CHAPTER 3 MEASUREMENT OF SO2 AMBIENT CONCENTRATION

For predicting the future SO₂ concentration, the present concentration of SO₂ emitted from the existing industries is required to be estimated, as well as the impact from the new industries which will be sited under developing plan.

In order to determine the present concentration, measurement by automatic and continuous instruments has been carried out for one year, establishing 7 monitoring stations at industrial, residential, suburban and recreational areas. The installed instruments have been maintained by daily checks and calibration of every 3 months.

II-3-1 Measuring Methods of SO, Ambient Concentration

Sulfur oxides in the environmental atmosphere are measured by various methods enumerated in the following Table II-3-1.

Table II-3-1	Measuring	methods of	ambient	sulfur oxides
--------------	-----------	------------	---------	---------------

	Measuring methods	Pollutánts	Applicable conc. range	Relative standard	Rémarks
(i)	Solution conductmetry	so ₂	0 - 50 ppb, 0 - 1 ppm	JIS B7952	Continuous analyzer
(2)	Coulometry	SO2	0 - 100 ppb, 0 - 1 ppm	JIS B7952	- ditto -
(3)	Flame photometric	SO2	0 - 100 ppb, 0 - 1 ppm	JIS B7952	- ditto -
(4)	Ultraviolet spectro-photometry	so ₂	0 - 100 ppb, 0 - 1 ppm	JIS B7952	- ditto -
(5)	Chronoamperometry	soz	0 - 100 ppb, 0 - 1 ppm	JIS B7952 Reference	- ditto -
(6)	Lead dioxide	so ₂ + so ₃	Over 0.2 SO ₃ mg/ d/100 cm2	B.S.1747 Part 15 ASTM D.2010	Rélative conc méasurément
(7)	Alkali filter	SO2 + SO3	Over 0.2 SO ₃ mg/ d/100 cm2	-	- ditto -
(8)	Valium molybdate	so ₂ + so ₃	-		Chemical analysis
(9)	Pararosaniline	soz	3 ppb - 5 ppb	ASTM C.2914	Continuous & Chemical analysis

Among the methods enumerated in the above table, the methods from (i) to (4) are standardized by JIS for the automatic and continuous measuring instruments. And in USA, the methods, (2), (3) and (9) are employed by EPA as the standard methods.

Further, in Japan, the method of (1) is employed as the measuring method of ambient standard regulated by Government.

II-3-1-1 Measuring principle of each method and its characteristics

(1) Solution conductmetry

The method is based on the principle that the sample air is introduced into hydrogen peroxide solution acidified by sulfuric acid and measures the sulfuric acid quantity produced by the oxidized atmospheric SO₂ and indicates as the concentration from the solution conductivity change.

The disadvantage of this method is that due to evaporation of water in the solution, the sulfuric acid is concentrated which will cause the measurement errors, and that it is interferenced by the alkali and/or acid gaseous substances during measurement.

an central acceptance for the country of the contract of the c

(2) Coulometry method

Coulometry method is usually called as constant-potential electrolysis method which is to detect the volume required for electrolysis in the process of oxidation reduction potentiometric.

In the cell filled by electrolytic solution of sulfuric acid solution contained KBr, bromine and bromine ion are kept in the constant balance. When SO₂ contained air is introduced into the solution, the reaction, "SO₂ + Br₂ + 2H₂O --- H₂SO₄ + 2H[†] + 2Br⁻¹", is taken place and oxidation reduction potential is generated after Br₂ is deducted into bromine ion. When the potential is compared with the standard potential, the potential difference is corresponding to SO₂ concentration.

Disadvantage of this method is that other sulfuric compounds such as H₂S, CH₃SH and so on are measured simultaneously with SO₂ as these substances are chemically reacted with Br₂.

ganadas propies qual de compreta en propies de compressión de la compressión de la compressión de la compressión de compressión de la compressión de compres

(3) Flame photometric method

When the sample air is introduced into the flame, the sulfuric compounds generate the strong emission spectrum in the near ultraviolet area in the process of thermal cracking. The emission spectrum of 394 nm is selectively passed through the narrow band pass filter and changed into signal by the photomultiplier tube, and SO₂ concentration is obtained. The method measures other sulfuric compounds except SO₂.

(4) Ultraviolet spectrophotometry

The method is to detect SO₂ concentration by the intensity of fluorescence generated from SO₂* in excited state absorbing ultraviolet ray. The reaction equations are as under.

Board & Francisco & Sylvinous Committee (Constitution of New York)

and Marker Very Sarable and to

$$SO_2 + hr_1 -+ SO_2 +$$

 $SO_2 + -+ SO_2 + hr_2$
 $SO_2 + -+ SO_2 + M$
 $SO_2 + M -+ SO_2 + M$

The instrument based on this method has the advantage to measure in wide range (up to 500 ppm) without the impact of sample gas flow rate.

Provide and Proposition of the first Style and the

医铁铁 机工工 化键 网络红色红色 医二氏性神经炎 医血红色性病

(5) Chronoamperometry method (West-Gaeke method)

The absorbing solution of potassium tetrachlorsmercurate absorbs SO₂ in the atmosphere, produces dichlorosulfitomercuratic complex and generates pararosaniline, formaldehyde and pararosaniline methyl sulfonic acid. The absorbance of the solution is measured by spectrophotometry.

grade for the Parish and the discrete sale to the representation by expressing the

This method is based on the manual analysis and so it is generally used for the temporary monitoring in the areas where no continuous and automatic monitoring stations are sited. The disadvantage is apt to be influenced by temperature, particularly in the low temperature area. Also the careful attention should be given to the treatment of solution disposal.

(6) Lead dioxide method

The unglazed ceramic cylinder covered by cotton cloth and painted by PbO₂ is kept in the instrument shelter for a certain period. SO₂ in the atmosphere reacts with PbO₂ and generates sulfate. Measuring sulfate ion from sulfate, the result is indexed by the unit, "mg - SO₃/day/100 cm² - PbO₂".

The method is originated back to 1932 when Department of Scientific and Industrial Research of England has developed the method for the purpose of determining SO₂ activity giving impact or damage to the various materials of the buildings. Since then the method has been developed in England, USA, Canada and Japan. At present, it is sometimes used to measure and confirm the tendency of sulfuric compounds concentration in terms of one month.

The disadvantage of the method is that (1) activity of lead dioxide is deviatable, (2) apt to be influenced by wind velocity and temperature, (3) H₂S gives impact, (4) still not confirmed the method to convert into ppm order unit and (5) unsuitable for the measurement in the low concentration areas.

II-3-1-2 Evaluation of measuring methods

A evaluation of measuring methods has been conducted by the Central Research Laboratory of Electric Power Industry (CRLEPI). 10 sets of instruments of 5 principles have been studied as shown in Table II-3-2. The study has been extended to repetition, stability, impact of interference substances and so on.

Table II-3-2 SO₂ analyzers of different principles evaluated

SO ₂ analyzer	Measuring principle	Minimum measuring range
erela DA estado	Coulometry 7 to 19 to 19 to 19	0 - 200 ppb
B ara 4	Ultraviolet spectro-photometry	0 - 200 ppb
C	- ditto-	0 - 100 ppb
D	Chronoamperometry	0 - 200 ppb
6 - B - 1 - 1	Flame photometric	0 - 100 ppb
F	- ditto -	0 - 100 ppb
G	- ditto-	0 - 100 рръ
H	Solution conductmetry	0 - 200 ppb
1	- ditto -	0 - 50 ppb
J	- ditto -	0 - 50 ppb

(1) Repetition

Using standard gas generator, zero-gas and span-gas (30 ppb) have been alternately introduced every two hours and 5 times, and the fluctuation coefficient of indicating values have been obtained as shown in Fig. II-3-1.

部分部分提供到外外的表面形式 医额

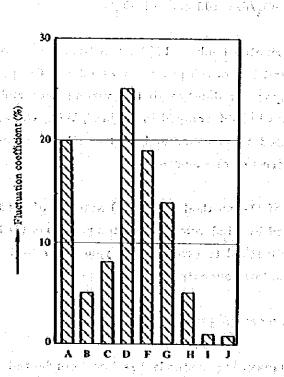


Fig. II-3-1 Comparison of competition tests of SO₂ analyzers

(2) Stability

day filta - e

संद्र्य है। संवद चित्रुवासक्ति संदे

10 sets of instruments have been calibrated simultaneously and after one week operation of the field site, the stability has been studied as shown in Fig. II-3-2.

B, C, F and G indicate the negative value at low concentration and A shows drifting when zero-gas were introduced at every 16 hours. In case of D, due to the decline of flow rate, the recording was not responded.

I and J which are installed with automatic adjustment system are found satisfactory in stability.

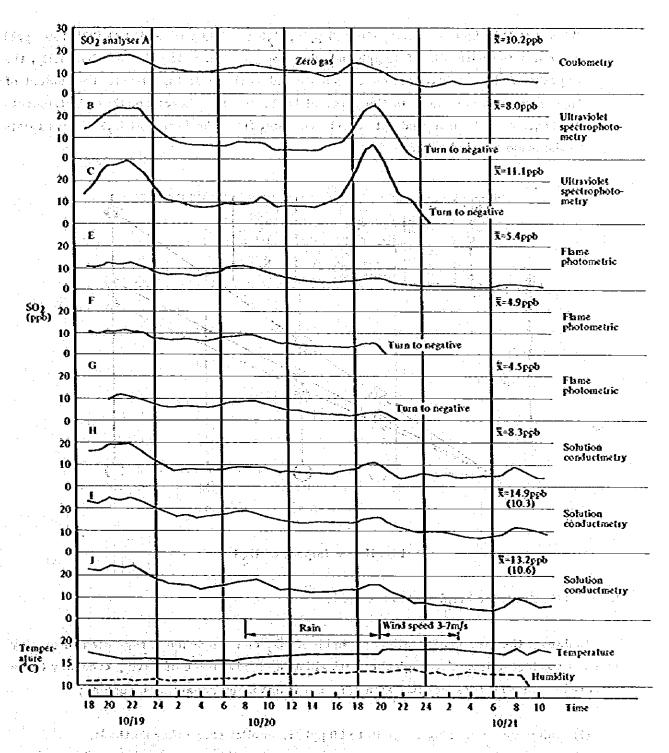


Fig. II-3-2 Results of field measurement by various types of SO2 analyzer ្តភាពការស្រាប់ មិននៅនិងមនុស្សភាពការ៉ា គ្នាសេខម៉ាំ ប៉ាម៉ាម៉ានេះ។

លាល នៅលេកស្នែកស្នៃក្រុម គ្នា មែលក្នុងសេត្តការការ

(3) Impact of interference substances

When NO (120-600 ppb), NO₂ (60-300 ppb), H₂S (60-200 ppb) and CO (375-1500 ppb) are coexisted with SO₂ of 30 ppb and when each substance is existed individually, the impacts of these substances have been studied as shown in Fig. 11-3-3. The impact of H₂S is remarkably shown in the cases of D, E, and F. Therefore, these instruments are required to be installed with desulfuring unit from the fact that H₂S always exists in the atmospheric background.

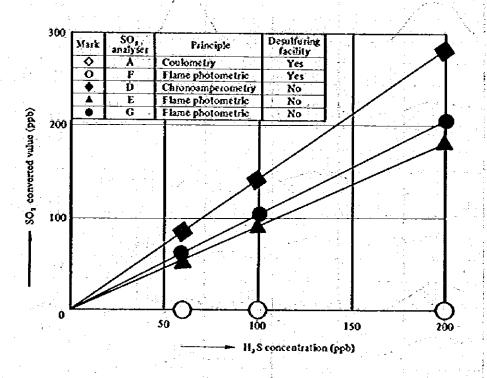


Fig. II-3-3 Impact of H2S

II-3-2 SO₂ Analyzer Employed in the Study

In Japan, the measuring method of ambient SO₂ concentration is regulated to employ solution conductmetry. Although the method has a disadvantage of having tendency to be affected by alkali substances like ammonia, but it has many advantages, such as;

- (1) minimum measuring range (0 to 50 ppb) is smaller than other methods,
- (2) automatic zero adjustment system is installed, and hearth and the state of the
- (3) durability for long term operation is superior,
- (4) calibration can be performed by equivalent solution which is far easier than that of other methods.

By the above reasons, SO₂ analyzers based on solution conductmetry have been employed in this environmental study,

There are 3 manufacturers of SO₂ analyzer in Japan, but DKK (DENKI KAGAKU KOGYO) has been selected from their past records and contribution. The specifications are shown in Table II-3-3 and Picture II-3-1 shows its outside view.

The analyzer is to detect and indicate automatically and continuously SO₂ ambient concentration by passing a fixed amount of sample air into a fixed amount of solution for a fixed period of time and measuring the increase of conductivity of the solution which is corresponding to the concentration. The value indicated at the end of one cycle time (one hour) shows one hour average of SO₂ concentration.

The absorbing solution is 0.006% hydrogen peroxide solution which includes sulfuric acid of 1 x 10⁻⁵ N. The analyzer is designed to pass 1 liter/min. of sample air into 20 ml of solution for one hour. During one hour measurement, ample quantity of air can be collected and high sensitivity is secured which make possible to measure in small range of 0 to 0.05 ppb.

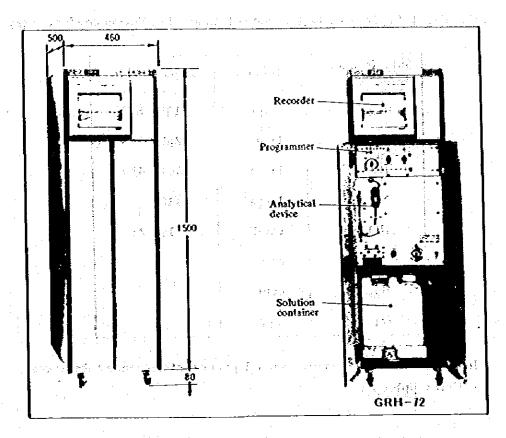
In the solution conductmetry SO₂ analyzer, it has the tendency that at its initial stage of measurement (zero point), the impact of temperature and solution of CO₂ are not negligible and so in order to avoid such influences, the automatic adjustment system is installed. As shown in Fig. II-3-4, the method is to measure the difference of conductivity between the initial conductivity at the measuring electrode and that of absorbing SO₂. The change of conductivity of the solution is compensated automatically by the thermistor. Together with the effective function of automatic adjustment system installed in the analyzer, the instruments are designed to prevent the interference of CO₂ and to provide the stable performance.

A study on interference substances has been conducted by ENVIRONMENT AGENCY, Japanese Government, as shown in Table II-3-4.

The result of the study enumerates Cl₂, HCl, HF, and NH₃ as the interference substances, but these are usually existing in the ambient in very small quantity except NH₃ and so no special consideration may be necessary.

In order to avoid NH₃, oxalic acid trap is usually installed at the sample inlet but as the oxalic acid sublimate at the temperature over 25°C, the arrangement has not been given to this particular study.

The comparison between solution conductmetry and parasoschiline method which is employed in USA.⁵⁾ As shown in figure, the measured values by two methods are found well coincided.


Table II-3-3 Specifications of SO2 analyzer used in this study

スト 集 スポ Grandy Color # 100 (1525) 「GBB」 # 1 Grander Architecture あ GBB (1755) [27

Name	Measuring instrument of ambient SO2 concentration
Manufacturer	Denki Kagaku Keiki, KK
Туре	GRH - 72
Objective pollutant	Amblent SO2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Principle	Solution conductmetry
Measurement range	0-0.05, 0.1, 0.2, 0.5, 1 ppm > 5 range automatic/manual change
Measurement cycle	60 minutes (switchable to 30 min.)
Recording	Saw-tooth dotted recording. Starting from zero and end' of cycle indicates one hour average value
Sampling rate	1 liter/min.
Reagent quantity	ny matana ao amin'ny faritr'i Amerikanana ao amin'ny faritr'i Amerikana ao amin'ny faritr'i Amerikana ao amin'n Ny INSEE dia mampiasa ny kaominina mpikambana ao amin'ny faritr'i Amerikana ao amin'ny faritr'i Amerikana ao a
Reagent tank capacity	20 liter and the second of the
Recording unit	Output; 0-1 VDC Recording; dotted saw-tooth recording, 25 mm/h Chart; folded strip, 180 mm width
Output voltage	DC 0-1 V
Power requirements	AC 100 V +10%, 50 Hz or 60 Hz
Weight	about 110 kg (including 20 liter of reagent)
Dimension	460 (W) x 1580 (H) x 500 (D) x 4 x 4 x 4
External colour	Munsell N4

⁴⁾ Environment Agency; Study on accuracy of automatic monitoring instruments, (1975)

⁵⁾ Environment Agency; Study on measuring methods of ambient sulfur dioxide, (1975)

Picture II-3-1 Outside view of SO2 analyzer used in this study

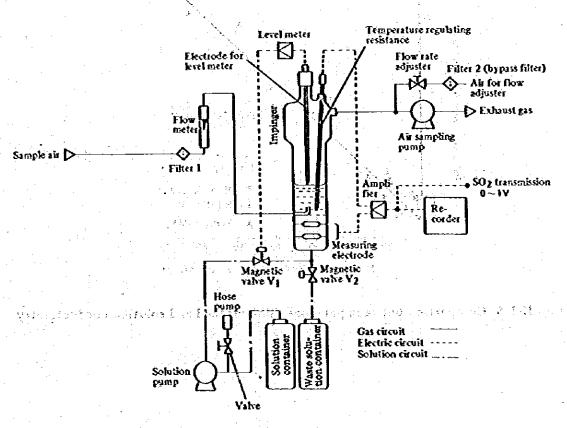


Fig. II-3-4 Flowchart of measurement of SO 2 analyzer

Table II-3-4 Impact of interference substances in solution conductmetry

Interference substancés	Impact	Impact value*
Clz	large	180 - 800
нсі	large	287 - 508
HF	large	364 - 420
NH ₃	large	330
NOZ	small	19-21
NO	none	er in partie
HzS	none	the state of the s
03	none	specientina.

* Impact value (SO₂ converted) per 1 ppm of interference substances Unit: ppb/ppm

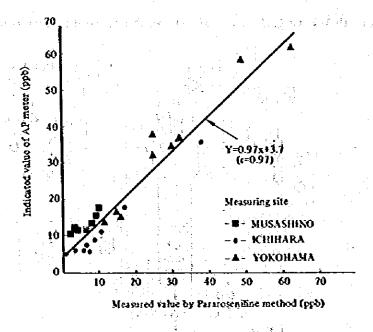


Fig. 11-3-5 Comparison between pararosaniline method and solution conductmetry

II-3-3 Measuring Operation

SO₂ analyzer used in this study is based on one hour cycle and at its initial stage, the reagent (0.006 W/V% hydrogen peroxide including 1x10⁻⁵N sulfuric acid) of 20 ml is automatically introduced into impinger when the reagent is designed to indicate zero by automatic zero adjustment system. In the next stage, the sample air is introduced by flow rate of 1 liter/min. The measurement of ambient SO₂ concentration is performed for 57.25 minutes converting the increase of conductivity into concentration.

The indicated value at the final stage of one cycle represents one hour average value of the cycle. After 57.25 minutes, the reagent is automatically exhausted out and new reagent is introduced for cleaning the inside of impinger which is finally exhausted out. These are the processes of one cycle measurement. These processes have been programmed as shown in Fig. II-3-6 by which continuous and automatic measurement is performed.

	1	2	3	4	5	6	7	8	9
Time (min.)	57.25	0.25	0.25	0.25	0.25	0.25	1.0	0.25	0.25
Operation	air flow	dis- charge soM-	mea- sure ment	air flow	dis- charge solu-	mea- sure ment	àir flow	re- turn auto-	zero ad- just
e el describente la d	45 B If \$	tion	BBS 8	id igs	- tion	A MELT		range	ment
-<u>Y</u>1 , 20, 20, 65	eris er ba						de de		1 1 1 1 1 1
v ₂				Surfig.		1	i gasi t		2 W / 5.
Air pump									
Solution pump				******]	
Return auto-range			-		got e i	-			
SO ₂ zero adjustment			a viete				1 1 1 1		
SO ₂ hold									

Fig. 11-3-6 Program chart of SO2 analyzer

II-3-3-1. Sampling tube

Teflon is used as the sampling tube which has inner diameter 6-8 mm, and length about 5 m. The end of Teflon tube is connected to the port marked GAS INLET of SO analyzer as shown in Fig. II-3-7. A funnel is attached at the other end of tube, facing ground to avoid rain water.

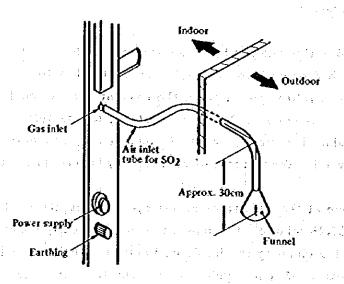
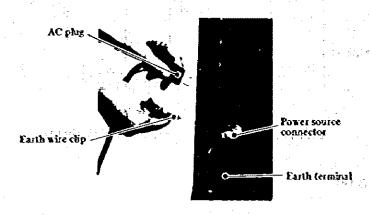
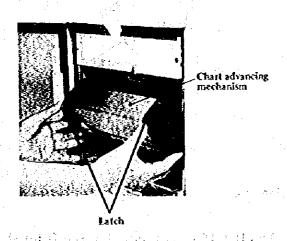



Fig. II-3-7 Installation of air inlet

II-3-3-2 Electrical connections

After confirming the consistency to the specifications in terms of voltage, frequency and capacity, the power cable is connected to the power connector located at the back side of analyzer. (In Singapore, power supply is based on 200 V and so used transformer to reduce the voltage). The earthing cable is connected with earth terminal which is also located at the back side of analyzer. The other end is securely grounded. Picture 11-3-2 shows the locations of the above mentioned power cable connector and earth terminal.



Picture II-3-2 Connections of power cable and earth terminal

H-3-3-3 Chart loading

The chart loading is performed as follows:

- (1) prepare chart (CH-5154-5) and ruffle to avoid sticking
- (2) confirm power switch of the recording unit
- (3) tilt the chart frame towards operator as shown in Picture II-3-3

Picture II-3-3 Loading of chart

- (4) place the chart in the chart housing as shown in Fig. II-3-8, and draw out the chart to fit its perforation to the sprocket and then move back the frame to the original position
- (5) erect the chart guide, advance the chart about 30 cm, fold it on the receiving plate and then move back the guide to the original position

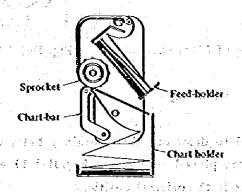


Fig. II-3-8 Loading of chart

(6) set the ink wheel on the holder as shown in Fig. 11-3-9

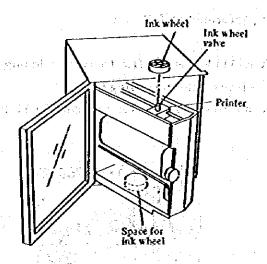
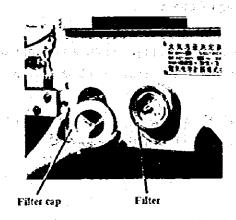



Fig. II-3-9 Loading of ink wheel

II-3-3-4 Filter loading

As shown in Fig. II-3-10 and Picture II-3-4, a filter sheet is loaded in the filter case.

Picture II-3-4 Loading of filter sheet

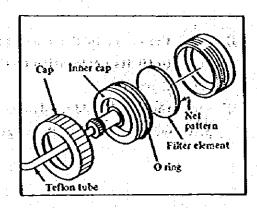


Fig. II-3-10 Loading of filter sheet

II-3-3-5 Solution container loading

The stopper is tilted to draw out the container base, and the empty container and reagent filled container are placed as shown in Fig. II-3-11 after tightly capped, and then replace the container base in the original position.

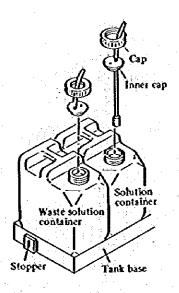
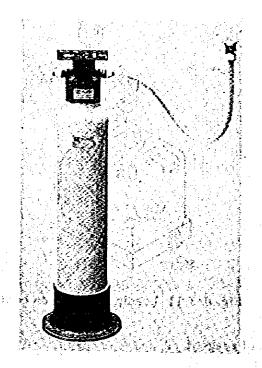


Fig. II-3-11 Loading of solution container

II-3-3-6 Preparation of reagent

The composition of the reagent is hydrogen peroxide of 0.006 W/V% containing sulfuric acid of 1x10-5N. The reagent thus prepared is kept effective for 4 weeks and so once every 4 weeks the reagent has been prepared by JTC for replacement in this study. The processes of preparing reagent are as follows:


- (1) prepare 20 liter distilled water in polyethylene container
- (2) add 4 ml of 30%-H2O2
- (3) further add 2 ml of 0.1N-H2SO4 in the same container
- (4) shake the container for good mixing

The conductivity of reagent thus prepared is 4 ut/cm. The distilled water must have the conductivity of 1 µt/cm or less. In this study, the ion exchanger has been used to obtain the pure water of the above standard which had been brought from Japan. The out view and specifications of the ion exchanger are shown in Picture II-3-5 and Table II-3-5 respectively.

11 - 69

application of a responsibility of the first and the first and the small of the restoration in

the descriptions of the era believe about the era believe

Picture II-3-5 Ion exchanger

Table II-3-5 Specifications of ion exchanger

Manufacturer	ORGANO CO., Ltd.
Туре	G-10 type
Standard flow rate	50 - 200 liter/hour
Max. effective quantity	about 2,000 liter
Ion exchange resin	Manburlite MB-2 Resin-10 liter
Quality tester	Measuring range 0-2μ0/cm, (battery usable)
Dimension (mm)	1656 x 905 H
Operation weight	17.5 kgs
Max. opération pressure	3.5 kg/cm

II-3-3-7 Calibration of instruments

By the processes described in the above, II-3-3-1 to II-3-3-6, the measurement of SO₂ ambient concentration is performed, but prior to the commencement of measurement, it is necessary to calibrate the instruments.

Due to the difficulty to obtain the standard gas of low concentrations, the calibration of instruments are carried out by preparing equivalent solution.

(1) Preparation of equivalent solution

建手动性,是什么人,这是你是你是什么人

- (a) Chemical for equivalent solution (N/100 sulfuric acid)

 N/10 sulfuric acid used for the preparation of reagent is diluted to 10 times

 by using pipet and mesh flask.
 - (b) Equivalent solution for zero adjustment

 The reagent prepared as described in II-3-3-6 is used for zero adjustment
 - (c) Equivalent solution for span adjustment

 As shown in Table II-3-6, the equivalent solution is prepared corresponding to the concentrations of SO₂, using pipet and mesh flask.

Table II-3-6 Chemical for equivalent solution and corresponding SO2 concentration

		History Committee Co
Chemical quantity for equivalent solution	or Corresponding SO2 concentration	Measuring range
0.5 ml	0.021 ppm	70.05 mm
1.0 ml	0.042 ppm	0.05 ppm
2.0 ml	0.084 ppm	0.2 ppm
4.0 ml	0.168 ppm	<u> </u>
10.0 ml	6.420 ppm	-0.5 ppm -1.0 ppm
20.0 ml	غ مم	T.oppin
		<u></u>

englig alle de statistis treger valge in the letter activities

and harber the control of the results of the control of the contro

LINE BYCKEN (AND SOME BOY SOME SOME AND THE SOME OF THE SOME AND AND SOME OF THE SOME

STATESTAND OF AN ENGLISH STATEST OF THE CONTRACT OF STATESTAND

(2) Preparation for calibration

The span adjustment of each range and zero adjustment solution are prepared, pouring into nozzled bottle of 1 liter. The solution is injected into the impinger from solution filling mouth, taking off the rubber stopper, and flow the solution to the end of level detector rod and thermistor, as shown in Fig. II-3-12.

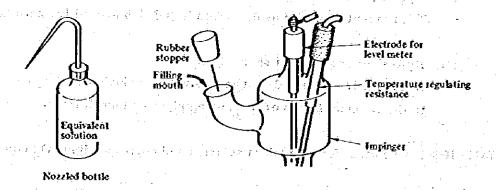


Fig. II-3-12 Filling of equivalent solution

(3) Zero adjustment

Zero adjustment is carried out by the following processes.

- (a) Set the measuring range to the maximum (0-50 ppb), inject 0 ppm equivalent solution into the impinger, set the function selector to SOLDISCHARGE and lock the MANUAL switch to drain the impinger. Repeat the same steps 3 or 4 times to clean up the inside of impinger.
- (b) Charge the impinger with zero equivalent solution, set the function selector to ZERO ADJUST and lock the MANUAL for 30 seconds.
- (c) Set the function selector to MEASURE and lock the MANUAL. Verify the recorder reads zero and unlock the MANUAL. If zero is not read, adjust SO₂ zero trimpot so as to read zero.
- (d) Set the function selector to SOL DISCHARGE and lock the MANUAL.

 After the impinger is completely drained, unlock the MANUAL.

(4) Span adjustment

The span adjustment is carried out by the following processes.

- (a) Inject 20 ml of equivalent solution into the impinger from the filling mouth.
- (b) Set the function selector to SOL DISCHARGE and lock the MANUAL for 20 seconds to drain the impinger.
- (c) Repeat the above (a) and (b) three or four times.
- (d) Inject 20 ml of equivalent solution.
- (e) After 30 seconds, set the function selector to MEASURE and lock the MANUAL. Verify the recorder reads the corresponding concentration of the equivalent solution before unlock the MANUAL. If the recorder indication deviates from the correct value, adjust the SPAN trimpot for the selected range.
 - (f) Check and correct other ranges as described in the above.
- (g) For the adjustment of intermediate concentration, do not set the function selector.
- (h) After span adjustment is completed, empty the drain tank to avoid overflowing.

CHERRY HOTELS IN THE

into encome o como de la como de

11-3-3-8 Operation of hose pump

The operation of hose pump is to verify that absorbing solution is sent to the impinger automatically and in regular flow rate. The processes are as follows.

(a) Set the function selector to HOSE PUMP and lock the MANUAL.

4. 八十条元十二

- (b) Open 2-way cock as shown in Fig. II-3-13 and push the hose pump by manual, and verify that solution is sent to the impinger.
- (c) Close the 2-way cock and unlock the MANUAL. Confirm the bubbles in the tube.

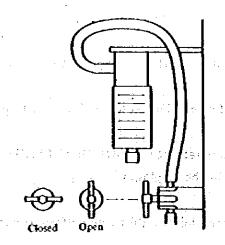


Fig. II-3-13 Operation of hose pump in the

II-3-3-9 Adjustment of flow meter

Set the function selector to AIR FLOW and lock the MANUAL. Adjust the flow meter by valve as shown in Fig. II-3-14.

to an experience of the control of t

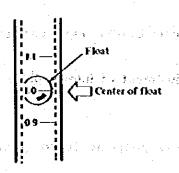


Fig. II-3-14 Adjustment of flow meter

II-3-3-10 Automatic measurement

Set the function selector to AUTO and confirm the light of auto measurement indicator. Keep the MANUAL in OFF position. Set SO₂ range selector on the programmer panel to AUTO and confirm the light of auto-range indicator. Set the timer on the programmer panel to the present time, as shown in Fig. II-3-15, by turning its knob clockwise. Turn on the recorder power switch and send out the chart by means of chart advance knob until the recorder pen dots the present time on the chart.

After the above processes, the analyzer is in automatic operation by the program shown in Fig. II-3-6.

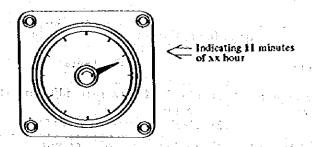


Fig. II-3-15 Adjustment of timer

II-3-3-11 Maintenance of SO₂ analyzer

The proper maintenance of instruments is absolutely necessary to secure the accuracy of measurement extending for long term by proper and sound operation of instrument.

Table II-3-7 shows standard items and frequency necessary for the maintenance.

Table II-3-7 Items and frequency for maintenance of SO2 analyzer

No.	Îte	m for maintenance			Fr	equ	énc	y	: 4	
110,	Item	Contents	1 w.	e w.	l m.	2 m.	3 m.	4 m.	6 m.	1 v.
1	Air sampling tube	1) dirt, leakage, damage, disconnection 2) rinsing of tube inside 3) replacement of tube			×		×	,		x
2	Air passage except sampling tube	1) dirt, leakage, damage, disconnection 2) rinsing of connector & inside tube 3) replacement of tube 4) test for gas leakage	x		A STATE OF THE STA	7 <u>-</u> 7 3	X		- t	X
State of the second second second	Solution passage	1) dirt, leakage, damage, disconnection 2) rinsing of connector & inside tube 3) replacement of tube		×			X			The second secon
4	Flow meter	1) dirt & dust of inside, position of float 2) adjustment to 1.0 liter/min. 3) rinsing of inside and float 4) check indication of flow rate	x	100	The State of the S	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	×	7	×	Control of the contro

Note: w.: week, m.: month y.: year

Table II-3-7 Items and frequency for maintenance of SO₂ analyzer (Cont'd)

1	Item	for maintenance			tr.	equ	enc	v	<u>_</u>	
No.	Item	Contents	1 w.	S W.	i	2 m.	3	4	6 m.	1
5	Flow rate adjust- ment valve	check of flow rate adjustment range rinsing of needle and inside	x				X.			<i>y</i> •
6	Filter(1) Element Case	replacement of element rinsing of inside and connector replacement of filter case	x				х			x
7	Absorbing solution	préparation of solution and réplacement	18	×	¥ 5			t disch	ξυ:	# 1 2 4
. 8 . 1	Gas absorbing system	1) dirt, bubbling 2) rinsing of inside and electrode	X				x	10 To 10	190	1
9	Air absorbing pump	1) abnormal noise and vibration, check of flow rate 2) rinsing of diaphragm, valve & joint 3) replacement of diaphragm and valve	yes to		X		2 h		44.5	**
10	Solenoid valve	check of opening & closing operation	- · · · ·	N 3	Ft.	3	×		. *	
11	Solution charging pump	 abnormal noise and vibration check of flow rate 	83	ж	×	-4 2 -4 -			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Table State
12	Solution in impinger	check solution quantity as 2040.4 ml adjustment of electrode for level detector					x x			All and the second seco
13	Calibration by equivalent solution	calibration of each range by equivalent solution					×		I market	A Section
14	Recorder chart	proper advance check of chart slip replacement of chart	X		X	8	4	1 (1) 1 (1) 1 (1)		A A Linear Same And a
	indicator	4) shade of ink 5) supply of ink 6) zero adjustment	*	x					•	X
15 16	Timer Power source,	check of time gap	×	×		\$ " "				19 pt 1/1/20
17	earth Adjustment of electronic circuit	brokage adjustment of slide, range, balance, D/A	-		1"		1		12-15-17-17	×
18	Filter(2) by-path	replacement of element is a first tas effect to a single term.	1	H						×

II-3-4 Maintenance and Results of Measurement

At 7 monitoring stations enumerated in Table II-1-1, the automatic and continuous measurement of SO₂ ambient concentration has been carried out for one year, from July 15th 1981 to July 14th 1982. The maintenance of instruments have been conducted by JURONG TOWN CORPORATION (JTC) through the year and the calibration has been carried out by Japanese team for 3 times within the above period.

化氯酚酚 医动物性病 医自动性性神经病 医二甲酚酚二甲

and we tape of the entry to the

ing makaban Reprinting Paring

可能性的连续 (1915年) 1915年 (1916年) (1916年) 1916年 (1916年)

The maintenance and the results of measurement are described.

II-3-4-1 Maintenance

(1) Regular maintenance

Based on the items and frequency of maintenance of SO₂ analyzer shown in Table II-3-7, SO₂ analyzers installed in monitoring stations have been maintained by JTC for the items mentioned hereunder.

and the transfer of the area of the contract of the appear of the contract of the contract of the contract of

- (a) check of dirt, leakage, damage and disconnection of sampling tube
- (b) check of dirt, leakage, damage and disconnection of air passage
- (c) check of dirt, leakage, damage and disconnection of solution passage
- (d) check of dirt and dust of inside of flow meter in the land to the second of
- (e) check of float position
- (f) adjustment of flow rate (1 liter/min.)
- (g) check of dirt and bubbling of gas absorbing system
- (h) check and adjustment of chart advance
- (i) adjustment of time gap of chart
- (i) check of ink shade
 - (k) adjustment of time gap of timer

Besides the above, the filter has been replaced once a week as described in II-3-3-4, the absorbing solution has been prepared and replaced once for 2 weeks as described in II-3-3-6, and the chart has been replaced once a month as described in II-3-3-3.

(2) Calibration of SO₂ analyzer

In order to secure the sound and proper operation of SO₂ analyzer and accuracy of measurement, the calibration has been conducted once every 3 months as shown in Table II-3-8. The calibration has been performed by equivalent solution as described in II-3-3-7.

In parallel with the calibration by equivalent solution, the following items have been checked and maintained according to the report form shown in Table II-3-9.

the decision of the state of the last of the state of the

រាក់ស្នើក្នុង ស្រីធ្វើកំណាមការ

- (a) rinsing or replacement of sampling tube
- (b) rinsing of connector of gas passage and inside of tube
- (c) leakage test of gas passage
- (d) rinsing or replacement of connector of solution passage and inside of the tube
- (e) rinsing of inside and float of flow meter and the state of the sta
- (f) check of indicator of flow meter is self-in a house payment gaza , before your
- (g) rinsing of filter case
- (h) rinsing of impinger
- (i) rinsing of air absorbing pump, which have the state of the state as
- (j) check of solenoid valve operation in the entropy of the state from
- (k) check of solution charging pump is the second second distributed and second
- (1) check and adjustment of solution quantity of impinger to the first state of

Table II-3-8 Data of calibration of SO₂ analyzer

	w jak	J. of 18 44 50 18	के रोगोल के कि पूर्व	ing the first of the second second	and the
Station	1st calibration	2nd calibration	3rd calibratión	4th calibration	5th calibration
MP-1	June 25th, '81	Oct. 27th, '81	Feb. 2nd, '82	May 25th, '82	July 19th, '82
MP-2	June 29th, '81	Oct. 26th, '81	Feb. 5th, '82	May 24th, '82	July 16th, 82
MP-3	June 26th, '81	Oct. 26th, '81	Feb. 5th, '82	May 24th, '82	July 17th, '82
MP-4	July 1st, '81	Oct. 27th, '81	Feb. 3rd, '82	May 26th, '82	July 20th, 82
MP-5	June 30th, '81	Oct. 27th, '81	Feb. 3rd, '82	May 26th, '82	July 20th, '82
MP-6	July 2nd, '81 :	Oct. 29th, '81	Feb. 4th, '82	May 27th, '82	July 21st, 82
MP-7 .	July 3rd, 81	Oct. 29th, '81	Feb. 4th, '82	May 27th, '82	July 21st, '82

Table II-3-9 SO₂ analyzer maintenance report form

Programme and the second

								3-3 3-3
Maintenance items			Reference section	Calibra	Calibration with equivalent solution	equivale	at solutio	ali Ali
Sampling tube cleaning	Yes	No	II-3-5 (1)	7	कृष	Indication $(SO_2$ ppm)	(mdd ² C	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Sampling paths within analyzer cleaning	Yes	No	п-3-5	(SO ₂ ppm)	0.05 Range	0.10 Range	0.20 Range	0.50 Range
Sample leak test	Good	No	n-3-9	0000	000	000	000	000
Solution path tubes cleaning	Yes	S.	п-3-11	000*0	2000	202-0	200-0	3
Flow meter cleaning	Yes	No	II-3-6 (1)	0-021				
Flow meter calibration	Yes	No	П-3-6 (2)	0.042				
Flow control valve cleaning	Yes	No	П-3-7	7000				
Filter case cleaning	Yes	No	Д-3-5 (2)	* 00.0				
Impinger cleaning	Yes	No	11-3-4	0.168		:		
Sampling pump cleaning	Yes	No	П-3-3	0.420	before adj	e adj.	. 7 2	
Solenoid valve inspection	000 000	No				7		
Solution pump inspection	Good	No	H-3-10					
Confirmation and adjustment of reagent quantity in impinger	Within 20 ±0.4 ml Good No	+0.4 m1 No	п-3-8	Month/day	ay			
Calibration with equivalent solution	Good	No No	I-4-3	Weather				
Remarks:				Surveyor	H		1	
	·							

and Microphysical Applications of the state of the state

jamentes ambientoja krem in bio por provincio e partigar in jero in elemente in objektiva. Porkjanski propas o berken stoja promatiljansja to pokoja provincio provincio in provincio in provincio in pro The results of calibration of SO₂ analyzers installed in 7 monitoring stations, MP-1 to MP-7, are shown in Table II-3-10-(1) to -(8). The prior calibration in the table means the calibration by adjusting SO₂ indicated concentration with equivalent solution, introducing equivalent solution of about 90% concentration of maximum range. And post calibration means the calibration by checking SO₂ indicated concentration with equivalent solution prepared in same way with prior calibration after certain period (3 months in this study) of measurement of ambient air.

Table II-3-10-(1) Results of calibration by equivalent solution (1st calibration, prior calibration)

SO ₂ analyzer Rar	Range	Equivalent solution concentration (ppb)							
	(ppm)	0	21	42	84	168	420		
MP-1	0,50	4	-	-	- :	-	- :		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.20	ð	14-	- I	83	168#	###		
	0.10	Ó	· -	41	84*	***	###		
	0.05	Ó	19.5	42*	###	###	###		
MP-2	0.50	÷	_	<u> ; </u>	- ;	-	4 ! ! ! -		
	0.20	Ò	-	- . [85	168*	***		
ig Modes (Light	0.10	ò	-	41.7	84*	###	###		
	0.05	Ò	20.5	42*	###),	###	***		
MP-3	0.50	-1 -		1 % - 1	1 2 2	= 1	·		
	0.20	Ó	20.0	-	83	166*	###		
	0.10	0	20.5	41	83*	###	###		
	0.05	Ò	20.0	42*	###	###	###		
MP-4	0.50	ø	; i,-	. :	-, 4.	168	415*		
	05.0	Ó	1,1	73 -	82	167*	###		
	0.10	0	i - i	41.5	83*	###	###		
	0.05	Ò	20.5	42.4*	###	###	###		
MP-5	0.50	2.5	: -	-	-	; - ,	44/ - .		
	0.20	0	. 21	42	83	168*	###		
	0.10	0		41	83*	###	###		
	0.05	0	19.7	42*	###	###	###		
MP-6	0.50	1	-	- ;	₹.√.	_			
	0.20	0	15	42	87	168*	###		
	0.10	0	15	42	84*	###	###		
	0.05	0	21	42*	***	###	###		
MP-7	0.50	-	-	-	. . .	- ,	٠ _{5 //} =		
100 A	0.20	0			845.	166*	***		
	0.10	0	1 1	42	84*	###	###		
	0.05	0	20.3	42.5	***	***	###		

Table II-3-10-(2) Results of calibration by equivalent solution (2nd calibration, post calibration)

ŠO ₂ analyzer	Range	Eq	uivalen	ration (ppb)			
	2 analyzer (ppm)	Ó	21	42	84	168	420
MP-1	0.50	0		_	L	- 4	415
	0.20	Ó	20	41	58	168	###
	0.10	Ó	•	-	83.7	###	###
	0.05	Ó	15:	42	###	***	###
MP-2	0.50	Ó	-	-	→ 3.3	+ 5	409
	ò.żò :	Ó	-	-		164	***
	0.10	Ó	;	-	80 1	***	###
	0.05	Ô	1921 - 1	40	***	***	***
MP-3	0.50	0	21	42	82	167	420
1.30	0.20	Ó		- 24.8 <u>-</u> 1	1 € :	166	###
	0.10	Ó	-		83 1	###	###
	0.05	Ó		41	### 0	###	###
MP-4	0.50	Ò	20	42	84	168	420
er er di jeg	0.20	0	50	42	83	168	###
	0.10	Ó	21	42	84	###	###
	0.05	ø	4.5-	42.5	###	###	###
MP-5	0.50	Ò	21	42	84	168	420
	0.20	Ó	21	42	83	168	###
	0.10	Ó	:	-	83.5	###	###
	0.05	Ò	-	42.3	+++	***	###
MP-6	0.50	Ò	-	_	<u>ئ</u> ر ئ		438
1 × 11	0.20	Ó	1	F* - []	.	176	###
	0.10	Ó	\$. .	[] - []	87	###	###
	0.05	٥	<u> </u>	44	###	###	###
MP-7	0.50	Ó	_	_	= 4	- - 5	415
	0.20	ò	, <u> </u>	-	4	167	###
tari ya	0.10	Ó	\$ i = 1	_ :	83.5	###	###
1	0.05	Ó	7. 5	42.3	***	###	###

Table II-3-10-(3) Results of calibration by equivalent solution (2nd calibration, prior calibration)

co anatoria	Range	Equivalent solution concentration (ppb)							
SO ₂ analyzer	(ppm)	0	21	42	84	168	420		
MP-1	0.50	Ó	20	40	83	168	420*		
	0.20	Ó	20	41	82	168*	###		
	0.10	ò	21	41.5	84*	***	###		
	0.05	ò	21	42*	###	###	###		
MP-2	0.50	Ò	ŚÓ	40	83	167	420*		
	0.20	Ò	20	41	83	168#	***		
1 4 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0.10	o:	20.5	42	84*	###	###		
	0.05	0:	15	42*	***	###	###		
MP-3	0.50	0	21	42	82	167	420*		
	0.20	0	21	41	83	168*	***		
	0.10	Ò	21	41.5	84*	###	###		
	0.05	0	21	42*	***	***	###		
MP-4	0.50	0	20	42	84	168	420*		
	0.20	Ó	20	42	83	168#	###		
	0.10	o	21	42	84*	###	###		
	0.05	0	21	42*	***	###	###		
MP-5	0.50	0	21	42	84	168	420*		
	0.20	0	21	42	83	168*	###		
	0.10	0	-21	41.5	84*/	###	###		
	0.05	0	21	42*	###	###	###		
MP-6	0.50	Ó	20	142	84	169	420*		
	0.20	Ó	50	42	83	168*	###		
	0.10	Ó	21	42.3	84*	###	###		
	0.05	0	21.5	42*	###	###	+++		
· MP-7	0.50	0	22	43	84	167	420*		
	0.20	0	21	42	84	168*	###		
	0.10	0	20.5	42	84*	###	###		
	0.05	0	21	42*	###	###	###		

Table II-3-10-(4) Results of calibration by equivalent solution (3rd calibration, post calibration)

SO ₂ analyzer	Range	Equivalent solution concentration (ppb)							
	(ppm)	0	21	42	84	168	420		
1 MP-1 144	0.50	Ò	20	41	58	167	419		
	0.20	Ò	21	41	82	167	###		
	0.10	Ò	21	41.8	83	###	###		
	0.05	0	21.2	42	###	###	###		
MP-2	0.50	Ò	22	42	83	168	422		
	0.20	0	() - }		- - 	170	###		
Political Property of	0.108	0	21.4	42.5	84.4	###	###		
	0.05	0	-	43.8	###	***	###		
MP-3	0.50	0) - ₹84	- 2	413		
	0.20	Ó		: <u>-</u>	9 1 ≜ 9,0.	163	###		
	0.10	0	12 = 1	· -	80.5	###	###		
i ka sasa	0.05	0	1 -	40.8	###	###	###		
MP-4	0.50	0	21	42	82	167	417		
The second second	0.20	0	_	: -	<u>*</u> 1.5	164	###		
	0.10	0	·		82	###	###		
	0.05	0	21.5	41.3	###	###	###		
MP-5	0.50	0	20	43	86	169	418		
	0.20	0	21	42	83	168	###		
And the second second	0.10	0	4.7 - 1	: 1 -]	82 .	###	###		
7 55 5 3 5 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	0.05	0	11-3	41.5	###	###	###		
MP-6	0.50	0	21	42	84	170	425		
	0.20	Ó	21	342	83	169	***		
	0.10	0	21.4	42.4	84	###	###		
• <u>•</u>	0.05	0	21.3	41.8	###	###	+++		
MP-7	0.50	0	∄ i → i		4	- 1	414		
	0.20	0	[7 5 − } (- 3 5. s.	161	###		
i transfer in the second secon	0.10	Ó	} * -, }		81.5	###	###		
	0.05	0	* - .	. 41 E	***	###	***		

Table II-3-10-(5) Results of calibration by equivalent solution (3rd calibration, prior calibration)

SO ₂ analyzer	Range	· Equivalent solution concentration (ppb)								
	(ppm)	Ò	21	42	84	168	420			
MP-1	0.50	0	20	41	82	167	419*			
4.6	0.20	0	- 21	41	82	167*	###			
- 1	0.10	0	-21	41.8	83*	###	###			
	0.05	0	21.2	42*	***	###	***			
MP-2	0.50	0	22	42	83	168	422*			
	0.20	0	21	41,5	83	168*	###			
And the second s	0.10	0	21.4	42.5	84.4*	***	###			
	0.05	Ò	\$1.5	42*	###	###	###			
MP-3	0.50	Ó	21	42	82	167	420*			
	0.20	0	20.5	41	82.5	168#	###			
	0.10	Ö	21	42	84*	###	###			
4.4	0.05	0	20.8*	42*	###	###	###			
MP-4	0.50	Ò	⁵ 21	42	82	167	417*			
	0.20	0	21	42	83	168*	###			
	0.10	Ò	21.5	42.2	84*	###	###			
1000	0.05	0	21.5	41.3*	###	***	###			
MP-5	0.50	O	20	43	86	169	418*			
100000 1000 1000 1000 1000 1000 1000 1	0.20	Ò.	21	42	83:5	168*	###			
\$ 3	0.10	Ó	21	42	84*	###	###			
	0.05	0	15	42*	*** ***	###	###			
MP-6	0.50	0	21	42	84	170	425*			
	0.20	0	15	42	83	169*	###			
氰二苯甲氧氯甲基	0.10	0	21.4	42.4	84*	###	###			
	0.05	Ó	21.3	41.8*	###	###	###			
MP-7	0.50	Ó	22	42	83	164	420*			
	0.20	Ò	21	42	83	168*	###			
	0.10	Ò	² 21	42	84*	###	###			
自身等 网络	0.05	0	21	42*	### .	###	###			

Table II-3-10-(6) Results of calibration by equivalent solution (4th calibration, post calibration)

SO ₂ analyzer	Range	Eq	uivalen	t solutio	n concent	ration (opb)
	(ppm)	0	21	42	84	168	420
MP-1 505	0.50	Ó	1	:	-	-	412
	0.20	ò	11-	\$ din ≠ €	it J =€€	161	***
	0.10	Ò	· ; -	; - r	± 81 -1,≥	***	***
	0.05	0	-	./41	###	###	***
MP-2	0.50	0	21	42	83	167	417
i situ May	0.20	0	15:	42	84	167	###
	0.10	0	21.2	43 ,	85 (/-	###	###
	0.05	0	21.3	42.2	###(1)	###	###
4 MP-3 + ∰	0.50	Ò	20	41	82	167	418
	0.20	Ò	20.5	41.5	83	169	###
	0.10	0	4) -	# 5 - 2	83 7	###	***
抗導	0.05	0	. d = 11.	42.8	### · ·	###	***
MP-4	0.50	Ò	21	1 42 . 6	82	167	420
	0.20	Ò	- ·	73 - 10	± ±2.6	165	***
e e e e e e	0.10	0	21.7	42.1	84	###	***
	0.05	0	21.3	41.5	### 117	###	***
1 MP-5 € 11	0.50	Ó	21	42	83	167	417
	0.20	0	21	42.5	84	167	###
	0.10	0	21.6	43.3	84	###	***
	0.05	0	21.5	41.6	####	###	###
MP-6	0.50	0	-	1.00 pt	事上海	- 4	431
Spile Artist	0.20	0	50	40.5	83	168	###
	0.10	0	20	41	83.5	###	***
116	0.05	0 ::	: -	41.5	###	###	###
MP-7	0.50	0	-	15 T 43	- 70°10	-	428
	0.20	0	24	46	87 5.3	169	***
	0.10	0	23	44	83.5	###	f##
	0.05	0	21.7	41.7	### 2,00	***	f # #

Table II-3-10-(7) Results of calibration by equivalent solution (4th calibration, prior calibration)

रुष्ट्र विकास समिति	Range	Equivalent solution concentration (ppb)							
\$0 ₂ analyzer	(ppm)	0	21	42	84	168	420		
MP-1	0.50	Ò	19	40	82	165	420*		
\$ 5 TO +3\$	0.20	0	20	41	83	168*	###		
	0.10	0	20	41.5	84*	###	***		
	0.05	Ó	20.4	42*	###63	###	***		
MP-2	0.50	Ò	21	42	83	167	417*		
	0.20	Ó	21	42	84	167*	***		
	0.10	0	21.2	43	85*	###	***		
	0.05	Ò	21.3	42.2*	###	###	###		
MP-3	0.50	0	20	41	82	167	418*		
	0.20	0	20.5	41.5	83	169*	***		
	0.10	0	21	42.5	84*	###	***		
	0.05	Ó	20.5	42*	###	***	+++		
MP-4	0.50	Ó	21	42	82	167	420*		
	0.20	0	21	42.2	83	168*	***		
	0.10	Ò	21.7	42.1	84*	###	***		
	0.05	0	21.3	41.5*	### ·	###	###		
MP-5	0.50	Ò	21	42	83	167	417*		
	0.20	0	21	42.5	84	167#	###		
	0.10	0	21.6	43.3	84*	###	###		
រំបែកស្ត្រី។ ក្នុ ពិសាស្ត្រី។ ក្នុ	0.05	0	21.5	41.6*	###	###	###		
MP-6	0.50	0	19	39	82	166	420*		
	0.20	: 0	20	40.5	83	168*	###		
	0.10	Ò,	20	41	83.5*	###	###		
	0.05	Ô	20.5	42*	###	###	###		
MP-7	0.50	Ô	22	43	89	178	420*		
	0.20	Ò	. 24	46	87.1.1	169#	###		
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	0.10	0	23	44	83.5*	***	###		
	0.05	0	21.7	41.7*	***	***	###		

Table II-3-10-(8). Results of calibration by equivalent solution (5th calibration, post calibration)

SO ₂ analyzer	Range	Eq	uivalen	t solution	n concenti	ation (pb)
	(ppm)	0	21	42	84	168	420
MP-1	0.50	0	20	41	81	164	422
	0.20	0	50	41.5	82	168	***
	0.10	Ò	65 ·	Ç≯ <u>≐</u>	83	###	###
	0.05	Ó	20.7	41.7	44405	***	###
MP-2	0.50	0	-	-		**************************************	410
1 844 734	0.20	0	-	· -	A	163	***
	0.10	Ó	3 C=		81.2	###	###
	0.05	0		41.4	###	***	+++
MP-3	0.50	Ò	21	41	80	163	417
	0.20	0	7 • -	1. - 1	, <u>*1.</u>	165	###
	0.10	0	-	-	82	###	###
	0.05	0	20.7	42	###	###	###
MP-4	0.50	Ô	20	42	82	167	417
i se se	0.20	0	21	42	83.5	168	###
	0.10	0	* * -	. 3 5 − 1	82.3	###	###
	0.05	0	-	41.2	###	###	###
MP-5	0.50	0	: i - :	i -	A.	-	415
	0.20	0	· -	() - ()		166	###
	0.10	Ò	21	42.2	83	###	###
	0.05	0	21	. 42	### 5.0	###	###
MP-6	0.50	0	18	39	79	165	420
	0.20	0	['] 20	41	81	168	###
Market Co.	0.10	0	1 - 1	1	81.4	###	###
	0.05	0	S1 -	41	***	***	###
MP-7	0.50	0	97 - 1	\$ 64 g	443	- 1	409
	0.20	0	3" - [8 · -		164	###
	0.10	0	₹ % =	1.03±1.00	80	###	###
	0.05	0		39.8	***	###	###

In order to verify the relation between concentrations of equivalent solution and indicating value of SO, analyzer, the following factors have been investigated as shown in Table H-3-11-(1) to -(8).

- (a) Linear regression equation (y'= ax + b) when x = equivalent solution concentration (ppb) y = indicating concentration of SO₂ analyzer (ppb)
- (b) Correlation coefficient (r)
- (c) Deviation from regression equation (ce)
- (d) Deviation from y=x (max, deviation from y=x (ppb) x 100)

The illustrated linear regression equations are shown in ANNEX. The correlation coefficient (r) is expressed quantitatively the correlation between valuables x and y, by Equation II-3-1 and is obtained in the range "-1 $\leq r \leq 1$ ".

When r=1 or r=-1, all the dots on the scatter diagram are illustrated on the certain line and when r is near to 1 or -1, all the dots are gathered on or around the certain line. On the contrary, r is near to zero, these dots on the scatter diagram are scattering in different directions which means there are few correlation among factors. Further, when r > 0, correlation exists in positive side and when r < 0, it is in negative side.

$$r = \frac{Sxy}{\sqrt{Sxx \cdot Syy}}$$

Equation II-3-1

$$\begin{bmatrix} Sxx = \Sigma x^2 - \frac{(\Sigma x)^2}{n} \\ Syy = \Sigma y^2 - \frac{(\Sigma y)^2}{n} \\ Sxy = \Sigma xy - \frac{\Sigma x^2 \Sigma y}{n} \end{bmatrix}$$

When: Σx , Σy ; total sum of sample (x), (y) Σx^2 , Σy^2 ; square sum of sample (x), (y)

Σxy; sum of products of samples ; sum of products of sample (x, y)

The deviation from regression equation, oe, is expressed quantitatively by applying Equation II-3-2 to the regression equation and variables (x, y;). Smaller oe are confirmed that each variable is near linear regression equation.

$$\sigma_{\mathcal{E}} = \sqrt{\frac{\sum_{i=1}^{n} \left\{ yi - (axi + b)^{2} \right\}}{n-1}}$$

Equation II-3-2

Table II-3-11-(1) Correlation between concentrations of equivalent solution and SO2 analyzer indication at calibration (1st calibration, prior calibration)

SO ₂ analyzer	Range (ppm)	Para- meter	Regre equati y = ax	ion	Correlation coefficient	Deviation from equation	Deviation from y=x
	1, 24	, n	a	b	ing sa sa ta	o E	(%)
MP-1	0.50	-	-	-	= (21) A++	dia est	44 J 🐧 193
	0.20	3	1.000	-0.3	0.999	0.577	0.5
	0.10	3	1.000	-0.3	0.999	0.577	1.0
	0.05	3	1.000	-0.5	0.999	0.866	3.0
MP-2	0.50	-	-	-		-	4
	0.20	3	1.000	0.3	0.999	0.577	0.5
	0.10	3	1.000	-0.1	0.999	0.173	0.3
	0.05	3	1.000	-0.2	0.999	0.289	1.0
MP-3	0.50	-	-	-	-	-	-
and have t	0.20	5 F 1 F 2 F 2 F 3	0.990	-0.3	0.999	0.341	1.0
	0.10	4	0.988	5.6-	0.999	0.239	1.0
Hill I BA	0.05	3	1.000	-0.3	0.999	0.577	2.0
MP-4	0.50	3	0.988	0.8	0.999	1.147	1.0
٠	0.20	1440 (11° & 1 3	0.994	-0.5	0.999	0.866	1.0
	0.10	3	0.988	0.0	0.999	0.000	1.0
	0.05	3	1.010	-0.2	0.999	0.404	1.0
MP-5	0.50	-	-	-	_ : ;	-	-
-	0.20	5	0.999	-0.1	0.999	0.440	0.5
	0.10	3	0.988	-0.2	0.999	0.289	1.0
	0.05	3	1.000	-0.4	0.999	0.751	2.6
MP-6	0.50	-	-	-	-	_	-
	0.20	5	1.004	0.4	0.999	1.321	1.5
	0.10	• • 4 • •	1.000	0.0	1.000	0.000	
	0.05	3	1.000	0.0	1.000	0.000	0
MP-7	0.50	_	-	- `	-	-	 -
	0.20	Ž,	0.988	0.3	0.999	0.577	1.0
	0.10	3	1.000	0.0	1.000	0.000	0
	0.05	3	1.012	-0.3	0.999	0.548	1.4

ម ខែ ខេត្តការប្រជាជាក្រុម្បីក្រុមិត្រសាសន៍ការការប្រជាជាក្រុមប្រជាជាក្នុង ស្រីវិទ្ធិស្សាស្ត្រី អាវិត្តិស្ថិត អាវិត្តិស្ថិស្ថិត អាវិត្តិស្ថិត អាវិត្តិស្ថិស្សិត អាវិត្តិស្ថិត អាវិត្តិស្ថិត អាវិត្តិស្ថិត អាវិត្តិស្ថិត អាវិត្តិស្ថិត អាវិត្តិស្ថិត អាវិត្តិស្ថិត អាវិត្តិស្ថិត អាវិត្តិស្សិត អាវិត្តិស្ថិត អាវិត្តិស្ថិត អាវិត្តិស្ថិត អាវិត្តិស្ថិត អាវិត្តិស្ថិត អាវិត្តិស្ថិត អាវិត្តិស្ថិត អាវិត្តិស្ថិត អាវិត្តិស្ថិស្ថិត អាវិត្តិស្ថិត អាវិត្តិស្ថិត អាវិត្តិស្ថិត អាវិត្តិស្ថិត

्रास्त्री केलाकूट व्यवस्थित प्राप्तुत्व देवल वर्षी प्रतास दर्श कृतिकार केला के उन्हें हैं।

Table II-3-11-(2) Correlation between concentrations of equivalent solution and SO₂ analyzer indication at calibration (2nd calibration, post calibration)

SO ₂	Range (ppm)	Para- meter	Regre equali y = ax	on	Correlation coefficient	Déviation from equation	Deviation from y=x
		ń	а	ъ	6.8	σB	(%)
MP-1	0.50	2	0.988	0.0	0.999	0.000	1.0
3.3	0.20	5	1.001	-0.9	0.999	0.833	1.0
2.0	0.10	2	0.996	0.0	0.999	0.000	0.3
į.	0.05	3	1.000	0.0	1.000	0.000	0
MP-2	0.50	S	0.974	0.0	0.999	0.000 G	52.2°
	0.20	2	0.976	0.0	0.999	0.000	2.0
11.14	0.10	2	0.952	0.0	0.999	0.000	4.0
9	0.05	2	0.952	0.0	0.999	0.000	4.0
MP-3	0.50	6	1.000	-0.5	0.999	0.836	0.4
- 45. c	0.20	ż	0.988	0.0	0.999	0.000	1.0
* , * ; - , ; = }	0.10	2	0.988	0.0	0.999	0.000	1.0
**	0.05	ż	0.976	0.0	0.999	0.000	2.0
MP-4	0.50	6	1.001	-0.3	0.999	0.387	2,0
C. W	0.20	5	1.001	-0.5	10.999	0.542	0.5
	0.10	4	1.000	0.0	1,000	0.000	0
()	0.05	2	1.012	0.0	0.999	0.000	1.0
MP-5	0.50	6	1.000	0.0	1.000	0.000	.0
e n	0.20	5	0.999	-0.1	0.999	0.440	0.5
	0.10	2	0.994	0.0	0.999	0.000	0.5
	0.05	2	1.007	0.0	0.999	0.000	0.6
MP-6	0.50	5	1,043	0.0	0.999	0.000	3.6
1.0	0.20	2	1.048	0.0	0.999	0.000	4.0
2.4	0.10	2	1.036	0.0	0.999	0.000	3.0
2.4	0.05	Ž	1.048	0.0	<u> </u>	0.006	4.0
MP-7	0.50		0.988	0.0		0.000	1.0
	0.26		0.994	0.0		0.006	0.5
	0.10	2	0.994	0.0		0.000	0.5
11	0.05		1.007	0.0		0.000	

Table II-3-11-(3) Correlation between concentrations of equivalent solution and SO₂ analyzer indication at calibration (2nd calibration, prior calibration)

SO ₂	Range (ppm)	Para- meter	Regre equati y = ax	lon	Correlation coefficient	Deviation from equation	Deviation from y≠x
		n	a	b	îr	oΕ	(%)
MP-1	0.50	6	1.002	-1.0	0.999	0.721	0.4
1.7	0.20	5	1.001	-0.9	# 0.999	0.833	1.0
11	0.10	4	0.999	-0.1	0.999	0.249	0.5
	0.05	3	1.000	0.0	1.000	0.000	Ò
MP-2	0.50	6	1.002	-1.1	0.999	0.679	0.4
1.3	0.20	5	1.002	-0.8	0.999	0.524	0.5
	0.10	4	1.002	-0.2	0.999	0.239 5	0.5
L£	0.05	3	1.000	0.0	1,000	0.000	0
MP-3	0.50	6	1.000	-0.5	0.999	0.836	0.4
.	0.20	5	1.000	-0.4	0.999	0.548	0.5
	0.10	4	0.999	-Ò.1	0.999	0.249	0.5
48	0.05	3	1.000	0.0	1.000	0.000	0
MP-4	0.50	6	1.001	-0.3	0.999	0.387	0.2
1 1	0.20	5	1.001	-0.5	0.999	0.542	0.5
	0.10	4	1.000	0.0	1.000	0.000	0
	0.05	3	1.000	0.0	1.000	0.000	0
MP-5	0.50	6	1.000	0.0	1.000	0.000	₹0.7
	0.20	5	0.999	-0.1	0.999	0.440	0.5
	0.10	4	0.999	-0.1	0.999	0.249	0.5
*5 2	0.05	3	1.000	0.0	1.000	0.000	0
MP-6	0.50	6	1.001	-0.1	0.999	0.604	5.0
	0.20	5	1.001	-0.5	0.999	0.542	0.5
÷	0.10	4	1.000	0.1	0.999	0.149	0.3
f.	0.05	3	1.000	5.0	0.999	0.289	1.0
MP-7	0.50	6	0.998	0.4	0.999	0.695	5.0
-	0.20	5	1.000	0.0	1.000	0.000	0
1,3	0.10	4	1.002	-0.2	0.999	0.239	0.5
4.	0.05	3	1.000	4 .	. 🕯 🐧	0.000.0	0

Table II-3-11-(4) Correlation between concentrations of equivalent solution and SO₂ analyzer indication at calibration (3rd calibration, post calibration)

	SO ₂	Range (ppm)	Para- meter	Regre equati y = ax	on.	Correlation coefficient	Deviation from equation	Deviation from y=x
l	i i i	in Na ain	n	a	ъ	r	σB	(%)
ľ	MP-1	0.50	6	0.999	-0.9	0.999	0.623	0.4
l	- 1.1	0.20	- 5	0.993	-0.4	0.999	0.670	1.0
	Q.J	0.10	4	0.988	0.2	0.999	0.159	1.0
l		0.05	3	1.000	0.1	0.999	0.115	0.4
	MP-2	0.50	6	1.004	-0.2	0.999	0.781	0.4
	8.0	0.20	2	1.012	0.0	0.999	0.0	1.0
	4	0.10	4	41.004	0.2	0.999	0.171	0.5
	7.0	0.05	2	1.043	0.0	0.999	0.000	3.6
ľ	MP-3	0.50	2	0.983	0.0	0.999	0.000	1.4
١		0.20	2	0.970	0.0	0.999	0.000	2.5
l		0.10	2	0.958	0.0	0.999	0.000	3.5
İ	i v ik√	0.05	2	0.971	0.0	0.999	0.000	2.4
Ì	MP-4	0.50	6	0.993	-0.1	0.999	0.635	0.6
ļ	2_1	0.20	2	0.976	0.0	0.999	0.000	2.0
j	le da l	0.10	Ž	0.976	0.0	0.999	0.000	2.0
		0.05	3	0.983	0.3	0.999	0.491	1.4
	MP-5	0.50	6	0.995	0.8	0.999	1.255	0.4
I		0.20	5	0.999	-0.1	0.999	0.440	0.5
1	:	0.10	2 -	0.976	0.0	0.999	0.000	2.0
		0.05	2	0.988	0.0	0.999	0.000	1,0
	MP-6	0.50	6	1.013	-0.4		0.378	1.0
		0.20	5	1.005	-0.3	0.999	0.632	0.5
		0.10	4	0.999	0.2	0.999	855.0	0.4
.		0,05	3	0.995	0.1	0.999	0.231	0.6
	MP-7	0.50	2	0.986	0.0	0.999	0.000	1.2
	Constitution of	0.20	2	0.958	0.0	0.999	0.000	3.5
	14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.10	2	0.970	0.0	0.999	0.000	2.5
ļ		0.05	2	0.976	0.0	0.999	0.000	2.0

Table II-3-11-(5) Correlation between concentrations of equivalent solution and SO2 analyzer indication at calibration (3rd calibration, prior calibration)

SO ₂ analyzer	Range (ppm)	Para- meter	Regre equat y = ax	on .	Correlation coefficient	Deviation from equation	Deviation from y=x
-	1 1	n	a	b 🤄	r	o B	(%)
MP-1	0.50	6	0.999	-1.0	0.999	0.623	0.4
	0.20	· 5	0.993	-0.4	0.999	0.689	1.0
24	ó.10	- 4	0.988	0.2	0.999	0.159	1.0
<u> </u>	0.05	3	1.000	0.1	0.999	0.115	0.4
MP-2	0.50	6	1.004	-0.2	0.999	0.781	0.4
	0.20	5	0.999	-0.3	0.999	0.445	0.5
	0.10	4	1.004	0.2	0.999	0.171	0.5
	0.05	3	1.000	0.1	0.999	0.115	0.4
MP-3	0.50	- 6	1.000	-0.5	0.999	0.836	0.4
i	0.20	- 5	1.001	-0.6	0.999	0.651	0.75
Ži.	0.10	· 4	1.000	0.0	1.000	6.000	0
₽. F.	0.05	3	1.000	-0.1	0.999	0.116	0.4
MP-4	0.50	6	0.993	-0.1	0.999	0.635	0.6
• .*	0.20	÷ 5,	0.999	-0.1	0.999	0.440	0.5
; *	0.10	4	0.998	0.2	0.999	0.228	0.5
	0.05	3	0.983	0.3	0.999	0.500	1.4
MP-5	0.50	6	0.995	0.8	0,999	1.255	0.4
÷	0.20	: 5 .	0.999	-0.1	0.999	0.440	0.5
1- 1	0.10	4	1.000	0.0	1.000	0.000	0
5.1	0.05	3 .	1.000	0.0	1.000	0.000	i i o i i
MP-6	0.50	6	1.013	-0.4	0.999	0.378	1.0
	0.20	à 5 °	1.005	-0.3	0.999	0.633	0.5
t.,**	0.10	4	0.999	0.2	0.999	0.228	
2.3	0.05	.: 3 €	0.995	0.1	0.999	0.231	
MP-7	0.50	6	0.998	-0.4	0.999	1.723	<u> </u>
2,8	0.20	# 5	0.999	-0.1	0.999	0.440	0.5
. 4	0.10	4	1.000	0.0	1.000	0.000	
11.5	0.05	3	1.000	0.0	Y.000	0.000	0

Table II-3-11-(6) Correlation between concentrations of equivalent solution and SO₂ analyzer indication at calibration (4th calibration, post calibration)

SO ₂	Range (ppm)	Para- meter	Regre equati y = ax	Òņ	Correlation coefficient	Deviation from equation	Deviation from y=x
		n	а	b :	•	σE	(%)
MP-1	0.50	2	0.981	0.0	0.999	0.000	1.6
1,89	0.20	Ś	0.958	0.0	0.999	0.000	3.5
	0.10	2	0.964	0.0	0.999	0.000	3.0
1.2	0.05	2	0.976	0,0	0.999	0.000	2.0
MP-2	0.50	6	0.993	0.1	0.999	0.245,6	0.6
est at	0.20	5	0.994	5.0	0.999	0.209 6	0.5
· 6.	0.10	4	1.013	0,1	60.999	0.257	1.0
	0.05	3	1.005	0.1	0,999	0.115	0.6
MP-3	0.50	6	0.997	-0.8	0.999	0.576	0.4
-, · · · · ·	0.20	5	1.001	-0.6	0.999	0.621	0.5
1.1.	0.10	2	0.988	0.0	0.999	0.000	1.0
	0.05	2	1.020	0.0	0.999	0.000	1.6
MP-4	0.50	6	1.000	-0.5	0.999	0.836	0.4
ž, č	0.20	2	0.982	0.0	0.999	0.000	1.5
1.1	0.10	4	0.997	0.3	0.999	0.322	0.7
, C . I	0.05	3	0.988	5.0	0.999	0.318	1.0
MP-5	0.50	6	0.993	0.1	0.999	0.245	0.6
	0.20	5	0.994	0.3	0,999	0.333	0.5
ξ_{i} \downarrow	0.10	4	0.999	0.5	0.999	0.618	1.3
	0.05	3	0,991	0.2	0.999	0.404	1.0
MP-6	0.50	2	1.026	0.0	0.999	0.000	2.2
京美	0.20	5	1.003	-0.9	0.999	0.641	0.75
7, 1	0.10	4	0.997	-0.5	0.999	0.463	1.0
	0.05	2	0.988	0.0	0.999	0.000	1.0
MP-7	0.50	2	1.019	0.0	0.999	0.000	1.6
16.31	0.20	5	0.998	2.4	0.999	1.636	2.0
6.4	0.10	4	0.988	1.3	0.999	1.248	2.0
4.5	0.05	3	0.993	0.3	0.999	0.491	1.4

Table II-3-11-(7) Correlation between concentrations of equivalent solution and SO₂ analyzer indication at calibration (4th calibration, prior calibration)

SO ₂ analyzer	Range (ppm)	Para- meter	Regre equat y = ax	lon	Correlation coefficient	Deviation from equation	Deviation from y=x
W.,		n	a	b.		o E	(%)
MP-1	0.50	6	1.003	-1.8	0.999	1.162	0.6
*	0.20	5	1.002	-0.8	0.999	0.524	0.5
	0.10	4	1.003	-0.5	0.999	0.463	1.0
100	0.05	3	1.000	-0.2	0.999	0.346	1.2
MP-2	0.50	6	0.993	0.1	0.999	0.245	0.6
•	0.20	Š	0.994	0.2	0.999	0.209	0.5
. !	0.10	4	1.013	0.1	0.999	0.258	1.0
	0.05	. 3	1.005	0.1	0.999	0.116	0.6
MP-3	0.50	6	0.997	-0.8	0.999	0.576	0.4
	0.20 3	5	1:007	-0.6	0.999	0.621	0.5
	0.10	4	1.001	0.10	0.999	0.249	0.5
	0.05	3	1.000	-0.2	0.999	0.289	1.0
MP-4	0.50	6	1.000	-0.5	0.999	0.836	0.4
ē j	0.20	- 5	0.999	-0.1	0.999	0.468	0.5
	0.10	4	0.997	0.3	0.999	0.322	0.7
5.5.	0.05	3	0.988	5.0	0.999	0.318	1.0
MP-5	0.50	6	0.993	0.1	0.999	0.245	0.6
1.71	0.20	5	0.994	0.3	0.999	0.333	0.5
£ .	0.10	4	0.999	0.5	0.999	0.618	1.3
V2	0.05	3	0.991	5.0		0.404	1.0
MP-6	0.50	6	1.004	-1.9	0.999	1.096	0.6
<u> </u>	0.20	5	1.003	-0.9	0.999	0.641	0.75
	0.10	4	0.997	-0.5	2 44	0.463	1.0
4, 6	0.05	3	1.000	-0.2	■ 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.289	1.0
MP-7	0.50	6	1.001	2.8		3.969	5.0
£ +	0.20		0.998	2.4	0.999	1.636	2.0
. • ';	0.10	\$ 4	0.988	1.3	0.999	1.248	2.0
* 4	0.05	3	0.993	0.3		0.491	1.4

Table II-3-11-(8) Correlation between concentrations of equivalent solution and SO₂ analyzer indication at calibration (5th calibration, post calibration)

. f- (• •				ibration	, post c	calibration)		
8 1 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8	SO ₂ ánalyzer	Range (ppm)	Pará- meter	Regre equati y = ax	on	Correlation coefficient	Deviation from equation	Deviation from y=x
			n	a	b	r	σE	(%)
	MP-1	0.50	6	1.006	-1.9	0.999	1.937	0.8
$\cdots ! \cdot \omega !$	s in the it.	0.20	5	1.001	-0.7	0.999	0.836	e 15 1.0 - 24
111	ភ ភូម ភ ឃាំ	0.10	., Ž ., i	0.988	0.0	0.999	0.000	1.0
		0.05	3	0.993	-0.1	0.999	0.087	0.6
	MP-2	0.50	2	0.976	0.0	0.999	0.000	2.0
		0.20	2	0.970	0.0	0.999	0.000	2.5
	•	0.10	2	0.967	0.0	0.999	0.000	2.8
		0.05	2	0.986	0.0	0.999	0.000	1.2
	MP-3	0.50	6	0.993	-1.3	0.999	1.817	1.0
		0.20	Z	0.982	0.0	0.999	0.000	1.5
		0.10	z	0.976	0.0	0.999	0.000	2.0
		0.05	3	1.000	-0.1	0.999	0.173	0.6
	MP-4	0.50	6	0.994	-0.4	0.999	0.660	0.6
		0.20	5	0.999	-0.1	0.999	0.220	0.25
		0.10	Z	0.980	0.0	0.999	0.000	1.7
		0.05	2	0.981	0.0	0.999	0.000	1.6
	MP-5	0.50	г	0.988	0.0	0.999	0.000	1.0
		0.20	2	0.988	0.0	0.999	0.000	1.0
		0.10	4	0.988	5.0	0.999	0.330	1.0
		0.05	3	1.000	0.0	1.000	0.000	0.0
	MP-6	0.50	6	1.005	-2.9	0.999	1.811	1.0
		0.20	5	1.000	-1.0	0.999	1.225	1.5
		0.10	z	0.969	0.0	0.999	0.000	2.6
		0.05	2	0.976	0.0	0.999	0.000	2.0
•	MP-7	0.50	2	0.974	0.0	0.999	0.000	2.2
٠	** 1	0.20	z	0.976	0.0	0.999	0.000	5.0
		0.10	2	0.952	0.0	0.999	0.000	4.0
		0.05	z	0.948	0.0	0.999	0.000	3 *
	!		L	1 3.730	1 2.0	0.777	7,000	4.4

In order to investigate the drift of SO₂ analyzer (deviation of indicating values of SO₂ analyzer during about 3 months between prior and post calibration), the equivalent solution of 420 ppb (full scale 500 ppb), 168 ppb (full scale 200 ppb), 84 ppb (100 ppb), and 42 ppb (50 ppb) are introduced into analyzer, and the ratio of indicating values (post calibration) and drift (post cal. value - prior cal. x 100) are calculated as shown in Table II-2-12-(1) to -(4).

From the above, the large difference between concentrations of equivalent solution and indicating values of analyzer is not found and the drift is confirmed to be very small.

10 1 5

ر 1, 1

145. 9 53. 4

i kiệi Khải Độc

36.0

€ **†** €

1.

J. 12 . . .

Table II-3-12-(1) Drift of SO₂ analyzer (1st & 2nd calibration)

SO ₂ analyzer	Range (ppm)	Post calibration value Prior calibration value	Drift (%)
MP-1	0.50	- 45.5	-
	0.20 E	1.000	0.0
	0.10	0.996	-0.3
	0.05	1.000	0.0
MP-2	0.50	- \$6.5	-
6.8	0.20.:	0.976	-2.0
2.	0.10	0.952	-4.0
4	0.05	0.952	-4.0
MP-3	0.50	-	
	0.20	1.000	0.0
	0.10	1.000	0.0
	0.05	0.976	-2.0
MP-4	0.50	1.012	1.0
$\mathcal{L}_{\mathcal{L}}(t_{i}) = 0$	0.20	1.006	0.5
	0.10 //	1.012	1.0
\$1.80°.	0.05	1.002	5.0
MP-5	0.50	± \$3.6	
MA.	0.20	1.000	0.0
. Transport	0.10	1.006	0.5
	0.05	1.007	0.6
MP-6	0.50	- (84.4)	<u> </u>
F ()	0.20	1.048	4.0
	0.10	1.036	3.0
A King A	0.05	1.048	4.0
MP-7	0.50		
	0.20	1.006	0.5
2.5	0.10	0.994	-0.5
0.5	0.05	0.995	-0.4

Table II-3-12-(2) Drift of SO2 analyzer (2nd & 3rd calibration)

SO ₂ analyzer	Range (ppm)	Post calibration value Prior calibration value	Drift (%)
MP-1	0.50	0.998	-0.2
##	0.20	0.994	-0.5
	0.10	0.988	-1.0
	0.05	1.000	0.0
MP-2	0.50	1.005	0.4
11,1	0.20	1.012	1.0
4.5	0.10	1.005	0.4
	0.05	1.043	3.6
MP-3	0.50	0.983	-1.4
	0.20	0.970	-2.5
	0.10	0.958	-3.5
	0.05	0.971	-2.4
MP-4	0.50	0.993	-0.6
1	0.20	0.976	-2.0
	0.10	0.976	-2.0
	0.05	0.983	-1.4
MP-5	0.50	0.995	-0.4
	0.20	1.000	0.0
	0.10	0.976	-2.0
	0.05	0.988	-1.0
MP-6	0.50	1.012	1.0
:	05.0	1.006	0.5
	ó.1ò :	1.000	0.0
	0.05	0.995	-0.4
MP-7	0.50	0.986	-1.2
	0.20	0.958	-3.5
1. A	Ó.10	0.970	-2.5
<u>1</u>	0.05	0.976	-2.0

Table II-3-12-(3) Drift of SO₂ analyzer (3rd & 4th calibration)

SO ₂ analyzer	Range (ppm)	Post calibration value Prior calibration value	Drift (%)
MP-1	0.50	0.983	-1.4
e dage	0.20	0.964	-3.0
rash distri	0,10	0.976	-2.0
	0.05	0.976	-2.0
MP-2	0.50	0.988	-1.0
9.5-	0.20	0.994	-0.5
Barton E	0.10	1.007	0.6
Ada -	0.05	1.005	0.4
MP-3	0.50	0.995	-0.4
	0.20	1.006	0.5
	0.10	0.988	-1.0
	0.05	1.019	1.6
MP-4	0.50	1.007	0.6
	0.20	0.982	-1.5
	0.10	1.000	0.0
å. 2-	0.05	1.005	0.4
MP-5	0.50	0.998	-0.2
	0.20	0.994	-0.5
1	0.10	1.000	0.0
,8 ,€s ⁻	0.05	0.990	-0.8
MP-6	0.50	1.014	1.2
1 144	0.20	0.994	-0.5
1	0.10	0.994	-0.5
i, š-	0.05	0.993	-0.6
MP-7	0.50	1.019	7 1.6
₹. -5.	0.20	1.006	0.5
1.3	0.10	0.994	-0.5
\$, 6 -	0.05	0.993	-0.6

Table II-3-12-(4) Drift of SO₂ analyzer (4th & 5th calibration)

\$0 ₂ analyzer	Range (ppm)	Post calibration value Prior calibration value	Drift (%)
MP-1	0.50	1.005	0.4
	0.20	1.000	0.0
	0.10	0.988	-1.0
	0.05	0.993	-0.6
MP-2	0.50	0.983	-1.4
1 · · · · · · · · · · · · · · · · · · ·	0.20	0.976	-2.0
2 °	0.10	0.955	-3.8
	0.05	0.981	-1.6
MP-3	0.50	0.998	-0.2
a 1	0.20	0.976	-2.0
1.10	0.10	0.976	-2.0
	0.05	1.000	0.0
MP-4	0.50	0.993	-0.6
	0.20	1.000	0.0
	0.10	0.980	-1.7
	0.05	0.993	-0.6
MP-5	0.50	0.995	-0.4
E € Etype	0.20	0.994	-0.5
3	0.10	0.988	-1.0
	0.05	1.010	0.8
MP-6	0.50	1.000	0.0
4. 43	0.20	1.000	0.0
4.35	0.10	0.975	-2.1
	0.05	0.976	-2.0
MP-7	0.50	0.974	-5.2
√.∳	0.20 i	0.970	-2.5
,	0.10	0.958	-3.5
.). ek	0.05	0.954	-3.8

11-3-4-2 SO₂ ambient concentration

(1) Reading of recording chart of SO₂ analyzer

To maintain the high accuracy of measurement by analyzer, five ranges (0-0.05, 0-0.2, 0-0.5, 0-1.0 ppm) are automatically switched within the analyzer. As shown in Fig. II-3-16, by setting the range selector to AUTO, measurement starts with 0.05 ppm range, which is automatically switched to 0.1 ppm range when the full scale of the initial range has been reached. Thus 0.1 ppm range is automatically switched to 0.2 ppm range when 0.1 ppm scale has been reached. In the same way, the range is successively switched to the larger one. The starting range (0-0.05 ppm) is reset at the end of a measurement cycle.

Fig. II-3-16 shows a sample of chart reading. The top of saw-teeth indicates SO₂ concentration of the cycle.

tina Dan Peneringa (1994). Sitating tingki apening ana pilaka digar bersak indikatan propinsi yesan bi

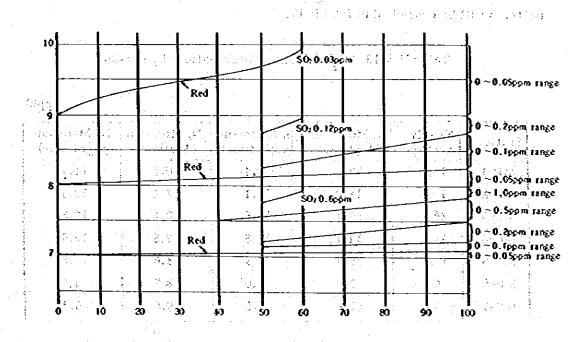


Fig. II-3-16. A sample of chart recording

98.48 orgons Qe.3 oli9081

(2) Results of measurement

The effective measurement time of MP-1 to MP-7 are mentioned hereunder and these number of hours are exceeding the measurement time of effective stations in Japan.

รับเหมือ ครองสอบที่ การเกลาสังเมื

海水(1) (1) (1)

MP-1 8,145 93.0% MP-2 8,329 95.1% MP-3 8,411 96.0% MP-4 7,526 85.9% MP-5 8,137 92.9% MP-6 8,404 95.9% MP-7 8,151 93.0%	Station	Effective	measureme	nt hour - Percen	tage
MP-3 8,411 96.0% MP-4 7,526 85.9% MP-5 8,137 92.9% MP-6 8,404 95.9%	MP-1		8,145	93.09	%
MP-4 7,526 85.9% MP-5 8,137 92.9% MP-6 8,404 95.9%	MP-2		8,329		%
MP-5 8,137 92.9% MP-6 8,404 95.9%	MP-3		8,411	96.09	%
MP-6 8,404 95.9%	MP-4		7,526	85.99	%
	MP-5	rita e la etc.	8,137	92.99	%
MP-7 93.0%	MP-6		8,404	95.99	%
	MP-7		8,151	93.0	%·

The raw data of one hour average values of SO₂ concentration obtained at 7 monitoring stations are compiled in ANNEX. Yearly average SO₂ concentrations classified by season and day & night are shown in Table II-3-13. The order of yearly average concentration from high to low are MP-3, MP-4, MP-2, MP-1, MP-7 and MP-6.

The other analyzed results of SO₂ concentration, such as monthly and daily deviation patterns will be described in PART IV.

Table II-3-13 SO₂ average concentrations by season

(ppb

Station	Yearly average	S. Monsoon (daytime)	S. Monsoon (nighttime)	N. Monsoon (daytime)	N. Monsoon (nighttime)
MP-1	14.2	17.5	9.4	20.7	11.7
MP-2	14.6	18.0	11.1	18.4	12.1
MP-3	26.2	39.3	18.5	28.4	19.8
MP-4	19.4	34.1	12.8	17.8	12.9
MP-5	17.6	26.9	10.3	23.6	11.8
MP-6	6.7	7.7	6.0	8.7	4.9
MP-7	8.4	11.3	7.6	9.6	5.2

Remarks: S. Monsoon April - October

N. Monsoon November - March

Daytime 7:00 to 17.59

Nighttime 18:00 to 6.59

and the second property of the second section of the second secon

```
estable in the first transfer of transfe
  The time of the standard of the same of the standard of the same of the standard of the same of the sa
TO SEE TO THE SECOND SEEDS AND SEEDS AND SECOND SEEDS OF THE SECOND SECO
                                                                                                                                                                                                                                  avagandnogen despoenend thopotophutes of
                                                                                Shereshoner chornership etrhebiteshe
                                                                      ... TO AND THE TOTAL TOT
                                                                                                                                                                                                                                    * On a second control of the second control 
                                  ö
                                                                                                                                                                                                                                  TENNESS CONTROL OF THE STATE OF
                                                                          TROPESSA CONTROL CONTR
    THE CHEFT RESERVED TONDENCE OF THE PROPERTY OF
                                                                                                                                                                                                                                          Franching the burners of the Education
                                                                                                                                                                                        Troppositoro recontratory of the transfer
                                                                                                                                                                                                      INOROSPICIO COOFFINNOSS COSSESSENCOS
                                                                                                                                                                                                                    TROORNEROR OF CENTER OF THE THE TENTE
                                                                                                                                                                            The property of the control of the c
                                                                                                                                                                                                                  TROBALOCORO COMONECEÓN FONOMENTAÑON
                                                                            E CONTROL ON CONTROL O
                                                                                        The state of the s
                                                                                                                                                                                                                                                  TANGON TONGON OF OF OF MANO SANO
            TO MANAGE MAN DE LA COMPANIA DE COMPANIA D
                                                                                                                                                                                                TERROTO ON OR TONNING OF TORSON OF THE STATE                                               H TYCYTAROCY POCOCOCY OCTOMETANEO

TO SEE WAS GOVOLVY ENGOGOOOM COOMEGNAOV
                                                                                                                                                                                                                                                      Tara governy resondant eventant as was a visit of the same
```

grande a trade de la care de la c

्रम्भिक्षक के विश्वक के शिक्षक के किस स्वाहित के किसी एक विश्वक के किसी है। जा किसी के किसी के किसी के किसी के जाने के किसी क

in the second that he is a community being the action of the contract of

CHAPTER 4 MEASUREMENT OF WIND DIRECTION AND WIND VELOCITY

For environmental assessment on air quality, the meteorological conditions of the survey area are the important factors to obtain the tendency of smoke diffusion. Among meteorological factors, the wind status of the survey area is the necessary factor to investigate the relation with the ambient concentrations of the pollutants.

In this study, the monitoring of wind direction and velocity have been carried out at the same 7 monitoring stations by the automatic and continuous instruments. The daily check and the maintenance work of every 3 months have been conducted for one year.

II-4-1 Measuring Methods of Wind Direction and Velocity

The instruments to measure wind direction and velocity have been developed with a long history, as the measurement of wind direction and velocity is the most fundamental one among meteorological factors. At present, the following 3 types of instruments are most commonly used.

- (1) combination of cup-type and arrow-type anemometer
- (2) propeller type anemometer
- (3) super sonic anemometer

Among above 3 types of anemometer, (2) is commonly used for measurements in the field of pollution, which is sometimes called as windmill type anemometer.

The wind velocity is measured by propeller which is facing directly with the wind and connected with DC generator. The wind direction is measured by the sensor itself which is designed as arrow type and is connected with transmitter.

Super sonic anemometer has just recently developed and its measuring principle is to detect difference of the transmission speed of super sonic in the atmosphere at windward and leeward. Because of the fact that all the parts of the instruments are not mobile, it has the following advantages:

- (a) wind velocity of 0 m/s is measurable
- (b) responding speed is faster
- (c) fitted to measure fluctuation of wind direction and velocity, as well as atmospheric turbulence

The anemometer of above (1) is not so used recently.

II-4-2 Anemometer Used in This Study

The anemometer used in this study is 4-blade propeller type anemometer which are widely used by the air pollution monitoring stations of Japan. The manufacturers of the anemometer of this type are 3 companies in Japan, but from the past records and contribution, KOSHIN DENKI KOGYO Co., Ltd. has been selected and adopted. The specifications are shown in Table II-4-1 and its outside view is shown in Pictures II-4-1-(1) to -(3).

The instrument is composed by sensor, averaging device and recorder, as shown in Picture II-4-1.

The wind velocity is measured by detecting difference of the electric voltage generated by generator connected to propeller as shown in Fig. II-4-1.

The wind direction is measured by detecting the rotating angle of the sensor which is converted to electrical voltage. Two potentiometers installed are designed to shift automatically to the same direction of the central part when the indicator is reached to the end of the span.

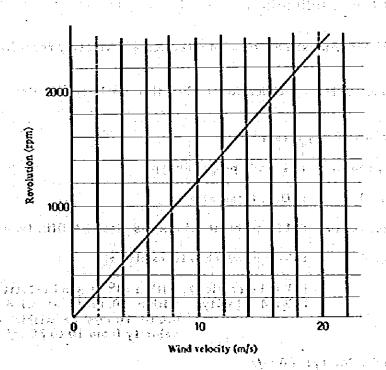


Fig. 11-4-1 Propeller characteristics (wind velocity v.s. R.P.M.)

to Carrier to Carrier

As shown in Fig. II-4-2, the recorder indicates instantaneous or average (10 minutes) values of wind direction and velocity by the switch of averaging device. The reading and analysis of instantaneous values are troublesome and so the average values are commonly recorded.

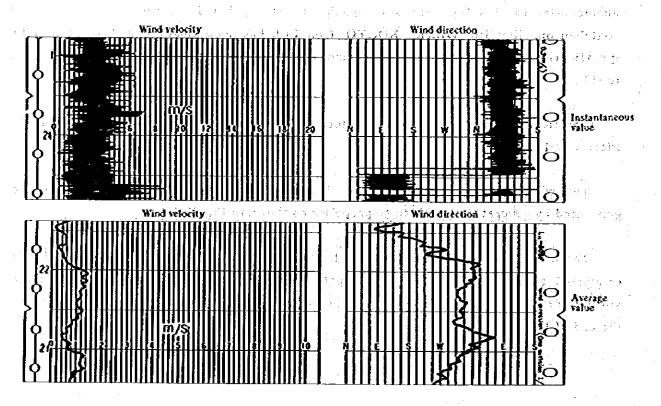


Fig. II-4-2 An example of wind direction and velocity recording

Table II-4-1 Specifications of low-threshold anemometer

	
vind direction and velocit	y sensòr
Wind velocity sensor	: 4-blade propeller type
Electrical signal	: D.C. Generator
Wind direction sensor	Light weight reinforced plastic tailfin type
Electrical signal	t Torque synchro transmitter
Accuracy	 Wind direction; within +3° at wind velocity 0.4 m/s Wind velocity; within +0.3 m/s at wind velocity from 0.4 to 10 m/s or within +0.3% at wind velocity from 10 to 20 m/s
Maximum wind velocit	y: 60 m/s
Cable for remote transmission	: Up to 1,000 m, 0.75 mm ² , 8-cond. cable, between sensor/ transmitter and recorder or averaging device
Weight	1 Approx. 5 kg.

Table II-4-1 Specifications of low-threshold anemometer (Cont'd)

Recorder

Type

: Self-balancing, 2-pen system

Measurement range

Wind direction; All azimuths, with 540°/360° shifting Wind velocity; 0.4 to 20 m/s

Chart feeding velocity 1 30 mm/H

Chart

: Effective width-180 mm (speed-100 mm, direction-70 mm) length-23 m (corresponding to 1 month's recording at

speed of 30 mm/H)

Power supply

: AC 100 V +10%, both for 50 and 60 Hz

Weight

Approx. 28 kg.

External casing

: For both flush mounting and desk-top mounting

Averaging device

Electrical signal for recording

: Manual switch between average and instantaneous values

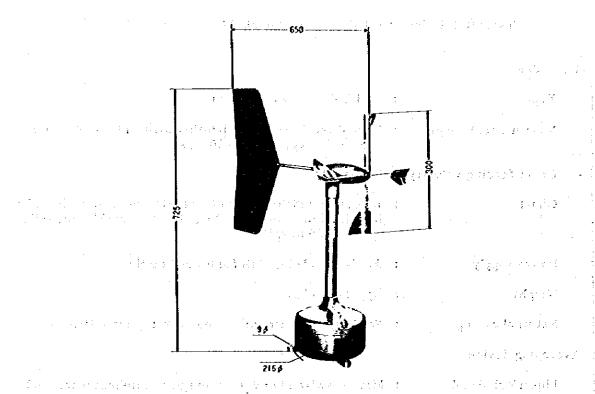
Output signal

: Average direction (0-540°) 0-1 V impedance 100 Average velocity (0-10 m/s) 0-1 V impedance 100

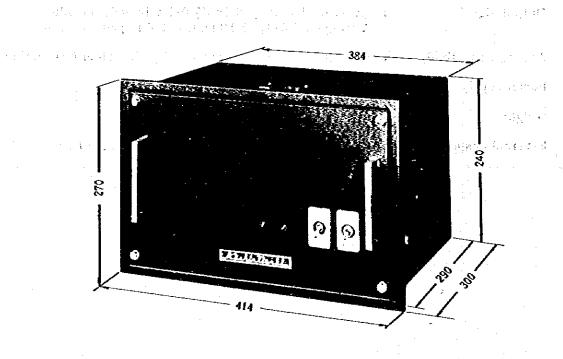
Averaging method

: 10 minutes sequential average by electrical integration

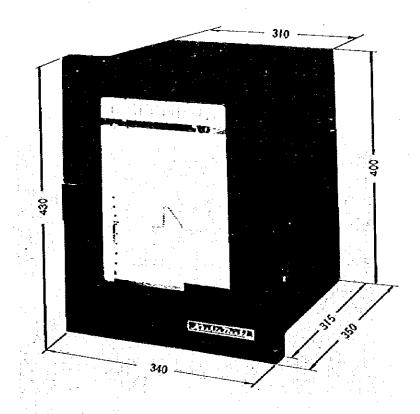
Power supply


1 AC 100 V +10%, both for 50 and 60 Hz

Weight


: Approx. 20 kg.

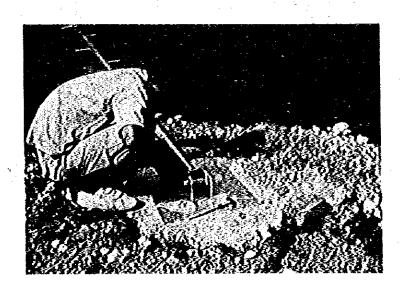
External casing


For both flush mounting and desk-top mounting

Picture II-4-1-(1) Outside view of anemometer (sensor)

Picture II-4-1-(2) Outside view of anemometer (averaging device)

Picture II-4-1-(3) Outside view of anemometer (recorder)


II-4-3 Measurement

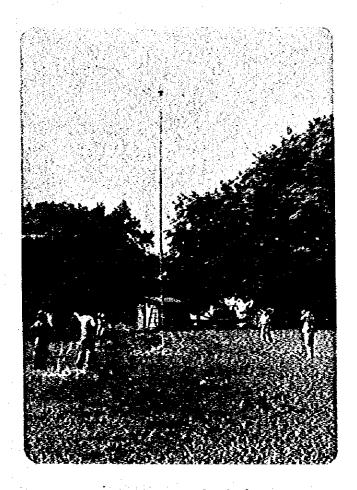
The anemometers used in this study have been inspected by the Meteorological Agency, Japanese Government, prior to the transportation to Singapore and it is effective for 5 years. Therefore, the instruments are not necessary to be calibrated as long as they are properly installed. The processes of preparation for measurement are described.

II-4-3-1 Erection of pole

For the correct measurement of wind direction and velocity, the obstacles disturbing wind should not be existed in the immediate surrounding area. The pole of 10 m high is generally erected and the sensor of the anemometer is installed on the top of the pole. Prior to erection of the pole, consideration should be given to the impact of trees and buildings.

For erection of pole, the concrete foundations for pole and the stays are prepared as shown in Picture II-4-3, and the pole is erected. The pole erected on the concrete foundation is supported by the stays which should be firmly connected to the concrete foundations prepared for the stay as shown in Picture II-4-3. By adjusting the length of stays, the pole should be set in the vertical position, as shown in Picture II-4-4.

2000年1月1日 - 100日 - 100

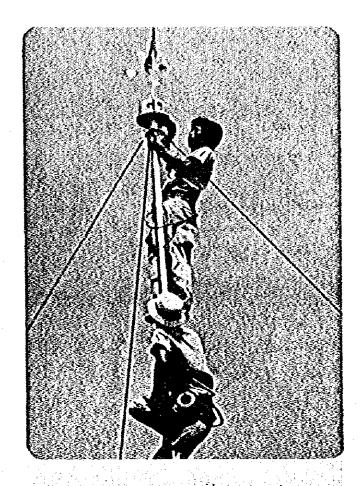

Picture II-4-2 Foundation for pole erection

and the first of the contract of the state of the section of the s en de grande en grande en la colòmbia que ser conseit del dels de modello dimensión que que que que en en gen ्राचा प्रकार हो का स्वरूप के का अपने का अपने के का अपने के अपने के किया है कि से अध्यूष्ट के किसे के सामा की क

មួយស្រីទី ថា ឧភ័យន

arithme eri

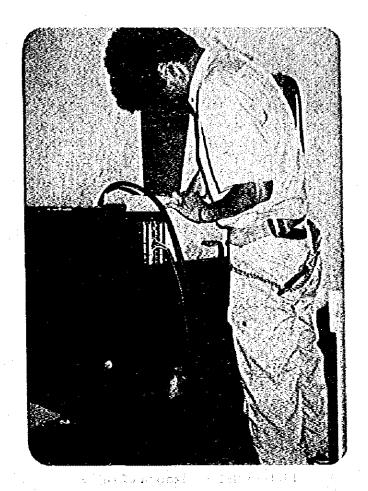
त्रा । दे विकास मान्या के प्रतिकारिक स्वार्थिक मिल्लिक के विकास कर्ति विकास विवास विकास करें में अधिकाल करें ी के राज्य । हुने हुन्य जो जा हो कि कार्य हुने व्यक्तिक के प्राप्त के प्राप्त के कार्य किया हुन है कि पान के क Picture II-4-3 Erection of pole for anemometer constraints of the party

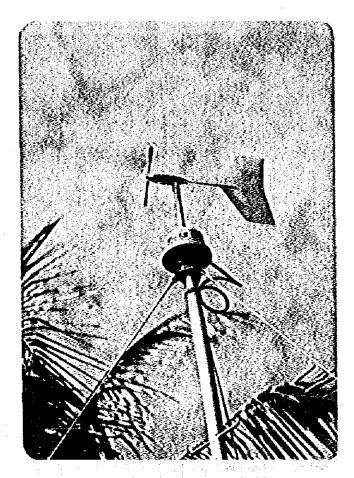


Picture II-4-4 Settlement of pole for anemometer

II-4-3-2 Installation of anemometer sensor

र के पूर्व व्हेंब्दू और का है जब हो जो राज्याने हैं हुई है ।


The sensor of the anemometer is installed on the top of pole as shown in Picture II-4-5, setting N mark of sensor to the north by using magnet, setting also S mark of sensor to the south, and confirming horizontal level by using a level. In case of Singapore, the difference between due north and magnet north is 10 minutes which is little worth of consideration.


Picture II-4-5 Installation of anemometer sensor

II-4-3-3 Method of connections

The sensor and the recorder are connected by the cable in the order of sensor-arrestor-averaging device-recorder. The connected cable is firmly fixed to the pole by the belting materials and the cable extending on the ground is usually laid under the ground to avoid the troubles by traffic, as shown in Picture II-4-7 and Picture II-4-8.

Picture II-4-6 Connection of cable and recorder

Picture II-4-7 Fixation of cable

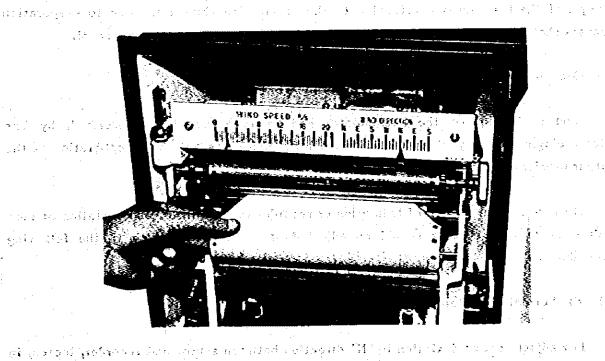
Picture II-4-8 Cable laid under ground

II-4-3-4 Loading of chart

Loading of the chart is performed by the following procedures.

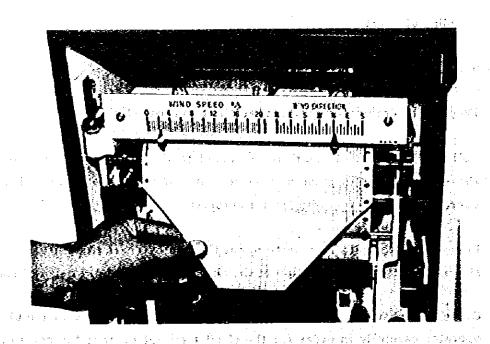
(1) Prepare the designated chart and ruffle it to avoid sticking.

skung bil i jak jak si i i kuluku bila kili


- (2) Pull the front plate beneath the sprocket to the operator, insert the chart into the chart holder in such a direction that the reverse surface faces to the operator when the recording pen is automatically lifted up from the sprocket.
- (3) In order to facilitate its insertion, cut the end of chart in an acute angle and as shown in Picture II-4-9-(1), insert the chart through the lower side of sprocket.

Guide the chart upward by turning the knob of sprocket and pull it to the operator carefully in order for the chart may not contact the pen tip, as shown in Picture II-4-9-(2).

(4) Push down the front plate inside the chart, pull it further out, fold its tip twice or thrice, and introduce it into the chart holder.


用多数量,分数100元的方式10万元

gosta ce instituentale et qui ester e trafero

and some last the control of Picture II-4-9-(1) Loading of charteness of the control of

insures the set form of the ended togethered to extreme the continue to the endeth of the

Picture II-4-9-(2) Loading of chart he self of wall at

II-4-3-5 Supply of inkertion of the control of the state
The ink is supplied to the ink tank, about 50 to 60% of its capacity. The excess supply of the ink causes overflood onto the chart. The thicker ink due to evaporation causes choking and therefore such should be diluted by distilled water or alcohol.

ent in the early to the one of the entering a bit in the period the entering

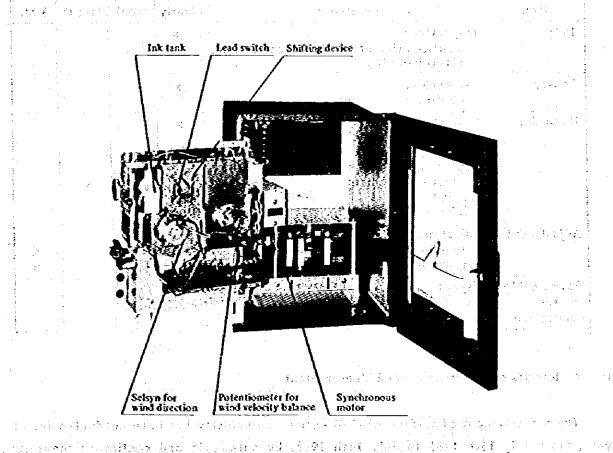
II-4-3-6 Adjustment of instrument

The calibration of the anemometer had been conducted, as described, by The Meteorological Agency which had effective term of 5 years and so the calibration at the site is usually not conducted.

However, the deviation of indication of recorder to the sensor, and deviation of zero indication of the recorder should be adjusted at the site according to the following procedures.

(1) Wind direction system

For adjustment of deviation in "N" direction between sensor and recorder, loosen, in the state of power switch being ON, 3 metal adaptors with which the control synchro is mounted on the rear surface of the internal device of the recorder and correct such deviation by turning control synchro.


(2) Wind velocity system

For adjustment of shifts from the zero point of the wind velocity recording device, loosen the metal adaptor with which the balancing potentiometer is mounted on the rear surface of the internal device and correct such shifts by turning the potentiometer.

terminate the

After the above adjustment, the averaging device is switched to the position of averaging value, and measure more than 10 minutes to confirm the indicating values.

entration of the analysis of the research of the contribution of the contribution of

Picture II-4-10 Position of metal adapter for adjustment of wind direction and velocity of anemometer

partique to the application of the large terms and the large large terms and the large large terms and the large l

មស្រីស្តេច ភូពីវី (ស្រុស ២០០១ភេឌ្ឌ) ខ្លឹង សំខេ**ងសេច សេច ស្ត្រ គឺ ស**្ត្រី នោះ សមន្តិប្រសេសស្រី (សេសស្រី) សេច

II-4-3-7 Automatic measurement

Turn the function of selector of averaging device from INSTANTANEOUS to AVERAGE and set the recording pen to the present position on the chart. Then, the automatic and continuous measurement will be commenced.

Acceptable of the excess of heapstury description in Fellowing and the Algebraic description and the design that the second contract of t

II-4-3-8 Maintenance and inspection

For the sound operation of an emometer and to secure the accuracy of measurement for a long term, the periodical maintenance and inspection are required as shown in Table II-4-2.

Table II-4-2 Items and frequency of maintenance and inspection for anemometer

化邻性二氢二醇医甲基十二醇二三苯二醇二二基苯二甲酚二甲醇二二二醇 矮大大块缝形或鞋 的复数

- 11 B	Maintenance and Inspection	147	Frequency						
Item	Contents	Daily	Week	Month	3 M.				
Pole	Inspection: confirmation of vertical erection and stretch of stay	X	-						
Sensor	Inspection: confirmation of rotation	x							
Recorder	Inspection: confirmation of chart advance, time deviation and ink shade Réplacement: chart replacement Supply: ink supply	X		×					
Adjustment	Adjustment! adjustment of N of sensor and recorder adjustment of wind velocity zero				x x				
Power cable and its connection	Inspection: confirmation of loose and disconnection	*	, A.						

II-4-4 Results of Maintenance and Measurement

The measurement of surface wind direction and velocity has been conducted for one year, from July 15th 1981 to July 14th 1982, by automatic and continuous measuring instruments. During the above one year, the maintenance and inspection of instruments have been conducted, daily by JTC and 3 times adjustment by Japanese team. The results of maintenance and measurement are described.

II-4-4-1 Maintenance

(i) Daily inspection

According to the items and frequency described in Table II-4-2, the daily maintenance of anemometers installed in 7 monitoring stations has been conducted by JTC on the following items.

្នាក់ ក្រស់ការស្តែក្រុង និង និង ភាពខ្លះនៃ និង ក្រស់ស្រី<mark>ត្</mark> ស្រី ក្រុមប្រជ<mark>ិត្តិ ស្រី ក្រុមប្រ</mark>បិ<mark>ធិត្តិ។</mark> ក្រុមត្រូវបាន និងបានស្រាស់ នៅ នាងក្រុមប្រជាធិត្តិ ប្រមាន និង សេចនិងនេះ និងប្រែក្រី និងប្រែក្រុមប្រើស

the transport of a section of the section of the section of the section of

- (a) confirmation of vertical erection of pole
 - (b) inspection of rotation status of the sensor
 - (c) confirmation of chart advance
- (d) confirmation of time deviation of the recorder
 - (e) confirmation of ink shade and ink supply
 - (f) inspection of loose or disconnection of power cable

Besides the above, the chart has been replaced once per month by JTC according to the methods described in II-4-3-4.

4.99的\$P\$(南西南麓):白鹭和洲 电电压 的现在分词 医肾髓 经转换

(2) Adjustment of anemometer

For the sound operation and to secure the accuracy of measurement, the adjustment of anemometer has been conducted once every 3 months by the methods described in II-4-5-6. At adjustment, the anemometer has been inspected according to the form shown in Table II-4-3.

Table II-4-3 Maintenance and inspection form of anemometer

PROPELLER TYPE WIND VANE MAINTENANCE REPORT (Every 3 months)

Station: MP

Maintenance Items	Rèsult
Wind vane operating condition	Good No
Chart printing	Good No
Chart slip	Good No
ink balance	3/4, 1/2, 1/4
Pole condition	Good No
Indicated voltage of A.V.R.	V
Remarks:	
Hooley Ins a Brunell Lair 20 mir	ताक्ष्य । तम्ब भूत्र क्षित्र तो
s become our post expectation in the	li •a sala sosa * o ospo
an estribuir hans our es for	y i aa 1uu han Qi
that a groups soud and to the	ម ្រី ភូមិ មែលប្រ
तीर पूर्व २०० विकासकेल कराउँ हर्ना पुत्रक	សំសុ សែក ១៨៖ 💝

Sensor	Recorder	
N		
S		
Check of the v	wind velocity	
Sensor	Recorder	
0 m,		ı/s
Remarks:	e, \$ e euglitus e 3 onte	Α.

jir der Ma

Time		fit [
31 15 F 165 2 1		रह पूर्व	- 3 .
Weather	1		

The results of adjustment of the anemometer installed in MP-1 to MP-7 are shown in Table II-4-4.

and the groups for the factor of the first

N and S of the sensor and recorder are well coincided in all the stations and recording of 0 m/s is also found satisfactory.

Table II-4-4 Results of adjustment of anemometer

Number	Sensor	Recorder indication										
of times	indication	MP-1	MP-2	MP-3	MP-4	MP-5	MP-6	MP-7				
1st	N S Wind velocity 0 m/s0 m/s	N S O m/s	N S O m/s	N S 0 m/s	N S O m/s	N S O m/s	N S 0 m/s	N S				
2nd	N S Wind velocity O m/s0 m/s	N S 0 m/s	N S O m/s	N S 0 m/s	N S O m/s	N S O m/s	N	N S				
3rd	N S Wind velocity 0 m/s0 m/s	N S 0 m/s	N S O m/s	N S O m/s	N S O m/s	N \$ 0 m/s	N S 0 m/s	N S				
4th	N S Wind velocity O m/sO m/s	N S O m/s	N S 0 m/s	N S O m/s	N S Om/s	N S 0 m/s	N S 0 m/s	N S				
5th	N S Wind velocity O m/s0 m/s	N S 0 m/s	N S O m/s	N S O m/s	N S O m/s	N S 0 m/s	N S 0 m/s	N S				

II-4-4-2 Wind direction and velocity

(1) Reading of chart of anemometer

The weather observatory is usually reading the records of wind direction and velocity for 10 minutes before exact full hour. However, the air pollutants are measured as the value of one hour accumulated concentration and so the wind direction and velocity are also required to be monitored as the value of one hour average. In this study, the reading of the wind direction and velocity has been carried out by the following ways.

The wind direction and velocity are recorded as the running mean of 10 minutes values by averaging device, and so it is not necessary to obtain the one hour average value from instantaneous values. In this study, 6 values are recorded within one hour with the interval of Δt=10 min. However, one hour average wind direction and velocity is not obtainable by simply averaging 6 values. For example, when N wind blows for 30 minutes and S wind blows for 30 minutes within one hour, average wind direction of this particular one hour will be W or E. Therefore, one hour average wind direction and velocity has been obtained by vector mean as under.

The wind direction and velocity recorded by the interval of At=10 min, are divided into N-S component and E-W component as shown in the equation (II-4-1).

N-S component
$$V_{Ni} = V_i \times \cos \theta_i$$

E-W component $V_{Bi} = V_i \times \sin \theta_i$

Equation II-4-1

Where:

V: wind velocity (m/s) 6: wind direction (degree)

i: 1-6

Averaging 6 VNi and VEi by equation II-4-2, one hour average VN and VE are calculated and applying to equation II-4-3, one hour average wind direction (0h) and velocity (Vh) are obtained by vector mean.

$$V_{N1-6} = \frac{V_{N1} + V_{N2} + V_{N3} + V_{N4} + V_{N5} + V_{N6}}{6}$$

$$V_{E1-6} = \frac{V_{E1} + V_{E2} + V_{E3} + V_{E4} + V_{E5} + V_{E6}}{6}$$

$$\theta_{b} = \tan^{-1} \left(\frac{V_{E1-6}}{V_{N1-6}} \right)$$
Equation I

(2) Results of measurement

The effective measuring hours at 7 monitoring stations are shown as under and these numbers are exceeding the effective monitoring stations of Japan (yearly measuring hours = over 6,000 hours). of finding and in the representation from the profit forms to the first of the entry of the entry of the entry

H + 123

Station	Effective h	ours Percentag	e 1911 - Production of the Control
MP-1	8,568	97.8%	estate visit to the second
MP-2	8,316	94.9%	Sugar State Congress
MP-3	<i>→</i> 7,332	83.7%	Section (4)
MP-4	8,628	98.5%	e Tillian (1990) og skribagil
MP-5	8,340	95.2%	
1-4 MP-6 -2	8,544	97.5%	September 1991 in 18
MP-7	8,484	96.8%	The Allerta Mark

المتعورية المراوعات والمتارية

karangen kujuan, ising

Control of the first and the

... The raw data obtained at the respective 7 stations are collected and compiled into ANNEX. The average wind velocity classified by year, season and day & night is shown in Table II-4-5.

1. \$10 · 28 新聞 1.28 · 1. \$10 · 19 · 19 \$4 \$.

Table II-4-5 Average wind velocity

= (unit = m/s)

Administration

راويجا غاوي عاماها الهوا Schroller er i vita รีส์ตารการบางสร้อยวิว

4 - 24 1 - 2 - 24 -

Station	Yearly average	S. Monsoon daytime	S. Monsoon night-time	N. Monsoon daytime	N. Monsoon night-time
MP-1	0.9	1.2	0.5	1.3	0.7
MP-2	2.5	2.9	1.9	3.2	2.5
MP-3	0.7	0.6	0.4	1.1	0.7
MP-4	2.3	3.1	1.9	2.5	1.7
MP-5	0.7	0.7	0.3	1.1	0.7.
MP-6	2.3	3.0	1.8	3.0	1.8
MP-7	1.4	1.4	. 4 4 0.8 / 4 1	₹ 2.3 ° ; ;	1.5

From the monthly average wind velocity of each station, the tendency is found that during December to February, wind velocity is higher, and during March to May and September/October, wind is lower.

From the hourly average, the wind velocity of daytime is higher than the night time.

ជីសមក មានស្រាស់ ដែលមានមែនកូរ៉ូរ៉ូ ស៊ីរ៉ូរ The wind direction of the respective stations has the tendency that during December to March, the wind of NNW to NE is dominant, during June to August, the wind of SSE to S is dominant and in the rest of months there are no dominant wind directions.

The detailed results of analysis of wind direction and velocity will be described in PART IV of this report.

ر دې تور		4.7	*	را آي	1 1 <u>1</u> 1	<u> </u>					. 27	_ ,		_			~	•
			E ×	•	,	Ó	Ġ	٠ .	יי		~	0			الي			
			¥ E	÷	-	×	Ö	~ .	~	~	**	×	~	~	~	~	~	~
100	11:52	. Vitari	X 4 8 5	N	•	ad:	₩	. 1 ° 100		. ?	٠.٠ <u>۴</u> ٠	-	Ŷ	, F		'n	e S ection	<u> </u>
្ត្	556	Fergini L		٤٠	o Pi	ا دليان	0 - 1	۽ ٿيان،	النائلة ا	`&`&` ₩=	3 ec	ej ec	تَمَ تُ	y o	و براوا	્રે જું જું :-	€r ec	ยก .
् ं ड े	yo wase	' X '	X.	บท	13 C	0.4		ún	Ų.	U N	٠ ان هر		6.		• •	.		ω _C
់ផ្តី	i proje	8	÷ :			renig ne		4 45.	11.3.	# O	ા . પ ા	₩.~	,	∽. 	· ·			
ស ្ដី	1		2	n m N	લાં કરો	1	Ŭ-	1031	រីវិតិក	\$.	, . S	. ૾૽ૼ૽ૺ		ji Ta		, S	, ,	S
, i	12,5	i di	ž.	٠.		5 6		N .		- <mark>18 −</mark> 3.	55	N -	\$	N -	S. S.	** *	S. E.	Š.
å			200	9 0	2 Z	3 ,5	n 0	2 × ×	N -	. 3 , 2, 3	ក់ស្ពឺ	zr.	25. 25. 20.	6 0	N.F.	¥2.	× 5	<u> १८ ।</u> क व
wind			Ť O	55. 10.	5.5 0.0	5 S E	å ç	S	W C-	2.4	300	20 F	20 F	N.C.	N (5.5 5.5 5.5	25 C	ν. - εν ε
(A)	yaşı e	+ , [t p	 	N M	3.40	က် ဆု	SSE	S S S	2 N	. 50 c	5 N Y	2 5 6 4 5 6	5.56 - 0.56	w 6	ä\$₹	8 8 8 E	5 S. F.	8.8
vera	45 I S	AP 15	£ .	30.	3 -	NQ.	SSE	หุน		્રા જ જ	NN NO	25 c	SS. F.V.	8 W.	N W ?	28.	2 S 2 S 2 S 2 S	K 0
8 400 400			*	. S.S.	75.	w *	586	3.4	S -	5 S R 2 & C	νν π.Ο	8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	3.5.F	ν. Α	2 S S S S S S S S S S S S S S S S S S S	ν. Α χ.	# 75 15 75 15 75	% 7.5 2.5 3.5 4.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5
,C	9 F G2 1	, skë d	S	3 N 3 N	3.E	310	3.0	3 %	2 2	×2.	α N	200	2 ×	r K	 	9 K	2. 5. 2. 5.	N W 4
5-11-9 60,	F 4.	: :::::::::::::::::::::::::::::::::::	¥	3 №	3.∾ 3.∾	3.4	.⊒ .3.≎	3.4	\$ 72 \$ 72 \$ 73 \$ 73 \$ 73 \$ 73 \$ 73 \$ 73 \$ 73 \$ 73	28. 28.	2 K	3 X	3 2	3.0	ν. - γ. - γ.	8 2 2 3	5. C	မ မ ဇ မ လ
44	Tay S	 	±	্_ি. _ 3 ঐ	3 7	3 0	3. •∧	3 &	N.	. 4	tur ec	3.0	3 ⊖	N.	യ (1 	. ₩ ~! ₩ ~!	ν ω α.	л W.
gan		900	. P.	3 ¢	- 1, 11 m	3.0	3.0,		. ww	, N. K.	in in	3 W	់ ខេត្ត ខេត្ត	. ୬୪.୮ 	N.A.	N.G.		्र ^{क्} रिः • २० ०
recording		X 5	~	Š	J-,	ŠĚ	ŭ Ť	8.	N -	× ×	พีพ	, en -	3	· I	ις. ν .	N. PA	S. CH.	20,00
		0 K	Ξ	N E 20	0-	42 E	3 4	2 4	22	\$ \$ E	27	N CC	3.0	. SS . 22	25.5	2 S S C	22.0	2 N
33		33	ě	. ac	3 6	2 C	3 ~	N	2 2	2 20	% %	. 55 . 6	ें दें द	N W	. 22 22 22	S & C	N.W	2 X
aple			Č.	Ω C	0.4	N -	3 =0	S -	65 E-	W 0	\$ 5 5 5	Ω 80	85 80 80	3 4	ν. Ε. φ	S & -	2 t	25
a X	, s i er i i i	et j	:	₩ 3C	÷	୍ ² ୍ରି ଜ୍ଞାନ	3 U N	N V	ુ કુ કુ	2 Z	m 0	్లి	2 O	•	90	A 0	* 0	# - \$2 -
. ų	(= 1).	. 17		∞ થ	UN	UA		:	er er	w 0	. .	U+	un	V-	₩. [^	w .~	.	110 127°7 • 40 •€
	F 4=	3 + 1 +	: ^`.	in K.	11115 N. PA	1 2 1	ু : : :	14 14 14 T	**	ु ँ । सम्बद्ध	ser i	- 1 -	27, , , I		κO	. N	. (3 - 5 · 5	1
. 4	Sign t	1 . 1- 10	. ,ē			٠ ٠ ٠٠	٠ <u>٠</u>	<u> </u>	* * * * * * *	ા 💆 🖰	ા ં છે કે.	. 17	,	2	<u>.</u>			a Mari
月月		- Tara	្ស		- 		, N		3 % C	- N.	3 V M	1 10	· w.	-	•	• • • • • • • • • • • • • • • • • • •	3,5	¥5.30 ∀5.
Table I			₹	∪ ←		٧r	. 0 %	vo	n 4	. 0-	8) E	N P	ودن	0.4	υN	u –	N C	. <mark> </mark>
			ĭ	. <u>.</u>	u-	Ü.	vN	.	.04	υr	2 E	상	vr	uп	vr	vr	25 to 15	N P o
2 j - j j	137	₩ 60 ex	¥.	-	ં પત્ન		υN			ាម∔			OW		ÙΝ	, # Ο	≟ ₩ ₽	- W - O
ardi	atolici.	4 4 6 8			ů.	64	ÚN.	i i	ૼૢૻૼૢ	٠.	N.	್ಲಿ ೫0	ي ن ا	Ú.	. W.	. W.	Α.V.	4 PY
÷		NE T			_:			. 4			11:1	t jage	1.	$-\frac{1}{4} - \frac{1}{4} c_1^2$		٠٠٠ -	North L	1111
			*	-	. ~	₩.	4	*	•	λ.	. 🗢	Φ.	0	6 ~	?	£.	*	15

Bed a field of the first of the control of the control of the part of the second of th

entration of the control of the cont

CHAPTER 5 MEASUREMENT OF SOLAR RADIATION AND NET RADIATION

For environmental assessment, it is one of the important factors to obtain diffusion coefficient of the survey area by calculating the diffusion of smoke quantitatively. For this purpose, it is also important to obtain the atmospheric stability which is closely related to the diffusion of smoke.

The atmospheric stability is defined by the vertical distribution of temperature, but the continuous and long term measurement of vertical distribution of temperature (upto 1,000 meter high) has the difficulties to be performed. The stability is also influenced by wind velocity considerably and other factors are also not regardless. Pasquill developed the method to classify the atmospheric stability from A to F from wind velocity, solar radiation and cloud volume (substituted by net radiation), and the method has been employed by the Meteorological Department of English Government.

In this study, the stability has been obtained by measuring solar radiation and net radiation of the survey area, together with the wind velocity measured at 7 stations.

The measurement has been carried out for one year, from July 15th 1981 to July 14th 1982. The automatic measuring instruments have been installed at MP-1 and instantaneous and one hour integrated value of solar and net radiation have been recorded. During the above one year, the daily check and maintenance of instruments of once every 3 months have been carried out.

H-5-1 Measuring Methods of Solar and Net Radiation

Most of the radiation energy from the sun are in the wave range of under $4\hat{\mu}$, and the instruments to measure such solar radiation is usually called a pyrheliometer and or pyranometer. The pyrheliometer is designed to measure the energy of solar radiation reaching directly to the ground from the sun through atmosphere. It is also designed to avoid the indirect radiation and reflection from the ground, and to trace the sun which is always moving.

The pyranometer is designed to measure all solar radiation, direct and indirect. It is usually used for the purpose of obtaining atmospheric stability. The typical pyranometers have been developed by Robitzsch, Moll and Eppley.

Solar radiation meter is based on the principle to detect temperature difference caused by solar radiation absorbed into the surface of white and black plates by the bimetal or thermocouple.

The net radiation meter is to measure the temperature difference between radiation of two opposite directions, upward and downward.

II-5-2 Instruments Used in This Study for Measurement of Solar and Net Radiation

II-5-2-1 Solar radiation meter

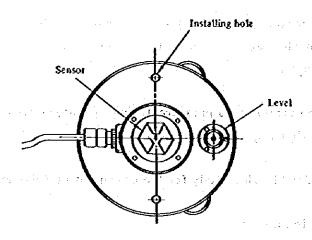

The solar radiation meter used in this study is Eppley type pyranometer which is widely used in Japan. The specifications of the instrument are shown in Table II-5-1 and the sensor is shown in Fig. 11-5-1.

Table II-5-1 Specifications of pyranometer used in this study

	Sensitivity Internal resistance	7 mV/cal cm ⁻² min. 1	
	Response speed	3.8 s. (63.2%)	
	Error by temperature fluctuation	-0.1%/ ⁰ C	
	Cosin characteristics	2%	
regarding operation to see	Directional function	all round	ants, states
	Weight was 1 et al.	2.31 kg	est eğ istêrilin ser
ing state of the state of the contract of the state of th		September 1985	98 1 15 State 1

and the first progress of pure for progress and the force is the term on the contract of the c पूर्व हे प्रस्ता कर कुछ है। विकास में इसका के किस के कार के किस के अपने के अपने के अपने के किस के स्थानिक हैं कर्म्यक करून एक विकासिक रूप करका करेंगे कर नोहेंगे पूर्ण एकर क्रांसी देखी के दूर का किया की क्रांगित के सी दूर सामग्रीक करून एक विकासिक रूप करका करेंगे हुए एकर क्रांसी देखी की एक दूर का किया की क्रांगित किया है दूर का साम and the second of the second of second of the second of saur las de la filipitació de l'establishe de respectation de la completa de la completa de la completa de la ega iles profile grund kanntig et to give più e più al nabas più et tribben a et unart mor il em later

year standing to be the forest and the

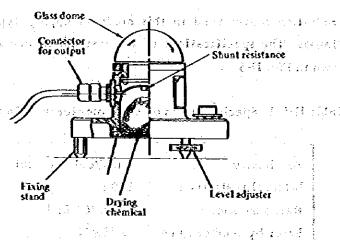


Fig. II-5-1 Sensor of pyranometer

The structure of sensing device is shown in Fig. II-5-2. The white and black plates are installed in radial ways from the center and solar radiation is measured by the temperature difference of two plates. The sensing device is composed by 39 copper/constantan thermocouples, and the white plate is painted by sulfate of barium which is highly effective against humidity and reflectable. The black plate is painted by parsons optical black. In order to avoid the impact by the sudden change of temperature and impact from the wind, the upper side of the sensor is covered by glass dome as shown in Fig. II-5-3. Inside the dome, silicagel is installed for avoiding blur of the glass. The measured radiation is recorded in the recorder by the unit of instantaneous value and one hour value as shown in Picture II-5-1.

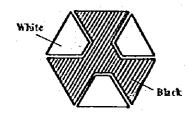


Fig. 11-5-2 Sensor of pyranometer

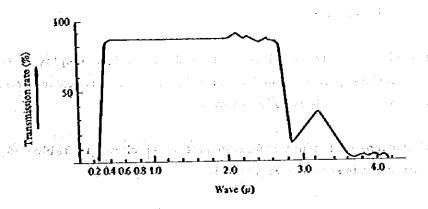
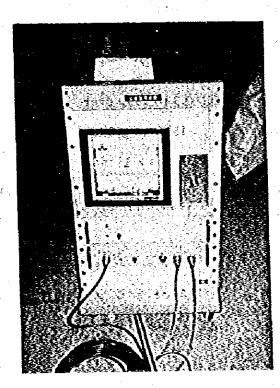
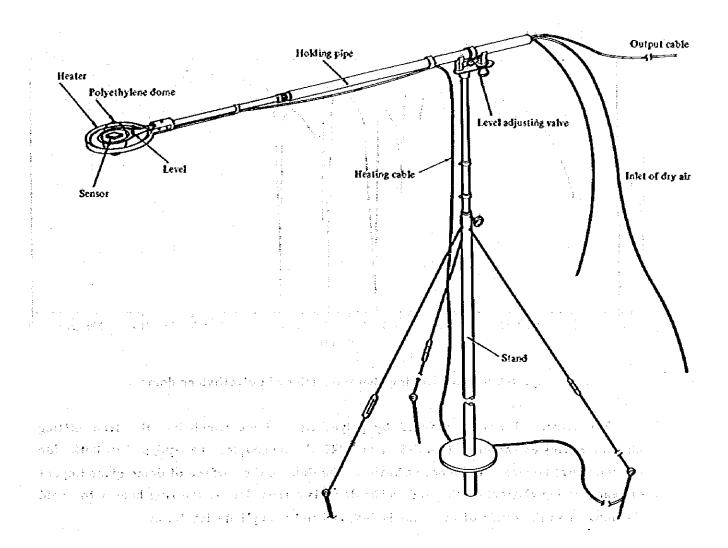



Fig. II-5-3 Transmitting characteristics of glass dome

Picture II-5-1 Shunt box and recorder of pyranometer and net radiation meter


II-5-2-2 Net radiation meter

The net radiation meter used in this study is widely employed in the field of meteorology, agriculture, hygiene and other science which are closely concerned to net radiation in the range from short to long wave.

The specifications of the net radiation meter are shown in Table II-5-2 and the out view of the instrument is shown in Fig. II-5-4.

Table II-5-2 Specifications of net radiation meter

Power	25 mV/cal. Cm ⁻² min. ⁻¹
Sensitivity difference	within 3%
Internal resistance	80 n
Response speed	20 s,
Wave range	0.3 to 100µ over
Temperature range	-15°C to +40°C
Sensor dimension	38 mm x 38 mm
Polyethylene dome	0.1 mm thick, transmitting characteristics as shown in Fig. II-5-5

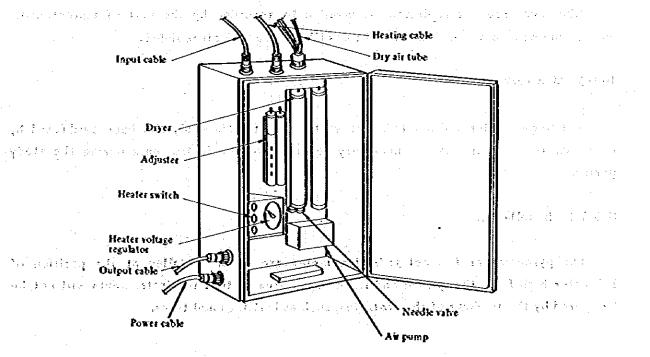


Fig. II-5-4 Outview of net radiation meter

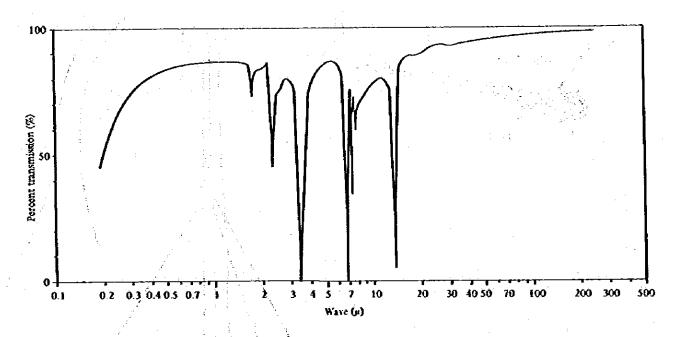


Fig. II-5-5 Transmitting characteristics of polyethylene dome

The sensing device is covered by polyethylene dome which has the transmitting characteristics as shown in Fig. II-5-5, and 240 thermocouples are equipped in both side (up and down) to measure the net radiation. The dew on the surface of dome gives impact on transmitting characteristics and so the dome is surrounded by the ring heater to avoid the dew. Also the inside of the dome is designed to be supplied with dry air.

The measured net radiation is recorded by recorder by the unit of instantaneous value and one hour value through shunt box illustrated in Picture II-5-1.

II-5-3 Measurement

The pyranometer and net radiation meter used in this study had been calibrated by manufacturers and it was not necessary to calibrate the instruments during the study period.

II-5-3-1 Installation

The pyranometer and net radiation meter are to be installed at the position of 1.5 meter high from the ground and in the open area so that the instruments will not be hampered by the shadows of the obstacles, such as buildings and trees.

有 50g (10g) 医10g \$20g \$20g (10g) \$ \$P\$ (10g)

For the measurement of net radiation, the status of the ground surface is keenly concerned, and so it is usually installed on the ground covered by flat grass.

For installation of instruments, the adjustment of level is very important. In order to secure the constant flow of dry air into polyethylene dome of net radiation meter, the silicon tube of combination cable is connected with the outlet of needle valve of air pump and other end is connected with adjuster in which 80% of water is stored. Turn the needle valve and adjust the bubbling of the adjuster so that 10 to 20 bubbles per minute may be maintained. (refer to Fig. II-5-4.)

11-5-3-2 Connection

The sensors of pyranometer and net radiation meter are connected with recorder through shunt box by cable. The cable extending on the ground is to be buried in the ground to avoid the traffic troubles.

II-5-3-3 Loading of chart

The recorder of pyranometer and net radiation meter are the same type with the one of SO₂ analyzer. The loading of chart has already described in H-3-3-3.

II-5-3-4 Calibration of the state of the Control of the galate and the control of the state

As described, the calibration of instruments used in this study had been calibrated by the manufacturers and so it was not necessary to calibrate them during the study period. Different from the case of SO₂ analyzer, pyranometer and net radiation meter are usually used for longer term without calibration although regular calibration is recommendable.

II-5-3-5 Automatic measurement in the land a second in the contract of the land and
Turn the function selector of shunt box to one hour value and adjust the pen on the present time of chart. Then automatic measurement of solar and net radiation is commenced.

ाम हुन्द्र कुन्ह के कर ने अने के कर कर हुन् करों के अधाव के द्वानों के लेकिया है है के कर कर कर की ने असे आहे.

· 1000年1月1日 - 100日 - 1

II-5-3-6 Maintenance

In order to secure the sound and proper operation of instruments, the regular maintenance is necessary. The items and frequency for the maintenance are shown in Table 11-5-3.

Table II-5-3 Items and frequency of maintenance and the second se

			Barry Branch Barry Branch	E P		$\mathbf{Q}^{(-1)} = \hat{\mathbf{Q}}^{(-1)} = \hat{\mathbf{Q}}^{(-1)}$	diana kana
			Items		Frequency		
· • · · · · · · · · · · · · · · · · · ·		Objective	Contents	Daily	Weekly	Month	Whenever necessary
Pyrano- meter		pole glass dome silicagel	confirm vertical erection blur or damage supply or replacement	X			irosir swiir x icae
Net radia- tion meter	(2)	pole polyethylene dome air pump	confirm vertical erection blur or damage tension of dome surface replacement of dome confirm flow rate replacement of silicagel			4	Barria era Lent Areas Lent Settler Maria
Re- corder	2)	power supply & connection	confirm chart advance confirm time slip of chart check ink shade replacement of chart supply of ink confirm loose and discon- nection	. R <mark>≭</mark> a	्राक्ट हैं हैं जो जा कि क्री ज़िल्हें ≭ टिंग	(d.)≃. X	र कराउँ किलोहुन्द क्षेट्र केवे किलोकक्स्

II-5-4 Results of Maintenance of Measurement in a loss retreated again two to does said

The measurement of solar and net radiation have been carried out at MP-1 shown in Fig. II-1-1 for one year during July 15th 1981 to July 14th 1982 by automatic monitoring instruments. During the survey period, the daily maintenance of instruments have been conducted by JTC and adjustment has been performed by Japanese team for 3 times.

स्तर है। के परिवेदकार के कि प्राप्त को एक प्राप्त की एक कि के कुर्योक <mark>में करी। स्वाद्धकार को ने के</mark>

र्वे के स्वरूप के देवी हैं के प्रकार के प्रकार के प्रकार के प्रकार के प्रकार के के के कि का कि प्रकार के की कि

and and replaced to the later of the property of the second of the contract of

II-5-4-1 Maintenance That has a long a compension for the compension of the compensi

gradien in de la gradien d

(i) Daily check

According to the items and frequency for the maintenance shown in Table 11-5-3, the daily maintenance on the following items have been carried out by JTC.

The Confidence of the second of the second of the second second of the second of

- (a) confirmation of vertical erection of poles a second state of mission shall since a
- (b) check of blur or damage of glass dome of pyranometer
- (c) check of blur or damage of polyethylene dome of net radiation meter and also tension of dome
- (d) confirmation of chart advance
- (e) confirmation of time slip or shift of charts because of process of subsection
- (f) Ink shade and supply of link; who was the central ratio lyse agrees of wastered were
- (g) confirmation of loose or disconnection of power cable

Besides the above, the replacement of silicagel and charts have been conducted by JTC.

(2) Maintenance by Japanese team

Once every 3 months, the maintenance by Japanese team has been conducted for the sound and proper operations of instruments. The adjustment of the instruments have been carried out all together 5 times including the times of commencement and completion. Through the maintenance, it was confirmed that the measurement of solar and net radiation has been performed in satisfactory condition.

Table II-5-4 Form for maintenance of pyranometer, net radiation meter and thermometer

THERMOMETER, PYRANOMETER & NET RADIATION METER MAINTENANCE REPORT (Every 3 months)

Thermometer maintenance Maintenance items Maintenance items Maintenance items Maintenance items Maintenance items Maintenance Good No Operating condition Chart printing Chart printing Chart printing Chart printing Chart printing Chart printing Abnormal sound of ventimotor Yes No Dome condition Abnormal sound of ventimotor Yes No Dome condition Abnormal sound of ventimotor Yes No Dome condition Check of the temperature Temperature 10 m 10 m 10 m Memidity at the ground Remarks: Remarks:	Pyranometer maintenance Maintenance items Resu Operating condition Good	yor	Stations Mar-	•
rmometer maintenance renance items Result M g condition Good No Oper mting min/h Char sound of ventimotor Yes No Dome the temperature Yes No Reple the temperature 10 m the temperature 10 m thermometer 0 Confi g thermometer 0 Confi at the ground %	Pyranometer mainten Azintenance items rating condition	ance		•
condition Good No g condition Good No nting Good No nting min/h sound of venti-motor Yes No t cleaning Yes No the temperature g thermometer thermometer thermometer at the ground at the ground g condition Good No min/h To m OC C Thermometer 10 m at the ground At the ground At the ground To m Thermometer T	Azintenance items rating condition		Net radiation meter maintenance	aintenance
secondition from thing from thing from thing from the temperature from the temperat	rating condition	Result	Maintenance items	Result
nting Description of ventimotor Yes No I vibration of ventimotor Yes No It cleaning Yes No It cleaning Yes No the temperature If the tempera	rt Drinting	Good No	Operating condition	Good No
l sound of venti-motor Yes No I vibration of venti-motor Yes No It cleaning Yes No It cle	0	Good No	Chart printing	Good No
I sound of venti-motor Yes No I vibration of venti- Yes No the temperature If cleaning Yes No the temperature In moneter	t slip	min/h	Chart slip	d/aim
t vibration of venti- Yes No It cleaning Yes No the temperature It the temperature It the temperature It the ground at the ground vibrature	Dome condition	Good No	Dome condition	Good No
t cleaning Yes No the temperature is thermometer 10 m chermometer 2 c c c c c c c c c c c c c c c c c c	Silicagel condition	Good No	Silicagel condition	Good No
the temperature ig thermometer at the ground the	Pole condition	Good No	Pole condition	Good No
thermometer 0C C 1.5 m 0C C C C C C C C C C C C C C C C C C	Confirmation of level	Good No	Confirmation of level	Good No
thermometer of the ground wt the ground %	Replacement of silicagel	Yes No	Voltage of transformer	Δ
thermometer stature 1.5 m 10 m at the ground	arks:		Disconnection to heater	Yes No
at the ground			Pump condition	Good No
at the ground			Replacement of silicagel	Yes No
Remarks:			Replacement of dome	Yes No
			Adjustment of air pump	Yes No
			Remarks:	35. 1 ¹³
				F 1

II-5-4-2 Solar and net radiation

(1) Reading of chart of pyranometer and net radiation meter

As shown in Fig. II-5-6, the solar and net radiation are recorded on the same chart in instantaneous and one hour values respectively. The integrated value is shown by saw teeth as same as SO₂ analyzer, and the top of saw teeth is one hour integrated value. The full scale of chart for solar and net radiation is -10 to 90 cal. Cm⁻².hr⁻¹ (integrated value) and -0.2 to 1.8 cal. Cm⁻².hr⁻¹ (instantaneous value), and the net radiation of night time usually indicates negative value.

The section has published as its

	: ریاند و موسیح
	e l
	SHIP OF COLUMN TO SHIP OF COLU
One hour integra	led value ()
of net radiation ((100 (100 (100 (100 (100 (100 (100 (100
Constitution of the state of th	ated value
of solar idea in the control of solar idea in	on (blue)
Insti solal	ntaneous value of radiation (light blue)
	Instantaneous value of . C.
	First is de tion (led)
	The state of the s
	minaanmianides

Fig. II-5-6 An example of recording of solar and net radiation

(2) The results of measurement

The effective time of measurement of solar and net radiation in this study was 8,514 hours for solar radiation and 8,067 hours for net radiation. Both of these number of hours are largely exceeding the standard for the effective monitoring station.

The raw data of one hour value of solar and net radiation are shown in ANNEX and an example is shown in Table II-5-5.

The daily profile of solar and net radiation obtained by averaging the data of the same time through the survey period is shown in Fig. II-5-7. The values of 13:00 hour show the maximum in the day.

The analytical results of solar and net radiation, and the relation with the atmospheric stability are described in PART IV.

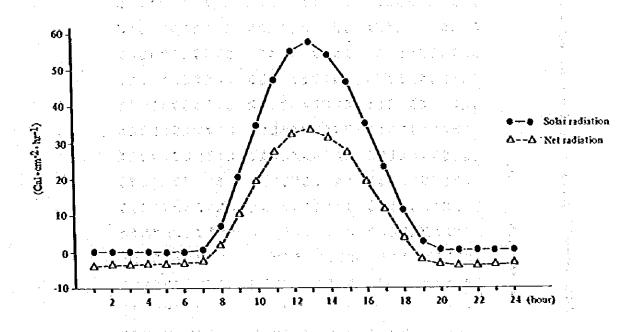


Fig. 11-5-7 Hourly fluctuation of solar and net radiation

					្រុមមនុស្ស (មាស់ខេត្តដែលមក)	निर्देश अधिके 🚰 । अञ्चल हो ।
	· 1 .	20000000000000000000000000000000000000	· .	- 15;- 14(1); - 00000000	းမ်ားများသောကျသူလျှင် စီဝဝီဝဝီဝဝဝဝဝဝ	ati si 🧯 associ.
11	.: 8	- ZBKRKKRE:		NN 30 4 1 4 8 8 1 4 1 4 8 8 1 4 1 4 8 8 1 4 1 4	£\$25255528	iğ Sakarınını
	100.	Z W C C C C C C C C C C C C C C C C C C	4	ZXEV NO E	ENGATER WAS	
		နှစ်ခွင့်ဂုံစခုချင်		90000000	့ အရသစ်စ်သစ်စုတွင်တွင်	.
		•	otikality See èee	Sil Sir par Added	from Estate to office	
1	-	Notes of the contract of the c		ୣଌୢଽ ୄଌୡୄୡ	eeceeceece	i vojit spaka
		¥00000000	100 0 00	0900000	0000000000000	ುಣ ಕಂ್ತ್ ಅಂಚ್ರಕ
į		± 00000000 N	900 000	9099996	0000000000	
ŝ	n kadija	ွှံစီစီစီစီစီစီစီစီစီ	000	0000000	်ဝီဝဝဝဝဝဝဝဝဝဝ ၁	transport (
Š		A ZONNNOFF	~	~~+~+	-6248484484	ស្សាស្តីទូស ១៩៩ -
,		.r ∙INONY∈čan	ana neo	- e-z-00		
}		Z HOMMMA OF	· · · · · · · · · · · · · · · · · · ·	Act Com	£ 55 666	
		V-4UUUUU	nue van	MUNNAUW MUNNAUW	UNAULE NAEW	
i		5224446WX	SUB THE	KNEZ JNE	47.204.24.24.24.24.24.24.24.24.24.24.24.24.24	
	-	TOSE PROS	75 86t	\$500 KAC	SYSOANCONCO	a P
		Throny Loo	122/222	4834004 484644	9 43 FULL FOR SE	*
: -		10000000000000000000000000000000000000	3 10 3C (V in is	22222	ENONO OFONY	*
4	-		one ene			
	E	**********	MY YYX	80 V V W W W	VV OVV X B X V V V	
	••	En 300044	46.999	condition.	40-4044 800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	_	SHENNY SAN	N. 2 2 20	AAAN NO	\$2000000000000000000000000000000000000	· · · · · · · · · · · · · · · · · · ·
	Ž ,	######################################	28 08X	0 K V 0 C 0 0	-0.040M44600	
	<u>*</u>	== kkx0.1x=	0 K	2 NO X N X N	رائد الرقاعة في المائفة ملأملا في ال	State of the state
	ν α	20-00006-	.00 -0-	600-	THE THE PERMIT	
· .	SOLA	-000000000		രാടാം	05000000000	ar goal (Color) B
		<u> </u>	00 000	000000	00000000000	•
		±00000000	မှုရှင် ကိုသင်	المحمدة		
	_	•			6000000000	
	о ен 22	¥00000000	000 000	000000	0000000000	
	1951	xoocoooo	000 000	0000000	0000000000	
	200	200000000	, c o o o o	~~~~~	000000000000	٠ - کو
		******	غبيد لمند			Ę.

a 1998 janua ja savada salastas serija seri, serika kulas seri persentiri, alada <mark>kulanda k</mark>elegis. Parte seri sava selas seri side alada seri kelegis alam keles salah kulanda selak sakalah kul<mark>a</mark>n anda

```
on the second section of the second
o de la serio de serio de porto de la como de la serio de la como de la como de la como de la como se se se se
De serio de la fasta de la como de la comba de la como de la composició de la composició de la comba de la seg
 化硫合物 医环球性 化液糊剂物医液物物的物物 化氯化物 化水平相邻 医艾达氏虫的
A STATE OF THE PROPERTY OF THE
      Sennanoreoblenbangrago Punganoruscou $
  विकासकर मुक्ते केट र न प्रथमित की भी राज कर अने माने माने की की की अभी आई खुद्दा, नक्षण पर का पार का राज महारा
```