CROP PRODUCTION WITH PROJECT (AVERAGE CROPPING INTENSITY) TABLE G3-16

	•		Total			Bayongan	an		Capayas	-
	Crop	Area	Yield	Production	Area	Yield	Production	Area	Yield	Production
-	Rice Field, Irrigated	(ha)	(ton/ha)	(ton)	(ha) (ton/ha)	(ton)	(ha)	(ton/ha)	(ton)
	(1) Rice, wet season	4,420	4.2	18,564	3,450	4.2	14,490	970	4.2	4,074
	(2) Rice, dry season	3,300	4.5	14,850	2,580	4.5	11,610	720	4.5	3,240
	Sub-total	7,720	-	33,414	6,030		26,100	1,690		7,314
	(3) Beans	420	1.0	420	330	1.0	330	06	I.0	06
	(4) Peanut	420	1.7	714	330	1.7	561	06	1.7	153
	(5) Feed grains	420	2.7	1,134	330	2.7	891	06	2.7	243
	(6) Fruit crops/vegetables	420	8.9	3,738	330	8 9	2,937	06	8.9	801
	<u>Sub-total</u> Upland Field, Rainfed	1,680		6,006	1,320		4,719	360		1,287
	(1) Cassava	720	14.2	10,224	590	14.2	8,378	130	14.2	1,846
	(2) Sweet potato	480	10.8	5,184	390	10.8	4,212	06	10.8	972
	Sub-total	1,200		15,408	980		12,590	220		2,818
	Total	10,600		54,828	8,330		43,409	2,270		11,419

Item	Total	San Miguel	Trinidad	<u>Ubay</u>
l. No. of Barangay	22	5	6	11
2. 1980 Population	10,870	2,878	3,215	5,777
3. 1980 No. of Household	2,117	540	496	1,081
4. 1980 No. of farm	1,826	511	410	905
5. 1987 Population (1.6%/year)	12,086	3,200	2,463	6,423
6. 2000 Population (0.9%/year)	13,573	3,594	2,766	7,213
7. 2000 No. of farm	2,280	638	512	1,130

TABLE G3-17PROJECTED POPULATION AND NUMBER OF FARM
IN THE PROJECT AREA (2000)

Note: (1) The 1987 and 2000 population were projected on the base of population growth rates indicated in the parenthesis.

> (2) The number of farm households in 2000 was projected on the base of population increase rate from 1980 to 2000.

FARM OPERATION METHOD OF RICE CULTIVATION TABLE G3-18

	8	ft aal rt)		?ower Tiller (Trailer)		r) t)	
• •	Hauling	Draft - Animal (Cart)	-	Power - Tiller (Traile		Draft - Animal (Cart)	- - -
•	Drying	Sunshine & Dryer		Sunshine - & Dryer -		Sunshine	
	Threshing	Power - Thresher		Power Thresher		Pedal - Thresher	•
-	Harvesting	Manpower (Sickle)	. •	Manpower (Sickle)		Manpower - (Sickle)	-
	Weeding	Manpower (Rotary Weeder)		Manpower (Rotary Weeder)		Manpower (Rotary Weeder)	
	Spraying	Manpower (Hand Sprayer)		Manpower (Hand Sprayer)		Manpower (Hand Sprayer)	
	Trans- <u>planting</u> Animal	Manpower		Manpower 		Manpower	-
	Harrowing Trans- wing <u>& Leveling</u> <u>planti</u> 4-wheel Tractor + Draft Animal	Draft Animal (Harrow & Leveler)	Tiller	Power Tiller (Harrow & Leveler)	Power	Draft Animal (Harrow & - Leveler)	i
	<u>Plowing</u> 1. 4-wheel	4-wheel. Tractor — (Rotary)	2. Power T	Power Tiller - (Plow)	3. Animal Power	Draft Animal (Plow)	

The farm operation method of the direct seeded rice is the same as the above method except for the operation of seeding No. of passing of plowing, first harrowing and final harrowing are indicated in Table 1. Note: (1) 5

G-133

,

CAPACITY AND EFFICIENCY OF MACHINERIES/ANIMAL BY OPERATION

TABLE G3-19 .

Days Per ha (12)=(9)/(11) (day/ha)	8 18 28 2 28	2.7	1.3	3.8	0-9	1.0	4.2	0.9	
Ope. Hours Per day (11) (hr/day)	ου ου ου	، ٥٥	80	80	80	2	7	16	
Hours per ha (10)=(9)x(8) (ha/hr)	66.7 14.3 3.7	21.2	10.6	30.0	6 . 8	6.7	29.4	14.0	• • • •
Ope. Times (11 (11)	ret ped red	~	. 2	4	7		1	н	• • •
Hours per ha (8) (ha/hr)	66.7 14.3 3.7	10.6	5.3	7.5	3.4	6.7	43.5	14.0	·
Actual Ope. Capacity (7)*(5)x(6) (ha/hr)	0.015 0.070 0.273	0.094	0.190	0.134	0.294	0.150	0,034 (0,14 ton)	0.071	0.11 ton
Ope. Efficiency (5) (2)	70 85 85	20	80	70	80	75	. 75	80	70
Field Ope. Capacity (5)=(3)x(4) (ha/hr)	0.022 0.087 0.321	0.134	0.238	0.192	0.367	0.200 (0.8 ton)	0.046 (0.19 ton)	0.089	0.16 con
Field Efficiency $\frac{1}{(4)}$	84 84 78	80	82	80	82	32	80	80	80
Theoretic Ope. Capacity (3) (ha/hr)	0.026 0.103 0.411	0.168	0.290	0.240	0.448	0.244 (1.0 ton)	0.058 (0.24 ton)	0 111 (0.50 ton)	0.2 ton
Ope Speed (2) (km/hr)	2 6 3 2	2.4	2.9	2.4	3.2	ı	ι	ı	5.5
Ope. Width (1) (m)	0.12 0.24 1.58	0.7	1.0	1.0	1.4	T.	1	Ι.	1
Operation/Machinery & Animal	 Plowing, Carabao W/Plow Plowing, Power Tiller W/Plow Plowing, 4-wheel Tractor W/Rotary 	4. First Harrowing, Carabao W/Harrow	5. First Harrowing, Power Tiller N/Harrow	6. Final Harrowing, Carabao W/Harrow/Leveler	7. Final Harrowing, Power Tiller W/Harrow/Leveler	8. Threshing, Power Thresher	9. Threshing, Fedal Thresher	10. Drying, Drier	11. Hauling, Carabao with Cart

Note:

1/... Such losses in the fields as turning of machineries, adjustment of machineries, etc. are deducted

from theoretical capacity. 2/... Such losses happening outside the fields as transportation of machineries between garage and fields. inspection of machineries just before operation (min. 10 minutes), fixing and removal of machineries with putting lubricant oils (min. 30 minutes) etc. from the field operation capacity.

				·		·			· · · .		
		F 1	TABLE G3-20	3-20	FARM MACH	FARM MACHINERY COST	[-4				
	· . ·										
:		(1)	(2)	(3) Depre-	(4)	(5) Other	(9)	(2)	(8) Total	(6)	(10) Fixed
Mé	Machinery	Aqui- sition (¥)	Life Span (year)	ciation Cost 1/ (₹/year)	Repair Cost (P/year)	Fixed Cost 2/ (P/year)	Total Cost (P/year)	Coverage per Unit (ha)	Cost per ha (P)	Area Coverage (%)	Cost per ha (₱)
4-wh	4-wheel tractor	215,000	. 10	19,350	17,200 (8%)	2,150	38,700	38,700 l,200 hr/ year	32/hr	20	24
Power	Power tiller	32,060	Ń	5,771	2,565 (8%)	321	8,657	9.0x1.64/	601	45	270
Powe	Power thresher	23,125 <u>3</u> /	8	2,602	694 (3%)	231	3,527	30×1.64/	24	75	184
Peda.	Pedal thresher	. 650	Ŷ	98	I	7	105	5.0x1.64/	7	25	7
Dryer	r	16,000	œ	1,800	800 (5%)	160	2,760	2,760 30.0x1.6 <u>4</u> /	58	60	35
Ĥ	Total				1811						515

Note:

 $\frac{1}{2}/ \dots \text{ Computed as (1) x 0.9/(2)}$ $\frac{2}{2}/ \dots \text{ Computed as (1) x 0.01}$ $\frac{3}{2}/ \dots \text{ Price without engine because the engine of hand tractor can be used for thresher}$ $\frac{4}{2}/ \dots \text{ Cropping intensity of rice}$

	(7) (8) Area Variable Coverage Cost per ha (7) (P)	20 24	45 77	45 30	45 19	75 40	60	383
	(6)=(5)xl.3 Cost Inclu- sive of Oil (P)	117.4	170.7	67.5	42.8	53.2	116.1 204.8	
	(5) Cost of Fuel (P)	90.3	131.1	51.9	32.9	6.04	89.3 57.5	
Y COST	(4) Unit Cost (P/lit.)	6 • 1	6 . I	6.1	6 • 1 6	6.1	8.5 7.5	
FARM MACHINERY COST	(3) Fuel (lit.)	14.8	21.5	S. S	5 . 4	6.7	G+0 10.5 K 21.0	
FARM	(2) Fuel Consumption (lit./hr)	D. 4.0	D. 1.5	D. 0.8	D. 0.8	D. 1.0	G+0.75 G K 1.5 K	
TABLE G3-20	(1) Ope. hours per ha (hr/ha)	3.7	er 14.3	r 10.6	wer 6.8	6.7	14.0	
	Operation/Machinery	 Plowing, 4-wheel tractor 	 Plowing, Power tiller 14.3 + Plow 	3. 1st harrowing, power tiller + harrow	4. Final harrowing, power 6.8 tiller + harrow	5. Threshing, power thresher	6. Drying, Drier	Total

Note: D Diesel G Gasoline K Kerosene

TABLE G3-21

ANIMAL COST

Operation	Requirement (day/ha)	Rate (₽/day)	Amount <u>(</u> ₽/ha)	Area Coverage (%)	Amount _(₽)
1. Plowing	7.0	15	105	35	37
2. First harrowing	2.4	15	36	55	20
3. Final harrowing	4.8	15	72	55	40
4. Hauling	4.5	15	68	100	68
Total	18.7				165

Note: Commodity and distance for hauling work;

Quantity (ton)	Distance (km)
2.0	2 km
0.5	$4 \text{ km} = 2 \text{ km} \times 2$
8.5	1 km
4.1	$4 \text{ km} = 2 \text{ km} \times 2$
2.0	1 km = 1 km x 2
	(ton) 2.0 0.5 8.5 4.1

	man-day/ha)	, Future 2/	Machinery	۲ د	0.1	1	<u>5</u>		ł	0 °	6°0	4.0		0.2		0.2	- - -	0.1	0.1	0.2	2• 0	•	l		0 1	۰. ۲	ץ ער אין ראיי אין ראיי) • •		ند ح	י כ כ) 	;	Draft animal
	(Unit: D	W/Project, Future	Man-day	C	Λι 5 -		2-0				(2x) 1.5	7.0		7.2	20.0	27.2	- 	1.2		2.4	n, i	12.U	0	C 7	2. C	0	0 0 0 0		- - -	¢	- r-	8 <u>7 7</u>		•
		Future 1/	Animal-day	•	0.*T	۱.	1•0		1	1 t	- 8 - 0	14.9		0.5	1	0.5		4.0	4 0 • •	8	2.0		l		1 7	4.2	1 0 1 1	;		с т) e	1.1 7 7	t • •	in the parenthesis
		W/Project,	Man-day	(-	7.1	ດ I ••• (7-7	(D . U	(TX)0.4	(7X)2.1 (4x)3.8			7.5	20.0	27.5		۲.5	ы Ч	0	n in (12.0	0,0	C V F	5 - C	- C -				ע רי רי	י י י י י		7 • • • •	figures
· · · · · · · · · · · · · · · · · · ·		W/O Project, Present													•						· · ·		· · · · · · · · · · · · · · · · · · ·							•				Mechanization, $3/$ The
	· · · · · · · · · · · · · · · · · · ·		Operation	1. Seed-bedding		b. Care of Seedings		2. Land Freparation	a. Cleaning/dike Mending	b. Plowing	c. Breaking/Harrowing J pinel nervering/I and ling	•	3. Planting	a. Pulling/Deliver of Seedlings	S	Sub-total	4. Fertilizing	a. Basal Fertilizers	b. Top-dressing	Sub-total	5. Pest Control	6. Cultivation/Weeding	7. Irrigation/Drainage	8. Harvesting			C. Intesutus/ Manuowang	0 Dest Tarresting	л Э Ч		D. Sacning/Liling/Delivery	ans	IU. LOLAL 2/	Remarks: $1/\ldots$ Draft animal, $2/\ldots$

LABOR REQUIREMENT, RICE, TRANSPLANTED

TABLE G3-22

ABOR REQUIREMENT, RICE DIRECT SEEDED W/O Project, Present W/Project, Future 1/ W/O Project, Fresent W/Project, Future 1/ Man-day Animal-day Man-day Animal-day (1x)8.4 8.4 (1x)3.8 8.2.7 3.8 17.9 14.9 0.6 3.0 0.5 3.0 0.6 1.5 0.4 1.5 0.4 1.7 0.5 1.1 0.5	(Unit: man-day/ha)	W/Project, Future <u>2/</u> Man-day Machinery		1		3.0	(1x)1.8 1.8 1.8 $(2x)1.3$ 1.3	5	7.0	1	2.7 0.2	_	-2		3.5	10.0			3.0				2.7 0.5	53.2 8.4(6.4)
LABOR REQUIREMENT, RICE DIRECT W/O Project, Present Man-day Animal-day (1		lect, Future <u>1</u> / iy <u>Animal-day</u>	1	1	1				14.9	1	0°2		0.4	40	2.0	ł	I .	1	1.7	5.9	ļ	۱ -		
LABOR CARACTER CARACT				1		3.0	(1x)8.4	(4x)3.8	17.9	I	0.0		1,5	1.5 2.0	3.5	2.0		16.0	3.4 12 6	32.0		i c	0.0 	71.9
		W/O Projec Man-day								Seedlings	80													

TEMINE μ 2 : parentnesis e L L L C с Н rigures 1 De) N Mechanization, : 4 anlmal, Urarr ::/i Kenarks:

G-139

,

of powt-harvesting show draft animal labor requirement 1/: With animal power the parenthesis (Unit: man-day/ha) 3/: Two passings of 2/: Only plowing is 5/: The figures in 4/: Including the mechanized by tractor with tractor with requirment Remarks rotary rotary work 2 Machinery 2 5.6(12.6) 1.0 Future 2.0 2.0 0.5 3.0 2.0 ц П 0 1 2.5 ١ ł ١ ł 1 W/Project, Man-day 12.0 6.0 3.0 10.0 3.0 56.6 о. С 8.6 6.0 ч. С. Ч 12.5 2:0 2x)1.0 4x)4.6 I 1 I ł ł Future 1/ Animal-day 28.9(25.9) 2 0 0 2 3 0 5.9 4.6 18.9 2.0 2.0 0 . 0 1.5 1.0 8.4 ł ł ι 1 ł I ł 1 W/Froject, Man-day $(2x)\frac{1.5}{3.0}$ 6.0 3.0 21.9 6.0 ы N 10.01 12.5 12.0 69.9 (4x)4.6 (2x)3.0 Ix)8.4 2x)5.9 ł ľ ł I 1 1 I a. Pulling/Deliver of Seedlings Furrowing/Planting/Thinning Harvesting a. Reaping/Plucking/Bundling Final Harrowing/Leveling a. Land Preparation/Sowing Saching/Piling/Delivery Threshing/Winnowing 4/ Cleaning/Bund Mending Operation Breaking/Harrowing Basal Fertilizers Care of Seedings Cultivation/Weeding 7. Irrigation/Drainage b. Hauling/Piling 2. Land Preparation Post Harvesting Top-dressing Seed-bedding Sub-total Sub-total Sub-total Sub-total Sub-total Pest Control Sub-total Fertilizing Plowing a. Drying Planting 10. Total 5/ J ່ວ . 10 . م ۔ م q. ם. ъ, --. م ന . Б 4 . س 8 **ہ**

LABOR REQUIREMENT, MUNGBEAN

TABLE G3-24

				· ·	(Unit: man-day/ha)
-		/ 1		10	· · · · · · · · · · · · · · · · · · ·
	W/Project,	, Future 1/	W/Project,	t, Future 🖆	
Operation	Man-day	Animal-day	Man-day	Machinery	Remarks
1. Seed-bedding		•			
a. Land Preparation/Sowing	İ	1	1	1	
b. Care of Seedings	1	I	I	. 1 -	1/: With animal
Sub-total	1		1	1	power
2. Land Preparation					
a. Cleaning/Bund Mending	3.0	ļ	3.0	1	$\frac{2}{2}$: Only plowing is
b. Plowing	(1x)8.4	8.4	ł) e 1	
c. Breaking/Harrowing	(2x)5;9	5.9	(2x)1.0) 1.0 1.	tractor with
	(2x)4.6	4.6	(2x)4.6	4.6	rotary
Sub-total	21.9	18.9	8.6	5.6	
3. Planting					3/: Two passings of
a. Pulling/Deliver of Seedlings	1	1	1.	ł	tractor with
b. Furrowing/Planting/Thinning	6.0	2.0	6.0	2.0	rotary
Sub-total	6.0	2.0	6.0	2.0	
4. Fertilizing					4/: Including the
a. Basal Fertilizers	ي . 1	0.5	1.2	0.5	labor requirement
b. Top-dressing	1.0	I	1°0	I	of post harvesting
	2.5	0.5 0	2.5	0.5	work
	(2x)3.0	3.0	3.0	3.0	
6. Cultivation/Weeding	10.0	2.0	10.0	2.0	<u>5</u> /: The figures in
	(2x)3.0	ł	(2x)3.0	I	the parenthesis
8. Harvesting					show draft animal
a. Reaping/Plucking/Bundling	19.0	I	19.0	ł	requirement
b. Hauling/Piling , ,	6.2	3.1	6.2	л. Ч	
c. Threshing/Winnowing $\frac{4}{-}$	30.3	I	30.2	i	
Sub-total	55.5	3 .1	55.5	<u>3.1</u>	
9. Post Harvesting					
a. Drying	ı	ł	I	1	
b. Saching/Piling/Delivery	I	I	I	1	
10. Total 5/	101.9	29.5(26.5)	88.6	16.2(13.2)	

,

TABLE G3+25

LABOR REQUIREMENT, PEANUT

LABOR REQUIREMENT, CORN

FABLE G3-26

and post-harvesting labor requirement of any harvesting show draft animal the parenthesis (Unit: man-day/ha) Two passings of $\frac{2}{2}$: Only plowing is 5/: The figures in Including the rechanized by tractor with 1/: With animal requirement Remarks tractor rotary works power .. // -4] -4] 2 Machinery e 16.6(12.6) 1.0 3.0 2.0 3.0 W/Froject, Future 4.6 5.6 2.0 0.5 0 2.0 I I ı 1 ł I 1 Man-day 6.0 0 . 1 10.0 45.0 о. С 8.6 0 9 5 2.5 45.0 79.6 (2x)1.0 (4x)4.6 (2x)<u>3.0</u> (3x)4.5 ١ ۱ ۱ ì ۱ ١ ۱ Animal-day W/Project, Future 1/ 2.0 29.4(26.4) 5.9 4.6 18.9 8.4 in O 2.0 ł I 3.0 0 8 ł ł ł ł 1 Man-day 3.0 6.0 0.0 0.1 10:01 45.0 21.9 1,5 2.5 45.0 92.9 (2x)5.9(2x)3.0(4x)4.6 (3x)4.5 (IX)8.4 1 i ľ L I I ł Pulling/Deliver of Seedlings a. Reaping/Plucking/Bundling 4/ Furrowing/Planting/Thinning Final Harrowing/Leveling a. Land Preparation/Sowing Saching/Piling/Delivery Cleaning/Bund Mending Operation Threshing/Winnowing Breaking/Harrowing Basal Fertilizers Care of Seedings Cultivation/Weeding Irrigation/Drainage Hauling/Piling Land Preparation Top-dressing Post Harvesting Seed-bedding Sub-total Sub-total Sub-total Sub-total Pest Control Sub-total Sub-total Fertilizing Plowing Harvesting a. Drying Planting Ś Total ູ່ . Д . 0 å . م 5 с Ф , a ь. Д ů. а, ÷ 5. с С ŝ 8 0 ຸ ທ 10. 4

				•	
	·	:		÷	(Unit: man-day/ha)
· · · · · · · · · · · · · · · · · · ·	W/Proiec	W/Project Puture 1/	W/Proiect	+ Future 2/	
Operation	Man-day	Animal-day	Man-day	Machine	Remarks
1. See-bedding					
a. Land Preparation/Sowing	1	и 1 1	Ţ	1	
b. Care of Seedings	1	ı	1	. 1	1/: With animel
Sub-total	.1	1	l	ł	power
2. Land Preparation					
a. Claaning/Bund Mending	3.0	1	3.0	1	2/: Only plowing is
b. Plowing	(1x)8.4	8.4	(1x) -	Ì	mechanized by
c. Breaking/Harrowing	(2x)5.9	5.9	(2x)1.0	1.0 2/	
d. Final Harrowing/Leveling	(4x)4.6	4.6	(2x)4.6	4.6	
	21.9	18.9	8.6	5.6	3/: Two passings of
3. Planting					tractor with
	ı	1	1	I	rotary
b. Furrowing/Planting/Thinning	16.0	I	16.0	I	
	16.0	1	16.0	1	4/: Including the
4. Fertilizing					
	1.5	0.5	1.5	0.5	of post harvesting
b. Top-dressing	1.5		ب •	0.5	work
	3.0		0.0 8	1.0	
5. Pest Control	(8x)1 <u>2.0</u>	12.0	(8x)1 <u>2.0</u>	12.0	$\overline{5}$: The figures in
	30.0	3°0	30.0	3.0	
	(6x)9.0	1	(6x)9.0	Į	show draft animal
8. Harvesting					requirement
a. Reaping/Plucking/Bundling					
b. Hauling/Piling	28.0	3.0	28.0	·3•0	
		c	((с с	
Sub-total 9. Post Harvesting	28.0	0.0	28.0	3.0	
a. Drying	1	1	l	I	
b. Saching/Piling/Delivery	12.0	3.0	12.0	3.0	
Sub	12.0	3.0	12.0	3.0	
10. Total 5/	131.9	42.9(30.9)	118.6	27.6(15.6)	

LABOR REQUIREMENT, VEGETABLES (WATER MELON)

TABLE G3-27

•

G-143

.

TABLE 63-28

MONTHLY FARM LABOR BALANCE, WITH PROJECT (2000)

	· .	÷.							(unit	; tho	isand m	an-day])	
I t em	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	JAN	FEB	MAR	APR	Total	
A. Labor Requirement							. '			÷			1.1	
1. Irrigated area	13.0	82,2	113.7	23.2	35.5	111.9	62.7	75.6	32.0	38.3	84.0	67.3	739.4	
(1) Rice, Wet season	11.0	82.2	113.7	23.2	35.5	103.5	9.1						378.2	
- Transplanted, W/O 1/	6.4	45.6	61.5	11.1	19,6	49.3	1.3				· .		194.8	
- Transplanted, W/ 2/	2.4	28.9	43.3	8.9	13.3	32.9	0.7						130,4	
- Direct-seeded, W/O	1.6	5.3	5.8	1.8	1.5	12.8	4 3				n an an La sa		33.1	
- Direct-seeded, W/	0.6	2.4	3.1	1.4	1.1	8.5	2.8			:			. 19.9	
(2) Rice, Dry season						8.4	53.6	68.5	14.1	16.5	68.9	14.6	244.6	
- Transplanted, W/O						4.3	27.8	35.1	6.1	8.4	29.2	3.5	114.4	
- Transplanted, W/						1.8	17.8	24.7	4.8	5.9	19.7	2.2	76.9	
- Direct-seeded, W/O						1.7	5.5	5.6	1.8	1.2	12.0	5.6	33.4	
- Direct-seeded, W/						0.6	2.5	3.1	1.4	1.0	8.0	3.3	19.9	
(3) Diversified Crops	2.0		•					7.1	17.9	21.8	15.1	52.7	116.6	
- Mingbean									3.3	4.7	4.8	6.5	19.3	
- Peanut								3,5	4.5	2.7	1.2	18.0	29.9	
- Corn								3.6	4.7	3.0	- 1.2	14.6	27.1	
- Vegetables	2.0					an an the The second			5.4	11,4	7,9	13.6	40.3	
2. Rainfed Upland	18.9	14.4	11.7	20.9	5.1	3.9	4.9	1.8				3.7	85.3	
- Cassava	8.1	6.9	5.4	9.6	1.2	1.0	2.3					2.1	36.6	
- Sweet potate	5.4	3.0	2.7	4.7	3.3	2.4	1.0	1.8	•		•		24.3	
- Cocomit	5.4	4,5	3.6	6.6	0,6	0.5	1.6			· ·		1.6	24.4	
3. <u>Total (1 + 2)</u>	31.9	96.6	125.4	44.1	40.6	115.8	67.6	77.4	32.0	38.3	84.0	<u>71.0</u>	824.7	
4 Animal Husbandry	12.9	12.9	12.9	12.9	12.9	12.9	12.9	12.9	12.9	12.9	12.9	12.9	154.8	
5. Grand Total	44.8	109.5	138.3	57.0	53.5	128.7	80.5	90.3	44.9	51.2	96.9	83.9	979.5	
B. Available Labor Force					(3/ 14	3 thous	and ma	ni-day)					1,716.0	
C. Balance	98.2	33.5	4.7	86.0	89.5	14.3	62.5	52.7	98.1	<u>91.8</u>	46.1	59.1	736.5	

Note: 1/ Without mechanization

2/ With mechanization

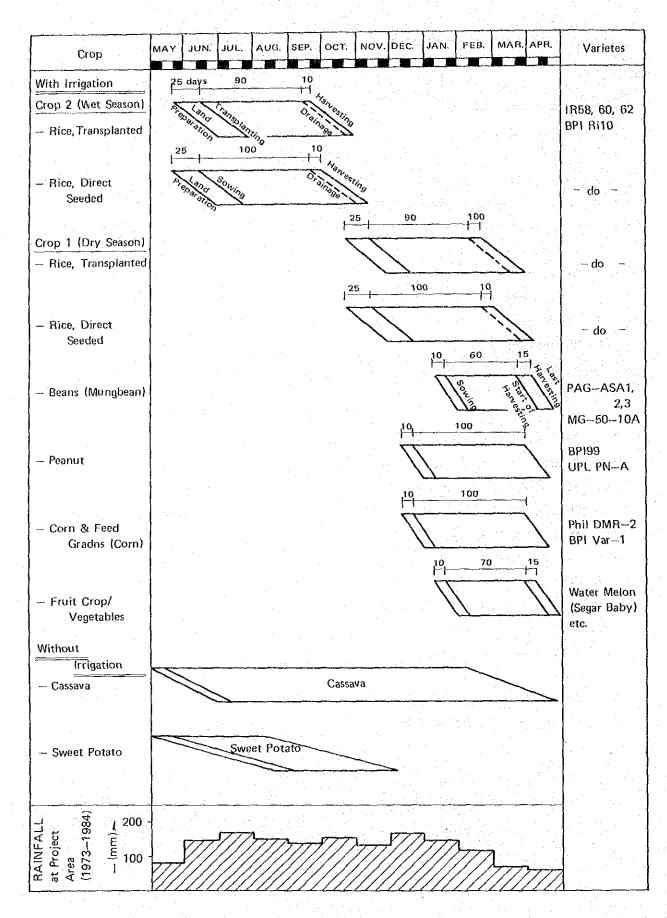
3/ Estimated at 2,860 farms x 2.0 men x 30 days/month x 25 days/30 days

	c	Total	378	252	3,240	8,640	5,960
	Annual Production	per Kind farm	Fat animals 0.7 (two years old)	Carabao calf 0.7 (three years old)	Fat swine 9 (6-12 months old)	Piggeries 24 (6 months old)	Lumb 22 (6 months old)
r area		No. of Farm	540	360	360	360	180
PROJEC		Žц		F4	: 10		: 10
LIVESTOCK PRODUCTION IN THE PROJECT AREA		Composition of animals	Cow for breeding offspring for fattening	Female carabao for breeding	Swine for fattening	Sow offsprings	Buck Does
TABLE G3-29		Type	Cow-calf, cattle fattening	Carabao-calf	Swine fattening	Piggeries production	Goat breeding
			-1		м.	4	۲

G-145

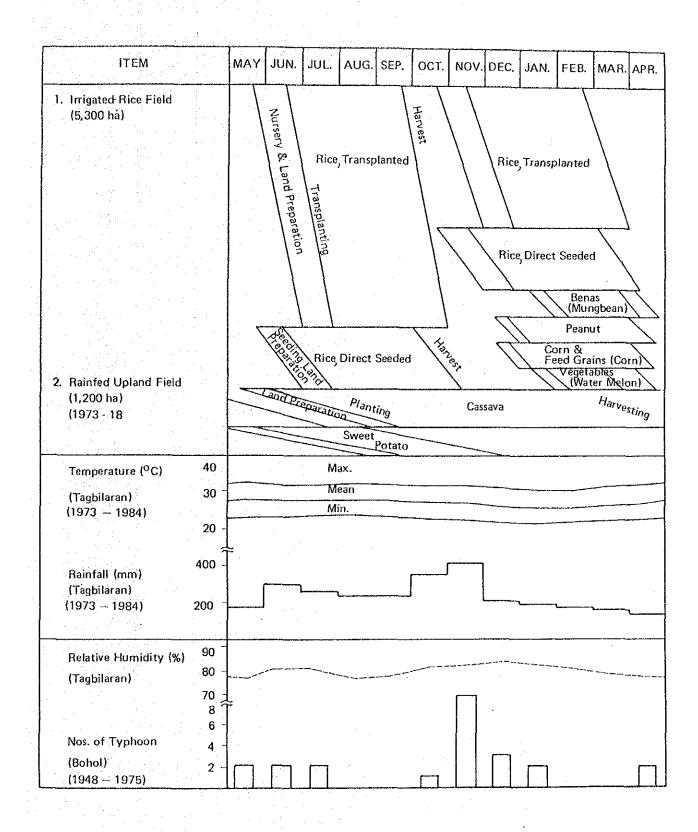
,

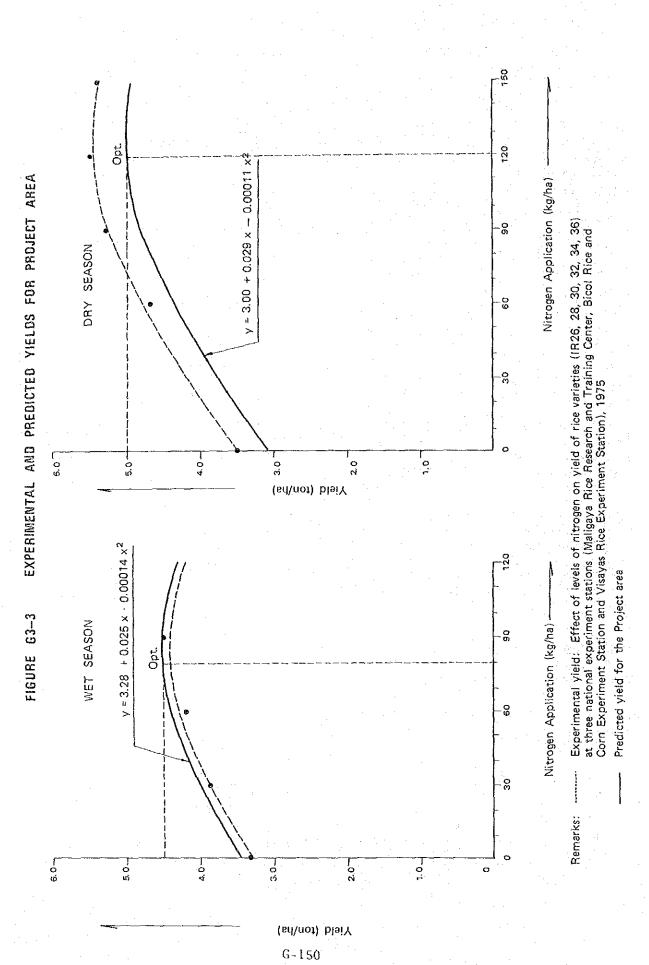
LABOR REQUIREMENT OF ANIMAL HUSBANDRY


TABLE G3-30

		No. of parti- cinating	Labor requi	Labor requirement/Farm	Labor requirement (Total)	ent (Total)
	Type	farms	Per year	Per month	Per year	Per nonth
		(no.)	(man-day)	(man-day)	(1,000 man-day)	(1,000 man-day)
• •	Cow-calf, cattle fattening	(30) 540	93.0	7.8	50.2	4.2
1	Carabao-calf	(20) 360	61.6	5.1	22.2	1.8
5	Swine fattening	(20) 360	70.0	5.8	25.2	2.1
4	Piggeries production	(20) 360	117.0	9.8	42.ľ	3.5
Ś	Goat breeding	(10) 180	88.6	7.4	15.9	1,3
	Total	1,800			155.6	12.9

TABLE G3-31 MAN POWER AND FACILITIES OF PILOT SCHEME


Capacity Item Number 1. Man-power requirement Project manager 1-1 1 1-2 Agronomist 1 1-3 Agricultural engineer 1 1-4 Farm management specialist 1 1-5 Seed technicians 2 1-6 Administrative assistant 1 1-7 Clerk/typist 1 1-8 pump operator 1 1-9 Laborers 20 1-10 Mechanics 1 2. Farm Machinery requirement 2-1 Four-wheel tractor & accessaries 40-50 HP 1 3HP, 5HP, 7-8 HP x 2 4 2-2 Power tiller 18 1 2 2-3 Sprayer (Knapsack-type) 2 l ton/hr 2-4 Powered thresher (IRR1 type) 2 2-5 Dryer (Flat bed type) 2.0 ton bin 600 gallon/min. 2 2-6 Pump & Accessaries (Low-Lift) 2 ton 1 2-7 Service truck 5 2-8 Motor Cycle ł 2-9 Seed cleaner 1 2-10 Sorter and packing machine 1000 kg 1 2-11 Balance (Flat form) 1 2-12 Micellouneous tools & equipment 3. Building 60 m^2 1 3-1 Office & Training room 60 m^2 1 Warehouse & Machinery Shade 3-2


FIGURE G3-1 PROPOSED CROPPING CALENDAR

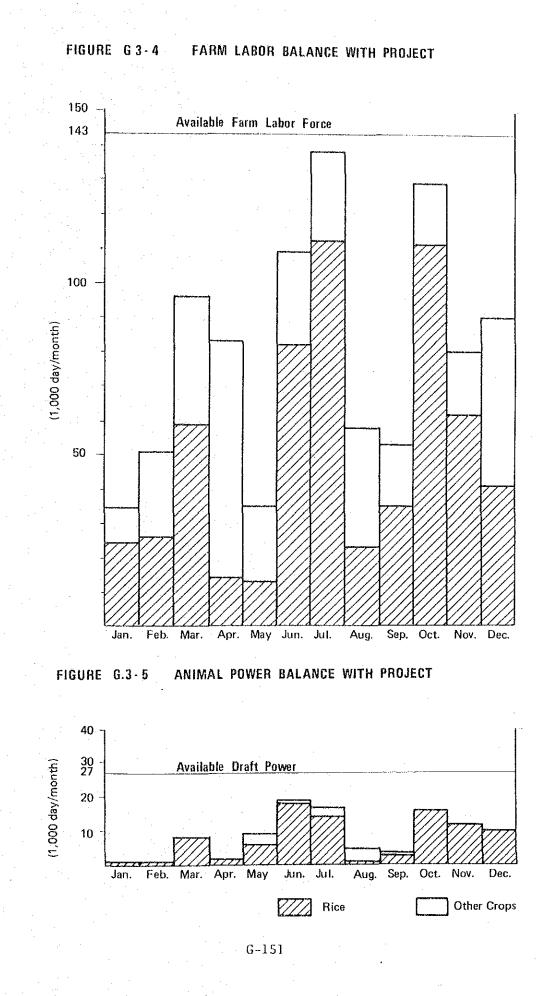

G = 1.48

FIGURE G3-2 PROPOSED CROPPING PATTERN

0.00

For the analysis of present agriculture and also for the formulation of agricultural development plan, extensive data are collected mostly at the provincial and regional offices of the National Census and Statistics Office (NCSO) of the National Economic Authority (NEDA), the Bureau of Agricultural Economics of the Ministry of Agricultural (MA) and the National Food Authority (NFA) of , as well as at the MA Offices at the municipal to regional levels and Provincial Development Staff Office in Bohol.

Because of the limited time for the data collection, the analysis and planning methods have to be based on the existing data as much as possible. However it was observed that the existing data base have the following weakness in general;

- (i) There is in-consistency among various data sources in such basic data as the present land use, population, number of households and crop production, especially at the Barangay and municipal levels.
- (ii) Few-time-series data are available for the above-said basic data.

One of the reasons for the weakness may be attributed to the unavailability of accurate boundaries among the Barangays and municipalities and also the inadequate data collection systems.

건물 관광 전문 영화

ANNEX H. DAM AND CANALS

CHAPTER 1	DAMS $\frac{P}{H}$	age -1
1.1	Seismic Analysis H	-1
1.2	Flood Analysis H	[2
1.3	Hydromechanical Analysis H	I -12
1.4	Stability Analysis H	1–12
CHAPTER II	CANALS H	I-34
2.1	General H	1-34
2,2	Irrigation Canal System H	1-34
	2.2.1Function and Requirement of Canal H2.2.2Canal Alignment H2.2.3Design of Irrigation Canal H2.2.4Related Structures H	I35 I36
2.3	Drainage Canal Systems H	I-40
	2.3.1Function and Requirement of Canal H2.3.2Canal Alignment H2.3.3Design of Drainage Canal H2.3.4Related Structure H	I-41
2.4	Operation & Maintenance Road H	1-42

.

LIST OF TABLES

	나는 이 가 물건 지난 것 수 있는 것 같은 지수는 것을 가지 않는 것을 통했다.
TABLE H1-1	Seismic Analysis by Dr. Okamoto's Formula H-3
TABLE H1-2	Comparative Estimation of Design Flood (Bayongan) H-8
TABLE H1-3	Comparative Estimation of Design Flood (Capayas) II-9
TABLE H1-4	Flow Condition of Spillway (Bayongan) Il-14
TABLE H1-5	Flow Condition of Spillway (Capayas) H-14
TABLE H1-6	Soil Mechanical Data of Dam Body (Bayongan) H-17
TABLE H1-7	Soil Mechanical Data of Dam Body (Capayas) H-18
TABLE H1-8	Slope Stability Analysis (Bayongan)
TABLE H1-9	Slope Stability Analysis (Capayas) H-27
TABLE H2-1	Proposed Irrigation Canal Features

Page

LIST OF FIGURES

FIGURE H1-1	Significant Epicenters Around the Project Area H-5
FIGURE H1-2	Seismic Analysis on Bayongan Dam H-6
FIGURE H1-3	Flood Routing (Bayongan Dam) H-10
FIGURE H1-4	Flood Routing (Capayas Dam), H-11
FIGURE H1-5	Discharge Capacity of Intake Tunnel (Bayongan Dam) H-15
FIGURE H1-6	Discharge Capacity of Intake Conduit (Capayas Dam) H-16
FIGURE H2-1	Proposed Irrigation and Drainage Canal Alignment
FIGURE H2-2	Irrigation System in Lateral Canalwise

1.1 Seismic Analysis

The seismic force must be considered as one of these external forces on dam design. Since there is no standard value of seismic force in the Philippines, it will be determined based on the following analysis.

Analysis of seismic force at the dam site is made by adopting Dr. Okamoto's theory (refer to Earthquake Proof Engineering by Shunzo Okamoto) based on the data of earthquake occured within a radius of about 300 km from the dam site as shown in FIGURE H1-1 (source: Catalogue of Significant Earthquakes (1907~1982) - PAGASA).

According to Okamoto's formula, the maximum seismic acceleration, which is predicted the occurence in the proposed dam site, is given by the following equation.

 $\log_{10} \quad \frac{\alpha}{640} = \frac{D + 40}{100} \ (-0.1036M^2 + 1.7244M - 7.604)$

Where, α : Predicted maximum seismic acceleration (gal-cm/sq.scc)

- D: Distance between the seismic center occured about proposed dam site (km)
- M: Magnitude of seismic center

Also, distance between the seismic center and proposed dam site is estimated as follows:

$$D = \sqrt{A^2 + B^2}$$

Where, A: Distance in the latitude between them

 $A = (Pn - 9.96^{\circ}) \times 111 \text{ km/}\circ$

Pn; the latitude of seismic center (°)

9.96°; the latitude of proposed dam site (Bayongan dam)

111; length of latitude per one degree (km/°)

B; Distance in the longitude between them (km)

 $B = (Pe - 124.35^{\circ}) \times 111 \times \cos\left(\frac{9.96 + Pn}{2}\right)$

Pe; the longitude of seismic center (°) 124.35°; the longitude of proposed dam site

H-1

As the result of analysis, seismic acceleration at the dam site is estimated to be about 191 Gal in the maximum, while there were earthquakes recorded 83 times with the maximum acceleration of more than one Gal, as shown in TABLE H1-1.

On the other hand for making examination of occurance frequency of earthquake, the estimated seismic accelerations are ploted in the x coordinate with No./year in the y coordinate, as shown in FIGURE H1-2.

Then, for making the earthquake-proof design of the fill dam, the analysis method subjected to the seismic intensity against an earthquake of 100 year probability will be adopted.

Taking into account location of the proposed dam site which belongs to the seismic intensity V in the Philippines (See 3.2.4 b). in the Main Report) and seismicity coefficient in the design of other dams, the coefficient of K = 0.20 will be justified. Therefore, for the design of the Bayongan dam and Capayas dam K = 0.20 is applied as design seismicity coefficient.

1.2 Flood Analysis

a) Design Flood Discharge

For estimation of design flood discharge in the Philippines, there are useful formulas by B.P.W. These are ranked into four grades of frequency ie. "Extreme", "Rare", "Occasional", and "Frequent". These formulas could substantially correspond to Dr. Creager's formula which is internationally prevailing. (See Annex B.4)

In this study, Design floods of the Bayongan dan Capayas dams will be estimated by B.P.W's formulas as the prime, then verified by other methods such as Creager's formula, Rational Method, survey of historical floods, and meteorological approach through Probable Maximum Precipitation.

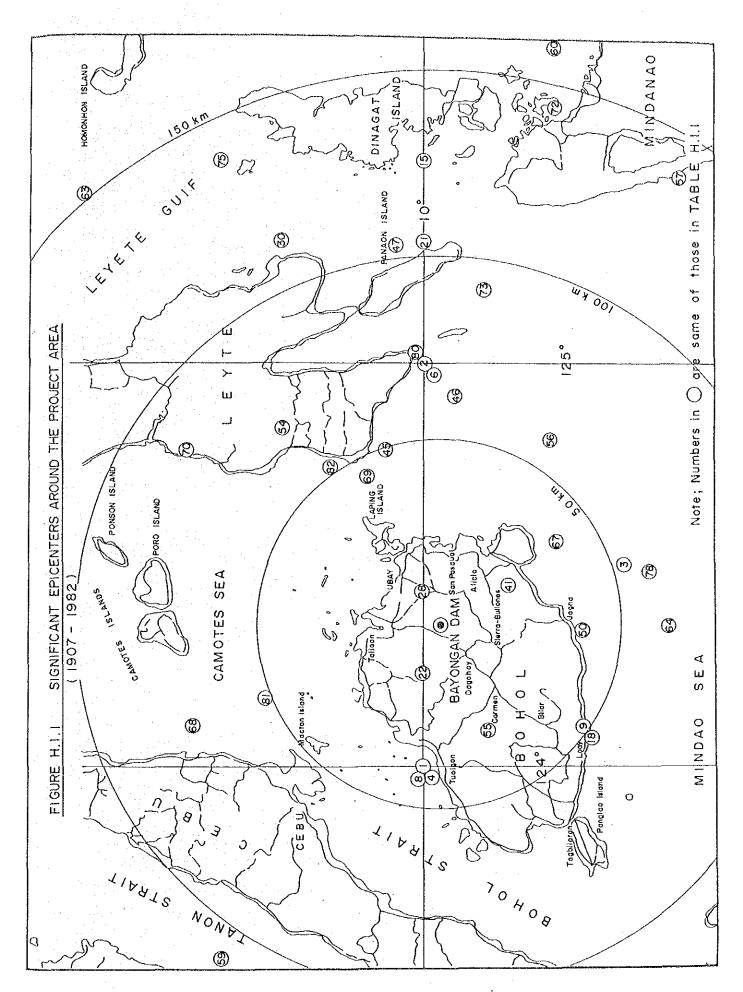
Summaries of above studies are shown in TABLE H1-2 (Bayongan)

H-2

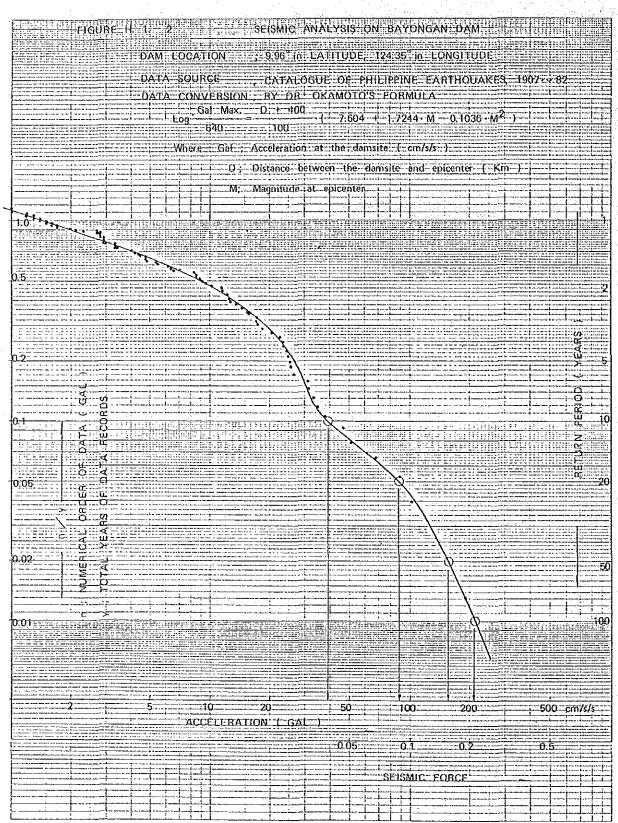
TABLE H. 1.-1 SEISMIC ANALYSIS BY DR. OKAMOTO'S FORMULA

PROJECT NAME	;	BOHOL IRRIGATION PROJECT II F/S
LOCATION	;	BAYONGAN, SAN-MIGUEL, BOHOL
DAMSITE'S LATITUDE	;	9.96(DEGREES)
DITTO LONGITUDE	;	124.35(DEGREES)
NUMBER OF DATA ; 8	3	RECORDS ; 1907 TO 1982 = 76 YRS

NO.	DATE	LAT.	LON.	MG.	DIST.	ACC.	N0./Y
	(M-D-Y)	(DEG)	(DEG)		(KM)	(GAL)	
1	03.07.50	10.00	124.00	6.8	38.52	191.1	0.0132
2	09.02.48	10.00	125.00	7.0	71.20	134.4	0.0263
3	10.30.26	9.50	124.50	6.3	53.63	101.9	0.0395
- 4	07.19.41	10.00	124.00	5.8	38,52	89.6	0.0526
5	02.04.41	9.00	124.00	6.9	113.24	67.4	0.0658
6	09.21.29	10.00	125,00	6.0	71.20	51.1	0.0789
. 7	07.12.11	9.00	126.00	7.8	209.73	46.3	0.0921
8	01.26.56	10.00	124.00	5.0	38.52	37.3	0.1053
9	03.10.75	9.60	124.10	5.2	48.42	34.2	0.1184
10	03.19.52	9.50	126.50	7.8	240,69	33.4	0.1316
11	01.24.48	10.50	122.00	8.2	263.61	31.7	0.1447
12	05.05.25	9.50	123.00	6.8	156.27	31.2	0.1579
13	01.24.48	11.00	122.00	8,2	281.28	26.6	0.1711
14	03.31.55	8.00	124.00	7.3	220.92	25.5	0.1842
15	05.24.31	10.00	125.50	6.3	125.80	24.7	0.1974
16	07.25.42	11.50	124.50	6.8	171.72	24.6	0.2105
17	06.07.47	11.50	125.00	6.9	185.06	23.5	0.2237
18	05.06.65	9.60	124.10	4.9	48.42	22.6	0.2368
19	02.10.57	10.25	126.00	6.8	183.16	20.6	0.2500
20	02.10.57	10.00	126.00	6.7	180.43	18.2	0.2632
21	12.14.77	10.00	125.30	5.8	103.95	17.4	0.2763
22	01.14.82	9.99	124.23	3.4	13.54	17.1	0.2895
.23	10.20.42	8.50	122.50	7.3	259.51	15.8	0.3026
24	02.10.57	10.00	126.00	6.6	180.43	15.3	0.3158
25	03.12.15	12.00	124.00	7.0	229.63	14.5	0.3289
26	01.01.19	8.00	126.00	7.4	282.95	13.7	0.3421
27	02.11.57	10.00	126.00	6.5	180.43	12.7	0.3553
28	05.03.82	10,03	124.44	3.1	12.54	12.5	0.3684
29	02.10.57	10.25	126.00	6.5	183.16	12.1	0.3816
30	09.23.73	10.35	125.30	5.7	112.46	11.7	0.3947
31	09.22.40	8,00	124.00	6.8	220.92	11.5	0.4079
32	08.30.24	8.50	126.50	7.3	285.92	11.4	0.4211
33	05.03.43	12.50	125.50	7.4	308.49	10.1	0.4342
34	03.07.50	11.00	122.50	6.8	232.59	9.6	0.4474
35	04.27.19	11.00	123.00	6.4	187.19	9.2	0.4605
36	03.07.50	10.50	122.25	6.8	237.10	9.0	0.4737
37	01.24.31	10.00	126.00	6.3	180.43	8.5	0.4868
38	02.11.57	10.00	126.00	6.3	180.43	8.5	0.5000
· · ·							


CONTINUED

.


CONTINUED

			1999 (March 1997)		· · · ·		
NO.	DATE	LAT.	LON.	MG.	DIST.	ACC.	ND./Y
1	(M-D-Y)	(DEG)	(DEG)		(KM)	(GAL)	
.39	02.10.57	10.50	126.50	6.8	242.38	8.3	0.5132
40	08.13.36	9.00	126.50	6.8	258.39	6.5	0.5263
41	03.15.80	9.79	124.45	3.1		6.2	0.5395
42	08.18.57	12.00	124.50	6.5	227.03	5.5	
		8.00	125.00	6.5	228.93	5.4	0.5658
43	04.10.55			6.5	235.17	4.8	
44	07.08.51	9.90	122.20				
45	09.16.82	10.09	124.79	4.0		4.7	0.5921
46	05.27.79	9.92	124.91	4.3	61.39		0.6053
47	11.14.81	10.07	125.29		103.47	4.4	0.6184
48	03.31.55	8.10	123.20	6.5	241.91	4.3	
49	03.31.55	8.10	123.20	6.5	241.91	4.3	0.6447
50	09.23.82	9.60	124.34	3.6	39.97	4.1	0.6579
. 51	11.15.57	8.00	124.50	6.3	218.18	4.0	0.6711
52	11.05.41	12.50	123.00	6.9	317.95	3.3	0.6842
53	02.17.70	9.80	125.90	5.8	170.42	3.3	0.6974
54	07.04.81	10.35	124.84	4.3	68.85	· · · · · ·	0.7105
55	02.05.81	9.84	124.09	3.1	31.40	3.0	0.7237
56	01.16.78	9.68	124.81	4.0	59.14	2.9	0.7368
57	05.01.79	9.36	125.46	5.4	138.52	2.9	0.7500
58	07.13.62		123.00	5.5	147.65	2.8	0.7632
59	09.10.52	10.50	123.50		110.52	2.8	0.7763
					159.68	2.6	0.7895
60	12.12.68	9.67	125.78	5.6		2.0	
61	07.13.62	10.00	122,50	6.0	202.29	2.0	0.8026
62	07.12.31	12.00		6.5	270.03	2.6	0.8158
63	07.12.70	10.84	125.41	5.5	151.44	2.5	0.8289
64	11.25.81	9.39	124.35	4.0	63.27	2.3	0.8421
65	11.25.62	11.20	124.80	5.4	146.14	2.3	0.8553
66	07.08.51	11.00	122.00	6.5	281.28	2,1	
67	03.20.81	9.67	124.56	3.2	39.54	2.0	0.8816
68	11.10.75	10.57	124.10	4.1	73.01	1.7	
69	09.16.82	10.14	124.72	3.3	45.11	1.7	0.9079
70	10.10.80	10.59	124.78	4.3	84.24	1.6	0.9211
71	06.15.28	11.50	121.50	6.8	354.72	1.5	0.9342
72	12.07.69	9.67	125.63	5.2	143.65	1.5	0.9474
73	12.28.79	9.85	125.18	4,4	91.57	1.4	0,9605
74	04.01.65	9.93	125.85	5.4	164.03	1.3	0.9737
75	01.21.64	10.50	125.50	5.1	139.19	1.3	0.9868
76	03.17.62	9.50	123.00	5.3	156.27	1.3	
77	09.13.73	9,20	126.10	5.8	209.30	1.2	1.0132
78	05.03.81	9 44	124.48	3.6	59.45	1.2	1.0263
79	06.12.64	11 25	124.75	5.2	149.69	1.2	1.0395
80	03.06.82						
		10.01	125.06	4.0	77.81	1.0	1.0526
81	09.22.77	10.39	124.17	3:3	51.62	1.0	1.0658
82	11.16.82	10.23	124.74	3.3	52.10	1.0	1.0789
83	04.08.77	9.04	121.82	4.4	295.20	0.0	1.0921

H-4

H-5

<u>584:28</u> A4 NO.408C

and TABLE H1-3 (Capayas).

b) Flood Routing

For optimizations of spillway sizes, studies of flood routing are necessary for these spillways which are uncontrolled (gatelless). These studies have been made by using assumed hydrograph and through various sizes of spillways.

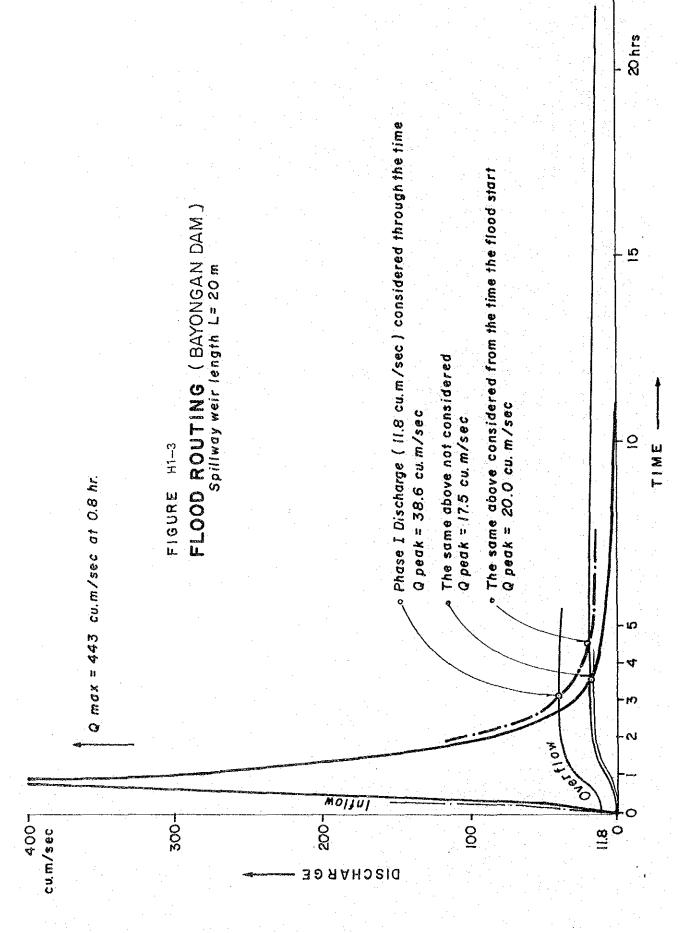
Assumption of hydrograph is made by the following empirical equations;

$$\frac{t_{u}}{t_{p}} = \left(\frac{Q_{u}}{Q_{p}}\right)^{0.6} \text{ and } \frac{t_{d}}{t_{p}} = p \cdot \frac{1 - (Q_{d}/Q_{p})}{(Q_{d}/Q_{p})^{0.4}} \frac{1}{(Q_{d}/Q_{p})^{0.4}}$$

where t_u ; Time (hours) during rising-up the discharge

- t_p ; Travel time (hours) of peak discharge (see the next equation)
- $Q_{\rm U}$; Discharge (cu.m/s) at the time of $t_{\rm H}$
- Q_D; Peak discharge (cu.m/s)
- $t_{\rm d};$ Time (hours) during drop-down the discharge
 - $t_d = 0$ at Q_p
- Q_d ; Discharge at the time of t_d
- p; Constant p = 1 in normal case

 $t_p = C \cdot A^{0.22} r_e^{-0.35} - 2/$


- where C; Constant according to topo-condition
 - c = 290 for well forested area
 - c = 200 for medium forsted or grassland
 - c = 140 for poorly forested or golf links
 - c = 100 for de-forested area
 - c = 65 for plantless city area
 - c = 150 for Bayongan area
 - c = 200 for Capayas area
 - A; Catchment area (sq.km)
 - r_p; Area mean rainfall intensity (mm/hr)
 - $r_e = 130$ mm/hr for Bayongan area
 - $r_e = 101$ mm/hr for Capayas area
 - Note: 1/: by H. Sugiyama (Kyoto University, not published yet) 2/: by Dr. Kadoya and Fukushima (Kyoto University, 1976)

C Remarks	A; Catchment Area 11.2 sq.km	Q; in cu.ft/sec A; in sq. mile	$f = 0.9$ $rt = \frac{R24}{24} \left(\frac{24}{T}\right)^{0.6}$ $= \frac{403.5}{24} \left(\frac{24}{0.8}\right)^{0.6}$ $f = 150A0.22rt^{-0.35}$ $r = 0.8 hr^{2}$		Meteorological P.N.P may be only about 200 mm/day 403.5 $>>$ 200	
Equivalent Creager's (100.5	100	8 8 9	40.7 25.9		Flood.
Max. Discharge	443 cu.m/sec or 39.6 cu.m/sec/sq.km	441 cu.m/sec or 39.4 cu.m/sec/sq.km	364 cu.m/sec or 32.5 cu.m/sec/sq.km	2,219 ^{3/} cu.m/sec or 3.80 cu.m/sec/sq.km 1.410 ^{3/} cu.m/sec 2.41 cu.m/sec/sq.km		the Probable Maximum
Description	$Q_{\text{max}} = \frac{210 \cdot A}{\sqrt{A + 17}}$	Qmax = 46CA(0.894A ^{-0.048})	Qmax = $\frac{1}{3.6}$.f.rt.A With the Rainfall data at Dagohoy 1957 - 84	Typhoon "DELILAH: at Nov. 22, 1964 Typhoon "NITANG" at Sept. 2, 1984		; Dr. Creager's recommendation as
Method	B.P.W's Formula (Extreme)	Creager's Formula (C = 100) $\underline{1}/$	Rational Method (R.P = 1,000 yrs)	From Traces of Historic Floods in Bohol	From the Probable Maxi- mum Precipitation	C = 100 is Dr. Cre
Step	The Prime	Verif. 1	Veif. 2	Verif. 3	Verif. 4	Note: 1.

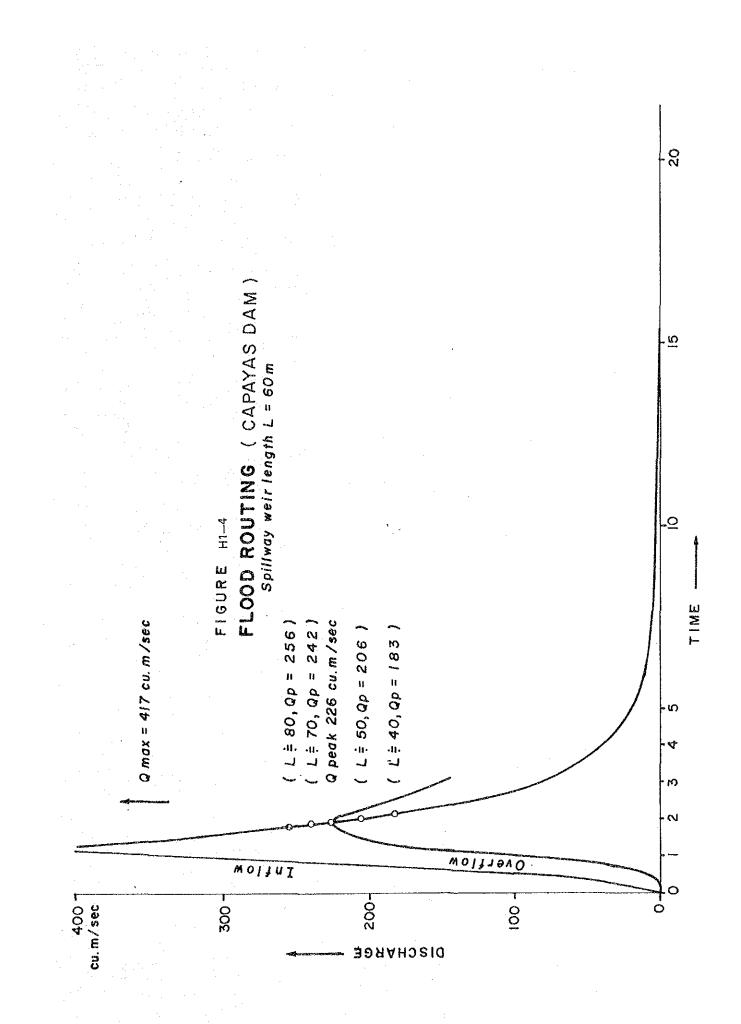

COMPARATIVE ESTIMATION OF DESIGN FLOOD (BAYONGAN)

TABLE H1-2

Method	Description	Max Discharge	Equivalent Creager 's	Damorke
	$Q_{max} = \frac{150 \cdot A}{VA + 13}$	1 8 .	17	A; Catchment Area 14.6 sq.km
	Qmax = 46CA(0.894A-0.048)	405 cu.m/ sec or 27.7 cu.m/sec/sq.km	75	Q; in cu.ft/sec A; in sq. mile
l] 1,000 yrs)	Qmax = $\frac{1}{3.6} \cdot f \cdot r_t \cdot A$ With the Rainfall data at Dagohoy 1957 - 84	369 cu.m/sec or 25.3 cu.m/sec/sq.km	é,	f = 0.9 $r_{t} = \frac{R24}{24} \left(\frac{24}{T}\right)^{0.6}$ $= \frac{405.5}{24} \left(\frac{24}{1.2}\right)^{0.6}$ = 1.01 mm/hr $T = 200A^{0.22}r_{t}^{-0.55}$
	Typhoon "DELILAH: at Nov. 22, 1964	2,219 ³ /cu.m/sec or 3.80 cum./sec/sq.km	40.7	
	Typhoon "NITANG" at Sept. 2, 1984	l,410 ^{3/} cu.m/sec 2.41 cu.m/sec/sq.km	25.9	
From the Probably Maxi- mum Precipitation	1	ſ	1	Meteorological P.N.P may be only about 200 mm/day 405.5 \gg 200

H-10

H-11

Results of flood routings are shown in FIGURE H1-3 (Bayongan) and FIGURE H1-4 (Capayas).

1,3 Hydromechanical Analysis

a) Bayongan Dam

Flow condition of the Bayongan dam spillway at the peak discharge (20 cu.m/s) is summarized in TABLE H1-4.

Discharge capacity of the Bayongan dam intake in various waterhead is shown in FIGURE H1-5. Diversion capacity of the intake tunnel during dam construction is also described in this figure.

b) Capayas Dam

Flow condition of the Capayas dam spillway at the peak discharge (226 cu.m/s) is summarized in TABLE H1-5.

Discharge capacity of the Capayas dam intake in various waterhead is shown in FIGURE H1-6. Diversion capacity of the intake conduit during the dam construction is also described in the figure.

1.4 Stability Analysis

In order to estimate a degree of safety against assumed failure of slope of earth dam, the standard method of slip circle which applies the following equations are generally used.

 $Fs = \frac{\Sigma(C \cdot 1 + (N-Ne) \tan \phi)}{\Sigma(T + Te)} \text{ or }$ $Fs = \frac{\Sigma(C' \cdot 1 + (N-u-Ne) \cdot \tan \phi')}{\Sigma(T + (N-u-Ne) \cdot \tan \phi')}$

 $\Sigma(T + Te)$

where Fs; Factor of safety

C; Cohesion, on the basis of total stress, of materials on the slip circle (t/sq.m)

C'; Ditto on the basis of effective stress

1; Base length of slice (m)

N; Normal force of slice (t)

Ne; Normal force of seismic load (t)

u; Pore pressure acting on slip circle (t)

 ϕ ; Internal friction angle, on the basis of total stress,

of materials on the slip circle (degree)

 ϕ '; Ditto on the basis of effective stress

T; Tangential force of slice (t)

Te; Tangential force of seismic load (t)

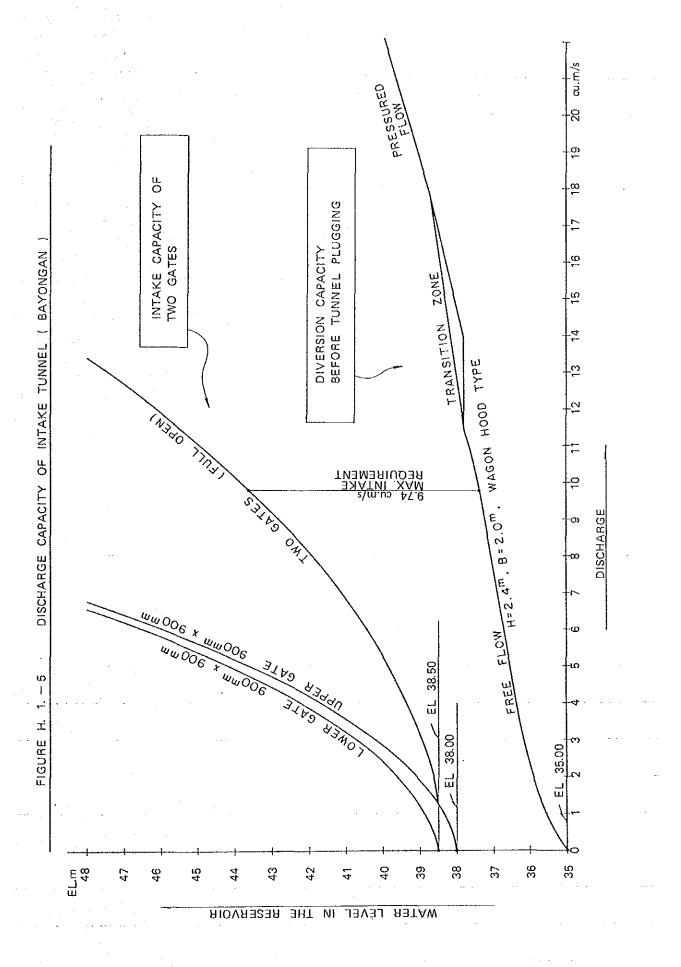
The factor of safety shall be more than 1.2 in normal case, but in particular case such as rapid drawdown, it could be acceptable if it is more than 1.1.

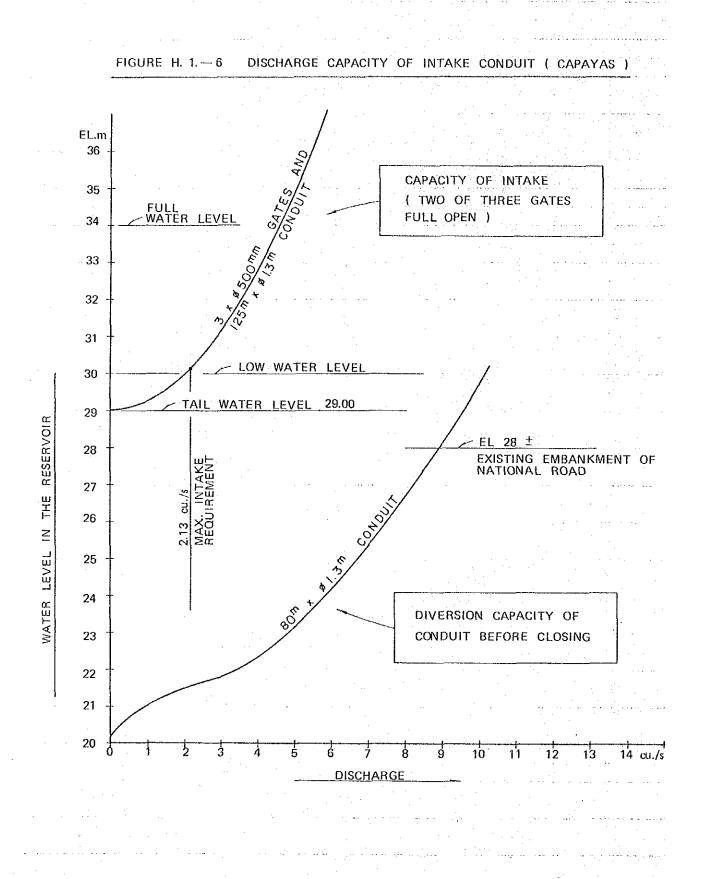
According to the above equations, a computer program has been originated by the joint effort of the consultant and counterpart so that the office computer system (TRS-80) of PDD, NIA has functioned effectively.

Soil mechanical data applied to these analyses are described in TABLE H1-6 (Bayongan dam) and TABLE H1-7 (Capayas dam).

Results of computations prove that these proposed dam layouts are reasonable, as shown in TABLE H1-8 (Bayongan) and TABLE H1-9 (Capayas).

FLOW CONDITION OF SPILLWAY


		(Ba	yongan	Dam)		
			Flow		Froude	
$\frac{\text{Station}}{(m)}$	$\frac{Bottom}{(m)}$	Width (m)	$\frac{\text{Depth}}{(\mathfrak{m})}$	$\frac{\text{Velocity}}{(m/s)}$	Number	Remarks
0 + 0.00	EL 50.00	20	0.47	2.14	1.00	Crest
0 + 1.11	49.43	20	0.22	4,51	3.06	Ŷ
0 + 50.00	48,45	10	0.49	4.04	1,84	\rangle Contraction
0 + 100.00	47.45	5	0.93	4.28	1.41) and the second s
0 + 117.56	45.11	5	0.49	8.13	3.70	
0 + 130.00	42.00	. 5	0.38	10.5	5.45	
0 + 149.38	39.32	5	0.37	10.9	5.76	
0 + 240.00	39.60	5	0.53	7.54	3,31	
0 + 257.93	34.85	5	0.46	8.69	4.10	
0 + 350.00	(19.50)	5	0.34	11.9	6,56	Flip Bucket


TABLE H1-5

FLOW CONDITION OF SPILLWAY

(Capayas Dam)

Station (m)	Bottom (m)	Width (m)	Flow Depth (m)	Velocity (m/s)	Froude Number	<u>Remarks</u>
CHUTE						н - стан
0 + 0.00 0 + 3.79 0 + 13.00	EL 34.00 31.33 31.23	60 60 60	1.13 0.43 0.46	3.33 8.68 8.25	1.00 4.21 3.90	Crest
0 - 60.00 0 + 0.00 0 + 125.00 0 + 200.00	30.00 27.50 26.25 (22.50)	6.5 8 8 8	4.33 3.33 2.35	6.52 8.48 12.0	- 1.00 1.48 2.51	Chute Entered Flip Bucket

SOIL MECHANICAL DATA OF DAM BODY (BAYONGAN)

TABLE H1-6

							Iotal Stress Base	ess base	LTT C	Effective Stress Base	s Base
-,	Specific Void Dry	Void	Dry	Moisture	Wet	Saturated			-		Ratio of
-	Gravity G _s	Ratic e	Ratio Density e Yd		Density Yt	Density Y _{SAt}	Cohesion c	Ι.F.Α Φ	I.F.A Cohesion I.F.A ¢ c' ¢'	I.F.A Pc ¢'	Pore Pressure u
			(t/cu.m)	(%)	(t/cu.m)	C	(t/sq.m)	(Degree)	Degree) (t/sq.m)	(Degree)	(%)
Hilly gravel	2.6	0,4	. 1.86	10	2.05	2.14	0	43	ı	I	ł
	2.6	0.4	1.86	10	2.05	2.14	0	43	ŧ	I	
Core material	2.5	0.85	1.35	30	1.76	1.81	ı	ŧ.	10	15	10
	2.55	0.5	1.70	15	1.96	2.03	S	40	1	ł	t ·
Dagohoy rock	2.65	0.3	2.04	0	2.04	2.27	0	45	ı	ł	ł
	2.6	0.25	2.08	10	2.29	2.28	0	45	ı	ı	ŧ

Note: G_s; Based on the soil tests and or on the general informations (see Annex C) e, w, c, ϕ , c', ϕ ', and u; ditto $\gamma_d = G_s/(1 + e)$, $\gamma_t = \gamma_d.(1 + w/100)$, $\gamma_{sat} = (G_s + e)/(1 + e)$

II-17 .

. ,

and the second
SOIL MECHANICAL DATA OF DAM BODY (CAPAYAS)

TABLE H1-7

											しいかん いいくせいく シャー・シント・ド
	Specific	Void	Dry	Moisture Wet	Wet	Saturated					Ratio of
Material (Zone)	Gravity Ge	Ratio e	Gravity Ratio Density Gs. e Yd		Content Density w Yt		Density Cohesion I.F.A Cohesion I.F.A Ysat C & & C' & C'	Г. Р. А ф	Cohesion c'	I.F.A ¢'	Por
			(t/cu.m)	(%)	(t/cu.m)		(t/sq.m) (Degree) (t/sq.m) (Degree)	(Degree)	(t/sq.m)	(Degree)	(%)
Homogeneous fill	2.55	2.55 0.70	1.50	25	1.88	16.1	3	3	ស	10	10
Toe drain	2.60	0.40	2.60 0.40 1.86	10	2.05	2.14	0	43	I	J	1
	۰.										

tests and or on the general informations [see Annex C] , $\gamma_t = \gamma_d (1 + w/100)$, $\gamma_{sat} = (G_s + e)/(1 + e)$ and u; ditto 1105 อ ເຮີ based or $\gamma d = G_S$ (1) е, w. с, ф NOTE

TABLE 11.1.-8 (Sheet No.1/8)

SLOPE STABILITY ANALYSIS

(STANDARD METHOD OF SLICES)

BAYONGAN DAM

UPSTREAM SLOPE : 3.25:1

DOWNSTREAM SLOPE: 2.25:1

** MINIMUM FACTOR OF SAFETY **

		- X -	OF CENTER	RADIUS	FACTO: OF
NO.	NO.	·(M)	(M)	(M)	SAFET
๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛			৵ ৵৵৵৵৵৵৵৵৵৵	<u>^</u> ~~~~~~~~~~	~~~~~~~
		** UPSTREA	AM FACE **		
1	41	70	80	40	1.21
2	41	70	80	40	2.21
3	41	70	80	40	1.21
4	41	70	80	40	1.15
a a de la		** DOWNSTR	EAM FACE **		
1	75	180	80	65	1.50
2	86	180	110	9Ø	2.25

Note: With Earthquake (Seismic Force Coefficient, K = .20)

Number of Slip Circles Analyzed for Each Case; Upstream Face - 88 Downstream Face - 87

** EXPLANATION **

Case 1 - Reservoir is at Normal Water Level and Seepage is Steady.

Case 2 - End of Construction (there is residual construction pore pressure).

Case 3 - Reservoir is at Intermediate Water Level and Seepage is Steady.

Case 4 - Rapid Drawdown (from normal water level to low water level - there is residual pore pressure).

TABLE H.1.-8 (Sheet No.2/8)

INPUT DATA

COORDINATES OF CENTER OF SLIP CIRCLE (X,Y):

	Vestream	Downstream
Minimum X - Meters	50	150
Maximum X - Meters	80	180
Increment of X - Meters	10	10
Minimum Y - Meters	80	80
Maximum Y - Meters	110	110
Increment of Y - Meters	10	iØ
		· · · · · · · · · ·
INCREMENT OF RADIUS - Meters		5
SLICE THICKNESS - Meters		2
SEISMIC FORCE COEFFICIENT, K	•	20

ZONE	MOIST DENSITY	SATURATED DENSITY	COHESION	ANGLE OF INT. FRIC.	CONST. PORE PRESSURE
NO.	(T/cu.m.)	(T/cu.m.)	(T/sq.m.)	(Degrees)	(Per cent)
*~~~~	~~~~~~~~~~~~~	๛๛๛๛๛๛๛๛๛๛๛	๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛	~~~~~~~~~~~	๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛
1	2.05	2.14	0.00	43.0	Ø
2	2.05	2.14	0.00	43.Ø	Ø
3	1.76	i.8i	10.00	15.0	- 1 Ø
4	2.05	2.14	0.00	43.Ø	Ø
5	1.96	2.03	5.00	40.0	Ø
6	2.04	2.27	0.00	45.Ø	Ø
7	2.29	2.28	0.00	45.0	Ø

** SOIL MECHANICAL DATA OF EACH ZONE **

Note: Zone No. 7 is the roundation.

TABLE H.1.-8 (Sheet No.3/8)

.

SLOPE STABILITY ANALYSIS ** بهد جذ

				· · ·
Name	٥ť	Dami	'BA'	YONGAN

.

Location + BOHOL PROVINCE

Type of Dam: EARTHFILL Face of Dam: UPSTREAM Slope : 3.25:1

*** WITH EARTHQUAKE ***

	C008	RDINATE	S OF CENTER		FAC	TORO	FSAFE	ТΥ
NQ.		~ X — (M)	- :Y - (M)	(M)	CASE 1	CASE 2	CASE 3	CASE
~~~~~~	~~~~	~~~~~~	๛๛๛๛๛๛๛๛๛๛๛ ๛	~~~~~~	·~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~
1		50	80	45	1.28	2.41	1.28	2.24
2		50	80	50	i 35	2.61		
3		50	80	55			1.35	1.66
	a sainte de la companya de la				1.36	2.61	1.35	1.54
4		50	80	60	1.47	2.81	1.45	1.66
. 5		50	80	65	1.52	2.92	1.49	1.67
at a			•		1.28*	≥.41×	1.28*	1.50
6		50	90	55	1.37	2.66	1.37	.2.07
. 7		50	92	60	1.34	2,58	1.34	1.60
. 8		50	90	65	1.34	2.56	1.33	i.53
9		50	70	70	1.44	2.75	1.42	1.61
10		50	90	-75	1.49	2.85	1.46	1.6
					1.34*	2.56*	1.33*	i.5
		·. ·· ·			1.34*	2,30*	1,00*	1.1
11		50	100	65	1.43	2.82	1.43	2.0
12		50	100	7Ø	1.33	2.55	1.33	1.54
13		50	100	75	1.33	2,53	1.32	1.4
14		50	100	80	1.42	2.71	1.40	1.5
15		50 .	100	85	1,56	2,85	1.53	1.69
	1 - E				1.33*	2.53*	1.32*	1.4
			* .			_		
16		50	110	75	1.41	2.77	1.41	1.79
17		50	110	80	1.32	2.51	1.33	1.4
18		50	110	85	1.31	2,50	1.31	1.4
19		50	110	90	1.47	2.74	1.46	1.6
20		50	110	75	1.57	2.93	1.53	1.7
			-		1.31*	2.50*	1.31*	1.4
		10		A 19	1 40	2.75	1.40	1.5
21		60	80	45	1.40	2.62	1.35	1.4
22		60	80	50	1.36			1 4
23		60	80	55	1.36	2.63	1.34	
24		60	80	60	1.46	2.83	1.43	1.5
25		60	80	65	1,58 1,36*	2.93 2.62*	1.54 1.34*	1.7
					1.30*			• •
26		60	90	55	1.37	2.64	1.37	1.4
27		60 .	90	60	1.34	2.56	1.33	1.4
28		60	90	65	1.34	2.57	1.32	1.4
29		60	90	70	1.51	2.82.	1.48	1.6
30		60	90	75	1.60	2.93	1.55	. 1.7
<u> </u>					1.34*	2.56*	1.32*	<b>i.</b> 4
						~ - <i>i</i>		1 7
31		60	100	65	1.34	2.56	1.35	1.3
32	- '	60	100	70	1.32	2.52	1.33	1.4
33	• *	60	100	75	1.37	2.59	1.37	1.4
34		60	100	80	1.53	2.80	1.50	1.6
35		60	100	85	1.61	2.94	1.56	1.7

# TABLE H.1.-8 (Sheet No.4/8)

		***	WITH EART	THQUAKE **	*		ti she
NANANA IRCLE	COORDINATES	OF CENTER	RADIUS	F A C		SAFE	~~~~~ T Y
NQ.	X	- Y		~~~~~~~	๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛	~~~~~~~~~~~	~~~~~~
	(M)	(M) ~~~~~~~~~~	(M) ~~~~~~~~	CASE 1	CASE 2	CASE 3	GASE
		· ·	e Alexandre de la composición de la compo	1.32*	2.52*	1.33*	1.39
36	60	110	75	1,32	2.50	1.36	1.35
30	60 60	110	80	1.31	2.48	1.33	1.37
38		110	85	1.48	2.68	1,47	1.58
	60					and the second	
39	60	110	70	1.55	2.79	1.52	1.71
40	60	110	75	1.62	2.98	1.57	1.81
				1.31*	2.48*	1:33*	1.35
41	70	80	40	1.21	2.21	1.21	1.15
42	70	80	45	1.33	2.55	1.34	1.34
43	70	80	50	1.35	2.57	1.33	1.39
44	70	- 80	55	1.35	2.64	1.34	1.44
				20.00		· · · ·	
45	70	80	60	1.63	2.87	1.57	1.7
46	70	80	65	1.69	3.14	1.63	1.80
				1.21*	2.21*	1.21*	1.15
47	70	90	50	1.21	2.22	1.29	1.15
48	70	90	55	1.31	2.48	1.34	1.30
49	70	90	60	1.32	2.54	1.33	1.3
50	70	90	65	1.55	2.82		
						1.52	1.6
51	70	90 80	70	1.58	2.81	1.53	1.7
52	70	90	75	1.67 1.21*	3.10 2.22*	1.61	1.19
53	70	100	60	1.21	2.22	1.38	1.15
54	70	100	- 65	1.29	2.44	1.35	1.30
55	70	100	79	1.50	2.71	1.51	1.54
56	70	100	75	1.50	2.77	1.48	1.6
57	70	100	80	1.59	2,86	1.55	1.75
58	70	100	85	1.68	3.20	1.64	1.90
				1.21*	2.22*	1.35*	1.1
80	78	110					
59	70	110	70	1.21	2.23	1.44	1.1
60	70	110	75	1.40	2.54	1.48	1.4
61	70	110	80	1.51	2.73	i.52	1.60
62	70	110	85	1,53	2.83	1.51	1.6
63	70	11Ø	90	1.60	2.91	1.57	1.8
54	70	110	95	1.69	3.29	1.67	2.04
				1.21*	2.23*	1.44*	1.1
65	80	80	40	i.23	2.27	•	1.18
66	80	80	40	1.23		1.37	
57	80				2.45	1.34	1.30
		80	50	1.60	2.87	1.57	1.67
68 ( 0	. 80	80	55	1.61	2.98	1.56	1.74
69 77	80	80	60	1.65	3.04	1.60	1.87
70	80	80	65	1.76	3.54	1.73	2.1
			· .	1.23*	2.27*	1.34*	1.18
71	80	92	50	1.23	2.26	1.42	1.20

TABLE H.1.-8 ( Sheet No.5/8 )

.

	· · · ·						
UPST	REA	м	 	÷ .			

.

.

Page	З

or a i namin							Page
		**)	WITH EAR	THQUAKE **	*		
	COORDINATES			FAC	TORO		
	(พิ)	(M)	(M)	CASE 1	CASE 2	~~~~~~~~~~~ CASE `3	čase
๛๛๛๛๛๛๛	۵، به	2 M2	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u>~~~~~~~~</u> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~	~~~~~~
73	80	90	60	1.57	2.86	1.57	1.68
74	80	90	65	1.61	2,99	1.58	1.80
75	80.	90	70	1.64	3.04	1.59	1,92
76	80	90	75	1.77	3.68	1.76	2.20
· ·	· · ·			1.23*	2.26*	1.42*	1.20
77	80	100	60	1.24	2.27	1.46	1.26
79	80	100	65	1.58	2.75	1.63	1.65
79	80	100	70	1.60	2.93	1.60	1.01
90	80	100	75	1.62	3.06	1.60	1.87
91	80	100	80	1.65	3,12	1.61	1.07
82	80	100	85	1.79	3.81	1.80	2.28
÷	:			1.24 <del>×</del>	2.27*	1.46*	1.26
83	80	110	70	1.64	2,69	1.83	1.69
84	80	110	75	1.57	2.87	1.63	1.65
95	80	110	80	1.63	2.99	1.64	1.83
86	80	110	85	1.65	3.18	1.65	1.95
87	80	110	90	1.67	3.20	1.64	2.07
88	80	110	75	1.83	3,94	1.84	2.36
54		* * ×	1 - A	1,57*	2.69*	1.63*	1.68

Note: * - Minimum factor of safety in every center of slip circle.

• .

•

II-23

### TABLE H.1.-8 (Sheet No.6/8)

#### SLOPE STABILITY ANALYSIS * * $\times \times$

Name	٥f	Dami	BAYON	SAN	•
Locat	tior	i i	BOHOL	PROVINC	E)

Type of Dam: EARTHFILL Face of Dam: DOWNSTREAM Slope : 2.25:1

والأخاص أعاصوا والم

*** WITH EARTHQUAKE *** A.----

2 2 2 2 2 2

IRCLE NO.	COORDINATES - X -	OF CENTER	RADIUS	FACTOR OF SAFETY		
NO.	(M)	(M)	(M)	CASE 1	CASE :	
~~~~~~	<i>๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛</i>	~~~~~~~~~	~~~~~~~~~~~	๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛		
1	150	80	40	2.75	3.37	
2	150	80	45	2.34	2.83	
3	150	80	50	2.24	2.59	
4	150	80	55	2.24	2.50	
5	150	80	60	2.11	2.53	
6	150	80	65	2.20	3.06	
4	100			2.11*	2.50	
		.*				
7	150	90	45	17.32	20.57	
8	150	90	50	2.85	3.51	
9	150	90	55	2.36	2.80	
10	150	90	50	2.27	2.63	
11	150	92)	65	2.25	2.57	
12	150	90	70	2.15	2.67	
13	150	90	75	2.21	3.21	
				2.15*	2.57	
. 14	150	100	55	6.31	7.61	
15	150	100	60	2.69	3,34	
16	150	100	65	2.36	2.83	
17	150	100	70	2.27	2.69	
18	150	100	75	2.24	2.65	
19	150	100	80	2,14	2.75	
20	150	100	85	2.22	3.33	
	130		32	2.14*	2.65	
21	150	110	45	4 70	5 70	
21			65	4.70	5.78	
	150	110	70	2.71	3.33	
23	150	110	75	2.38	2.87	
24 25	150	110	80	2.33	2.82	
	150	110	85	2.29	2.77	
26 27	150 150	110 110	90	2.17	2.88	
<u>,</u>	1, 1, 43	110 .	95	2.24	3.46 2.77	
28	160	80	40	14.52	17.27	
29	160	80	45	2.54	3.12	
30	160	80	50	2.14	2.65	
31	160	80	55	2.03	2,40	
32	160	80	60	1.91	2.37	
33	160	80	65	1.87	2,52	
			• • • •	1.87*	2.37	
34	160	φØ	50	6.51	7.81	
35	160	90	55 .	2.41	2.97	
36	160	- 90	60	2.13	2.57	
37	160	90	65	2.07	2.40	

TABLE H.1.-8 (Sheet No.7/8)

DOWNSTREA					Pagg
****	๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛	*** WITH EART!		[᠊] ᠖ᡧᢣᡀ᠊᠙ᡧᠺᡁᡪᢋᠺᢦᡐ ᠺᢧ ᡕᢧᠬᢧ	~~~~~
CIRCLE NO.	COORDINATE	S OF CENTER	RADIUS	FACTOR OF	
	(M)	(M)	(M)	CASE 1	CASE
			~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	nnninn
38	15Ø	90	70	1.70	2.2
39	160	90	75	1.90	2.6
t de la composición d	•			1.90*	2,3
40	160	100	60	3,93	4.7
41	160	100	65	2.33	2.8
42	160	100	70	2.12	2.5
43	160	100	75	2.07	2.4
44	160	100	80	1.93	2.4
45	160	100	85	1,93	2.7
				1.93*	2.4
46	160	110	70	3,47	, -
47	160	110	75	2,31	4.2
48	160	110	80	2.31	2.5
49	160	110	85	2.10	2.4
50	160	110	8J 70	1.96	2.5
51	160	110	75 75	1.94	2.8
				1.94*	2.4
52 53	170	80	45	5.07	6.1
	170	80	50	2.38	2.9
54 55	170 170	- 80 80	55 60	1.88	2.0
56	170	80	65	1.66	2.4
20		00		1.66*	2
· .	4 7 8		~ ~	4 97	
57	170	90	55	4.03	4.9
58	170	90	. 60	2.16	2.4
59 60	170	60 60	65 70	1.75	2.1
51	.170 170	90 90	75	1.76	2.4
D1 .	170	70	4.5	1.66*	2.2
62	170	100	65	3.39	4.
63	170	100	70	2.17	2.0
64 .	170	100	75	1.95	2.1
65.	170	100	80 85	1.69	2.4
66 .	170	100		1.69*	2.1
				`	_
67	170	110	75	2.79	3.4
68	170	110	80	2.13	2.6
69	170	110	85	1 98	2.0
- 70	170	110	90 85	1.77	.2.1
71	170	110	95	1.67 1.67*	2.4
72	180	80	50	3.42	4.
73	180	80	55	2.15	2.0
74	180	80	60	1.63	2.3

<u> </u>	FABLE	H.1	8	(	Sheet	No.8/	'8	)	
----------	-------	-----	---	---	-------	-------	----	---	--

DONNST	n n le 'n M									
DOMINO I	RC.MOL	٠	٦		٠	•	•	٠	•	

Page 3

		*** WITH EART	HQUAKE ***		
~~~~~~~	เฉล่างการการการการการการการการการการการการการก	เฉลุลุลลุลลุลลุลลุลลุลลุลลุลลุลลุลลุลลุลล	~~~~~~~~~~~		~~~~~~~~
CIRCLE	COORDINATES	B OF CENTER	RADIUS	FACTOR OF	SAFETY
NO.	X	- Y -		~~~~~~~	~~~~~~
	(M)	(M)	(M)	CASE 1	CASE 2
~~~~~~~		www.www.www.ww	~~~~~~~~~	~~~~~~	~~~~~~
75	180	80	65	1.50	2.48
		· .		1.50*	2.35*
	e de la competition d	· .			
76	180	90	60	3.11	3,80
77	180	90	<u>م</u>	2.08	2.58
78	180	90	70	1.59	2.29
79	180	90	75	1.53	2.46
				1.53*	2.29*
	· · · · · · · · · · · · · · · · · · ·		-		
66	180	100	70	2,83	3.46
91	180	100	75	1.97	2.44
82	180	100	80	1.60	2.27
83	180	100	85	1.56	2,45
				1.56*	2.27*
	1.1				
84	190	110	80	2.50	3.06
85	180	110	85	1,98	2,46
86	180	110	90	1.61	2.25
97	180	i 10	95	1.56	2.44
		. •		1.56*	2.25*

Note: * - Minimum factor of safety in every center of slip circle.

٠.

# SLOPE STABILITY ANALYSIS

(STANDARD METHOD OF SLICES)

### CAPAYAS DAM

UPSTREAM SLOPE : 3:1

DOWNSTREAM SLOPE: 2:1

# ** MINIMUM FACTOR OF SAFETY **

 ~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	21/2/21/21/21/21/21/21/21/21/21/21/21/21			
CASE	CIRCLE	COORDINATES O	F CENTER	RADIUS	FACTOR
NO.	NO.	(M)	(M)	(M)	OF SAFETY
~~~~	*******	๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u></u>	~~~~~~~~
	· · · · ·	** UPSTREAM	FACE **		
 1	45	35	50	24.75	1.65
2	34	30	55	29.75	2.06
З	45	35	50	24.75	1,56
. 4	45	35	50	24.75	1.92
		** DOWNSTREA	⁴ FACE ★★		
1	29	65	55	29.75	1.50
2	25	65	50	24.75	1.71

**ᡧᡐᡐᡧᢤᡧ᠔ᡧᡐᡐᡐᡐᡐᡐᡐ᠔ᡧᡐᡐᢑ᠔ᡧ᠔ᢌᡐᡆ᠔᠔᠗ᡧ᠔᠔᠔᠔᠔᠔᠔᠔᠔᠔᠔᠔᠔᠔᠔᠔᠔᠔᠔᠔** 

Note: With Earthquake (Seismic Force Coefficient, K = .20)

Number of Slip Circles Analyzed for Each Case: Upstream Face - 65 Downstream Face - 49

#### ** EXPLANATION **

.

Case	i	ļ	Reservoir is at Normal Water Level and Seepage is Steady.
Case	2		End of Construction (there is residual construction pore pressure).
Case	3		Reservoir is at Intermediate Water Level and Seepage is Steady.
Case	4		Rapid Drawdown (from normal water level to low water level - there is residual pore pressure).

# TABLE H.1.-9 ( Sheet No.2/7 )

INPUT DATA

COORDINATES OF CENTER OF SLIP CIRCLE (X,Y):

•		Vrstre	am D	)ownstrea	1.Π1
Minimum X - Meters		1.5	· · · · ·	60	
Maximum X - Meters		4Ø		80	
Increment of X - Meters		5		5	
Minimum Y - Meters	· ·	40		40	
Maximum Y - Meters		55	an a	55	-
Increment of Y - Meters		5		5	
INCREMENT OF RADIUS - Met:	202		2.50	· ·	
SLICE THICKNESS - Meter/s			1.00		• •
SEISMIC FORCE COEFFICIENT	к	· *	.20		

### ** SOIL MECHANICAL DATA OF EACH ZONE **

ONE	MOIST DENSITY	SATURATED DENSITY	COHESION	ANGLE OF INT. FRIC.	CONST. POR
NO,	(T/cu.m.)	(T/:u.m.)	(T/sq.m.)	(Degrees)	(Per cent
, <u>0</u> 00000		~~~~~~~~~~~		๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛	~~~~~~~~~~
Ø	1.00	1.00	0.00	0.0	Ø
1	1.88	1.91	5.00	10.0	10
2	2.05	2.14	0.00	43.0	Ø
з	0.00	0.00	0,00	0.0	Ø

# TABLE H.1.-9 ( Sheet No.3/7 )

# ** SLOPE STABILITY ANALYSIS **

Name of Dam: CAPAYAS		Type of	Dam	EARTHEILL
Location   BOHOL PROVINCE		Face of	Dam:	UPSTREAM
		Slope	1	3:1

# *** WITH EARTHQUAKE ***

CIRCLE NO.	COORDINATES	RDINATES OF CENTER RADIUS		FACTOR OF SAFETY				
	(M)	(M)	(M)	CASE 1	CASE 2	CASE 3	CASE 4	
				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
1	15	40	14.75	6.97	6.15	. 6, 97	9.77	
				6.97*	6.15*	6.97*	9.77*	
							-	
2	15	45	19.75	6.34	5.60	6.34	8,43	
				6.34*	5.60*	6.34*	8.43*	
З	15	50	24,75	5.56	4.93	5,56	6.79	
5	1.4	50	24.73	5.56*	4.93*	5.56*	6.79*	
•			· •					
4	15	55	29.75	4.97	4.42	4.86	5.67	
	•		•	4.97*	4.42*	4.86*	5.67*	
5	20	40	12.25	14.66	12,61	14.66	18.80	
л 6	20	40	14.75	4.18	3.83	4.18	4:95	
U	20	10		4.18*	3.83*	4.18*	4.95*	
			••					
7	20	45	17.25	11.17	9.67	11,19	12.37	
8	20	45	19.75	3.82	. 3,49	3.67	· 4.20	
	· · · ·			3.82*	3.49*	3.67*	4、20*	
Ģ	20	50	22,25	9.07	7.88	8,87	9.20	
10	20	50	24,75	3.43	3.15	3.16	3.59	
			2.14.12	3.43*	3.15*	3.16*	3.59*	
11	20	55	27.25	7.64	6.66	7.01	7.35	
12	. 20	55	29.75	3.17	2.99	2.87	3.29	
				3.17*	2.99*	2.97*	3.29*	
13	25	40	12.25	- 5.53	4.99	5,23	5.32	
14	25	40	14.75	3.09	2.94	2.80	3.14	
				3,09*	2,94*	2,80*	3.14*	
1 m		45 .	17.25	4.99	4.48.	4.40	4.63	
15	25	45	19.75	2,69	2.63	2.41	2.73	
10	2.3	-t J	17.(2)	2.69*	2.63*	2.41*	2.73*	
			· .				21.03	
17	25	50	19.75	25.30	21.53	21.98 3.71	4.02	
18	25	50	22.25	4.26 2.41	2.45	2.18	2.50	
19	, 25	50	24.75	2,41*	2.45*		2.50*	
	- •		. •		-			
. 20	25	55	24.75	16.22	13.88	12.82	13.49	
21	25	55	27,25	3.68	3.61	3.25	3.60	
22	25	55	29,75	2.21	2.32	2.03	2.35 2.35*	
· · ·	· · · ·			2.21*	2.32*	2.03*	*دد.×	
23	30	40	9.75	8.49	7.49	6.72	7.21	

.

TABLE	H.19	(Sheet	No.4/	7:)
-------	------	--------	-------	-----

		.*					an a	
			TABLE H.1	9 (She	et No.4/7) ka s		
PSTREA	м			•		an a		Page
•		. •	**	* WITH EAR	THOUAKE **			
~~~~		******		๛๛๛๛๛๛๛๛๛	~~~~~~~~~	งสลุ่นกล่างกลาง		
IRCLE NO:		RDINATS · X	ES OF CENTE	R RADIUS		TOR 0		
		(M)	(M)	(M)	CASE 1		CASE 3	
~~~~~	~~~~~	~~~~	๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛	.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u></u>	~~~~~~~~~	<u>un un u</u>
24		30	40	12.25	3.50	3.45	2,98	3.27
25		30	40	14.75	2.34	2.49	2.08	2.35
		•			2.34*	2,49*	2.08*	2.35
26		30	45	14.75	6.62	6.15	5.29	5.90
27		30	45	17.25	3.06	3.16	2.68	3.02
28		30	45	19.75	2.03 2.03*	2.24	1.85 1.85*	2.15
			-		⊷.u0≭	<u> </u>	X • O J *	
29		30	50	19.75	5.58	5.60	4.72	5.40
30		30	50	22.25	2.61	2.81	2.35	2.69
31		30	50	24.75	1.87 1.87*	2.12 2.12*	1.73 1.73*	2.04
•			· .					
32		30	55	24.75	4.66	4.93	4.10	4.77
33		30	55	27.25	2.41	2.68 2.06	2.21	2.56
34		30	55	29.75	1.78 1.78*	2.06*	1.00	1.98
			1					
35		35	40	9.75	4.10	4.47	3.51	4.28
26		35	40	12.25	2.54	2.94 2.30	2.28	2.76
37		35	40	14.75	1.90 1.90*	2.30*	1.74	2.12
							10.01	4
38 38		35 35	45 45	12.25 14.75	11.42 3.36	12.61 3.82	10.24 3.04	12.45
40		35	45	17.25	2.17	2,58	2.00	2.41
41		35	45	17.75	1.74	2.15	1.63	1.98
					1.74*	2.15*	1.53*	1.98
42		35	50	17.25	8.33	9.67	7.86	9.5
43		35	50	19.75	3.01	3.53	2.80	3.40
44		35	50	22.25	2.03	2.46	1.90	2.3
45		35	50	24.75	1.65 1.65*	2.08 2.08*	1.56 1.56*	1.92
46		35	55	22.25	6.39	7.61	6.17	7.5
47 48		35 35	55 55	24.75 27.25	2.83 2.01	3.40 2.49	2.66 1.90	3.2
49		35	55	27.75	1.66	2.14	1.58	1.9
			н		1.66*	2.14*	1.58*	1.9
50		40	40	0.75		7 2 /	~ ~~	
51		40	40	9.75 12.25	2.74 2.09	3,56 2,80	2.73 2.02	3.4
52		40	40	14.75	1.75	2.43	1.68	2.2
				t.	1.75*	2.43¥	1.68*	2.2
53		40	45	12.25	3.97	5.05	4.02	5.0
-54		40	45	14.75	2.54	3.31	2.51	3.19
55	. *	4Ø	45	17.25	1.93	2.61	1.87	2.44
56		40	45	19.75	1.66	2,35	1.60	2.14
			•	e transformation.			ана стана Спортана Спортана	
		-	•		· . ·		1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	. • •
			н. Н					
÷.,		1 ⁹⁰ e		H-30				
				n-30		· · ·	La de la construcción de la constru	

Таріт TABLE H.1.-9 (Sheet No.5/7)

Page 3

۰.

NO.		DINATI X -	ES OF	CENTE	R RADIUS	F A C	$\begin{array}{ccc} T & O & R & O \\ \sim $	F SAFE	T Y
		(M)		(M)	(M)	CASE 1	CASE 2	CASE 3	CASE
~~~~~~~	~~~~·	~~~~~		~~~~~~	᠔ᠬᡐᡐᡐᡐᡐᡐᡆᠥᠧᡧᢦ	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	www.www.www.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~
			·	· •		1.66*	2.35×	1.60*	2.14
5.7		40		50	17.25	4 00	5.16	4.04	5,14
58	·	40		50	19.75 .	2.40	3.19	2.38	3.07
59		40		50	22,25	1.94	2.68	1.88	2.50
60		40		50	24,75	1.68	2.42	1.62	2.18
				•		1.68*	2.42*	1.62*	2.18
61		40		55	19.75	18.27	22.96	18.27	23.01
62		40		55	22,25	3.80	4.97	3.83	4,95
63	· · · · ·	40		55	24.75	2.45	3.31	2.42	3,18
64		40		55	27.25	1,97	2,79	1,92	2,59
65		40		55	29.75	1.74	2.56	1.68	2.30
1 - A.L.	1. 1		1			1.74*	2.56*	1.68*	2.30
	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 19		·						

Note: * - Minimum factor of safety in every center of slip circle.

Name of Da Location	INI CAPAYAS I BOHOL PRO	VINCE		e of Dam; E/ e of Dam; D( pe ; 2)	WNSTREA
	*	** WITH EARTH	1@UAKE ***		
CIRCLE	COORDINATES	OF CENTER	RADIUS	FACTOR OF	
NO.	- X - (M)	- Y - (M)	(M)	CASE 1	CASE
<u>~~</u> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	᠈᠕᠕᠕᠕᠕᠕᠕᠕᠕᠕᠕᠕	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
1	60	40	9.75	2.57	2.9
2	60	40	12.25	1.78	2.2
з.	60	40	14.75	1.58	1.8
	· .			1.58*	1.9
4	60	45	12.25	4.10	4.8
5	60	45	14.75	2.34	2.7
6	60	45	17.25	1.88	2.1
7	60	45	19.75	1.53	i.8
				1.53*	1.8
9	60	50	17.25	3.82	4.6
9 9	60	50	19.75	2.36	2.8
10	60	50	22.25	1.85	2.1
11	60	50	24.75	1.55	1.8
* *	0.5			1.55*	1.8
12	60	55	22.25	3.60	4 4
13	60	55	24.75	2.33	2.8
14	60	55	27.25	1.89	2.2
15	60	55	29.75	1.59	1.7
				1.59*	1.9
16	65	40	9.75	4.63	5.2
17	65	40	12.25	2.33	2.4
18	65	40	14.75	1.70	1.8
				1.70*	1.8
19	65	45	14.75	3.50	3.9
20	65	45	17.25	1.95	2.10
21	65	45	19.75	1.57	1.7
		· · · · ·		1.57*	1.7
22	65	50	17.25	23.80	27.7
23	65	50	19.75	2.85	3.2
24	65	50	22.25	1.86	2.0
25	65	50	24.75	1.51	i.7
			· ·	1.51*	1.7
26	65	55	22.25	8.51	10 0
27	65	55	24.75	2.65	3.0
28	65	55	27.25	1.81	2.0
29	65	55	29.75	1.50	1.7
		· · ·		1.50*	1.7
30	70	40	12.25	3.30	3.6
	70	40	14.75	2.15	2.2

# TABLE H.1.-9 ( Sheet No.6/7 )

# TABLE H.1.-9 (Sheet No.7/7)

•

DOWNSTREAM.....

. . .

<u> </u>	NO.	COORDINATES		RADIUS	FACTOR O	
	NOL	(M)	- Y - (M)	(M)	CASE 1	CASE
	~~~~~~~	<b>ᡣᡣᡧ᠕᠕᠕᠕᠕᠕᠕᠕᠕</b> ᠕᠕	ᡣᡐᡧᠦᡐᡐᡐᡐᡐ <u>ᡐ</u> ᡐᡐᡐᡐᡐ	ᡃᢑ <b>ᡧᠬ᠅ᡧᠣ᠊ᠧᡊ</b> ᠈ᡧ᠕᠈ᠺᢧᡢᢖᡒ	᠃ᠬ᠔ᠬᠬᡧᡳᡡᡐᡐᡐᡇ	~~~~~~~
					2.15*	2,26
	32	70	45	17.25	2.89	3.09
	.33 .	70	45	19,75	1.84	1.96
					1.84*	1,96
	34	7Ø	50	19.75	12.54	14.63
	35	70	50	22.25	2.43	2.62
	36	70	50	24.75	1.67	i.8i
		•			1.67*	1.81
. 1	37	70	55	24.75	4.59	7.68
	38	70	55	27,25	2,14	2.33
	39	70	55 [°]	29.75	1.59	1.76
					1.59*	1.76
	40	75	40	14,75	2.41	2.80
		·			2.41*	2.80
	41	75	.45	17.25	17.33	22,56
	42	75	45	19.75	2.41	2.62
		•			2.41*	2,62
	43	75	50	22,25	7.52	8.77
	44	. 75	50	24.75	2.20	2.35
•					2.20*	2.35
	45	75	55	27,25	4.70	5,48
	46	75	55	29.75	1.93	2.08
					1.93*	2.08
	47	80	45	19.75	2.78	3.32
			7		≥.78*	3.32
	48	80	50	24.75	3.49	4,12
					3.49*	4.12
	49	80	55	29.75	3.05	3.57
	-	• •			J.05*	3.57

Note: * - Minimum factor of safety in every center of slip circle.

CHAPTER II CANALS

2,1 General

The project area is located in an undulated hilly area with elevetion of 40 m to 5 m and is incised by narrow valleys developed along the streams flowing down from south to north. The soils in the project area are composed of Ubay soil series which characterized by slightly coarse-textured surface soil underlaid by loamy or clayey but gravelly subsoils.

Irrigation canal systems are planned to take water directly from the proposed reservoirs and to distribute the irrigation water to existing paddy field expanded along the streams and hilly area to be reclaimed. In connection with irrigation canal system, drainage system is also provided using the existing streams. The Bayongan and Capayas dams are proposed as a water source of the project and main irrigation canals start these dam outlets to make up its distribution networks in the project area. Based on the topography and location of water sources, the project area is divided by the Soom -Bayan river into two irrigation systems, namely, Bayongan and Capayas.

Under these concepts, the Bayongan and Capayas systems are planned to cover an area of 4,140 ha with 112 service units and of 1,160 ha with 33 service units, respectively. Service unit of each irrigation system is demarcated by an area of 25 ha in minimum, 50 ha in maximum and about 36 ha on the average.

2.2 Irrigation Canal System

2.2.1 Function and Requirement of Canal

The proposed irrigation canal systems consist of main, lateral and sub-lateral canals. The layout of these canals is planned with understanding their respective functions and requirements.

Two main canals of Bayongan and Capayas are planned to secure the proper water distribution in the project area. The functions

of main canal are to convey irrigation water most economically and effectively from each dam to the proposed lateral canals.

The functions of lateral and sub-lateral canals are to deliver irrigation water from main canal and/or lateral canal to the head portions of service units. To facilitate an efficient water managemont, service units should preferably be supplied only from lateral or sub-lateral canals.

2.2.2 Canal Alignment

Prior to the field survey of irrigation canal route, preliminary canal alignment is made on a scale of 1/4,000 topographic maps. Modification of preliminary canal alignment was conducted on the said maps in accordance with the proposed land use, allowing service by gravity system and result of field survey.

The main irrigation canal to cover the Bayongan system area is placed between the Bayongan dam outlet and the Capayas reservoir and runs through a flat hilly area with the elevation of 40 m to 35 m. The water level of main canal is 37 m at the Bayongan dam outlet and the 34 m at the terminal point of main canal in the Capayas reservoir. Total length of the Bayongan main canal is designed at 12.45 km with maximum design discharge of 7.54 cu·m/sec. in crop maintenance period and of 9.74 cu·m/sec. in land soaking period.

The main irrigation canal to cover the Capayas system starts from the Capayas dam outlet and reaches near Ubay. The canal alignment is placed at the moderately undulated area having the elevation of 30 m to 25 m. The Capayas main canal is planned at the total length of 3.27 km with maximum design discharge at 1.65 cu·m/sec. for crop maintenance period and 2.13 cu·m/sec. for land soaking period.

Both of the main canals run mostly along the ridge area of hill and cross only a few streams. Canals are constructed with cut and fill portion and excavated materials can be used for filling materials. The alignment of lateral and sub-lateral irrigation canals are selected to run at the higher place of hilly area in order to cover service units as much as possible by the gravity system. 30 lines of lateral and sub-lateral canal with total length of 87.73 km are planned with a design discharge of 3.15 cu.m/sec. in maximum. The lateral and sub-lateral alignments can run also the flat hilly area with structures crossing a few streams.

The size of service area commanded by a lateral canal is designed from 160 ha to 1,700 ha consisting of 5 to 46 service units.

The diagram of irrigation networks is formed in accordance with the irrigation water requirement, demarcation of each service unit, proposed lateral canal alignment and irrigation systems.

Proposed irrigation canal alignment, irrigation system in lateral canalwise and proposed irrigation canal features are shown in FIGURE H2-1, FIGURE H2-2 and TABLE H2-1, respectively.

2.2.3 Design of Irrigation Canal

Trapezoidal cross section are designed for all the proposed canals. Design criteria prevailing in NIA are mainly adopted for the design of canal and related structures.

1) Design discharge

Design discharge for all the irrigation canals and related structures are obtained in compliance with the peak irrigation water requirement of 1.422 l/sec/ha in crop maintenance period. During the land soaking period, the peak irrigation water requirement is estimated at 1.837 l/sec/ha and excessive irrigation water compared with the crop maintenance period will be delivered using the canal freeboard.

2) Velocity

The maximum and the minimum permissible velocity are determined so as not to give the erosion and deterioration and not to allow the sedimentation and the growth of aquaplant and

moss in canals. Considering the above basic requirements, the canal velocities are determined as follows;

	Max.	<u>Min.</u>
Concrete Lined Canal	1.0 m/sec.	0.5 m/sec.
Earth Canal	0.8 11	0.3 "

3) Roughness Coefficient

The Manning's Formula is used for determination of hydraulic properties of canals. Following roughness coefficient, "n" is applied;

	Roughness
	Coefficient
Concrete Lined Canal	0.015
Earth Canal	0.025

4) Freeboard

The freeboard in canals is determined as 40 percent of the water depth with the minimum of 0.30 m whichever is bigger.

5) Canal base width/water depth (B/h) ratio

The ratio of canal base width and water depth is used at 1 for concrete lined canal of which discharge is less than 4 cu·m/sec. and 2 for earth canal and concrete lined canal with discharge more than 4 cu·m/sec.

6) Side Slope

The inside slope of 1:1 is adopted for concrete lined canal with discharge less than 4 cu m/sec. and 1:1.5 for other size of canals. The outside slopes of 1:1.5 for embankment portion and 1:1 for cutting portion are used taking into account the soil conditions.

7) Berm Width

Berm width is taken with same length as canal height.

8) Lining of Canal

All the main canals with the total length of 15.72 km are lined with 10 cm thickness of plain concrete to check seepage

from the canal banks and bottom and to protect the canal section against erosion.

Twenty three types of canal section are proposed for the irrigation canal system. Hydraulic properties of each type are shown in attached drawing in main report.

2.2.4 Related Structures

A number of related structures are essential for full functions of canal. These structures are classified into measurement, distribution, regulation, conveyance and protection purpose.

1) Distributing and Measuring Structure

Head Regulator and Turnout are provided as a distributing structures of canals.

Head Regulator is installed to divert irrigation water from main canal to lateral canal. Neyrpic Orifice Module (so called "Distributor") is provided as a measuring divice of Head Regulator. The distributor is so designed as to be capable of constantly delivering a predetermined rate of flow regardless variations in the upstream water level.

Turnout is constructed for the diversion of irrigation water from lateral canal to sub-lateral canal or lateral canal and/or sublateral canal to service unit. As a measuring divice, constant head orifice is furnished at the inlet portion of turnout.

Following distributing structures are designed for canal systems;

	Head Regulator (places)	Turnout (places)
Bayongan System	·	
Main canal	6	-
Lateral/Sub-lateral	-	126
Capayas System		• •
Main canal	3	e e e
Lateral/Sub-lateral	-	36
Total	9	162

2) Regulating Structure

Check and drops are provided for regulating of water level in the canal. A check is provided at the just downstream of distributing structure to maintain the required water level during the period of partial flow in the canal. There are three types of check; (1) check cum duckbill weir, (2) check cum drop and (3) check gate only. Type (1) of check cum duckbill weir is furnished in main canal in order to secure the function of distributor. Type (2) and (3) are installed in lateral and/or sub-lateral canal according to the site conditions.

To dissipate the excess energy in canals, vertical drops of 1.5 m or 1.0 m in water surface are provided for the canal design. Regulating structures required for the project are tabulated below;

	Check			Drop	
	$\overline{(1)}$	(2)	(3)	(places)	
Bayongan System					
Main	5	-	-		
Lateral/Sub-lateral	-	44	13	84	
Capayas System					
Main	2	-	-	1	
Lateral/Sub-lateral	-	.4	8	28	
Total	7	48	21	113	

3) Conveyance Structure

Crossing structures such as bridge, pipe crossing and syphon are installed to convey the irrigation water over or under road, rivér and stream. Pre-cast concrete pipe is used for crossing structures with a canal discharge of less than 1.0 $cu \cdot m/sec.$ and the concrete bridges for a discharge of more than 1.0 $cu \cdot m/sec.$ due to decrease the head losses of irrigation canals.

For the syphon barrel, pre-cast concrete pipe is also used because of the design discharge estimated less than 1.0 cu·m/sec. Following conveyance structures are designed for the project;

		ipe Crossing (places)	<u>Syphon</u> (places)
Bayongan System Main Lateral/Sub-lateral	11 18	105	1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 -
Capayas System Main Lateral/Sub-lateral	4	35	-2
Total	33	140	2

4) Protecting Structures

Spillway of the side channel overflow type will be provided in the canal to spill the excess water in the canal.

Cross drains are constructed across the irrigation canals at the places where the canals run across depressed place or natural streams. Protecting structures required for the project are tabulated below:

	<u>Spillway</u> (places)	Cross Drain (places)
Bayongan System		
Main	3	18
Lateral/Sub-lateral	1	57
Capayas System	1	
Main	1	10
Lateral/Sub-lateral	2	40
Total	7	125

2.3 Drainage Canal Systems

2.3.1 Function and Requirement of Canal

The functions of drainage canals are to drain out water in fields and to lead the water to drain outlets. The layout of the irrigation system and the topography of the related area are the main factors for determining the location of the drainage canal. Existing natural streams or depressed places are used for the drainage canal as much as possible.

2.3.2 Canal Alignment

Many natural streams flowing down from the south to the north

direction will be available for the main drainage canal. These streams are situated at the lowest place in the project area and will have a sufficient drainage capacity. The lateral drainage system will not be required generally because the irrigation water or rain water comes down to the paddy field formed along the slope of hill by the plot to plot irrigation method and reach the streams. The lateral drainage canal will be planned at the lower area where natural river course is indistinct and/or drain water from the proposed service units has to lead to existing stream due to set up a new irrigation system. Total length of drainage canals is proposed at 49.0 km with 49 lines in the project area. Design discharge and canal gradient vary from 0.87 cu.m/sec. to 0.09 cu.m/sec. and from 1/3,000 to 1/750, respectively.

Drainage diagram is planned in compliance with location of existing stream, demarcation of drainage area, drainage unit requirement and irrigation canal alignment.

2.3.3 Design of Drainage Canal

The design discharge of drainage canals is estimated at 5.61 1/sec/ha based on the rainfall record with a frequency of 5 years. Manning's Formura is used for hydrauric calculation with a roughness coefficient of 0.04. Drainage canals are designed trapezoidal in shape with inside slopes of 1:1 and base width to water depth ratio of 1.0. To prevent erosion and sedimentation in the canals, permissible velocity is taken at 0.3 m/sec. in minimum and 0.8 m/sec. in maximum.

2.3.4 Related Structure

Regulating and conveyance structures are provided in the canals as related structure of the drainage canal.

Drop is installed to regulate the water surface in the canals that have steeper slopes than those needed to reach permissible velocities. Road crossing with pipe barrel is furnished at the place where existing road crosses the drainage canal. Drain outlets at the terminal point of canals will also be provided. Required regulating and conveyance structures are tabulated below;

<u>Structures</u>	Bayongan system (places)	Capayas system (places)	<u>Total</u> (places)
Road Crossing	63	16	79
Drop	178	28	206
Drain Cutlet	43	6	49

2.4 Operation & Maintenance Road

Operation and maintenance road is planned along the irrigation canals except sections where existing road runs in parallel. O & M road will be constructed on one bank 6.0 m wide roadway having 4.5 m wide gravel surfacing of 20 cm thickness for main canal and 4.0 m wide roadway having 3.0 m wide gravel surfacing of 20 cm thickness for lateral and sub-rateral canals.

Required O & M road in each system is shown below;

	Along Main Canal	Along Lateral/ Sub-lateral Canal
Bayongan System	9.90 km	52.0 km
Capayas System	2.60	16.0

	1. 		·	· •	
System	<u>Canal</u> <u>C</u>	anal Name	Commanding Area	Length	Remarks
Bayongan	Main	B.M.C.	4,140 ha	12.45	km
	Lateral	LAT BA	645	6.42	
	S-Lateral	LAT BA-1	284	3.10	
	ditto	LAT.BA-2	41	0,55	
	Lateral	LAT.BB	441	5.37	
	S-Lateral	LAT.BB-1	37	0.80	
	ditto	LAT BB-2	153	2.53	
	Lateral	LAT.BC	658	6.20	
	S-Lateral	LAT.BC-1	151	1.85	
	ditto	LAT.BC-la	60	0.69	
	Lateral	LAT BD	355	4.96	
	S-Lateral	LAT.BD-1	100	1.47	
	ditto	LAT BD-2	75	1.24	÷
• . •	Lateral	LAT.BE	324	2,60	
	S-Lateral		189	3.30	
a stalina. La t	Lateral	LAT.BF	1,717	13.18	
	S-Lateral		198	4.57	
•	ditto	LAT.BF-2	68	0.55	
, *		LAT.BF-3	222	3.47	
	ditto	LAT.BF-4	149	1.35	
	ditto	LAT.BF-5	76	0.80	Total Length
	ditto	LAT.BF6	73	1.00	Main 12.45 km
	ditto	LAT.BF-7	126		Lateral 38.73 km
ta t A a secondaria	ditto	LAT.BF-8	39	0.95	Sub-Lat 30.14 km
	ditto	LAT.BF-9	34	0.80	Total 81.32 km
	arceo		<i></i>		
Capayas	Main	C.M.C	1,160	3.27	
	Lateral	LAT.CA	163	2.53	
	ditto	LAT.CB	597	7.35	Total Length
	S-Lateral	LAT.CB-1	63	1.20	Main 3.27 km
	Lateral	LAT.CC	400	3.98	Lateral 13.86 km
	S-Lateral	LAT.CC-1	66	2.60	Sub-Lat 5.00 km
	ditto	LAT.CC-2	71	1.20	Total 22.13 km
1			• -		

TABLE H2-1 PROPOSED IRRIGATION CANAL FEATURES

·

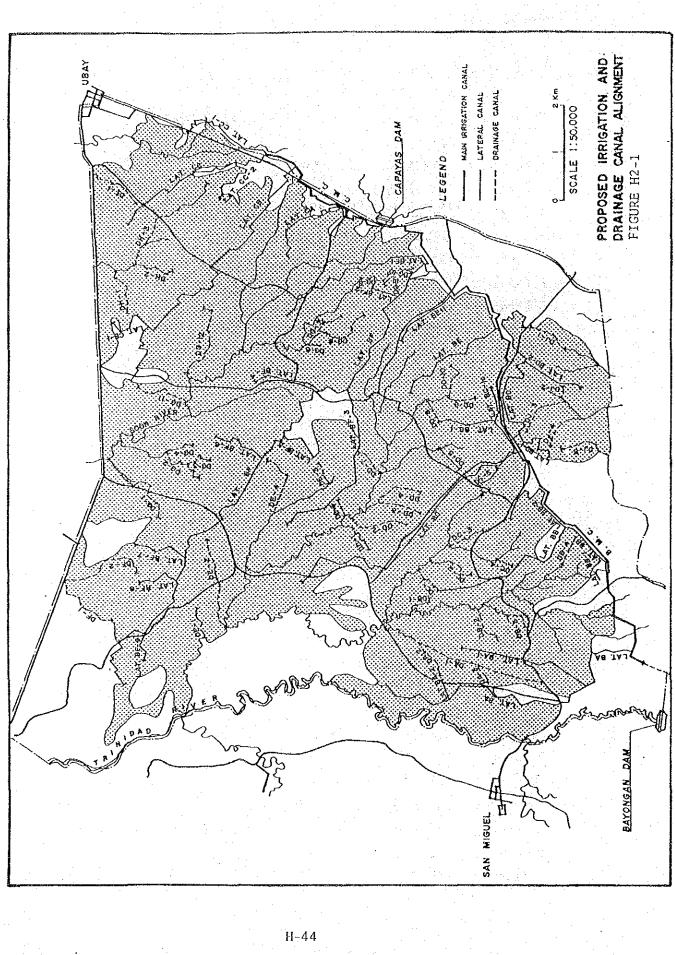
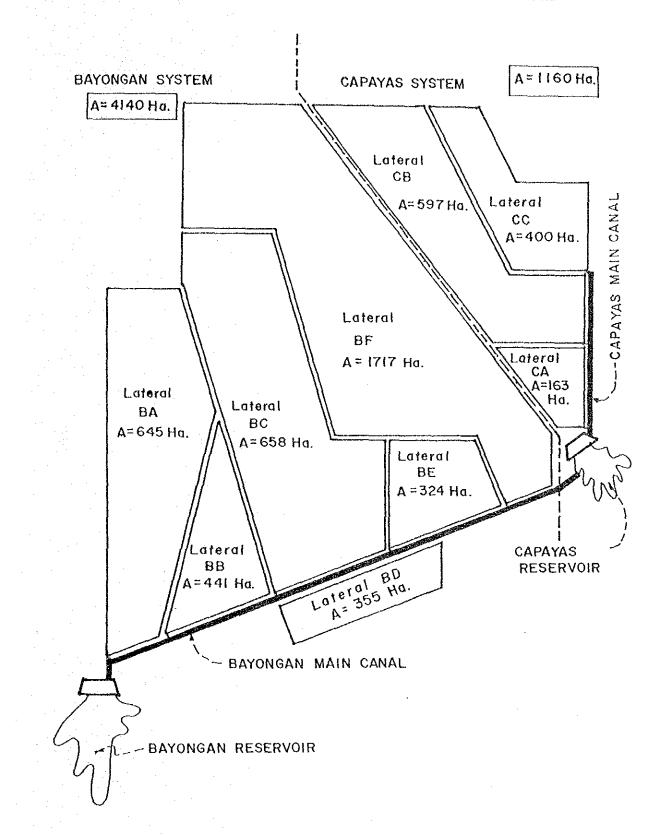



FIGURE H2-2 IRRIGATION SYSTEM IN LATERAL CANAL

ANNEX I. ON-FARM DEVELOPMENT AND WATER MANAGEMENT

CONTENTS

			Page
CHAPTER	ĩ	ON-FARM DEVELOPMENT	I – l
	1.2	Land Development in Hilly Area On-Farm Development Typical Layout for On-Farm Facilities	I - 3
CHAPTER	II	WATER MANAGEMENT	I-10
	~ 1	Water Management Structure	I - 10

2.3

Water Management Practice I-14

.

LIST OF TABLES

· · · · · ·		Page
TABLE 11-1	Summary of On-farm Facilities in Sample	de la composición de
	Area "A"	I-8
TABLE 11-2	Summary of On-farm Facilities in Sample	
	Area "B"	I - 8
TABLE 11-3	Dimension of Diversion Weir for Diversion	1 C
	System Sample Area "B"	1-9

LIST OF FIGURES

FIGURE 11-1	Schimatic Chart for Diversion System of	
	Sample Area "B"	I-9
FIGURE 11-2	Schimatic Organization Chart for Proposed	
	Zone II Office	I-11.

CHAPTER I ON-FARM DEVELOPMENT

1.1 Land Development

a) General

Land development in hilly area is an essential component of the project. Total 3,600 hectares of Class-I land with land slope less than three percent is proposed to be developed to paddy field by the project component, while 1,200 hectares of Class-II land with land slope three to five percent is assumed to be developed to upland farm.

As to the farm development of the Class II land after the project, beneficical farmers would desire to reclaime paddy as following background. In this connection, necessary countermeasures to cope with this possibility should be taken before the project, as it will cause an additional water demand.

- Under the poor land resources and population pressure, farmers in Bohol Island have reclaimed a great number of paddy terraces even on the steep slope so much as irrigation water is avairable.
- Paddy terrace development on the sloped land will be quite attrective for farmers at the standpoint of erosion control of soil and better farm management expected.

- Class-I land of rotation area is not evenly distributed in size to each property lot.

- In case of communal irrigation project, farmers have expanded their paddy terraces by themselves very soon after the water is avairable.
- Voluntary reclamation of land by farmers themselves is never prohibited by NIA.

Demand for additional water supply by farmers to reclamated paddy after the project will be an important subject of Farmers Irrigatars' Associations to be dissolved by themselves. Because, the concern with NIA regarding water scepply will be how to answer irrigation requirement of the system area in exchange for collectible irrigation fee.

I-1

b) Proposed Criteria of Land Development

Paddy reclamation in hilly area will be planned by contour terracing method which is most commonly carried out in such undulated hills as in the project area. The dimension of paddy to be developed by the project is proposed as follows:

- Standard width of terrace will be 20 meters.

- The minimum and maximum widths of terrace will be 10 meters and 30 meters respectively.

- The Maximum length of one plot of paddy will be 100 meters.

- The maximum hight of terrace will be 60 centimeters.

- Side slope of terrace on cut and fill sections will be 1 : 1.

In order to obtain adequate soil depth availrable for crop production, deep plowing by means of heavy equipment will be planned as required.

Proposed paddy land with a large size will be divided into irrigation units with one to one and a half hectares in size in order to make a terminal irrigation unit for rotational irrigation practice. Plot to plot irrigation will be planned within each irrigation unit. Farm turnouts and internal ditches are constructed as required at the expense of beneficial farmers.

As layout of on-farm facilities is influential in figuring the land reclamation plan, the layout of on-farm facilities should be planned in connection with the land development plan. As a rule, a land development plan is more adjustable in the layout of terracing than the routing of on-farm facilities.

Right of way of on-farm facilities should be established prior to the commencement of land development works. The line of right of way shoul be protected so as not to be destroyed by the development works. 1.2 On-Farm Development

a) Design Criteria of On-Farm Facilities

Standard design and design criteria of on-farm facilities are shown in FIGURE OF-3, OF-4 attached to MAIN REPORT and as follows:

Unit discharge:

For irrigation requirement2.183 l/sec/haFor drainage requirement5.61 l/sec/ha

Flow formular :

Mannings' open channel formular is used to determine the ditch elements

Coefficent of roughness :

n = 0.03 for main farm ditch

n = 0.04 for supplementary farm ditch and farm drain

Allowable maximum velocity :

1.0 m/s for farm ditches 0.7 m/s for farm drain

Inside and outside slopes :

1 : 1 for cut section and fill section

Profile slope of ditches :

0.001 for main farm ditch at the minimum

Elements of ditches : unit: cm

Item	MFD	SFD	Farm Draiw
Berm width	40	35	30
Bottom width	40	30	30 min
Free board	15		. 20

Note: Total depth of supplementary farm ditch is determined to be 30 cm.

b) On-Farm Facilities

On-farm facilities are planned based on NIA criteria with regard to on-farm facilities adding some proposed modifications aiming at better water management by farmers' group. The on-farm facilities are outlined as follows:

1) Turnout

The turnout point will be selected along lateral/sub-lateral canals based on the physical condition of rotation area to be convenient to supply water for all rotation units.

When the rotation area extends along lateral canal or a ridge line with long span, the turnout point will be selected around the middle section of rotation area so as to covey water evenly to each rotation units.

2) Main Farm Ditch

The main farm ditch is planned to convey water from the turnout to each supplementary farm ditch through division box. No direct turnout from the main farm ditch to farm lots is designed.

The division box is composed of two wing type checks; one is provided at the head of the supplementary farm ditch and the other is just at the downstream across the main farm ditch.

Two checks are designed to provide a fixed proportional division of flow in accordance with respective size of service area commanded by each check. The standard trapezoidal (Cipolletti) weirs are installed in checks at each overflow section as shown in FIGURE OF-4 attached at MAIN REPORT.

The dimension of two weirs is determined in accordance with the size of each service area. A temporary alternation in diversion rate of flow can be accommodated by means of stop logs, while the permanent correction of diveision flow due to change of service area is accomplised by replacing of corresponding weirs.

3) Supplementary Farm Ditch

The supplementary farm ditches are planned in each rotation area with the purpose of distributing water to farm lots in each rotation area. The route of supplementary farm ditch is selected along ridge line or across the terraces depending on the local conditions. As much as possible, supplementary farm ditch should not be constructed on fill section, but on cut section considering probable erosion problem after the project.

The supplementary farm ditch planned along hilly area will be designed for irrigation only in view of protecting the subgrade from scouring by drainage water.

4) Farm Drains

Farm drains are planned along the present paddy field as required so as to remove excess water from the paddy field. The farm drain can be used for the irrigation purpose of the present paddy field.

5) Farm Road

Farm road is planned for better farm management of the community, and operation and maintainance of on-farm facilities. In this connection, farm road is connected with public road or farm road adjacent to rotation area.

The total width of farm road is assumed to be three meters in view of future requirement for public transportation, machanized farm management and operation and maintainance work of on-farm facilities.

1.3 Typical Layout for On-Farm Development

a) General Description of Sample Areas

Layout of on-farm development was planned at selected two sample areas in the project area based on the topographic maps of 1: 2,000 in scale. One sample area (area "A") commanded by the Capayas system is located at Barangay Tuburan, and the other sample area (area "B") commanded by the Bayongan system is located at Barangay Hambabawran.

1) Sample area "A"

The sample area "A" is extended on the sloped area in which hilly areas and paddy fields are alternated. As the paddy field is branched into four tributaries within the area, the hills in the area is separated into three blocks.

The drainage water through the sample area is concentrated to the paddy fields, and the size of drainage area amounts to 87 hectares at the lowest end of the sample area. However as the drainage system of the area branches into four major tributaries, the drainage water causes less problems in the area.

The route of lateral canal C-B transits across the drainage area about one and a half kilometers in span along the rotation area. The average ground slope of proposed reclamation area is estimated to be two percent.

Although no avairable cadastal map of the rotation area authorized by the Government, the property lines in the rotation area were followed by the field survey. The number of farms in the sample area was 12.

2) Sample Area "B"

The sample area is shaped a head land. Several ridge lines are branched off from the main ridge in the middle to both ways. The area is located at the tail end of lateral canal B-E.

Proposed reclamation area is extended on the hills which have average ground slope of two percent. Paddy fields have been developed on the depressed areas and along narrow depressions which have relatively steep profile slopes.

I - 6

As the sample area had been bought by the Government and sold to farmers after divided into lots, each farm lot is shaped of regular size with 200 by 150 meters length apurtenanted an additional right of way for farm road along one side line of each lot.

Although no available cadastal map was obtained in the field survey, the property lines were followed in the field survey. The number of the property lots related to proposed land development amounts to 27.

b) Layout of On-Farm Facilities

As a result of home works based on the topographic maps, proposed routes of irrigation and drainage ditches are not followed along the property line except only limited sections. On the contrary, proposed farm roads are able to confirm property lines.

Farm lots with relatively large size were divided into irrigation units to have one to one and a half hectares in size. Internal ditches between supplementary farm ditch and the irrigation units were planned as required.

The layouts of on-farm development in two sample area are shown in FIGURE OF-1 and OF-2 attached to MAIN REPORT. And the quantities of on-farm facilities are shown in TABLE I-1 and I-2.

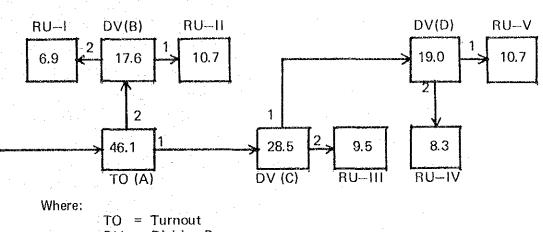
TABLE 11-1

SUMMARY OF ON-FARM FACILITIES IN SAMPLE AREA "A"

			Rot	ation	Unit	
Item	Unit	1	2	3	4	<u>Total</u>
Gross area	ha				n in sea e se Se sea e se	50.6
Irrigated area	ha	7.0	8.8	7.9	5.9	29.6
No. of irrigation un	it unit	6	8	6	6	26
Main farm ditch	m	-	· -	- -	-	510
Supplementary	m	840	330	280	480	1,930
farm ditch		. · · · ·				
Farm drain	m	1,040	270	650	660	2,620
Farm road	m					2,280
Division box	unit]	L I		ĺ.	2
Check and drop	unit	4	1	2	3	10
Road crossing	unit	2	1	2	3	8
					•	

TABLE I1-2

SUMMARY OF ON-FARM FACILITIES IN SAMPLE AREA "B"


			Ro	tation	Unit		
Item	Unit	1	2	3		5	Total
Gross area	ha				· ·		64.4
Irrigated area	ha	6.9	10.6	9.5	8.4	10.7	46.1
No. of irrigation unit	unit	6	8	7	8	9	38
Main farm ditch	m	-	-	· · ·	-	-	720
Supplementary farm ditch	m	210	700	310	450	390	2,060
Farm drain	m	50	100	620	440	350	1,560
Farm road	m					•.	1,520
Division box	unit		1	1		1	3
Check and drop	unit		2	2	3		7
Road crossing	unit	1	3	3	2	5	14

c) Typical Design of Division Box.

In order to materialize the design process of water distribution structure of on-farm facilities, the typical design was carried out at sample area "B". The schimatic chart of the water diversion structure is shown in FIGURE 11-3.

TABLE I1-3 shows the dimension of devision weirs at sample area "B" corresponding to the schimatic chart as shown in FIGURE I1-3.

DV = Division Box

RU-= Rotation Unit - Number

TABLE 11-3 DIMENSION OF DIVERSION WEIR FOR DIVERSION SYSTEM OF SAMPLE AREA "B"

(Unit: ha)

			Number	of Weir
Division box	Item	Unit	1	2
Α	Service area	ha	28.5	17.6
	Length of weir	cm	40.0	24.7
В	Service area	ha	10.7	6.9
	Length of weir	cm	40.0	24.7
· · · · · · · · · · · · · · · · · · ·	Service area	ha	19.0	9.5
	Length of weir	Cm	40.0	20.0
D	Service area	hà	10.7	8.3
	Length of weir	Cm	40.0	31.0

I-9

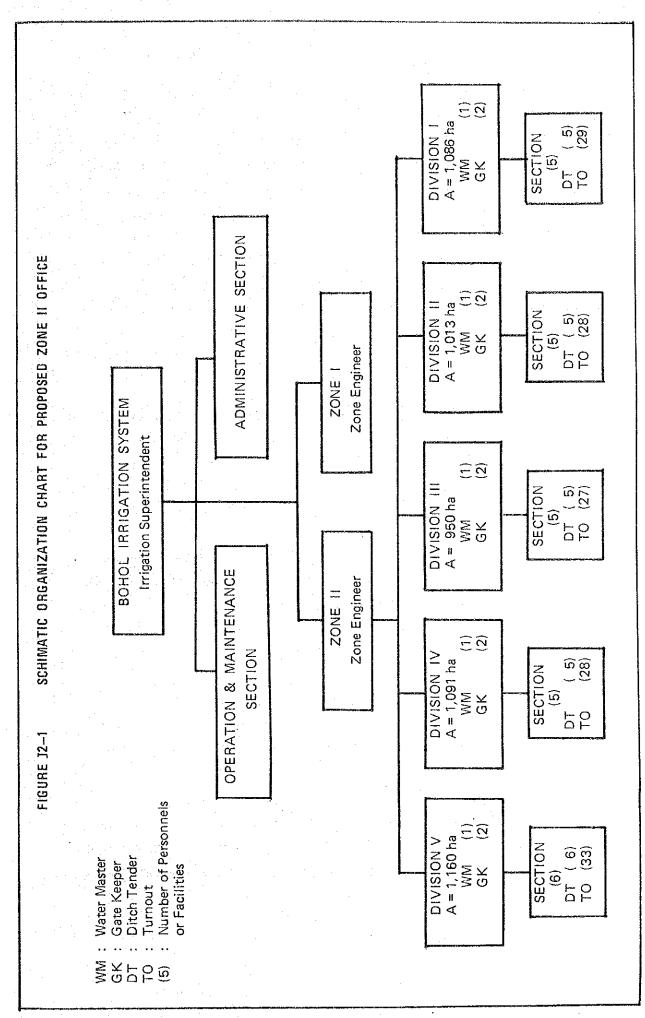
2,1 Water Management Structure

a) General

The Phase II irrigation system will be integrated by the Bohol irrigation system after the Phase II project in accordance with rules and regulations of NIA. Two zone offices will be founded for operation and maintainance of two irrigation systems; one is Zone I for Phase I system, and the other is Zone II for Phase II system. The responsibility for the Bohol irrigation system and Zone I office concerned with Zone II system are as follows:

- Bohol irrigation System:

The irrigation superintendent of Bohol Irrigation System is responsible for operation and management of entire irrigation systems, who will supervise two irrigation systems of Phase I and Phase II through each zone engineer.


~ Zone I Office:

Zone I engineer is responsible for operation and management of Phase I system as well as necessary water management works to deliver surplus water to Phase II system through the Phase I main canal.

b) Structure and Activities of Zone II Office

Zone engineer is responsible for operation and management of Phase II system, who Prepares operation plan, carries out day-to-day water management of major irrigation facilities and supervises water management of lateral/sub-lateral canals through water masters in their operation divisions.

Proposed organization of Zone II office is shown in FIGURE I2-1, and the activities of Zone II office with regard to water management of Phase II system are outlined as follows:

I-11

1) Zone II Office

The operation and maintainance group headed by a zone engineer is responsible for preparation of operation plan, water management of major irrigation facilities as well as reservoir operation. Two groups of gate keepers, one is for the Bayongan system and the other is for the Capayas system, are in charge of water control for two systems of Bayongan and Capayas.

The water management group headed by a supervising water management technologist (SWMT) is responsible for water management of lateral/ sub-lateral canals, who supervises water masters in their operation divisions.

2) Operation Division

The system of Phase II is divided into five operation divisions; each operation division is to be under the direct supervision of water master. NIA will construct working stations of each water master in the middle of the division area in accordance with the regulations and rules of NIA. Average size of the operation division is 1,000 hectares.

Each water master is responsible for operation and management of lateral/sub-lateral canals commanded by his operation division, who directs two gate keepers and five to six ditch tenders. He prepares cropping calender, conducts water distribution works and renders technical advices to Farmer Irrigators' Group regarding water management on on-farm level.

The gate keepers carried out day-to-day water management for lateral canals under the direct supervision of water master in accordance with water distribution schedule.

The organization of the operation division is assumed to be turned over to corresponding Formers Irrigators' Association together with the responsibility for operation and maintainance of lateral/sub-lateral canal in accordance with the present strategy of NIA regarding operation and maintainance of National Irrigation Systems.

I-12

3) Operation Section

The service area of each operation division is divided into operation sections with an average service area of 200 hectares under the direct supervision of each ditch tender. The operation division will be one of the terminal units for irrigated farm management to cooperate with each other.

The operation section will control four to seven rotation areas. Ditch tender will supervise water distribution control for each rotation area through Farmer Irrigators' Groups and renders them necessary technical assistance.

2.2 Operation Plan

a) Cropping Calendar

Cropping calendar of rotation areas is prepared by each water master based on proposed planting area and cropping schedule collected from each Farmer Irrigators' Group. Annual planting date and order of each rotation area within operation section will be shifted intentionally according to timetable.

The cropping calendar of each operation division is formally determind by the Zone II office and transmitted to each Farmer Irrigators' Association through water masters in accordance with operation rule.

b) Operation Plan

Water masters prepare water distribution plan of each rotation area based on the cropping calendar and arrange it at each lateral canal in order to make use distribution guide for day-to-day water management.

Water supply plan from main canal to each lateral is determined by Zone II office in accordance with capacity of stored water in the Bayongan reservoir. The guide line with regard to water supply plan based on the capacity of stored water in the Bayongan reservoir is outlined in Main Report at 4.4.4 Reservoir Operation Rule. Water supply plan based on the guide line is as follows:

- If the capacity of stored water in the Bayongan reservoir is exceeding the volume of guide line, the water supply plan will be fixed up in accordance with the proposed cropping calendar.

On the contrary, when stored water in the reservoir is less than the guide line, the water supply plan will be determined by the discounted rate of water supply evenly to all lateral canal in accordance with the deficit capacity of water in the Bayongan reservoir.

Zone II office will prepare detailed plan for water supply of each lateral canal in accordance with available water. And each water master will arrange water distribution plan in his division to be conformed to the allocated discharge at each lateral canal.

Water supply schedule will be revised time to time by Zone II office based on water balance in the Bayongan reservoir, volume of effective rainfall and demand of irrigation water informed from water master.

2.3. Water Management Practice

a) General

Water resources once stored in the reservoir is delivered to a farm lot through following route of irrigation canals/ditches; main canal, lateral canal, sub-lateral, main farm ditch and supplementary farm ditch. Operation of these canal systems are carried out by NIA and Farmers Organizations.

According to proposed water management rule, structures concerned with operation of those irrigation canals/ditches are as follows:

- Zone II office is responsible for reservoirs and main canals.

Operation divisions are responsible for lateral/sub-lateral canals, however it is to be turned over to respective Farmer Irrigators' Associations.

Main farm ditches are responsible for Farmer Irrigators' Groups.

Supplementary farm ditches are left to Terminal Unit Group.

b) Water Distribution Control

In order to distribute water satisfactorily to all farm lots, adequate water distribution management is required at each irrigation system. In this connection, water control and measurement facilities of each irrigation system are designed to be associated with relative importance of each system.

There are five to six in number of water distribution facilities between reservoir to farm lot. Discharge through these facilities except farm turnout is computed by hydraulic equations from dimension of flow such as sectional area of orifice, water depth, span of flow, differential of water head. Accordingly, flow through these facilities can be obtained by means of table or graph which is specially prepared for the convenience of operation personnel.

The water distribution facilities of respective canal system and dimensions of flow required of water measurement are as follows:

Intake structure of reservoir is provided with sluice gate, discharge through it is obtained from water level of reservoir and sectional area of orifice.

Diversion structure of main canal to lateral canal is provided with Neyrpic orifice module, the division flow is directly measured by total span of flow.

I-15

- Diversion structure of lateral canal to sub-lateral canal is provided with constant head orifice in accordance with NIA standard. Discharge through the orifice is obtained by sectional area of measuring orifice and differential of waterhead through the measuring orifice.
- Turnout of lateral/sub-lateral canal to rotation area is provided with constant head orifice in accordance with NIA standard.
- Division box is used for division of water from main farm ditch to supplementary farm ditch. The division box is provided with no control gate, but is designed to divert flow of main farm ditch into two flows in proportion to the size of each service area.
- Farm ternout is provided along supplementary farm ditch in order to divert water to a farm lot. No measurement facility nor permanent control facilities are provided for farm turnout. The distribution control within rotation unit is conducted by cooperation of beneficial farmers.

c) Water Management of Major Facilities

Water managements of the Bayongan system and the Capayas system are carried out independently so far as the Capayas system has enouth water in the reservoir or from the river. When the Capayas system has insufficient water in the system, necessary water is delivered from the Bayongan reservoir through the Bayongan main canal.

In case the Bayongan system waste water from main canal to the Capayas reservoir is mostly rufused for the Capayas system as far as the reservoir can afford empty capacity in the reservoir. However, as water resources of the Capayas system to be wasted through the Capayas reservoir amount to about 40 percent annually, the empty capacity in the Capayas reservoir should be managed as much as possilbe by operation of the Bayongan reservoir. BY day to day operation, check water level should be kept during operation period and even temporally discontinuance period due to rainfall or other cause. The stored water in canal section is efficient not only to protect canal lining against uplift power, but also to shorten time lag caused at the beginning of operation as well as to decrease waste water due to time lag of operation.

d) Water Management of Lateral System

The most important requirement for water management of lateral canal/sub-lateral canal is to assure Farmers Irrigators' Groups of even water distribution of supplied water from main canal. In this connection systematic water distribution control will be conducted by full time gate operators as proposed before.

As capacity of lateral canal is tapering from the head to terminal end, supplied water from main canal should be distributed correctly in accordance with operation schedule, any misoperation cause of surplus water in the canal span might endanger canal section in the lower rank of span or flooding of rotation area located at the terminal end.

In addition, water balance between operation sections should be maintained at the standpoint of even water distribution as well as canal safty. To this end, proposed water measurement section along canal is selected between two operation sections. The canal check or canal drop located just at the downstream of the terminal turnout of operation section is desirable for the purpose.

e) Water Management for On-Farm Level

Planting schedule of a rotation area is assumed to be carried out simultaneously in all rotation units during the period of five to ten days in accordance with the cropping calendar. Based on the understanding, diversion rate of water at the head of each supplementary farm ditch is determined to be proportional to the size of each service: area. As no water control facilities is provided at each division point, complaint regarding water distribution will be diminished compared with manual control system.

In the course of water management, basic unbalance of water requirement between present paddy field and proposed paddy will be cleared. The excessive water for present paddy could be used of water source for paddy extension within rotation area after formally qualified by the Fermer Irrigators' Association concerned.

As stated above, farm lots will be divided into irrigation unit with one to one and a half hectare in size, more intensive irrigated farming is expected in each irrigation unit. Appropriate water management method of each irrigation unit should be aquired by each farmers themselves.

I-18

ANNEX J. PROJECT IMPLEMENTATION PROGRAM AND COST ESTIMATE

ANNEX J PROJECT IMPLEMENTATION PROGRAM AND COST ESTIMATE

СНАР	TER I	PROJECT IMPLEMENTATION PROGRAM	<u>Page</u> J-1
: • •	1.1	Project Implementation	J-1
		<pre>1.1.1 Executing Agency of the Project 1.1.2 Financing</pre>	J-1 J-1 J-2 J-3 J-4
	1.2	Construction Plan	J6
		 1.2.1 General Construction Method 1.2.2 Construction Method of Bayongan Dam 1.2.3 Construction Method of Capayas Dam 1.2.4 Irrigation and Drainage Canals 1.2.5 On-farm Development Works 1.2.6 Construction Schedule of Civil Works 	J-8 J-11 J-12 J-13
	1.3	Implementation Schedule of the Project	J-14
CHAP	TER II	COST ESTIMATE	J-15
	2,1	Conditions of Cost Estimation	J-15
	2.2	Construction Cost	J-15
		<pre>2.2.1 Basic Rate 2.2.2 Unit Cost 2.2.3 Construction Cost</pre>	J-16
	2.3	Associated Cost	J-16
·.	2.4	Project Cost	J-16
		<pre>2.4.1 Project Cost 2.4.2 Annual Disbursement Schedule</pre>	
	2.5	Operation and Maintenance Cost	J-17
:	2.6	Replacement Cost	J-17
•••	2.7	Pilot Farm Cost	J~17

LIST OF TABLE

	\mathbf{Pa}	ige
TABLE J2-1	Labor Rates (as of 1985) J-	-19
TABLE J2-2	Unit Cost of Construction Material (1) J-	-20
TABLE J2-3	Unit Cost of Construction Material (2) J-	-21
TABLE J2-4	Adopted Proportion of Foreign and Local Component. J-	-22
TABLE J2-5	Hiring Rate and Fuel Consumption J-	-23
TABLE J2-6	Hiring Rate and Fuel Consumption J-	-24
TABLE J2-7	Fuel Consumption of Equipment J-	-25
TABLE J2-8	Major Unit Rate J-	-26
TABLE J2-9	Construction Cost J-	-27
TABLE J2-10	Construction Cost Estimation for Preparatory Work. J-	-28
TABLE J2-11	Construction Cost Estimation for Capayas System J-	-29
TABLE J2-12	Construction Cost Estimation for Bayongan System . J-	-32
TABLE J2-13	On-farm Development Cost Estimation J-	-35
TABLE J2-14	Land Aquistion and Compensation Cost J-	-36
TABLE J2-15	Administration Cost J-	-37
TABLE J2-16	Investigation for Detailed Design J-	-41
TABLE J2-17	Cost for Consulting Service J-	-42
TABLE J2-18	Equipment Cost for O & M J-	-43
TABLE J2-19	Detail Disbursement Schedule J-	-44
TABLE J2-20	Operation and Maintenance J-	-45
TABLE J2-21	Pilot Farm Cost J-	-47

LIST OF FIGURE

FIGURE J2-1 Project Cost Component ..

Page J-18

CHAPTER I PROJECT IMPLEMENTATION PROGRAM

1.1 Project Implementation

1.1.1. Executing Agency of the Project

The excuting agency of the project will be the National Irrigation Administration (NIA), which has a sufficient capability and deep experience in carrying out the detailed design, construction of civil works and operation and maintenace of the completed facilities of the project.

NIA will execute the detailed design for major project facilities recruiting a consulting firm, the construction contracting with a competent contractor and the operation and maintenance guiding the farmer's association.

The organization of NIA is shown in FIGURE 6-1 of Main Report. In this organization, the detailed design works are carried out by the design and speciffication division, construction by the construction division and operation and maintenance by the O/M division.

1.1.2 Financing

The foreign currency portion of the project will be financed by the international financing institute while the local currency portion will be appropriated by the Philippine Government.

1.1.3 Construction Mode

A qualified contractor to construct the civil works of the project will be also selected by the international competitive bidding. The on-farm works except land leveling works will be made by the farmers association newly established in service area under the technical guidance by the NIA O/M division.

Of course some complicated works such as turnout, drop and crossing structers might be constructed by NIA administration to provide

construction equipment and materials except labor force.

The operation and maintenance works of the project facilities will be made directly by NIA O/M staff together with the farmer's association. The NIA will provide necessary equipments of O/M prior to compeletion of the construction works.

1,1.4 Preperatory Works

Preparatory works are composed of survey and investigation works for the detailed design stage and site facilities for administration of the project implementation.

Though the topographical map with scale of 1 : 4,000 covering the whole project area and geological investigations at the proposed dam site which had been provided during the Feasibility Study will be useful.

Therefore, additional survey and investigation works necessary for the detail design will be limited to the items as follows:

	Item	<u>Unit</u>	Quantities
1.	Topographical Survey		
	Bayangan dam profile *	km	4.0
	Capayas dam profile *	km	3.0
	Canal alignment profile	km	160.0
2.	Geological Investigation		
	Core drilling at Bayongan dam	m	100.0
	Core drilling at Capayas dam	m	100.0
	Test pit at Bayongan dam	place	5
	Test pit at Capayas dam	place	5
	Laboratory test of dam material	L.S	1
	Corn penetration test at canal	place	150
	Sand & gravel test	L.S	1

Note: * Survey works of both dams including dam, spillway and intake axis profile.

The site facilities for the project administration will be completed by NIA before commencement of the project construction and consist of the following buildings.

	and the second	
Item	<u>Unit</u>	Quantities
Main office	sq∙m	400
Staff residence	sq•m	800
Guest house	sq∙m	200
Equipment warehouse	sq⋅m	200
Office supplies and		
furnitures	L.S	1

1.1.5 Administration Office

The organization of NIA office is proposed as shown in FIGURE 6-2 of Main Report, taking into consideration administrative and engineering works at the project site office during construction period. Machinery and equipments for the administration are as follows:

<u>Item</u> <u>l</u>	Jnit	Quantities
Jeep type of vehicles	Nos	6
Motorcycle	<u>†1</u>	6
Theodrite	11	2
Level	11	2
Current meter	н	2
Radio set	н	1
Walkie-Tolie	n	10
Automatic rain gauge	If	1
Personal computer	"	1

1.1.6 Consulting services

Consulting services including local experts are required for the detailed design and construction supervision as well as bid evaluation. The total man-months for foreign and local experts are shown as follows:

			· -	
Expert	Foreign <u>Man-Month</u>	Local Man-Month	Total <u>Man-Month</u>	NIA Staff <u>Man-Month</u>
1. Detailed design stage	· ·	- 	int 	•
Project director	1		1	-
Project Manager	12	-	12	
Dam engrs.	10	6	16	10
Irrigation engrs.	10	6	16	10
On farm development engrs.	-	4	4	20
Hydrologist	4	_	4	3
Hydraulic structure engrs.	10	6	16	10
Engineering geologist	3		. 3	5
Soil mechanist	3	·;	3	5
Mechanical engr.	3	-	3	-
Topo-Surveyor	-	<u>-</u> *		25
Cost estimator	3	· - ·	3	3
Specification specialist	4	-	4	4
Specialist as required	5	3	8	-
Home support engr.	2		2	-
Total	70	25	95	95
2. Construction supervision stag	je		:	
Project director	2		2	
Resident engr.	36	, - .	36	
Design engr.	8	4	12	н. Н
Dam engr.	30	18	48	
Canal engr.	-	36	36	
Mechanical engr.	4		4	
Tender Evaluation Expert	3	· · · - · · ·	3	•
Specialist as required	4	2	6	
Home support engr.	3	· · -	3	
Total	90	60	150	

1.1.7 Land Acquisition and Compensation

Land aquisition in the reservoir and along the canal alignment will be undertaken by NIA before starting of construction works.

The detail is shown as follows:

Item	<u>Unit</u>	Quantities
1. Bayogan system		
(1) Bayogan reservoir		
Mountain area	ha	36
Waste area	, B. A.	145
Coconuts area	ti	43
Paddy fields	17	34
Up-land	*1	92
Residential house	houses	30
Housing site	ha	30
(2) Canal system		
Wast area	ha	10
Cultural area	17	85
(3) Resettlment	family	30
	-	
2. Capayas system		
(1) Capayas reservoir		
Mountain area	ha	20
Waste area	11	80
(2) Canal system		
Waste area	ha	3
Cultivated area	n	23
		- -

1.2 Construction Plan

1.2.1 General Construction Method

a) Temporary works

The contractor's camp office, access road, tentative diversion of the river for dam construction, provision of borrow area, drainage during construction etc., will be made as temporary works by the contractor.

b) Working hours and days

The construction works are planned to be carried out one shift with net working hour of 6.5 hr/day and 25 working day/month except the embankment and fill of earth works which will be carried out with 15 to 20 working days per month due to suspension by rainfall.

c) Available Construction Material at Site

i) Earth material in Capayas Dam

The Capayas dam is planned with a homogeneous earth type dam and requires the embankment volume of about 230,000 cu.m. The embankment earth materials are mostly collected from the borrow area near dam axis and with a transporting distance less than 200 m and are selected from the excavated materials of dam foundation, spillway and intake structures.

ii) Earth Material in Bayongan Dam

The Bayongan dam is planned with a center core type earth dam and requires the impervious core materials of about 274,000 cu.m. This embankment materials are collected form the borrow area located at hilley area with elevation of 40 to 60 m in the left bank of dam site. The material is easily taken by bulldozer pushing along the slope and transported to the embankment site within a distance of about 300 m. The material in borrow area has a high field moisture content due to high ground water level, so that trenches along the slope of borrow area should be provided during construction period to make ground water level lower and get optimum field moisture content for core material.

iii) Filter Material in Both Dams

Filter materials are consisting of sand and gravel with a designed grain size distribution. This material is not found near both damsited of Capayas and Bayongan, but at place along the Hinlayagan river 9 km far from both damsites.

The deposit of sand and gravel materials in the river is extending over 3 km long and 30 m wide, and will be sufficient for the embankment of filter zones with total volume of about 99,000 cu.m combining both dams.

iv) Shell Material in Bayongan Dam

The shell material in the Bayongan dam is found at the borrow area located at the upstream hilly area and 2 km far from the damsite. This material consisting of weathered rock, sand and gravel including silt and clay materials and most suitable for the shell embankment material having a function of semipervious zone. This semi-pervious material is used for both shell zones on the upstream and the downstream.

The exacavated material from dam foundation, spillway and intake structures will be also available for the downstream shell zone mixing with semi-pervious material taken from the borrow area as mentioned in the above.

v) Rock Material

Rock material is used for the riprap on the upstream slope and also for the toe embankment at the downstream dam.

The rock material should be hard and solid to protect dams from errosion in the reservoir and to fullfil a function to release seepage water through dambody smoothly at the por-

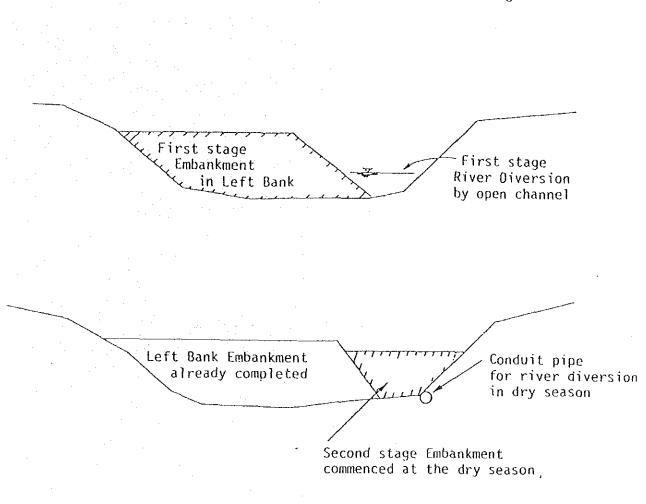
tion, so that the rock material should be collected from the Dagohoy quarry site.

Since the Capayas dam is of small scale as compared with the

Bayongan dam the riprap material and the toe material are not required so hard and solid. The riprap material is expected to be taken from the quarry site near the damsite and the toe material from the borrow area having a coarse random material at the upstream.

vi) Concrete Aggregate

Concrete aggregate material such as sand and gravel is collected at the deposited area of the Hinlayagan river, where the filter material is also taken.


- vii) Embankment Material of Canal The excavated material in canal is sufficiently available for the embankment material.
- 1.2.2 Construction Method of Bayongan Dam
 - a) Work Volume

The work volume of the Bayongan dam construction is as follows.

		· · · · · · · · · · · · · · · · · · ·
Stripping	72,000	cu.m.
Trench Excavation	31,000	cu.m.
Dam Embankment	1,126,000	cu.m.
Spillway Excavation	80,000	cu.m.
Spillway Concrete	1,800	cu.m.
Intake Tunnel	320	m.
Intake Excavation	27,000	cu.m.
Intake Concrete	1,000	cu.m.
Gate & Valve Installation	L.S.	

b) Dam Embankment Works

Dam embankment is made for core, filter and shell zone after stripping of all dam foundation and excavation of core trench. The dam embankment is commenced at the left bank diverting river water at the right bank with an open channel and then the right bank embankment should be performed in the dry year diverting a small discharge into the conduit pipe installed in

the foundation of right bank as shown in the following FIGURE.

The embankment material is transported from each borrow area and compacted under the following criteria;

Zone	Spreading <u>Thickness</u>	Number of <u>Pass</u>	Compaction Equipment
Core	20 cm	8	Tamping Roller 8-10 Ton
Filter	30 cm	5	Vibrating Roller 3-5 Ton
Shell	30 cm	5	-ditto- 8-10 Ton

The embankment progress is planned as follows ;

	Embankment	Performance	Construction
Zone	Volume	<u>Per Month</u>	Period
Core	274,000 (cu.m)	8,000 (cu.m/month)	32 (month)
Filter	98,000 (cu.m)	3,500 (cu.m/month)	28 (month)
Shell	760,000 (cu.m)	30,000 (cu.m/month)	24 (month)

The performance of embankment works are planned as follows ;

· . ·	Distance fro	m Performonce
Zone	Borrow Area	<u>Per Month</u>
· · · ·		
Core	500 m	70 cu.m/hrx7.0hr/dayx22 days = 10,000 cu.m
Filter	9,000 m	20 cu.m/hrx7.0hr/dayx25 days = 3,500 cu.m
Shell	2,000 m	90 cu.m/hrx7.0hr/dayx25 days x2 units

= 30,000 cu.m

c) Spillway Works

The spillway works in the Bayongan dam is of a scale with excavation of 80,000 cu.m and concrete of 1,800 cu.m and can be carried out at any time without any interruption of the other works such as dam embankment and intake structure works.

The concrete works will be made at the section of chute and overflow weir separately and with the concrete mixing plant provided at the weir site and the concrete pump. The concrete conveying pipe of concrete pump is installed along the chute of spillway.

d) Intake Works

The intake works are consisting of tunnel with a section area of 9.5 sq.m and intake works placing the gate and valve at the right abutment slope. Construction period will be about one year.

The following construction schedule is considered :

works		<u>1</u> <u>2</u>	34	56	78	9 10) 11	12
Excavat	tion 320m	<u> </u>		<u> </u>				
Invert	Concrete 320m	9 - 1 - F		<u> </u>				
Area &	Side Concrete 32	Om			Ē	***		

The intake works consisting of the inclined concrete base where spindles of gate are placed and intake structure where gates are installed will be made in parallel with the tunnel works or a little later than tunnel works.

The gate itself will be installed at the end of dam construction stage before storaging water in the reservoir. 'The detailed construction schedule is shown in FIGURE 6-3 of Main Report.

1.2.3 Construction Method of Capayas Dam

a) Work Volume

The work volume of the Capayas dam construction is as follow:

Stripping	36,000	cu.m
Trench Excavation	16,000	cu.m
Dam Embankment Volume	233,000	cu.m
Spilway Excavation	26,000	cu.m
Spilway Concrete	2,600	cu,m
Intake Excavation	9,500	cu.m
Intake Concrete	850	cu.m
Outlet Gate	L.S	

b) Dam Embankment

A homogeneous earthfill type dam is designed so that any available material from the borrow area located in the upstream of reservoir can be used.

After providing the river diversion with an open channel at the right bank and completion of excavation, the embankment is commenced from the river bed section. The dam embankment criteria are the same as mentioned in the Bayongan dam.

The section of both side banks except the river bed is emban-

ked with only 5 to 10 m height as the dike, so that this section embankment can be made at any time.

c) Spillway and Intake Structures

The construction works of spillway and intake structures can be made in parallel with the embankment works. The only river diversion provided at the right bank should be made at the beginning stage of construction.

- 1.2.4 Irrigation and Drainage Canals
 - a) Work Volume

The work volume of irrigation and drainage canals is calculated as follows:

. •	Item	Bayo	ngan system	<u>Capayas system</u>	<u>Total</u>
(1)	Main Irrigation	Canal	• * * · · ·		·
	Stripping (cu	•m)	9,500	5,700	15,200
	Excavation (cu	.m) · ·	271,300	8,400	279,700
	Embankment (cu	.m)	12,000	7,400	19,400
	Concrete Lining	(cu.m)	11,900	1,500	13,400
	Struc. concrete	(cu.m)	600	100	700
	Gate (pl	ace)	22	4	26
(2)	Lateral Irrigat	ion Canal	an a	· · · · · · · · · · · · · · · · · · ·	
	Stripping (cu	.m)	60,500	27,300	87,800
	Excavation (cu	.m)	172,100	26,800	198,900
	Embankment (cu	.m)	132,000	74,100	206,100
	Struc.Concrete(cu.m)	2,000	600	2,600
	Turnout Gate (p & Division	lace)	179	47	226
(3)	Drainage Canal				•
	Excavation (cu	.m)	18,500	24,500	43,000
	Embankment (cu	.m)	500	300	800
	Reinforced Conc	rete (cu.	n) 2,000	500	2,500
	Grouted Masonry	(cu.m)	700	200	900
1.1					

b) Canal Works

The most of canal alignment is located at the top of hill with a flat area, so that excavation and fill of earth works are only made by bulldozer without any transportation such as dump truck. The concrete lining works are made by dividing into several working sections and placed by the mixer with small capacity for each section.

1.2.5 On-farm Development Works

a) Work Volume

Two model areas of 200 ha in total were selected for the typical design of on-farm works in the project area. On the basis of the results of this design, the work volume of on-farm works is estimated. The on-farm works consists of land leveling, farm roads, farm ditches, drains and its related structures. Required areas of on-farm works are tabulated below:

	Item	<u>Bayogan</u> system	<u>Capayas system</u>	<u>Total</u>
1.	Land leveling works(h	a) 2,910	690	3,600
2.	On-farm works (ha)	4.140	1.160	5,300

b) Land Leveling

Land leveling including plowing of cutting portion is made using the bulldozer for the existing upland field and grass land having a slope of 2 % on the average.

c) On-farm Facilities

These works will be carried out by the farmer's association under administration of the NIA office.

1.2.6 Construction Schedule of Civil Works

The construction schedule of Phase II project will be determined taking into consideration construction schedule of Phase I, since irrigation water is delivered to the proposed Bayongan reservoir through the main canal constructed during phase I of the project.

The construction works of Phase II will be commenced one year before the completion of construction work in Phase I of the project.

The construction of the Capayas system will be finished with construction period of about one year, because the Capayas service area would be developed as model agriculture area in early stage of the Phase II project.

The Bayongan system will be completed within three years from the beginning of the construction stage.

The summary of construction schedule is shown in FIGURE 6-3 of Main Report.

1.3 Implementation Schedule of the Project

The construction of the major works will be commenced from about three years after completion of the Feasibility Study taking into consideration the loan procedures, detailed design and tendering for contract.

The construction of major works will be completed within about one and a half years for the Capayas system and about three years for the Bayongan system.

The on-farm works will be commenced in parallel with the major works to supply the water immediately after completion of the major works.

The implementation program for the project is shown in FIGURE 6-4 of Main Report.

CHAPTER II COST ESTIMATION

2.1 Conditions of Cost Estimation

The project cost is estimated under the following conditions.

(1) The civil works are constructed on the contract basis.

The construction machinery and equipment required for construction will be provided by the contractors. Therefore, only depreciation costs of machinery and equipment are included to the estimated project cost.

- (2) The project cost is composed of construction cost and associated cost. Components of the project cost are shown in FIGURE J2-1.
- (3) The exchange rate between Philippine Pesos and U.S.Dollar; U.S. \$ 1.00 = 18.0 Philippines Pesos
- (4) The physical contigency related to the construction and associated cost is set at 15 % of the direct cost. The price contigency is assumed as follow.

· ·		(unit: %)
Year	Foreign Currency	Local Convency
• •		
1986	9.0	20.0
1987	9.0	20.0
1988	9.0	15.0
1989	7.5	10.0
1990	6.0	8.0
1991	6.0	8.0
1992	6.0	8.0

2.2 Construction Cost

2.2.1 Basic Rate

The basic rate of labor, material and construction equipment is estimated in the prevailing rate in the Philippines. Detailed basic rate is shown in TABLE J2-1 through J2-7.

2.2.2 Unit Cost

Unit cost of construction work is calculated, according to the proporsed work items which are designed by construction method since the construction is made on the contract basis, the overhead of 25 % against the unit rate is considered. Summerized unit cost is shown in TABLE J2-8 and detailed data are shown in Data book of the Report.

2.2.3 Construction Cost

The construction cost is divided into the foreign and local currency portions. The local currency portion is estimated on the basis of the current prices in Manila as of May,1985 and the foreign currency portion is estimated on the CIF prices at Manila. Construction cost is estimated based on unit cost for individual working items. The summary is shown TABLE J2-9 and breakdown is shown in TABLE J2-10 to J2-13.

2.3 Associated Cost

Associated cost is composed of five items, such as on-farm development cost, land acquisition & compensation cost, engineering & administration cost, 0 & M equipment cost and pilot farm cost.

Breakdown of each item is shown in TABLE J2-14 to J2-18.

2.4 Project Cost

2.4.1 Project Cost

The project cost is estimated at \cancel{V} 659 million of which \cancel{V} 401 millon is foreign currency and \cancel{V} 258 million is local currency. The summary of the project cost is shown in Main Report TABLE 5-5.

2.4.2 Annual Disbursement Schedule

The annual disbursement schedule is estimated on the basis of the project inplementation schedule, and the summary is as follows:

Annua	l Disbursement	Program	
		· . (unit:1000 ₽)
<u>Year</u>	<u>F/C</u>	L/C	<u>Total</u>
1987	25,300	7,800	33,100
1988	10,100	10,100	20,200
1989	83,200	59,600	142,800
1990	110,500	73,000	183,500
1991	128,000	80,800	208,800
1992	43,900	26,700	70,600
Total	401,000	258,000	659,000

Details are shown in TABLE J2-19.

2.5 Operation and Maintenance Cost

The operation and maintenace cost annualy required for the project is composed of the salaries of 0 & M organization staff and the cost of operation and maintenance of 0 & M equipment and facilities. The operation and maintenance cost is estimated at \not 592 per ha. Breakdown of 0 & M cost is shown in TABLE J2-20.

2.6 Replacement Cost

Some of the facilities, especially mechanical works have shorter useful life than the project life and require replacement within the project useful life. The following table shows the useful life and replacement costs of the mechanical works.

	· .	(unit: 1000 ₽)
<u>Item</u>	<u>Useful Life</u>	Replacement Cost
Gate	25 years	3,854
0 & M equipmen	t 10 years	7,100

2.7 Pilot Farm Cost

Cost of pilot farm constructed in the Capayas service area is estimated at \cancel{P} 3,800,000. Detailed breakdown is shown in TABLE J2-21.

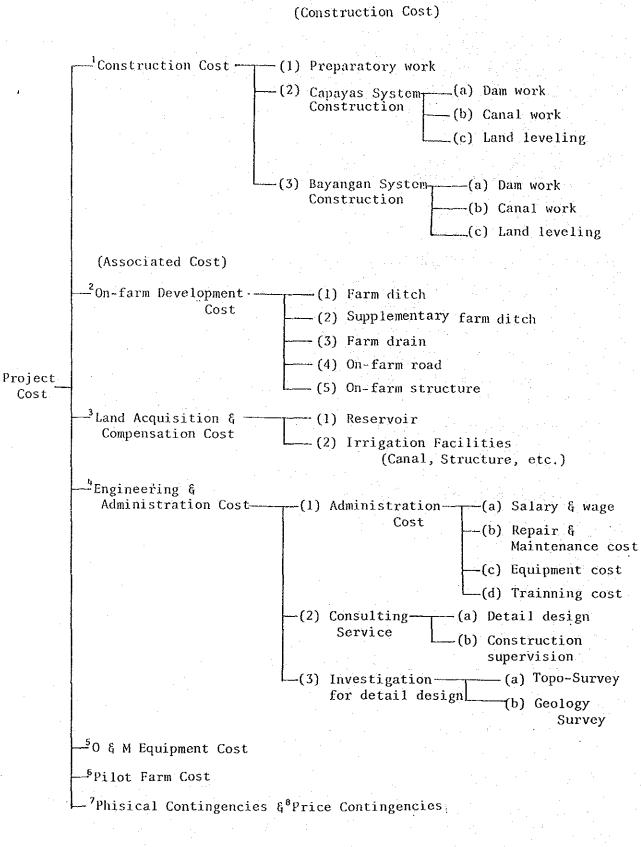


FIGURE J2-1 PROJECT COST COMPONENT

TABLE J2-1 LABOUR RATES (as of 1985)

	Rates/Day
Laborer	50,00
Skilled-Laborer	58.00
General Foreman	84.00
Carpenter	65.00
SR Carpenter	74.00
Head, Carpenter	79.00
SR Mason	69,00
Head, Mason	74.00
Steelman	65.00
Head, Steelman	74.00
Welder	65,00
C.E. AIDE	65.00
Driver, (Light Equipment)	65.00
Driver, (Heavy Equipment)	74.00
Driver, (General)	69,00
Mechanic	65.00
Master Mechanic	74.00
Electrician	65.00
Driller	74.00
Blaster	178.00
Plumber	61.00
Batch plant	65.00
Watchman	58.00
Janitor	50.00
Surveyor	97.00

		Total	Compor	ient-	Unit C	Unit:) ost
Description	Unit	Unit Cost	F.C	L.C	F.C	L.C
teinforced Bar	kg	10.5	80	20	8.5	2.0
ail, Bolt and Nut	kg	18.0	80	20	14.5	3.5
pecial Gasoline	l	9.0	80	20	7.5	1.5
asolin	ł	8.5	80	20	7.0	1.5
Diesel	£	6.5	80	20	5.5	1.0
ubricating Oil	R	30.0	80	20	24.0	6.0
Cement (1 Bag 0.40 kg)	Bag	50.0	60	40	30.0	20.0
einforced Concrete Pipe (1")		an an taon taon taon taon taon taon taon				
ø450 (18")	p.c.	360.0	60	40	215.0	145.0
ø600 (24 ¹¹)	p.c.	400.0	60	40	240.0	160.0
ø750 (30'')	p.c.	500.0	60	40	300.0	200.0
ø900 (36'')	0.c.	650.0	60	40	390.0	260.0
ø1000	p.c.	an a	60	40		
ø1300	p.c.	900.0	60	40	540.0	360.0
oncrete Hollow Block	11.1	n an an an an Arrange. An an an Arrange an Arr				
4' x 8' x 16'	p.c.	3.0	60	40	2.0	1.0
6' x 8' x 16'	p.c.	4.0	60	40	2.5	1.5
lasting (Dynamite	kg	32.0	80	20	26.0	6.0
laterial E A.N.F.O	kg	30.0	80	20	24.0	6.0
E Detanator	p.c.	21.0	80	20	17.0	4.0
E Fuse	m	10.5	80	20	8.5	2.0
umber	bd.ft*	8.0	0	100	0	8.0
lywood 1/4 x 4 x 8	p.c.	68.0	0	100	0	68.0
$1/2 \times 4 \times 8$	p.c.	145.0	0	100	¹ · · · · 0	145.0
od	m ²	1.2	0	100	ын а то <mark>о</mark> то	1.2

TABLE J2-2 UNIT COST OF CONSTRUCTION MATERIAL (1)

* 1 bd.ft x 1.0 feet x 1.0 feet x 10 inch x 0.0023 cu.m

TABLE J2-3 UNIT COST OF CONSTRUCTION MATERIAL (2)

				- Un	it;₿
Description	Unit	Total	Comporner		t Cost
Description	01110	<u>Unit Cost</u>	F.C: L.C.	F.C.	L.C.
Drilling { Rod	 p.c.	1,103.00	80 20	883.0	220.0
Bid	р.с.	1,545.00	80 20	1,236.0	309.
E Sleaves	p.c.	625.00	80 20	500.0	125.
Small Gate					
600 x 600mm	p.c.	3,800.00	80 20	3,040.0	760.
800 x 800mm	p.c.	4,400.00	80 20	3,520.0	880.
1200 x 1200mm	p.c.	12,000.00	80 20	9,600.0	2,400.
1600 x 1400mm	p.c.	16,000.00	·80 20	12,800.0	3,200.
1600 x 1600mm	p.c.	17,000.00	80 20	13,600.0	3,400.
H-Beam	kg	18.00	80 20	15.0	3.
L-Beam	kg	13.00	80 20	11.0	2.

. .

LAND ACQUISITION AND COMPENSATION COST

					ι	lnit;₽
		Total	Compornent		Unit Cost	
Description	Unit	Unit Cost	F.C.	L.C.	F.C.	L.C.
Mauntain Area	ha	4,000	0	100	0	4,000.0
Waste Area	ha	6,000	0	100	0	6,000.0
Cultivated Area	ha	10,000	0	100	0	10,000.0
Housing	1 house	20,000	0	100	0	20,000.0
Housing Site	1 house	2,400	0	100	0	2,400.0
Resettlement Cost (Hauling charge and allowance)	l family	6,000	0	100	0	6,000.0

TABLE J2-4 ADOPTED PROPORTION OF FOREIGN AND LOCAL COMPORNENT

	Description	Foreign Compornent	Local Compornent
1.	Cement	60 ^(%)	40 ^(%)
2.	Reinforced Bar	80	20
3.	Fuel and Oil	80	20
4.	Equipment for Construction	80	20
5.	Equipment for Agriculture	70	30
6.	Truck & vehicle	70	30
7.	Blasting Materials	80	20
8.	Steel Gate & Steel Structure	80	20
9.	Lumber	0	100
10,	Labour	0	100
11.	Land Acquisition and Compensation		100
12.	Taxes and Bonding Charges	0	100
13.	Contractors Profit	50	50
•			

The source: Tariff and Customs Code 1982 Vol 1

TABLE J2-5 HIRING RATE AND FUEL CONSUMPTION (Per Hr)

	· .		Capital	Hiring	Equipmen	nt Rate	Fuel
Fquipment			Cost	Rate	F/C	L/C	Con- sumption
			x1000	x0,001		······	(१)
Bulldozer	21t	200 p.s.	1,997	0.345	550	140	21
Bulldozer (with Rippo	er) 21t	200 p.s.	2,220	0.353	630	160	21
Bulldozer	15t	150 p.s.	1,268	0,345	350	90	16
Bulldozer	11t	108 p.s.	977	0.345	270	70	11
Bulldozer	8t	86 p.s.	746	0.433	260	70	9
Backhoe shovel	1.0^{m^3}	175 p.s.	2,614	0,292	610	150	19
Backhoe shovel	0.6 ^{m³}	108 p.s.	1,440	0.292	* 340	80	12
Backhoe shovel	0.35 ^{m³}	78 p.s.	951	0.308	230	60	9
Wheel loader	1,70 ^{m³}		1,020	0.374	310	80	8
Wheel loader	1,20 ^{m³}		617	0.374	190	50	6
Tunnel muck loader	0.35 ^{m³}	\$	1,097	0.450	400	100	
Dump truck	llt	314 p.s.	690	0.303	170	40	11
Dump truck	4t	160 p.s.	243	0.385	80	20	6
Truck	6.5t	175 p.s.	294	0.361	90	20	6
Truck	4.5t	164 p.s.	229	0.385	70	20	6
Water Lorry	4t	155 p.s.	373	0.336	100	30	6
Truck crane	15t	230 p.s.	1,808	0.239	350	90	9
Truck crane	20t	230 p.s.	2,031	0.239	390	100	9
Road Roller	8~10t	90 p.s.	518	0,355	150	40	6
Vibrating Roller	8~10t	105 p.s.	1,123	0.479	430	110	11
	3~5t [.]	23 p.s.	. 310	0.479	120	30	3
Tamping Roller	8~15t		523	0.321	130	30	
Tamping Roller	3~ 5t	_	223	0.321	60	10	
Motor Grader	1. = 2.511	76 p.s.	740	0.356	210	50	5
Motor Grader	L = 3.1H	110 p.s.	883	0.356	250	60	7

TABLE J2-6 HIRING RATE AND FUEL CONSUNPTION (Per hr or Day)

	· · · ·					Unit:	Y
			Capital	Hiring	Equipment	Rate	Fuel
Equipment		ar an Thair an	Cost	Rate	F/C	L/C	Con- sumption
Compressor	10.5m³/mii	(per day) 1 105 p.s.	321 ^{×1000}	2.500 ^{x0.00}	⁾¹ 640	160	26 ^{2/day}
Compressor	7.Om ³ /min	(per day) 75 p.s. (per day)	243	2,500	490	120	191
Compressor	9.5m³/min	(per day) 46 p.s. (per day)	124	2,500	250	60	12"
Compressor	20m³/min	28 p.s. (per day)	103	2.500	206	52	.7"
Generator	15 kw	22 p.s. (per day)	75	2,231	1 30	30	6"
Generator	45 kw	58 p.s. (per day)	222	1,987	350	90	15 ¹¹
Generator	75 kw	93 p.s. (per day)	250	1.987	400	100	23"
Generator 1	00 kw	120 p.s. (per day)	351	1,987	560	140	30"
Drainage pump ø80m/m	H-10M	2.2 kw (per day)	12	3.194	30	10	
Drainage pump \$110m/m	H-20M	ll kw (per day)	35	3,194	90	20	
Furbin pump ø100m/m	- - -	7.5 kw (per day)	37	3.194	90	20	
later pump ∮50m/m	ta an	1.7 kw (per day)	14	3,750	42	11	1. P.
ater pump ø100m/m		3.7 kw (per day)	15	3.750	50	10	· · .
later pump ǿ150m/m	9 /min	7.5 kw (per day)	22	3.750	66	17	· ·
routing pump 15 ~ 34	0~7	2.2 kw (per day)	44	3.648	130	30	
routing mixer 2001		5.5 kw	37	3.648	110	30	
Concrete plant 0.5m ³	26m ³ /h	4.1 kw (per day)	817	0.463	300	80	
Concrete mixer 0.5m ³		3.5 kw	817	0.463	300	80	
Concrete pump car 20 p		80 p.s.	814	0.413	270	70	6
fruck mixer 3.0 m ³		220 p.s.	529	0.360	150	40	8
Crawler Drill (10m cla		· · ·	618	0.479	240	60	:
land Rammer 20kg (per	4		15	4.808	60	10	at a
Drifter for tunnel 30	~ •		20	4.808	80	20	·.· · ·
lassifier 105cm x 75	· ·	3.7 kw	697	0.210	120	30	
	x 480	22 kw	599	0.225	110	30	•
Belt conveyer 45cm x	15m	2.2 kw (per day)	114	0.230	20	10	
ibrator 45 m/m	•	5.0 p.s.	13	4.028	40	10	1
ater pipe 100m/m			0.3	2:713	0.7	0.2	
ggregate Hopper			34	2.639	72	18	

TABLE J2-7FUEL CONSUMPTION OF EQUIPMENT (Per Hr)

Equipment	Fuel Consumption
Bulldozer	0.105 (l/p.s./hr)
Backhoe	0.110
Wheel Loader	0.080
Dump Truck	0.035
Fruck	0.036
Motor Grader	0.067
Road Roller	0.065
Vibrating Roller	0.109
Concrete Pump Car	0.072
Water Lorry	0.036
Truck Crane	0.040
Other Equipment	0.050

J-25

1.1

		<u> </u>	payas S	vstem		nit : P yangan	
Description of works	Unit	B/C	L/C	Total		1./C	Total
					<u></u>		
Dam Construction			<u> </u>	21	22	9	71
. Stripping	cu.m	15	6			1	31
. Earth excavation in trench & intake	u []		8	27	25	10	35
. Soft Rock Excavation in Trench & Intake	t 4	- 35	15	50	45	18	63
. Earth Excavation in Spillway	.11	19	8	27	40	16	S6
. Soft Rock Excavation in Spillway	11	35	15	50	64	25	. 89
. Core material transportation	щ	-	-	· · ·	25	10	35
. " compaction		-		-	17	7	24
. Shell material transportation	11 			-	27	11	38
" compaction			-	<u> </u>	11	4	15
. Filter material transportation	, H	67	26	• 93	67	26	93
. " compaction	. **	15	. 7	22	15	7	22
. Riprap material transportation	. <u>1</u>	102	42	144	102	42	144
" compaction	. 61	6	2	8	6	2	8
. Earth material transportation	**	17	7	24	· · ·	· · -	
. " compaction	11	12	5	17		-	
. Toe Material excavation &	14	19	7	26	11 - 14 1	-	· -
transportation	- -		÷			an a	
. ¹¹ Compaction	11	10	5	15			· · ·
. Tunnel excavation of Intake	ч		· -	- .	436	221	657
. Tunnel steel Support	set	· _	1		3,694	1,358	5,057
. Tunnel Concrete canal	cu.m	-	-	- 3	1,172	783	1,955
. Tunnel Grout	cu.m	· . ~		. -	1,796	776	1,572
. Drilling of Grout Holes	hole	· _	· -	<u>ئ</u>	55	34	- 89
. Intake concrete (class A)	cu.m	741	696	1,437.	735	677	1,412
. Spillway concrete (")	с і	741	696	1,437	731	629	1,360
Canal Construction							
. Stripping	cu.m	.6	. 2	8	6	2	ŧ
. Canal Excavation		29	13	42	29	13	4
. Excavation at side borrow area	1 4 ·	8	3	11	8	3	. 1
. Canal fill compaction	. 1	16	8	24	16	. 8	24
. Back fill at canal	11	13	. 7	20	13	. 7	20
. Lining concrete	17	834	576	1,410	834	576	1,410
. Structure concrete	11	92.4	1,174	-2,098		1,174	2,09
· Structure Concrete		541		2,000		-,	
On-farm Construction							
. Farm Ditch (16.2m/ha)	ha	421	218	639	421	218	639
. Supplementary Farm Ditch (50.9m/ha)	1 1	1,170	\$33	1,703	1,170	533	1,70
. Farm Drain (14.1m/ha)	. 11	127	62	189	127	. 62	189
. Farm Road (46.2m /ha)	••	369	180	549	369	180	545
. On-farm Structures	••	471	309	780	471	309	780
. Land leveling		2,820	1,097	3,917	2,820	1,097	3,91
Deep plawing	••	581	195	776	581	195	770
. Ridge Preparation		760	476	1,226	760	476	1,220
Common Unite Rate			· .				
. Rainforced Bar	t	11,119	4,337	15 451	11 110	A 77-	10 40
 A set of the set of		22		15,456	1 - E	1. I.	15,450
. Back Fill	cu.m	22	9	31	22	9	31
	J-26	1.1			6 A.		

TABLE J2-8 MAJOR UNIT RATE

.

		TABLE J2-9		CONSTRUCTION COST	N COST				
						· · · · · · · ·		(Unit : P'000)	(000)
	ů	Capayas System	E	<i>в</i>	Bayongan System	tem		Total	
Description	F/C	L/C	Total	F/C	L/C	Total	F/C	L/C	Total
Preparatory Work	200	400	006	1,500	1,500	2,800	2,000	1,700	5,700
Temporary work	861	487	1,348	10,600	4,460	15,060	11,461	4,947	16,408
- Dam	8,963	3,695	12,658	57,431	23,052	80,483	66, 394	26,747	93,141
- Spillway	5,250	3,095	8,345	7,239	3,508	10,747	12,489	6,603	19,092
- Intake	1,826	1,023	2,849	5,830	2,780	8,610	7,656	5,803	11,459
Sub Total	16,900	8,300	25,200	81,100	33,800	114,900	98,000	42,100	140,100
Canal Work					•				
- Temporary work	204	172	376	505	534	1,437	1,107	706	1,813
- Main Canal	2,871	1,386	4,257	24,007	12,724	36,731	26,878	14,110	40,988
- Lateral Canal	4,312	2,188	6,500	14,881	8,014	22,895	19,193	10,202	29,395
- Drainage Canal	1,313	854	2,167	.2,909	2,428	5,337	4,222	3,282	7,504
Sub Total	8,700	4,600	13, 300	42,700	23,700	66,400	51,400	28,300	79,700
On-Farm									·
- Land Leveling	3,000	1,300	4, 300	12,700	5,400	18,100	IS, 700	6,700	22,400
Total	29,100	14,600	43,700	138,000	64,200	202,200	167,100	78,800	245,900

TABLE J2-9 CONSTRUCTION COST

Remarks 800 1,600 600 200 400 Total Amount (p*000) L/C 320 240 640 400 80 F/C 480 960 360 120 1 2,000 3,000 1,000 400 2,000 Total Unit Rate L/C 1,200 800 800 400 400 F/C 1,200 1,200 1,800 . 600 Quantity 400 800 200 200 sq.m sq.m sq. n Unit sq.m L.S Facilities for Construction Supervision Equipment warehouse Description of Item . Staff Residence . Guest House Preparatory works . Main Office . Furniture

TABLE J2-10 CONSTRUCTION COST ESTIMATION FOR PREPARATORY WORK

J-28

Total

3,600)

1,680

(1,920

	14	3)x0.05	 		· · · · · · · · · · · · · · · · · · ·		
	Remarks	{ 1 + 2 +					
ĒM)) Total	1,348 1,348	756 270 300	7,749 366	2,477 2,477 33 603 12,658)	567 250 3,737 2,627 720 8,345 8,345	230 50 113 1,222 851
YAS SYSTEM	Amount (P1000	487 487	216 80 90	2,268	30 717 10 176 176 3,695	168 75 14 14 737 144 144 3,095	2 2 2 4 1 5 8 2 3 5 4 1 5 8 3 3 2 7 9 9 7 8
FOR CAPA	Amo F/C	861 861	540 190 210	5,481 258	1,760 23 427 (8,963	399 175 1,927 1,890 1,890 250 (5,250	162 35 71 630 612
LIMATION	Total		27 27 27	04 di	152 152 41	27 50 31 1,437 15,456 2,000	27 50 51,451 1,451 1,451 1,457
COST ES1	it Rate L/C		\$\$ \$ \$		44 5 74 4 75	8 15 896 4,337 400	4 15 73 75 75 75 75 75 75 75 75 75 75 75 75 75
CONSTRUCTION COST ESTIMATION FOR CAPAYAS	E/C		505 11 11 11	56 70 11 56	108 108 29	19 30 741 11,119 1,600	19 35 22 914 741 119
	Quantity		36,000 10,000	189,000 21,500	16, 300 800	21,000 5,000 1,500 2,600 360	8,500 1,000 1,000 850 55
TABLE J2-11(1)	Unit	н 	er no cr m	= = :	= = =	cu.m Ton sq.m	си. н си. н си. н си. н сол
TAB	on of Item		ų,	it by Excavated	ent cment (5%)	on vation A (S%)	ition ccavation δe φ 1300mm iss A Sar
	Description	 Capayas Dam (1) Temporary works Sub Total 	<pre>(2) Dam works Stripping Earth Excavation Cort Provision</pre>	Earth Embankment Earth Embankment by Excavated Material	Filter Embankment Riprap Embankment Toe Rock Embankment Miscellaneous (5% Sub Total	<pre>(3) Spillway Earth Excavation Soft Rock Excavation Backfill Concrete Class A Rainforced Bar Bridge Miscellaneous (5%) Sub Total</pre>	 (4) Intake Earth Excavation Soft Rock Excavation Backfill Concrete pipe φ 1500mm Concrete Class A Rainforced Bar

TABLE J2-11(2) CONSTRUCTION COST ESTIMATION FOR CAPAYAS SYSTEM

F/C 49,040 66 29 16 24 23 23 23 324 324	777 777 2 13 8 11 9	817 817 355 355 355 355 355 355 355 355 355 35	F/C F/C (1,87 87 87 ((16,900 ((16,900 (16,900 (16,900 (16,900 (16,900 (16,900 (16,900 (16,900 (16,900 (16,900 (16,900 (16,900 (16,900) 24 (1,82 (1,82 (1,82 (1,82 (1,82) (CC L/C L/C L/C L/C L/C L/C L/C 264 1 2526 1,023 326 1,023 900 8,300 8,300 8,300 8,300 8,300 8,300 8,300 8,300 8,300 8,300 8,300 8,300 8,100 96 48 15	Total 50 2,849) 25,200)) 376) 376) 355 144	Remarks (5 + 6 + 7)x2%
49,040 6 6 26 24 24 24 24 324 924		817 8817 8817 812 812 812 812 812 812 812 812 812 817 817 817 817 817 817 817 817 817 817	49 (1,826 ((16,900 ((16,900 204 (204 34 244 36 34 2		50 136 2,849) 25,200)) 376) 376) 144 144	► + \$
11 119 119 119 119 119 119	م با ه ا ه با ه ا	2 3 3 4 7 8 2 1 0 4 8 2 1 0 4 8	87 87 87 87 87 204 (16,900 (204 244 34 34 25 34	N N	136 2,849) 25,200)) 376) 376) 144 144 149	►
11 119 119 119 119 119 119	ر با ۳۵ م ۱۳۵۱ م	2 4 2 2 8 8 4 2 8 9 1 0 1 0 1 0	((16,900 204 34 34 34 2 2	 N 1 	25,200)) 376) 376) 355 144 49	۲ ب ب
11 119 119 119 119 119 119 119 119 119	م با ه ا ه با ه ا	3 3 2 4 8 3 3 5 4 8 3 5 4 8	2000 2000 2000 2000 2000 2000 2000 200	172 172 109 15	376 376 353 144 49	r + \$
22 16 11 119 119 119 119	2 2 8 1 8 1 1 8 1 8 1 1 8 1 8 1 1 8 1 8	4 2 2 4 8 2 4 2 8 4 0 1 2 4 8	、 202 202 202 202 202 202 202 202 202 20	172 172 112 109 15	376 376 353 353 144 49	 ► ↓ ↓ ↓ ↓ ↓
26 24 24 24 24 24 22 24 22 24 21 11 11	2 2 2 2 7 5 7 5 5 5 5 5 5 5 5 5 5 5 5 5	8 35 31 31 31 31 31 32 31 31 31 31 31 31 31 31 31 31 31 31 31) 00 00 00 00 00 00 00 00 00 00 00 00 00	172 11 109 15	144 49 49	< ► ►
6 16 22 832 832 924 111119	2 2 2 2 1 3 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5	42 835 35 35 35	ы 14 14 10 10 10 10 10 10 10 10 10 10 10 10 10	101 109 158 158	35 35 144 49	· · · · · ·
6 16 24 22 834 924 11 119	12 12 12 12 12 12 12 12 12 12 12 12 12 1	42 31 35 10 10 10 10 10 10 10 10 10 10 10 10 10	88 84 84 80 84 80 84 80 84 80 84 80 84 80 84 80 84 80 84 80 84 80 80 80 80 80 80 80 80 80 80 80 80 80	11 109 158 158	353 353 144 49	
29 16 24 22 834 924 1119	11 °13	42 335 42 35 42 24 24 24 24 24 24 24 24 24 24 24 24	244 96 34 2	109 48 15	353 144 49	
16 24 23 834 924 11,119	° ដី ទំ	24 35 31 31	96 34 2	15	144 49	
24 22 834 924 11-119	ii o j	35 31 710	34	15	49	
22 834 924 11.119	ດ	31	64			
834 924 11.119		017	•	₽~ € `		
924 11.119) + F + F + F	1,284	887	2,171	
	1,1,4 1,277	2,098	74	71 X 	204 26	
	•		ער מ חייני חייני			
100	1 2 4 7 7 7 7	2000 ° 4	1 1 1 1	† 0 † ¥	125	•
, N	, n	201	285	00	16	
319	144	463	64	29	93	
352	163	515	35	16	51	
616	2.74	890	62	27	83	
1	ľ		542-	28	570	
3,125	781	3,906	13	m	16	
•	• •			66	203	
			· ·	1,386	4,257.)	2
•	i.			-		
و	5	20	162	54	216	
29	Ч	42	754	338	1 092	
16 74	° =	24 75	520	160 794	480	
		0 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	2 4 6 6 6 2 4 4 6 7 1 1 8 2 1 2 1 1 8 2 1 2 1 1 8 2 1 2 2 1 2 1	6 6 29 13 24 11 35 1 24 11 35 1	157 6 2 8 162 1, 29 16 13 29 13 24 754 1, 296 1, 296	157 157 66 4, 6 2 8 162 54 1, 29 13 42 754 538 1, 26 13 42 754 538 1, 29 13 42 754 538 1, 24 11 35 1,296 594 1,

Remarks S 2,703 536 852 209 4,300)) 42,800))) 13,300)) 6,500 2,167 326 133 Total 1.55 46 675 586 629 124 217 104 CONSTRUCTION COST ESTIMATION FOR CAPAYAS SYSTEM Amount (7'000) 131 195 293 101 104 2,188 287 352 352 87 87 41 4,600 854 757 135 328 80 49 1,300 14,200 117 27 11 L/C 92 33 35 35 35 35 35 29 55 106 45 205 (4,312 1,946 401 524 129 ((3,000 641 7 277 89 150 106 (1,313 ((8,700 (((28,500 F/C 42 31 2,098 15,456 1,088 515 2,098 15,456 1,088 135 10 10 463 515 3,906 4,340 Total 3,917 776 1,236 ъ 144 163 781 868 1,174 4,337 457 163 1,174 437 1,097 195 476 δ S S S L/C Unit Rate 22 924 11,119 651 96 29 22 924 11,119 651 352 319 352 3,125 3,125 2,820 581 760 F/C 5,000 5,000 58,500 700 300 Quantity 300 300 200 300 690 690 100 22,100 TABLE J2-11(3). ц 4 134 Ton sq.m ш.н си.н Unit set. ha ha Description of Item Structural concrete Reinforced Bar Grouted Riprap RC-pipe ø600mm Miscellaneous 5% Sub Total Structural concrete Miscellaneous (5%) Deep plawing Ridge preparation Miscellaneous 5% Drainage Canal Earth Excavation Backfill Reinforced Bar Grouted Riprap Grand Total Sodding RC-pipe \$450 " \$600 Gate 0.5x1.0 0.7x1.0 Land Leveling Gravel Paving Sub Total 3. Land Leveling Total Backfill Tota1 Ð ł

							· · · ·			
Descrintion of Item	lhit	Ouantitv	Unit	t Rate		Amount	unt () 1000)		Remarks	
	2	(F/C	L/C	Total	F/C	L/C	Total	CV TOTICA	
										1.
1. Dam Works				•		c			ר פ ר	Ļ
(1) jemporary works Sub Total						(10,600	4,400	15,060)	(+ + + +) XU.	4
(2) Dom Mowles						•	•	• • •		۰.
Celetan Voice	E E	72 000	22	σ	12	1 5,84	64.8	, 1 1	• •	•
Earth Excavation	= ;;;	19,000	25	n OI	20 F	475	190	5, 10 665		
Soft Rock Excavation	11	12,000	4S	18	63	540	216	756		
Core Embankment	F	274,000	42	17	59		<u>ہ</u>	6,16		
Filter Embankment	τ.	98,000	82	33	115	. n		1,27		
Up Stream Shell Embankment		432,000	38	15	53		- T	22,896	•	
Down Stream Shell from	Ŧ	219,000	38	15	53	8,32	. ^с ,	1,60		
Dam Borrow site		•				•		•		
Down Stream Shell by	:	56,000	11	4	15	616	224	840		
Excavated Material	•	•								
Riprap Embankment	, E	40,000	108	44	152	4,320	1,760	6,080		•
Toe Rock Embankment	F	2,000	29	12	41	232	96	328 (
Sodding	sq.m	33,000	ю	ŝ	10	165	165	330		
Miscellaneous 10%	I	•				ி	2,096	•		
Sub Total						4	02	80,483)		
(3) Spillway		ی ۹۰ م ۹				1. 1.		ہ جی ا		
Earth Excavation	cu.m	56,000	40	. 16	56	24	896	•	•	. *
Soft Rock Excavation		24,000	64	25	89	5.5	600	2,136		•
Backfill	÷	2,000	. 22	ġ.	31	44	18			
Structural Concrete, Class A	÷	1,800	731	629	-	1,316	1,132	2,448	-	
Reinforced Bar	Ton	117	11,119	4,337	15,456	1,301	507	1,808	· · ·	*
bridge	SQ.B	06	۰,	400		144	36	180	•	
Miscellaneous 10%	L.S				- ". - "	30				
Sub Total		•			•	(7,239	3,508	10,747)	2	
(4) Intake										
Earth Excavation	cu.m	16,000	25	10	35	400	160	560		. •
Soft Rock Excavation	•	11,000	45	8	63	495	198	693		•
Backfill	, I 1	1,000	. 22	<u></u> б.	31	22	თ	31		
Tunnel Excavation	:	2,500	436	221		060°T	55 2 2 2 3	1,643		•
Tunnel Support	set	267	3,694	1,358		986	363	•		•
Structural Concrete Class A	cu.m.	160	735	677	•	118	108	226		
Tunnel concrete		850		776	r~1	687	660	1,337		
Reinforced Bar	Ton	. 66	11,119	4,337	•	734	286	62		•

TABLE J2-12(1) CONSTRUCTION COST ESTIMATION FOR BAYONGAN SYSTEM

TABLE J2-12(2) CONSTRUCTION COST ESTIMATION FOR BAYONGAN SYSTEM

(4+5+6)x0.02 Remarks ŀĄ 114,900)) 8,610.) 1,437) 1,749. 36,731 39 167 28 183 391 12,138 7,228 3,144 S 540 I,479 Total 276 840 180 232 1,695 484 16,77 Amount (P'000) L/C 2,780 253 33,800 100 534 470 90 72 747 296 19 3,757 92 5 6,854 48 131 156 606 12,724 121 2,237 1,048 'n 67 81 100 179 400 179 530 (903 (5,830 184 370 370 584 584 160 160 363 4,991 2,096 ((81,100 57 8,381 9,925 .,183 .,614 ,143 F/C 24,007 50,980 91,240 27,917 10,000 68 1.955 1,410 2,098 15,456 1,088 135 463 15,653 1,600 2 4 0 2 4 0 Total 3242 54 783 1,960 1,960 2,085 2,000 3,145 320 576 1,174 4,337 144 0 M 00 39 437 r/c Unit Rate 1,172 49,020 89,280 25,852 8,000 12,503 1,280 11,119 16 29 16 ы N 96 319 651 F/C 11 300 4,000 18,000 500 Quantity 60,500 172,100 131,000 9,500 289,000 11,500 500 430 85 ŝ 2 15 924 11,900 403 Holes cu. n sq.m u.n sq.m set set r.S ۳. ۳. ۲. ສ. ກິ Unit L.S Ton set set ÷ Ξ = ÷ Stripping Earth Excavatíon Fill by Excavated Material Fill by Excavated Material Tunnel Grouting Clossure Gate 2.8x2.2m Intake Gate 0.9x0.9m Outlet Plag by Stop Log Description of Item Structural Concrete Reinforced Bar Grouted Riprap Tunnel Grout Hole Miscellaneous 10% Sub Total Miscellaneous 5% Earth Excavation 1.5x1.5 Lining Concrete Sodding R.C. Pipe Ø250 Canal Works
 Temporary works Control House Gravel Paving Lateral Canal Sub Total Distributor (2) Main Canal Stripping Backfill Total Bridge Gate છ

TABLE J2-12(3) CONSTRUCTION COST ESTIMATION FOR BAYONGAN SYSTEM

Remarks (((,,005,921))) 18,100)) 66,400)) 11, 398 2, 258 3, 597 847 5,337 1,091 762 258 778 16 L, 220 464 476 247 2,727 Total 979 602 47 3,645 Amount (P*000) 62,900 187 5,400 1,526 152 393 1,053 610 306 2,428 23,700 382 8,014 1,526 152 3,192 567 1,385 1,385 ъ В 49 241 82 1.16 C L 8,206, 1,691 2,212 2,212 (((136,600 1,201 389 586 2,592 610 415 537 456 139 (.(42,700 ((12,700 317 381 198 709 1,201 389 176 (2,909 (14,881 Ц F/C 3,917 776 1,226 31 2,098 15,456 1,088 1,088 2,098 15,456 1,088 515 Total 10 463 515 5,906 4,340 31 31 1,174 4,337 437 39 144 163 781 868 1,174 4,337 437 163 1,097 195 476 9 13 r/C Unit Rate 29 22 924 11,119 651 352 22 924 11,119 651 96 2,820 581 760 319 352 3,125 3,472 F/C Quantity 27,000 122,000 1,300 1,300 122 122 18,500 500 1,300 35 700 500 2,910 2,910 1,500 1,300 35 Unit cu.m cu.m sq.m m.uo cu.m Ton Ton set E : = = E ца г : Description of Item Structural Concrete Reinforced Bar Structural Concrete Miscellaneous 5% Ridge Preparation Miscellaneous 5% Miscellaneous 5% (4) Drainage Canal Earth Excavation Grouted Riprap R.C. Pipe \$600 R.C. Pipe \$450 ø600 Reinforced Bar Grouted Riprap Grand Total Land Leveling Deep Plawing Gravel Paving Gate 0.5x1.0 " 0.7x1.0 Land Leveling Sub Total Sub Total Backfill Total Sodding Backfill Total F ы.