ANNEX 3

Test Result/Data of the Servo-Drive System

CONTENTS

- 1. Antenna Drive System
- 1.1 Summary of Test Result
- 1.2 Test Data

La Cart

- (1) Auto Position Loop Transient Response
- (2) Error Voltage Gradient and Crosstalk of Tracking Receiver
- (3) Manual Position Loop Step Response
- (4) Tachometer Loop Frequency Response
- (5) Tachometer Loop Step Transient Response
- (6) Velocity and Acceleration Test
- (7) Drive Test
- (8) Degradation of Drive Motor
- (9) Degradation of Angle Detector
- (10) Control/Monitor and Alarm Function Test
- (11) Nominal Value at Check Point

1. Antenna Drive System

1.1 Summary of Test Result

No.	Survey Item	Results	Photograph
1)	Drive Motor		
1-1	AZ Drive Motors		2-1
	(a) Appearance	- Some dirt adhered	
	(b) Mechnical condition	- Surface of the commu-	
		tator is threading	
•	(c) Electrical condition	- Good	
		•	
1-2	EL drive Motors		2-2
	(a) Appearance	- Some paint peeling	
		- Some rust adhered	
	(b) Mechanical condition	- Good	
	(c) Electrical condition	- Slight degradation of	
		insulation resistance	4
•			
•	DODA		0.010.1
2)	DCPA		2-3/2-4
	(a) Appearance	- Some rust	
•	(b) Mechanical condition	- Good	
•	(c) Electrical condition	- Degradation of the	
		AZ 1/2 characteristics	
		- Some of the control	
		functions are not	
		operated	

No.	Survey Item	Results Photograph
3)	Antenna Control	2-5
	(a) Appearance	- Good
	(b) Mechanical Condition	- Good
	(c) Electrical Condition	- Control function: Good
•		- Angle Indicator (follow
		up servo) is not smoothly
		operated.
		- Cable Wrap Inidcator is
		not smoothly operated.
4)	Servo Control Amplifier	2-6
•	(a) Appearance	- Good
	(b) Mechanical Condition	- Good
	(c) Electrical Condition	- Degradation of some
		characteristics
5)	Tracking Demodulator	2-7
	(a) Appearance	- Good
	(b) Mechanical Condition	- Good
	(c) Electrical Condition	- Good
•		
6)	Tracking Down Converter	2-8
	(a) Appearance	- Good
	(b) Mechanical Condition	- Good
	(c) Electrical Condition	- 4G LNA is substituted
		for TD AMP
•		

	No.	Survey Item	Results	Photograph
	7)	Angle Detectors		
	7-1	AZ Angle Detector		2-9
		(a) Appearance	- Some dirt adhered	
		(b) Mechanical Condition	- Slight Eccentricity of	
			bellows coupling	
		(c) Electrical Condition	- Good	
	7-2	EL Angle Detector		2-10
		(a) Appearance	- Good	
		(b) Mechanical Condition	- Good	
		(c) Electrical Condition	- Good	
				en e
	8)	Limit Switches		
	8-1	AZ Limit Switches and cams		2-11
		(a) Appearance	- Some rust and	
			corrosion	
		(b) Mechanical Condition	- Not operating normally	
			(CW limit)	
		(c) Electrical Condition	- Same as above	
•	8-2	EL Limit Switches and cams		2-12
		(a) Appearance	- Good	
		(b) Mechanical condition	- Good	
		(c) Electrical condition	- Good	
	9)	400 Hz Power Supply		2-3
		(a) Appearance	- Some rust	
		(b) Mechanical Condition	- Cooling Fan has been	
			added	
		(c) Electrical Condition	- Good	

No.	Survey Item	Results	<u>Photograph</u>
10)	Safety Switches		
10-1	Main Reflector Hatch		2-14
	(a) Appearance	- Rust and corrosion	
	(b) Mechanical Condition	- Mechanical degradation	
	(c) Electrical Condition	- Operating Normally	
			· ·
10-2	Stow Pin Hole		2-15
	(a) Appearance	- Rust	
	(b) Mechanical Condition	- Good	
	(c) Electrical Condition	- Operating normally	
10-3	Manual handle		ento e e e e e e e e e e e e e e e e e e e
	(a) Appearance	- Some rust	
	(b) Mechanical Condition	- Good	•
	(c) Electrical Condition	- Operating normally	
			·
11)	Stow Lock Device		2-16
	(a) Appearance	- Some rust	
	(b) Mechanical Condition	- Good	
	(c) Electrical Condition	- Operating normally	
12)	Dehydrators		1+
,	(a) Appearance	- Good	
	(b) Mechanical Condition	- One of the dehydrator	is
		out of order	
	(c) Electrical Condition	- Same as above	
	, , ,	· · · · ·	

No.	Survey Item	Result
13)	Servo Loop Characteristics	
13-1	Tachometer loop	- some oscillation appears in the
		response under Azimuth 1/2
		single drive mode due to the
		degradation of AZ 1/2 DCPA.
13-2	Velocity and Acceleration	
	a) Maximum Velocity (AZ, EL)	- about 0.3 deg/sec
	b) Acceleration (AZ, EL)	- more than 0.3 deg/sec.sec
	c) Minimum Speed (AZ, EL)	- less than 0.002 deg/sec
13-3	Manual Position Loop	- some oscillation only appeares
	Transient Response	in the following combination
		due to the degradation of SCA
		characteristics:
		SCA ; A
		AXIS : EL
		Servo Type : I
		Servo Bandwidth : Narrow
13-4	Error Gradient and Crosstalk	
	a) Error Gradient	- approx. 20V/deg
	b) Crosstalk	- not less than -14 dB
13-5	Auto Position Loop	- Some symptom as 13-3,
	Transient Response	due to the degradation of SCA
	*.	characteristics
		·

1.2 Test Data

(1) AUTO POSITION LOOP TRANSIENT RESPONSE

DATE 24th Mar., 1986

Tested by Maker

 Purpose of the test
 To check the degradation of overall system characteristics based on the result of Auto Position transient Response measurement.

Test set-up
 Refer to the Fig.-1

3. Test Equipment

4 Pen Chart Recorder

YEW 2931 PHOTOCORDER

YEW 3132 DC AMP

Function Generator

WAVETEK MODEL 111

Voltage Controlled Generator

4. Test Procedure

Step 1 Setting antenna system automatic tracking mode by using satellite beacon frequency.

Applying the square wave form signal at the aproximately ± 0.2 Vp-p to the TEST IN terminal of AZ (EL) gain control panel of Serco Control Amplifier (SCA) by means of function generator, transent response is measured and recorded the tracking angle error at the SCA test output by means of chart recorder.

DATE 25th Mar., 1986

Tested by Motor

5. Test Result

		malrara	arnua nu	0vers	hoot	Settlin	g Time	Data Chast
Axis SCA TYPI	TYPE	SERVO BW	+	_	+	-	Data Sheet	
			Wide	21.6 %	59.3 %	6.9sec	6.0sec	1-1
	A	1	Medium	22.5 %	47.2 %	7.1sec	4.1sec	1-2
100			Narrow	46.7 %	53.3 %	4.8sec	2.2sec	1-3
AZ SINGLE)			Wide	55.5 %	72.0 %	1.1sec	2.6sec	1-4
e -		I	Medium	18.0 %	75.0 %	1.7sec	2.2sec	1-5
	n		Narrow	34.5 %	54.5 %	2.0sec	2.4sec	1-6
;	В	·	Wide	16.0 %	80.0 %	1.4sec	4.0sec	1-7
II	II	Medium	15.8 %	70.0 %	1.8sec	5.2sec	1-8	
		Narrow	18.0 %	9.9 %	1.8sec	2.3sec	1-9	
			Wide	0. %	0 %	1.3sec	1.7sec	2-1
	Å	I	Medium	0 %	0 %	1.7sec	1.3sec	2-2
			Narrow	0 %	0 %	1.1sec	1.4sec	2-3
			Wide	0 %	0 %	1.3sec	1.4sec	2-4
EL		1	Medium	0 %	0 %	1.4sec	1.5sec	2-5
В	מ		Narrow	0 %	0 %	1.1sec	1.3sec	2-6
	а		Wide	0 %	0 %	1.1sec	1.3sec	2-7
- ,		II	Medium	0 %	0 %	1.1sec	1.3sec	2-8
			Narrov	0 %	0 %	1.0sec	1.0sec	2-9

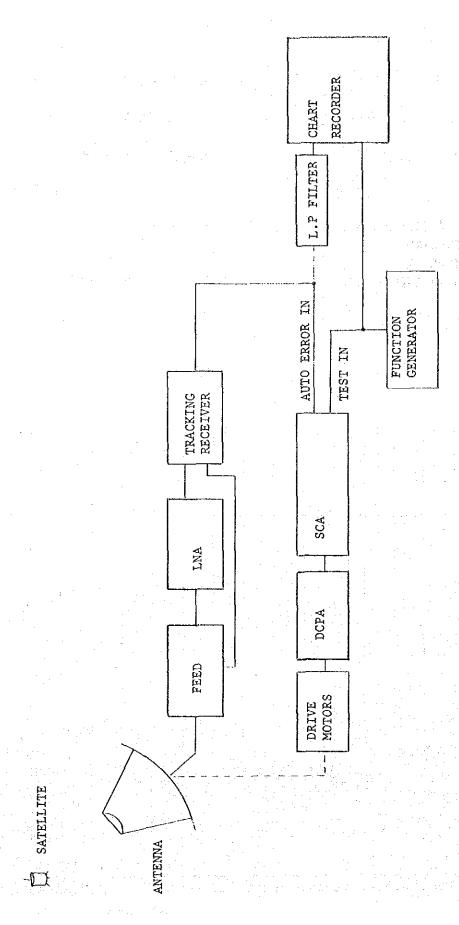


Fig. 1 Auto Position Loop Transient Response Connection Diagram

Data Sl	heet-1-1
DATE	25th Mar., 1986
	Anti

No.2 DCPA Single Drive SCA A ON-LINE SERVO TYPE: I SERVO BANDWIDTH: WIDE

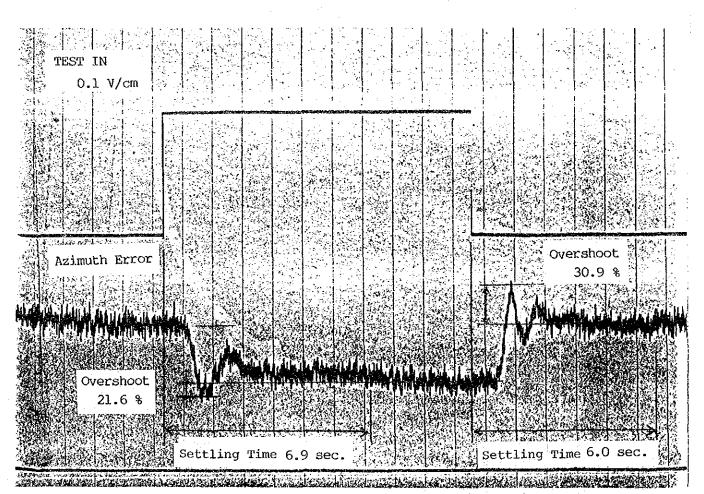
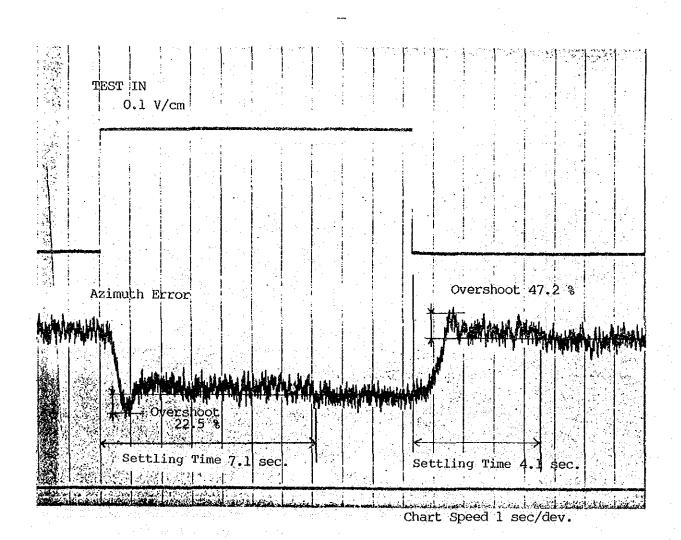


Chart Speed 1 sec/dev.

<u>Data</u>	Sheet-	1-2	

DATE 25th Mar., 1986

Tested by Makes


AZIMUTH

No.2 DCPA Single Drive

SCA A ON-LINE

SERVO TYPE: I

SERVO BANDWIDTH : MEDIUM

3-12

Data S	heet-1-3
DATE	25th Mar.,1986
	Aut.

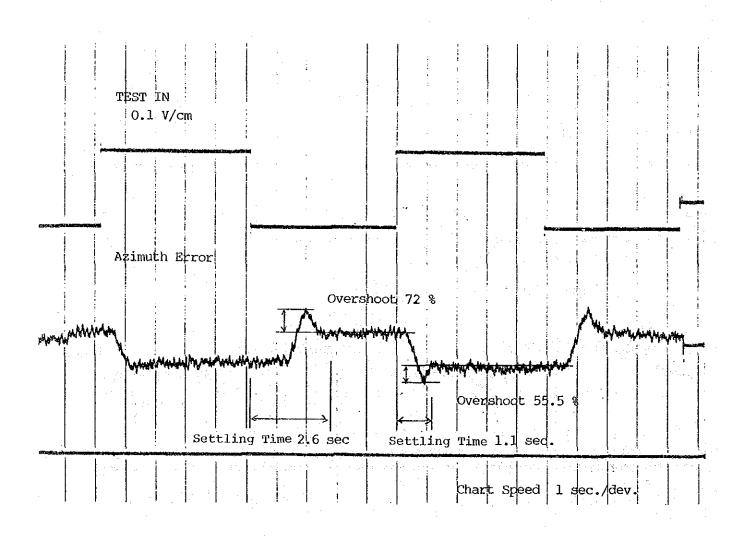
No.2 DCPA Single Drive SCA A ON-LINE SERVO TYPE: I SERVO BANDWIDTH: NARROW

AZIMUTH Error

AZIMUTH Error

Oceration

Settling Time & Settling Time

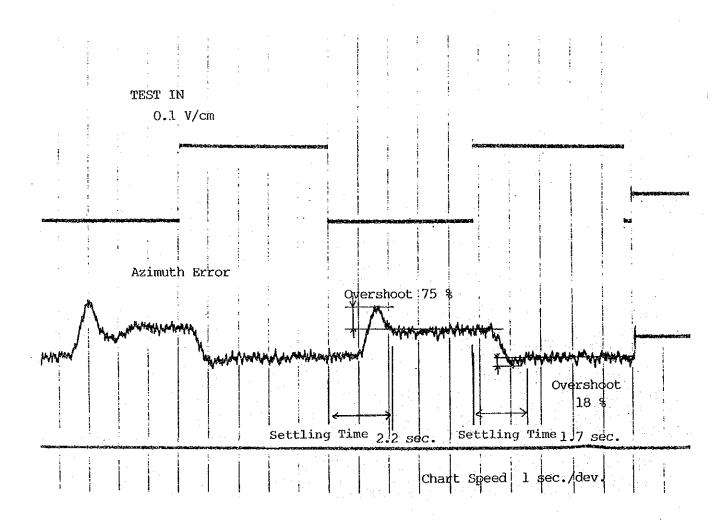

Chart Speed 1 sec./dev.

Data Sheet-1-4	
DATE 25th Mar., 1986	
Tested by Maker	

No.2 DCPA Single Drive

SCA B ON-LINE SERVO TYPE: I

SERVO BANDWIDTH : WIDE

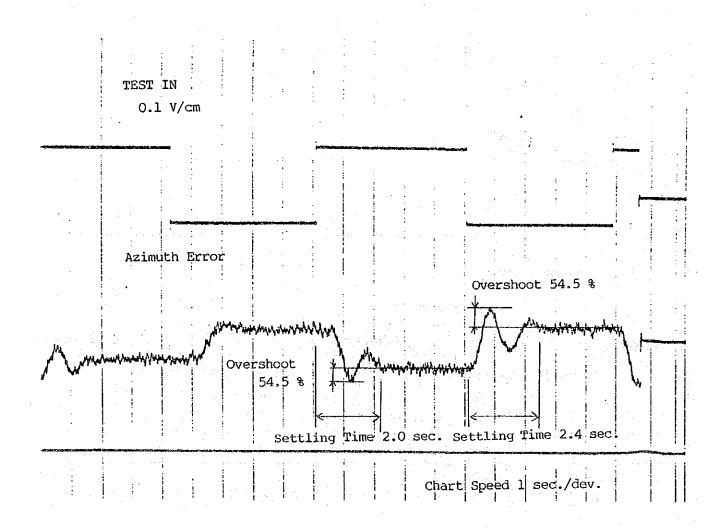


Data SI	neet-1-5
<u>DATE</u>	25th Mar., 1986
Tested	by Makin

No.2 DCPA Single Drive SCA B ON-LINE

SERVO TYPE: I

SERVO BANDWIDTH : MEDIUM

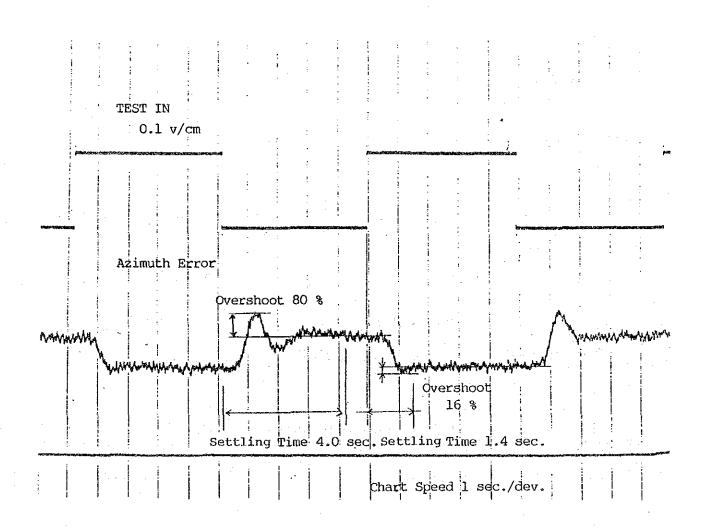

Data Sheet-1-6				
DATE	25th Mar.,1986			
Tacted	by Maker			

No.2 DCPA Single Drive

SCA B ON-LINE

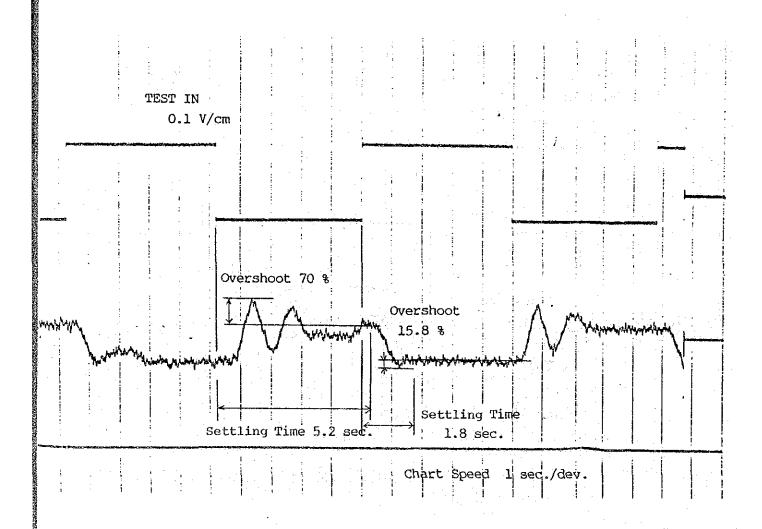
SERVO TYPE: I

SERVO BANDWIDTH : NARROW

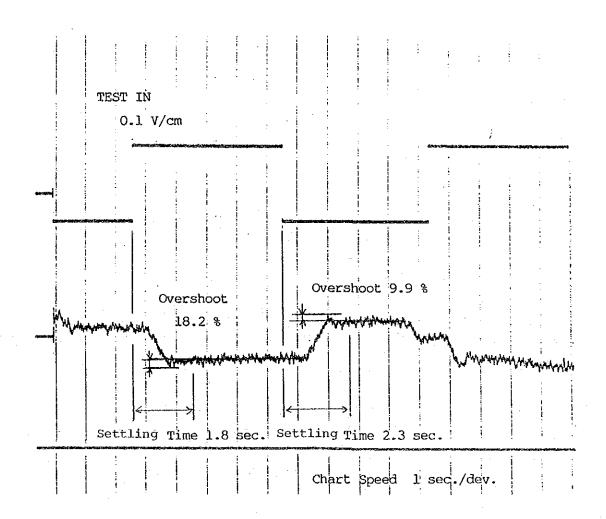

Data S	heet-1-7
DATE	25th Mar.,1986
T	Make

No.2 DCPA Single Drive

SCA B ON-LINE


SERVO TYPE: 11

SERVO BANDWIDTH : WIDE


Data S	heet-1-8
DATE	25th Mar. 1986
	anto

No.2 DCPA Single Drive SCA B ON-LINE SERVO TYPE: II SERVO BANDWIDTH: MEDIUM

Data Sl	eet-1-9	
DATE	25th Mar.,1986	
Tested	by Motor	

No.2 DCPA Single Drive SCA B ON-LINE SERVO TYPE: II SERVO BANDWIDTH: NARROW

Data Sheet-2-1

DATE 25th Mar., 1986

Tested by Maker

ELEVATION

DCPA Dual Drive SCA A ON-LINE SERVO TYPE: I

SERVO BANDWIDTH : WIDE

TEST IN
0.1 V/cm

Elevation Error

Settling Time 1.3 sec.

Settling Time 1.7 sec.

Chart Speed 1 sec./dev.

<u>Data S</u>	heet-2-2
DATE	25th Mar., 1986
Tantad	At Sow

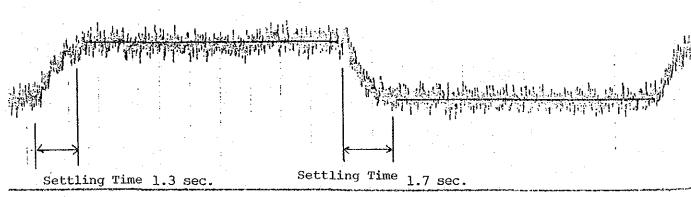
ELEVATION

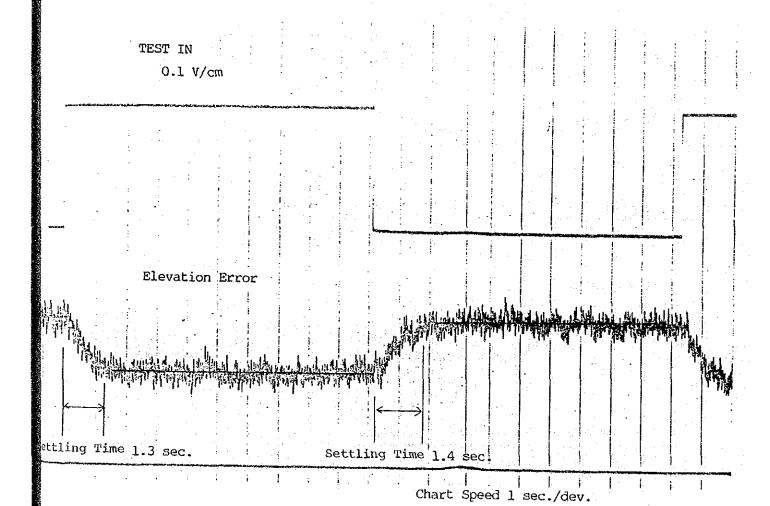
DCPA Dual Drive SCA A ON-LINE SERVO TYPE: I

SERVO BANDWIDTH : MEDIUM

TEST IN 0.1 V/cm

Elevation Error




Chart Speed 1 sec./dev.

Data Sheet-2-3

DATE 25th Mar. 1986

ELEVATION

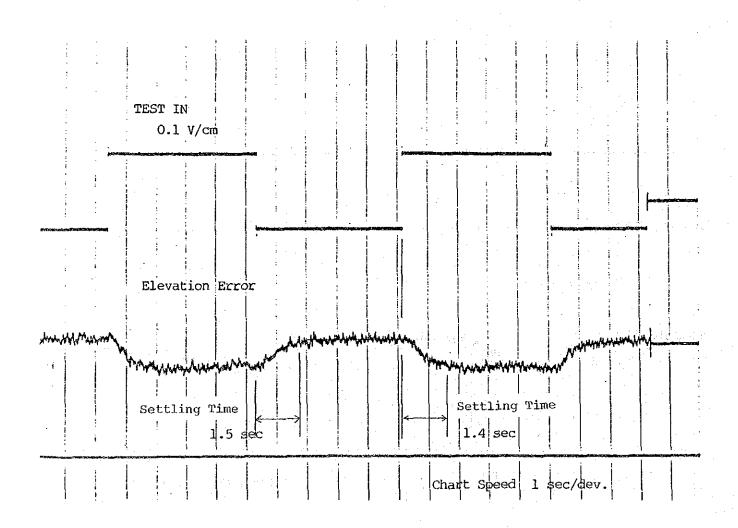
DCPA Dual Drive
SCA A ON-LINE
SERVO TYPE: I
SERVO BANDWIDTH: NARROW

Data Sh	eet-2-4	
DATE	25th Mar., 1986	
Tested	by Mater	

ELEVATION

DCPA Dual Drive SCA B ON-LINE SERVO TYPE: I

SERVO BANDWIDTH : WIDE

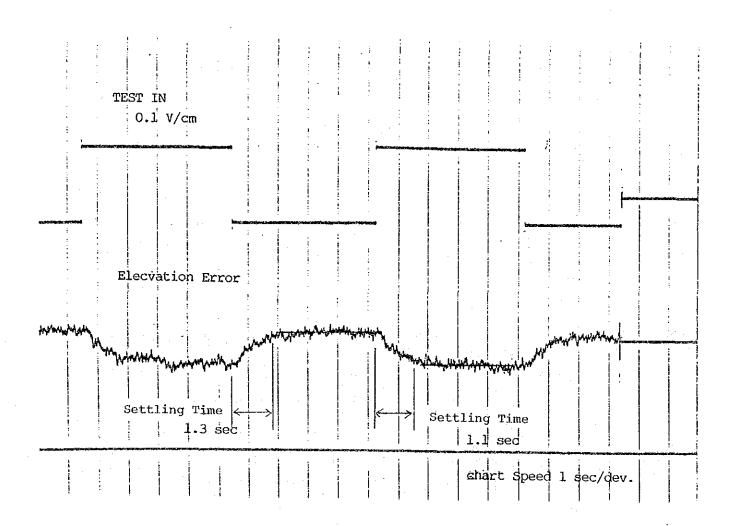


Data Sheet-2-5	
DATE 25th Mar., 1986	
Tourish Anti-	

ELEVATION

DCPA Dual Drive SCA B ON-LINE SERVO TYPE: I

SERVO BANDWIDTH : MEDIUM

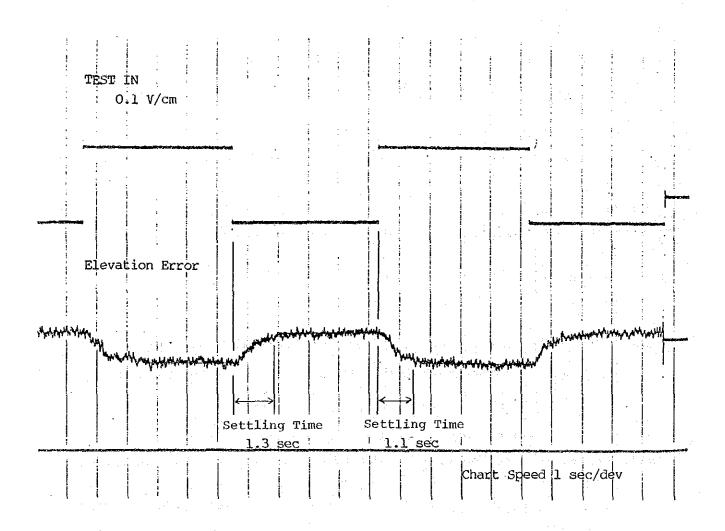


Data S	heet -2-6	*********
DATE	25th Mar., 1986	

Tested by Maker

ELEVATION

DCPA Dual Drive
SCA B ON-LINE
SERVO TYPE: I
SERVO BANDWIDTH : NARROW



Data S	heet-2-7	
3.17 S		4.4
DATE	25th Mar	. 1986
	1	-1-

ELEVATION

DCPA Dual Drive SCA B ON-LINE SERVO TYPE: II

SERVO BANDWIDTH : WIDE

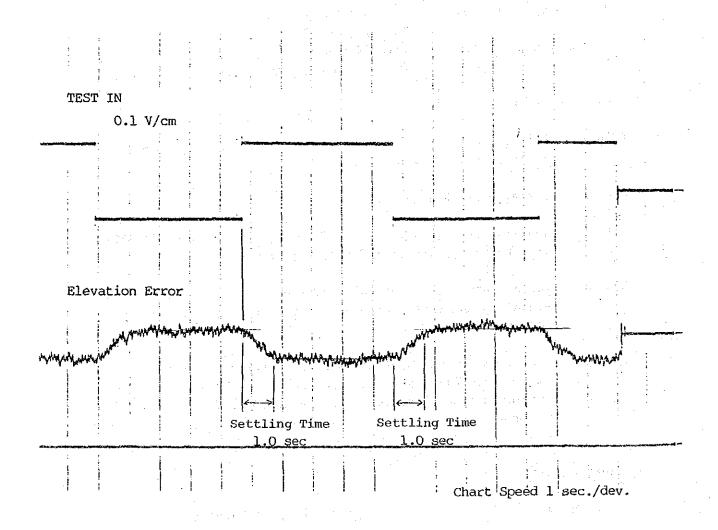
Data S	neet-2-8
DATE	25th Mar.,1986
Tested	by Motor

ELEVATION

DCPA Dual Drive SCA B ON-LINE SERVO TYPE: II

SERVO BANDWIDTH : MEDIUM

Data Sheet-2-9


DATE 25th Mar., 1986

lested by Maker

ELEVATION -

DCPA Dual Drive SCA B ON-LINE SERVO TYPE: II

SERVO BANDWIDTH : NARROW

(2) ERROR VOLTAGE GRADIENT AND CROSSTALK OF TRACKING RECEIVER

DATE 24th Mar., 1986

Tested by Make

1. Purpose of the test

To check the degradation of error voltage gradients and cross-talk of tracking receiver output using satellite.

2. Test set-up

Refer to the Fig.-2

3. Test Equipment

4 Pen Chart Recorder

YEW 2931 PHOTOCORDER

YEW 3132 DC AMP

Function Generator

WAVETEK Model 111

Voltage Control Generator

4. Test Procedure

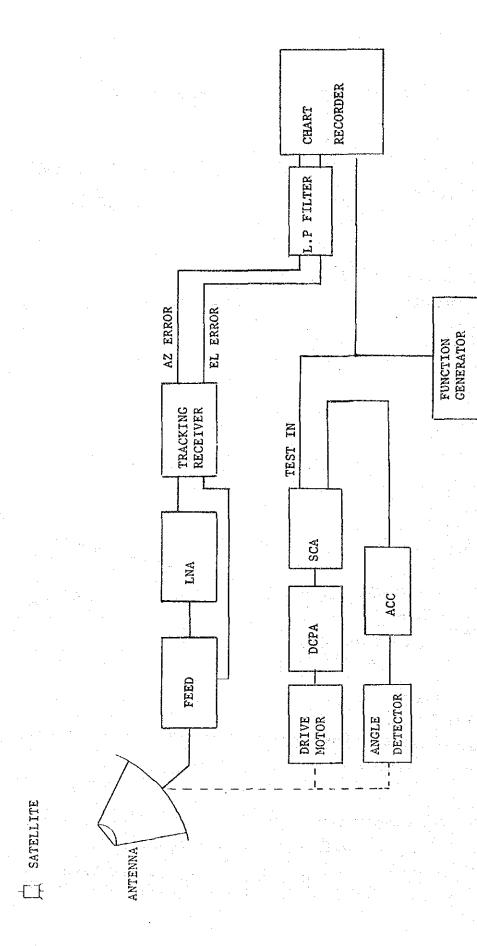
<u>Step 1</u> Pointing antenna to the direction of satellite precisely by means manual position mode.

Step 2 Fixing azimuth angle firmly.

Step 3 Applying the triangular wave form signal to SCA of EL TEST IN terminal by means of function generator.

Step 4 The azimuth angle crosstalk and error voltage gradients for elevation angle are measured and recorded by means of chart recorder.

Step 5 The elevation angle cross-talk and error voltage gradients for azimuth angle are measured and record as well as above procedure when elevation angle is fixed firmly instead of azimuth angle.


5. Test Result

Azimuth

Refer to the Data Sheet-3

Elevation

Refer to the Data Sheet-4

2 Error Voltage Gradient and Crosstalk of Tracking Receiver Connection Diagram

Data Sheet-3

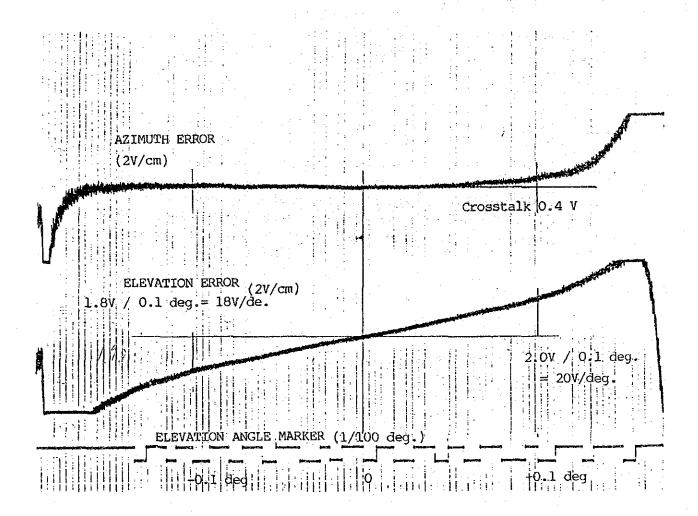
DATE 24th Mar, 1986

Tested by Hake

AZIMUTH

Beacon Frequency Fl 3947.5 MHz Lna A On-line

AZIMUTH ERI (2V/cm) ELEVATION (2V/cm)	1.8 V /o. =18 V /o. =18 V /deg.	l deg. /deg.
Transported bridge tourism	Crosstalk Crosstalk V Old V Old V Old V Old Crosstalk V Old V Old V Old Crosstalk V Old Crosstalk Old Crosstalk V Old Crosstalk V Old Crosstalk Old Crosstal	


	. .			
<u>Data</u>	Sheet	-4	 	

DATE 24th Mar., 1986

Tested by

ELEVATION

Beacon Frequency F1 3947.5 MHz LNAV-A ON-LINE

DATE 24th Mar., 1986

Tested by Maketon

1. Purpose of the test

To check closed loop step responce of position loop (SCA-DCPA-ANG DET-ACU) and confirm the stability of the response.

2. Test set-up

Refer to the Fig.-3

3. Test Equipment

4 Pen Chart Recorder

YEW 2931 PHOTOCORDER

YEW 3132 DC AMP

Function Generator

WAVETEK Model 111

Voltage Controlled Generator

4. Test Procedure

<u>Step 1</u> Setting antenna system to Manual Position mode.

Applying the square wave form signal at the aproximately ±0.1Vp-p to the TEST IN terminal of AZ (EL) Servo Control Amplifier (SCA) in the stage succeeding to demodulator by means of function generator, transient response is measured and recorded the demodulator output by means of chart recorder.

DATE 24th Mar., 1986

Tested by Mukin

5. Test Result

Axis	SCA	түре	SERVO BW	Overshoot		Settling Time		
				+	- -	+		Data Sheet
AZ (SINGLE)	В	I	Wide	0 %	0 %	2.4sec	2.7sec	5-1
			Medium	0 %	0 %	2.2sec	2.2sec	5-2
			Narrow	0 %	0 %	2.3sec	2.1sec	5-3
		II	Wide	0 %	0 %	2.3sec	3.5sec	5-4
			Medium	0 %	0 %	2.3sec	3.1sec	5-5
			Narrow	0 %	0 %	2,2sec	1,4sec	5-6
AZ (DUAL)	В		Wide	0 %	0 %	1,2sec	1.1sec	5-7
		I	Wide	0 %	0 %	1.3sec	1.3sec	6-1
	A :		Medium	0 %	0 %	1.3sec	1.4sec	6-2
			Narrow	-	: : :	∞	00	6-3
			Wide	3.3 %	3.3 %	1.0sec	1.1sec	6-4
EL	В	I	Medium	5.3 %	6.6 %	2.4sec	2.8sec	6-5
			Narrow	4.8 %	4.8%	1.2sec	0.9sec	6-6
		II	Wide	3.2 %	3.2 %	1.0sec	1.3sec	6-7
			Medium	4.6 %	4.6 %	1.0sec	1.1sec	6-8
			Narrow	4.6 %	4.6 %	1.0sec	1.0sec	6-9

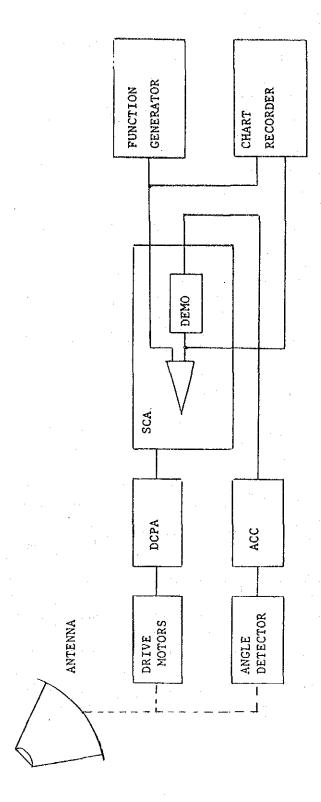
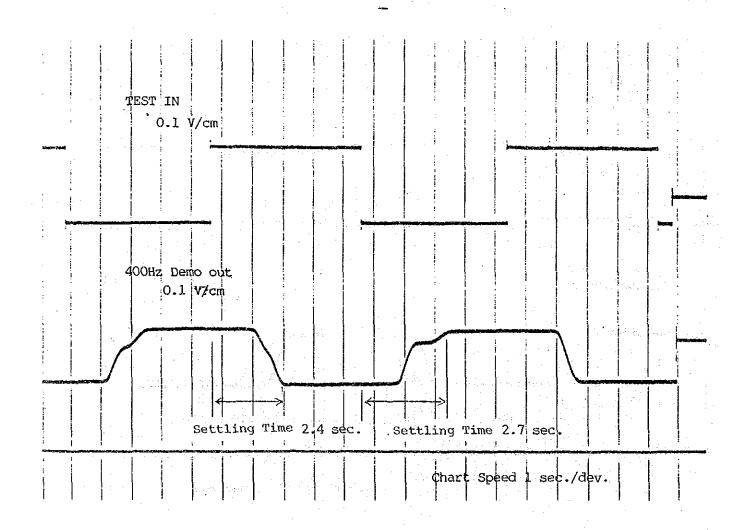
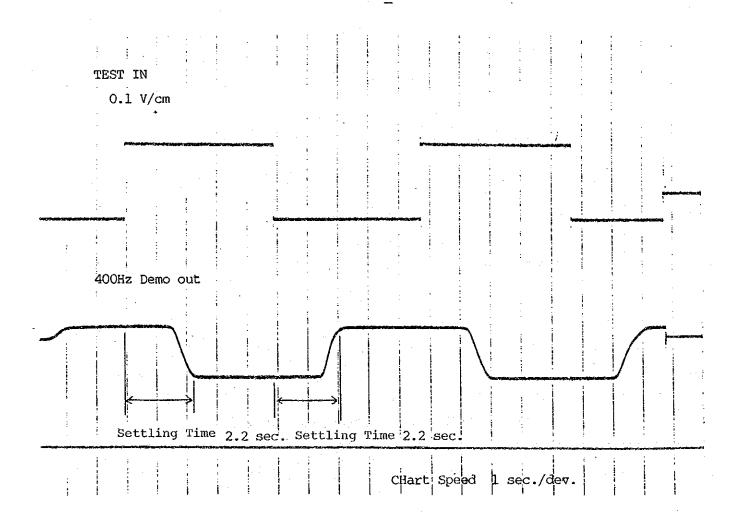



Fig. 3 Manual Position Loop Step Response Connection Diagram

Data	sheet	:-5-1		·
DATE	24th	Mar.,	986	-
FD .		An	1	

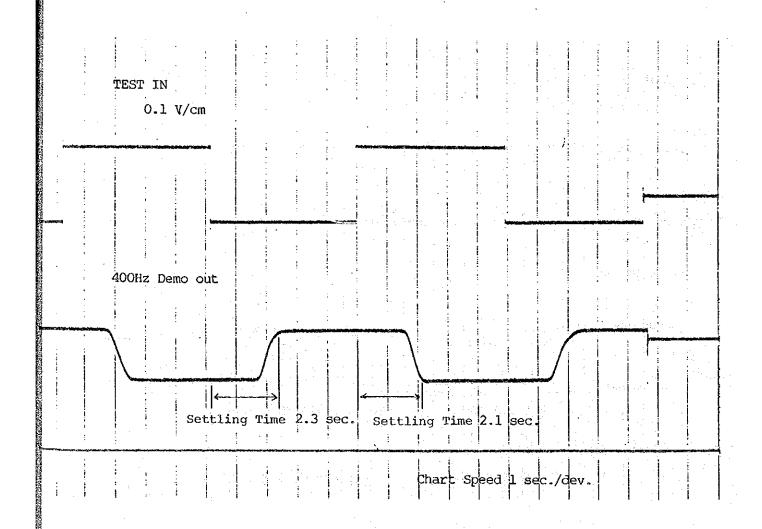
No.2 DCPA Single Drive SCA B ON-LINE SERVO TYPE: I SERVO BANDWIDTH: WIDE

Data sheet-5-2
DATE 24th Mar. 1986
Tested by Maker


HTUMISA

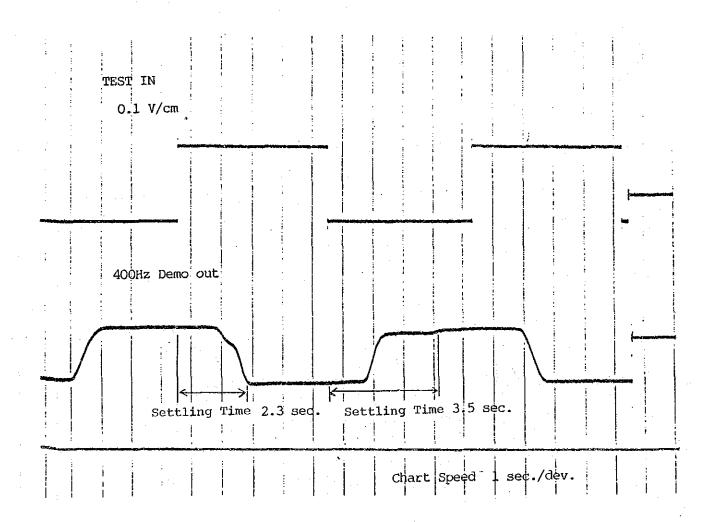
No.2 DCPA Single Drive

SCA B ON-LINE

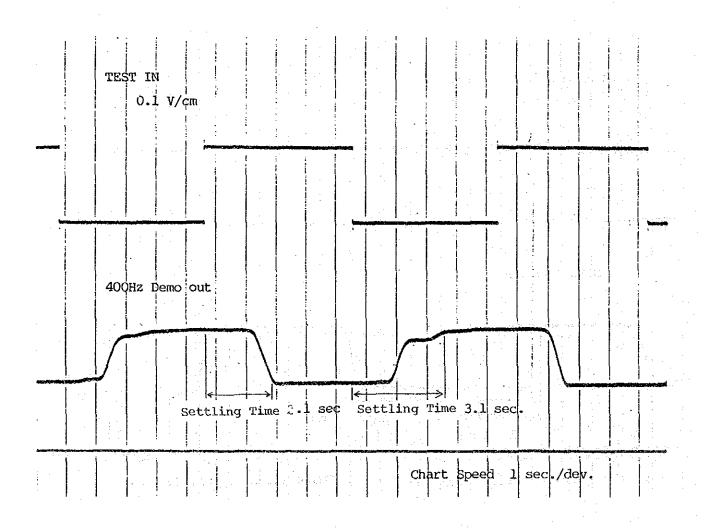

SERVO TYPE: I

SERVO BANDWIDTH : MEDIUM

<u>Data</u>	sheet-5-3	-
DATE	24th Mar., 1986	-
Teste	ed by Atoki	


No.2 DCPA Single Drive
SCA B ON-LINE
SERVO TYPE: I
SERVO BANDWIDTH: NARROW

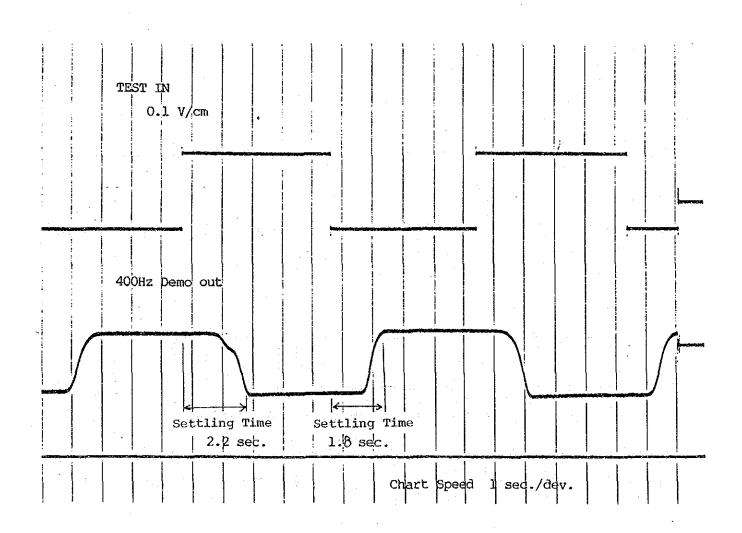
Data	sheet.	-5-4	<u> </u>		
DATE	24th	Mar.	.198	6	
Test	ed by	S	Make	7	•


No.2 DCPA Single Drive SCA B ON-LINE SERVO TYPE: II

SERVO BANDWIDTH : WIDE

Data	sheet-5	-5		
DATE	24th H:	ar 1	986	
			,	

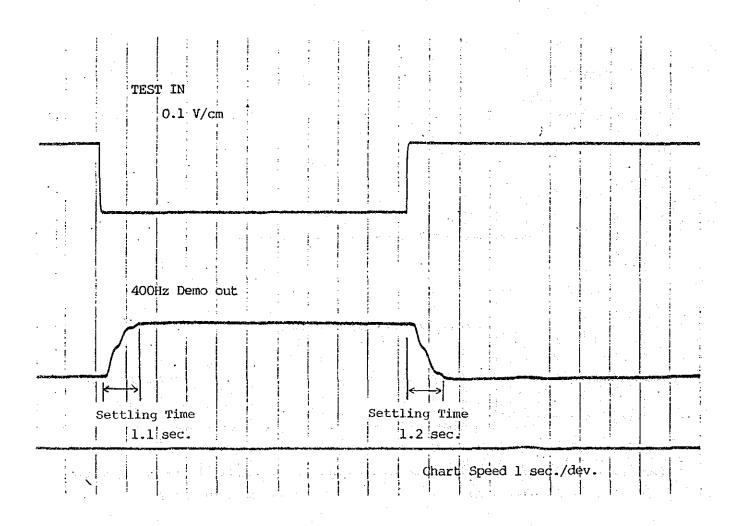
No.2 DCPA Single Drive SCA B ON-LINE SERVO TYPE: II SERVO BANDWIDTH: MEDIUM



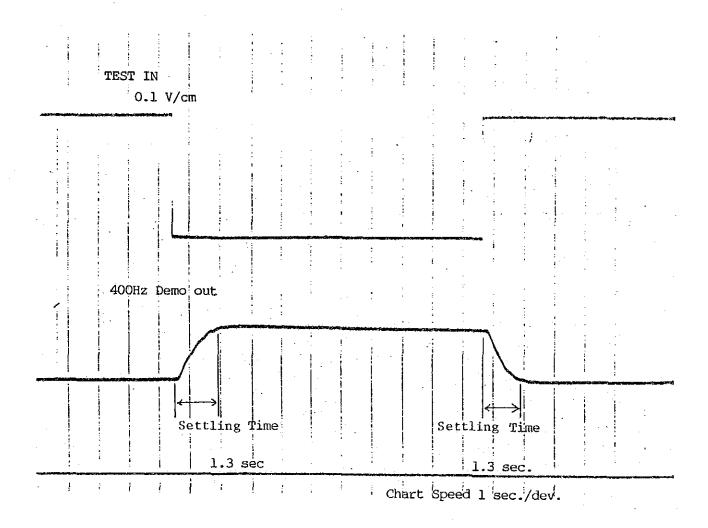
Data sheet-5-6
DATE 24th Mar., 1986
Tested by

No.2 DCPA Single Drive SCA B ON-LINE

SERVO TYPE: II


SERYO BANDWIDTH : NARROW

Data s	heet-5-7	
•		
DATE	24th Mar. 198	15
Toatad	h. Att	2,000


DCPA Dual Drive SCA B ON-LINE SERVO TYPE: II

SERVO BANDWIDTH : WIDE

Data s	heet-6-1
DATE	24th Mar., 1986
Tambal.	- Abroba

DCPA Dual Drive
SCA A ON-LINE
SERVO TYPE: I
SERVO BANDWIDTH: WIDE

Data sheet-6-2

DATE 24th Mar., 1986

Tested by

ELEVATION

DCPA Dual Drive SCA A ON-LINE SERVO TYPE: I

SERVO BANDWIDTH : MEDIUM

TEST IN
O.1 V/cm

400Hz Demo Out

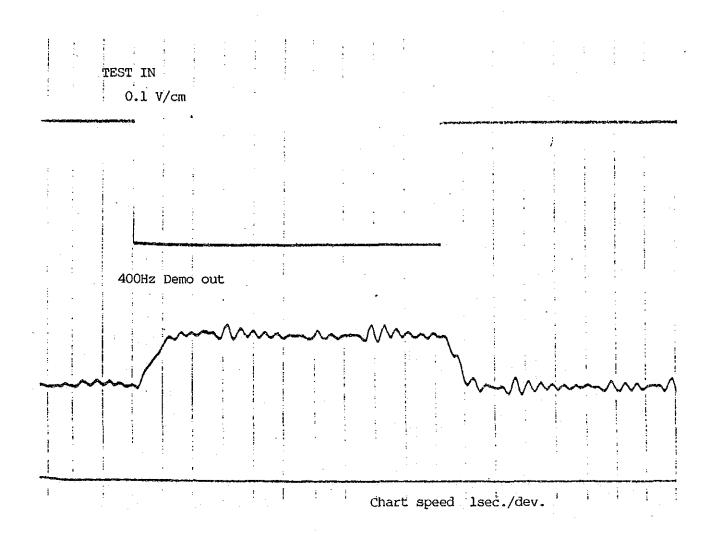
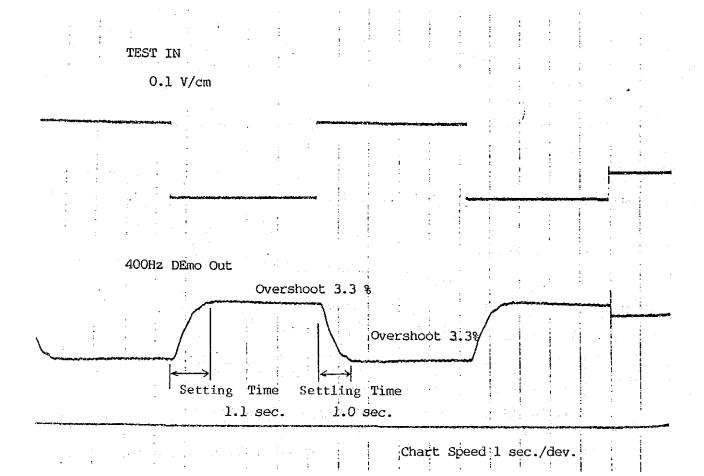

Settling time
1.4 sec.

Chart Speed 1 sec./dev.

Data s	neet-6-3
DATE	24th Mar., 1986
Tested	by Mindson

DCPA Dual Drive SCA A ON-LINE SERVO TYPE: I

SERVO BANDWIDTH : NARROW


Data sheet-6-4

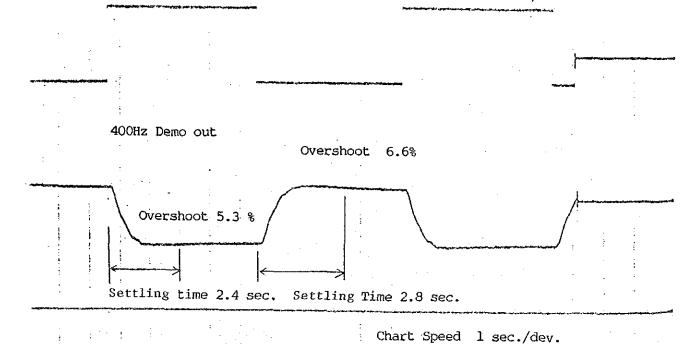
DATE 24th Mar..1986

ELEVATION

DCPA Dual Drive SCA B ON-LINE SERVO TYPE: I

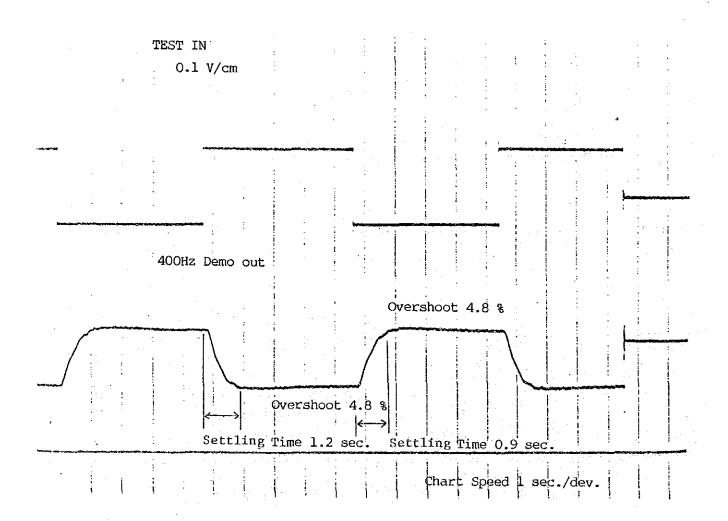
SERVO BANDWIDTH : WIDE

Data sheet-6-5

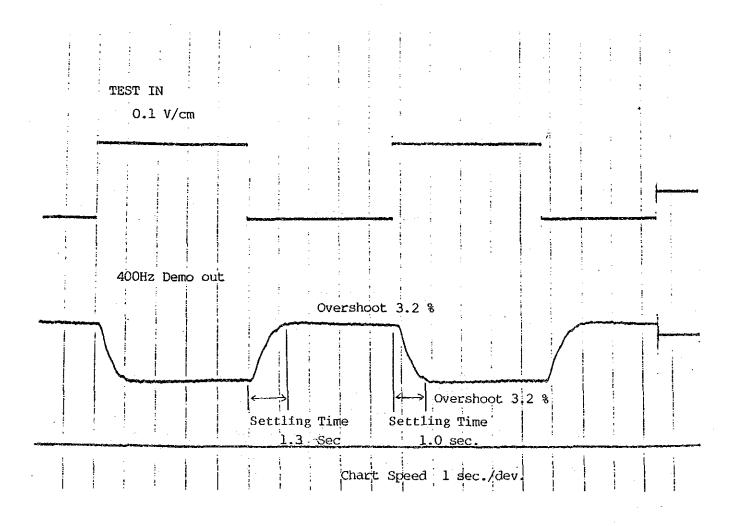

DATE 24th Mar. 1986

Tested by Arabu

ELEVATION

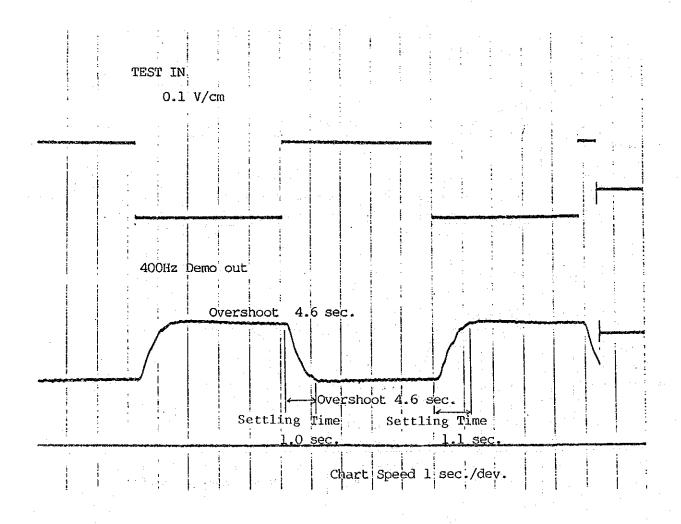

DCPA Dual Drive
SCA B ON-LINE
SERVO TYPE: I
SERVO BANDWIDTH: MEDIUM

TEST IN
0.1 V/cm


Data sheet-6-6
DATE 24th Mar., 1986
Tested by Make

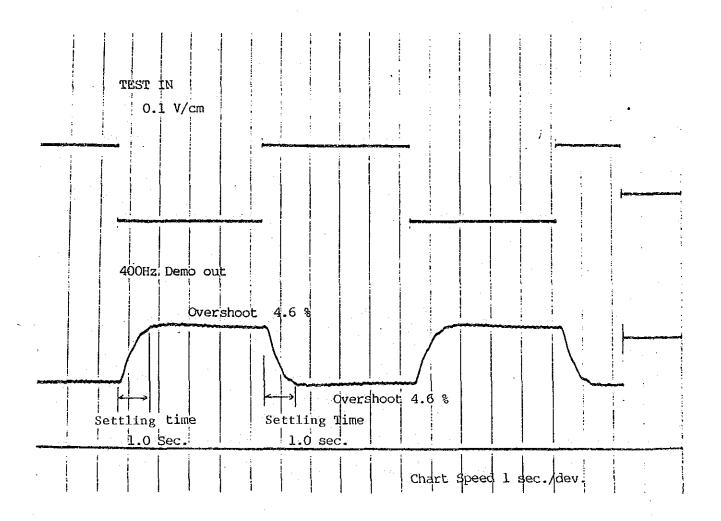
DCPA Dual Drive
SCA B ON-LINE
SERVO TYPE: I
SERVO BANDWIDTH: NARROW

Data si	neet-6-7
DATE	24th Mar., 1986
lested	by Maker


DCPA Dual Drive
SCA B ON-LINE
SERVO TYPE: II
SERVO BANDWIDTH: WIDE

ከኔሞሮ ባለፈር ህ ~~ ነጠባራ			
RUIE 74 CU MAL . 1300	DATE	24th Mar.,1	986

DCPA Dual Drive SCA B ON-LINE SERVO TYPE: II


SERVO BANDWIDTH : MEDUIM

Data si	neet-6-9
DATE	24th Mar1986
Togtad	Anaker .

DCPA Dual Drive SCA B ON-LINE SERVO TYPE: II

SERVO BANDWIDTH : NARROW

(4) TACHOMETER LOOP FREQUENCY RESPONSE

DATE 24th Mar., 1986

Tested by Mula

1. Purpose of the test

To check the degradation of closed loop (DCPA - DRIVE MOTOR - TACHOMETER) frequency response.

2. Test set-up

Refer to the Fig.-4

3. Test Equipment

4 Pen Chart Recorder

YEW 2931 PHOTOCORDER

YEW 3132 DC AMP

Function Generator

WAVETEK Model 111

Voltage Controlled Generator

4. Test Procedure

Step 1 Select Maintnance position of azimuth (or elevation) DCPA MAINTENANCE/REMOTE switch.

Step 2 Applying sine waveform signal to DCPA at the frequency from 0.1 Hz to approximately 10 Hz by means of function generator, the tachometer are measured and recorded by means of chart recorder.

5. Test Result

Azimuth Refer to the Data Sheet-7-1 .7-3

Elevation Refer to the Data Sheet-8 -1.8-3

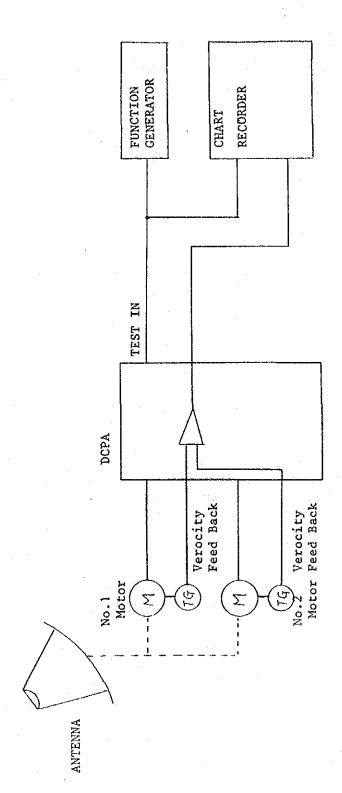
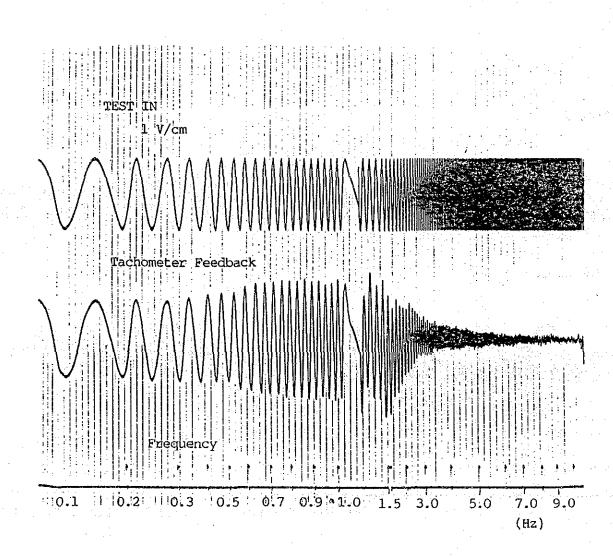
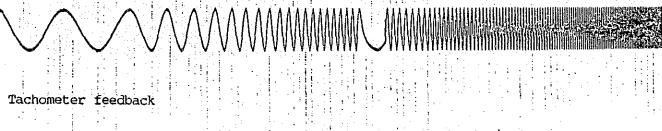
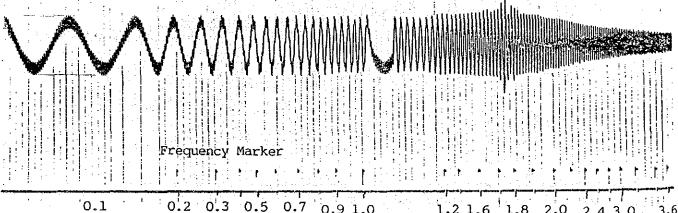



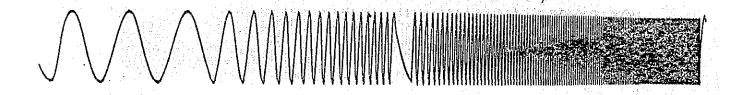
Fig. 4 Tachometer Loop Frequency, / Step Transient Response Connection Diagram

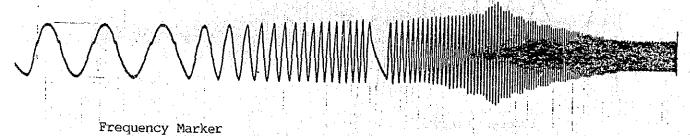

Data Sheet-7-1
DATE 24th MAR., 1986
Tested by Hate


DUAL DRIVE MODE

Data Sheet-7	- 2
DATE 24th MA	R1986
T	MH.

No.1 SINGLE DRIVE MODE



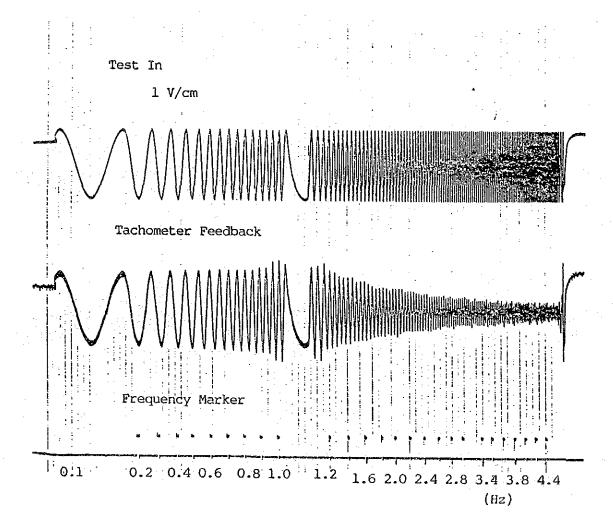

Data Sl	meet-7 - 3		·	
DATE 2	4th MAR	1986		

No.2 SINGLE DRIVE MODE

Test In
1 V/cm

Tachometer feedback

0.1 0.2 0.3 0.5 0.7 0.9 1.0 1.1 1.3


.1 1.3 1.5 1.8 2.0

3.0

🤌 (Hz

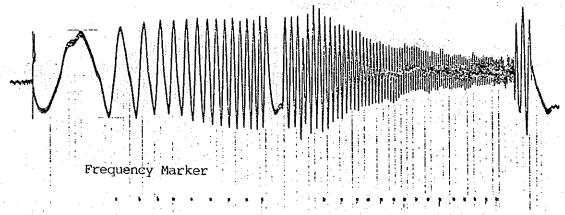
Data Sheet	-8 - 1
DATE 24th	Mar1986
Tested by	Muko

No.2 SINGLE DRIVE MODE

	2.00				
T	•	A 1	- ^	~	
113	T 2	N No	et-8	- / .	
Vu	44	JIIC	G 6 ' 1)	4-	

DATE 24th Mar. 1986

lested by Maker

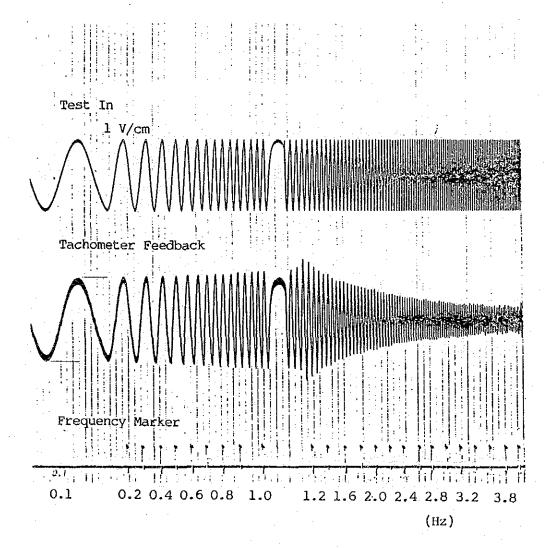

ELEVATION

DUAL DRIVE MODE

Test In
l V/cm

Tachometer Feedback

0.1 0.2 0.4 0.7 0.9 1.0 1.2 1.6 2.0 2.6 3.4 3.8 (Hz)


Data Sheet-8 -3

DATE 24th Nar. 1986

Tested by Makey

ELEVATION

No.1 SINGLE DRIVE MODE

(5) TACHOMETER LOOP STEP TRANSIENT RESPONSE

DATE 24th Mar., 1986

Tested by Make

1. Purpose of the test

To check the degradation of closed loop (DCPA - DRIVE MOTOR - TACHOMETER) step transient response.

2. Test set-up

Refer to the Fig. -4

3. Test Equipment

4 Pen Chart Recorder

YEW 2931 PHOTOCORDER

YEW 3132 DC AMP

Function Generator

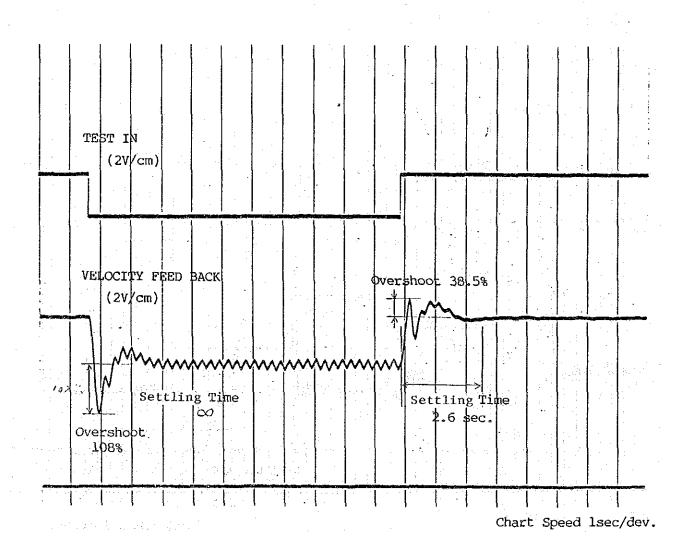
WAVETEK Model 111

Voltage Controlled Generator

4. Test Procedure

Step 1 Select Maintnance position of azimuth (or elevation) DCPA MAINTENANCE/REMOTE switch.

Step 2 Applying square waveform signal to DCPA at the ± 1 V (equivalent to ± 0.03 deg./sec.) by means of function generator, the tachometer are measured and recorded by means of chart recorder.


5. Test Result

Axis	DCPA	Direction	Overshoot	Settling Time	Data sheet
Azimuth	DUAL	CW	38.5%	2.6 sec.	0.1
		CC₩	108 %	∞	9-1
	No.1	CW	174 %	0.6 sec.	9-2
		CCW	64 %	3.7 sec.	9-6
	No.2	CW	50 %	1.3 sec.	9-3
		CCW	52 %	1.4 sec.	3 3

Axis	DCPA	Direction	Over shoot	Settling Time	Data sheet
Elevation	DUAL	UP	24 %	4.4 sec.	10-1
	: : :	DOWN	48 %	4.8 sec.	10-1
	No.1	UP	34 %	1.0 sec.	10.0
-	:	DOWN	27 %	1.3 sec.	10-2
	No.2	UP	24 %	1.0 sec.	10.0
		DOWN	25 %	1.0 sec.	10-3

Data Sheet-9-1	<u> </u>
DATE 24th Mar., 1986	
and the	

DUAL DRIVE MODE

Data	Sheet-9 -2	
	24th Mar	
Teste	ed by	Makes

No.1 SINGLE DRIVE MODE

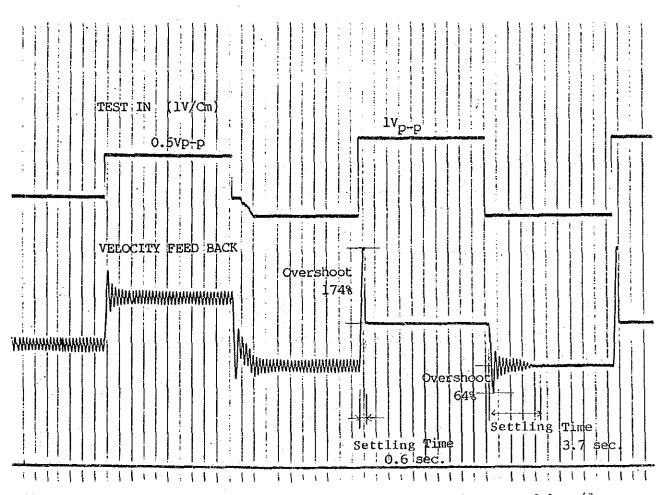
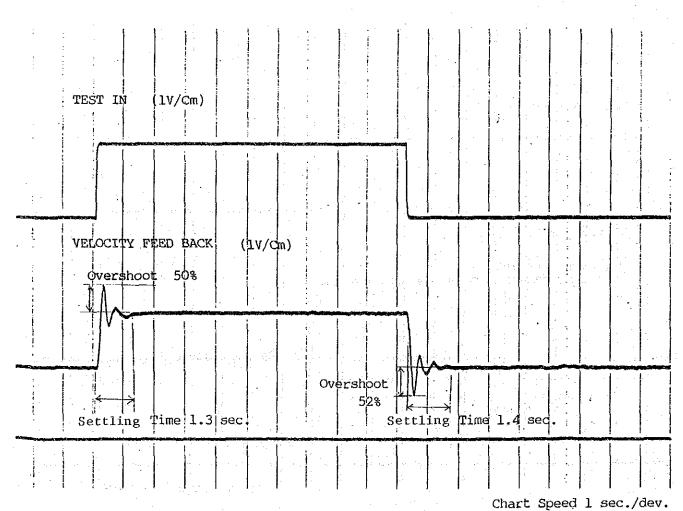
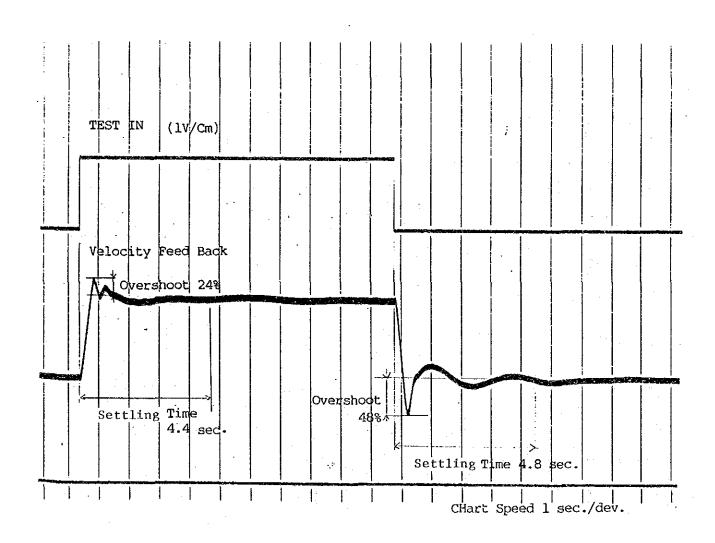
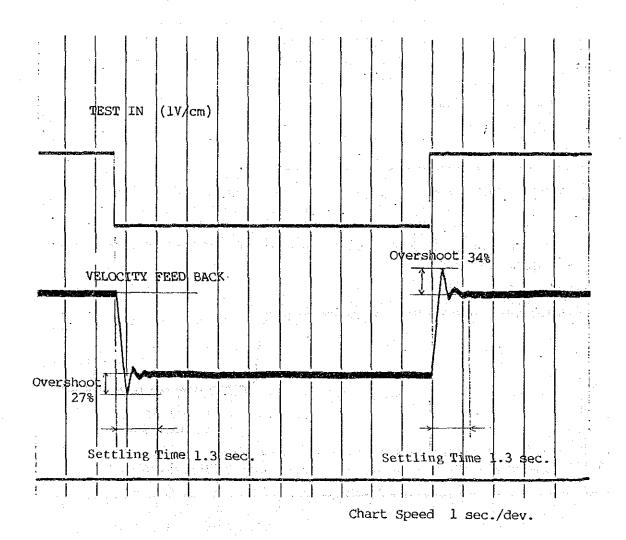



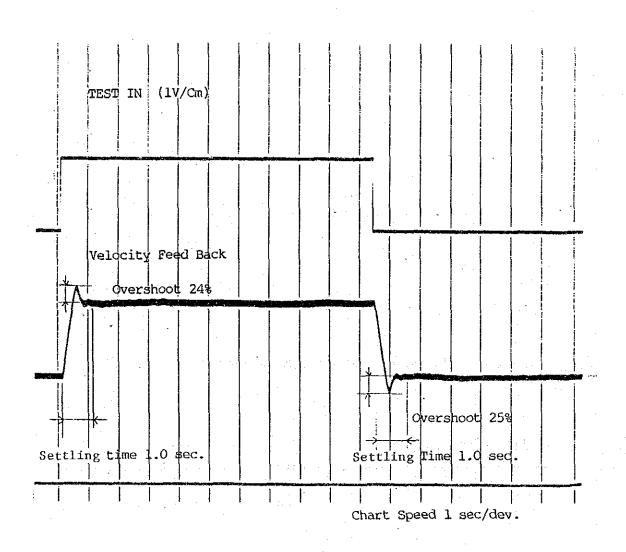
Chart Speed lsec/dev.


<u>Data</u>	Sheet-9 -3	a-
DATE	24th Mar., 1986	
Tanta	d by Ababa	

No.2 SINGLE DRIVE MODE


Data	Sheet	10-1
DATE	24th	Mar. 1986
m		at

DUAL DRIVE MODE


<u>Data</u>	<u>Sheet-10</u>	2
	:	
DATE	24th Mar	. 1986
		7
Teste	d by	to te

No.1 SINGLE DRIVE MODE

Data Sheet-10 -3
DATE 24th Mar., 1986
Tested by Maker

No.2 SINGLE DRIVE MODE

DATE 25th Mar., 1986

Tested by Make

1. Purpose of the test

To check the driving velocity range (Maximum and Minimum speed) and confirm the function of DCPA and Drive Motor.

2. Test set-up

Acceleration

Refer to the Fig. -5

Minimum Velocity

Refer to the Fig.-6

3. Test Equipment

4 Pen Chart Recorder

YEW 2931 PHOTOCORDER

YEW 3132 DC AMP

Function Generator

WAVETEK Model 111

Voltage Controlled Generator

4. Test Procedure

Maximum Speed

Step 1 Select Maintenance position of azimuth (or elevation) DCPA MAINTENANCE/REMOTE switch.

Step 2 Setting the potentionmeter of DCPA to maximum (aprox. 10 V).

Step 3 The antenna driving velocity per certain period is measured and recorded by observing the Angle Indicator and Time-code Generator or stop-watch.

Acceleration

Step 1 Select Maintenance position of azimuth (or elevation) DCPA MAINTENANCE/REMOTE switch.

Step 2 Appying the ± 5 Vp-p square wave form signal to the DCPA by means of function generator, the tachometer are measured and recorded by means of chart recorder.

DATE 25th Mar., 1986

Minimum Speed

Step 1 Setting antenna system to Manual Position mode.

- Step 2 Applying the triangle wave form signal(e.g.0.01 Hz,0.6 Vp-p) to SCA of TEST IN terminal by means of function generator.
- Step 3 The response through the angle detector is measured and recorded by means of chart recorder.

5. Test Result

Azimuth

Maximum Velocity	CW	0.31	deg./sec.
	CCW	0.33	deg./sec.
Accelaration			
	CW	0.70	deg./sec.
	CCW	0.50	deg./sec.
•	Refer	to the Da	ta Sheet-11 ·
Minimum Velocity	Refer	to the Da	ta Sheet-12
Elevation			
Maximum Velocity	UP	0.27	deg./sec.
	DOWN	0.27	deg./sec.
			· ·
Accelaration	UP	0.43	deg./sec
	DO WX	0.54	deg./sec.
1		ta Ta	
	<u>Refer</u>	to the Da	ta Sheet-13
Minimum Velocity			ta Sheet-14

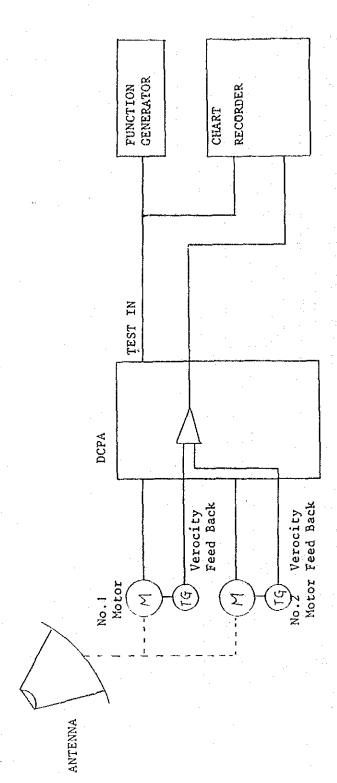


Fig.5 Velocity and Acceleration Connection Diagram

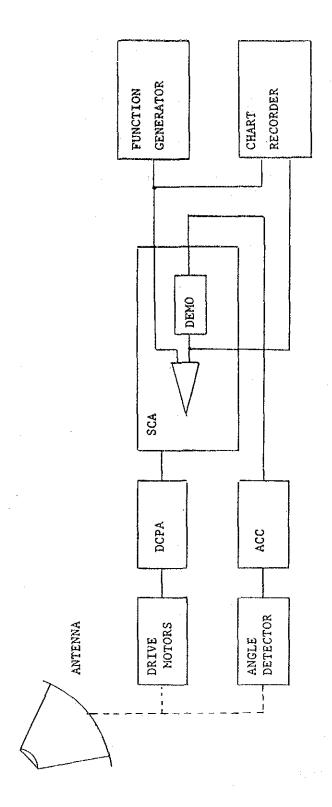
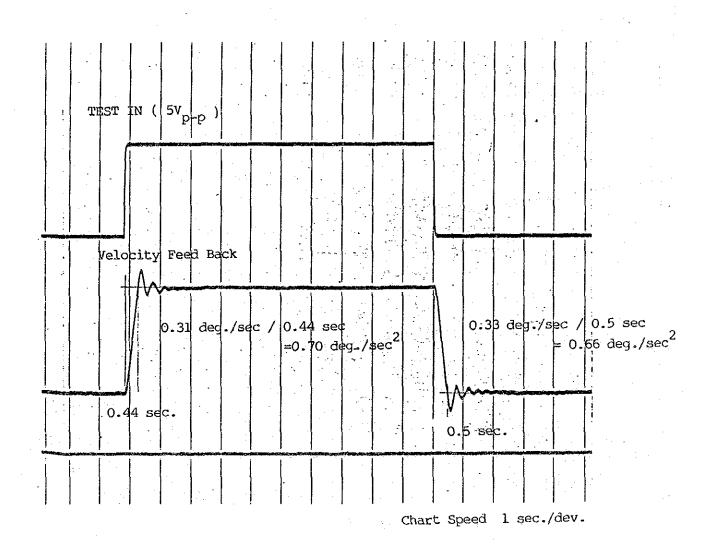
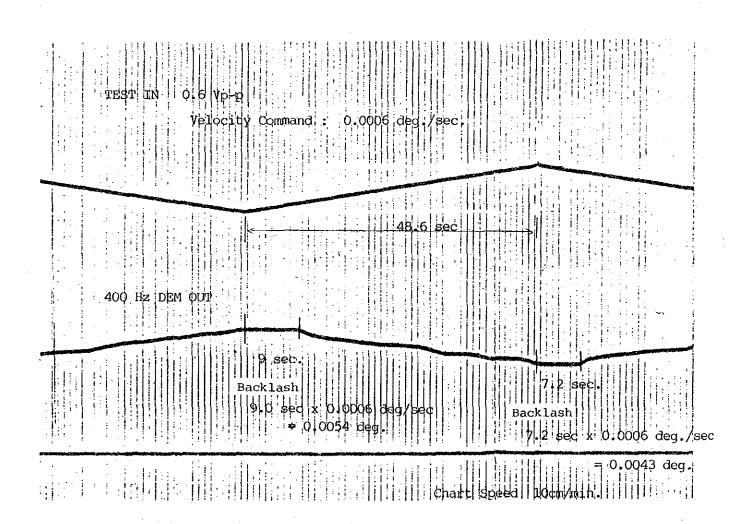



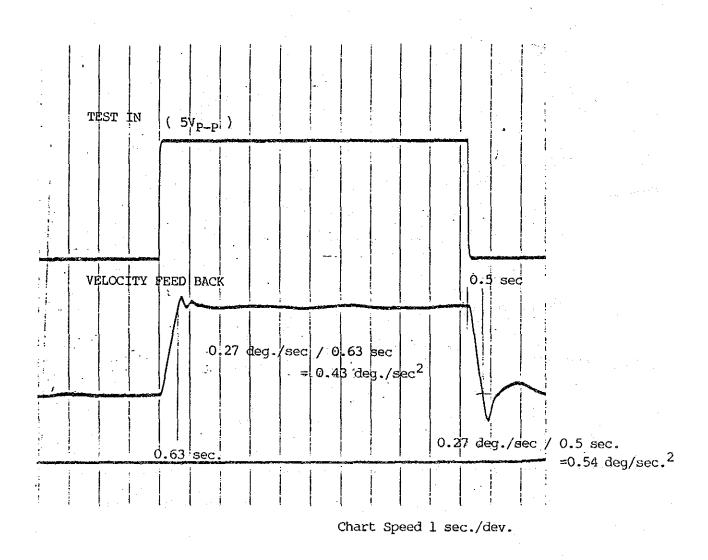
Fig. 6 Velocity and Accelaration Connection Diagram

Data S	heet-11	AND THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER.
DATE	25th Mar.	.1986
Tested	hy Ma	to

AZIMUTH ACCELARATION


AZ NO.2 DCPA Single Drive

Data Sheet-12
DATE 25th Mar., 1986
Tested by Minks


AZIMUTH MINIMUM VELOCITY

AZ No.2 DCPA Single Drive

Data Shee	et-13
DATE 2	5th Mar., 1986
Tested by	Mate

<u>ELEVATION ACCELARATION</u>

<u>Data Sh</u>	eet-14	
DATE	25th Mar. 1986	
Tested	by Maker	

ELEVATION MINMUM VELOCITY

TEST IN 0.6 V p-p Velocity Command ; 0.0006 deg./sec.		
48.6 sec.		
Chart Speed 10 cm/m	in.	

Tested by Alike

1. Purpose of the test

To confirm that the antenna is able to be driven without any problem for wide angle range.

2. Test set-up

None

3. Test Equipment

None

4. Test Procedure

Step 1 Setting antenna system to Slew mode.

Step 2 Turning the slew mode volume to maximum, it is confirmed visually that all the drive mechanisms are smoothly driven while the antenna is travelling from 0° to 90° for EL angle and from -180° to $+180^{\circ}$ for AZ angle respectively.

5. Test Result

Azimuth

 $\ensuremath{\mathsf{AZ}}$ Limit Switches and Cams are not operating normally . Abnormal Sound on $\ensuremath{\mathsf{AZ}}$ Drive Mechanism .

Elevation

Good

(8) DEGRADATION OF DRIVE MOTOR

DATE 26th Mar., 1986

Tested by Make

1. Purpose of the test

To check the degradation of Azimuth and Elevation Drive Motor in the view of mechanical point.

2. Test set-up

None

3. Test Equipment

Insulation Tester YEW 3213 500V 1000MΩ Meggar

- 4. Test Procedure
 - Step 1 Opening the cover for commutator of drive motor, the wering of brushes, damage of commutator and appearance of sparks are checked visually.
 - STep 2 The insulation between rotator and stator of drive motor is checked by means of insulation tester.
 - Step 3 The insulation between rotator and ground , stator and ground of drive motor are checked by means of insulation tester.

DATE	26th Mar., 1986
	by Mile
Tested	by the

5. Test Result

A	zimuth No.1 Drive Motor	1 26 × 14
	Appearance	Good
	The wearing of brushes	Good
_	Damage of commutator	Threading
	The classification of the Sparks	No sparks
	Insulation Resistance between rotator and ground	<u>35M Ω</u>
	Insulation Resistance between stator and ground	More than 1000M Ω
	Insulation Resistance between rotator and stator	More than 1000M Ω
	Insulation Resistance between Tachogenerator and ground	More than 1000M Ω
A	zimuth No.2 Drive Motor	ter tu e e e e
٠	Appearance	Good
	The wearing of brushes	Good
	Damage of commutator	Threading
	The classification of the Sparks	No sparks
	Insulation Resistance between rotator and ground	30M Ω
-	Insulation Resistance between stator and ground	
	Insulation Resistance between rotator and stator	More than 1000M Ω
	Insulation Resistance between Tachogenerator and ground	More than 1000M Ω

DATE	26th Mar. 1986
	24
Tested	by Month

Azimuth No.3 Drive Motor	
Appearance	Good
The wearing of brushes	Good
Damage of commutator	Threading
The classification of the Sparks	No sparks
Insulation Resistance between rotator and ground	150Μ Ω
Insulation Resistance between stator and ground	More than 1000M Ω
Insulation Resistance between rotator and stator	More than 1000M Ω
Insulation Resistance between Tachogenerator and ground	More than 1000M Ω
Azimuth No.4 Drive Motor	
Appearance	Good
The wearing of brushes	Good
Damage of commutator	Threading
The classification of the Sparks	No sparks
Insulation Resistance between rotator and ground	100M Ω
Insulation Resistance between stator and ground	More than 1000 M Ω
Insulation Resistance between rotator and stator	More than 1000M Ω
Insulation Resistance between rotator and stator	More than 1000M Ω
Insulation Resistance between Tachogenerator and ground	More than 1000M Ω

DATE	26th Mar., 1986
ተ	by Make

Elevation No.1 Drive Motor	
Appearance	Good
The wearing of brushes	Good
Damage of commutator	None
The classification of the Sparks	No sparks
Insulation Resistance between rotator and groun	nd <u>6M Ω</u>
Insulation Resistance between stator and ground	l More than 1000M Ω
Insulation Resistance between rotator and state	or More than 1000M Ω
Insulation Resistance between Tachogenerator and ground	More than 1000M Ω
Elevation No.2 Drive Motor	
Appearance	Good
The wearing of brushes	Good
Damage of commutator	None
The classification of the Sparks	No sparks
Insulation Resistance between rotator and groun	bnbn
Insulation Resistance between stator and ground	d More than 1000 M Ω
Insulation Resistance between rotator and state	or More than 1000M Ω
Insulation Resistance between	
Tachogenerator and ground	More than $1000M$ Ω

,	101	DEGRADATION	ΛF	ANGLE	DETECTOR
۱	9)	DEGRADATION	Ut.	ANULE	DELECTOR

<u>DATE</u>	26th Mar., 1986
Tested	by Maken

1.	Purpose	\mathbf{of}	the	test

To check the degradation of angle detector due to utilization in many years.

2. Test set-up

None

3. Test Equipment

None

- 4. Test Procedure
 - Step 1 Open the cover of angle detector .
 - STep 2 It is confirmed visually that the mechanical degradation of angle detector are not discovered.
- 5. Test Result

Azimuth Angle Detector

Rusting	Slightly
Wiring (frayed,Loose and burnt wire)	None
Cracks	None
Backlash of gears	None
Parts (loose and burnt)	_ None
Fitting	_ \$light Eccentricity

DATE	26th Mar., 1986	
1.00		
Tested	No Mater	

$\mathbb{E}1\epsilon$	evat	ion	Angle	Detecto	r
-----------------------	------	-----	-------	---------	---

Rusting	en de la companya de La companya de la co
Wiring (frayed,Loose and burnt wire)	None
Gracks	<u>None</u>
Backiash of gears	None
Parts (loose and burnt)	None
Eitting	None

(10) CONTROL/MONITOR AND ALARM FUNCTION TEST

DATE 26th Mar., 1986

Tested by

1. Purpose of the test

To confirm that the control, monitor and alarm function in antenna control console are operating normally.

2. Test set-up

None

3. Test Equipment

None

4. Test Procedure

Every volt/current meters, indicator lamps and control and alarm function of each equipment such as Operation Mode Select, Antenna Position Control, Alarm and Status, VCO Control etc are checked visually.

DATE 26th Mar., 1986

Tested by Mike

5. Test Result

No.	INDICATIOIN	UNIT NAME	CONDITION	RESULT
1	AZ,EL ANGLE INDICATION	ANTENNA POSITION	Angle of AZ and EL of the antenna is indicated.	Refere Note-1
2	System Power ON/OFF	ALARM & Status	1. ACC Main power on/off 2. 400Hz PS power on/off 3. SCA A power on/off 4. SCA B power on/off 5. AZ Lubricating on/off 6. EL Lubricating on/off	Good
3	EL Stow		1. The stow pin is engaged 2. The stow pin is released	Good
4	DCPA		 Normal Maintenance Failt 	Good
5	Elevator		Fault	Good
6	SCA		 On line Standby Maintenance Fault 	Good
7	Low EL Cut Off		EL angle is lower than 8 deg.	8 *
8	Lubricating		Out of order	
9	Prelimit		The antenna reached pre limit Position	AZ CCW 93.93° CW 269.38° EL UP 88.1° DOWN 3.5°

DATE 26th Mar. 1986

Tested by

No.	INDICATIOIN	UNIT NAME	CONDITION	RESULT
10	Limit	ALARM & STATUS	The antenna reached limit position	AZ CCW 90.0° CW 269.38° EL
				UP 92.2 ° DO₩N 0.08°
11	DISABLE		Manual Handle is pushed .	Good
12	400 Hz PS		 Normal Maintenance Fault 	Good
13	Cable Wrap-up	CABLE WRAP -UP	The angle indicator for twisted angle of cable.	Refer Note-2
14	AZ Velocity		AZ axis drive velocity	Good
15	EL Velocity		EL axis drive velocity	Good
16	Servo Bandwidth	ANTENNA POSITION CONTROL	Bandwidth selection of SCA NARROW,MEDIUM and WIDE	Good
17	Servo Type		Servo type selection of I or II	Good
18	Alarm/Enable	OPERATIONAL MODE SELECT	A time delay to warning for antenna tower.	Refer Note-3
19	Brake/Release		To be switched on even while test mode	Good
20	Test	W W	Controlled by Antenna Local Control Unit	.–

No.	INDICATIOIN	UNIT NAME	CONDITION	RESULT
21	Auto Track	OPERATIONAL MODE SELECT	Auto tracking mode	Good
22	Manual Position		Manual Position mode	Good
23	Slew		Slew mode	Good
24	Manual Override		When manual override is off, even if Manual Position is selected while	
-			the auto enable is off. Auto enable is on the tracking mode is changed	Good
			to auto.	
25	AZ RF cut off		When the azimuth points to approx. $\pm60^\circ$ from	Good
			true north.	
26	Down Converter	ALARM & STATUS	 Normal Maintenance Fault 	Good
27	Demodulator		 Normal Maintenance Fault 	Good
28	Console		1. Narmal 2. Fault	Good
29	Dry Air		Dehydrator fault	Good
30	Pressure	·	Pressure is lower than the specified value	
31	Phase Adj	Tracking Angle Error	Adjuster for the reference channel signal.	Good

DATE 26th Mar., 1986

Tested by Moon

Νo.	INDICATIOIN	UNIT NAME	CONDITION	RESULT
32	Gain Cont	Gain & Pola- AGC: The agc of Demodulator rization Co- is normal. ntrol MGC: Manual Gain Control		Good
33	AGC Time Constant		The agc time constant is changed by this switch.	Good
34	Phase-lock Loop Select	VCO CONTROL	1. Open Loop Manual 2. Closed loop Manual 3. Closed Loop Auto	Good
35	Auto Enable		A beacon signal of suffic- ient level is applied to the Tracking Receiver.	Good
36-	Buzzer off	CONSOLE		Good
37	Lamp Check			Good

- Note-1 Some delay between Angle Indicator and actual Antenna pointing angle.
- Note-2 Some delay between Angle indicator and actual Cable Wrap-up Angle.
- Note-3 Warning Audible Alarm for antenna tower dose not operate.

(11) MEASURED VALUE AT CHECK POINT

DATE 21st Mar. 1986

Tested by

EQUIPMENT TRACKING DEMODULATOR

Measure	d Point	Value Danie	Measured Value	
Panel Name	Check Point	Meter Range		
31967B	AC 230 V	250 V	220 V	
ALM CONT	DC - 24 V	50 V	- 24 V	
	- 24 V	50 V	- 25 V	
	+ 18 V	25 V	+ 18.0V	
	- 18 V	25 V	- 18.0V	
	+ 18 V CUR	2.5 A	+ 0.28A	
.,	- 18 V CUR	2.5 A	+ 0.52A	
30571A +18V STB	CHECK	25 V	18.0V	
30572A -18V STB	CHECK	25 V	- 18.0V	

DATE 21st Mar., 1986

EQUIPMENT TRACKING DOWN CONVERTER

Measured	l Point		Meter Range	Measured Value
Panel Name	Check Point		ne ter wange	neasured value
32770B	AC 230 V		250 V	220 V
ALM CONT	DC - 24 V		50 V	22 V
	STB - 18 V		25 V	18 V
	STB -18V Cur		2.5 A	1.2 A
	1st MIX CUR	F0 1	5	_
	(REF CH)	F0 2	5	2.6
	1st MIX CUR (REF CH)	F0 1	5	_
		F0. 2	5	2.5
Î	1st MIX CUR (ERR CH)	F0 1	5	-
		FO 2	5	2.5
	1st MIX CUR (ERR CH)	F0 1	5	-
		F0 2	5	2.9
	2nd MIX CUR	(REF CH)	5	2.5
	2nd MIX CUR	(REF CH)	5	1.0
	2nd MIX CUR (ERR CH)		5	3.2
	2nd MIX CUR	(ERR CH)	5	3.1
10869B	- 18 V		25 V	18.0 V
- 18V STB	- 21 V		50 V	21.0 V

Tested by Make

EQUIPMENT SERVO CONTROL AMPLIFIER

1. A Route

۰.,	····		engelescone and the second		
	Measure	d Point	Meter Range	Measured Value	
T	Panel Name	Check Point	neter wange		
	32778A	AC IN	250 V	225 V	
	MAINT CONT	400Hz IN (A)	50 V	25 V	
	٠	400Hz IN (B)	50 V	24 V	
		+ 24V	50 V	+ 26 V	
		- 24 V	50 V	- 24.5 V	
		+ 18V	25 V	+ 18 V	
		- 18V	25 V	- 18 V	
		+ 18V Current	1 A	+ 0.29 A	
	*	- 18V Current	1 %	- 0.22 A	
	30571A + 18V STB	CHECK	25 V	+ 18 V	
	30572A - 18V STB	CHECK	25 V	- 18 V	

DATE 21st Mar.. 1986

EQUIPMENT SERVO CONTROL AMPLIFIER

2. B Route

Measured	Point	Meter Range	Measured Value	
Panel Name	Check Point	neter Hange		
32778A	AC IN	250 V	225 V	
MAINT CONT	400Hz IN (A)	50 V	25 V	
	400Hz IN (B)	50 V	24.5 V	
	+ 24V	50 V	+ 26 V	
	- 24V	50 V	- 24.5 V	
	÷ 18V	25 V	+ 18 V	
	- 18V	25 V	- 18 V	
·	+ 18V Current	1 A	0.31 A	
	- 18V Current	1 A	0.24 A	
30571A + 18V STB	СНЕСК	25 V	+ 17.5 V	
30572A - 18V STB	СНЕСК	25 V	- 18.0 V	

ANNEX 4

List of Equipment to be Refurbished

1. Antenna Structure and Mechanical Drive System

No.	Item	5 years	10 years
_			
1.	Subref. Support Structure	Whole Structure	Same as left
		replace	
2.	Panel Support and Connection	Appel = 1 A A A A A A	All to be
	Bolt sets		replaced
3.	Backup Structure		Repair Some
			Joint
4.	Connection bolts sets of		100% of total
.*	Back up Structure and		Q'ty
	Center hub		All to be
		e e	replaced
			-
5.	EL bearing	<u></u>	Oil seals to be
			replaced
•			
6.	AZ/EL Bearing and Speed	To Grease and Oil	Same as left
•	Reducers	To dicuse and our	Dame do asses
	Accuracy of		4
7.	A7/FI Speed Deducers	Brakes to be	Same as left
, .	AZ/EL Speed Reducers		bane as leit
-		replaced	
			7.6
- 8 -	Others		Same as left
		to be replaced	Buffers and
			Stow device
	and the second		to be replaced

2. Servo-Drive System

	Item	For five years	For ten years'
1.	AZ Drive Motor	mending	replace
2.	EL Drive Motor	cleaning	replace
3.	DCPA	replace with new model	replace with new model
4.	ACU	Supply some electrical parts for follow up servo	replace with new model
5.	Servo Control Amp	readjustment	functions will be included to new ACU
6.	Tracking DEM	<u>-</u>	replace with new model
7.	Tracking D/C	-	replace with new model
8.	400 Hz Power Supply	-	Not used
9.	AZ Angle Detector	readjustment	replace with new model
10,	EL Angle Detector		replace with new model
11.	AZ Limit Switches and cams		replace with new one
12.	EL Limit Switches	•	replace with new one

13. Safety Switches	replace with new ones	replace with new ones
(i) Main ref Hatch		
(ii) Stow pin Hole		
(iii) Manual Handle		
		and the confidence of the confidence of
14. Stow Lock Device	checking	replace with new one
15. Dehydrator	replace with new one	replace with new one
16. Others		
(1) Filter boxes	replace with	replace with
	new gasket	new gasket
(2) Plica tube	replace with new one	replace with new one
' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '		

- *1: Component of new Antenna Control Console
 - (1) Antenna Control Panel
 - digital angle display
 - mode selection
 - status indication
 - servo cont Amp function
 - (2) Power Supply
 - (3) Time Code Generator
- *2: New Tracking Demodulator will be installed in the ACU

 The function of existing Tracking Angle Erro Panel and VCO

 Control Panel are included in the new Tracking Demodulator.
 - : No work required

3. Communication Equipment

No.	<u>Item</u>		5 years	10 years
1.	High Power Amplifie	er	•	1 lot
(1)	400W TWT HPA	2 sets	·	
(2)	1+1 Switching Sys.	1 set		
(3)	Rack	1 set		
2.	Linearizer			
(1)	Linearizer	2 sets	-	1 lot

ANNEX 5

Rough Cost Estimations

The expected cost of renovation work can be estimated as follows. (1U\$=170 yen)

		5 years	10 years
1.	Antenna Structure	176,000 US\$	388,000 US\$
2.	Dehydrator	12,000	12,000
3.	Antenna Tracking System	.	94,000
4.	Antenna Control System	-	118,000
5.	Drive System	159,000	218,000
6.	HPA System (Including Linearizers)	. • <u>-</u>	294,000
7.	Antenna Construction/ Refurbishment Works	159,000	606,000
8.	Equipment Installation	141,000	182,000
9.	Testing	29,000	53,000
10.	Project Management	94,000	200,000
	Total	770,000 US\$	2,165,000 US\$

: -			
i			
•			
:			
:			

