introduced by means of partial modification of or supplement to the existing telecommunication network, and high speed facsimile, data and video communications which can be realized by ISDN.

When telephone demand growth enters into the second half of expansion stage, convenience of telephony is all the more keenly recognized by the public. That is to say, telephone service is required to provide new services besides the mere call service. Out of new services, such kinds of services that contribute to the expansion

of SLTD's service menu and subserve to SLTD's diversified operation, and such kinds of services as call waiting and call transfer which are effective for improvement of call completion ratio should be positively introduced.

Here, new services are divided into two categories. One is the service category which SLTD is to provide to ordinary subscribers. The other is the service category wherein SLTD supplies circuits but terminal equipment is to be procured by users.

(1) Service category which SLTD is to provide to ordinary subscribers

Services that belong to this category are also classified into two sub-categories. They are:

A: Service that can be realized by partial modification of or supplement to the existing network.

B: Service to be realized by ISDN.

Service group that comes under (1)-A classification comprises call waiting, push-button dialling, abbreviated dialling, telephone facsimile and call transfer, etc.

Service group that comes under (1)-B classification comprises pocket bell paging and cellular mobile telephone, etc.

(2) Service category wherein SLTD supplies circuits but terminal equipment is to be procured by users according to the purpose of service

Services that belong to this category comprise high speed facsimile, data and video communications, etc.

3.4.2 Demand forecast for new services

For the aforementioned new services, no time series data whatsoever is available so that demand forecast is difficult. Furthermore, when new services are introduced, new tariff system for such services has to be established. And, depending upon how the tariffs are determined, demand itself varies a great deal in general.

For new services coming under (1)-A and (1)-B classifications each telephone exchange is to prepare positively related equipment, programs and so forth every time opportunity arises. For immediate future guideline, assumption is established that 10% out of the number of terminals installed be available for each new service.

As for service category (2), it is assumed that for all digital circuits including those for nationwide distribution of TELEX network as previously described, 10% spare circuits be available exclusively for providing of those services for the time being. Considering that in the year 2000 the circuits requirement for telephone service is to become large in scale, spare circuits to deal with calls beyond forecast must also be of correspondingly large capacity.

For new service circuits also, much greater capacity is expected to become necessary so that spare circuits equivalent to 20% of telephone service circuits are to be prepared.

Table 3-9 Spare Circuits Rate for New Services

				A COLUMN TO THE OWNER OF THE OWNER O
Year	1985	1990	1995	2000
Spare Circuit Rate (%)	10	1.2	15	20

The commencement of operating the new services is to be studied by ascertainment of the demand trend for them through the detailed market research in the future.

- 4. DEMAND DISTRIBUTION
- 4.1 Telephone Demand Distribution
- 4.1.1 Distribution methodology

Result obtained by nationwide macroscopic demand forecast is to be distributed to each city, town and village for each forecast year. Method of distribution is to make proportional distribution to the existing demand (number of actual subscribers + number of waiting subscribers). That is to say,

$$Qi = Q \times \frac{Di}{n}$$

$$\sum_{i=1}^{E} Di$$

where

Q: Total demand in each forecast year, as forecasted in Section 2

Qi: Total demand in City i (Town i or Village i) in each forecast year

Di: Existing demand

Note: Di is based on data in "Exchange Review - 1983, SLTD Planning Division" published by SLTD.

n Σ Di in 1983 is 107,545. Out of this, 65,705 or i=1

upwards of 61% are concentrated in Greater Colombo Area. Result of demand distribution to each city, town and village by forecast year is in Table 3-10 and Volume II CHAPTER 2 in detail.

Table 3-10 (1/2) Summary of Demand Distribution (by SSC)

SSC	C Area	Exi	sting (19	83)	I	Distributi	on by Yea	ır
No.	CODE	Working Sub.	Waiting Sub.	Total	1986	1990	1996	2000
1	ANR	917	359	1276	1808	3484	6582	12207
2	AMR	241	66	307	394	763	1442	2677
3	AVS	504	251	755	1069	2065	3896	7223
4	BDL	. 659	168	827	1172	2258	4267	7914
5	BTC	701	424	1125	1582	3063	5794	10754
6	BNR	809	216	1025	1446	2796	5285	9805
7	CNT	46468	19237	65705	100171	193914	366912	680902
8	CHW	364	164	528	747	1141	2724	5051
9	GLE	1673	987	2660	3748	7246	13705	25431
10	GMH	7.92	545	1337	1884	3644	6893	12787
11	нмв	281	184	465	658	1269	2398	4448
12	нти	826	193	1019	1439	2779	5254	9748
13	JFN	2801	2519	5320	7495	14490	27409	50861
14	KLM	480	268	748	1053	2037	3853	7151
15	KND	4342	∴ 2536	6878	9686	18733	35433	65753

Table 3-10 (2/2) Summary of Demand Distribution (by SSC)

SSC	C Area	Exi	sting (19	983)	Ι	Distributi	on by Yea	r
No.	CODE	Working Sub.	Waiting Sub.	Total	1986	1990	1996	2000
16	KLT	1258	446	1704	2401	4644	8781	16291
17	KGL	525	189	714	1011	1948	3683	6830
18	KRG	1354	576	1930	2725	5266	9952	18459
19	MNR	218	110	328	467	899	1696	3140
20	MTL	771	334	1105	1559	3015	5700	10572
21	MTR	1335	517	1852	2618	5053	9550	17714
22	NWL	267	101	368	520	1003	1898	3520
23-	NGM	1938	1879	3817	5370	10393	19960	36486
24	NWR	762	124	886	1251	2417	4567	8472
25	PLN	300		300	422	818	1546	2868
26	PND	968	410	1378	1941	3752	7099	13173
27	PTL	171	159	330	467	901	1702	3155
28	RTN	692	803	1495	2109	4076	7708	14297
29	TRN	673	89	763	1081	2082	3932	7291
30	VNY	341	246	587	831	1603	3028	5617

4.1.2 Demand distribution by exchange

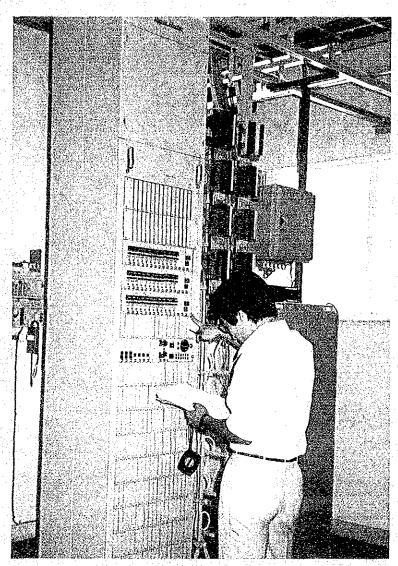
Demand forecasted in the preceding paragraph is rearranged by local exchange area. In this case, the exchange is either the existing exchange or the exchange under construction or being planned. Therefore, in case where Town A is presently covered by the exchange in City B, even if demand in Town A grows from now on and reaches the degree fit for establishing a new exchange, new exchange establishment is not considered, in principle, in the long term plan.

Result of demand distribution by exchange is in Volume II, CHAPTER 2.

4.2 TELEX, Telegram and Other Service Distribution

4.2.1 TELEX and telegram service

As previously stated, up to 93% of TELEX subscribers are concentrated in Greater Colombo Area and Trade Free Zone. This fact is considered not to change in the future either, because TELEX subscribers are mainly business corporations, shops and post offices. TELEX service distribution to other cities, towns and villages is taken up for consideration in same way as distribution of telephone demand.


Table 3-11 Demand Distribution of TELEX

		Managa		Col	ombo		Vande	Galle	August	
х	Year	Macro Demand	GCA	FTZ	Others	Sub Total	Kandy TSC	TSC	Anurad TSC	Total
7 8	1984 1985	1100 1642	967 1449	56 82	25 36	81 1567	34 49	13 18	5 8	52 75
13	1990	4768	4191	238	105	4534	157	53 2 53	24	234
18 23	1995 2000	9344 12410	8213 10908	467 621	206 273	8886 11802	308 410	103 136	47 62	458 608

4.2.2 Other services

For new services to be provided by the leased circuits, other than new services to be provided to general telephone subscribers, also demand sources will be almost completely in Greater Colombo Area as in the case of TELEX service. Hence no particular consideration of service distribution to other cities, towns and villages.

CHAPTER 4 TRAFFIC FORECAST AND CIRCUIT REQUIREMENTS

Panádura Exchange Carrier Room

CHAPTER 4 TRAFFIC FORECAST AND CIRCUIT REQUIREMENTS

1. TRAFFIC FORECAST METHODOLOGY

1.1 Originating Calling Rate Estimate

Originating calling rate usually differs from exchange by exchange, depending upon the subscriber category and/or the number of subscribers according to the size of town, as well as the character of town. And it also varies broadly by hour, day and month, and season. Therefore, unless time series traffic data by considerably long term investigation is available, accurate originating calling rate estimate is impracticable.

In this long term plan, correlation between originating calling rate and number of subscribers of each exchange is obtained from traffic records of several exchanges measured by SLTD, and this correlation is assorted into patterns as under.

(1) Other area than Greater Colombo Area

No. of Subscribers	Originating Calling Rate
	(Erlang)
1 2 000	. 0.065
1 - 2,000	0.065
2,001 - 5,000	0.055
Over 5,001	0.045

(2) Greater Colombo Area

In Greater Colombo Area as multi-exchange area, originating call rate differs conspicuously according to the character of area where the exchange concerned is located, i.e., commercial area, administrative area, industrial area or residence area.

In this long term plan, originating calling rate is uniformly patterned at 0.08 Erlang regardless of the number of subscribers. This is based on the result of Mount Lavinia Exchange traffic measurement by SLTD.

Traffic measurement data, 1983/84, is in Table 4-1.

Table 4-1 Result of Traffic Measurement, 1983/1984

Exchange	Working	Originating	Originating Calling Rate	Traffic Di	stribution
Code	Lines	Traffic (Erl)	(Erl./Sub)	TO NSC	FROM NSC
AWR	576	23.7	0.041	13.11	12,11
AMR	214			6.39	5.36
AVS	186			5.75	2.0
BDL	380	17.4	0.046	8.5	13.56
BTC	639			10.0	12.7
BNR	360			į	
CHW	188	4.7		3.0	3.4
GLE	1160	75.0	0.064	38.9	23.7
GMH	512	31.7	0.06	22.1	
HMB	117			7.58	4.75
HTN	401	19.3	0.048	14.2	8.58
JFN	1829	84.8	0.046	54.8	24.67
KLM	345			8.11	5.78
KND	2317	101.8	0.044	63.0	53.25
KLT	601			19.3	16.4
KGL	311				
KRG	606	37.8	0.062	15.0	
MNR	137			4.33	2.61
MTL	549	19.3	0.035	13.1	8.08
MTR	768	54.4		22.25	17.42
NWL	191	9.36	0.049	7.2	4.94
NGM	1163	48.0		22.1	21.0
NWR	557			9.53	12.72
PLN	204	17.5		7.5	8.5
PND	707	28.17	0.04	14.6	5.0
PTL	134			3.7	2.7
RTN	318	14.6	0.046	9.9	9.25
TRN	512	22.7		12.74	12.58
VTN	211			4.74	6.31
CO-CEN				. 53.4	154.3
CO-E 10B				77.6	61.1
CO-MV	4950	392	0.079	37.0	46.0
ISC	4550	372	0.075	14.97	147.0

1.2 Toll Call Ratio Estimate

Toll call ratio grows steadily as nationwide SLTD network improves. However, as the number of subscribers in local call area increases and as the area expands, local calls are to increase and toll call ratio lowers.

Result of toll call ratio measurement is in Table 4-2.

Table 4-2 Toll Call Ratio Measurement (1983/84)

Exchange	ANR	BDL	CNW	GLE	GMH	HTN	JFN	KND	KRG
Toll Call Ratio	55	49	64	52			64.6		40

Exchange		MTR	NMT	NGM	PLN	PND	RTN	TRN	CNT
Toll Call Ratio		41	77					56	10.3

From Table 4-2 above, it can be known that in Greater Colombo Area, the number of local calls is much greater than that number of toll calls; hence lower toll calling rate than in local cities. Thus, in this long term plan, twofold toll calling rate patterns are used, one for Greater Colombo Area and the other for local cities. That is to say,

(1)	Greater Colombo Area	15%
(2)	Local cities	70%

In local cities (single exchange areas), local calls (Intraoffice calls) account for 30%, i.e., the balance after excluding toll calls. In Greater Colombo Area, local calls comprise ordinary intraoffice calls and local junction calls. Therefore, on the assumption that the sum of local junction calls and toll calls accounts for 70%, junction circuit requirements are calculated in the Master Plan.

2. LOCAL EXCHANGE TRAFFIC FORECAST

Subscriber side traffic at local exchange (LE) can be obtained as under.

$$A_{s} = (C_{ORG} + C_{TER}) \times T$$

where

A_s: total originating/terminating traffic on subscriber side

Corolling calling rate

 $C_{\mbox{TER}}$: Terminating calling rate. Here, to be equal to $C_{\mbox{ORG}}$

: Number of subscribers

Trunk side traffic at local exchange is obtained by

$$A_{rp} = A_{s} \times P$$

where

 A_m : Trunk side traffic

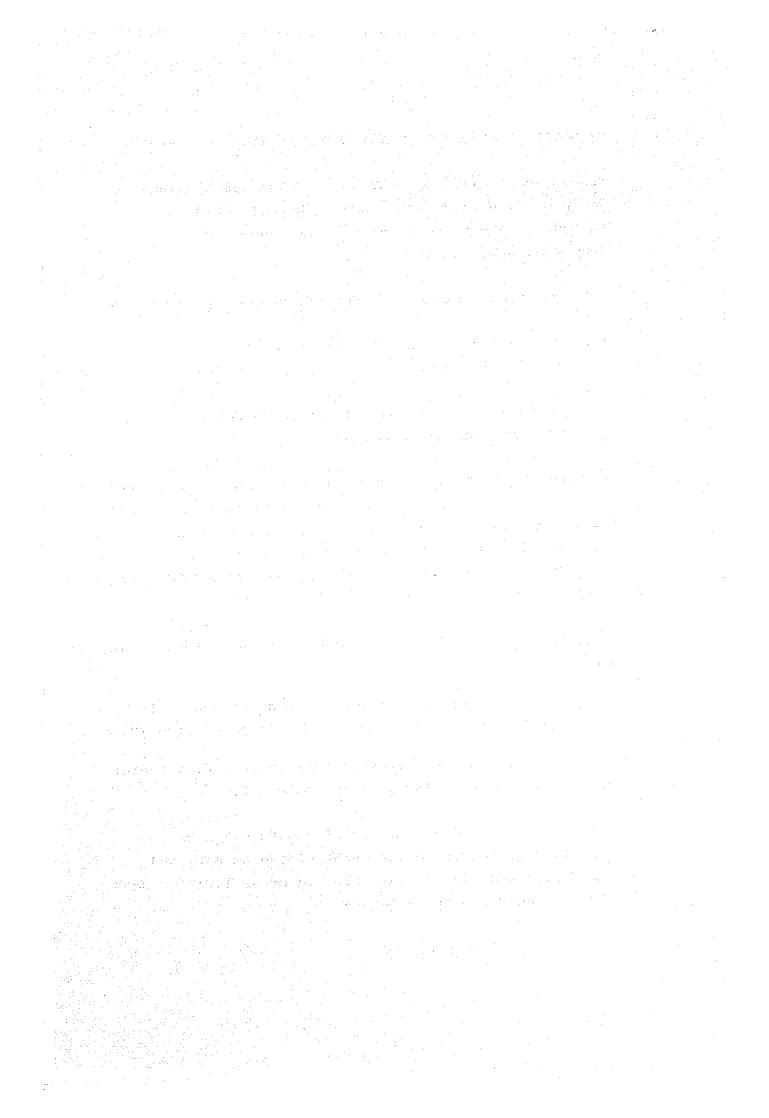
P: Toll calling rate

 $\mathbf{A}_{\mathbf{T}}$ value at each local exchange is in Volume II CHAPTER 3.

SECONDARY CENTER AND TERTIARY CENTER TRAFFIC FORECAST

Trunk side traffic $(A_{\underline{T}})$ at local exchanges obtained in the preceding paragraph 2 are to be collected at own secondary center and then to be exchanged on undermentioned routes.

- (1) To local exchange in the same secondary center area
- (2) To other area via own tertiary center (by final route)
- (3) To international route (fully provided route) via national center of Colombo


Exchange by exchange traffic records classified by the foregoing routes are not available. Therefore, in this long term plan, secondary and tertiary center traffic is estimated, based on "SLTD National Network Plan, Drawing No. TP-2209, dated April 9, 1984" prepared by SLTD (Fig. 4-1).

Traffic forecasts for years 1990, 1995 and 2000 are made by

A = A x (traffic increment rate as of year x in x 1985 secondary center area, compared with 1985)

Year by year traffic increment rate in secondary center area, compared with 1985, is in Table 4-3.

Traffic volume and circuit requirements between secondary center (hereafter abbreviated as SSC) and tertiary center (hereafter abbreviated as TSC) for each forecast year are in Table 4-4.

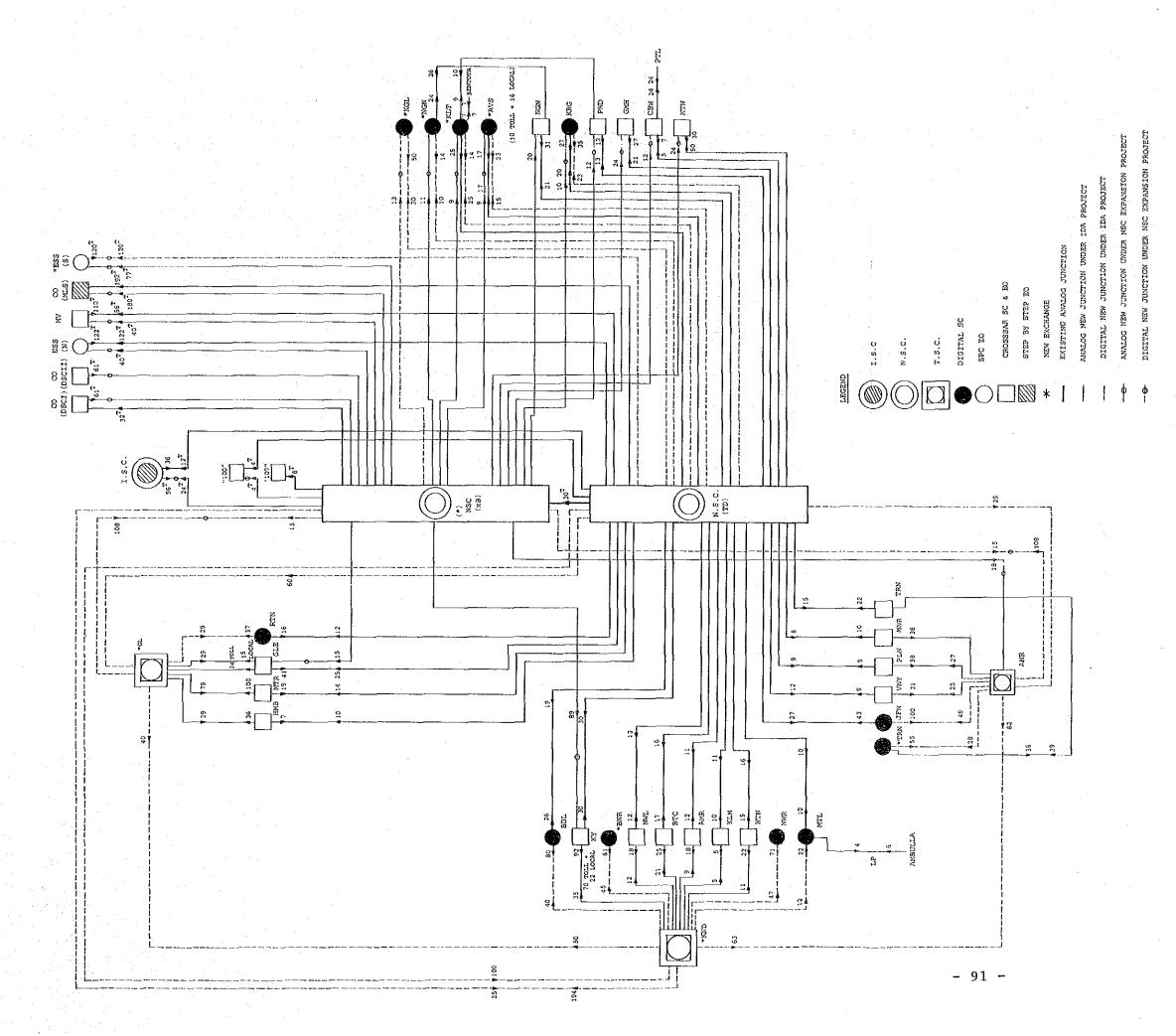


Figure 4-1 Sri Lanka National Network Plan 1985

Traffic forecast between TSC's is by the same method as above. Traffic volume and circuits required, given in the aforementioned SLTD National Network Plan, are used as forecasted requirements for 1985 (after IDA Project termination).

At present, between Galle TSC and Anuradapura TSC, no direct traffic is expected. However, in the future, more or less traffic, mainly of administrative communication, is considered to arise.

Traffic increment rate between TSC's compared with 1985 is obtained by means of comparison of the sum of outgoing and incoming traffics of all SSC's in each TSC area with 1985 equivalent. Calculation result is in Table 4-5.

Table 4-3 SSC-Traffic Growth Ratio

SSC Code		Traffic G	rowth Ratio	
SSC Code	1985	1900	1995	2000
CNT- KTN	1.00	1.64	3.10	4.71
CHW	1.00	1.93	3.64	6.76
KRG KGL	$\begin{array}{c} 1.00 \\ 1.00 \end{array}$	1.77 1.93	3.06 3.64	5.67 6.25
GMH	1.00	1.74	3.30	5.28
AVS	1.00	1.93	3.64	6.41
KLT	1.00	1.79	3.20	4.94
PND	1.00	1.69	2.75	4.90
NGN	1.00	1.65	3.13	5.46
CNT	1.00	1.90	3.51	6.32
PTL	1.00	1.93	3.66	6.00
			2.06	F 30
KND- MTL	1.00	1.69	3.26	5.32 5.01
BTC KLM	1.00	1.68 1.94	3.18 3.25	5.27
AMR	1.00	1.94	3.66	5.76
BDL	1.00	1.93	3.32	5.55
BNR	1.00	1.92	3.31	5.48
NWR	1.00	1.93	3.29	5.44
HTN	1.00	1.93	3.31	6.15
NMT	1.00	1.92	3.64	5,88
KND	1.00	1.89	3.45	6.00
GLE- RTN	1.00	1.77	3.34	5.42
HMB	1.00	1.93	3.63	6.74
MTR	1.00	1.74	2.93	5.44
GLE	1.00	1.69	3.11	5.77
	1 00	1 02	2 (2	C 10
ANR- MNR	1.00	1.93 1.93	3.62 3.60	6.10 6.62
JFN VNY	1.00	1.93	3.64	6.68
TRN	1.00	1.93	3.24	5.63
PLN	1.00	1.94	3.66	6.80

SSC Estimated Traffic and No. of Circuits Required Table 4-4 (1/2)

	<u> </u>	2.	349	68	8	269	8	[g	282	170	338	4658	146		g	285	147	188	233	246	258	<u> </u>	ñ	1638	П
	2002	<u>_</u>				_	_	_	-	 		93.1	}_) 		_	-			ļ	117	
	2	007	186	26	352	313	147	194	272	114	246	2997	146		245	296	137	243	733	334	383	283	747	912	
I RED		1 18	230	52	081	160	153	153	166,	101	185	2587	34		128	12.1	95	120	259	149	155	147	143	942	
CIRCUITS REQUIRED	1885	100	127	33	180	184	96	116	176	63	145	1664	94		154	189	88	158	(138,	202	234	175	157	525	
4		*	121	31	103	31	38	87	66	39	601	1400	17.		72	96	19	28	33.	3.6	86	56	150	516	
NUMBER OF	1990	100	72	21	116	104	55	98	105	46	. 32	006	54		83	106	52	68	255	123	142	107	88	288	
		<u>*</u>	7.6	1.1	53	43	45	41	51	34	62.	828	24	30 TO 10 TO	88	53	27	E	7.8	45	4.1	63	38	273	
	1985	100	39	i,	62	50	22	40	55.	22.	45	474	24		46	65	22	42	132	19	12	52	42	152	
-		3.	313.7	73.0	.296:0	241.9	213.8	236.5	226.7	148.9	304.7	4192.0	127.2	(6375.4)	131.9	239.0	128.1	160.7	389.6	221.9	231.8	210.5	201.1	1474.2	(3438.8)
	2002											3.7						- :							0
	2	00.1	165.3	42.6	315.4	281.3	128.3	173,1	244.5	97.0	221.1	2696.7	127.2	(4493.5)	220.2	266.0	118.6	217.7	659.3	300.9	350.2	254.6	222.3	820.8	(3430.6)
			.5	39.3	59.7	140.9	133.7	134.3	146.9	84.2	174.7	2	77.6		ķ.	151.7	19.0	7	-		139.2	 -	vs.	.7	
KG)	5	H	206.5	39	159	140	133	134	146	84	174	2328.2	77	(3626.0)	111.5	151	7.5	102.1	233.1	134.1	139	128.1	124-5	847.7	(2051.0)
(IN ERLANG)	1985	OUT	108.8	22.9	170.7	183.8	80.2	98.3	158.4	54.5	126.3	1497.4	9 22	(2559.4)	135.0	168.9	73.1	138-3	394.4	181.7	210.2	154.9	137.6	472.0	(2066.1)
2			13	8	•	1	2	2	2	2	-	3	9	Ŀ	60			-	10	~	"				
TED TRAFFIC		X.	109.2	20.8	92.4	74.7	70.5	71.2	82.2	51.7	92.1	1280.3	40.8	(1968.0)	57.8	1 08	47.1	54.1	135	77.8	81.6	7 97	65.7	464.4	(1138.8)
ESTIMATE	1990	<u>.</u>	57.8	12.2	98.8	86.9	42.3	52.1	38.6	33.5	8.38	810.5	40.9	(1380.2)	10.0	89.2	43.7	73.3	229.3	105.4	123.3	90.3	72.6	258.6	(1155.7)
		าบอ								ir A				(13	11.00				,		<i>i</i> .				Ξ
		×	9.39	10.8	52.2	38.7	40.5	36.9	45.9	30.8	55.8	663.3	21.2	(1062.5)	(9.0)	(14.43	(9.9)	(9:9)	(1531)	(40·§	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	(14.43	(11:75	(1077.1)	(805.7)
	. 1985		35.1	6.3	55.8	45.0	24.3	27.0	49.5	18.8	40.5	9.	21.2		69	86	9.5	8,0	434	6.	6.	€	8		6
		100	3,5	Ą	5.5	4.	24	2.	48	15	40	428.6	. 21	(121 1)	(9.0)	(15.3)	(9.0)	(10.8)	(24.4)	(54.9	(63.9	(13.5)	(10.8)	(27.08	(613.8)
NAME	T	CODE	KTK	CHV	XRG .	גפר	СНЯ	AVS .	KLT	ONA	אפא	CHT	PTL		MŢĹ	8TC	KLM	AHR	SDL	BINE	O K X	Z.H	NOL	XUR	
SSC		TSC	CNT					-			100				GNX.		-				-	_	z.	~	H
' 	1		<u></u>		L	L		L	,	Ц		LJ	L_	Ļ.	L		L	l	L	L	L	Ļ		li	Ш

SSC Estimated Traffic and No. of Circuits Required Table 4-4 (2/2)

1		ESTI	ESTIMATED TRAFFIC	₹	ERLANG)						NUMBER OF C	RCUITS	OF CIRCUITS REQUIRED	G		
	1985	The second second	1990	06	1995		2000		1985	35	1990	0	1995	95	2000	
1	OUT		DUT	18	TUO	N.	00.7	*-	OUT	2	100	**	100	ЖI	100	
	(14.4)	(8:01)	141.8	84.4	287.5	159.3	434.1	258.5	88	48	181	101	298	179	483	238
	38.7	(0:5)	86.9	85.1	163.4	160.1	303.3	297.2	20	49	114	102	184	081	337	331
	197:15	(12:6)	216.1	167.5	363.9	282.2	675.6	523.9	138	107	240	188	405	314	751	583
	(36.9)	(36.0)	184.0	165.8	338.7	305.1	628.4	266.0	121	103	205.	184	377	339	589	828
1.00	(358.2)	(288.2)	(618.8)	(502.9)	(1133.5)	(306.7)	(2041.4)	(1645.6)								
100	(3:6)	35.4)	88.2	0.69	189.0	136.3	318.4	248.9	58	46	105	84	210	155	354	277
~	(38:7)	(24:3)	323.1	178.9	607.7	336.5	1108.2	613.7	186	103	359	139	876	374	1232	682
[i i i	38.0	(33.3)	85.1	85.1	129.2	137.1	294.6	294.6	φ 9	48	102	102	148	156	328	328
•	(19.3)	(13:5)	172.0	100.7	277.1	162.3	501.6	293.9	66	28	192	811	308	182	258	327
	(8:3)	32.1)	97.8	78.6	184.5	148.2	342.7	275.1	26	45	115	32	205	163	381	308
l	(:)	(4.3)	129.6	129.6	244.9	244.3	403.0	403.0	84	84	148	148	273	273	448	448
3	(478.1)	(345.2)	(882.8)	(641.3)	(1632.4)	(1165.3)	(2368.5)	(2129.5)			-			-		

NOTE: No. of Circuits includes thare circuits for TEX or New Services.

Table 4-5 Traffic Increment Rate Between TSC's

Year	1986	1990	1996	2000
Colombo TSC	1.00	1.85	3.41	5.98
Galle TSC	1.00	1.73	3.16	5.70
Kandy TSC	1.00	1.88	3.37	5.59
Anuradapura TSC	1.00	1.87	3.41	6.21

For Colombo TSC - Galle TSC traffic, for instance, the increment ratios of each TSC differ considerably so that the mean value obtained by the method of least square is adopted.

Inter-TSC traffic forecast thus obtained is in Table 4-6.

Table	4-6	(1/4)	Inter-TSC	Traffic	Forecast	(1985)
Table	4-6	(2/4)	Inter-TSC	Traffic	Forecast	(1990)
Table	4-6	(3/4)	Inter-TSC	Traffic	Forecast	(1995)
Table	4-6	(4/4)	Inter-TSC	Traffic	Forecast	(2000)

Table 4-6 (1/4) Inter-TSC Traffic (1985)

To From	Colombo	Galle	Kandy	Anuradapura
Colombo		67.5	112.5	52.2
Galle	118.8		36.0	
Kandy	174.6	45.0		56.7
Anuradapura	97.2	. –	55.8	a ng

Table 4-6 (2/4) Inter-TSC Traffic (1990)

To From	Colombo	Galle	Kandy	Anuradapura
Colombo	- '.	120.9	209.8	97.1
Galle	212.8	ab.8*	65.0	
Kandy	325.6	81.3		106.3
Anuradapura	180.8	,	104.6	

Table 4-6 (3/4) Inter-TSC Traffic (1995)

To From	Colombo	Galle	Kandy	Anuradapura
Colombo		221.9	381.4	178.0
Galle	351.4	-	117.6	39.1
Kandy	591.9	147.0		192.2
Anuradapura	298.4	31.9	189.2	

Table 4-6 (4/4) Inter-TSC Traffic (2000)

To From	Colombo	Galle	Kandy	Anuradapura
Colombo	–	394.3	651.2	318.2
Galle	624.5	-	203.2	70.9
Kandy	1010.6	254.0		335.0
Anuradapura	533.4	57.8	330.0	

4. CIRCUIT REQUIREMENTS

For circuit requirements, calculation is made, based on forecasted traffic volume for each forecast year as per the preceding paragraph and using Erlang-B formula at the call loss rate (1/100) described in CHAPTER 5.

- (1) Primary center secondary center circuit requirement: See Volume II CHAPTER 3.
- (2) Secondary center tertiary center circuit requirement: See Table 4-4.
- (3) Tertiary center tertiary center circuit requirement: See Table 4-7.

Foregoing are the point to point circuit requirements. When installation plan is formulated, there is need for overlaying the necessary number of circuits for each transmission route.

Table 4-7 (1/4) Circuits Required between TSC's (1985)

Table 4-7 (2/4) Circuits Required between TSC's (1990)

Table 4-7 (3/4) Circuits Required between TSC's (1995)

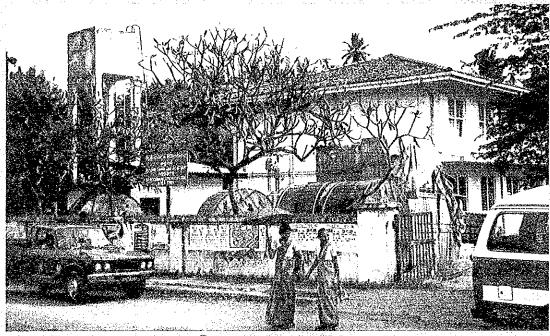
Table 4-7 (4/4) Circuits Required between TSC's (2000)

Table 4-7 (1/4) Circuits Required Between TSC's (1985)

To From	Colombo	Galle	Kandy	Anuradapura
Colombo		75	125	58
Galle	132	-	40	
Kandy	194	50	-	63
Anuradapura	108	-	62	_

Table 4-7 (2/4) Circuits Required Between TSC's (1990)

To	Colombo	Galle	Kandy	Anuradapura
Colombo		139	234	114
Galle	237	s-va	80	
Kandy	362	98	, ,	124
Anuradapura	201	. · · · -	122	-


Table 4-7 (3/4) Circuits Required Between TSC's (1995)

To From	Colombo	Galle	Kandy	Anuradapura
Colombo	•••	247	424	199
Galle	391	-	136	52
Kandy	658	167	wa.	214
Anuradapura	332	44	211	

Table 4-7 (4/4) Circuits Required Between TSC's (2000)

To From	Colombo	Galle	Kandy	Anuradapura
Colombo	•	439	724	354
Galle	694	-	226	86
Kandy	1123	283		373
Anuradapura	593	72	367	-

CHAPTER 5 NETWORK FUNDAMENTAL PLAN

Scene in front of Kalutara Exchange

CHAPTER 5 NETWORK FUNDAMENTAL PLAN

1. NATIONAL NUMBERING PLAN

1.1 Existing National Numbering Plan

National numbers in Sri Lanka are composed of trunk prefix "0" + toll exchange code + directory number (exchange number + subscriber number). In Colombo and several other multi-exchange areas, local calls require directory number dialling; however, in almost all other cities, subscriber numbers only are dialled for local calls.

The closed numbering scheme is planned in the Secondary Switching Center (SSC) area. According to this plan, calls to exchanges in the same SSC area do not require toll exchange code dialling. That is to say, directory number (exchange number + subscriber number) only is dialled. Special service numbers, though not standardized through the country at present, are to be standardized at three digits of "1XY" in the future. International STD calls are discriminated by international prefix "00".

For directory numbers in Colombo Tertiary Switching Center (TSC) area, both five-digit number and six-digit numbers are used whereas in local cities, four-digit numbers and five-digit numbers are mixed. Tables 5-1 and 5-2 present the existing national numbering plan in Sri Lanka. This numbering plan should be modified at an early opportunity because telephone demand has been broadly increased as a result of demand reassessment and also because the local exchange accommodation to toll exchange plan has been changed by IDA project and related projects.

1.2 Numbering Plan Modification

Numbering plan modification entrails much troubles on the competent authority, such as, exchange data program alteration for electronic switching equipment and subscriber familiarization with new numbering plan as well as plant record corrections of many kinds. Subscribers also cannot but be greatly inconvenienced before they become accustomed to the handling of new numbers.

For the establishment of new numbering plan, utmost care has to be exercised on the following points:

- (1) To make number allocations with sufficient room for satisfying new needs so that another numbering modification will not be necessary for a long time.
- (2) To so arrange that by the first digit or by the first and second digits the area discrimination is possible.
- (3) To reserve spare numbers for new services, such as mobile telephone and pocket bell services.

Table 4-3 introduces new numbering plan wherein the foregoing requirements are duly considered. This new numbering plan can cater for demand up to the year 2000 and even beyond.

The new numbering plan is to be put into practice as the case may be when new/additional switching equipment installation project is implemented. Especially in Colombo Area, the existing directory numbers are assigned by numbers in their hundredths for each exchange, the existing numbering plan should be gradually modified and rearranged.

1.3 Special Service Numbers

At present, special service numbers are not standardized throughout the country. They will be standardized at three digits of "1XY" in due course.

Now, in the Municipality of Colombo, emergency numbering (police, fire brigade and ambulance) consists of 22222 and 33333. This is to prevent misdialling. However, these days, dialling accuracy has been improved so that misdialling probability has been reduced. Thus, for emergency numbering also, three digit combination of "1XY" is to be used.

Table 5-2 presents the existing emergency and special service numbering.

1.4 TELEX Numbering Plan

As stated in CHAPTER 3, more than 93% of TELEX subscribers are concentrated in the Greater Colombo Area at present. Hence no national numbering plan worth the name. This trend of TELEX subscriber concentration in the Greater Colombo Area is considered to continue so that the existing five-digit numbering plan (2XXXX) does not need to be modified at least until 1995.

However, after 1995, as demand of TELEX exceeds 10,000 in the number of subscribers, the new numbering 3XXXX has to be additionally considered.

1.5 New Service Numbering Plan

Idle number of "10X" is to be utilized. Actual numbering plan consists of "10X" ("102", "103", "104", "105", "106", "107", "108", "109") + new service subscriber number. In the case of mobile telephone service, for example, the number is composed of "105" + XXXX, where XXXX is an exclusive mobile telephone number separate from telephone service number.

Table 5-1 Sri Lanka National Numbering Plan (1/6)

(A) Colombo T.S.C. Area		Code	D:	irecto	эху	Nur	mber
Colombo	01	Colombo I.S.C. Colombo Central Colombo City Colombo East Colombo North Colombo South Maradana Mt. Lavinia	32 48 51 55 9	**** **** **** **** **** ****	to to to	49 54 50	XXXX XXXX
Katunayaka	030		2	xxx	to	3	XXX
Negombo	031	Negombo Lunuwila Dunagaha Kochchikade Badalgama Sadalankawa	5 6 7 81	XXX XXX XXX XXX XX		4 85 89	
Chillaw	032	Chillaw Puttalan Karawil	5	XXX XXX XXX	to to	-	xxx xxx
Gampaha	033	Gampaha Veyangoda Veliveriya Mirigama	5	XXX XXX XXX	to	4	XXX

Table 5-1 Sri Lanka National Numbering Plan (2/6)

(A) Colombo T.S.C. Area	Code	Directory Number
Kalutara	034 Kalutara Panadura Horana Bandaragama Ingiriya Bentota Matugama Neboda Meegahatenna	2 XXXX to 3 XXX 4 XXXX 51 XXX 52 XXX 53 XXX 6 XXXX 71 XXX 72 XXX 74 XXX
Kegalle	035 Kegalle Rambakkana Mawanella Warakapola Aranayake Undogoda Kotiyakumbura Galapitamada	2 XXX to 4 XXX 5 XXX 6 XXX 7 XXX 81 XX to 85 XX 86 XX to 89 XX 91 XX to 95 XX 96 XX to 99 XX
Avissawella	036 Avissawella Kosgama Bulathkohupitiya Kitulgala Eneliyagoda Deraniyagala Yatiyantota	2 XXX to 4 XXX 5 XXX 6 XXX 7 XXX 8 XXX 91 XX to 95 XX 96 XX to 90 XX
Kurunegala	037 Kurunegala Kuliyapitiya Polgahawela Maho Pannala Wariyapola Giriulla Narammala Nikaweratiya Hettipola Ridigama Galagamuwa Nikadalupotha	2 XXXX to 3 XXXX 41 XXX to 42 XXX 43 XXX to 44 XXX 45 XXX 46 XXX 47 XXX 48 XXX 49 XXX 50 XXX 51 XXX 52 XXX 53 XXX 54 XXX

Table 5-1 Sri Lanka National Numbering Plan (3/6)

(B) Kandy T.S.C. Area		Code	Directory Number
Kandy	08	Kandy Peradeniya Katugastota	2 XXXX to 4 XXXX 8 XXXX 9 XXXX
		Gampola Galagedera Madulkele	5 XXXX 61 XXX 63 XXX
		Rikilagaskada Galaha Kadugannawa	65 XXX 67 XXX 71 XXX
		Digana Wattegama Pussellawa	74 XXX 76 XXX 78 XXX
Hatton	051	Hatton Talawakelle	2 XXX to 3 XXX 5 XXX
		Punduluoya Ginigathena	6 XXX 7 XXX
Nuwara Eliya	052	Nuwara Eliya Halgranoya Maturata	2 XXX to 4 XXX 5 XXX 6 XXX
		Ramboda Udapussellawa Watumulla	7 XXX 8 XXX 9 XXX
Nawalapitiya	054	Nawalapitiya Kotmale Dolosbage	2 XXX to 3 XXX 5 XXX 6 XXX
en de la companya de La companya de la co			
Badulla	055	Badulla	2 XXX to 3 XXX
		Moneragala	40 XX to 41 XX
		Mahiyangana	42 XX to 43 XX
		Passara Padiyatalawa	44 XX to 45 XX 46 XX to 47 XX
		Wellawaya	48 XX to 49 XX
		Namunukula	50 XX to 51 XX
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		Haliela	52 XX to 53 XX
		Bibile	54 XX to 55 XX
		Kandaketiya Madulsima	56 XX to 57 XX 58 XX to 59 XX

Table 5-1 Sri Lanka National Numbering Plan (4/6)

(B) Kandy T.S.C. Area	Code	Directory Number
Bandarawela	057 Bandarawela Welimada Ella Ampitikanda Haputale	2 XXX to 4 XXX 5 XXX 6 XXX 7 XXX 8 XXX
Ampara	063 Ampara Kalmunai Akkaraipattu	2 XXX 4 XXX 7 XXX
Batticaloa	065 Batticaloa Valachchenai	2 XXX to 3 XXX 7 XXX
Matale	066 Matale Weligamuwa Naula	2 XXX to 4 XXX 5 XXX 61 XX to 65 XX
	Elahera Mahawela Dambulla	66 XX to 60 XX 71 XX to 75 XX 8 XXX

(C) Anuradhapura T.S.C. Area	Code	Directory Number
Jaffna	021 Jaffna Karaveddy Telippalai Sitankerni Kayts Kilinochchi Chavakachcheri Pallai Pooneryn Delft Pungudutivu	2 XXXX to 3 XXXX 4 XXXX 5 XXXX 6 XXXX 7 XXXX 8 XXXX 91 XXX 92 XXX 93 XXX 94 XXX 95 XXX
Mannar	023 Mannar Murunkan Madhu Talaimannar	2 XXX 4 XXX 5 XXX 6 XXX

Table 5-1 Sri Lanka National Numbering Plan (5/6)

C) Anuradhapura T.S.C.	Area	. ,	Code	Director	y Number
Vavuniya		024	Vavuniy	2 XXX t	o 3 XXX
		section.	Mankulam	5 XXX	
			Mullaitivu	6 XXX	
			Padaviya	7 XXX	
		4 6 20			
Anuradapura		025	Anuradapura	2 XXX t	o 3 XXX
*			Keikirawa		o 49 XX
				50 XX t	o 55 XX
			Medawachchiya	56 XX t	o 59 XX
Sept.			•		o 61 XX
			Tambuttegama	I :	o 69 XX
				1.	o 73 XX
			Kahatagasdigiliya		o 77 XX
· ·			Nochchiyagama		o 79 XX
	;			1	o 81 XX
			Galenbindunuwewa	1	o 83 XX
			Horowpothana		o 85 XX
. *			Kebitigollewa	86 XX t	o 87 XX
			•		
Trincomalee		026	Trincomalee	the second second second	o 4 XXX
			Chinabay	5 XXX	
			Kantalai	1	o 65 XX
			Kiliveddi		o 69 XX
	:	·	Kuchchaveli		o 74 XX
			Nilaveli	1	o 79 XX
			Toppur		o 81 XX
			Tampalakaman Morawewa		o 89 XX
			Pulmudai		o 82 XX o 95 XX
			Mutur		o 98 XX
			FIREGE	JUAN	. JU AA
					•
		Andrea :	tang menganakan di	<u> </u>	

Table 5-1 Sri Lanka National Numbering Plan (6/6)

(D)	Galle T.S.C. Area		Code	Director	y Nui	mber
	Polonnaruwa	027	Polonnaruwa Hingurakgoda	2 XXX t 5 XXX	0 3	XXX
					19.1	· .
	Galle	09	Galle Elpitiya	2 XXXX t	0 3	XXXX
		; * * :	Baddegama Habaraduwa	52 XXX 53 XXX		
		turius.	Kosgoda Udugama	54 XXX 55 XXX		
:			Imaduwa Talgaswela	56 XXX 57 XXX		
. :			Ambalangoda	8 XXX		
	Matara	041	Matara Weligama	2 XXX t 5 XXX	0 4	XXX
: :			Deniyaya Kamburupitiya Akuressa	6 XXX 7 XXX 8 XXX		
 -					<u> </u>	
	Ratnapura	045	Ratnapura Pelmadulla	2 XXX t	o 3	XXX
			Kalawana Kiriella	50 XX t	o 57	
			Rakwana Kolonne	1	o 67 o 69	
			Balangoda Timbolketiya	78 XX t	o 77 o 79	XX
			Embilipitiya Bambarabotuwa	85 XX t	o 84 o 89	XX
			Nivitigala	90 XX t	o 94	XX
	Hambantota	047	Hambantota	2 XXX		
		·	Tissamaharama Kataragama Tanamalwila		0 44	
			Tanamaiwiia Ambalantota Tangalle	5 XXX 6 XXX	o 49	ΛΛ
	i.		Tangarre Walasmulla Weeraketiya	70 t	o 74 o 79	
			Angunakolapelessa	1	0 84	

Table 5-2 Emergency and Special Service Numbering

Service	Code
Assistance and trunk booking	101
Emergency	125 *1
Priority trunk booking	120
Indian trunk booking	130
Directory Enquiries - Sinhala	136
Directory Enquiries - Tamil	137
Directory Enquiries - English	138
Enquiries - Sinhala	141
Enquiries - Tamil	151
Enquiries - English	161
Phonogram - Sinhala	131
Phonogram - Tamil	132
Phonogram - English	133
Telephone - Telegram	181
Time - Sinhala	102
Time - Tamil	103
Time - English	104
Complaints	121 *2
Testing by Faultsman	191
Faultsman's Ringback	129
Foreign Booking by SSC Operator	110
Overseas Trunk Booking	100

^{*1:} In Colombo area, 22222 for Police and 33333 for Fire and Ambulance

^{*2:} In Colombo area, 121 for Central SXS, 122 for Havelock Town SXS, 123 for Maradana SXS and 124 for other all exchanges.

Table 5-3 (A) (1/10) New Numbering Plan Proposed

TSC	ssc	ĹĔ	DIRECT NO. (PROPOSED)	CAPACITY in 2000x1.5	DEMAND
CNT	CNT	CO-Central	2xxx		Demand in 2000x1.5
	(01)	CO-city	32XXXX - 34XXXX		680902x1.5=1021353
		CO-East	48XXXX - 49XXXX		
		CO-North	51xxxx - 54xxxx		Refer to Table
		CO-South	55XXXX - 50XXXX		
** .		Maradana	9xxxx		
		Mt. Lavinia	71XXXX - 72XXXX		
·:	KTN (030)	Katunayaka	2XXXX - 3XXXX	20000	Demand in 2000x1.5 8440x1.5=12660
	NGM (031)	Negombo	2XXXX - 4XXXX 9XXXX	40000	22921x1.5=34382
	(0317	Lunwila	55XXX - 58XXX	4000	2189x1.5=3284
. :		Dunagaha	66xxx - 68xxx	3000	1587x1.5=2381
		Kochchikade	77XXX - 78XXX	2000	765x1.5=1148
		Badalgama	81XX - 85XX 80XX	600	383x1.5=575
	į	Samdalankawa	86XX - 89XX	400	201x1.5=302
-	CHW (032)	Chillaw Bingiriya			1922x1.5=2883 220x1.5=330
		Madampe Mundel Rajakadaluwa	22XXX - 29XXX	. 8000	851x1.5=1277 524 241x1.5=362 259x1.5=389
		Marawila	87XXX - 89XXX	3000	1558x1.5=2337
		Puttalam Anamaduwa Kalpitiya	52XXX - 59XXX	8000 8000	2361x1.5=3542 306x1.5=459 287x1.5=431 473 153x1.5=230
		Mađurankuli Mampuri		to the second	48x1.5=72
	GMH (033)	Gampaha Urapola	2XXXX - 3XXXX	20000	8136x1.5=12204
		Ganemulla Kalagedihena			
		Veyangoda	52XXX - 57XXX	6000	2113x1,5=3170
		Pallewela			115x1.5=173
		Pasyala Kaleliya		·	374×1.5≃561 390
		•			

Table 5-3 (A) (2/10) New Numbering Plan Proposed

rsc	SSC	LE	DIRECT NO. (PROPOSED)	CAPACITY in 2000x1.5	DEMAND
CNT	GMH (033)	Veliveriya Kirindiwila	66XXX - 67XXX	2000	929x1.5=1394
		Mirigama Kotadeniyawa	77XXX - 78XXX	2000	1120x1.5=1680
:	KLT (034)	Kalutara	2XXXX - 3XXXX	20000	7752x1.5=11628
	(031)	Bentota	6XXXX	10000	5649x1.5=8474
		Matugama Agalawatta	71XXX.73XXX 75XXX.76XXX	4000	2019x1.5=3029
		Latpandura Welipanna			
		Migahatenna	74XXX	1000	239x1.5=359
		Neboda Tebuwana	72XXX	1000	335×1.5=503
		Bulatlsinghala Mahagama	77xxx	1000	297x1.5=446
		Panadura	4XXXX.8XXXX	20000	10008×1.5=15012
		Bandaragama	52XXX	1000	660x1.5=990
		Horana Govinna	51XXX. 54XXX - 56XXX	4000	2151x1.5=3227
		Ingiriya	53 xxx	1000	354x1.5=531
	KGL (035)	Kegalle Ambanpitiya	22XXX - 27XXX	6000	3671x1.5=5507
		Rambukkana	5xxx	1000	612x1.5=918
		Mawanella Hemmatagama	66xxx - 67xxx	2000	1292x1.5=1938
	N Landon de la la	Warakapola	77XXX - 78XXX	2000	1100x1.5=1650
		Nelundeniya		· ·	96x1.5=144
		Galopitamada	96xx - 99xx	400	39x1.5=59
		Aranayake	81XX - 85XX	500	287x1.5=431
		Undugoda	86XX - 89XX	400	144x1.5=216
		Kotiyakumbura Tuntota	91XX - 95XX	500	201x1.5=302
	AVS (036)	Avissawella Dehiowita Labugama	22XXX - 25XXX	4000	2448x1.5=3672

Table 5-3 (A) (3/10) New Numbering Plan Proposed

rsc	ssc	LE	DIRECT NO. (PROPOSED)	CAPACITY in 2000x1.5	DEMAND
CNT	AVS (036)	Kosgama Hanwella Pugoda Waga	55XXX - 57XXX	3000	1636x1.5=2454
	<i>.</i>	Bulathokupitiya	6ххх	1000	163x1.5=245
ĺ		Kithulgala	7 XXX	1000	134x1.5=201
		Ehaliyagoda Parakaduwa Yogama	87XXX - 89XXX	3000	1435x1,5=2153
		Deraviyagala	95xxx	1000	316x1.5=474
		Ruwanwella Waharaka Yatiyantota	96XXX - 97XXX	2000	1091x1.5=1637
ļ	1.7			7.4	
	KRG (037)	Kurunegala Ibbagamuwa Kohilagedera Maspotha	2XXXX - 3XXXX	20000	9935x1.5=14903
	2 · ·	Mawathagama Pothuhera Uhumiya			
		Wellawa			
		Kuliyapitiya Udabadduwa	41XXX - 43XXX	3000	1711x1.5=2567
		Polgahawela Alawwa	44XXX - 46XXX	3000	1788x1.5=2682
		Wariyapola	47XXX - 48XXX	2000	698x1,5=1047
	·	Pannala Genawila	49XXX	1000	393x1.5=590
.	:	Maho	50xxx	1000	612x1,5=918
		Giriulla	51XXX	1000	622x1,5=933
		Narammala Katupotha	52XXX - 53XXX	2000	1053x1.5=1580
	,	Nikaweratiya	54xxx - 55xxx	2000	746x1.5=1119
		Hettipola Kobaigana	56xxx	1000	230x1.5=345
		Ridigama Vodangaslanda Gokarella Rambadagalla	57XXX	1000	537x1.5=806
		Galagmuwa	58XXX	1000	383x1.5=575
		Nikadalupotha	59 XXX	1000	134x1.5=201

Table 5-3 (A) (4/10) New Numbering Plan Proposed

-		أحالا جيموسيماسا يستحصنك لايبهوس سيحصر			,
TSC	`ssc	LE	DIRECT NO. (PROPOSED)	CAPACITY in 2000x1.5	DEMAND
KND	KND (08)	Kandy Gurudeniya Medamaranuwara Talatuoya	22XXXX - 27XXXX	60000	38521x1.5=57782
		Gampola	51XXX - 57XXX	7000	4455x1.5=6683
		Galagedara Hataraliyadda	61XXX - 62XXX	2000	785x1.5=1178
•		Madulkele	63XXX	1000	364x1.5=546
		Rikillagaskada Hangwanketla Hewahata	64XXX ~ 65XXX	2000	957x1.5=1436
		Galaha	66XXX - 67XXX	2000	698x1.5=1047
		Kaduganmawa Menikdiwela	71XXX - 74XXX	4000	2572x1.5=3858
		Digana ElKaduwa Panwila	75XXX - 76XXX	2000	1196x1.5=3858
		Pussellawa	58XXX	1000	603x1.5=905
		Peradeniya Daulgala Gelioya Murutalaiwa	88XXXX - 89XXXX	20000	7505x1.5=11258
		Katugastota Akurana Warallagama	98XXXX ~ 99XXXX	20000	6988x1.5=10482
		grafie de la companya			
	HTN (051)	Hatton Watagoda	21XXXX - 27XXXX	7000	4417x1.5=6626
		Norton Bridge	зххх	1000	278x1.5=417
		Watawala Ginigathena	7XXX - 8XXX	2000	900x1.5=1350
		Agarapatana	5XXX	1000	517x1.5=776
		Pundaluoya	6xxx	1000	507x1.5=761
5		Upcot	4XXX	1000	230x1.5=345
		Tillicountry	9XXX	1000	450x1.5=675

Table 5-3 (A) (5/10) New Numbering Plan Proposed

TSC	ssc	LE	DIRECT NO. (PROPOSED)	CAPACITY in 2000x1.5	DEMAND
KND	NWR (052)	Nuwara Eliya Kandapola Boragas Raddella	22XXXX - 23XXXX	20000	6979x1.5=10469
		Halgranoya	5xxx	1000	526×1.5=789
		Maturata Padiyapelella	бххх	1000	345x1.5=518
		Ramboda	7xxx	1000	239x1.5=359
		Udapussallawa	8xxx	1000	316x1.5=474
		Watumulla Nildandahinna	9xxx	1000	67x1.5=101
	a 1	Talawakele	31XXX - 32XXX	2000	1014x1.5=1521
		Maskeliya	33XXX - 34XXX	2000	775x1.5=1163
[· -		Bagawonytalawa	4XXX	1000	660x1.5=990
	NWL (054)	Nawalapitiya	2XXX - 4XXX 7XXX	4000	2648x1.5=3972
		Kotmale	5xxx	1000	287x1.5=431
		Dolosbage	61XX - 63XX	300	173x1.5=260
		Craig Herd	64XX - 65XX	200	67x1.5=101
	BDI. (044)	Badulla Demodara Ettampitiya Glen alpin Haliela	2 XXXX	10000	5996x1.5=8994
		Manaragala Buttala	40XXX - 42XXX	3000	1387x1.5;2081
İ		Mahiyangana	43XXX - 44XXX	2000	813×1.5=1220
	2.7	Passara Badalkumbura Lunugala	45xxx - 46xxx	2000	968x1.5=1452
		Padiyatalawa Mehaoya	47XX	1000	135x1.5=203
		Wellawaya	48XX	1000	259x1.5=389
		Namunukula	50XX - 53XX	400	239x1.5=359
		Bibile Medagama	54XX - 59XX	600	403x1.5=605
		Kandaketiya Madulsima	60xx 61xx - 63xx	100 300	29x1.5=44 144x1.5=216

Table 5-3 (A) (6/10) New Numbering Plan Proposed

TSC	SSC	LE	DIRECT NO. (PROPOSED)	CAPACITY in 2000x1.5	DEMAND
KND	BNR (057)	Bandarawela Diyatalawa Ella	2XXXX	10000	5088x1.5=7632
		Malwatta Welimada Gwutalawa	55XXX - 57XXX	3000	1406x1.5=2109
		Ampitikanda	7 x xx	1000	211x1.5=317
	·	Haputale Holdummulla	8xxx	1000	1148x1.5=1722
	·.:	Koslanda	9xxx	1000	306x1.5=459
	AMR	Ampara	21XXX - 25XXX	5000	2677x1.5=4016
	(063)	Kalmunai	41XXX - 48XXX	8000	5210x1.5=7815
		Akkarapattu	77XXX - 9XXX	3000	1941x1,5=2912
	BTC (065)	Batticaloa	2XXXX - 3XXXX	20000	9224x1.5=13836
	(003)	Valachchanai	7xxx - 9xxx	3000	1530x1.5=2295
	MTL	Matale Aukumbura Alawatugoda	2XXXX - 3XXXX	20000	7381×1.5=11087
	·	Wilgomuwa	5xxx	1000	
		Naula Golewela	61XXX - 62XXX	2000	1197x1,5=1796
		Kimbissa Nalanda			
		Elahara Bakamuna	66XX - 60XX	500	163x1.5=245
		Mahawela Madipola Madawala-ulpoth	71XX - 76XX	600	346x1.5=519
		Dambulla Habarana	88xx - 89xx	2000	909x1.5=1364
		Rottota Gammaduwa Laggala Masua Eliya	4xxx	1000	566x1.5=849

Table 5-3 (A) (7/10) New Numbering Plan Proposed

TSC	ssc	PSC	DIRECT NO. (PROPOSED)	CAPACITY in 2000x1.5	DEMAND
ANR	JFN (021)	Jaffna Atchuvely	22XXXX - 27XXXX	60000	37413x1.5=56120
		Chunnakam Kopay Manipay		, , ,	
j		Karaveddy Point-Pedru Valvetiturai	4xxxx	10000	3854x1.5≒5781
		Tellipallai Alaveddi Kankwanturai	5xxxx	10000	1416x1.5=2124
	-,	Sitankerni Panateruppu Vaddukkoddai	6xxxx	10000	1846x1.5=2769
		Kayts Karainagar Velanai	7xxxx	10000	1751x1.5=2627
		Kilinochchi	8xxxx	10000	2285x1.5=3428
		Chavakachcheri	91XXX.96XXX 97XXX	3000	1520x1.5=2280
	·	Pallai	92XXX	1000	354x1.5=531
		Pooneryn Punakari	93XXX	1000	115x1.5=173
		Punkudutivu Delft	94XXX.95XXX	2000	307x1.5=461
		Nainativu Avarankal			
	MNR (023)	Mannar Errukkalampiddi	22XXX ~ 25XXX	4000	2046x1.5=3069
		Murunkan Madu Road Madu Church	4xxx	1000	431x1.5=647
		Talaimannar	61XX ~ 65XX	500	259x1.5=389
		Pesalai	66XX - 69XX	400	144x1.5=216
	3, ¹	Uyilankulam Nantan	71XX - 74XX	400	211x1.5=317
		Adampan	75XX - 77XX	300	134x1.5=201
		Vidalativu	78XX - 79XX	200	58x1.5=87
		Chillavathura	81XX - 82XX	200	96x1.5=144

Table 5-3 (A) (8/10) New Numbering Plan Proposed

TSC	ssc	I,E	DIRECT NO. (PROPOSED)	CAPACITY in 2000x1.5	DEMAND
ANR	VNY (024)	Vavuniya Omantai	21XXX - 26XXX	6000	3489x1.5=5234
: .		Mankulam Tunukai Yogapuram	4xxx	1000	480x1.5=720
ļ	·	Mulativu	66XXX - 67XXX	2000	717x1.5=1076
		Padaviya	7xxx	1000	106x1.5=159
		Nedunkerni Pathkudiruppu Oddichudan Mulliyawalai	вххх	1000	471x1.5=707
	ANR (025)	Anuradhapura Mihintale Rambawa Talawa Tiripane	2XXXX - 3XXXX	20000	7410x1.5=1115
		Kekirawa Ipologama Maradankadawela Negampola Vijithapwa	44XXX ~ 45XXX	2000	1205x1.5=1808
		Medawachchiya Cheddikulam	6XXX	1000	546x1.5=819
		Tambuttegama	70XX - 73XX	400	163x1.5=245
		Kohatagasdigilliya Sippululam Ratmalgahawewa	74XX - 79XX	600	394x1.5=591
		Nochchiyagama	80XX - 83XX	400	220x1.5=330
		Galenbindunuwewa	87XX - 89XX	300	153x1.5=230
		Horowpatana	84XX - 86XX	300	182x1.5=273
·		Kebitigollewa	90XX - 93XX	400	220x1,5=330
		Eppawala Galnewa Maha Ibuppallama	4XXX	1000	641x1.5=962
	TRN (026)	Trincomalee	2XXXX	10000	5257x1.5=7886
	1020)	China-Bay Kinniya Kantalei	5XXX 61XX - 67XX	1000 700	632x1.5=948 431x1.5=647
		Kiliveddi	68XX - 69XX	200	58x1.5=87
		Kuchchaveli	70XX - 74XX	500	77x1.5=116

Table 5-3 (A) (9/10) New Numbering Plan Proposed

-						
T	sc	SSC	LE	DIRECT NO. (PROPOSED)	CAPACITY in 2000x1.5	DEMAND
7	NR	TRN (026)	Nilaveli	75xx - 79xx	500	268x1.5=402
			Seruwila Toppur	80XX - 81XX	200	68x1.5=102
-			Thampalakamam	85XX - 89XX	500	77x1.5=116
			Morawewa	90XX - 92XX	300	96x1,5=144
		± 14	Gomarankadawela			
			Pulmudai	93XX - 94XX	200	49x1.5=74
			Padavisipura			
	. !		Mutur	95xx - 99xx	500	278x1.5=417
		PLN (027)	Polonnaruwa	2XXX - 4XXX	3000	1950x1.5=2925
-	l		Hingurakgoda	5XXX - 6XXX	2000	918x1.5=1377
G	CLE	GLE (09)	Galle Dodanduwa	2XXXX - 4XXXX	30000	18305x1.5=27458
			Yakkalamulla Elpitiya Pitigala	50xxx - 51xxx	2000	852x1.5=1278
			Baddegama	52xxx.58xxx	2000	765x1.5=1148
	٠,٠		Habaraduwa Ahangama	53XXX.59XXX	2000	795x1.5=1193
			Kosgoda Urgasmanhndiya	54XXX	1000	393x1.5=590
	ļ	. 1	Udagama	55xxx	1000	220x1.5=330
			Imaduwa	56xxx	1000	239x1.5=359
			Talgasewela	57XXX	. 1000	115x1.5=173
		:	Ambalangoda	81XXX - 86XXX	6000	3747x1.5=5621
		MTR (041)	Matara	2XXXX - 3XXXX	20000	9731x1.5=14597
			Weligama	51XXX - 53XXX	3000	1625x1.5=2438
			Deniyaya Kotapola	61XXX	1000	718x1.5=1077
		,	Kanburupitiya Gomila	71XXX	1000	708×1.5=1062
			Dikwella	41xx - 48xx	800	488x1.5=732
		.	Hakmana Yatiyana	72XXX	1000	441x1.5=662
			Deiyandara Deiyandara			

Table 5-3 (A) (10/10) New Numbering Plan Proposed

	TSC	ssc	LE	DIRECT NO. (PROPOSED)	CAPACITY in 2000x1.5	DEMAND
	GLE	MTR (041)	Kottegoda	49XX - 40XX	200	125x1.5=188
		(041)	Morawaka	52XXX	1000	259x1.5=389
			Telijjawila	54XXX	1000	211x1.5=317
			Urubokka	63XXX	1000	192x1.5=288
	:		Akuressa	8XXX	1000	631x1.5=947
		11.1	Fig. 1. Fig. 1. Fig. 1.			
		RTN (045)	Ratnapura Kuruwita	2XXXX - 3XXXX	20000	7944x1.5=11916
		10 m	Pelmadulla	41XXX - 44XXX	4000	2668×1.5=4002
			Atakalampanna Kahawatta			
			Kalawana	50XX - 54XX	500	211x1.5=317
			Kiriella Ayagama	55x.59xx	500	212x1.5=318
			Rakwana Godakawela Kolonne	6xxx	1000	747x1.5=1121
			Balangoda	71XXX - 73XXX	3000	1673x1.5=2510
•			Bambarabotuwa	85XX - 89XX	500	134x1.5=201
			Niuitigala	9xxx	1000	708x1.5=1062
		нмв (047)	Hambantota	21XXX - 23XXX	3000	1635x1.5=2453
١		4	Tissamaharama	3 x xx	. 1000	679x1.5=1019
			Kataragama	40XX - 44XX	500	354x1.5=531
Ì		. •	Tanamalwila	45XX - 49XX	500	77x1.5=116
	,	·	Ambalantota Hungama	51XXX - 52XXX	2000	804x1.5=1206
			Embilipitiya	53XXX - 544XX	1500	803x1.5=1205
	- 1		Thimbolketiya	545XX - 546XX	200	125x1.5=188
			Tongalle	61XXX - 62XXX	2000	1358x1.5=2037
1			Beliatta	63XXX	1000	373x1.5=560
:		ing Physical Physical Control	Walasmulla	70XX - 74XX	500	297x1.5=446
		kji maki	Weeraketiya	75XX ~ 79XX	500	249x1.5=374
			Middeniya	90xx - 91xx	400	96x1.5=144
			Angunakolapelessa	80XX - 84XX	500	144x1.5=216

Table 5-3 (B) (1/3) New Numbering Plan Proposed (Greater Colombo Area)

DEMAND	(in 2000x1.5)		2396x1.5=3594	2500x1.5=3750	177493x1.5=266240	115280x1.5=172920	97681x1.5=146522	2035x1.5=3053	2688x1.5=4032	4750×1.5=7125	4445x1.5=8334	3556x1.5=5334
(PROPOSED)	PHASE 2		556XXX-559XXX	84XXX~87XXX	21XXXXX-23XXXXX	61xxxxx-62xxxxx	51XXXXX-52XXXXX	566XXX-568XXX	655XXX-658XXX	47xxxx	48XXXX	561XXX-568XXX
DIRECT NO.	PHASE 1		*3 SIXXXX-54XXXX	មា *	2XXX *1 32XXXX-34XXXX	*4 55XXXX-50XXXX	XXXX6	8*	* *	*2 48XXXX-49XXXX	*2	ጥ ' - የነ
EXCHANGE	(Existing)		578	0794	2, 3 540-549	8 580-589 500-503	6 590–599	5610-5614	555	536-537	525	5710-5714
TYPE OF	EQUIPMENT		E10-RSU	SxS	SxS Elo B	SxS E10-RSU	SxS E10-RSU	E10-RSU	E10-RSU	E10-RSU	E10-RSU	E10-RSU
HUNGHOXH HO HWEN		COLOMBO SSC	Angoda	Boralesgamuwa	Colombo Central	Co-Havelock Town	Co-Maradana	Hokandara	Homagama	Ja-Ela	Kadawata	Kaduwela
ပ္က	NO		Т	7	ю	サ	Ŋ	v	7	ω	Ø	10
၁၉၈	CODE		CNT		a paragraphy (18 and 18 an	******				,		

Table 5-3 (B) (2/3) New Numbering Plan Proposed (Greater Colombo Area)

DEMAND	(in 2000×1.5)	16362x1.5=24543	45949x1.5=85424	9216x1.5=13824	2195x1.5=3293	15265x1.5=22898	62428x1.5=96372	4141x1.5=62162	1048x1.5=1574	3417x1.5=5126	3438x1.5=5157	10772x1.5=16158
(PROPOSED)	PHASE 2	41XXXX-43XXXX	53XXXXX	64XXXX 651XXX-654XXX	466XXX-469XXX	81xxxx-82xxxx 831xxx-833xxx	70xxxx-79xxxx	631XXXX-636XXXX	66XXX-67XXX	834XXX-838XXX	461XXX-454XXX	44XXXX-45XXXX
DIRECT NO.	PHASE 1	*2	ო *	4.	*2	ហ *	*5 71XXXX-72XXXX	5 *	₺*	រភ *	*2	*2
EXCHANGE	CODE (Existing)	520~521	5615-5619 562-569	550~551	5715-5719	072	71	522-524 556-558	559	3620	538	530-531
TYPE OF	EQUIPMENT	E10-RSU	Elo-RSU	E10-RSU	E10-RSU	s S	C400	E10-RSU	E10-RSU	SxS	E10-RSU	E10-RSU
	NAME OF EXCHANGE	Kelaniya	Kotte	Maharagama	Malwana (Biyagama)	Moratuwa	Mount Lavinia	Nugegoda	Padukka	Piliyandala	Ragama	Wattala
SSC	NO.	11	12	13	4	15	16	17	18	19	20	21
šš	CODE	E L										

oss	U	CONTRACTOR CONTRACTOR	TYPE OF	EXCHANGE	DIRECT NO. (PROPOSED)	(PROPOSED)	DEMAND
CODE	NO.	NAME OF BACHANGE	EQUIPMENT	(Existing)	T ESWHC	PHASE 2	(in 2000×1.5)
CNT	22	Wellampitiya	E10-RSU	572	ო *	54XXXX 551XXX-555XXX	9813×1.5∞14720
,	23	Kollupitiya	E10-RSU	573-577	*1	241XXXX-244XXXX	22720x1.5=34080
	24	Mattakkuliya	E10-RSU	523-524	. ↑	245XXXX-246XXXX	10082x1.5=15123

2. CHARGING PLAN

2.1 Existing Telephone, TELEX, and Telegraph Tariff System

2.1.1 Telephone tariff

Telephone tariff system in Sri Lanka, established on February 1, 1984, appears in Table 5-4. International STD service and operator assisted international call service required deposits of Rs 5,000 and Rs 500, respectively, besides call tariffs.

2.1.2 TELEX tariff

TELEX tariff system established on February 1, 1984, appears in Table 5-5.

2.1.3 Telegraph tariff

Telegraph tariff system appears in Table 5-6.

2.1.4 Other tariffs

(1) Public pay telephone tariff

At present, local calls only are available at public pay telephones. Tariff is Rs 1/call regardless of call duration.

Recommendations for the future are to introduce, for local calls also, tariff by call duration based on 120 seconds as one unit, and to make toll calls also available, adopting multi-metering and charging system based on call duration and call distance.

Coin collecting slot now used at public pay telephones have to be modified should the existing Rs 1 coin be re-shaped or the tariff system be altered, causing another coin to be used. To avoid such trouble and also to prevent the loss of coins by pilferage, it is worth consideration to so arrange that each user should buy token coin at call office counter and pay call tariff with such token coin.

(2) Leased circuit, new service tariffs

For leased circuits and new services, no tariff system exists at present. However, considering that demand is taking shape, tariff system has to be established at any early opportunity.

2.2 Tariff Modification

When service tariffs are modified in the future, matters to be duly considered are as under.

(1) Not to apply pressure on SLTD finance

Modified tariff should be such that it can fully cover necessary expense for handling of each call. Such necessary expense includes initial expense share for equipment used, depreciation expense, annual expense of facilities maintenance, and SLTD manpower expense.

(2) To consider subscribers' purchasability

Telephone diffusion and tariff system are in inverse proportion. Should tariff level exceed

purchasability of subscribers, telephone demand is restrained. As a result, social and economic activities also suffer restraint.

Therefore, tariff modification should preferably be kept within the limits of real currency value fluctuations.

(3) Relationship with new service tariff

Tariff system to be newly established for the expected new services must be balanced with tariff system for the existing telephone and TELEX services.

2.3 Charging Equipment

CAMA (Centralized Automatic Message Accounting) equipment is to be installed at four TSCs by IDA Project. With CAMA, charging data for each toll call are recorded on magnetic tape by detailed billing system. Such magnetic tapes are transferred to Colombo Charging Center where they are processed en masse by computer system. However, in Colombo area, the number of subscribers will increase conspicuously in the future so that CAMA system with charging equipment installed at each local exchange will be adopted.

At present, data transmission from each TSC to Colombo Charging Center is by magnetic tape transportation. In the future, high speed data transmission by digital data circuits is to be realized.

Table 5-4 (1/2) Telecommunication Tariffs (As of December, 1984)

TELE	PHONE	
(1)	Connection Fees	
	Central Colombo STD exchanges:	Minimum - Rs. 10,000
	Other STD exchanges:	Minimum - Rs. 7,000
	Exchanges other than STD:	Minimum - Rs. 2,500
(2)	Annual Rentals	
	Business:	Rs. 900
	Residence:	Rs. 360
	Religious institutions:	Rs. 200

(3) Local Call Charges For every 120 seconds: Rs. 0.90

In the Greater Colombo Area, there are several stations within which local calls are charged on an untimed basis; however they are expected to be converted to a times basis by 1987.

LONG DISTANCE CALLS

(1)	Manual Exchanges		Every 3	minutes	
•		6 am	- 9 pm	9 pm	- 6 am
	Within the same Group Switching Center	Rs.	1.00	Rs.	1.00
	Less than 64 km	Rs.	3.00	Rs.	1.50
	Between 64 km - 177 km	Rs.	4.00	Rs.	2.00
	Over 177 km	Rs.	6.00	Rs.	3.00
(2)	Operator Connected STD		. •	Every ad	ditional
		Every 3	minutes	3 min	
		6 am-9 pm	9 pm-6 am	6 am-9 pm	9 pm-6 am
	With the same Group Switching Center	Rs. 2.65	2.65	1.65	1.65
	Less than 32 km	4.30	2.65	3.30	1.65
	Between 32 km - 80 km	6.40	3.70	5.40	2.70
	Between 80 km - 122 km	10.00	5.50	9.00	4.50
	Between 112 km - 193 km	11.80	6.40	10.80	5,40
	Over 193 km	17.20	9.10	16.20	8.10

Table 5-4 (2/2) Telecommunication Tariffs (As of December, 1984)

		74 76 16 1		
(3) Directly	Dialled STD	6 am	Per Rs	. 0.90 9 pm - 6 am
	the same Group ling Center		seconds	100 seconds
Less t	han 32 km	50		100
Betwee	en 32 km - 80 km	30		60
Betwee	n 80 km - 112 km	18		36
Betwee	en 112 km - 193 km	15		30
Over 1	93 km	. 10		20
(4) Internati	onal Calls	Directly	dialled	Operator connected
Static Calls		Per minute	First 3 minutes	Every additional minutes
India		Rs. 40	Rs. 120	Rs. 40
Japan		54	162	54
Saudi	Arabia	62	186	62
Singar	oore	54	162	54
U.K.		54	162	54
U.S.A.		62	186	62

Table 5-5 TELEX Tariff

(1) Connection Fees:	Rs. 200	in Maria de la Maria Regional	
(2) Annual Rentals Telex Machines:	Rs. 36,000		
Circuits (per mile):			
(3) Call Charges	Automatic	Operator co	nnected
Station to Station Calls to:	Per minute	First 3 Eve	ery additional minutes
India	Rs. 41	Rs. 123	Rs. 41
Japan	48	144	48
Saudi Arabia	54	162	54
Singapore	48	144	48
U.K.	48	144	48
U.S.A.	54	162	54
	•		

Table 5-6 Telegraph Tariff

Ordinary	10 words or less	Rs. 1.00
	Each additional word	Rs. 0.15
		Att the second of the second
Express	10 words or less	Rs. 2.00
	Each additional word	Rs. 0.30
Press	100 words or less	Rs. 5.00
	Each block of additional 50 words or less	Rs. 2.50
Deposits for T	'elegram	
Por 25 m	elegrams or less within one quarter	* * * * * * * * * * * * * * * * * * *

ROUTING PLAN

3.1 Exchange Hierarchy

Toll network zones are classified by the following three exchange hierarchies:

- A. Tertiary Switching Center (TSC)
- B. Secondary Switching Center (SSC)
- C. Local Exchange (LE)

In case where exchange establishment plan is specified, Satellite Office (SO) is considered besides the above three. For international network, International Switching Center (ISC) is established. For gate office between ISC and national network, National Switching Center (NSC) is established.

TSC is established at four cities, i.e., Colombo, Kandy, Galle and Anuradapura.

SSC is established at 29 cities as listed in Table 5-7.

At SSC, manual switch-board is established, in principle, to provide such special services as directory service and operator toll connection.

Table 5-7 Secondary Switching Center (SSC) Allocations

TSC	SSC
Colombo	Total: 9
	Colombo, Chillaw, Kurunegala, Negombo, Kegalle, Gampaha, Avissawella, Panadura, Kalutara
Kandy	Total: 10
	Kandy, Batticaloa, Matale, Nawalapitiya, Nuwara Eliya, Badulla, Hatton, Bandarawela, Ampara, Kalmunai
Galle	Total: 4
	Galle, Ratnapura, Matara, Hambantota
Anuradapura	Total: 6
and the state of t	Anuradapura, Jaffna, Mannar, Vavuniya, Trincomallee, Polonnaruwa

3.2 Network Configuration

3.2.1 Toll circuit

Toll circuits are classified into three types. They are:

A. Backbone circuit

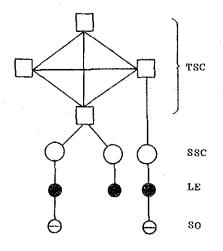
Backbone circuit connects an exchange to a higher ranking exchange to which the former belongs in accordance with exchange hierarchy. Backbone circuit is established between TSCs also.

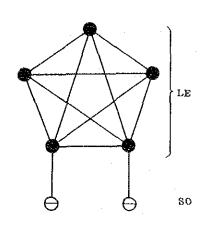
B. High usage circuit

High usage circuit is other circuit than backbone circuit. High usage circuit is established in case where considerable call volume exists between any two exchanges and where network configuration economy can be realized.

C. Exclusive international circuit

Called FP (Fully Provided Route) circuit is established directly from SSC to NSC-ISC, to be exclusively used for international calls.


Purposes of establishing FP are twofold. One is to secure international circuit independent of national toll circuit which is relatively small in capacity and becomes wholly occupied when traffic increases unexpectedly. The other is to avoid difficulty of offering signals and calling subscriber number verification signal transmission from ISC by way of general backbone circuit. (In this case, FP is established from ISC-NSC directly to SSC.)


However, as toll network becomes fully equipped from now forward and, at the same time, as R2 signal and digital switching equipment are introduced, making signal transmission easy, FP becomes less and less necessary. Therefore, after 1990, FP is to be incorporated into general toll circuit.

3.2.2 Network configuration

Standard network configuration appears in Figure 5-1.

A. TSC - TSC: Mesh type
B. TSC - SSC: Star type
C. SSC - LE: Star type
D. Multi-exchange area: Mesh type

1) Toll Network

2) Local Network in Multi-Exchange Area

Figure 5-1 Network Configuration

3.3 Grade of Service

3.3.1 Overall grade of service

Grade of services between arbitrarily chosen two LEs are as under.

- A. Toll connection: Less than 7%
- B. Local connection: Less than 4%

3.3.2 Loss probability distribution

Loss probability distribution to each circuit section is as under.

- A. 1 stage of backbone circuit: 1%
- B. Manual SSC LE: 3%
- C. Multi-exchange area

LE - LE: 2%

LE - SE: 1

3.4 International Network

All international calls are concentrated at National Switching Center (NSC), Colombo, via FP at present and via general toll circuit in the future, and are switched at International Switching Center (ISC).

4. TRANSMISSION PLAN

4.1 Introduction

Main objective of transmission plan is to determine correctly transmission quality distribution in digitalized national telephone network and make sure of required speech quality of national and international calls at reasonable cost.

Transmission plan contains "Error Performance Objectives for Digital Connection". This is in consideration of possibilities that telecommunication services may be provided by integrated service digital network (ISDN) in the future.

4.2 Standard for Transmission Quality Distribution

4.2.1 Transmission quality measurement

Generally, transmission quality of telephone circuit is expressed by reference equivalent (RE). Now, by International Telegraph and Telephone Consultative Committee (CCITT), speech quality measuring unit is being changed from RE to LR (loudness rating) though the use of RE is still admitted. At the present stage, RE is more commonly used than LR. Therefore, in this transmission plan also, RE is adopted as transmission quality measuring unit.

4.2.2 Transmission quality requirement

Transmission quality must be such that the most part of subscribers can be satisfied in telephone conversations. To reduce transmission loss of subscriber's line, conductor diameter must be increased. This requires a large amount of investment.

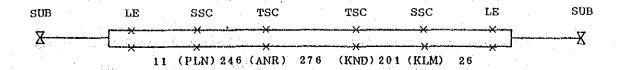
On the other hand, reducing transmission loss of carrier circuit requires no extra investment.

Thus, on backbone route between two local exchanges, technically possible minimum transmission loss is distributed. Concretely speaking, minimum transmission loss is determined by the degree of stability and echo of 4-wire circuit.

Telephone circuit RE is equal to transmission loss measured by the undermentioned reference frequencies.

(a) In case of carrier circuit or loaded circuit:

800 Hz


- (b) In case of non-loaded circuit
 (including subscriber's line): 1,600 Hz
- 4.3 RE Distribution Standard

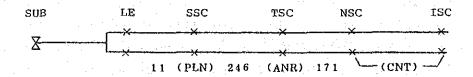
建砂 化加热电流 医成形 经实际帐户 医二

4.3.1 Circuit configuration for national connection

As stated in paragraph 3, ROUTING PLAN, almost all parts of telecommunication networks will be digitalized in the year 2000. On this assumption, circuit configuration considered to be the longest is taken up for study.

Circuit configuration considered to be the longest in Sri Lanka is illustrated below.

Note: Numeral denotes transmission route distance in km.


PLN: Polonnaruwa ANR: Anuradapura KND: Kandy

KLM: Kalmunai

Longest Transmission Route in Sri Lanka

4.3.2 National circuit configuration for international connection

National circuit configuration for international connection is illustrated below.

Note: Numeral denotes transmission route distance in km.

PLN: Polonnaruwa ANR: Anuradapura CNT: Colombo

National Circuit Configuration for International Connection

4.3.3 Stability and echo

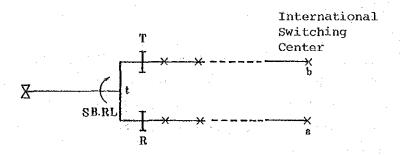
Minimum transmission loss is influenced by 4-wire loop singing and echo. In digitalized circuit, digital switch interfaces with subscriber circuit which is analog 2-wire circuit so that loop loss of 4-wire loop of the switch and propagation delay exert influence on transmission loss. Hence the need to determine transmission loss from the viewpoint of circuit stability and echo.

Digital subscriber switch holds 2-wire/4-wire hybrid terminating set to connect 2-wire subscriber line and 4-wire switching circuit. Therefore, balance return loss at terminating set influences loop loss of 4-wire loop.

Balance return loss is determined by subscriber line impedance characteristic and balancing network of hybrid terminating set. Subscriber line impedance characteristic varies broadly from one case to another so that it is important to identify this characteristic correctly.

Data concerning subscriber line impedance in Sri Lanka is not available. This time, the objective value of balance return loss described in CCITT Rec. G.121 is adopted. According to CCITT Rec. 121, stability balance return loss and echo balance return loss mean value objectives are as under.

Stability balance return loss: 6 dB, minimum


Echo balance return loss: 11 dB, minimum

4.4 Transmission Loss Distribution Plan

4.4.1 Stability

(1) National circuit for international connection

Circuit configuration is as under.

where

a, b: Virtual analog switching point

t: 2-wire/4-wire hybrid conversion point

SBRL: Stability balance return loss

National Circuit for International Connection

According to CCITT Rec. G.122, mean value of transmission loss of the path a-t-b in the circuit configuration shown above must satisfy

$$L a-t-b \ge 10 + n (dB)$$

where n denotes the number of links in analog 4-wire circuit.

In digital circuit, it is possible to eliminate transmission line loss, making it 0 dB, and loss fluctuation is negligibly small. Therefore, circuit loss is determined by the value of pads to

be inserted in 4-wire section of subscriber switch.

(In the illustration above, pads are shown by T and R.) Accordingly, transmission loss of the path a-t-b, i.e., L a-t-b, can be expressed as

$$L a-t-b = L a-t + SBRL + L t-b$$

= $T + R + SBRL$

where, SBRL denotes the stability balance return loss.

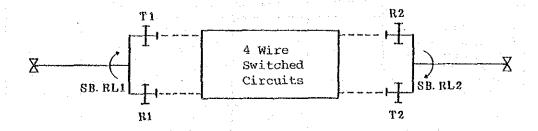
CCITT Rec. G.121 states that considering SBRL of 0 dB in the worst case, the sum of pad T and pad R must be 6 dB at a minimum. Table 5-8 presents the value of pads adopted in various countries of the world.

Here, study is made on the assumption of T + R = 7 dB (T = 0 dB; R = 7 dB).

Circuit configuration shown in paragraph 4.3.2 is taken up for study. Although all switches and transmission lines will be digitalized ultimately, International Switching Center will continue to be operated by analog switching system for a considerably long time to come so that study is made on condition that the link between National Switching Center (NSC) and International Switching Center (ISC) be the analog link. Therefore, the foregoing formula can be replaced by

$$T + R + SBRL \ge 10 + 2$$
 (dB)
 $7 + SBRL \ge 12$ (dB)

Assuming that mean value of SBRL can be obtained at 6 dB at a minimum as stated in paragraph 4.3.3, the above formulas can be satisfied.


Table 5-8 Values of R and T for Various Countries (G.121)

and the state of the second of

	Connection Type					
	Own Exchange		Local via a Digital Local Tandem		Trunk via Digital Trunk Exchanges	
	RdB	TdB	RdB	Дqв	RdB	TdB
Germany (F.R.) (For subscribers on short lines: R-10 dB, T-3 dB)	7.0	0	7.0	0	7.0	0
Australia	6	0	6	0	6	0
Austria	7	0	7	0	7	0
Belgium	7	0	7	0	7	0
Canada	0	0 .	3	0	. 6	0
Denmark	6	0	6	0	6	0
Spain	7	0	7	0	7	0
United States	3	0	6	0	7	0
Finland	7	0	7	0	7	0
France	7	0	 (Not used)	(Not used)	7	0
India	6	0	6	0	6	0
Italy	7	0	7	0	7	0
Japan	4	0	8	0	8	0
Norway	5	2	5	2	5	2
United Kingdom (Values shown are for median lines: additional loss is introduced on short local lines in both directions of transmission)	6	1	6	1	6	1
Sweden	5	. 0	5	0	5 (Nat.) 7 (Int.)	0 (Nat.) 0 (Int.)
USSR	7	0	7	0	7	0
Yugoslavia	7.	0	7	0	7	0
New Zealand	7	0.5	7.0	0.5	7	0.5

(2) Circuit for national connection

Circuit configuration in the form of equivalent circuit is as under.

For national circuit, mean value of 4-wire loop loss to obtain required stability must be 2 (10 + n) or more. That is to say,

$$(R1 + SBRL 1 + T1) + (R2 + SBRL 2 + T2) \ge 2 (10 + n) (dB)$$

In this transmission plan, digitalization of all national circuits is the objective. Therefore, n=0 is a safe assumption.

When the foregoing formula is applied to circuit configuration shown in Section 4.3.1, the result is

$$7 + SBRL 1 + 7 + SBRL 2 =$$

14 + (SBRL 1 + SBRL 2) \ge 20 (dB)

Assuming that mean values of SBRL 1 and SBRL 2 be 6 dB or more, respectively, the above requirement can be satisfied.

4.4.2 Echo study

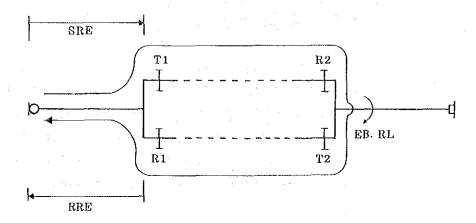
(1) National circuit for international connection

In order to minimize the influence of echo of international connection calls as per CCITT Rec. G.122, mean value of transmission loss of the path a-t-b must be (15 + n) dB or more. That is to say,

Le
$$a-t-b \ge 15 + n$$
 (dB)

Echo loss of the path a-t-b, i.e., Le a-t-b, can be expressed as

Le
$$a-t-b = R + T + EBRL$$


where EBRL is echo balance return loss. Therefore, the formula that applies is

$$7 + EBRL \ge 15 + 1$$
 (dB)

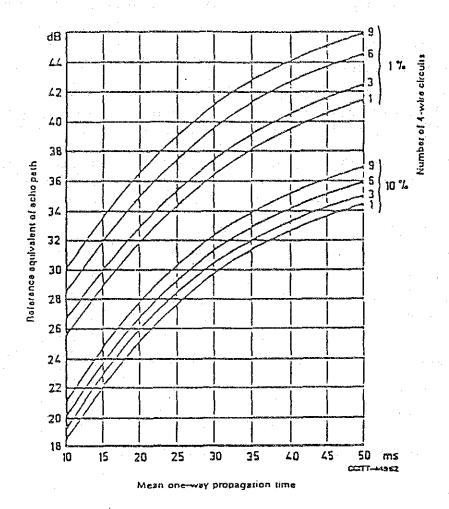
Thus, as stated in Section 4.3.3, when the objective value of EBRL is 11 dB at a minimum, the above requirement can be satisfied.

(2) Circuit for national connection

In the case of national connection, echo route of talker's echo and RE in echo path are as under.

Relationship between RE of echo path and transmission delay time is regulated in CCITT Rec. G.131. It is graphically presented in Figure 5-2. Propagation time by transmission systems are presented in CCITT Rec. G.114. They are listed in Table 5-9.

In the case of circuit configuration shown in paragraph 4.3.1, one-way propagation time is as under.


Digital	transmi	ssion	route	760 km	3.0	ms
Digital	switch	(LS)		2 exchanges	3.0	ms
Digital	switch	(TS)		4 exchanges	1.8	ms
			Total		7.8	ms

Thus, from Figure 5-2, allowable RE of echo path is set at 24 dB or more at risk rate of 1%.

Sending RE (SRE) of subscriber system depends upon the way of telephone set and subscriber's cable combination. This time, based on specifications adopted in Sri Lanka, RE at the time of connection to subscriber's line wherein conductor diameter is 0.5 mm and cable loss is 8 dB is determined as under.

Sending RE (SRE): 10 dB Receiving RE (RRE): -1 dB

As for national circuit for international connection, CCITT Rec. G.121 recommends that SRE in the section from subscriber to international switching point should be 6 dB or more at a minimum. To satisfy this requirement, near subscribers usually have a pad inserted in their telephone sets.

- Notes: 1. The percentages refer to the probability of encountering objectionable echo.
 - The reference equivalent of the echo path is here defined as the sum of:
 - the values of the transmission loss in the two directios of transmission between the 2-wire end of the talking subscriber's line in the terminal local exchange and the 2-wire terminals of the 4W/2W terminating set at the listener's end;
 - the mean value of the echo balance return loss at the listener's end; and
 - the simultaneous-minimum sending and receiving reference equivalents of subscribers' telephone sets and lines at the talker's local exchange.

Figure 5-2 Echo Tolerance Curve (G.131)

Table 5-9 Propagation Time by Transmission Systems (G.114)

Transmission medium	Contribution to one-way propagation time	Remarks
Terrestrial coaxial cable or radio relay system; FDM and digital transmission	4 µs/km	Allows for delay in repeaters and regenerators
Optical fibre cable system; digital transmission	5 µs/km	Allows for delay in repeaters and regenerators
Submarine coaxial cable system	6 μs/km	
Satellite system - 14,000 km altitude - 36,000 km altitude	110 ms 260 ms	Between earth stations only
FDM channel modulator or demodulator	0.75 ms	
FDM compandored channel modulator or demodulator	0.5 ms ^{b)}	
PCM coder or decoder	0.3 ms	Half the sum of propagation times
PCM-to-ADPCM-to-PCM transcoding	0.5 ms	in both directions of transmission
Transmultiplexer	1.5 ms ^{c)}	OI CIAISIII SSION
Digital transit exchange, digital- digital	0.45 ms ^{d)}	
Digital local exchange, analogue- analogue	1.5 ms ^{d)}	
Echo cancellers	1 ms ^{e)}	

- a) These values allow for group-delay distortion around frequencies of peak speech energy and for delay of intermediate higher order multiplex and through-connecting equipment.
- b) This value refers to FDM equipments designed to be used with a compandor and special
- c) For satellite digital communications where the transmultiplexer is located at the each station, this value may be increased to 3.3 ms.
- d) These are mean values: depending on traffic loading, higher values can be encountered, e.g. 0.75 ms (1.925 ms) with 0.95 probability of not exceeding. (For details see Recommendations Q.507 and Q.517.)
- e) Echo cancellers, when placed in service, will add a one-way propagation time of up to 1 ms in the send path of each echo canceller. This delay excludes the delay through any coded in the echo canceller. No significant delay should be incurred in the receive path of the echo canceller.

Here, the assumption is to use a pad of 3 dB. Under this condition,

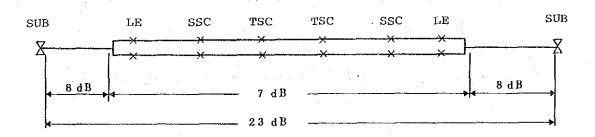
$$SRE = 5 dB$$

$$RRE = -6 dB$$

$$T1 = T2 = 0 dB$$

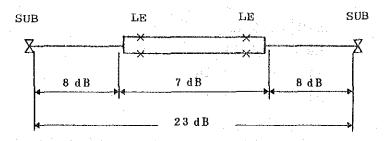
$$R1 = R2 = 7 dB$$

When these values are substituted in the formula to obtain RE of echo path, the result is


$$RE$$
 echo = 13 + $EBRL$

As the objective value of EBRL is 11 dB, the risk rate of 1% is satisfied.

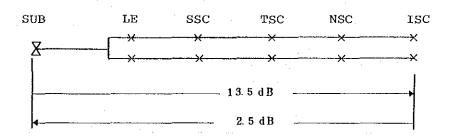
4.4.3 Transmission loss distribution plan


Based on stability and echo conditions examined in paragraphs 4.4.1 and 4.4.2, transmission loss is distributed as illustrated below.

(1) Toll connection

Transmission Loss Distribution (Toll Connection)

(2) Local connection

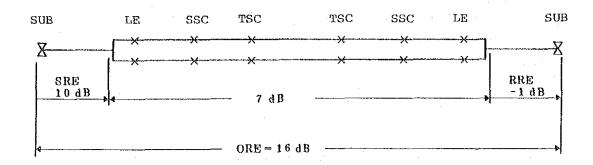


Transmission Loss Distribution (Local Connection)

4.5 Reference Equivalent (RE)

RE of each connection based on loss distribution plan made in paragraph 4.4 is described below.

(1) International connection


Reference Equivalent (International Connection)

For RE of national circuit for international connection, CCITT Rec. G.121 recommends as under.

SRE: 21 dB RRE: 12 dB

RE distribution in the above illustration complies with CCITT recommendation.

(2) National connection

Reference Equivalent (National Connection)

CCITT Rec. G.111 states that the desirable range of overall RE by subjective evaluation is from 6 to 18 dB. CCITT further recommends that the long term objective for overall RE in transmission plan should be 13 to 18 dB.

RE distribution in the above illustration complies with those CCITT recommendations.

4.6 Error Performance Objective for Digital Connection

The error performance objectives established in this transmission plan are in accordance with CCITT Rec. G.821.

Purposes of establishing objectives are twofold. They are:

(a) To facilitate service planning and terminal equipment designing by showing the expected bit error characteristics of future digital network. (b) To obtain precedent whereby to establish standards of ISDN transmission equipment and system characteristics.

4.6.1 Basic considerations

(1) Scope of application

The performance objectives are stated for both direction of 64 kbit/s circuit-switched connection used for telephony and for a "bearer channel" for data-type services.

(2) Error performance parameter

The performance objective is stated in terms of error performance parameters each of which is defined as follows:

"The percentage of averaging periods each of time interval To (To = one minute or one second) during which the bit error ratio (BER) exceeds the threshold value. The percentage is assessed over a period of the order of any month."

(3) Error contribution from network component

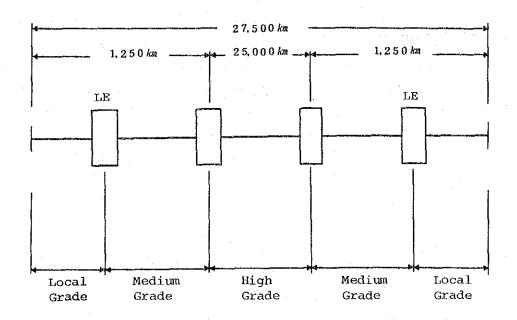
No account is taken for error contribution from either digital switching elements or digital multiplex equipments on the basis that it is negligible in comparison with the contribution from transmission systems.

4.6.2 Error performance objectives for international ISDN connections

International ISDN connections should meet all of the requirements fo the following table concurrently.

(Refer to CCITT Rec. G.821.)

Error Performance Objectives for International ISDN Connections


Performance Classification		Objective
(a)	Degraded Minutes	Fewer than 10% of one minute intervals to have a bit error ratio worse than 1×10^{-6}
(b)	Severely Errored Seconds	Fewer than 0.2% of one second intervals to have a bit error ratio worse than 1×10^{-3}
(c)	Errored Seconds	Fewer than 8% of one second intervals to have any errors (equivalent to 92% error free seconds)

4.6.3 Allocation of the error performance objectives

(1) Circuit quality demarcation of the international ISDN connection

Objective values given in Table 4-6 are for overall connections so that these values must be subdivided constituent parts.

Three distinct quality classifications have been indentified representative of practical digital transmission circuit and are independent of the transmission systems used. These classifications are termed local grade, medium grade and high grade and their usage generally tends to be dependent on their location within a network. (Refer to Figure below.)

Circuit Quality Demarcation of International ISDN Connection

- (2) Allocation method of the objectives
 - (a) Degraded minutes and errored seconds

The permitted degradations, i.e., 10% degraded minutes and 8% errored seconds, are allocated for the three circuit classifications as shown in Table below.

Allocation of Degraded Minutes and Errored Seconds Objectives

Circuit Classification	Distribution
Local grade (2 ends)	15% block allowance to each end
Medium grade (2 ends)	15% block allowance to each end
High grade	40%

(b) Severely errored seconds

The total allocation of 0.2% severely errored seconds is subdivided into each circuit classification in the following manner:

- (i) 0.1% is divided between the three circuit classifications in the same proportions as adopted for the other two objectives (see Table 3-2).
- (ii) The remaining 0.1% is a block allowance to medium and high grade classifications to accommodate the occurrence of adverse network conditions occasionally experienced (intended to mean the worst month of the year) on transmission systems.

(3) Distribution of objectives by grades

The application of the preceding item (2) to the paragraph 4.6.2 results in the allocation of the objectives for the circuit classifications. (Refer to Table below.)

Allocation of the Objectives for the Circuit Classification

		The service of the se		
	Bit Error Characteristics Objectives at 64 Kbit/s			
je se se vijek sako. Po stojna senja se	(a) Degraded Minutes	(b) Severely Errored Seconds		
Local grade	1.5%	0.015%	1.2%	
Medium grade	1.5%	0.015%	1.2%	
High grade	4.0% (0.00016%/km)	0.04% (0.004%/12,500 km)	3.2% (0.000128%/km)	

Note: The block allowances for the local and medium grade portions of the connection may be allocated as necessary within the total allowance of 3%, 0.03% or 2.4% for any one end of the connection.

5. SIGNALLING SYSTEM

5.1 Existing Signalling system

At present, for signalling between step-by-step switching systems and between step-by-step and other switching systems, DP signal is used. For signalling between electronic switching systems, between crossbar switching systems and between electronic and crossbar switching systems, R2 (MFC) signal of CCITT standard is used.

R2 signalling system is divided into two sub-systems, one for analog switching and the other for digital switching. For signalling between digital switching systems, digital R2 system is used. For signalling between analog switching systems and between digital and analog switching systems, analog R2 system is used.

On toll circuit, connections are by analog circuit in almost all cases at present. Therefore, even for signalling between digital switching system, analog R2 system is used. When CADS IV Project is completed, step-by-step exchanges will no longer exist in Greater Colombo Area so that signalling in that area will be solely by R2 system.

5.2 Signalling System Details

5.2.1 Line supervisory signal

(1) E&M signal

E&M signal is for carrier circuit. Out-of-band 3,825 Hz signal is used.

(2) DC loop signal

DC loop signal is for metallic circuit. This signal is for make and break of loop and for polarity reversal.

5.2.2 Register signal

(1) DP signal

8 PPS - 12 PPS

(2) R2 signal

A. Analog R2 signal

Analog R2 signal is used for signalling between analog (crossbar) switching systems and between digital and analog switching systems.

Signal frequency to be used is to comply with relevant CCITT recommendation.

Table 5-10 presents R2 signal implications currently used by SLTD.

B. Digital R2 signal

Digital R2 signal is used for signalling between digital switching systems. Signal specifications are in accordance with CCITT Rec. Q.421, Q.422 and Q.424.

Table 5-11 presents digital R2 signal code classification for PCM circuit in normal state.

5.3 Signal Tones

Singal tones applied in Sri Lanka at present differ from one switching system to another. Currently used signal tones are in Table 5-12.

in a particular to the first of the second o

Difference of signal tones according to switching systems is confusing to subscribers, causing incomplete, unsuccessful calls which can otherwise be avoided. Therefore, for switching systems to be newly introduced from now forward, signal tones should be standardized and recommended to two categories: to E 10 B exchange tone specifications in Colombo with adequate NUT (Number Unobtainable Tone) and to NEAX 61 exchange tone specifications in other cities than Colombo.

Table 5-10 (1/2) R2 Forward Signal Implications

Signal No.	Group I	Group II
1	Digit 1	Subscriber initiated call
2	Digit 2	
3	Digit 3	ing the second of the second o
4	Digit 4	CCB. Sub. initiated call
5	Digit 5	Operator initiated call
6	Digit 6	
7	Digit 7	
8	Digit 8	·
9	Digit 9	
10	Digit 0	
11	Access to interception	Spare
12	Spare	Spare
13	Access to maintenance equipment	Spare
14	Spare	Spare
15	End of A-number	No information about the A-party's category

Table 5-10 (2/2) R2 Backward Signal Implications

Signal No.	Group I	Group II
1 1	Send next digit (N+1)	una una
2	Send last but one digit (N-1)	
3	Change to reception of B. sig.	Subscriber engaged
4	Congestion	Congestion
5	Send category of A-party Send number of A-party	NU Tone (Not used at present)
6	Set up speech conditions	Subscriber line free with metering
7	Send last digit but two (n-2)	Subscriber line free without metering
8	Send last digit but three (n-3) (Not used at present)	PAST Some
9		
10		
11		
12		
13		
14		
15	 .	

Table 5-11 Digital R2 Signal Code Classification

	SIGNALLING			
STATE OF CIRCUIT	FORWARD	BACKWARD		
	$\mathtt{a_f}$ $\mathtt{b_f}$	a _b b _b		
Idle/Released	1 0	0		
Seized	0	0		
Seized acknowledged	0 0	1 1		
Answered	0 0	0 1		
Clear-back	0 0	1 1		
Clear-forward	0	0 1		
		1 1		
Blocked	1 0	1 1		

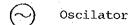
Table 5-12 List of Signalling Tones

	Frequency (Hz)	Periodicity (sec)
STROWGER exchanges	er in the second	
Dial tone	50	Continuous
Ringing tone	400 + 50 Hz	0.4 ON/0.2 OFF/0.4 ON/2.0 OFF
Busy tone	400	0.75 ON/0.75 OFF
NUT	400	Continuous
Crossbar exchanges		The second second second of the second secon
Dial tone	400	Continuous
Ringing tone	400	0.4 ON/0.2 OFF/0.4 ON/2.0 OFF
Busy tone	400	0.5 ON/0.5 OFF
NUT	400	Continuous
NEAX 61 exchanges		
	400	Continuous
Dial tone	400	0.4 ON/0.2 OFF/0.4 ON/2.0 OFF
Ringing tone	400	0.4 ON/0.2 OFF/0.4 ON/2.0 OFF 0.75 ON/0.75 OFF
Busy tone	400	Continuous
NUT :	400	Continuous
E10 B ayahangan		
E10 B exchanges		
Dial tone	425 ±5	Continuous
Ringing tone	425 ±5	0.4 ON/0.2 OFF/0.4 ON/2.0 OFF
Busy tone	425 ±5	0.75 ON/0.75 OFF
Process tone	425 ±5	0.05 ON/0.05 OFF

6. NETWORK SYNCHRONIZATION PLAN

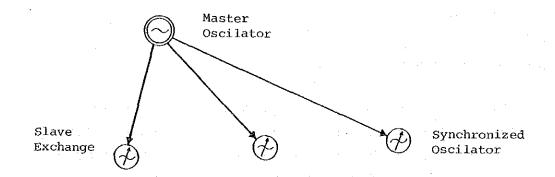
6.1 Network Synchronization Method

Principle of digital network operation is to transmit a plural number of information by one highway on time division basis. Thus, for divided time measurement, accurate clock frequency synchronization is necessary for all digital exchanges and digital transmission routes in the network.

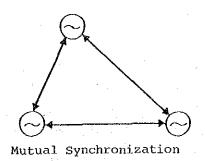

If synchronization goes wrong, omission or duplication of information takes place periodically. This causes click-like noise to occur on voice circuit and causes data circuit to transmit erroneous data.

Methods to synchronize clock frequency are threefold. They are:

- A. Independent Synchronization to make each clock source in the network fully independent.
- B. Mutual Synchronization, i.e., multiple loop control system controls the exchange frequency by means of phase difference between own exchange clock source and other exchange clock source in the network.
- C. Master-slave Synchronization to use specific exchange in the network as master exchange and other exchanges as slave exchanges, causing the latter to depend upon the former in clock operation.


Conceptual diagrams of three frequency synchronization methods follow:

Independent Synchronization



Master-slave Synchronization

Mutual Synchronization

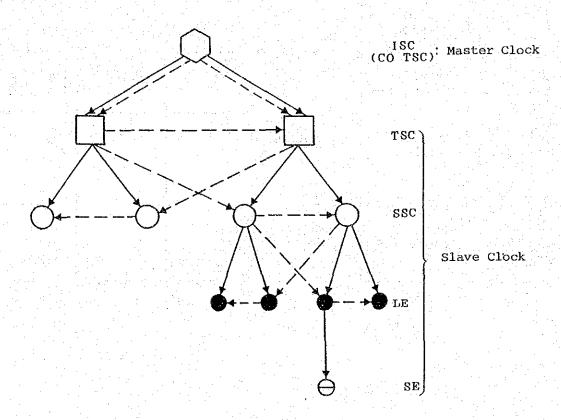
Methods of Frequency Synchronization

These three frequency synchronizations are respectively featured as under.

6.1.1 Independent synchronization

Fixed oscillator is installed at each exchange. This fact facilitates network expansion when necessary. Even if fixed oscillator at one exchange fails, fixed oscillators at other exchanges remain unaffected. However, this synchronization method requires high precision technology to the extent of $10^{-10} - 10^{-11}$ to keep oscillators at work, and such high precision can be attained by caesium element oscillator or the like only. Hence high cost.

6.1.2 Mutual synchronization


Based on other exchange clock source, home exchange frequency is controlled so that required oscillator precision can be 10^{-6} or thereabouts. Nevertheless, home exchange frequency control is by multiple loop system and this fact necessarily makes the whole network configuration complicated.

6.1.3 Master-slave synchronization

Required frequency precision can be 10^{-8} or thereabouts. Frequency control also is between master and slave exchanges only. Therefore, synchronization is relatively easy. When master exchange oscillator and distributor become faulty, slave exchange oscillator operates by itself and, where necessary, changes master oscillator to which it belongs, within allowable time limits.

6.2 National Network Synchronization Plan

In national network of Sri Lanka, master-slave synchronization system is adopted. International Switching Center (ISC) where caesium element oscillator is installed serves as master exchange. Following figure illustrates master exchange - slave exchange clock distribution in national network synchronization plan.

- denotes master exchange slave exchange
 synchronization system
- denotes alternative slave exchange synchronization
 system.

National Network Synchronization Plan

Table 5-13 presents specifications of currently adopted oscillators.

Table 5-13 Specifications of Currently Adopted Oscillators

The transport that the transport of a complete party that the contract and company and a contract

	services parameters.	. Titligher and siere			
Exchange	Type of	Specifications			
Hierarchy	Oscillator	Stability	Precision	Life	Redundancy
ISC	Cesium Clock		±1×10 ⁻¹¹	3 years	Triplica- tion
TSC (CNT)	Rubidium Clock	-	±1x10 ⁻⁹	10 years	Duplica- tion
TSC (KND, ANR GLE)	Quartz Clock (high accuracy)	±1x10 ⁻⁹ /day	±8×10 ⁻⁸	20 years	Duplica- tion
SSC LE SE	Quartz Clock	±1x10 ⁻⁵ /day	±3x10 ⁻⁵	20 years	Duplica- tion