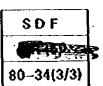
Republic of the Philippines

Feasibility Study for Manila-Bataan Coastal Road and its Related Roads (C-5 & C-6) Project


FINAL REPORT

Vol. IV: Appendix

March, 1980

Japan International Cooperation Agency

Government of the Philippines
Counterpart Study Team

Republic of the Philippines

Feasibility Study for Manila-Bataan Coastal Road and its Related Roads (C-5 & C-6) Project

FINAL REPORT

Vol. IV: Appendix

March, 1980

Japan International
Cooperation Agency

Government of the Philippines
Counterpart Study Team

APPENDIXES FOR VOLUME I

App.	No.	Table/Fig. No.	Title	Page
PART	II - (CHAPTER 2		
App.	I-1	Table II-2-1	POPULATION AND EMPLOYMENT BY ZONE 1979, 1980, 1990 AND 2000	Ap-1
App.	1-2	Fig. II-2-1	DISTRIBUTION OF INDUSTRIAL LAND USE	Ap-4
App.	1-3	Fig. 11-2-2	INDUSTRIAL DEVELOPMENT 1960-1975	Ap-S
App.	I-4	Fig. II-2-3	DISTRIBUTION OF COMMERCIAL LAND USE	Ap-6
App.	I-5	F1g. 11-2-4	COMMERCIAL DEVELOPMENT 1960-1975	Ap-7
App.	1-6	Fig. 11-2-5	ABILITY TO AFFORD HOUSING BY FAMILY INCOME (1972)	Ap-8
App.	I-7	Fig. 11-2-6	HOUSING QUALITY IN METRO MANILA	Ap-9
App.	I-8	Fig. 11-2-7	EXISTING LAND USE IN THE INFLUENCE AREA	Ap-10
App.	1-9	Fig. 11-2-8	LAND USE ZONING	Ap-11
App.	I-10	Table II-2-2	SUMMARY OF ZONING PLAN FOR METRO MANILA	Ap-12
App.	I-11	Fig. 11-2-9	MAJOR DEVELOPMENT PROJECTS IN METRO MANILA	.Ap-13
PART	III -	CHAPTER 2		
App.	I-12	Fig. III-2-1	NEW ESTABLISHMENTS DEVELOPED IN 1967-1979	Ap-14
App.	I-13	Fig. 111-2-2	LAND UTILIZATION IN DIRECT INFLUENCE ZONE, 1979	_
PART	III -	CHAPTER 3	-	
			TRAFFIC ON ROADS IN THE PROJECT AREA	Ap-16
App.	1-15	Table III-3-2		_
App.	1-16	Table 111-3-3	CHANGES OF DAILY TRAFFIC VOLUME, 1978	-
App.	I-17	Table III-3-4	SAMPLED NUMBER OF VEHICLES IN OD INTERVIEW	Ap-19
App.	I-18	Table III-3-5	AVERAGE NUMBER OF PASSENGERS PER VEHICLE	_
App.	1-19	Table III-3-6	TRIP-PURPOSE DISTRIBUTION OF PASSENGER CARS	•

Арр.		No.	<u>Title</u>	Page
App.	I~20		FUEL USE IN SAMPLED NUMBER OF VEHICLES AND AVERAGE LOADING WEIGHT IN TONS	Ap-21
App.	I-21		MAJOR COMMODITIES CARRIED	- · · ·
			TRIP-LENGTH DISTRIBUTION	•
			ZONING FOR TRAFFIC STUDY	_
PART	III -	CHAPTER 4		
App.	1-24	Table III-4-1	COMMODITIES CARRIED BY TRUCKS	Ap-24
App.	1-25	Table III-4-2	TRANSFORMATION OF SECTORAL STRUCTURE, 1976-2000	Ap-24
App.	1-26	Table III-4-3	NET DOMESTIC PRODUCT BY INDUSTRIAL ORIGIN, CY 1976-1978	Ap-25
App.	I-27	Table III-4-4	GENERATED TRIPS FROM THE RECLAIMED AREAS	Ap-26
App.	I-28	Table III-4-5	TRAFFIC GENERATION QUESTIONNAIRE	Ap-27
App.	I-29	Fig. 111-4-1	GENERATED TRIPS AND THE AREA OF FACTORY	Ap-28
PART	111 -	CHAPTER 6		
App.	1-30	Fig. III-6-1	INTERCHANGE AT MCARTHUR	Ap-29
App.	I-31	Fig. III-6-2	JUNCTION AT MALINTA INTERSECTION	
PART	III -	CHAPTER 7		
App.	I-32	Fig. III-7-1		
App.	1-33	Fig. III-7-2	(CRESTS) LENGTH OF VERTICAL CURVE	-
Ann	T_3/	Fig. 111-7-3	(SAG)	
		Fig. 111-7-4		Ap-32
vbb.	1-39	11g. 111-7-4	DESIGN CAPACITY OF WEAVING SECTION	Ap-32
App.	I-36	Fig. III-7-5	ESTIMATED TRAFFIC FLOWS AT INTERSECTION IN 1998	
App.	1-37	Fig. 111-7-6	INTERSECTION PLAN (A)	=
App.	1-38	Fig. 111-7-7	INTERSECTION PLAN (B)	
App.	1-39	Fig. 111-7-8		•
App.	I-40	Fig. 111-7-9		-

App. No.	Table/Fig.	Title	Page
App. 1-41	Fig. III-7-10	C-6/MANILA NORTH EXPRESSWAY INTERCHANGE ALTERNATIVE - A	
App. 1-42	Fig. 111-7-11	C-6/MANILA NORTH EXPRESSWAY INTERCHANGE ALTERNATIVE - B	
App. 1-43	Fig. 111-7-12	COASTAL ROAD/C-5 INTERCHANGE ALTERNATIVE - A	
App. 1-44	Fig. III-7-13	COASTAL ROAD/C-5 INTERCHANGE ALTERNATIVE - B	Ap-40
App. 1-45	Fig. 111-7-14	COASTAL ROAD/C-5 INTERCHANGE ALTERNATIVE - C	-
App. 1-46	Fig. 111-7-15	BOREHOLE LOCATION PLAN	-
App. 1-47	Fig. III-7-16	SOIL PROFILE, BH-1 - BH-004	Ap-43
App. 1-48	Fig. 111-7-17	COMPARATIVE ANALYSIS OF BRIDGE TYPE CROSSING NAVOTAS WATERWAY	Ap-44
App. 1-49	Table III-7-1	LIST OF BRIDGES AND CULVERTS TO BE CONSTRUCTED	Ap-45
App. 1-50	Fig. III-7-18	RAINPALL INTENSITY DURATION CURVE FOR MANILA, PHILIPPINES, YEARS OF RECORD 1907-1972	Ap-47
App. 1-51	Fig. 111-7-19	DAILY RAINFALL PROBABILITY MIA STATION	Ap-48
Арр. 1-52	Fig. III-7-20	PROFILE OF WATERWAY AND THE HEAD LOSS (BACKWATER) OF 100 M WIDE WATERWAY AT THE EXTENSION OF THE NAVOTAS RIVER	Ap~49
App. I-53	Fig. 111-7-21	DRAINAGE AREAS OF MEYCAWAYAN RIVER SYSTEM	_
App. 1-54	Fig. III-7-22	PLAN AND DISCHARGES OF MEYCAWAYAN RIVER	-
App. I-55	Fig. III-7-23	LONGITUDINAL PROFILE ALONG THE BULACAN - MEYCAWAYAN RIVER	_
App. 1-56	Fig. III-7-24	PLAN AND PROFILE OF DAMPALIT	
App. 1-57	Fig. 111-7-25	PLAN AND PROFILE OF POLO RIVER	-
	Fig. 111-7-26	PLAN OF THE TRIBUTARIES OF MEYCAWAYAN RIVER	-
PART III -	- CHAPTER 8		
App. 1-59		ENVIRONMENTAL STUDIES	Ap-56
PART III -	CHAPTER 9		
App. 1-60		UNIT PRICE ANALYSIS	An-100

App. No.	Table/Fig. No.	Title	Page
PART III -	CHAPTER 10		
App. 1-61		VEHICLE OPERATING COST	Ap-147
App. 1-62		TIME VALUE OF PASSENGERS	Ap-160
Арр. 1-63		dl AND dt METHODS (APPLICATION OF BASIC TRAFFIC COSTS ON THE PROJECT ROADS)	Ap-160
App. 1-64	Table III-10-1	EXTERNAL TRANSACTION ACCOUNTS	Ap-165
App. 1-65	Table III-10-2	GENERAL GOVERNMENT INCOME	Ap-165
App. 1-66	Table III-10-3	REVENUE OF BUREAU OF CUSTOMS	Ap-166
App. I-67	Table III-10-4	COST-BENEFIT ANALYSIS TABLES	Ap-167
PART IV -	CHAPTER 2		
App. I-68	Table IV-2-1	ACTUAL DOMESTIC CONSUMPTION OF ENERGY	Ap-169
App. I-69	Table IV-2-2	PETROLEUM PRODUCT CONSUMPTION BY PRODUCT TYPE	Ap-169
App. I-70	Table IV-2-3	CONSUMPTION OF PETROLEUM PRODUCTS, 1973	Ap-169
App. I-71	Table IV-2-4	REFINED OIL STORAGE FACILITY IN METRO MANILA, 1978	Ap-169
App. I-72	Table IV-2-5	ESTIMATED GROWTH RATES OF STEEL CONSUMPTION	Ap-170
App. 1-73	Table IV-2-6	ESTIMATE OF STEEL CONSUMPTION INCREASE BASED ON SECTOR SHARES (IN MANILA AND THE REST OF LUZON)	Ap-170
App. I-74	Table 1V-2-7	EXISTING SHIPYARD BY NATURE OF OPERATION, PHILIPPINES, 1974	٠
App. 1-75	Table IV-2-8	CAPACITY OF SHIPYARDS PHILIPPINES, 1974	
App. 1-76	Table IV-2-9	AN ANNUAL GROWTH RATE OF FLEET	
App. I-77	Table 1V-2-10	THE PHILIPPINE FLEET, 1967-1974	Ap-171
Арр. 1-78	Table IV-2-11	BREAKDOWN OF EXISTING FACILITIES ACCORDING TO GEOGRAPHICAL LOCATION AND NATURE OF OPERATION	
Арр. 1-79	Table IV-2-12	NUMBER OF REGISTERED MOTOR VEHICLES IN METRO HANILA, 1971-1975	-
App. 1-80	Table 1V-2-13	TRANSPORT, STORAGE AND COM- MUNICATION ESTABLISHMENT BY	An-172

1	M.	Table/Fig.	ma. •	
		No.	Title	<u>Page</u>
App.	1-81	Table IV-2-14	ESTIMATED SOLID WASTE GENERATION IN METRO MANILA (1978)	Ap~172
App.	1-82	Table IV-2-15	COMPOSITION OF SOLID WASTES FROM VARIOUS CITIES	Ap-173
App.	I-83	Table IV-2-16	COLLECTION AND DISPOSAL OF SOLID WASTE IN METRO MANILA	Ap~173
App.	1-84	Fig. IV-2-1	LOCATION OF TRUCKING COMPANIES IN METRO MANILA	_
PART	IV -	CHAPTER 3		
App.	I-85	Table 1V-3-1	WEATHER INFORMATION IN MANILA	Ap-175
App.	1-86	Fig. IV-3-1	PROBABLE SOIL PROFILE (I)	Ap-176
App.	I-87	Fig. IV-3-2	PROBABLE SOIL PROFILE (II)	Ap-177
App.	1-88	Fig. IV-3-3	GEOLOGICAL HAP SHOWING MANILA-BATAAN ROAD AND C-5 & C-6 ROADS	Ap-178
App.	1-89	Fig. IV-3-4	RELATION OF S-WIDTH TO SEA DEPTR	=
App.	1-90	Fig. IV-3-5	RELATION OF S-WIDTH TO RECLAMATION COST	-
PART	1V - (CHAPTER 4		
App.	1-91	Fig. 1V-4-1	INDUSTRIAL LAND REQUIREMENT IN METRO MANILA	Ap-181
PART	IV - c	CHAPTER 5		
App.	1-92	Table IV-5-1	ALLOCATED LAND IN THE RECLAMATION AREA BY SECTOR	Ap-182
App.	I-93	Table IV-5-2	PROJECTED ANNUAL REQUIREMENT/PRODUCTION BY SECTOR, 1990	
App.	1-94	Table 1V-5-3	LAND USE ALLOCATION	
App.	1-95	Fig. 1V-5-1	TYPICAL RESIDENTIAL AREA	_
App.	1-96	Fig. 1V-5-2	GENERAL LAYOUT OF PROCESSING FACTORY	_
App.	I-97	Fig. 1V-5-3	GENERAL LAYOUT OF OIL TANK PARM AREA	-
App.	1-98	Fig. IV-5-4	COMMODITIES DISTRIBUTION CENTER	
App.	1-99	Fig. 1V-5-5	GENERAL LAYOUT OF TRUCK TERMINAL	-
App.	I-100	Fig. 1V-5-6	GENERAL DESIGN OF COMMUNITY PARK	
App.	I-101	Fig. IV-5-7	ROAD NETWORK ALTERNATIVES	
App.	1-102	Fig. IV-5-8	LOCATION OF MAJOR ROAD JUNCTIONS ALTERNATIVE A	-
Арр.	1-103	Fig. 1V-5-9	LOCATION OF MAJOR ROAD JUNCTIONS ALTERNATIVE B	

ADD.	No.		e/Fig.	Tit <u>le</u>	Page
		-	IV-5-10	WATER SUPPLY SYSTEM	
		-	IV-5-11	SEWAGE SYSTEM	
		•	IV-5-12	STORM DRAINAGE SYSTEM	
• -		-	IV-5-13	ELECTRIC POWER DISTRIBUTION	vb-ran
••				SYSTEM	Ap-197
App.	I-108	Fig.	IV-5-14	TELECOMMUNICATION SYSTEM	Ap-198
PART	IV - C	CHAPTE	ER 6		
App.	I-109	Fig.	IV-6-1	LAND FORM OF RECLAIMED AREA	Ap-199
App.	1-110	Fig.	IV-6-2	LOCATION OF BOREHOLES	
App.	I-111	Fig.	IV-6-3	SOIL PROPILES	
App.	I-112	Fig.	IV-6-4	SIEVE ANALYSIS OF BORROW PIT SOIL	Ap-202
App.	I-113	Fig.	IV-6-5	SOIL PROPERTIES	
App.	I-114	Fig.	IV-6-6	SOIL PROPERTIES	
App.	I-115	Fig.	1V-6-7	SOIL PROPERTIES	Ap-205
App.	1-116	Fig.	IV-6-8	AVERAGE CONSOLIDATION LOAD VS. Cv	Ap-206
App.	I-117	Fig.	1 V- 6-9	PINISHED GROUND LEVEL VS. FILLING SOIL VOLUME	_
App.	I-118	Fig.	IV-6-10	TYPICAL GROUND LEVEL OF THE RECLAIMED LAND	
App.	I-119	Fig.	IV-6-11	RECLAMATION PLAN AND FILLING VOLUME	_
App.	I-120	Fig.	IV-6-12	RECLAMATION AND BORROW PIT PLAN	
		_	IV-6-13	CLASSIFICATION OF BORROW PIT	
App.	I-122	Table	2 IV-6-1	SOIL WOLLDW OF BORROW DAGS	
-			17-6-14	SOIL VOLUME OF BORROW PITS	
		_	IV-6-15	PLAN OF SPILLUAY	
			IV-6-16	PLAN OF SPILLWAY	Ap-214
	3	61	1, 0 10	THE DISTANCE FROM SPILLWAY VS. SS DENSITY	An-215
App.	I-126	Fig.	IV-6-17	THE DISTANCE FROM SPILLWAY VS. SS DILUTION HAGNIFICATION	
App.	I-127	Fig.	IV-6-18	LOCATION OF SHIPWAY	
App.	I-128	Fig.	IV-6-19	TYPICAL SECTION OF SHIPWAY	
App.	I-129	Fig.	IV-6-20	TYPICAL SECTION OF ROCK BULKHEAD (TYPE I, II, III, IV, V)	
App.	I-130	Fig.	IV-6-21	TYPICAL SECTION OF PC SHEET	
App.	I-131	Fie.	IV-6-22	TYPICAL SECTION OF STEEL SHEET	Ap-219
- •	-	6,		DIED /word need	An=220

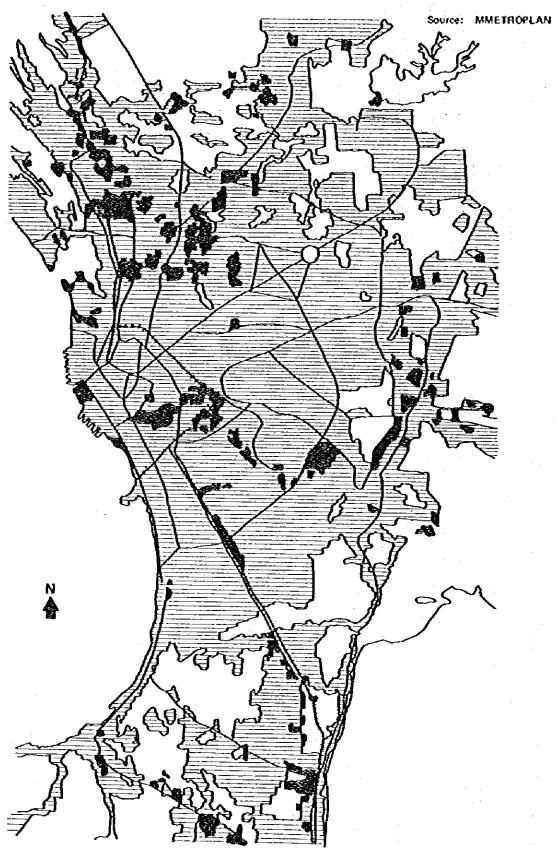
Арр.		Table/Fig. No.	Title	Page
		Fig. IV-6-23	TYPICAL SECTION OF INTERLOCKED STEEL PILE (TYPED IX)	
App.	I-133	Fig. IV-6-24	TYPICAL SECTION OF CORRUGATED	_
Ann	T12Å	P4 - 111 6 25	CELL (TYPE X)	Ap-222
		Fig. IV-6-25	TYPICAL SECTION OF BREAKWATER STRUCTURE (TYPE XI, XII, XIII)	Ap-223
App.	1-135	Fig. IV-6-26	STABILITY ANALYSIS OF ROCK BULKHEAD (I)	Ap-224
App.	1-136	Fig. 1V-6-27	STABILITY ANALYSIS OF ROCK BULKHEAD (II)	Ap-224
App.	I-137	Fig. 1V-6-28	STABILITY ANALYSIS OF ROCK BULKHEAD (III)	Ap-225
App.	I-138	Fig. IV-6-29	STABILITY ANALYSIS OF EMBANKMENT (1)	Ap-225
App.	I -1 39	Fig. IV-6-30	STABILITY ANALYSIS OF EMBANKMENT (II)	_
App.	1-140	Table IV-6-1	EQUIPMENT QUANTITY AND TIME SCHEDULE	-
App.	I-141	Fig. IV-6-31	RATE OF RECLAMATION FOR MBCRP	_
PART	IV - 0	CHAPTER 8		
		Table IV-8-1	COST OF RECLAMATION (A) ALTERNATIVE I	An=220
App.	1-143	Table 1V-8-2	COST OF RECLAMATION (B) ALTERNATIVE I	
App.	I-144	Table IV-8-3	COST OF RECLAMATION (A) ALTERNATIVE II	
App.	1-145	Table IV-8-4	COST OF RECLAMATION (B) ALTERNATIVE II	
App.	1-146	Table IV-8-5	COST OF RECLAMATION (A) ALTERNATIVE III	
App.	1-147	Table IV-8-6	COST OF RECLAMATION (B) ALTERNATIVE III	
PART	IV - 6	CHAPTER 9	•	
		Table IV-9-1	PRICES OF OPEN LAND IN NAVOTAS, MALABON, CALOOCAN AND QUEZON	An 225
App.	1-149	Table IV-9-2	PRICES OF OPEN LAND IN MMA	_
App.	1-150	Table IV-9-3	LAND SALE PRICES IN NEWSPAPER ADVERTISEMENTS IN AUG., 1979	_
App.	I-151	Table IV-9-4	ESTIMATED SUBSIDIES FOR THE SALES OF RESIDENTIAL LOTS	<u>-</u>
App.	I-152	Table IV-9-5	FORECAST MARKET PRICES OF THE RECLAIMED AREA, 1988-196	

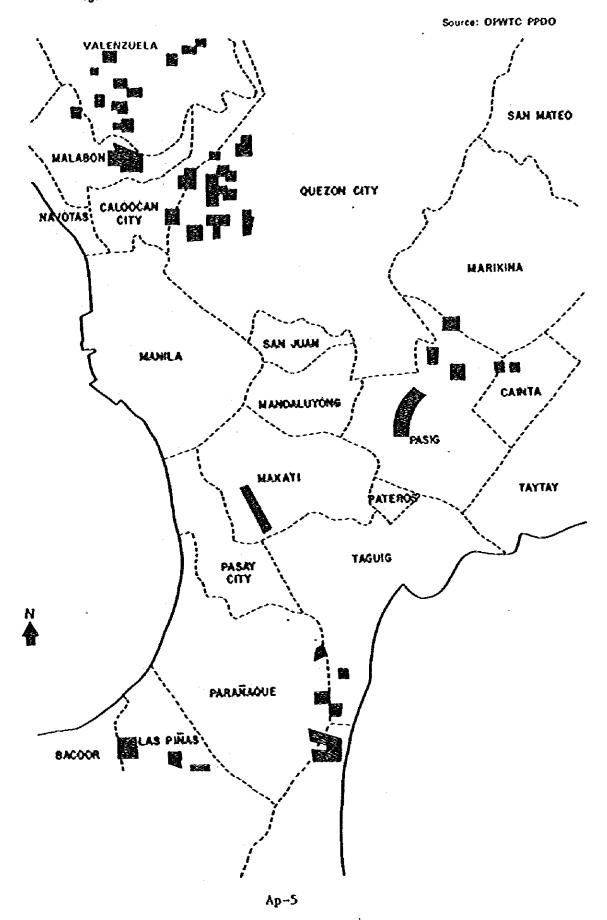
App.	No.	Table,		Title	Page
App.	I-153	Table	17-9-6	PROJECTED CASH FLOW: ALTERNATIVE I	
App.	I-154	Table	1V-9-7	PROJECTED CASH FLOW: ALTERNATIVE II	_
App.	I-155	Table	IV-9-8	PROJECTED CASH PLOW: ALTERNATIVE III	_
PART	IV -	CHAPTE	R 10		
App.	I-156	Table	IV-10-1	ECONOMIC COST AND BENEFIT, 1981-1996	Ap-241
App.	I-157	Table	IV-10-2	COST-BENEFIT ANALYSIS TABLES	
				O-D TABLES	
			AP	PENDIXES FOR VOLUME II	
• .		Table	~	,	
		No.	-		<u>Page</u>
		Table		POPULATION BY MUNICIPALITY	
•		Table		EMPLOYED PERSONS BY RESIDENCE, 1975	
		Table		AVERAGE FAMILY INCOME, 1975	Ap-255
		Table		GENERAL STATISTICS FOR ALL WHOLESALE AND RETAIL ESTABLISHMENTS, 1974	Ap-256
App.	11-5	Table	2-5	GENERAL STATISTICS FOR ALL CONSTRUCTION ESTABLISHMENTS, 1974	Ap-256
App.	11-6	Table	2-6	GENERAL STATISTICS FOR ALL MINING AND QUARRYING ESTABLISHMENTS, 1974	Ap~256
App.	II- 7	Table	2-7	NUMBER OF PERSONS EMPLOYED IN BRACKISHWATER AND FRESHWATER FISHPONDS, 1970	
App.	11-8	Table	2-8	NUMBER OF FISHING HOUSEHOLDS AND EXTENT OF DEPENDENCY ON FISHING, 1970	
App.	11-9	Table	2-9	SUMMARY OF ESTIMATED AREA, PRODUCTION AND VALUE OF OUTPUT IN THE PISHERIES OF THE INFLUENCE AREA, 1975	
App.	II-10	Table	2-10	EXPORTS: PHILIPPINES AND BATAAN EXPORT PROCESSING ZONE	
App.	11-11	Fig.	3-1	GENERAL VIEW OF CONCRETE VIADUCT	
App.	11-12	Fig. 3	3-2	OPTIMUM SPAN LENGTH OF CONCRETE VIADUCT	_
					An-260

Appendix I-1
Table II-2-1 POPULATION AND EMPLOYMENT BY ZONE 1979, 1980, 1990 AND 2000

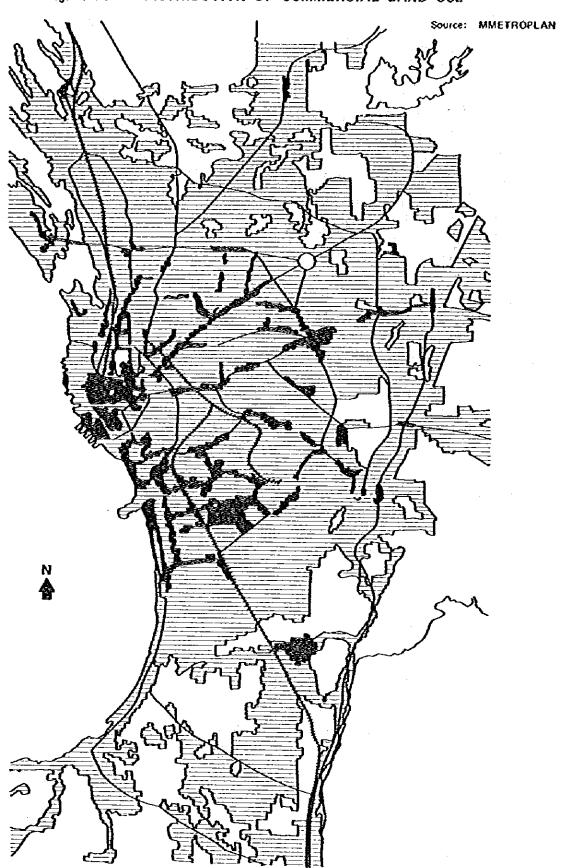
	7		-	·····			-	Unit: Pers
Zone	ļ	Total Pop	ulation .		Emç	loyed Person	s by Residence	>
No.	1979	1980	1990	2000	1979	1980	1990	2000
1 2 3 4	234,650	254,900	405,500	565,920	75,264	80,932	135,762	199,260
5	352,790	363,950	443,000	531,280	111,729	115,554	149 316	197.064
6	11,250	15,050	52,000	90,530	3,563	4,778	148,316 17,410	187,064 31,876
7	104,730	102,000	142,000	178,130	33,168	34,608	47,542	62,720
8 :	19,820	20,550	26,000	32,000	6,277	6,525	8,705	11,267
9	36,670	38,100	49,000	60,950	11,613	12,097	16,405	21,460
11	75,340	78,900	107,500	138,430	23,860	25,051	35,991	48,741
13 13	18,960	22,850	60,000	98,840	6,905	7,255	20,088	34,802
14 15	98,630	101,900	125,500	151,700	31,236	32,353	42,017	53,414
16 17	116,020	121,000	160,000	202,490	36,744	38,418	\$3,568	71,297
18	59,700	61,050	69,000	78,300	18,907	19,383	23,101	27,569
19	55,230	56,450	63,500	71,790	17,491	17,923	21,260	25,277
20	202,000	210,000	271,300	338,460	63,973	66,675	90,831	119,172
21 22	356,500 109,730	363,400 113,400	399,400	443,080	112,904	115,380	133,719	156,008
23	442,250	452,700	140,000 516,300	169,540	34,751	36,005	46,872	59,695
24	51,520	53,000	63,900	590,120 74,280	140,061 16,316	143,732	172,857	207,781
25	73,740	72,300	64,500	53,520	23,353	16,828 22,955	21,092 21,594	26,154
26	1,800	2,700	11,500	20,650	570	22,933 857	3,850	18,844 7,271
27	122,190	119,500	103,500	82,600	38,698	37,941	34,651	29,083
28	271,810	279,750	334,000	395,090	86,082	88,821	111,823	139.111
29	42,110	50,900	135,000	222,960	13,336	16,161	45,193	78,504
30	122,570	129,100	183,000	241,080	38,818	40,898	61,268	84,884
31	177,050	188,350	285,000	383,380	56,072	59,801	95,418	136,749
32	338,990	354,300	476,000	608,240	107,358	112,490	159,365	214,161
33	545,880	571,800	780,500	1,006,640	172,880	181,547	261,311	354,438
50 51	664,790	694,600	1,052,000	1,434,250	210,539	220,536	352,210	504,999
52	557,070 669,730	588,650 648,000	853,000 1,034,300	1,137,050	176,424	186,896	285,584	400,355
	037,130	010,000	1,034,303	1,462,440	193,101	205,740	345,284	514,925
Pro- ject Area	5,877,590	6,136,150	8,405,300	10.864,930	1,861,433	1,948,228	2,814,094	3,285,540
34	32,740	33,760	43,980	52,560	10,369	10,719	14,724	18,506
35	46,850	48,310	64,940	75,210	14,837	15,338	21,072	26,481
36	127,480	130,950	166,010	193,500	40,373	41,586	\$5,580	68,131
37	95,360	97,810	122,280	139,570	30,201	31,055	40,939	49,142
33	49,320	51,720	75,700	105,540	15,620	16,421	25,344	37.160
39	326,240	333,460	405,670	455,290	103,320	105,874	135,818	160,303
40 41	93,810	100,280	115,000	122,330	31,293	31,839	38,502	43,072
42	45,330 73,970	46,070 79,470	\$3,430 -134,450	57,370	14,356	14,627	17,888	20,200
43	587,460	602,150	749,010	208,440 867,130	23,426	25,232	45,014	73,392
44	241,670	246,510	294,890	331,660	185,049 76,537	191,183	250,769	305,316
45	273,770	285,970	407,960	555,450	86,703	78,267 90,795	98,729 136,585	116,777
46	30,520	32,550	52,810	79,770	9,666	10,335	17,681	195,574 28,087
47	175,730	185,040	278,110	391,650	35,654	58,750	93,111	137,900
48	345,200	358,200	488,220	609,260	109,325	113,729	163,456	214,520
49	7,647,670	7,802,140	9,346,830	10,677,180	2,422,017	2,477,179	3,129,319	3,759,435
53	5,903,630	6,026,540	7,255,680	8,377,250	1,869,680	1,913,426	2,429,202	2,935,546
54	722,070	750,210	1,031,620	1,371,260	228,680	238,192	345,386	452,821

Estimated by the study team, August 1979.

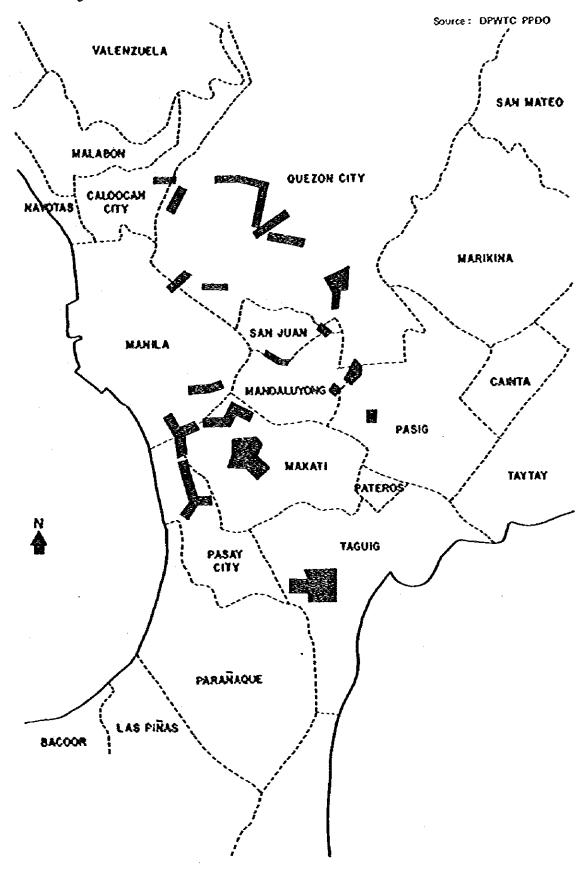

POPULATION AND EMPLOYMENT BY ZONE 1979, 1980, 1990 AND 2000

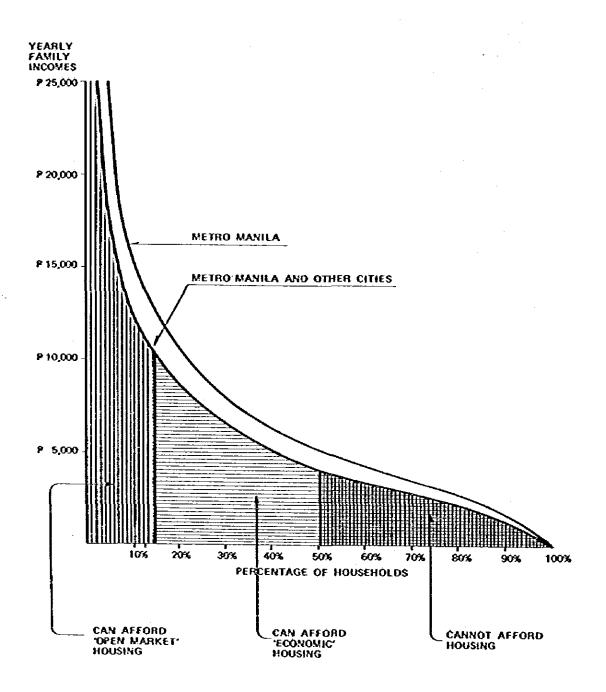

(Cont'd.)	_						·	Unit: Persons
			· · · · · · · · · · · · · · · · · · ·	PERSONS B	Y WORKPLA	 		<u></u>
Zone		Primary	·			Seconda	ıy	
No.	1979	1980	1990	2000	1979	1980	1990	2,000
1								
2	2,982	2,982	3,000	2,213	42,580	43,000	52,000	10,490
3 4								
5	774	774	900	400	14 340	37,000	71.000	*17.100
6	0	7/3 0	800 600	600 872	34,310 510	1,000	71,000 6,000	127,160 13,320
7	150	150	100	36	1,840	3,000	15,000	32,697
8	95	95	300	367	970	1,000	1,500	2,420
9	1,109	1,109	1,700	1,666	1,940	2,000	3,000	4,840
11	1,084	1,034	1,900	666	5,820	7,000	20,000	39,960
10		!		;		1		
12	372	312	1,000	1,183	3,470	4,000	10,000	19,380
13								<u> </u>
14	1,964	1,964	2,000	1,480	4,740	5,000	8,600	14,770
15	!							
16	11	13	0	0	12,310	13,000	22,400	38,510
17				<u> </u>				
18	655	655	1,000	978	4,860	5,000	7,400	11,870
19 20	131 500	13 <u>1</u> 500	2,000	2,183	2,900	3,000	4,600	7,510
21	627	627	0	0	5,880 10,780	6,000	8,400 15,400	13,080 23,980
22	480	480	ŏ	Ö	3,880	4,000	6,000	9,690
23	114	114	0	o	9,080	10,000	21,100	38,990
24	2,415	2,415	6	0	11,640	12,000	18,000	29,100
25	111	111	0	0	3,880	4,000	6,000	9,690
26 27	210 552	210 552	0	0	5,530	6,000	11,800	21,310
28	442	442	Ö	0	8,310 7,380	9,000 8,000	17,600 15,700	31,730 28,340
29	133	133	150	121	1,430	3,000	19,000	42,390
30	67	67	. 0	0	4,190	7,000	36,000	78,720
31	464	464	500	390	18,020	19,000	32,500	55,710
32 33	839 1,461	839 1,461	900	699	19,450	21,000	40,500	72,660
50	6,371	6,371	1,750 4,500	1,482 1,911	61,000 119,350	61,000 124,000	72,000 195,000	100,510
51	1,566	1,566	0	0	80,860	84,000	132,000	322,130 217,989
52	937	937	190	0	52,039	56,000	107,000	192,914
Pro-						 		
ject	26,616	26,616	21,490	17,473	539,129	569,000	975,500	1,672,254
Area						i '		1
34	3,191	3,191	5,000	6,810	900	1,000	2,000	3,000
35	1,993	1,993	3,500	5,010	1,500	2,000	7,000	12,000
36 37	12,852	12,852	18,000	23,150	5,000	5,000	5,000	5,000
38	10,029 1,538	10,929 1,538	12,000 2,500	15,970	3,300	4,000	11,000	18,000
39	11,047	11,947	13,000	3,450 14,950	1,800 4,400	2,000	4,000	6,000
40				14,530	7,700	5,000	11,500	17,000
41	6,838	6,833	8,000	9,160	2,400	3,900	9,000	15,000
42	2,130	2,130	3,000	2070	 			·
43	52,652	2.730	50,906	3,870 45,492	0 51,722	0	1,000	2,000
44	21,660	_	20,042	17,400	21,277		96,546 38,011	157,848 60,374
45	30,519	-	34,419	36,377	21,502	_	46,819	90,160
45	3,402	. –	4,456	5,224	2,397	_	6,064	12,948
47	14,748	_ _	17,598	19,306	7,291	-	16,853	33,510
48 49	30,939 641,834	- 	33,182 591,441	31,963	30,392	-	62,930	110,907
sš	714,218	_	665,601	526,321 592,980	317,284 471,159	_	566,407	913,543
54	23,800	24,616	34,500	48,350	20,260	21,000	847,79 <u>1</u> 31,000	1,376,771 45.760
Estimate 2	by the study t	~	030			-1,000	11,000	45,760

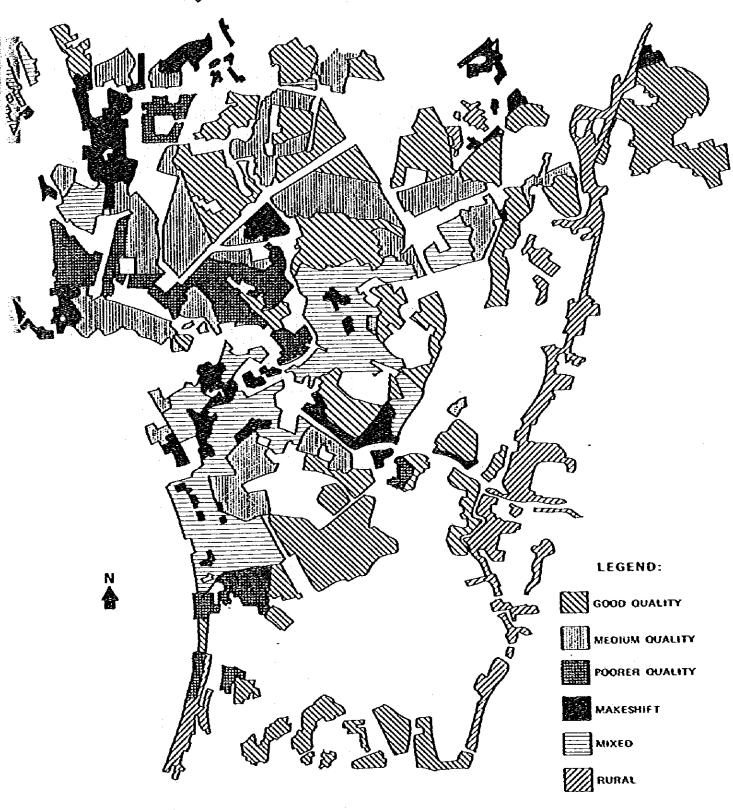
POPULATION AND EMPLOYMENT BY ZONE 1979, 1980, 1990 AND 2000

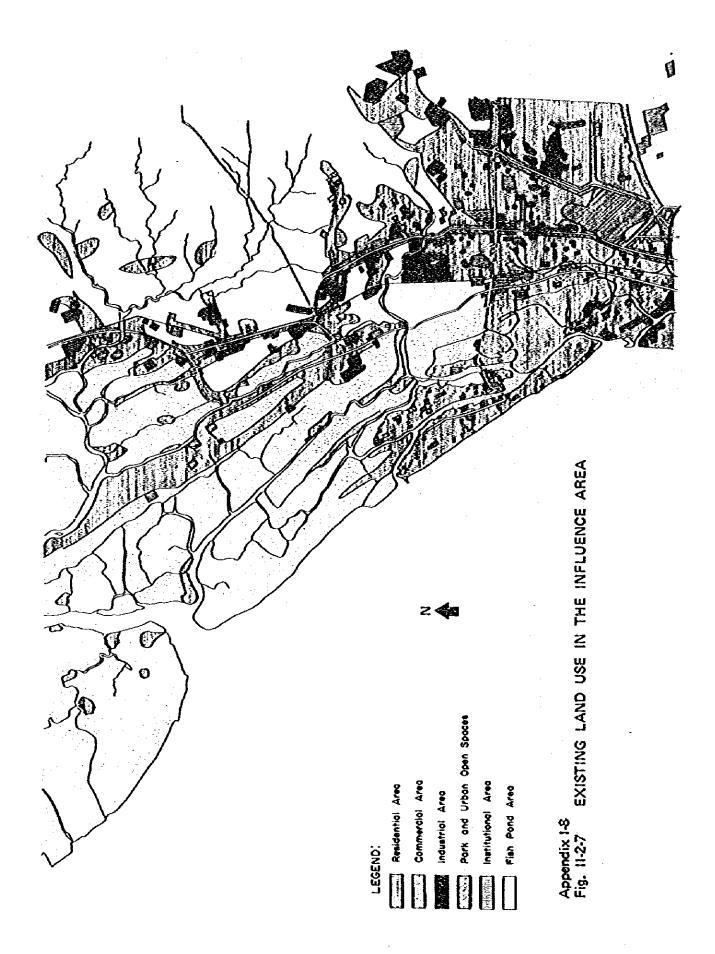

			EMPLOYE	D PERSONS	BY WORKPL	ACE		
Zone		Tertia				al Employed t	Y Workplace	
No.	1979	1980	1990	2000	1979	1980	1990	2000
1	l		 			1700	1,330	2000
2			J]]	j		
3	38,160	38,000	37,000	37,140	83,722	83,982	92,000	109,843
4	ł.	Į	i	· ·	1	j	ļ	
5	36,880	41,000	84,000	124 630	21.064	70.074		
6	2,000	2,000	2,100	134,629	71,964	78,774	155,800	262,380
ž	16,990	17,000	17,900	19,930	2,510 18,980	3,000 20,150	8,700	16,522
8	900	1,600	2,000	3,180	1,965	2,095	33,000 3,800	52,663 5,967
9	3,000	3,000	3,000	3,000	6,049	6,109	7,700	9,506
11	9,750	10,000	13,000	16,960	16,654	18,084	34,000	57,586
10				·			}	
12	2,900	3,000	4,000	5,180	6,742	7,372	15,000	25,743
13]]]	0,172	1,312	13,000	23,743
14			 	ļ	}	 		
15	29,420	30,000	37,300	47,280	36,124	36,964	47,900	63,530
]	 	·
16	14,430	15,000	18,700	23,740	16,751	28,011	41,100	62,250
17	ļ				!			
18	5,990	6,000	6,400	7,210	11,505	11,655	14,800	20,058
19	8,980	9,000	9,500	10,810	12,011	12,131	16,200	21,133
20	41,740	41,000	33,600	26,200	48,120	47,500	42,000	39,280
21	66,160	65,000	53,400	41,800	77,567	76,627	68,800	65,780
22 23	38,900 66,950	39,000	41,900	47,490	43,260	43,480	47,900	57,180
24	92,750	68,000 93,000	81,800	101,340	76,144	78,114	102,900	140,330
25	39,900	40,000	100,100 43,000	.113,630	106,805	107,415	118,100	142,730
26	61,390	63,000	82,200	48,760 107,480	43,891	44,111	49,000	58,450
27	121,810	125,900	163,000	213,060	67,130	69,210	91,000	128,790
28	37,990	39,000	51,000	66,780	130,672 45,812	134,552	180,600	244,790
29	7,640	9,000	23,000	39,220	9,230	47,442 12,133	66,700	95,120
30	18,000	18,000	18,000	18,000	22,257	25,067	42,150 54,000	81,731 96,720
31	57,890	59,000	73,000	92,220	76,374	78,464	106,000	148,320
32	117,489	120,000	151,000	192,920	137,769	141,839	192,400	145,310
33	143,140	151,000	187,000	236,380	210,601	213,461	260,750	338,372
50	56,380	62,600	121,000	190,800	182,101	192,371	320,500	514,841
51	174,670	189,000	341,000	522,589	257,095	274,566	473,000	740,560
52	169,666	180,000	325,100	565,930	222,642	236,937	432,290	758,844
Pro⊷ _	J]	<u> </u>	<u> </u>	J		
ject	1,486,996	1,536,000	2,124,100	2,937,080	2,052,741	2,131,616	3,121,090	4,626,807
14.9	<u> </u>	ļ	}]]	, , , , , , , ,	1.010,501
34	3,900	4,000	5,000	6,000	7,991	8,191	12,000	15,810
35	4,300	5,000	12,000	19,000	7,193	8,993	22,500	36,010
36	11,600	12,000	16,000	20,000	29,452	29,852	39,000	48,150
37	16,700	17,000	20,000	23,000	30,029	31,029	44,000	56,970
38	6,400	6,000	2,000	2,000	9,738	9,538	8,500	11,460
39	15,700	16,000	19,000	22,000	31,147	32,047	43,000	53,950
40	12,800	13,000	15,000	17000	33.030	1		
41	1	12,000	سرسرد،	17,000	22,038	22,838	32,000	41,160
42	2,000	2,000	2,000	2,000	4,130	1:30		7.222
43	81,676		103,317	101,976	186,049	4,130	6,000	7,870
41	33,600	_	40,676	39,004	76,537	_	250,769 98,729	305,316
45	34,681	-	55,317	69,038	86,103] -	136,585	116,777 195,574
45	3,866	_	7,161	9,915	9,666]	17,681	28,087
47	33,615	_	58,660	85,084	55,654		93,111	137,900
48	47,994	-	67,344	71,650	109,325] _	163,456	214,520
49	1,462,898	_	1,971,471	2,319,571	2,422,017	_	3,129,319	3,759,435
53	684,302		915,809	965,795	1,869,680	1 -	3,429,202	2,935,546
54	50,930	52,000	64,000	78,770	94,930	97,616	129,500	172,880

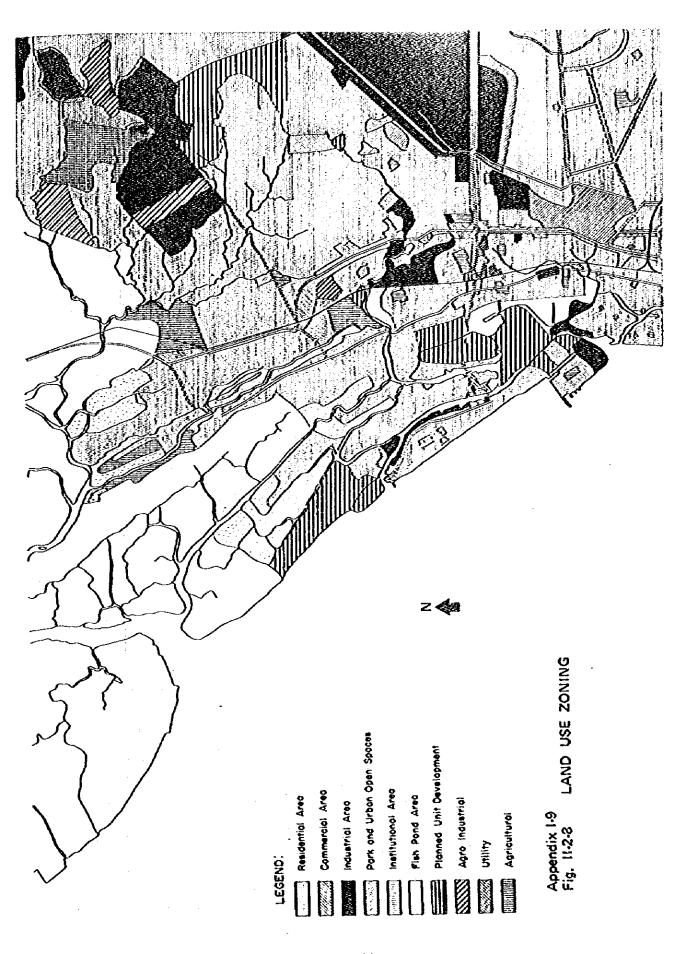
Appendix I-2 Fig. II-2-1 DISTRIBUTION OF INDUSTRIAL LAND USE



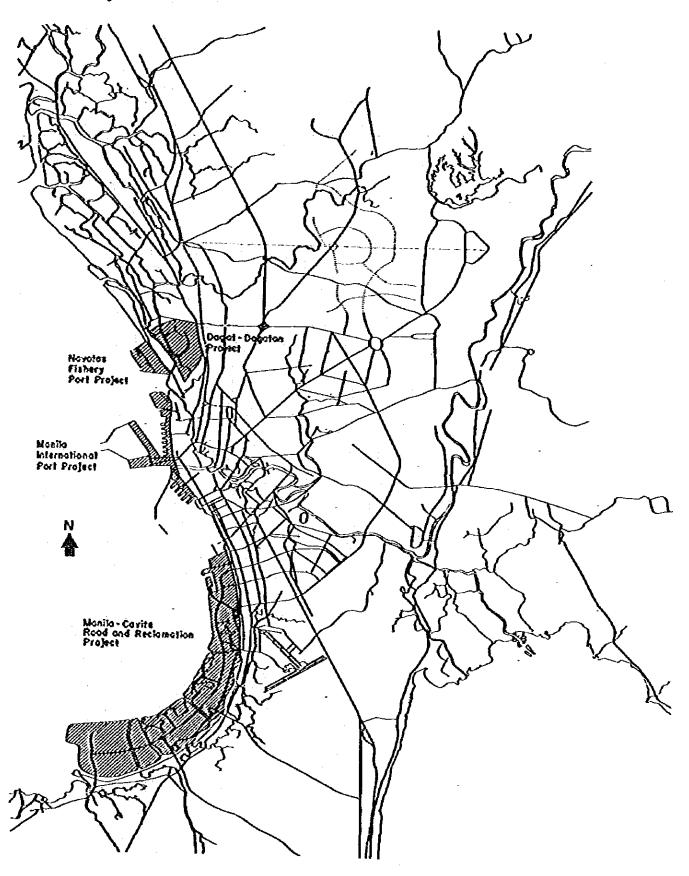

Appendix I-4
Fig. II-2-3 DISTRIBUTION OF COMMERCIAL LAND USE

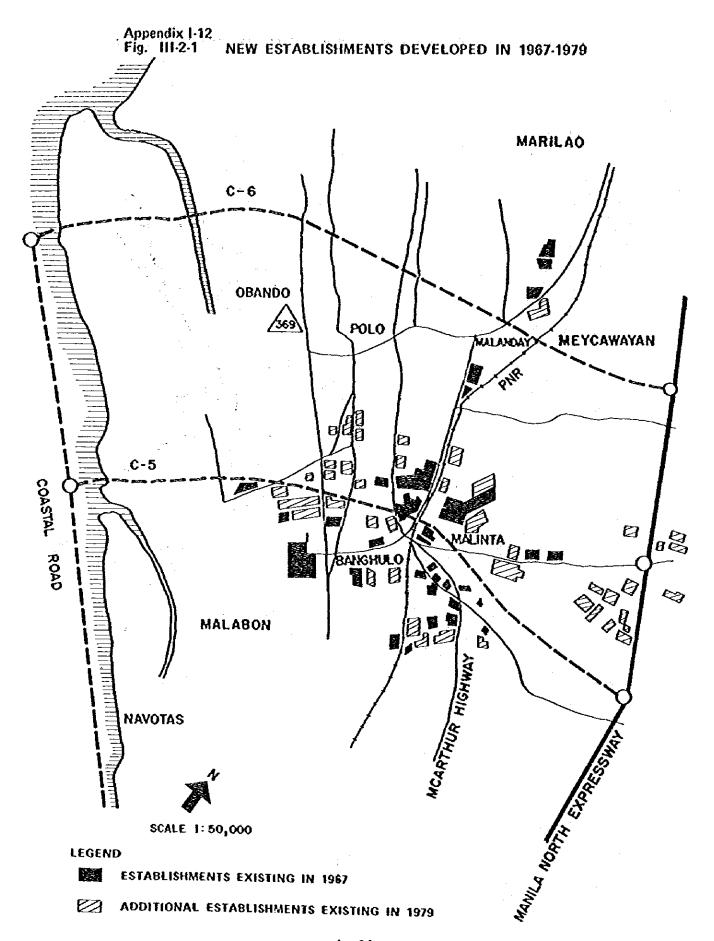

Appendix 1-5
Fig. II-2-4 COMMERCIAL DEVELOPMENT 1960-1975




Appendix 1-6
Fig. II-2-5 ABILITY TO AFFORD HOUSING BY FAMILY INCOME (1972)

Appendix I-7
Fig. 11-2-6 HOUSING QUALITY IN METRO MANILA





Appendix 1-10 Table II-2-2 SUMMARY OF ZONING PLAN DOR METRO MANILA

an 8.2056 0.4056 1.0816 0.3432 0.9340 0.4670 luyong 8.2056 0.4056 1.0816 0.3432 0.3640 luyong 9.1000 7.4360 2.7040 5.4080 1.3520 Sity 8.3400 0.2780 0.0695 1.0425 4.1700 an City 12.7512 26.2384 7.9782 0.4587 1.7599 1.9466 0.1120 ucla 11.4513 0.4674 0.7011 1.1685 1.8696 1.8696 0.1120 n 11.4513 0.4674 0.7011 1.1685 1.8696 1.8696 s 0.3370 1.1795 0.8425 0.6740 0.1011 0.1685 0.0067 s 0.3340 2.2460 0.3105 3.3970 4.7555 2.0382 0.4670 ipa 14.0100 1.0450 0.8958 0.2986 8.9580 uc 15.3200 4.6600 5.7450 0.1915 1.1490 0.5745	Municipality	Residen- tial	Open space/ Park	Agricul- tural	Institu- tional	Indus- trial	Commer- clal	Ctm- ties	Reclama- tion Area	Agro- Indus- trial	Fish-	Vacant/ Undevo- loped	Total
an 8:2056 0,4056 1.0816 0,3432 0.3640 Dity 8:3400 7.4360 2.7040 5.4080 1.3520 Dity 8:3400 0.2780 0.0695 1.0425 4.1700 an City 12.7512 26:2384 7.9782 0.4587 1.7599 1.9466 0.1120 ucla 15.9900 4,7000 14,1000 2.8200 2.3500 4.2300 n 11.4513 0.4674 0.7011 1.1685 1.8696 1.8696 n 11.4513 0.4674 0.7011 1.1685 1.8696 1.9466 n 0.3370 1.1795 0.8425 0.6740 0.1011 0.1685 0.0067 s 0.3370 1.1795 0.8425 0.6740 0.1011 0.1685 0.0067 n 6.7940 2.7176 2.9860 0.33970 4.7555 2.0382 n 6.7296 2.9860 9.3400 4.6700 3.2690 0.9340 0.5745 <	Manila	14,0100		9.3400	4.6700	3,2690	0.9340	0.4670					38,30000
luyong 9,1000 7,4360 2,7040 5,4080 1,3520 Biry 8,3400 0,2780 0,0695 1,0425 4,1700 an Ciry 12,7512 26,2384 7,9782 0,4587 1,7599 1,9466 0,1120 ucla 15,9900 4,7000 14,1000 2,8200 2,3500 4,2300 n 11,4513 0,4674 0,7011 1,1685 1,8696 1,8696 n 11,4513 0,4674 0,7011 1,1685 1,8696 1,8696 s 0,3370 1,1795 0,8425 0,6740 0,1011 0,1685 0,0067 s 0,3360 3,3240 6,6480 7,976 1,9944 0,8100 pa 6,7940 2,7176 3,3970 4,7555 2,0382 0,8450 pa 14,0100 14,0100 9,3400 4,6700 3,2690 0,9340 0,4670 ue 15,3200 4,6600 5,7450 0,1915 1,1490 0,9000	San Juan	8.2056			1,0816	0.3432	0.3640						10.4000
Dity 8.3400 0.2780 0.0695 1.0425 4.1700 an City 12.7512 26.2384 7.9782 0.4587 1.7599 1.9466 0.1120 ucla 11.4513 0.4674 0.7011 1.1685 1.8696 1.8696 0.10200 n 11.4513 0.4674 0.7011 1.1685 1.8696 1.8696 0.1085 0.0067 s 0.3370 1.1795 0.8425 0.6740 0.1011 0.1685 0.0067 i City 46.3360 3.3240 6.6480 7.9776 1.9944 0.2067 i City 46.3360 2.7176 3.3970 4.7555 2.0382 0.4670 ipa 14.0100 14.0100 9.3400 4.6700 3.2690 0.9340 0.4670 ipa 14.7216 2.9860 0.2986 8.9580 0.2946 uc 15.3200 4.6600 5.7450 0.1915 1.9150 1.1490 0.5745 is 2.2100 0	Mandaluyong	9,1000			2.7040	5.4080	1.3520						26.0000
uela 15,9900 4,7000 14,1000 2,8200 2,3500 4,2300 n 11,4513 0,4674 0,7011 1,1685 1,8696 1,8696 s 0,3370 1,1795 0,8425 0,6740 0,1011 0,1685 0,0067 i City 46,3360 3,3240 6,6480 7,9776 1,9944 9,1800 0,2295 12,9610 0,3105 3,5100 0,8100 n 6,7940 2,7176 3,3970 4,7555 2,0382 0,8400 1,0450 0,3400 4,6700 3,2690 0,9340 0,4670 ue 15,3200 4,6600 5,7450 0,1915 1,9150 1,1490 0,5745 224,9240 12,4620 2,0770 1,2462 2,2100 0,3700 0,2200 0,7400 0,9000	Pasay City	8.3400			0.0695	1.0425	4.1700						13.9000
uela 15,9900 4,7000 14,1000 2,8200 2,3500 4,2300 s 0,3370 1,1795 0,8425 0,6740 0,1011 0,1685 0,0067 t City 46,3360 3,3240 6,6480 7,9776 1,9944 9,1800 0,2295 12,9610 0,3105 3,5100 0,8100 a 6,7940 2,7176 3,3970 4,7555 2,0382 o,8400 1,0450 0,3400 4,6700 3,2690 0,9340 0,4670 ue 15,3200 4,6600 5,7450 0,1915 1,9150 1,1490 0,5745 us 24,9240 12,4620 2,0770 1,2462 2,2100 0,3700 0,2200 0,7400 0,9000	Caloocan City	12,7512	26.2384	7,9782	0.4587	1,7599	1,9466	0.1120	2,0852				53,3302
n 11.4513 0.4674 0.7011 1.1685 1.8696 1.8944 1.8944 1.8946 1.9944 1.8946 1.9946	Valenzuela	15,9900	4,7000	14,1000	2.8200	2.3500	4.2300			0.9600	1.8800		47,0300
s 0.3370 1.1795 0.8425 0.6740 0.1011 0.1685 0.0067 1 City 46.3360 3.3240 6.6480 7.9776 1.9944 9.1800 0.2295 12.9610 0.3105 3.5100 0.8100 0.8400 1.0450 0.8500 4.7555 2.0382 0.8400 1.0450 0.8500 0.9340 0.4670 10 14.0100 14.0100 9.3400 4.6700 3.2690 0.9340 0.4670 16,7216 2.9860 0.8958 0.2986 8.9580 16,7216 2.9860 5.7450 0.1915 1.9150 1.1490 0.5745 18 24.9240 12.4620 2.0770 1.2462 2.2100 0.3700 0.2200 0.7400 0.9000	Malabon	11.4513	0.4674	0.7011	1.1685	1.8696	1,8696				5,8425		23.3700
in decity 46,3360 3.3240 6.6480 7.9776 1.9944 9.1800 0.2295 12.9610 0.3105 3.5100 0.8100 in decity 2.7176 3.3970 4.7555 2.0382 0.8400 1.0450 0.8500 in 16,7216 2.9860 0.8958 0.2986 8.9580 in 15,3200 4.6600 5.7450 0.1915 1.9150 1.1490 0.5745 in 24,9240 12,4620 2.0770 1.2462 2.2100 0.3700 0.2200 0.7400 0.9000	Navotas	0,3370		0.8425	0.6740	0.1011	0.1685	0.0067					3,3093
9,1800 0,2295 12,9610 0,3105 3,5100 0,8100 6,7940 2,7176 3,3970 4,7555 2,0382 0,8400 1,0450 0,8500 16,7216 2,9860 0,8958 0,2986 8,9580 16,7216 2,9860 0,8958 0,2986 8,9580 15,3200 4,6600 5,7450 0,1915 1,9150 1,1490 0,5745 18 24,9240 12,4620 2,0770 1,2462 2,2100 0,3700 0,2200 0,7400 0,9000	Quezon City	46,3360	3.3240		6.6480	2,9776	1,9944						66,2800
ia 6.7940 2.7176 3.3970 4.7555 2.0382 0.8400 1.0450 0.8500 0.8540 0.9340 0.4670 ipu 14.0100 14.0100 9.3400 4,6700 3.2690 0.9340 0.4670 ue 15.3200 4.6600 5.7450 0.1915 1.9150 1.1490 0.5745 is 24.9240 12.4620 2.0770 1.2462 1.2462 2.0700 2.2100 0.3700 0.2200 0.7400 0.9000	Panig	9,1800		12,9610	0,3105	3.5100	0.8100						27,0010
0.8400 1.0450 0.8500 3.2690 0.9340 0.4670 14.0100 9.3400 4.6700 3.2690 0.9340 0.4670 0.8670 16.7216 2.9860 0.8958 0.2986 8.9580 0.8745 1.9150 1.1490 0.5745 1.2462 2.0770 1.2462 1.2462 2.0770 0.2200 0.7400 0.9000	Marikina	6.7940			3.3970	4.7555	2,0382					12.2674	31,9697
The 14,0100 14,0100 9,3400 4,6700 3,2690 0,9340 0,4670 16,7216 2,9860 0.8958 0,2986 8,9580 15,3200 4,6600 5,7450 0,1915 1,9150 1,1490 0,5745 18 24,9240 12,4620 2,0770 1,2462 1,2462 2,0770 0,2200 0,7400 0,9000	Pateros	0.8400		1.0450	0.8500								2.7350
16,7216 2,9860 0.8958 0,2986 8,9580 ue 15,3200 4,6600 5,7450 0.1915 1,9150 1,1490 0,5745 us 24,9240 12,4620 2,0770 1,2462 2,2100 0,3700 0,2200 0,7400 0,9000	Muntilupa	14,0100	14.0100	9.3400	4,6700	3,2690	0,9340	0.4670					46.7000
ue 15,3200 4,6600 5,7450 0,1915 1,9150 1,1490 0,5745 is 24,9240 12,4620 2,0770 1,2462 2,2100 0,3700 0,2200 0,7400 0,9000	Makati	16,7216	2,9860	-	8568.0	0.2986	8.9580	:					29.8600
2,2100 0,3700 0,2200 0,7400 0,9000	Paranaque	15,3200	4,6600		0.1915	1.9150	1,1490	0.5745			5.7450		35.3000
2,2100 0,3700 0,2200 0,7400 0,9000	Las Piñas	24.9240	12,4620	2,0770		1.2462					0.4154		41.1246
	Taguig	2,2100	0.3700		0,2200	0,7400	0,9000				3,0000	. *	7,4400
210,0207 87,0740 04,1298 50,8291 59,8092 51,8183 1,0272	TOTAL	216,5207	87.0740	64,1298	30.8291	39,8552	31.8183	1.6272	2:0852	0.9600	16.8829	12.2674	502,4498

Appendix I-11
Fig. II-2-9 MAJOR DEVELOPMENT PROJECTS IN METRO MANILA

Appendix 1-13 Fig. 111-2-2 LAND UTILIZATION IN DIRECT INFLUENCE ZONE, 1979 Rice Field & Cultivoled Fish Pond Rice Field lalanday Rice Field 8 Hivoled sh Pond SCALE 1:50,000 LEGEND: EDSA Sea & river Residential & industrial uses Caloocan Esses Project road

λp-15

Appendix I-14
Table III-3-1 TRAFFIC ON ROADS IN THE PROJECT AREA

Station No.	Road and Municipality	Year	Cars	Jeep- neys	Buses	Trucks	Total (AADT)	Ratio '78/76
	McArthur Highway 1)	1						
1	Km Valenzuela	'76 '78	6,163 7,291	6,007 6,461	410 16	574 1,142	13,154 15,910	1
2	Km Marilao 28	'76 '78	4,869 5,703	3,722	258 275	2,938	11,787	1.21
3	Km Malolos 45	'76 '78	6,536 4,295	4,292 871	2.112	2,181 3,360	12,357 12,879	1.05
4	Km Calumpit 53	'76 '78	6,221 9,611	1,675 1,234 2,780	878 1,938 1,970	2,707 2,466	9,555 11,859 19,093	0.74
5	Km San Fernando 62	'76 '78	6,949 5,254	l 1,306	2,132 5,466	4,736 3,045	13,452	1.60
6	Km Angeles 96	'76 '78	4,168 8,313	3,713 1,853	1,468	4,472 2,062	18,891 9,551	1.40
7	Km Angeles	76	6,951 10,006	2,473 2,133 2,379	1,163 2,283	2,723 3,057	14,672 14,418	1.54
	Bataan Highway 1)	/*	10,000	2,319	2,742	5,073	20,205	1.40
8	Km Guagua	76	2,888	3,301	709	1,287	8,186	
9	81 Km Lubao	'78 '76	4,921 2,057	2,701 877	1,160 686	1,362 1,089	10,144 4,709	1.24
10	95 Km Dinalpihan	78 76	2,834 1,043	813 647	1,037 441	1,496 729	6,180 2,854	1.31
11	109 Km S. Benito	78 76	1.198 1.194	916 266	504 790	403 686	3,021 2,936	1.06
12	110 Km Orani	78 76	1.391 1,161	222 1,007	1,024 410	500 574	3,137 3,154	1.07
13	118 Km Balanga	'78 '76	708 1,416	25 1,543 776	24 411	553 610	1,310 3,980	0.42
14	122 Km Limay-Mari	'78 '76	960 367	776 46	419 332	358 405	2,573 1,150	0.88
15	148 Km Mariveles 163	'78 '76 '78	848 335 693	223 35 116	428 296 314	323 304 286	1,822 970	1.58
	Manila North ²⁾ Expressway		0,5		314	200	1,409	1.45
16	Balintawak	,,,,				•		
17	— Malinta Ma— Meycawayan	'78	-	_		_	34,600	-
18	My - Bucaue	'78	~		-	<u> </u>	28,700	_
19	Bu — Bigaa	'78		_	-	-	25,000	-
20	Bi – St. Rita	⁷ 78		-	-	_	21,400	-
21	SR — Tíbag	'78	_		_	-	7,700	-
22	Ti – S. Domingo	'78	_	_	~	-	6,900	_
	Malolos-Obando-1) Caloocan							
23	Km	'78	_	_		-	4,900	-
24	25 Obando Km	'78	3,221	3,393	122	1,478	10,348	-
	42 Malolos	78	712	880	188	46	1,833	-
25	Guiguito-Maasin-Palay:	an 						
23	Km Plaridel 46	, ₇₈	1,257	734	636	842	3,472	•

PPDO, MPH, August 1979.
 Manila North Highway Adm. Office, CDCP, March 1979.

Appendix I-15
Table III-3-2 TRAFFIC COUNT RESULTS FOR 24-HOUR PERIOD 2)

Station	Direction (1) Types	Car, Jeep and Taxi	Pick-up & Vans	Jeepney	Bus	Truck Medium	Truck Large	Total
	I (%)	8954	2169	1442	1991	58	529	16543
	(%)	(54)	(13)	(9)	(12)	(9)	(3)	(100)
1	II	9239	4005	808	2243	1799	870	18964
	(%)	(49)	(21)	(4)	(12)	(9)	(5)	(100)
	Total	18193	6174	2250	4234	3257	1399	35507
	(%)	(51)	(17)	(6)	(12)	(9)	(4)	(100)
	I	1797	1060	1591	12	480	107	4947
	(%)	(36)	(21)	(30)	(0)	(10)	(2)	(100)
2	II	1943	734	1239	18	354	56	4344
-	(%)	(45)	(17)	(29)	(0)	(8)	(1)	(100)
!	Total	3740	1794	2730	30	834	163	9291
	(%)	(40)	(19)	(29)	(0)	(9)	(2)	(100)
	1	3606	801	5249	25	821	376	10878
!	(%)	(33)	(7)	(48)	(0)	(8)	(3)	(100)
3	11	3247	1060	5925	38	748	318	11336
J	(ኧ)	(29)	(9)	(52)	(0)	(7)	(3)	(100)
:	Total	6853	1861	11174	63	1569	694	22214
	(%)	(31)	(8)	(50)	(0)	(7)	(3)	(100)
<u> </u>	I	1183	457	1511	78	210	62	3504
	(%)	(34)	(13)	(43)	(2)	(6)	(2)	(100)
4	П	1256	240	1318	37	202	73	3126
4	(%)	(40)	(8)	(42)	(1)	(6)	(2)	(100)
	Total	2439	697	2829	115	412	135	_
i	(%)	(37)	(11)	(43)	(2)	(6)	(2)	6627 (100)
	I ·	391	<i>C</i> 1	270				
•	(%)	(50)	61 (8)	272 (35)	7 (1)	44	2	777
	1				(1)	(6)	(0)	(100)
5	1 I (2)	388	105	292	0	21	1	807
	Í	(48)	(13)	(36)	(0)	(3)	(0)	(100)
	Total	779	166	564	7	65	3	1584
	(2)	(49)	(10)	(36)	(0)	(3)	(0)	(100)
	I	15931	4548	9965	2113	3013	1076	36646
	(%)	(44)	(12)	(27)	(6)	(8)	(3)	(100)
-4m4-	11	16073	6144	9582	2336	3124	1318	38577
TOTAL	(%)	(42)	(16)	(27)	(6)	(8)	(3)	(100)
	Total	32004	10692	19547	4449	6137		
	(%)	(43)	(14)	(24)	(6)	(8)	2394	75223 (100)

Notes:

¹⁾ Direction II towards line #12 and the direction I to San Fernando.
2) Percent share of a vehicle type is indicated in ().
3) A week day of mid-luly 1979.

Appendix I-16 Table III-3-3 CHANGES OF DAILY TRAFFIC VOLUME, 1978

Daily Traffic Volume at the Control Station (XM 28) on Manila North Road 1)

6-5 Mon. 12,264 1.021 6-6 Tuc. 11,490 0.957 6-7 Wcd. 12,175 1.014 6-8 Thu. 12,925 1.015 6-9 Fri. 12,082 1.006 6-10 Sat. 12,189 1.015 6-11 Sun. 10,898 0.908	Total Traffic Daily Traffic Count, 24 hours Over the Average	ic. Tage	Total Traffic Count, 24 hours	Daily Traffic Over the Average
11,490 12,925 12,925 12,189 10,898	_	12- 4 Mon.	11,756	1.030
12,175 12,925 12,082 10,898 10,898		12- 5 Tue.	11,922	1.045
12,925 12,082 12,189 10,898 84,023		12- 6 Wed.	11,484	1.006
12,082 12,189 10,898 84,023		12- 7 Thu.	11,211	0.983
12,189 10,898 84,023		12-8 Fri.	11,066	0.970
10,898		12- 9 Sat.	11,288	0.989
84,023		12-10 Sun.	11,145	0.977
		Total	79,872	î
	12,004	Average	11,140	1.000

Monthly Changes of ADT at the Control Station (KM 28) on Manila North Road 1)

Month	H	7	m	4	'n	9	7	90	თ	10	H	12	Aver-
ADT	12,992	12,540	12,992 12,540 12,570 12	12,453	12,153	12,289	12,794	11,559	,453 12,153 12,289 12,794 11,559 12,421 12,853 12,154 11,408 12,354	12,853	12,154	11,408	12,354
Monthly Factor	1.052	1.052 1.015 1.017	1.017	1.008	.008 0.984	0.995	1.036	0.936	1.036 0.936 1.005 1.040 0.983 0.923	1.040	0.983	0.923	1.000
Seasonal Factor		066.0			1.005			1.010			1.002		

Source: PPDO of MPH

The station number 2002 of KM 28 on Manila North Road (the extension of McArthur Highway) is located in the direct influence zone, Marilao Bulacan. Note: 1)

SAMPLED NUMBER OF VEHICLES IN OD INTERVIEW Appendix I-17 Table III-3-4

20,000	<u>-</u>		2		t.y		4		v o		Total	ា	1
Direction 1)	-	II.	*	Ħ	I	п		щ	1	n	1	Ħ	701
Sampled Number of Vehicles - A	1,685	2,057	499	616	1,065	1,066	348	297	70	89		3,667 4,125	262,7
Traffic Volume 2) = B	16,543 .18,964	.18,964	4,947	4,344	4,344 10,878	11,336	3,504	3,126	777	807	36,646	36,646 38,577 75,223	75,223
A/B Ratio (%)	10.2	10.8	10.1	14.2	8.6	9.4	6'6	5,6	9.6	11.0	10.0	10.7	10.4

Notes: 1) Direction II is towards Manila and I towards San Fernando: 2) From Appendix I-14.

Appendix I-18
Table III-3-5 AVERAGE NUMBER OF PASSENGERS PER VEHICLE

Chiefian			2		("3		4		S		Total	ta l	Average
Vehicle Type	Veh.	pass.	vch.	pass.	veh.	pass.	veh.	pass.	voh.	pass.	veh.	pass.	pass/vch
		3	o c				7 440	y\$2 y	776	1.847	31.936	85,345	r ci
Car	18,148	18,148 50,217	3/38	\$111 6		11011) } ;	2	•	2			- - -
Jeephev	2,269	33,028	2,728	40.684	11,150	11,150 164,154	2,830	43,165	\$64	8,042	19,541		
Bushedium	743		0	0	20	256	0	0	0	0	763	26,179	34.3
Bus-Large	3.545		0	0	33		114	2 499	0	0	3,692	168,275	45.6
Bus-Total	4,288	4,288 191,412	٥	0	\$3	543	114	2,499	0	0	4,455	194,454	43.7

Appendix I-19 Table III-3-6 TRIP-PURPOSE DISTRIBUTION OF PASSENGER CARS 1)

Station	Direction 3)	To/from Home	Between Works/ Businesses	Others	Total
1	1	1,436	2,379	5,057	8,872
	11	3,092	2,125	3,964	9,181
2	I	339	387	1,063	1,789
	11	252	437	1,250	1,939
3	1	545	877	2,164	3,586
	11	775	618	1,831	3,224
4	I	307	312	552	1,171
	II	199	367	694	1,260
5	I	135	0	254	389
	II	46	99	242	387
Total ²⁾	I İI	2,762 (17.5) 4,364 (27.3)	3,955 (25.0) 3,646 (22.8)	9,090 (57.5) 7,981 (49.9)	15,807 (100.0) 15,991 (100.0)
Total	(1 + 11)	7,126 (22.4)	7,601 (23.9)	17,071 (53.7)	31,798 (100.0)

- Notes: 1) Car, jeep and taxi.

 - 2) Percent share is shown in ().3) Direction II towards Kanila and the direction I from Manila.

	Ap	Appendix I-20,	r-20, Table	le III-3-7	3	FUEL USE IN	IN SAMPL	SAMPLED NUMBER	ă	VEHICLES		
Car Type	Car		Pickeur		Jeeph	ر د ۲	Bus		Truc		Total	
Fuel Type	Cax	Diesel	Cas	Diesel	Gas	Diese!	Cas	Diesel	Gas	ŀ	Ças	
Station	16.716	1.268	5.435	726	583	1,669	373	3,301	400	3,981	24,857	15,168
(C)	3.502	20	1.575	20 10 10 10	900	2.242	0	0	455	784	5.787	3,440
1 c*	5 5 4 4	280	1 × × ×	1	2,728	8.266	c i	33	515	1.768	17,034	5,019
4	2.361	202	562	96	546	2,200	32	65	133	430	3,628	988,0
· v	725		183	0	90	360	0	٥	14	57	1,126	468
Total 1)	29 X40	1.867	9 243	1 249	4.547	12.537	420	3.998	1.550	7,020	52,432	26,956
	(94.1)	(8.9)	(88.3)	(11.2)	(26,6)	(73.4)	(6.5)	(80.5)	(18.1)	(81.9)	(66.0)	(34.0)
Note: 1)	No answers are not included	e not includ	led.									
•												

Type Vohicle 1) Weight (t) Avorage Weight Loading Veh. Ratio (%) Truck, Medium 6,206 14,666.7 2.36 35.9 Load-capacity loss than 5t Truck, Lurge 2,019 7,134.5 3.53 31.9 More than 5t Trailer 433 1,595.9 3.69 34.7 More than 5t Total 8,658 23,397.1 2.70 34.9 More than 5t	Appendix	1	-3-7 (B) AVERAG	1-20, Table III-3-7 (B) AVERACE LOADING WEIGHT IN TONS	IN TONS	
Medium 6,206 14,666.7 2,36 35.9 Lurge 2,019 7,134.5 3.53 31.9 Lurge 3,33 1,595.9 3,69 34.7 8,658 23,397.1 2,70 34.9	Турс	Vehicle 1)	Weight (t)	Avorage Weight (t/veh.)	Loading Veh. Ratio (%)	Remarks
Lurge 2,019 7,134.5 3.53 31.9 43.3 34.7 34.7 3.658 23,397.1 2,70 34.9	Truck, Medium	6,206	14,666.7	2,36	35,9	Load-capacity
8,658 23,397.1 2,70 34.9	Truck, Lurge	2,019	7,134.5	3.53	31.9	More than 5 t
	Total	8.658	23,397.1	2.3%	34.9	More than 5 t

•										
Commodity 1)	Milled Rice Palay	2 Sugar Cano	3 Log and Lumber	Food Products	Processed Foods	Fertili-	Oil Products	8 Cement and Steels	9 Iron or and Minerals	Total 3)
1.	175 88 4	989 88	\$25	39	395 81	रू केळ €	128	312	283 41 41	2,268 642 1,58
rotal 7	(8.7)	(4.0)	(5.2)	(8.5)	486 (15.9)	(0.7)	181 (5.9)	1,228 (40.1)	(11.0)	3,062
Weight (t) M H	1,093.7	517.7		787.5	414,7	146.9	913.1	7,985,4	986.0 342.1	13,608.3
Total	2,016.5	1,058.8	1.423.2	4:111.1	1,265.8	219.3	1,219.0	347.0	1,468.1	22,326.5
Z/ Average Weight (t/veh.) M	6.2	7.5		3.7	3.6	10,5	7.1		3.5	6.5
X &	0 4 ∝	11.7	20 C	O X	8.0 6.0	0 0	4.0	20 Kg	8 0 6 0	10.2
Total	13.4	8,7	0.6	E.4	2.6	10.0	7.9		4.3	7.6

TR: trailers M: medium trucks; H: Heavy trucks and Empty vehicles are not included () indicates the percent composition. Notes: 1)

Unindentified commodities are excluded. ର ଜ

Appendix I-22 Table III-3-9 TRIP-LENGTH DISTRIBUTION

Vehicle Type, Trip & Trip Ratio		Pick-up	T	ruck
Trip length (km)	Trip	Ratio (%)	Trip	Ratio (%)
0.0 ~ 10.00	4,320	10.12	549	6.47
11.00 ∿ 20.00	6,620	15.50	839	9.83
21.00 ~ 30.00	6,517	15.27	842	9.87
31.00 ∿ 40.00	6,699	15.69	927	10.86
41.00 ∿ 50.00	4,516	10.58	727	8.51
51.00 ~ 60.00	4,281	10.03	628	7.35
61.00 ∿ 80.00	3,603	8.44	1,184	13.88
81.00 ∿ 100.00	3,620	8.48	1,388	16.28
101.00 ∿ 120.00	2,154	5.05	1,056	12.37
121.00 ∿ 140.00	351	0.82	356	4.16
141.00 ∿ 160.00	13	0.03	35	0.41
Total 1/	42,694	100.00	8,531	100.00

Notes: 1/ Average trip distances are calculated at 42.6 km for small vehicles (car and pick-up) and 59.9 km for trucks (including trailer types).

Appendix I-23 Table III-3-10 ZONING FOR TRAFFIC STUDY

No.	. Municipality	Barangay
	Valenzuela South	Malinta, Karuhatan, Marulas, & Gen. T. de Leon
2	Valenzuela West	Arkong Bato, Pulo, Balangkas & Tagalag
3	Valenzuela Center	Malanday, Dalandanan, Pasolo & Caloong
4	Valenzuela East	Maysan, Lincunan, Canumay, Bignay and ugong
5	Caloocan Center	Calaanan, Grace Park, San Jose, Balintawak
6	Caloocan East	Kaybiga, Bagombong, De Paro, Tala and Camarin
7	Caloocan West	Maypayo, Sampalocan, Poblacion and Sangandaan
8	Obando East	Paliwas, Pagasa, Catanghalan & Panhulo
ğ	Obando West	S. Pascual, Hulo, Lawa, Paco and Tawiran
10	Meycawayan West	Ubihan, Liputan, Longos, Saluysoy and Malhacan
11	Meycawayan East	Liptong, Camalig, Pajo, Bahay pare
12	Marilao West	Boabangan Norte & Sur, Bo. Tabing ilog, Bo. Lias, Bo. Nagbalo
13	Marilao East	Bo. Sta. Rosa I & II, Loma de Gato, Prenza I & II
14	Malabon South	Thehe Sen America Toprove Longer and Teneng
15	Malabon West	Ibaba, San Agustin, Tonsuya, Longos and Tañong
16	Malabon Center	Dampalit, Hulong Duhat, Muzon, Baritan
17		Maysilo, Panghulo, Tenejeros, Acacia & Tugatog
18	Malabon East	Politero
19	Navotas South	Dagat Dagatan, East, West, Sipac, Bagunbayan
20	Navolas North	San Jose, Daang Hari, San Rogue, Tangos
	Manila West	North Port District
21	Manila West	Divisoria Tondo
22	Manila North	Sta. Cruz District
23	Manila East	Sampaloe District
24	Manila West	Binondo & San Nicolas
25	Manila Center	Quiapo, San Miguel
26	Manda West	Intramuros
27	Manila South	Ermita & Malate
28	Manila East	Pandacan, Paco, & Sta. Ana
29	Quezon City North	Novaliches, Constitution Hills
30	Quezon City North	San Bartolome, Tandang Sora
31	Quezon City West	Sta. Mesa Hts. Santol, Balintawak San Jose, Del Monte, Galas
32	Quezon City Center	Kamuning, Bagobantay, Quadrangle
33	Quezon City East	New Manila, Cubao, Diliman, Murphy, Quirino
34	Bulacan South	Bulacan, Pinagbayanan, Pitpitan & Balubat
35	Bulacan Center	Bucaue, Lolomboy, Sta. Maria, Turo, Binang
36	Bulacan East	Sta. Maria, Pandi, Angat, Norzagaray
37	Bulacan Center	Malolos, Longos, Sta. Rita, Dakila
38	Bulacan Center	Guiguinto, Bohol, Balagtas, Panginay
39	Bulacan North	Platidel, Pulilan, Baliwag, Bustos, S. Rafael
40	Bulacan West	Hagonoy, Paombong, San Isidro, Sta. Monica
41	Bulacan West	Calumpit, San Jose, Sta. Lucita, Iba
42	Bulacan East	Sapanga Palay, San Jose, Sto. Cristo
43	Pampanga East	Mexico Arayat, Sta. Arayat, Sta. Ana, Candaba
44	Pampanga South	Guagua, Lubao, Florida Blanca
45	Bataan	·
46	Mariveles	
47	Olongapo	
48	Pampanga West	Porac, Angeles City, Mabalacat
49	Tarlac & Other Northern Province	
50	Pasig, Taytay and Antipolo	
51	Makati & Mandaluyong	
52	Parañague & Passy	
53	Laguna & Other Southern Province	
54	Cavile	
55	Marikina, San Roque, San Mateo	
56	Reclaimed island No. 1, 2 and 3	
57	Reclaimed island No. 4	

Appendix I-24
Table III-4-1 COMMODITIES CARRIED BY TRUCKS

(1)	(2)		(3)	(4)
Description	Traffic so July 1979 Commodity Item No.	urvey,	Sectoral growth ratio 1976 - 2000	(4) = (2)×(3)
Agricultural	1,2,3	25.5	3.70	94.4 —
Industries		43.5	12.50	596.5
Mining Manufacturing	- 6,8	- 25.5	8.27 11.47	292.5
Construction Electricity,	9	18.0	16.89	304.0 Weighted
gas, water Services		31.0	5.19	average 174.4 growth
Transport storage	7	7.4	8.09	rate p.a. 59.9 9.4%
Commerce Services	4,5	23.6	4.85	114.5
Total	-	100.0	6.78	865.3

Note: 1) See Appendix 1-21

Appendix I-25
Table III-4-2 TRANSFORMATION OF SECTORAL STRUCTURE, 1976-2000

Description	i	t Distri sectors	bution	Annual Growth Rates (%)	Growth Ratio
<u>-</u>	1978	1987	2000	1976 - 2000	1976 ~ 2000
Agriculture	30	24	17	5.6	3.70
Industries	30	37	52	11.1	12.50
Hining	2	2	2	9.2	8.27
Manufacturing	20	23	32	10.7	11.47
Construction Electricity, gas, water	7	12	18	12.5	16.89
Services	40	39	31	7.1	5.19
Transport storage	4	5	5	9.1	8.09
Correrce Services	21 15	34	36	6.8	4.85
Net Dom. Pro.	100%	1007	100%	8.3	6.78

Source: NEDA, Long-term Philippine Development Plan up to the year 2000.

NET DOMESTIC PRODUCT BY INDUSTRIAL ORIGIN CY 1976 - 1978 Appendix I-26 Table III-4-3

						TH H	d notilm ni)	pesos or 1	TA/7 brices
Description	1969	1971	1973	\$261	1976	1977	1978	69/84	%.r.d
Agriculture, fishery and forestry	(33)	14,416	(32)	16,943	(30)	18,590	(30)	1.43	3.9
Industrial Sectors	(25)	11.239	(27)	15,165	(30) 17,71	19,136	(30)	1.94	7.6
Mining	(2) 693	066	(2)	1,053	(2) 1.036	1,259	9	1.76	8.3
Manufacturing	(18)	8,311	(20)	10,662	(20)	12,797	(20) 13,361	1.75	6.4
Construction	(4)	1,651	(4) 2,084	3,076	(7)	4,583	4,888	2.81	10.8
Bloct., gas & water	(C)	287	(1)	374	(1) 47 <i>S</i>	497	(C) \$28	es es	9.6
Servico sector	(42)	18,627	(41) 20,571	22,817	(40) 23,913	28.232	(40) 26,351	1.53	φ. •
Transport, storage	(4) 1,480	1,670	(4) 1,902	2,146	(4) 2,613	2,701	(4) 2,801	1.89	7.3
Commerce	(24)	10,332	(22)	12,309	(21)	13,462	(21)	1,44	1.4
Services	(14) 5,945	6,625	(15)	8,362	(15)	690°6	(15)	1.60	5,4
Net domestic product	(100)	44,282	(100) 49,914	54,925	(100) 59,378	62,958	(100)	1.60	5,4
Gross Domestic Product	48,779	53,526	126'09	268'89	72,962	77,484	82,093	1.68	5.9
							,		

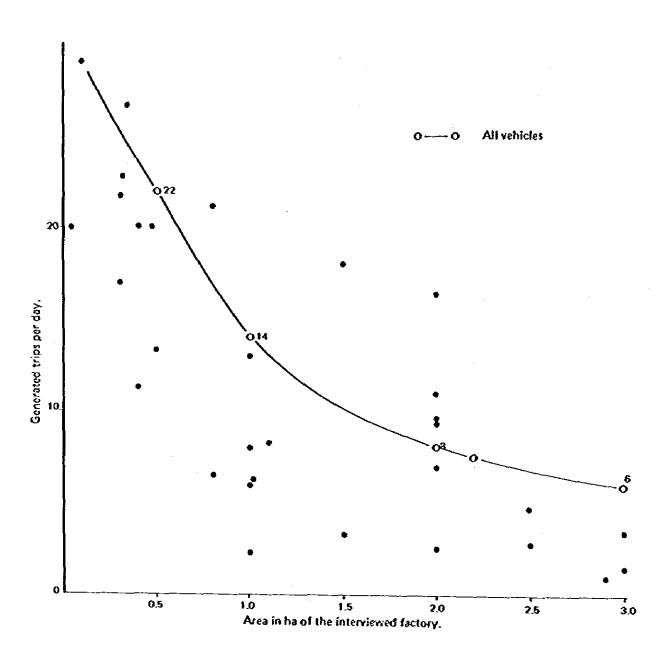
Sources: 1) NEDA, Philippine Statistical Yearbook, 1978.

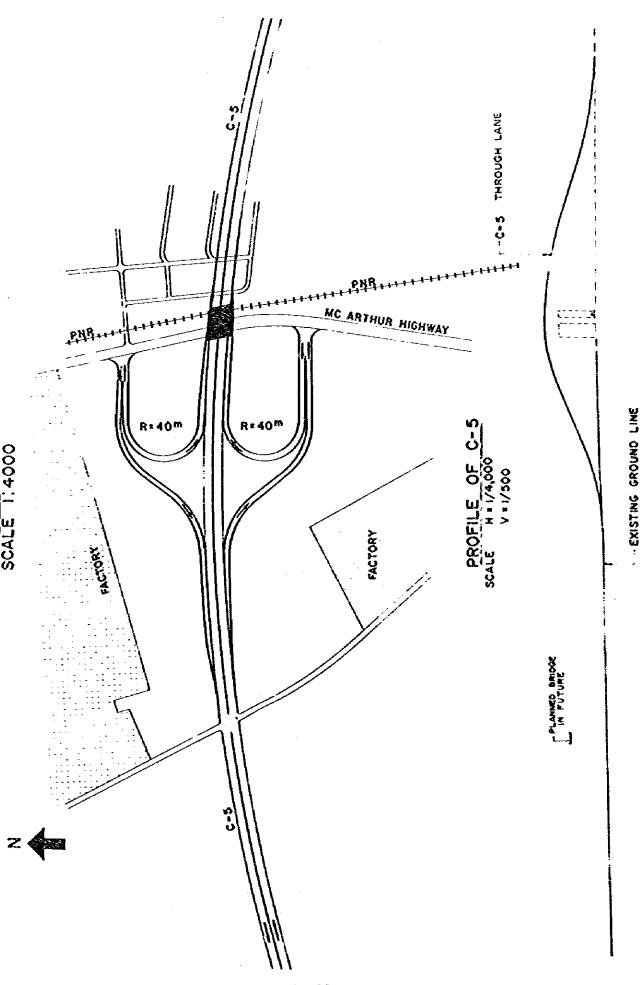
2) NEDA, Philippines Economic Indicators, June 1979, preliminary estimates.

GENERATED TRIPS FROM THE RECLAIMED AREAS Appendix I-27 Table III-4-4

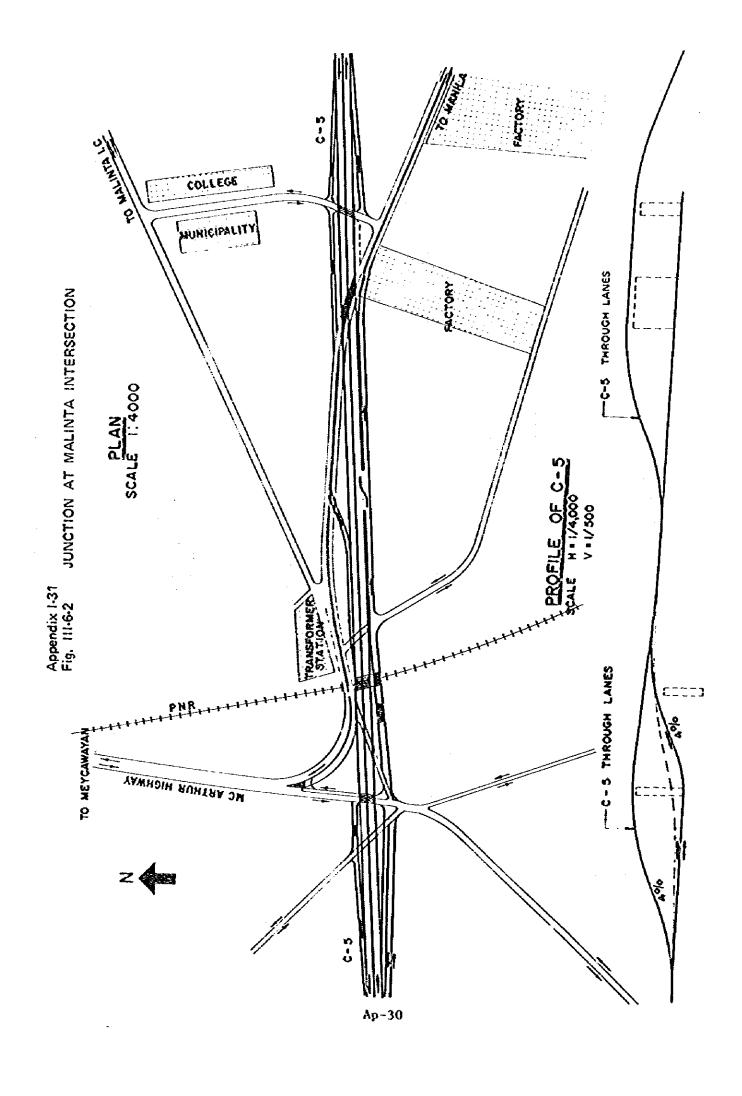
(13)	Grand Total	2,958 (139)	2,706	2,156 (139)	1,518	2,720 (139)	1,723
(12)	5) Total (public)	у 39 В 12		7 36 8 12	J116 B 34	д 39 12	J 39 B 12
(11)	Total 4) (Private Vehicles)	88		82	260	88	88
(10)	3) Others	520	·	240	760	520	520
(6)	Job Opp. Outside, 10%	650		300	056	650	650
(8)	No. of Persons [Family]	15,600 [2,600]		7,200	22,800 [3,800]	15,600 [2,600]	15,600
(2)	Residen- tial 1> Area	(52)	r	24 (52)	7.4	(52)	52
(9)	Total	.}2,958	32,706	}2,026	1,108	32,720	11,584
(5)	No. of Trips	522 2,436	480	360 166	961	480	282
(7)	Average Trips/ ha.	9 77	6 14	9 14	6 14	9 71	, 14
(3)	Classified Area	L. 87 S. 174	L. 80 S. 159	L. 60 S. 119	L. 33 S. 65	L. 80 S. 160	L. 47 S. 93
(2)	2) Indus- o. crial Area	261	239	179	86	240	140
(1)	Alt. Zone No. crial	56	57	56	57	56	57
	A1 t.	н		3	Ao-		H

Figures in () are the area of Block which is used as the dumping site. Houses will be constructed after 1994, ≏ଜନନଜର Notes:

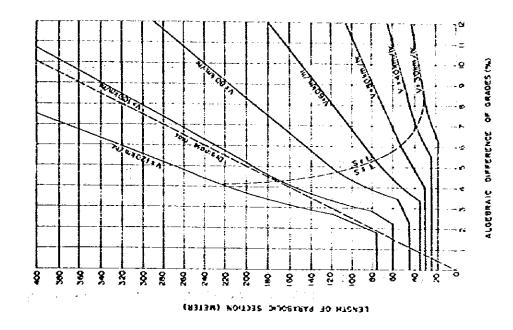

Zone 56, which is composed of Blocks I, II and III, is to be completed in 1987. Zone 57 is Block IV which is to be completed several years later, (10) = (8) × 0.2
(11) = {(9) + (10)} × 0.15 ÷ 2 --- Residential Area
(12) = {(9) + (10)} × 0.50 ÷ 15, or 0.35 ÷ 35 --- Residential Area


Due to the difficulty in estimating the number of employee at this stage of the study, vehicles used for commuting are not counted in the above table.

Appendix I-28 Table III-4-5 TRAFFIC GENERATION QUESTIONNAIRE


Date: '79 August _	- Name and	Interviewe	:
Company Name	Type of Business	Address Phone No) .
l. Area size of si	te (occupied area)		2
2. Area size floor	space in total		₁₂ 2
3. Number of employ	/ees		pers
4. Do you have ware	chouses or stockya	rds in your Area?	YES/NO
5. How many vehicle	es does your facto	ry have?	
(1) Car	veh.	(3) Pick-up & Var	n veh.
(2) Jeepney	& Bus veh.	(4) Truck	veh.
6. How many private within your area	e cars used by emp a?	loyees are parking	veh.
7. Type of commodit	t y		
(1) Coming in	Type of Comm.	Vehicle/day or	week
	1)		veh.
	3)		veh.
	4) Others	(including empty	veh. 7)
(2) Going out	Type of Cores.	Vehicle/day or	<u>week</u>
	1)		veh.
	2)		veh.
	3)		veh.
8. How many vehicle (vehicle/day)	es come in your are	ea per day in avera	age?
1) Passenger	car	3) Van, Pick-up	
2) Jeepney,	Bus	4) Truck	

Appendix 1-29
Fig. III-4-1 GENERATED TRIPS AND THE AREA OF FACTORY

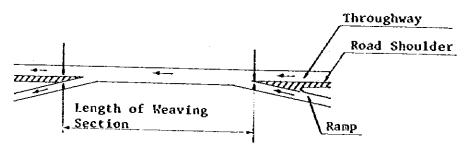


Λp-29

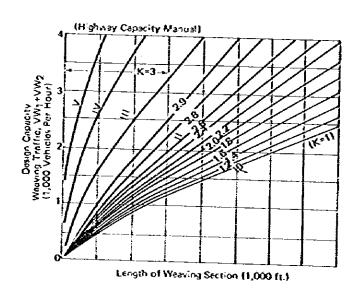
Appendix 1-33 Fig. 111-7-2 LENGTH OF VERTICAL CURVE (SAG)

Proposed in 1-32

Fig. 111-3-1

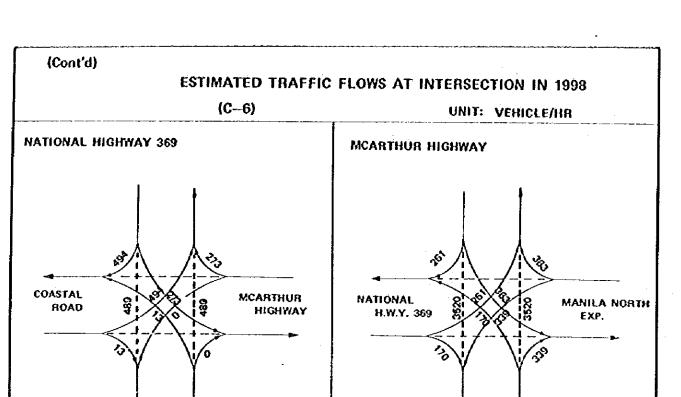

LENGTH OF VERTICAL CURVE (CRESTS)

Sometimes of the state of the


ALGEBRAIC DIFFERENCE OF GRADE (%)

λp-31

Appendix 1-34
Fig. III-7-3 LENGTH OF WEAVING SECTION

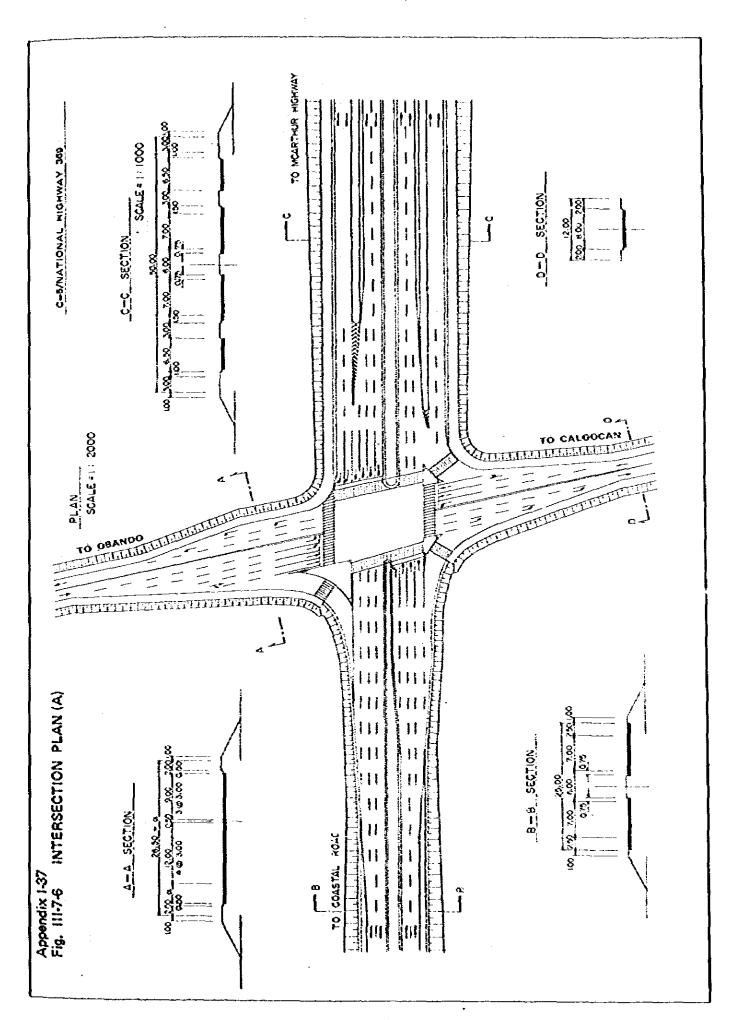

Appendix I-35
Fig. III-7-4 DESIGN CAPACITY OF WEAVING SECTION

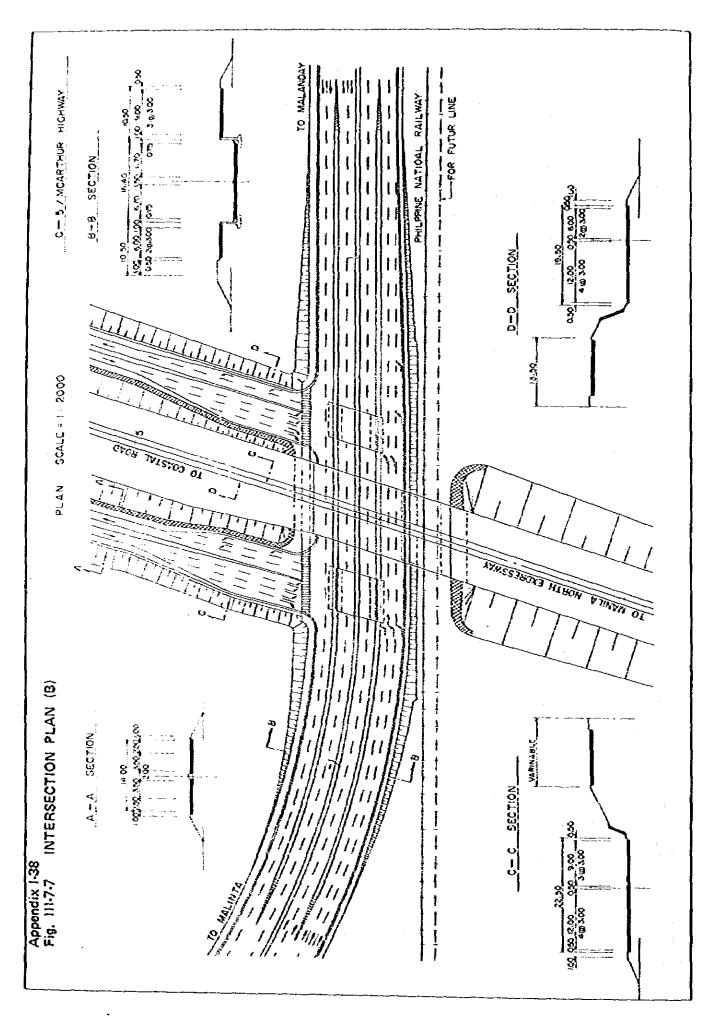
Appendix I-36 Fig. 111-7-5 ESTIMATED TRAFFIC FLOWS AT INTERSECTION IN 1998 UNIT: VEHICLE/HR POLO-MALABON ROAD NATIONAL HIGHWAY 369 COASTAL NATIONAL HIGH-COASTAL POLO-CALOOCAN **Y/AY 363** ROAD ROAD POLO-CALOOCAN ROAD MCARTHUR HIGHWAY COASTAL **NGARTHUR** COASTAL MANILA NORTH ROAD ROAD HIGHWAY EXP. --- GRADE SEPARATION INTEGRATED CONGESTION RATIO AT INTERSECTIONS IN 1998 INTEGRATED INTERSECTION REMARKS CONGESTION RATIO POŁO-MALABON 081 NATIONAL H.W.Y. 369 0.85 POLO-CALOOCAN ROAD 087

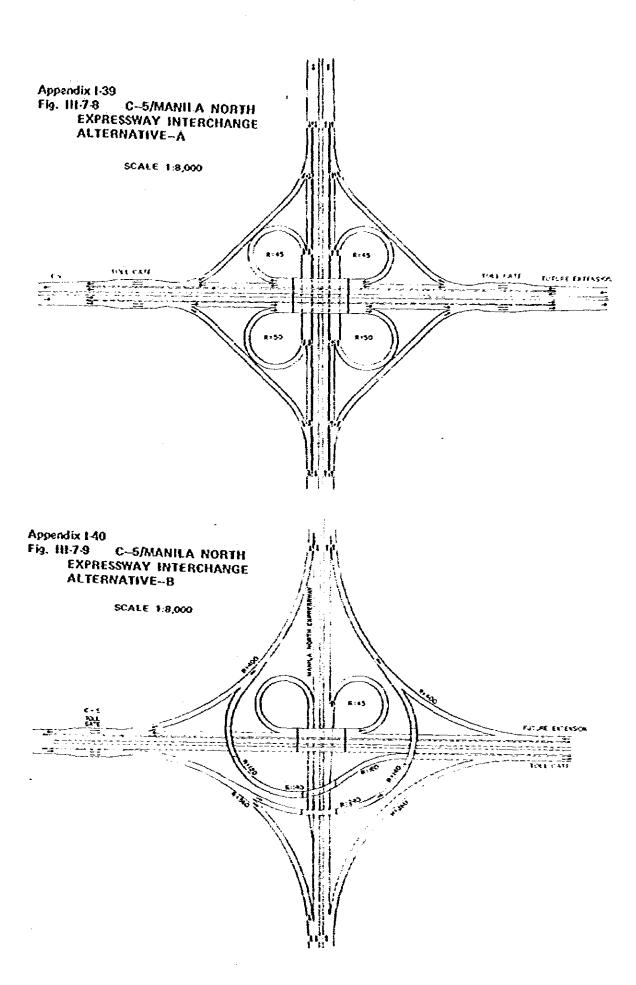
0.90

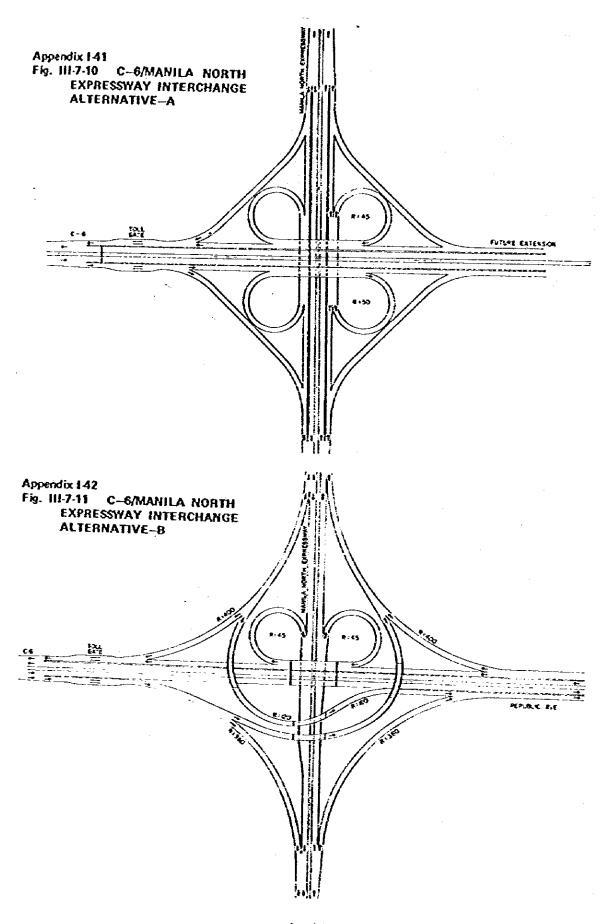
MCARTHUR HIGHWAY

INTEGRATED CONGESTION RATIO AT INTERSECTIONS IN 1998

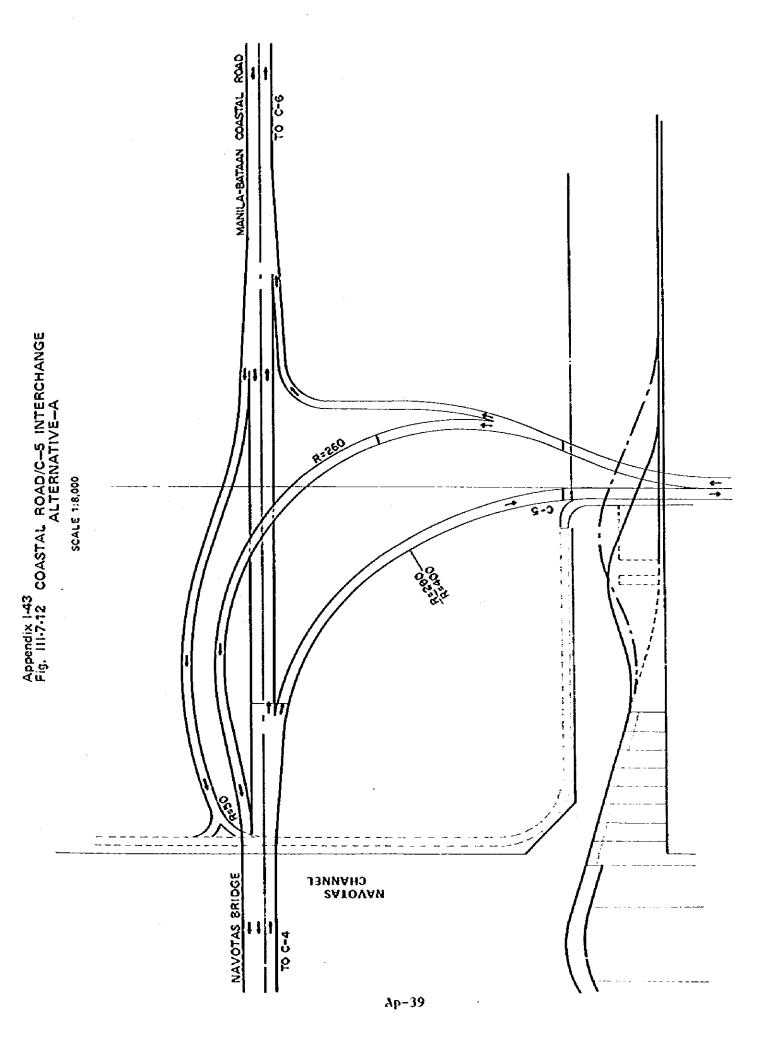

- GRADE

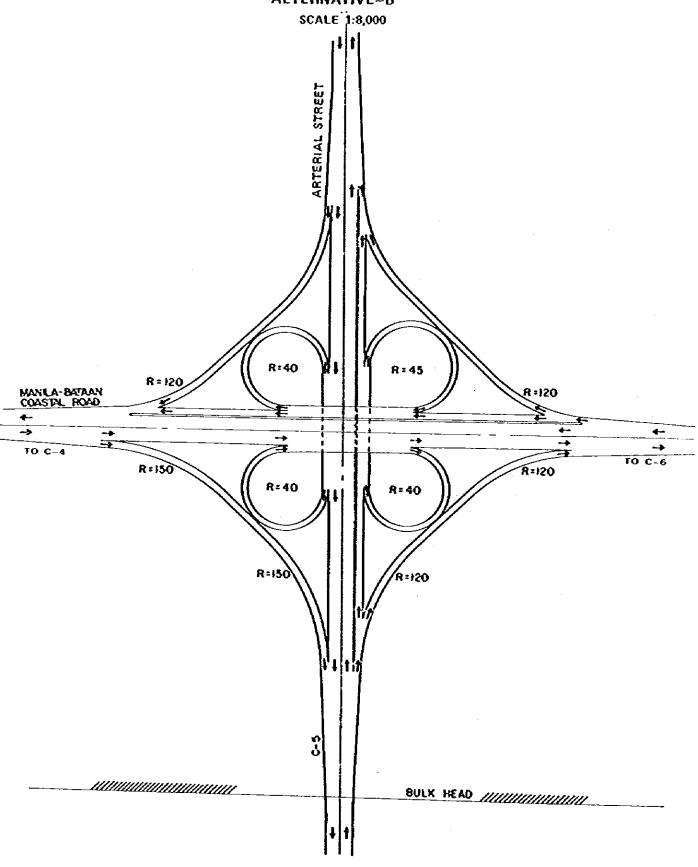

SEPARATION

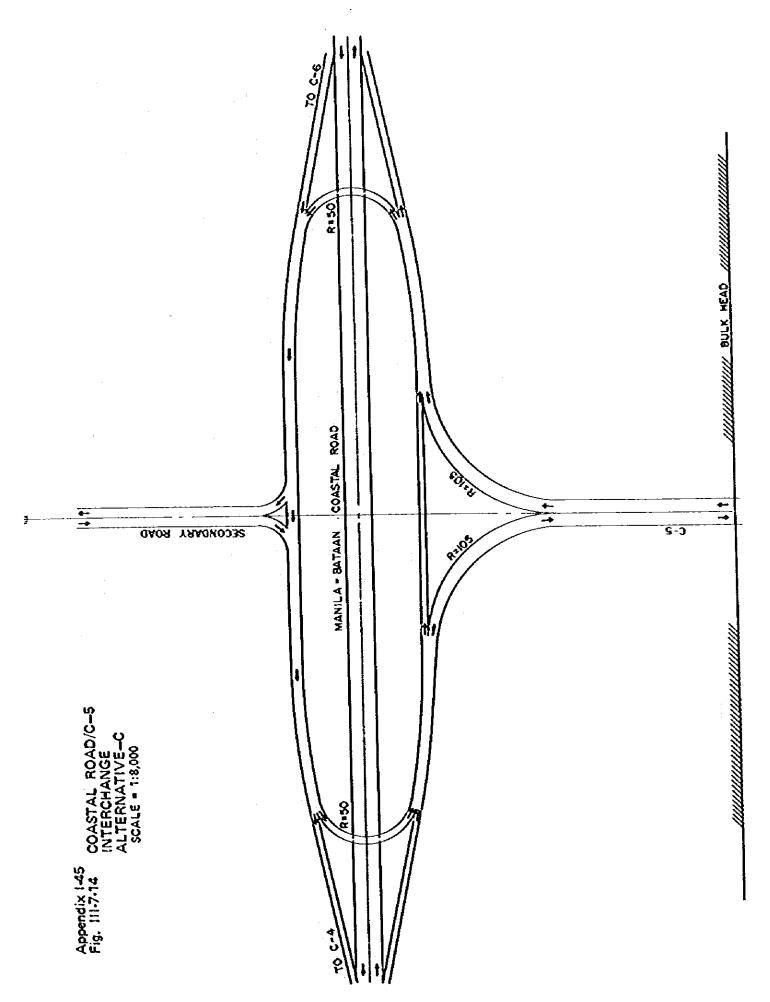

		REMARKS
NATIONAL HIGHWAY 369	0.87	
MCARTHUR HIGHWAY	0.90	


- GRADE

SEPARATION

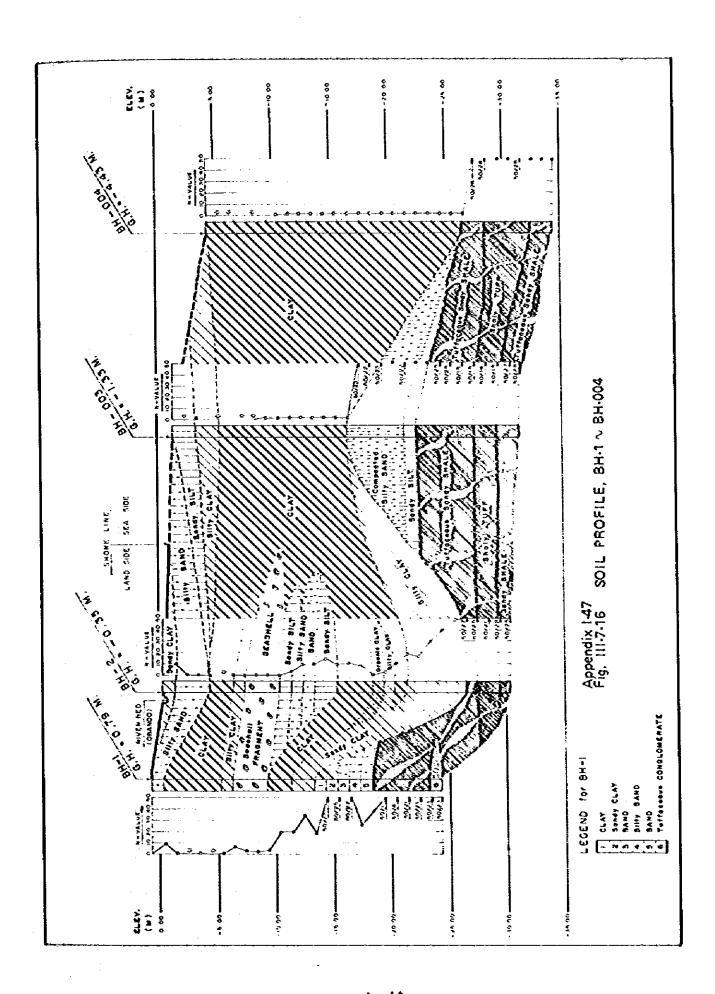






Ap-38

Appendix I-44
Fig. III-7-13 COASTAL ROAD/C-5 INTERCHANGE
ALTERNATIVE-B

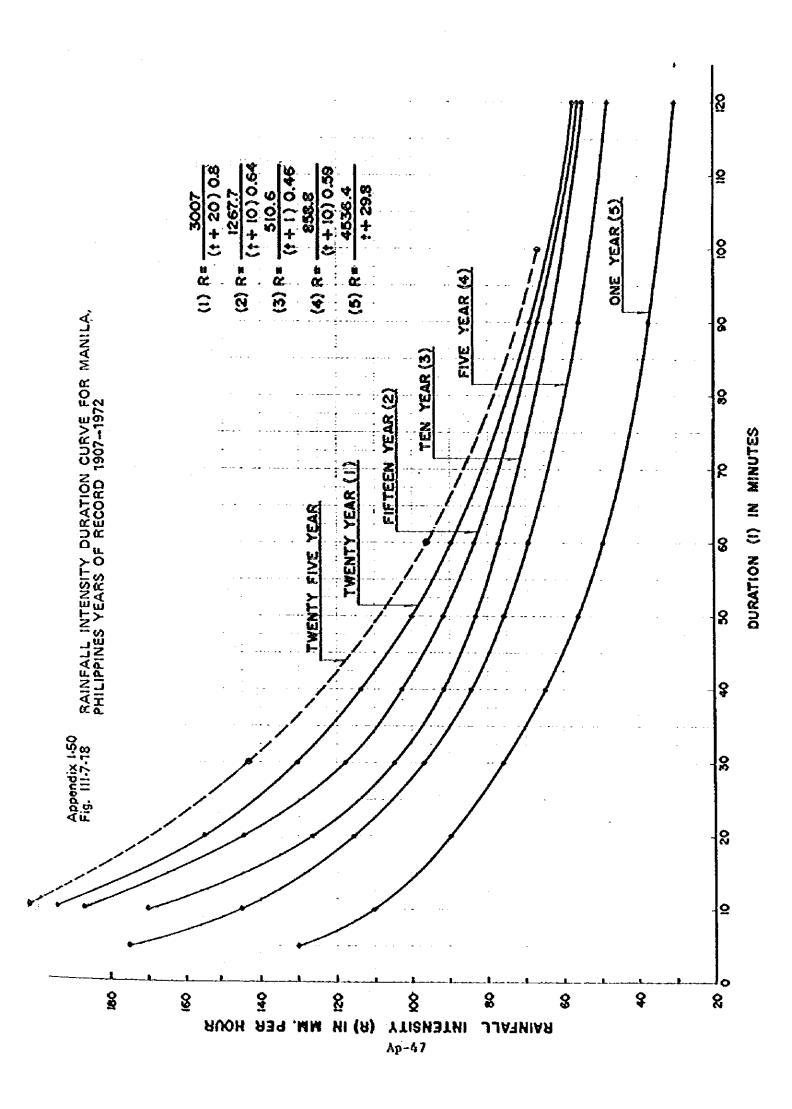


Ap-41

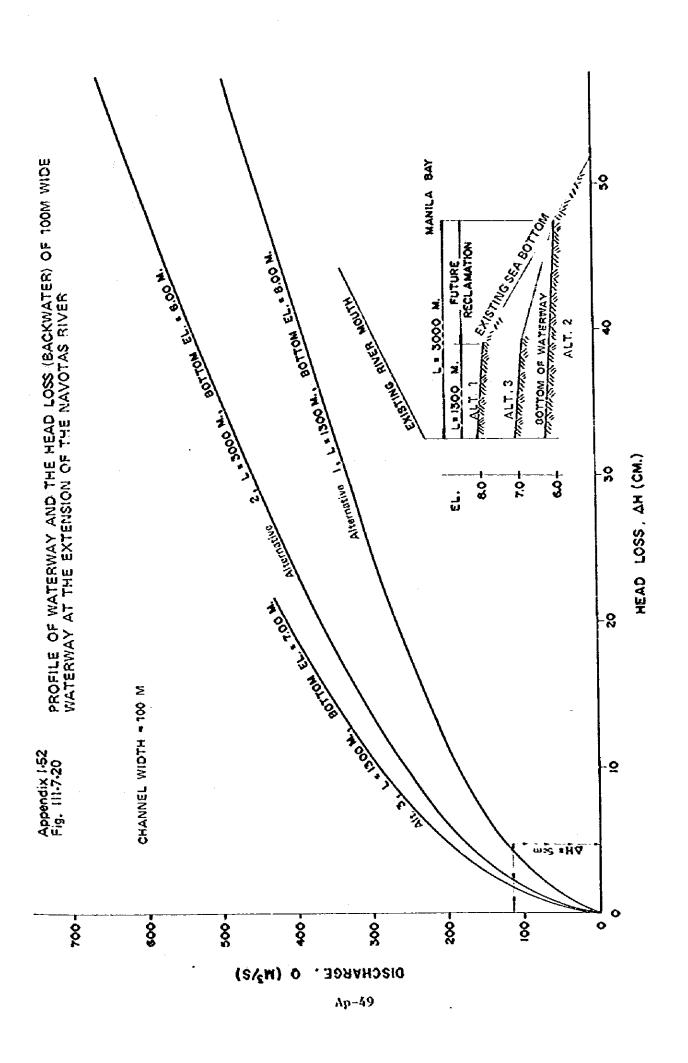
Ap-42

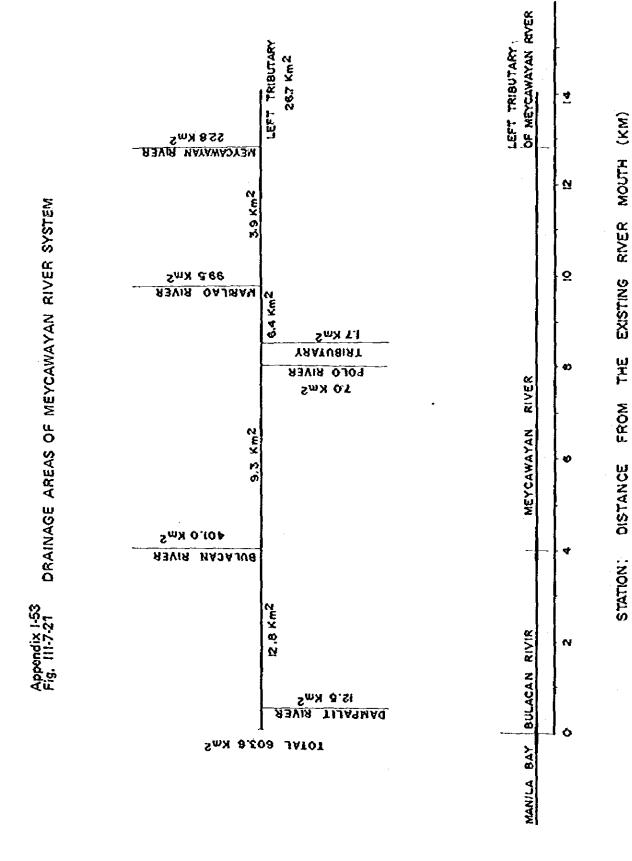
COMPARATIVE ANALYSIS OF BRIDGE TYPE CROSSING NAVOTAS WATERWAY Appendix 1-48 Fig. 111-7-17

Descriptions	3- Span Continuous	Steel Box Girder	3-Span Costinuous	P.C Box	Girder
TYPICAL CROSS SECTION AND SIDE VIEW	00081	135 000 35 000 40 000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	000081	135 000 40000 55 000 40 000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	WSW Wall
APPROXIMATE MATERIALS QUANTITIES	Superstructure Steel Weight 240f Concrete Reinforcement 75f Form 1700m² Pavement 1250m² Hondrail 270m	Substructure Concrete 720m ³ Reinforcement 72 ¹ Form 950m ² Steel Prie 2690 ^m Steel Accessory 240 ¹	Superstructure Concrete 1060m ³ Pc Rod 45 ¹ Reinforcement 120 ¹ Form 3160m ² Pavement 1250m ² Handrall 270m	Substructure Concrete 9 Reinforcement Form 12 Steel Pile 39 Steel Accessory 3	930m ³ 90° 1220m 3900m 350°
APPROXIMATE CONSTRUCTION COST	Superstructure Substructure. Totol	P 5,960,000 p 10,580,000 P 16,540,000	Superstructure Substructure Total	P 4,510,000 P 14,680,000 P 19,190,000	
PRACTICABILITY OF ERECTION	Erection Construction period :	Easier Short	Erection (Cantilever method) Construction period	d) High level	
MAINTENANCE	Painting cost is	cost is necessary	Maintenance cost is negligible	igible but repoir is difficult	icutt.
CONCLUSION	Recommended	ded	3		

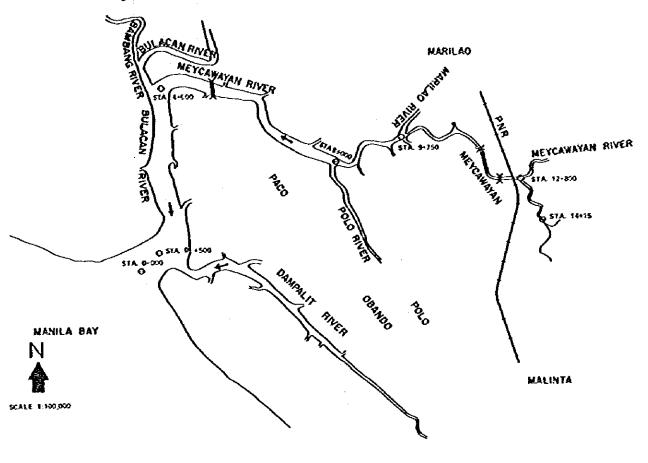

Appendix I-49
Table III-7-1(A) LIST OF BRIDGES TO BE CONSTRUCTED

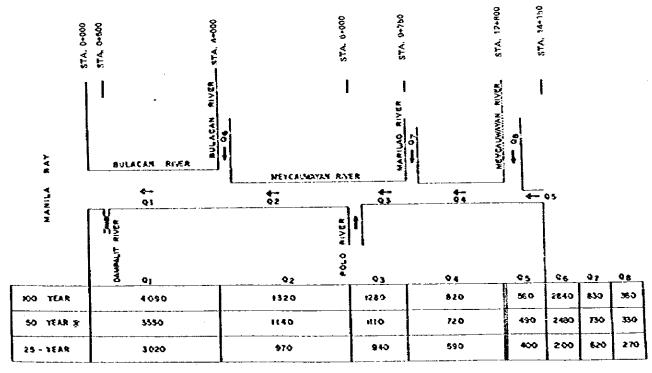
			111-7-1(A) E1S1 (F BRIDGES TO	DIS COM	SIMUGIAN	
Road	Bridge No.	Station	Brdige Length	Super Structure Type	Founda- tion Type	Crossing Object	Remarks
	8:-1	STA .010	450 m (2x40m + 1x30m + 17X20m)	Steel Continuous Box	Pile	Coastal Road	Interchange Br.
	2	STA. 0+510	289 m	P.C. Composite	Pile	Canal	Canal Br.
	3	STA.0+988	(14 x 20m) 22.3m	P.C. Composite	Pile		River Br.
	4	STA. 11934	(1 x 22.3m) 64.5 m	P.C. Composite	Pile		River Br.
	5	STA. 2+230	(3 x 21.5m) 18 m	R.C. Hollow Slab	Pile		Rives Br.
	6	STA. 2+260	(1 x 18m) 42 m	P.C. Composite	Pile		Over Br.
	7	STA. 2+824	(2 x 21m) 43.2 m	P.C. Composite	Pile		River Br.
	8	STA. 3+160	(2x21.6m) 46 m	P.C. Composite	Pile		Over Br.
ડે	9	STA. 3+670	(2 x 23m) 41 m	P.C. Composite	Pile	Natl. Highway 369	
	10	STA. 4+70	(2 x 20.5m) 40 m	P.C. Composite	Pile		Over Br.
	111	STA. 4+276	(2 x 20m) 60.3 m	P.C. Composite	PiJe		River Br.
		STA. 41660	(3 x 20.1m) 52.3 m	P.C. Composite	Pile		Over Br.
		STA. 5+110	(25.0m + 27.3m) 57.3 m	Steel Composite		M- 1-1-1	-
	}	STA. 5+818	(41.3m + 16.0m) 23.2 m	P.C. Composite		Mc-Aither Hwy.	Interchange Br.
		STA. 9+50	(1 x 23.2m)	P.C. Composite	Spicad]	Throughway Br.
		317. 2730	69.6 m (4 x 17.4m)	P.C. Composite	Spread	North Expressway	Interchange Br.
	Br-1	STA. 01546	280 m (14 x 20m)	P.C. Compsoite	Pile	Canal	Canal Br.
	2	STA. 1+822	30.9 m (1 x 30.9m)	P.C. Composite	Pile		River Br.
	3	STA. 2+420	142.1 m (7 x 20.3m)	P.C. Composite	PiJe		River Br.
	4	STA. 3+711	14.3 m (1 x 14.3m)	R.C. Hollow Stab	Pile		River Br.
	5	STA. 3+850	23.5 m (1 x 23.5m)	P.C. Composite	Pile	Natl. Highway 369	Interchange Br.
	6	STA. 4+297	14.7 m (1 x 14.7m)	P.C. Composite	Pile		Throughway Br.
	7	STA. 4+580	138.6 m (7 x 19.8m)	P.C. Composite	Pile		River Br.
	8	STA: 4+925	14.1 m	P.C. Composite	Pile		Throughway Br.
	9	SFA. 5+270	(1 x 14.1m) 26.5 m	P.C. Composite	Pile		River Br.
န	10	STA. 5+600	(1x26.5m) 13.2 m	P.C. Composite	Pile	Natl. Highway 369	Throughway Br.
O	11	STA. 6+78	(1 x 13.2m) 32.1 m	P.C. Composite	Pile		River Br.
	12	STA. 6+260	(1 x 32,1m) 13.6m	P.C. Composite	Pile		Throughway Br.
	13	STA. 6+682		P.C. Composite	Pile		River Br.
	14	STA. 6+826		Steel Composite	Sprezd	Mc-Arthur Hwy.	Interchange Br.
	15	STA. 7+376		P.C. Composite	Spread	P.N. Railway	Throughway Br.
	16	STA. 7+568	1	P.C. Composite	Spread	-	Throughway Br.
	17	STA. 7+878		P.C. Composite	Spread		River Br.
	18	STA. 8+492		P.C. Composite	Spread		River Br.
	l	STA.9+492	(1 x 25.5m) 69.6 m	P.C. Composite	i i	North Expressway	
			(4 x 17,4m)				
' a	'	STA. 1+526	40 m (2 x 20m)	P.C. Composite	Pile	ļ _.	Over Br.
Coastal		STA, 3+172	495 m (40m+55m+40m+18x20m)	P.C. Composite Steel 3 span box	Pik Steel- pikd-	Navotas Wareway	Canal Br.
-	3	STA, 5+445	120 m (6 x 20m)	P.C. Composite	well Pile	Canal	Canal Br.

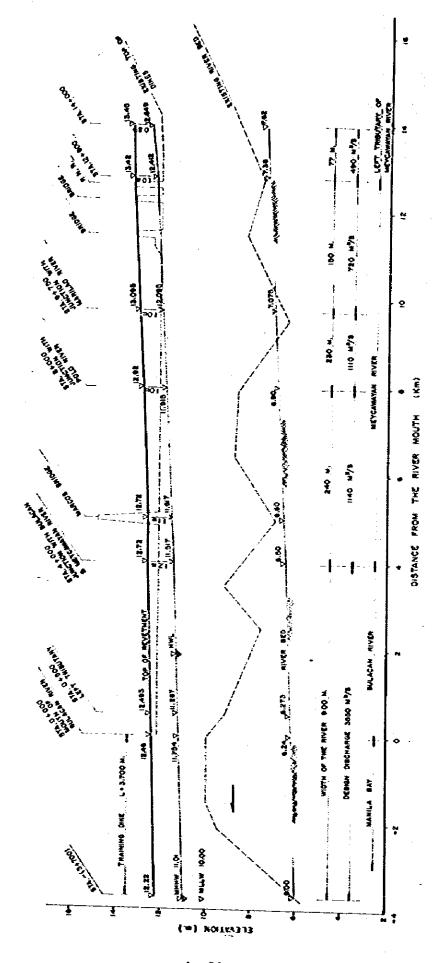

Appendix I-49
Table III-7-1(B) LIST OF CULVERTS TO BE CONSTRUCTED

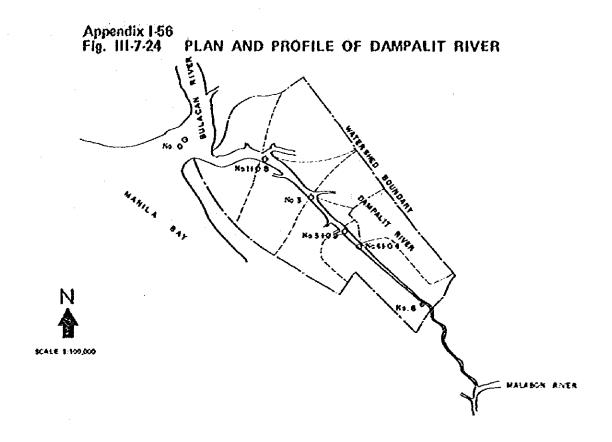

Road	Culverts Number	Road Station	Width (m)	Depth (m)	3	rt EL. m)	Remarks
	C1	5+790	2.0	2.0	To the	et ing G.L.	Storm drainage
	C2	6+300	4.0	4.0	EXISE	11. G 0. D.	11
	C3	7+190	11	11	11	1+	59
	C4	8+035	11	11		11	11
	C5	8+530	1 E .	ft	11	**	. 11
c -5	C6	9+720	2.0	2.0	9.0	(-1.47)	Storm drainage and brackish
	C 7	1+090	F4	,,		19	water supply
	č8	1+290	o.	#1		f#	11
	C9	1+460	11		,,,	et (1)	#1
	C10	1+700	13	11] "		t t
	C11	3+300	12	10	"	11	11
	C12	3+400	1#		"	п	11
	C13	3+800	11	"	10.0	(-0.47)	Storm drainage only
_	C14	4+000	11	"	"	ei	**
	C15	0+815	2.0	2.0	9.0	(-1.47)	Storm drainage and brackish
		0.0.0	10	,,	۱,,	41	water supply
	C16	01960	11	, ,,] ;;	**	**
	C17	1+195	11		\	*1 11	. 11
	C18	1+475			,,		11
C~6	C19	1+730	11	,,,	1	H	
U~0	C20 C21	2+050	71	*1		14	11
	C21	2+190 2+705	f1	- 11	, ,	11	, , , ,
	C23	2+703 2+850	11	11	{	*1) #F
	C24	2+955	.,	11	,,	11	
	C25	3+070	31	17	n	n	19
	C26	3+325	51	34	"	11	11
	C27	31540	tt	11	,,,	**	11
	C28	4+750	11	11	"	tt	17

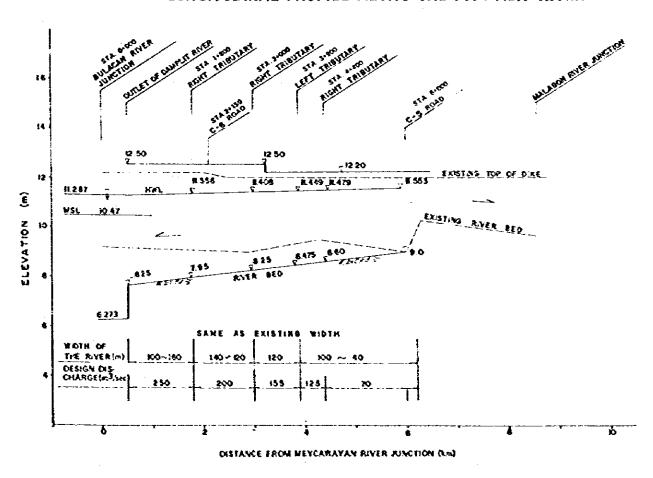
Note: Figures in () designate lavert Els. based on M.S.L datum.



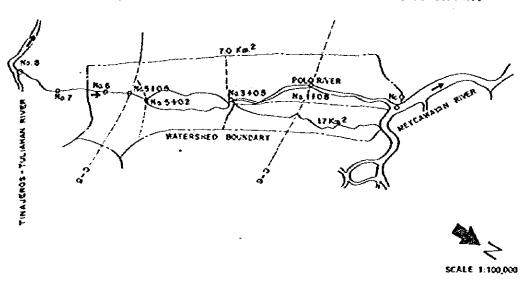

i i					AF	g.	200 111	 ix -7-1	l-51 19	D	AI	LY	RAI	NFA	AL.I		R	ОВ	ΛB	ILIT	Γ Υ Λ	i IIA	, S	AT	iov			; . <u>\$</u>
		·					+				1	_	i	i	;	ŧ	1 1		·				<u>.</u>		٠	<u> </u> 	-	
	**************************************				- 1						}	<u> </u>			 			:		•			, is		!			į.
					33		1=						1 1 2						j									ii
	1000 500						T	Ī.,		: .	İ			ļ									·		-1	-		-
							-				::				•	į			Ì	-			į į					
	-860			::::	1		1				-					7			<u></u>				-		-1		ļ	4
÷	166						†				İ	1		-	# :	65	-						:		.1			
	- 60						1			i					46	5			•		.		-	. :		Ì		
	20			-			1		-			. .		39				-							-			
] : :						43								HA	ZE	ı P	10	1	NG.	
1 2 2 2 2	10		- <i></i>	:::::		-	-	-) ;	•	300					-	<u> </u>			98	0 -	4 P	17	-		
	5		: : : : : : : : :	======================================			1				1	Y	7 2 7	1 2 2 2	: ::::::				<u> :</u>		- 1		-		1-	-		
	5				::						1	124	3		=				<u> </u> -			1 : : : 1 : : :	<u> </u>			-		
							-				1/2			ļ				1	ļ.		-		_		.			
		7.5.1					1	ļ 	_17	5 /				<u> :</u>	<u> </u>					<u></u> .			1		1_			
YEAR	2						1	<u> </u>	•	/ 153			1						<u>į</u>							· ·		
					-		1		1		<u> </u> -		1									İ			1			
			: :						<u>[</u>											: ,	•				1			
<u> </u>								/-	. <u>.</u> .	• '' •		# #							1					:::		-		
8	1.28		::::				J				1			-				Ì	1							+	1	
ROBABILITY							1				Ī		1 2 2															
0.			-			/						1111								1		-	•		1	-		
			·	_	1		- -			 	<u> </u>			 	-				<u> </u>			_			_	-		
					•	-					.								-									4
	y- -			7 1			- }-			• . -					Ì				ļ -	·			4:					
	1.01						+	-			-	:		1:::	-		Н		1		= = = =		1_:			+-	-	
					1	- 1	+	<u> </u>		• • • • • • • • • • • • • • • • • • •	-	• • •	 		<u> </u>		\vdash	1	-			-	•		-	-		- 1
					j		İ			• • • • • • • • •		• ·		ļ -··					•		• • • •					!		
							-	 - -		 -	į	-		ļ	-	-	_ ;		-			ļ				-		
				-			Ť		<u> </u>	: 	1-		! !	ļ	<u>.</u> :	<u>.</u>			<u> </u>	- -	<u> </u>		<u>.</u>			+		
			<u> </u>	j- ·	}' !			į			!		į		; ?	•			:					,	1-	ì		•
	ż		5	0			10	90		2	60			5	00			įC	00		20	00	÷	 	- 	-1 !		
			İ	ĺ				R	AIN	FAL	Ĺ	IN	MM	0	ļ	n		1										
	4								- 	. e e 136		• • •	, , n , M						1		•		:		į	!		
	1			ĺ	•	li	•	1					Į.		\$;				į			ļ			I			

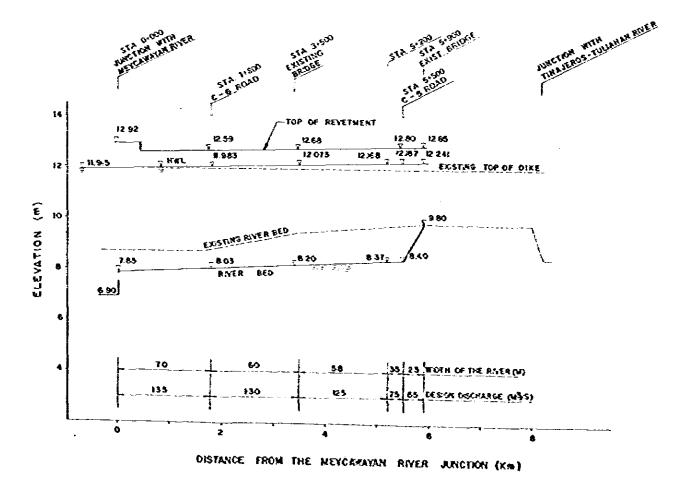


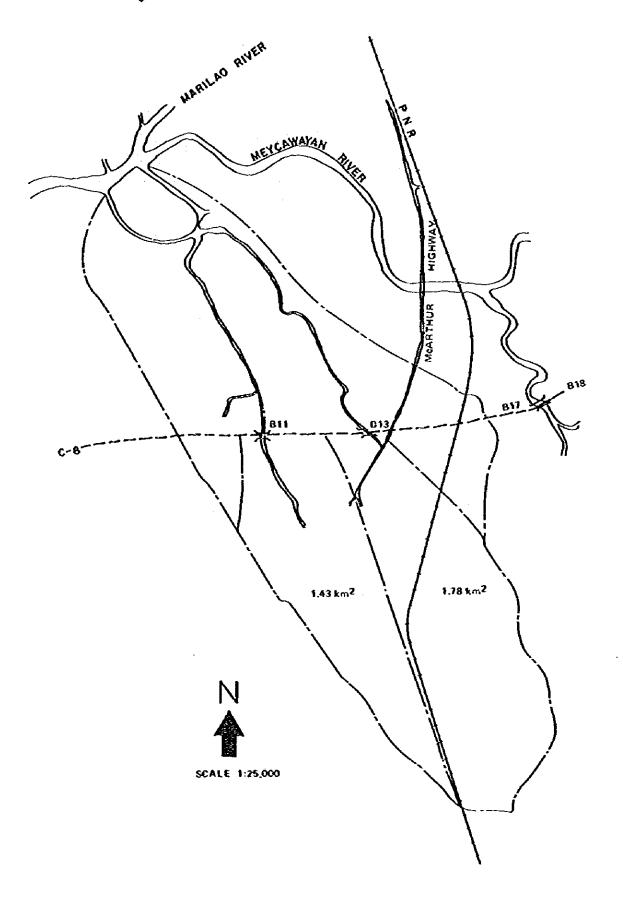

Appendix 1-54
Fig. 111-7-22 PLAN AND DISCHARGES OF MEYCAWAYAN RIVER



LONGITUDINAL PROFILE ALONG THE BULACAN-MEYCAWAYAN RIVER Appendix 1-55 Fig. 111-7-23




LONGITUDINAL PROFILE ALONG THE DAMPALIT RIVER



Appendix 1-57
Fig. III-7-25 PLAN AND PROFILE OF POLO RIVER

LONGITUDINAL PROFILE ALONG THE POLO RIVER

Appendix 1-59 ENVIRONMENTAL STUDIES

CHAPTER 1. INTRODUCTION

Pursuant to the Philippine Environmental Policy (P.D. 1151), the Manila-Bataan Coastal Road and Its Related Roads Project have the necessity of considering the environmental aspects of its development plans. This feasibility study, therefore, includes environmental studies with particular reference to the implementation of the Project.

The studies have been conducted according to the guidelines set by the National Environmental Protection Council (NEPC) and include the following:

- Project Summary;
- Description of the Environment of the Project Area;
- Relation of the Project to National Development Plan and Land/ Resource Use Policies;
- Description of Environmental Impacts of the Project and Mitigation of Adverse Effects; and
- Summary of Irreversible Commitments of Resources.

CHAPTER 2. PROJECT SUMMARY

Phasing and Staging of the Project and Construction Component 2.1

The project studied was divided into Phase I and Phase II and further subdivided inot Stages as shown in Table 59-1 according to the priority established by the Study.

Table 59-1 PHASES AND STAGES OF DEVELOPMENT

Phase	C	
rnase	Stage	Construction Component
I	I	Construction of the Coastal Road and C-5
		Development ofReclamation Blocks I-III
		Construction of Street Network and Utilities in Reclamation Block I
		Construction of the grade separation structures and overlay for the Coastal Road and C-5
	11	Construction of the extension of the Coastal Road upto Reclamation Block IV
		Development of Reclamation Block IV.
		Construction of C-6
		Development of Reclamation Blocks V-VII
		Construction of the extension of the Coastal Road to Bataan (Phase II of Manila-Bataan Coastal Road)

2.2 Description of the Project Roads

A. Salient Features of the Project Roads

See Sub-Section 6.1.2 of Part III in Volume I.

B. Function of the Project Roads

See Sub-Section 6.1.3 of Part III in Volume I.

C. Design Standards

See Section 7.3 of Part III in Volume I.

D. Typical Cross-Section of the Project Roads

The elements of cross-section component applicable to the Project Roads were described in Sub-Section 7.3.1 of Part III in Volume I. The Figs. III-7-3 thru III-7-8 in Volume I present typical cross-sections of the Project Roads.

E. Design of Interchange

See Sub-Section 7.5.3 of Part III in Volume I.

F. Comparative Analysis of Bridge Type

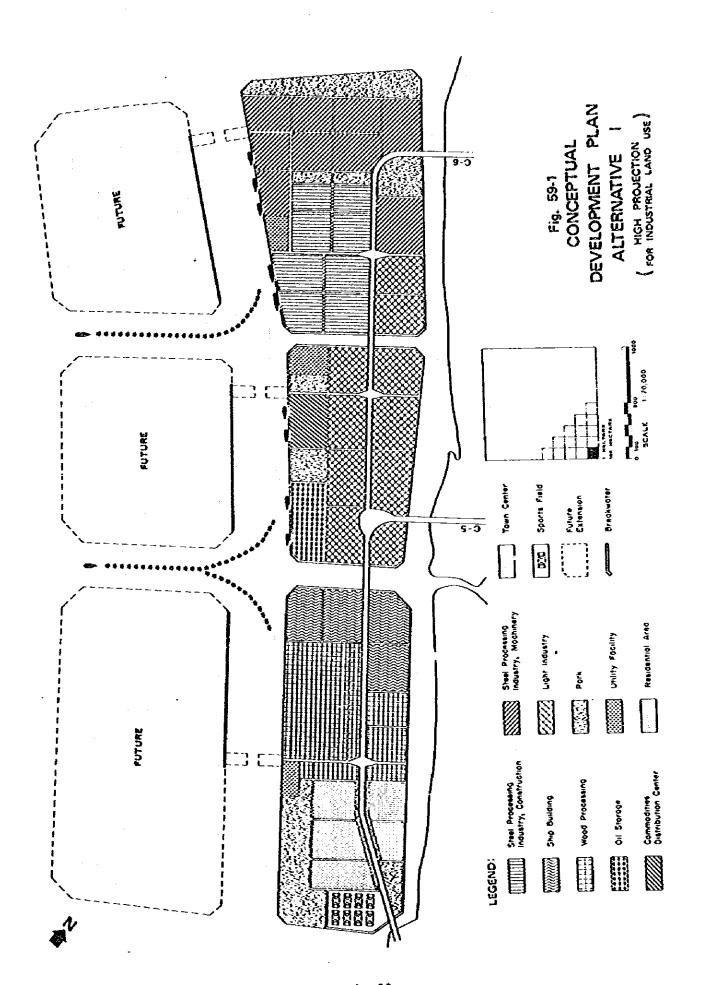
See Sub-Section 7.7.4 of Part III in Volume I.

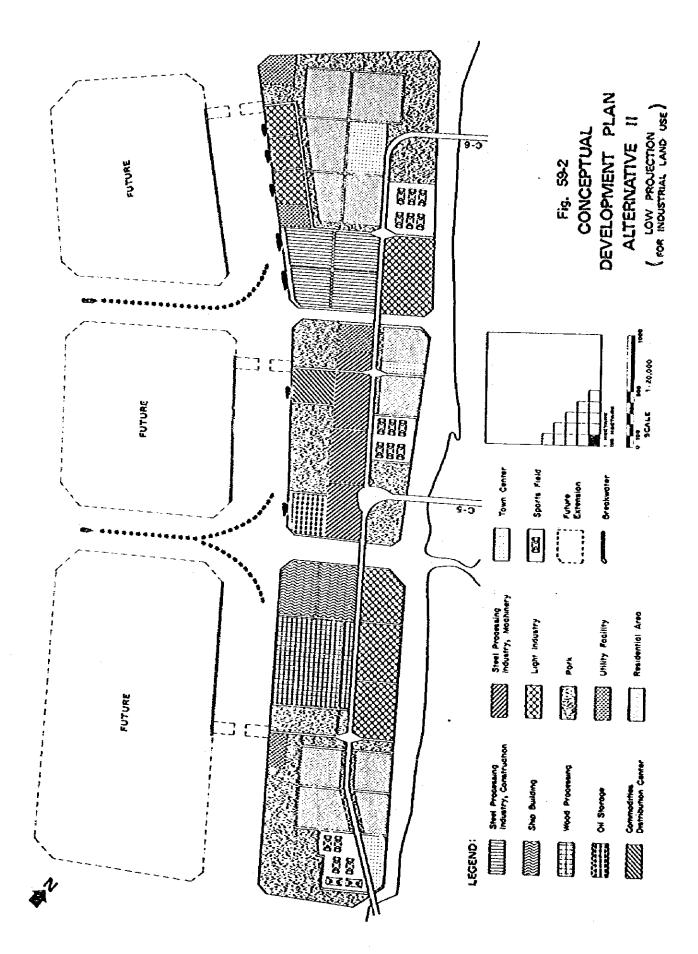
23 Description of the Development of the Reclamation Area

A. Location and Land Form of the Reclaimed Area

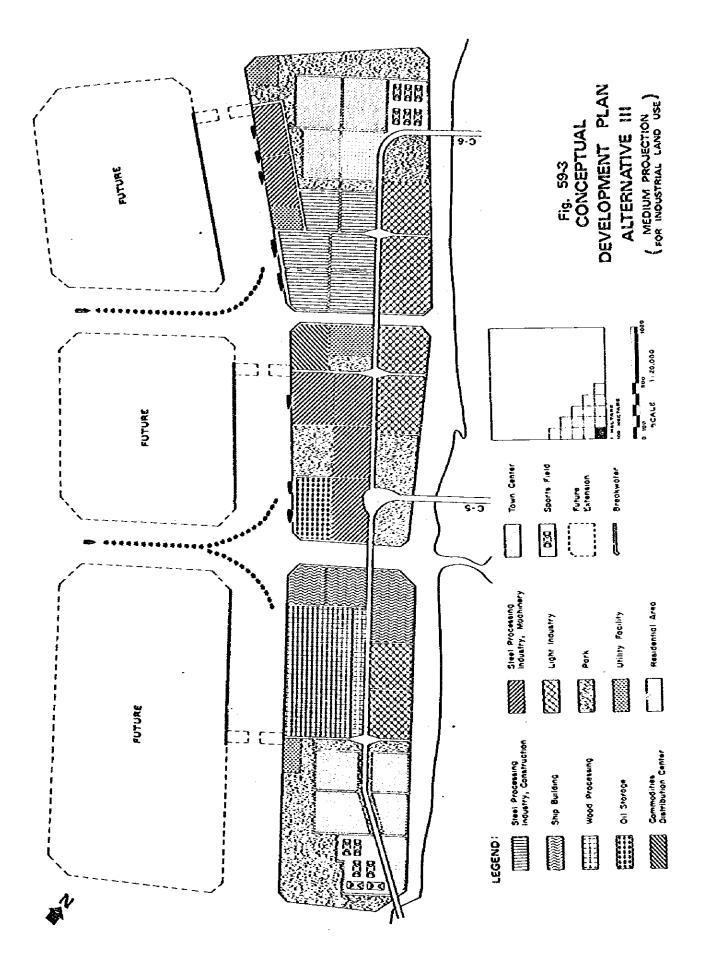
The proposed reclamation site is situated in the northwest of Manila. This proximity facilitates the absorption by the reclaimed area of development activities from the Manila Metropolitan Area. With the Navotas Fishery Port intervening, the site is contiguous to the port of Manila, the most important port of the nation.

The northern limit of reclamation area is the south bank of the Meycawayan River and any further northward expansion is reserved as a future project.


The adopted land form of the Reclaimed Area is shown in Appendix I-109.


B. Land Demand Analysis and Case Study of Land Use to be Located in the Reclaimed Area

See Chapter 2 of Part IV in Volume I.


C. Various Conditions Affecting the Scale of Reclamation Area

See Section 3.3 of Part IV in Volume I.

Ap-60

Ap-61

D. Land Use of Proposed Reclaimed Area

The land uses considered for the reclamation area follow the national policy for development which stresses the importance of manufacturing, labor-intensive and export-oriented industries. In addition, market-oriented industry were considered as also suitable for the reclaimed area since the site is located near Manila which is the biggest market in the Philippines.

Another consideration in determining the land uses in the area was to avoid polluting types of industries in view of the existing regional environmental policies.

Table IV-4-2 of Part IV in Volume I shows the selection of types of industry found to be suitable for the proposed reclaimed area.

Three alternative development plans were evaluated as presented in Figs. 59-1 thru 59-3.

Each alternative has different pattern land use characteristics as shown in Table 59-2.

Table 59-2 LAND USE CHARACTERISTICS OF EACH ALTERNATIVE

Alter-	Level of Land Al	location	by Category	of Land l	Jse
native	Industries & Commodity Distribution Center	Park	Residential Area	Town Center	Utility Area
111 111	High Low Medium	Low High Xedium	Low High Medium	Low High Medium	Low High Medium

E. Dredging and Filling

See Section 6.5 of Part IV in Voluce I.

F. Bulkhead and Breakwater Structure

See Section 6.7 of Part IV in Volume 1.

CHAPTER 3. DESCRIPTION OF THE ENVIRONMENT OF THE PROJECT AREA

3.1 General

In addition to the road construction, the development of the reclaimed area also forms an important integral part of the Project. Consequently, the Project Area includes two types of environments: land and sea (bay) environments. Since natural, as well as man-made ecosystems will therefore experience the impact of the Project, impacts will be assessed for the following productive natural and man-made ecosystems (See Figs. 59-4 and 59-5).

i) Natural Ecosystems

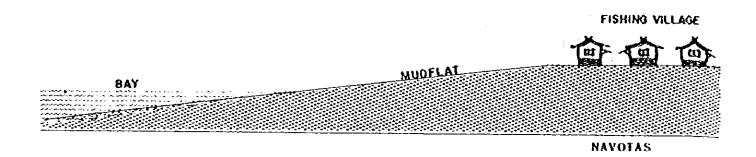
- Estuary ecosystems of Navotas and Heycawayan Rivers;
- Mudflat ecosystems along bay coasts of municipalities of Navotas and Obando; and
- Harine ecosystem of the Manila Bay.

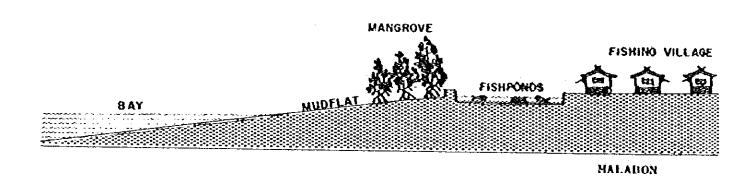
ii) Han-Hade Ecosystems

- Urban ecosystems in the municipalities includes in the direct influence zones (i.e., residential, institutional cormercial/ industrial, parks and open spaces); and
- Agro-ecocystems, such as bangus fishponds and rice fields.

The following sub-sections briefly describe mainly the physical and biological environment of the influence area. Where dedcriptions overlap with aspects already mentioned in detail in the other parts of this Report, the relevent sections are indicated of the purpose of cross-reference.

3.2 Physical Environment


A. Geography


Metro Manila is located in the central western part of Luzon Island, bordered by the Manila Bay on the west, tidal flats heavily-developed into fishponds on the northwest, the Central Plain of Luzon to the north, the foothills of the Sierra Madre Mountain Range to the northeast and east, Laguna de Bay to the southeast, and by a narrow neck of flatlands on the south.

B. Topography

The topography of Netro Manila is largely divided into the hilly area and the lowland area. The hilly area, with altitudes ranging from 13 to 20 m above Nean Sea Level, is indented by erosion valleys draining westward to the bay and eastward to the Marikina River.

Fig. 59-4 SCHEMATIC DIAGRAM: MAJOR ECOSYSTEMS IN NAVOTAS, MALABON AND MEYCAWANYAN ESTUARIES

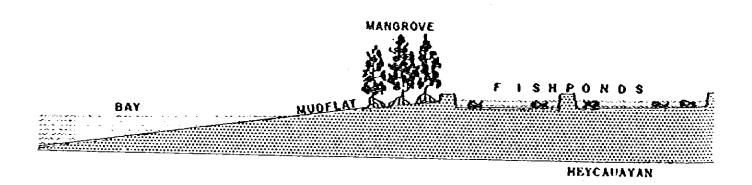
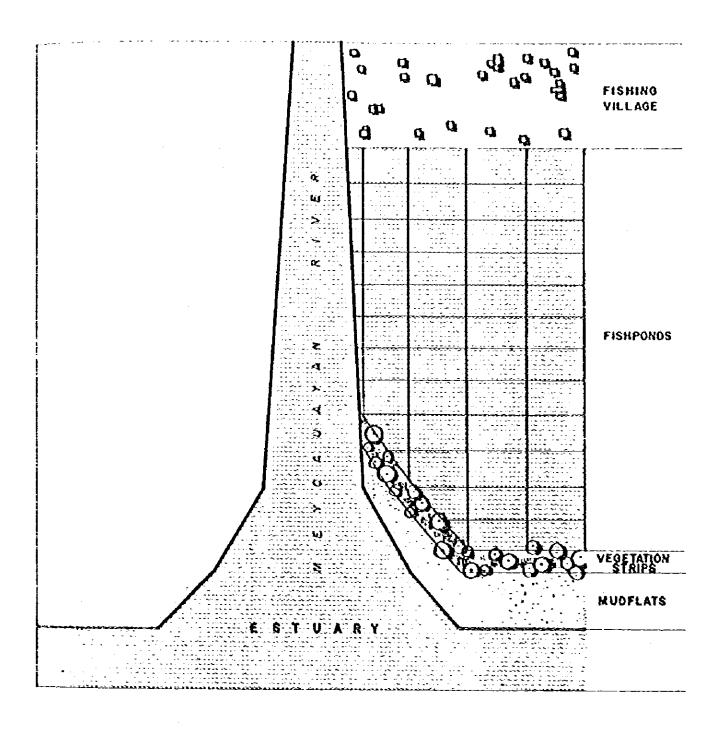



Fig. 59-5 SCHEMATIC DIAGRAM: MEYCAWAYAN ESTUARY

The lowland area, which is 1.5 to 2.5 m above Mean Sea Level, is the principal delta area of the Pasig River which drains Laguna de Bay, and meanders through the city in an east-west direction.

The Project Roads are located for the most part on the shallow offshore area and lowlands spread out in the deltas of Navotas and Meycawayan Rivers. The proposed reclamation site is a shallow offshore area with depths of 0.00 to 3.5 m below Mean Lower Low Water.

C. Geological and Soils Conditions

The geological map shows the general boundary between alluvial lowland plains (deltas) and diluvial upland formation (Guadalupe Tuff).

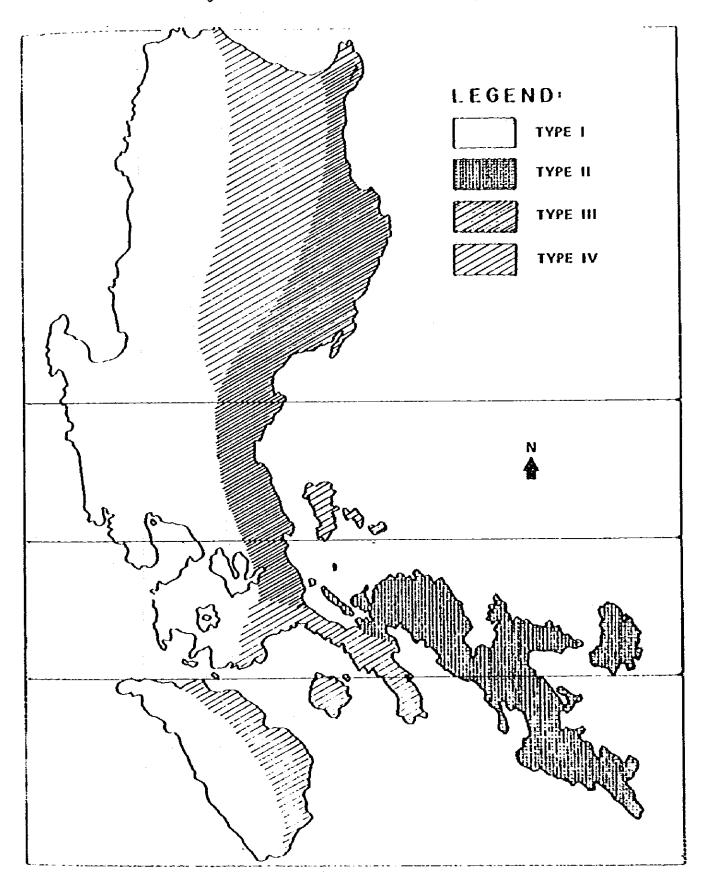
This tuff formation declines gradually westward to Manila Bay. Several valleys were eroded and filled with deltaic sediments (alluvial deposits) by major streams, i.e., Meycawayan and Navotas Rivers and their tributaries.

The deltaic deposits are intensively developed at variable depths of 10 to 25 m and are composed of clay, silty clay, silty sand, sandy silt, sand and seashells. They predominate particularly in water-saturated areas and fishponds.

For further details refer as follows:

Descriptions	Part	Chapter	Section/ Sub-Section
Probable soils profiles along the Project Roads	IV	3	3.2.4
Geological and sub-surface soils conditions of the reclaration site	10	6	6.3

D. Climate


Climatological data include temperature, humidity, wind, cyclone and rainfall. These data have been observed by the Philippine Atomospheric, Geophysical Astronomical Scientific Administration (PACASA). Generally, the Project Area has a Type-I climate which is characterized by two pronounced seasons: dry season from November to April and wet season for the rest of the year (See Fig. 59-6).

i) Temperature

The temperature regime in the Project Area is rather uniform throughout the year. It has an annual average of 27.6°C, 10.5°C deviation. The data shown in Table 59-3 were observed by PACASA over a 20-year period (1951-1970).

The hottest ronths are April (29.1°C) and May (29.6°C). The coldest ronths are January (25.9°C) and December (26.3°C).

Fig. 59.6 TYPES OF CLIMATE IN LUZON

į				Table	59-3	CL I.M	TEC VA	CLIMATIC VARIATIONS IN THE	IN THE		PROJECT AREA			İ	
ļ	MONTH	JAN.	FEB.	MAR.	ለ" ቤ.	MAY	JUNE	יבטנ	AUG.	SEPT.	ocr.	NOV.	DEC.	ANNUAL	STATISTICAL PERIOD AND PLACE
\mathfrak{S}	Normal Mean Temperature (C°) S.D.	25.9	26.4	27.7	29.1	29.6	28.7	28.0	27.5	27.5	27.8	27.2	26.3	27.6	1951-70 Manila
3	Normal Mean Relative Humidity(Z)	76	72	2	67	74	82	98	9	87	7 78	82	000	77	1960-70 Science Garden, Quezon City
ြင်	Mean Prevailing Wind Direction/ Average Wind Veoleity (Knots)	NE/5	SE/S	SE/6	SE/S	9/as	SW/8	SW/8	6/MS	SW/8	NE/S	NE/5	NE/S	NE/6	1951-70 Manila
3	Normal Rainfall (mm) S.D.	16.4	16.6	16.4 16.6 11.2	20.4	20.4 184.3 26.39 189.75	394.1	444.3	163.06	424.0	130.0	138.4	47.1	189.6	1951-70 Diliman, Quezon City
3	Normal No. of Rainy Days S.D.	4.0	3.0	3.0	8 8 0 0	8.0	16.0	3.77	3.8	3.38	15.0	12.0	9.0	3.5	1951-70 Manila

Source : Philippine Weather Bureau Publications

The highest temperatures occur between 1 and 3 PM, the lowest temperatures occur between 5 and 7 AM.

ii) Humidity

The Project Area has high relative humidity from June to December (80-87%) and low relative humidity from January to May (70-76%). The mean annual relative humidity is 77% (See Table 59-3).

The diurnal behavior of relative humidity is characterized by high values at night and early nornings, and low values during the day and early evenings. However, variations from this general pattern occur during rainfall in the day and early evening, when relative humidity values are high.

iii) Winds

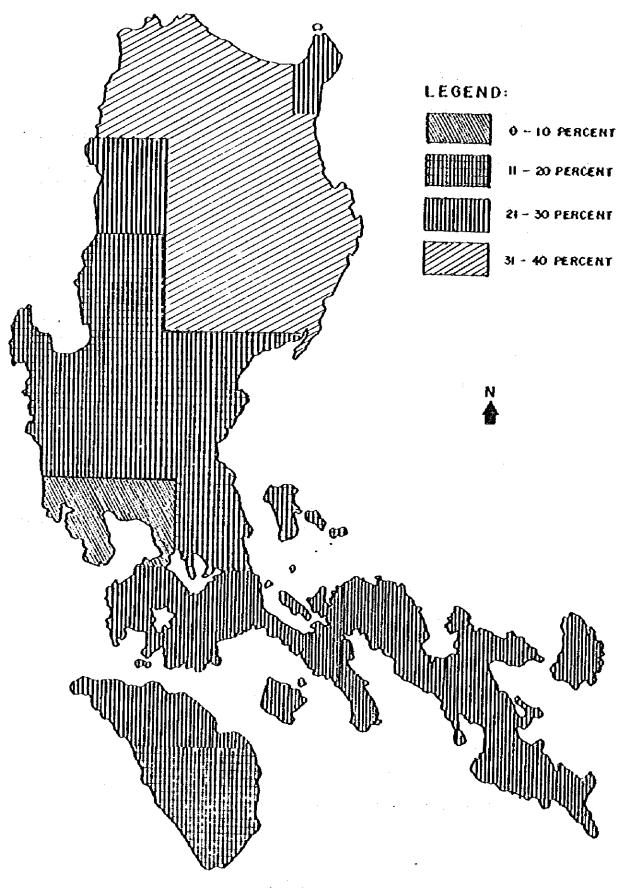
Table 59-3 shows the prevailing winds in the Project Area as follows:

SE winds -- from February to March, at 5 to 6 knots; SW winds -- from June to September at 8 to 9 knots; and NE winds -- from October to January, at 5 to 6 knots.

This data was observed by PAGASA over a 20-year period (1951-1970).

iv) Cyclones

A cyclone is a circular or nearly circular area of low atmospheric pressure in which the winds blow counter-clockwise in the Northern Hemisphere. Tropical cyclones are also known as typhoons or hurricanes. They are relatively small, very violent storms in tropical latitudes. Tropical cyclones are classified by PAGASA according to the maximum winds above their centers:


Classification	Wind Speed (km/hr)
Tropical depressions	up to 61
Tropical stores	63 - 87
Severe tropical storms	88 - 117
Typhoens	above 118

The Project Area has the lowest frequency of tropical cyclone passage in Luzon: 0-10% (See Fig. 59-7).

v) Rainfall

PAGASA classifies four types of rainfall according to the characteristics of rainfall distribution in a locality during different times of the year.

Fig. 59-7 MEAN PERCENTAGE PREQUENCIES OF TROPICAL CYCLON PASSAGE IN LUZON

The Project Area falls under Type-D, since rain is not evenly distributed, with as many as 6 dry months. (See Fig. 59-8).

Rainy months are from July to October. These months have 394 to 424 mm of rainfall, and from 15-22 rainy days per month. (See Table 59-3). Dry months are from January to April. These months have 16 to 21 mm of rainfall, and from 3-4 rainy days per month.

E. Oceanography

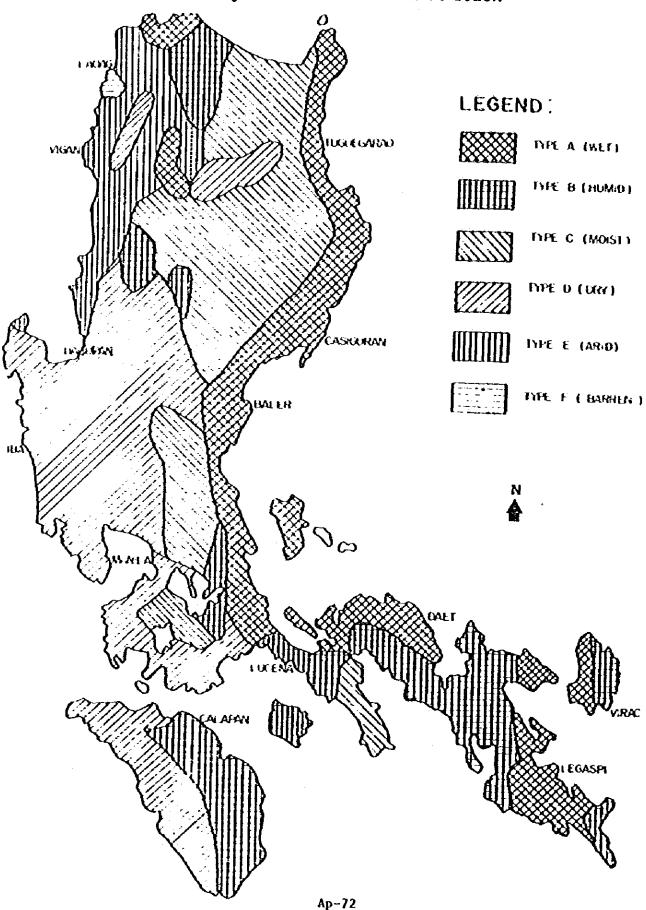
The main tidal data is as follows:

Descriptions	Values in reter
Mean tidal range (PHW-MLW)	0.75
Diurnal tidal range (MHKK-MLLK)	1.01
Mean higher high water (1918%)	+ 1.01 above MLER
Hean high water (MHW)	+ 0.86 above MLLW
Mean sea level (ISL)	+ 0.47 above MLLR
Mean low water (MLW)	+ 0.10 above MLLN
Mean lower low water (MLLW)	0.00 above MLLW
Highest observed tide 1.77 a	bove MLW (July 23, 1911)
Lowest observed tide 0.67 b	elow MLLN (February 3, 1912)

The greatest tidal range occurs usually in June and December while the smallest range occurs in March and September.

No record of wave observations are available for the vicinity of the proposed reclaration site.

In 1978, Salzgitter Consult GMSH estimated the waves with a probability of occurrence or excedence of once per year for each direction of attack using meteorological data.


The results of the study rade by the said consultant are summarized as follows:

Direction	Wave	Design	Wave
of Attach	lleight	Wave Period	Length
	(a)	(sec)	(m)
224	0.7	5.0	37
WNW	1.1	6.5	55
N.	1.5	5.5	47
KSW	1.7	6.0	56
SW	1.3	5.0	39

No official records concerning current observations are available of Manila Bay. A short survey was made some years

^{1/} Source: Master Plan Study, Port of Manila, 1978.

Fig. 59.8 RAINFALL TYPES IN LUZON

ago and found a current velocity of around 0.05 m/sec. 2/ Even under the most adverse conditions, e.g. superimposition of tidal currents and wind generated currents, no significant disturbance to navigation is expected.

F. Hydrology

i) Daily Rainfall

The relationship between 24-hour rain and return period based on the records of Norzagaray and HIA observation stations are shown in Table 59-4:

Table 59-4 DAILY RAINFALL DATA

Unit: cm Return Period Norzagaray MIA (Year) 2 261 153 5 356 243 10 514 305 15 455 340 25 505 395 50 570 465 100 640 535

Source: The report "Parpanga Delta/Candaba Swamp Area Development Project, Surface Water Studies, P 19".

ii) Description of River Systems

The river systems related to the Projects are Navotas and Meycawayan Rivers systems.

(a) Navotas River System

The main stream of the Navotas River originates from the La Mesa Creek and flows toward the west and finally into the Manila Bay. The Novaliches Reservoirs (La Mesa Dam) is located in the upstream portion of the Tullahan River (La Mesa Creek).

This reservoir has been used to supply water to the Manila area. Although the water level is low under ordinary weather condition, it reaches the crest of the spillway when the upstream basin experiences heavy rainfall. In this case, the water in the reservoir goes to Manila except for the overflow from the spillway. The middle stream area has been developed mainly for residential and industrial purposes.

^{2/} Source: Master Plan Study, Port of Manila, 1978.

The slope of the river is relatively steep except in the lower downstream portion. The width of the basin is narrow compared with its length. Flood waters of the Tullahan River are drained mostly by the Marala and Navotas Rivers; the future construction of the Navotas Cut-Off Channel will also help drain the flood waters.

The drainage network of Navotas River system is partially connected with the Bulacan River system through the rivers and channels.

The main features of the Navotas River system are as follows:

Drainage area (including La Nesa Dam watershed)	= 88 Km ²
Main stream length	= 35 Km
Time of concentration	= 320 min
Run-Off Coefficient	= 0.6

The peak discharge of the Navotas River is estimated to be 710 cubic meters per second for a 50-year period.

(b) Meycawayan River System

Meycawayan River system consists of the following rivers and tributaries:

Name of River	Drainage Area (km²)
Bulacan/Bambang Bocaue Marilao	166.2 234.8
Meycawayan Polo	99.5 22.8
Dampalit Other tributaries	7.0 12.5 60.8
Total	603.6

The main hydrollgical components of the Heycawayan River system are as follows:

Drainage area Main stream length Time of concentration Run-off coefficient Estimated peak discharge	= 603.6 km2 = 51 km = 420 min = 0.6
for 50-year frequency	= 3,260 m ³ /sec.

(c) Flood

The area between the McArthur Highway and the Manila Bay is low and flat consisting mainly of fishponds, rice fields and towns located along the roads. About 12 kilometers from the mouth of Meycawayan River to the Philippine National Railways, the inland area is low and the terrain is almost flat. This area has been flooded frequently and overflowing of the fishpond dikes is a yearly occurrence. The discharge capacity of the Meycawayan River is quite small compared with its large catchment area and the amount of rainfall for following reasons:

- River width is limited by artificial fishpond dikes;
- The presence of fishpond traps in the river and its couth affect siltation which raises the flood level; and
- A large head loss is due to shallow portion (sand bar) around the river mouth.

Floods in the towns along the existing roads (Polo, Obando, etc.) are considered to be affected by backwater from the Meycawayan River. C-5 and C-6 Roads are planned to traverse this low and flat area.

(d) Sedimentation

The river systems in the basin carries eroded materials with their water flow. As the cohesive soils (silt or clay) meets seawater, flocculation occurs. Shoals or sand flats have therefore been formed.

At present, there has been no study of the sedimentation rate of the Navotas and Meycawayan Rivers systems. Only short discussions is presented below:

Sedimentation in the Planned Navotas Waterway (between Reclamation Blocks)

The sediment discharge in the Navotas River is small for the following reasons:

- Since the sediment load from the upstream La Kesa Dam basin will be deposited in the reservoir, the volume of fine soil particles which overflows from the spillway during large floods will be negligible; and - Once the Navotas Cut-Off Chennel is provided, the greater part of sediment discharge will flow through it.

Heycawayan River Houth

To avoid the possibility of flooding which may occur at the offshore reclamation, the extent of planned reclamation was limited to the South bank of the Neycawayan River.

The shallow portion of the Meycawayan River mouth may be dredged to obtain soils needed for the reclamation. Since the sediment discharge transported by the Meycawayan River will be big, even if the shallow portion is dredged once, it will continue to be silted year by year. Therefore, the dredging will decrease the flood damage in the upstream area in short term, until the dredged portion becomes silted again. Soils transported by the Meycawayan River will be deposited around the river routh in the long term and the extent of siltation will be similar to the present condition.

G. Water Quality

Estuarine (or marine) water quality is expressed in terms of the following physical and chemical parameters. Physical parameters include temperature (°C), pH (units), dissolved oxygen (mg/l), turbidity (mg/l), and color (units). Chemical parameters include, at least, nitrate (mg/l), phosphate (mg/l), sulfate (mg/l), manganese (mg/l) and chromium (mg/l).

i) Significance

The above-mentioned water quality parameters are important for the following biological reasons:

Temperature and ph slow or hasten the biological activities of water organisms. Temperature also affects the dissolved oxygen in water; high temperatures (above 30°C) enable dissolved oxygen to escape, especially at surface levels.

Dissolved oxygen (DO) molecules in water keep the organisms which use oxygen for respiration aline, Waters low in DO (less than 3.0 mg/l) support little or no life at all. DO molecules in water are also used in the decomposition of both organic and inorganic wastes. Waters low in DO are overloaded with organic and inorganic wastes.

Turbidity and color affect the photosynthetic activity of planktons, the picroscopic nutriment producers in water. These planktons float and photosynthesize only as far as light penetrates the water body. Thus, if the water is

highly turbid, photosynthetic activity of planktons is low and plankton feeders such as shrimps, crabs, young fishes, etc., would not have much to eat. Waters with high turbidity and color readings support little or no life at all.

Nitrate, phosphate and sulfate are fertilizer ingredients. High concentrations of these compounds in a water body mean that these compounds have been washed off from cultivated areas wherein fertilizers have been applied. High levels of nitrate, phosphate and sulfate in a water body result in excessive algae (lumot) growths. When these dense mats of algae die, they use up DO in water in the process of decomposition which causes oxygen depletion. Waters with high levels of these compounds support little or no life at all.

Manganese and chronium are heavy metals which come from industrial and municipal wastes. High levels of these heavy metals are lethal to water organisms.

ii) Determination of Water Quality

Determination of water quality requires adequate sampling during the wet and the dry seasons. Where tide levels fluctuate, as in estuaries and marine shallow waters, sampling should take times of high and low tides into consideration. Hence, water sampling and analysis at the Project Site were not for water quality determination, but rather to "spot check" the water to know whether the general water quality levels.

The Team stresses that water quality check results shown in Tables 59-5 to 59-7 are tentative, and are subject to change when additional data indicate that they are inadequate.

Table 59-5 WATER QUALITY:
OFFSHORE NEAR THE NAVOTAS FISHERY PORT

Station # 1

Place: Navotas, Metro manila

Date: 10-27-79 Tide: Ebb

	PARAMETERS	POINTS		
		A	В	С
PHYSICAL	Temperature, °C pH, units DO, mg/l Turbidity, mg/l Color, Units	31 8 3.75 110 10	30 8 5.0 3.0	29 8 7.75 0 5
CHEMICAL	A. Cations			
·	B. Anions Nitrate, mg/l Phosphate, mg/l Sulfate, mg/l	52.8 0.6 150	38.60 0.35 150	28.60 0.4 155
	C. Heavy Metals Manganese, mg/l Crronium, mg/l	0	0 0	0

TINE	0930	0940	1000
Water Level	0.25 n	2.59 B	3.00 в
Distance from Mouth of River	0.25 km	0.50 km	1.50 km

Table 59-6 WATER QUALITY:
ESTUARY OF THE NAVOTAS RIVER

Section # 2

Place: Tanza, Malabon, Metro Manila

Date: 10-27-79

	n.i.n.i.m.z.n.n		POINTS			
	PARAMETERS	A	В	<u> </u>		
PHYSICAL	Temperature, °C pH, Units DO, mg/1 Turbidity, mg/1 Color, units	31 7.6 0 6 10	30 7.5 0 10 30	31 7.6 0 10 30		
CHENTCAL	A. Cations					
	B. Anions Nitrate, mg/l Phosphate, mg/l Sulfate, mg/l	48.4 1.0 180	37.4 0.4 180	35.2 0.5 180		
	C. Heavy Metals Manganese, ng/1 Chroniun, ng/1	0.7	trace 0	0.4		

TIPE	1135	1145	1200
Water Level	1.50 គ	1.00 п	1.00 n
Distance from Fouth of River	0.25 km	0.50 km	1.50 km

Table 59-7 WATER QUALITY: ESTUARY OF THE NEYCAWAYAN RIVER

Station # 3

Place: Meycawayan, Bulacan Date: 10-27-79

PARAMETERS		POINTS		
		A	В	c
PHYSICAL	Temperature, °C pH, Units DO, mg/1 Turbidity, mg/1 Color, units	31 7.6 4.25 10 20	32 7.8 5.25 5	31 8.5 9.00 5
CHEMI CAL	A. Cations			
	B. Anions Nitrate, mg/1 Phosphate, mg/1 Sulfate, mg/1	28.60 1.0 180	35.2 0.6 170	41.8 0.4 180
	C. Heavy Metals Manganese, mg/l Chromium, mg/l	0	0	0 0

TINE	1500	1510	1520	
Water Level	2.00 п	1.50 n	1.50 m	
Distance from Mouth of River	0.25 km	0.50 km	1.50 km	

iii) Stations

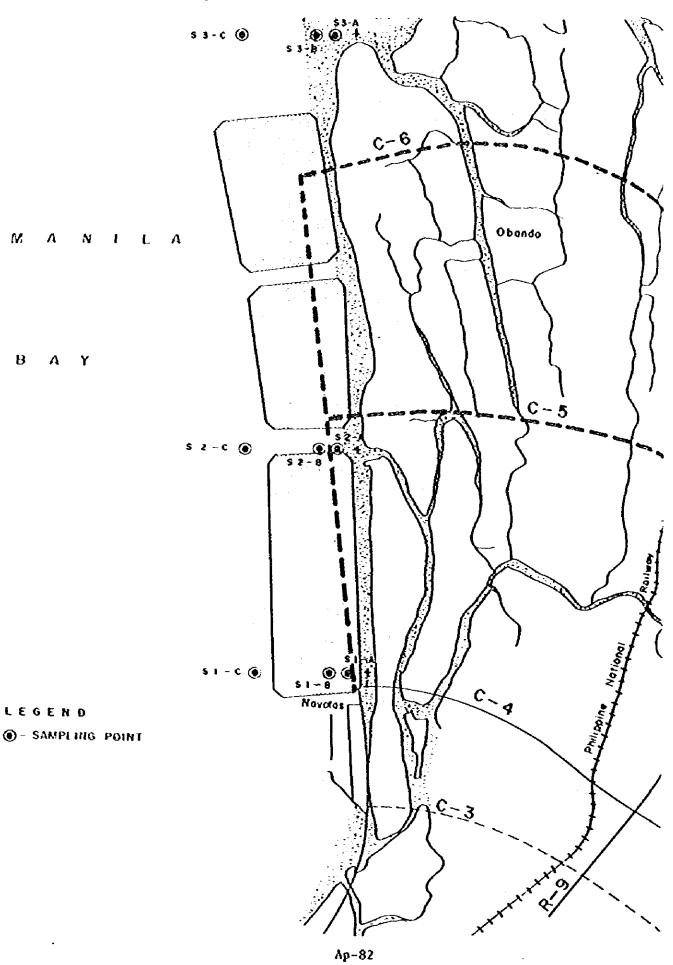
A reclamation project entails waste discharges which will affect the following water bodies: (1) estuaries of nearby rivers and (2) marine shallow waters of the bay. The Study must consider that waste discharges (during project implementation and after project completion) do not just go into a water system, but rather into a living water ecosystem. Thus, project elements were selected so as to develop an area with minimal damage to the existing environment.

To study the water quality, stations were established on the offshore of the Navotas Fishery Port and the estuaries of Navotas and Neycawayan Rivers. (See Fig. 59-9). For each station, 3 sampling points were considered: 0.25; 0.5 and 1.5 km from the shoreline or the mouth of each river. A total of 9 sampling points were selected for the Project Site.

iv) Results of Water Analysis

(a) Offshore near the Navotas Fishery Port (Station #1)

It was only at Point A where turbidity (110 units) and phosphate (0.6 mg/l) marked high levels. The most probable causes of trubidity at the station were: (1) silt deposition coming from nearby areas; (2) mixed industrial effluents from various industrial plants located in the vicinity; and (3) domestic sewage. There were no traces of heavy metals (manganese and chromium) at this station.


(b) Estuary of the Navotas River (Station #2)

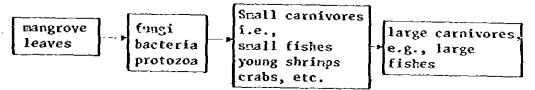
During the survey, dissolved oxygen at Points A, B and C were at 0.0 level at 31°C. This could only mean an excessive organic waste load discharged upstream, from industrial and municipal sources. At point A, the phosphate level indicated 1.0 mg/l. This could only be caused by industrial and municipal waste discharges. Traces of manganese, a heavy metal, were detected (0.7 mg/l at Point A and 0.4 mg/l at Point C) from this estuary.

(c) Estuary of the Meycawayan River (Station #3)

During the survey, the phosphate levels indicated high values at Points A (1.0 mg/1) and B (0.6 mg/1). These phosphate levels could be due to fertilizer run-offs from cultivated fields and fishponds. There were no traces of heavy metals, manganese or chromium, in this estuary.

Fig. 59-9 WATER QUALITY STATIONS

3.3 Biological Environment


A. Vegetation

Water quality stations (See Fig. 59-9) also serve as observation points for the characteristic vegetation of the Project Site.

No bayshore vegetation exists around Station I (Navotas, Metro Manila). The fishing village has encroached on the upper part of the bayshore mudflat (See the diagram in Fig. 59-4).

Mangrove vegetation borders the estuarine and fishpond areas in Stations 2 and 3. However, they do not exist in their natural, virgin condition since only traces of the natural stands of mangrove forest vegetation which existed before the area was developed into fishponds still remain (See the diagrams in Fig. 59-4).

The remaining mangrove vegetation strips are nonetheless ecologically important. They act as windbreakers, sheltering fishponds from the bay coast. They protect the bay coast from soil erosion, as their roots trap drifting sands. They are shelter belts for bird life and pollinating insects. Their leaf detritus contributes to the food input into the estuarine ecosystem as follows:

The dominant mangrove plants in the Project Site are Rhizophora sp. (Bakawan), Avicennia sp. (Apiapi) and Prosopis vidaliana (Aroma; Aromang Dagat). These will be destroyed if the proposed reclamation is planned without a waterway between the existing shore-line and the new reclamation area. This loss will cause loss of mudflat habitats, which will also result in a loss of mangrove plants and wildlife associated with it. A brief description of the dominant types of manglove plants is as follows:

1) Rhizophora sp. (Bakawan)

Bakawan is a tree which is especially adapted to salty, muddy and tidal mudflats (see Fig. 59-10). It grows from 4 to 8 meters high. Its specialized roots, growing out from the tree trunk, arch repeatedly. These broadly placed anchoring roots enable the tree to resist the sweep of the sea.

Bakawan flowers most of the year. Its seeds germinate while still attached to the parent tree. Seedlings which are about 1/3 meters in length drop off from the branches of the parent tree, float, then take root in the mudflat. Local inhabitants mainly use Bakawan for fuel.

Fig. 59-10 RHIZOPHORA (BAKAWAN)

<u>H</u>abitat

Fruiting branch

ii) <u>Avicennia sp.</u> (Apiapi)

Apiapi is a tree or shrub which is especially adopted to airless, water-saturated Eudflats. It grows to a height of 8 meters. Its specialized roots grow upwards, stricking out like beds of nails during low tides.

Like Bakawan, Apiapi seeds also germinate while still attached to the parent tree. If a seedling is mature enough to live by itself, it drops off, floats, then takes root in the mudflat. Local inhabitants also use Apiapi branches for fuel.

iii) Prosopis vidaliana (Aroma; Aromang Dagat)

Arona is a shrub or a small tree 2 to 6 meters tall. It has spiny branches, twice pinnately compound leaves and yellowish flowers. This plant forms thickets along sandy seashores. Local inhabitants also uses Arona branches for fuel.

Vegetation along polluted rivers which run through urban areas occur in patches, consisting mainly of grasses such as Talahib (Saccharum spontaneum), Kogon (Imperata cylindrica) Guinea grass (Panicum maximum) and other hardy annual herbs and shrubs. The only plant species living in the polluted waters is the water hyacinth (Eichornia crassipes).

Wild terestrial plant life in urban areas is limited to hardy grasses growing on vacant lots. Cultivated plant species are found in gardens and parks.

B. Wildlife

Birds are the most conspicuous wildlife in the Project Site. They nest, feed and rear their young among the mangroves. Table 59-8 shows the main bird species: Pluvialis dominica (Matang Baka) and Elanus caeruleus (Black-winged Kite).

Black-winged Kites belong to the Occipitridae (Hawk) family, commonly known as birds of prey. Their usual food is mice, birds, lizards, fishes and small mammals. Ecologically, they are important in checking the population of the organisms which they eat.

Predominant shoreland birds are <u>Rhipidura javanica Malaysian Pantail</u>), <u>Rallus striatus</u> (Slaty-breasted Rail), Xenus Cinereus (Wood Sandpiper), and <u>Ereunetes ruficallis</u> (Little Sint).

Table 59-8 KILDLIFE: MALABON-MEYCAWAYAN COASTAL AREA

Species	Presence in Ecol	logical Subsystem
	Estuary	Shoreland
1. Birds		-
Charadriidae (Plover) Pluviales dominica (Pacific Golden Plover/Matang baka)	x	x
Muscicapridae Rhipidura javanica (Malaysian fantail)		x
Occipitridae (Hawk) Elanus caeruleus (Black-winged Kite)	x	
Rallidae (Raīls) Rallus striatus (Slaty-breasted raīl)	X	X
Scolopacidae Xenus cinereus (Wood sandpiper)		x
Actitis hypoleucos (Common Sandpiper) Ereunetes ruficallis (Little Sint)		x x
2. Reptiles		
Testudinata Chelonia japonica (Turtle/pagong)	x	

The only reptile associated with the Project Site belongs to the species Chelonia japonica (Pagong).

There are no endangered wildlife species associated with the Project Area.

C. Fish and Shellfish in Manila Bay

The Manila Bay is one of the 47 fishing grounds in the Philippines. It is rich in fish, shellfish and ranks 5th among the country's rich fishing grounds.

In 1976, the Bureau of Fisheries and Aquatic Resources (BFAR) recorded a harvest of 22,607,220 kilograms of fish and shellfish from the Bay. Harvest statistics were compiled from fish landings in Manila Bay at Hagonoy (Bulacan province) and Navotas (Rizal province) (See Table 59-9).

Fish species offshore spend some time in their lives feeding along nutrient-rich coastal areas and estuaries. Commercial species of shrimp live and spawn as adults offshore, but their larvae feed and grow in estuaries. Estuaries and coastal areas, therefore, serve as "nursery grounds" for fish and shellfish in a marine ecosystem. It is for this reason that these areas should be preserved.

Fish species in the Bay include shad, perch, bream, snapper, eel, mullet, garfish, sardines, anchovies, tuna, mackerel, and hairtail. Shellfish harvests include crab, shrimp and squid.

D. Fishpond Culture

Fishponds in the area were developed out of mangroves. That development, according to fishery experts, is best suited to the area, as it best preserves the ecology of the estuaries and the coastal areas of the Manila Bay. Fishponds within the direct influence zone occupy approximately 2,600 hectares.

The estimated fishpond production is 2,730 tons of fish a year.

Approximately 90% of all fishponds in the area products milkfish (Chanos chanos). The rest produces tilapia (Tilapia mossambica) and catfish (Clarias batrachus and C. macrocephalus).

i) Milkfish Culture

The production cycle of milkfish proceeds in the following stages: fry stage, fingerling stage, and marketable size stage.

Milkfish fry (about 0.8 gram) are acclimatized before they are released into nursery ponds. They are first

Table 59-9 FISH AND SHELLFISH HARVEST IN MANILA BAY (1976)

	Fish Species		Quantity (kg)
1. Gi	zzard Shad		2,080
2. Pe	rches, Breams, Snappers, Fels, etc.		13,372,690
	Lizard Fish	639,930	
	Threadfin Bream	5,118,270	
	Groupers	3,318,620	
	Snappers	529,650	
	Stipmouth	3,739,180	
	Moonfish	15,120	
	Croakers	11,920	
3. Sc	ads, Mullets, Garfish, etc.		1,328,970
	Round Scad	368,720	
	Csevalles	6,420	
	Cavalla	510,600	
	Mullet	76,340	
	Silver Bar	17,600	İ
	Flying Fish	4,520	
_	Black Pomfret	344,770	1
4. S	ardines and Anchovies		882,440
	Anchovies	544,250	
	Sardines	338,190	
5. T	una		39,510
	Eastern Little Tuna	38,950	
	Swordfish	560	
6. M	lackerels and Hautails		4,071,410
	Chub Mackerel	4,014,890	
···	Hairtail, Cutlass	26,520	
7. M	liscellaneous Marine Fishes		114,990
8. B	iue Crabs		900
9. W	hite Sheimps		2,262,560
10. S	વ્યાંતેક		531,670
T	OTAL		22,607,220

Source: 1976 Fisheries Statistics by the Bureau of Fisheries and Aquatic Resources (BFAR).

stocked in a small pond, where water salinity is from 20 to 251 ppt. For several days, the fry are fed with chick or duck egg yolk at the rate of 20 egg yolks per 5,000 fry per day.

Nursery ponds in the Project Area are located mainly in Obando, Bulacan. Two other places (Valenzuela and Bulacan) which raise milkfish fry are outside of the Project Area.

Milkfish fingerling (about 3 to 5 inches long) are raised to marketable size in rearing ponds.

ii) Factors Affecting Fishpond Production

Tide, salinity and water quality are the primary factors which affect fishpond production. Wide and abrupt changes on these factors would adversely affect the fishpond industry. Minimal changes on these factors would allow development along the coast of the Manila Bay without affecting the fishpond industry.

Tide

Fishponds in the area depend mainly on water brought in and drained by tidal fluctuation. Present fishpond harvests indicate the fact that the tidal characteristic in the area are conductive to fishpond culture. If the Project would cause a very narrow tidal range (i.e., tidal range with 1 or 2 meters annual absolute range and normal daily range of less than 2 meters), then there would be an unfavorable situation for water control and management of the fishponds (See Fig. 59-11).

Salinity

Generally, coastal fish farms in the area are more productive than those located upstream:

yield/hectare

Average coastal production 1.05 tons/year Average upstream production 0.75 tons/year

There is higher fish production along coastal areas because fish food is salinity dependent. Salinity of 0.025 ppt and above is conductive to optimum growth and reproduction of the following fish foods:

- Microbenthic algae (lab-lab) benthic micro organisms consisting primarily of filamentous blue-green algae and diatoms;
- Filamentous green algae (lumot) filamentous grass green algae; and

Fig. 59-11 TIDE CONDITIONS SUITABLE FOR FISHPONDS **ELEVATION** BASED ON TIDE CONDITION OF TIDE SUITABILITY FOR FISHPONDS (IN DM) 30.0 DAY LAND UPPER LIMIT NOT REACHED UNSUITABLE, NOT WATERED BY ANY TIDE 220 WATERED ONLY BY EXTREME 20.0 SUITABLE ONLY HIGH TIDES IF EXCAVATED 18.0 14.0 SUITABLE RANGE OF ORDINARY 10.0 **HIGH TIDES** FOR MOST IDEAL FISHPOND ELEVATION FOR FISHPONDS PURPOSES 6.0 RANGE OF ORDINARY 2.0 LOW TIDES 0.00EXPOSED ONLY ON (-)3.0 **EXTREME LOSY TIDES** SUITABLE ONLY SF FILLED (-)6.0 LOWER LIMIT NOT

Dr. Herminio R. Rabanal, "Mangroves and their Utilization for Aquaculture, "The Philippine

Journal of Fisheries (Quezon City: Bureau of Lisheries and Aquatic Resources, Vol. 14, =2), p. 262.

(·)10.0 i

- Free-floating planktons - micro organisms suspended in water.

FORCES

UNSUITABLE UNLESS FILLED BY NATURAL

Hinor salinity changes may be brought about by the Project. Though wide ranges of salinity are tolerable for fish foods (algae and planktons) and for cultivable fish species, such salinity changes should not be too wide and abrupt to enable the organisms to adapt to changing conditions.

Water Quality

DRAINED BY ANY TIGE

ALWAYS UNDER WATER

Source:

Estuarine waters in the Project Area were checked for water quality. (See Paragraph 3.2. G for the results of water analysis). In the past, about 200 hectares of fishponds have been abandoned in Malabon and Navotas (Metro Manila) because the water quality was degraded by effluents from small industries, domestic sewage and siltation.

3.4 Socio-Economic Environment of the Project Area and Direct Influence Zone

Descriptions of the existing socio-economic environment of the project area and direct influence zone of the Project Roads are given in Parts II and III of Volume I in respective sections and subsections mentioned below:

Description	Part	Chapter	Section/ Sub-Section
Project Area:			
Population and employed persons	11	2	2.1
Problems associated with population growth	11	2	2.1.2
Economic activities	11	2	2.2
Land use	11	2	2.3
Development projects along the coastal area	11	2	2.4
Tansport situation	11	2	2.5
Direct Influence Zone :			
Population	HI	2	2,2
Development of new establishments	III	2	2.3
Present land utilization	Ш	2	2.4
Future prospect of the direct influence zone	111	2	2.5

CHAPTER 4. RELATIONSHIP OF THE PROJECT TO NATIONAL DEVELOP-MENT PLANS AND LAND RESOURCE USE POLICIES

4.1 National Development Goals 3/

The goals of the country for the next decade are embodied in the Five-Year Development Plan. Briefly stated these goals are as follows:

- Promotion of social development and social justice;
- Attainment of self-sufficiency in food and greater self-reliance in energy;
- Attainment of high and sustained economic growth;
- Maintenance of acceptable prices and improvement in local financing efforts and balance of payments;
- Regional and rural development;
- Human settlements development and proper environmental management;
 and
- Maintenance of peace and order.

4.2 Strategy for Development 3'

The Five-Year Development Plan also states a two-pronged strategy for development; namely, i) Balanced Growth Strategy, and ii) Human Resource Development. The balanced growth strategy calls for, among other things, the following:

- Pursuit of industrial development to complement agricultural development;
- More efficient and competitive service sector to support rural growth;
- Production of more processed goods for domestic and export markets;
 and
- Rationalization of energy demand.

The human resource development seeks, among other things, the expansion of health, nutrition and housing services for the poor and the provision of more productive and better-income earning opportunities for the people.

³º Resusse of the Five-Year Development Plan, 1978-1982. (Including the Ten-Year Development Plan, 1978-1987)

4.3 Economic Targets 4

The Philippines will pursue higher and sustained economic growth in the next ten years. Within that period the GNP is projected to grow at a rate of 8 percent per annum, based on increased production in various economic sectors, notably the agricultural and industrial sectors. The agricultural sector will have to step-up food production and the modernization of farm management and technology while the industrial sector will focus on cottage, small and medium scale industries, industrial estates and large scale industrial plants.

Industry will grow at a much faster rate than agriculture. Although exports will comprise a substantial portion of both agricultural and industrial products, an increasing proportion of the exports will be made up of manufactured goods of the industrial sectors.

4.4 Regional Development Policies for Metropolitan Manifa Area (MMA) 5

In the pursuit of the above-stated goals and targets, the development of the NMA is built around several development policies:

- In land use allocation, inefficient concentrations are to be decentralized and inefficient dispersions are to be integrated;
- Employment oppourunities are to be dispersed to selected alternative growth centers;
- Support services and facilities are to be provided for and/or inproved in the new projects and are also to be strengthened in the existing centers; and
- In transportation and communication, the objective is to improve accessibility between and among vital development centers.

4.5 Policy and Objectives of the Development of Project Roads and Reclaimed Area

The proposed Project will follow the above mentioned policy thrusts of the Government and the policy for the development projects in Metro Manila which are basically as follows:

- Consistency of Urban Environment;
- Contribution to National Economy;

[¶] Resume of the I in e-Year Development Plan, 1978-1982 (Including the Ten-Year Development Plan, 1978-1987)

^{5.} Extracted from "1978 Budget and General Appropriations Ordinance", Metro Manila Commission. MMA comprises Manila, Caloocan City, Passy City, Quezon City, Las Piñas, Makati, Malabon, Mandaluyong, Mankina, Muntinglupa Navotas, Paradaque, Passy, Pateros, San Juan, Taguig and Valenzuela.

- Promotion of Urban Redevelopment;
- Promotion of New Urban Development; and
- Enhancement of Socio-Economic Impacts.

On the other hand, it is envisioned that a rapid economic transformation will take place in the future. Hence, the main project policy should be to promote urban redevelopment and to contribute to the national economy. Environmental protection in the existing urban areas is also to be done simultaneously.

CHAPTER 5 DESCRIPTION OF ENVIRONMENTAL IMPACTS OF THE PROJECT AND MITIGATION OF ADVERSE EFFECTS

5.1 General

Environmental impacts were evaluated for the three types of environments described in previous sections: namely, physical, biological and socio-economic. In addition to the favorable impacts on production, storage, transportation and the basic human living environment mentioned below, adverse impacts and proposals for their mitigation were examined for the ecosystems affected by the Project on land and in the water and air.

The following components were used as the basis for this analysis.

Project Roads

- Coastal Road;
- C-5 Road; and
- C-6 Road.

Reclaimed Area

Approximately 890 hectares.

Affected Areas

- Direct influence zone of the Project;
- MMA; and
- Corridor of the Project Roads.

Time Period for Consideration of Environmental Impact

- During construction; and
- After construction.

The preliminary qualitative analysis of the reasonably foreseeable effects of the Project Roads and the development of the Reclaimed Area on the above environmental indicators was carried out.

The results of this preliminary analysis show that a high degree of favorable effects will be brought about as follows:

- Transport cobility and accessibility;
- Realization of land use potentiality;
- Increase in land value;

- Urban renewal;
- Improved community cohesion;
- Creation of employment opportunities;
- Creation of new storage and disposal area;
- Better population distribution;
- Increased agricultural industrial production:
- Reduction in prices of commodities; and
- Alleviation of transport and port congestion.

These foreseeable main effects are discussed in detail in the Sections which follow:

5.2 Inland Road Construction (C-5 & C-6) and Probable Environmental Impacts

A. General

Descriptions of the existing environmental conditions are given in previous sections of this Part. Alternative schemes, alignments, locations, structures and solutions have already been discussed and analysed in respective sections mentioned below:

Description	Part	Chapter	Section/ Sub-section
Proposed road network alternatives	111	5	5.1
Study of alternative routes	111	6	6.2.1
Study of interchanges	III	7	7.5.3
Preferable types of structures (bridges)	111	7	7.7.3

A "no project' alternative would involve using the existing road networks which are clearly inadequate for the present and future development projects in the area. The funds for the Project Roads could be used for other priority infrastructure and development projects planned in the Philippines, but the resulting traffic congestion throughout MMA and the inefficient use and unrealized benefits of the development project far outweigh the costs to be incurred.

B. Favorable Environmental Impacts

Project elements producing a large magnitude of favorable effects are discussed in detail as follows:

i) Transport Mobility and Accessibility

The Circumferential Roads, C-5 and C-6, are not completely established at present. But the Project Roads (the Coastal Roads, C-5 and C-6) will make crossing and by-passing central Manila possible and greatly enhance and strengthen the function of the road network system in the NMA.

Moreover, establishment of the Project Roads will improve traffic service within their surrounding area, and reduce traffic congestion within direct influence zone. Accordingly, transport mobility and accessibility of the corridor along the Project Roads will be improved because of reduction of travel and traffic cost.

ii) Realization of Land Use Potentiality

Land use potentiality in the direct influence zone, especially the Coastal Road and C-5, will be greatly enhanced. The corridor of the Project Roads will be highly developed for industrial and housing land uses.

iii) Increase of Land Value in Direct Influence Zone

The improvement in accessibility will reasonably induce enhancement in land use potentiality and cause an increase in development demand due to favorable location, conditions, and thus the increase in land value in the surrounding area of the Project Roads.

iv) Better Community Cohesion

The growth of new community will be promoted by investors and inhabitants in the direct influence zone and the establishment of better communities will improve the confort of the area.

C. Summary of Adverse Effects and their Mitigation

Project elements reducing environmental quality are summarized below;

	Adverse Effect	Mitigation
1.	Temporary air and water pollution during construction.	Nuisance and inconvenience during construction should be significantly reduced by introduction of proper construction management and supervision and adoption of proper construction equipment and methods.
2.	Population displacement	The displaced families will be sufficiently compensated and/or resettled to proper areas. The squatter families affected by the Project Roads will be afforded better opportunities and improved quality of life in the resettlement projects of the Government. The relocation of these squatters will be undertaken with close coordination with the NHA and other Government agencies.
3.	The embankment along C-5 and C-6 will slightly change existing drainage pattern and affect fishpond culture in surrounding area.	Sufficient investigation of biological, ecological and salinity conditions should be carried out to prepare the acceptable construction that will minimize adverse effects. Careful measures should also be provided against hydrological problems in the Navotas and Meycawayan Rivers Systems.
4.	Loss of fishpond area	The fishpond area acquired for the right-of-way will be sufficiently compensated. Since transportation (between fishpond and consumer market) is one of the main components of fishing industry, the provision of adequate nodal points (i.e. from boat to truck) should be considered during the detailed engineering stage.

5.3 Offshore Coastal Road Construction and Reclamation Work

A. General

The Coastal Road is a part of the strategic transportation frame for the coastal area of Metro Manila together with Roxas Boulevard, R-10 and the future extension of the Coastal Road to Bataan.

The offshore route on the proposed reclaimed area is selected as the route for the Coastal Road in view of the following:

- The route will not cause serious social problems and will not affect any existing community;
- Enhancement of the value of the reclaimed area;
- Less construction, land acquisition and compensation cost; and
- Comparatively easy construction.

For further descriptions of the development of the reclaimed area, see next section.

B. Favorable Environmental Impacts

Project elements producing a large magnitude of favorable effects are discussed in detail below.

i) Transport Mobility and Accessibility

As mentioned before (See Paragraph 5.2.B in this Chapter) the Coastal Road, together with the C-5 and C-6, will greatly enhance and strengthen the function of the road network system in the MMA.

The plan to construct the Radial Road R-10 are already finalized and the tendering for certain parts of the road started in early 1978. That project covers not only the main trunk road between C.M. Recto Avenue and Spine Road at Navotas, but also the connecting stretches for the peripheral roads of C-2 and C-3.

The project of extending R-10 further up to C-4 is also under way and now the Government is proceeding with the final engineering stage.

It is expected that the construction of the Coastal Road will offer direct access to the reclaimed area and offer favorable access also to the hinterland and provide far improved land transport conditions to the direct influence zone.

ii) Creation of New Land

Proposed reclamation will provide about 890 hectares of land which can be utilized for promoting urban redevelopment which will contribute to the national economy.

iii) Realization of Land Use Potentiality

See Sub-Paragraph 5.2.8, ii) in this Chapter.

iv) Increase of Land Value in Direct Influence Zone

See Sub-Paragraph 5.2.B, iii) in this Chapter.

v) Better Community Cohesion

See Sub-Paragraph 5.2.B, iv) in this Chapter.

vi) Increase in the Value of Fishes

For fishery products, the Coastal Road will provide a shorter route to the market of Manila. When the fishing industry is supported by an effective means of transport the economic returns to the industry are immense, since transportation costs and the freshness of fishes are important components of fish marketing.

C. Surmary of Adverse Effects and their Mitigation

Project elements reducing environmental quality surmarized below:

	Adverse Effect	Mitigation
1.	Temporary water turbidity.	Spillways will be provided to minimize silting in the surrounding area during the construction. For further descriptions, see Paragraph 6.5.3 C in Part IV.
2.	loss of bottom dwelling area for sea organisms.	Sea beds will be stirred by the dredger, thereby changing the water quality temporarily in the surrounding area. The environmental effect of dredging is influenced by the characteristics of soils, oceanographic conditions, hydrographical conditions, type of dredger to be used and the size of borrow pit (area) planned. Therefore by adopting proper dredger and proper construction management (i.e. concentrated dredging at good soil areas) the adverse effect will be significantly reduced.
3.	loss of Fishing grounds.	Offshore areas occupied by the reclamation will be sufficiently compensated. To facilitate the fishery and fish carrier boats, the provision of approach ramps or nodal point areas will be planned at sufficient locations, since these facilities will mitigate fisherman's losses by increasing accessibility to consumer market.

5.4 Development of Reclamation Area

A. General

The following policies have been adopted for the development of reclaimed area:

- To promote urban renewal in order to serve as a catalyst and a complement to transform Metro Manila into a "City of Man";
- At the same time, to contribute to the national economy by promoting export-oriented and labor intensive industries; and
- To promote the conservation of human and natural resources.

In line with the above policy statement, the objectives of the reclamation development are as follows:

- To develop as industrial park town where parks and sport fields are adequately distributed in the development area;
- To provide a wide industrial estate with modernized industrial facilities;
- To provide urban utilities within the area as well as the northern part of Metro Manila;
- To encourage residential living environment variety;
- To provide an efficient transport system towards the Manila-Bataan Coastal Corridor; and
- To expand the stock and storage areas for Metro Manila.
 The development proposes to offer the necessary facilities for smooth living and industrial operations.

The most important factors that were considered in determining the development scale of the project are as follows:

- Magnitude of land demand;
- Environmental constraints; and
- Construction economy.

From the environmental viewpoint, it was decided that the proposed north limit of reclamation would be at the extension of the south bank of Meycawayan River. Thus adverse effects such as probable flood in the Meycawayan River basin, loss of mudflat areas and narrower tidal range for water control of fishponds were eliminated.

A study on the length from shore to the tip of reclamation area vs. the index of reclamation cost per unit area revealed that the reclamation can be achieved most economically at the distance offshore of 1,000 meters.

Considering above mentioned factors for the development scale, the most suitable area of the development of about 890 hectare was determined.

For further descriptions about located land use, see Paragraph 2.3.3, C in this Chapter.

B. Favorable Environmental Impacts

Project elements producing a large magnitude of favorable effects are discussed as follows:

i) <u>Establishment of Labor-Intensive and Export-Oriented Industries</u>

In line with national policies and strategies, export-oriented, labor-intensive and non-polluting manufacturing industries have been located in the reclaimed area. Land demand, economic and financial analysis upholds the allocations of reclaimed land primarily for industrial uses, with some patches for solid waste disposal, residential, and other land uses.

ii) Promote Urban Renewal

The reclaimed land will be utilized for attainment of the socio-economic goals of the government whose present thrust is concerned with housing, traffic decongestion, economic disposal, provision of basic infrastructures, and in general, the enhancement of the quality of life. The project will offer various opportunities for providing solutions to pressing urban problems such as the solid waste disposal problem and the need for warehousing and P.O.L. (Petroleum Oil Lubricant) storage space in the area.

iii) Generation of Employment Opportunities

The proposed reclaimed area will absorb about 35,000 workers when the area is developed by high priority projected industrial land uses.

iv) Establishment of P.O.L. Storage Area

The present storage capacity of petroleum in Metro Manila is good only for five days. Increasing its capacity is difficult since there is an acute shortage of space for the expansion of the tank farm area.

The P.O.L. complex, which is located along the Pasig River, had been reconstructed and the activities expanded in order to meet the demands of the continuous growth of the Metropolitan's economy. But recently, dense residential houses have encroached on the complex area thereby making expansion difficult.

Under such circumstances, there is a need for future development sites for P.O.L. storage facilities.

Generally, the basic requirements for P.O.L. complex sites are the following:

- As a safety precautionary measure, the location should be separated from the urban area. The chance of catastrophic disasters would be greatly aggrevated with the presence of P.O.L. facilities in an urban area;
- For the convenience of supply and distribution of oil, the location must have good accessibility to both water and land transportation;
- To prevent an accidental outflow of oil, enough space is required to provide oil protection dikes or walls.

In view of the foregoing situation, it is believed that the location of P.O.L. storage area in the proposed reclaimed area will offer great advantageous impact to the Metropolis.

v) Establishment of Solid Waste Disposal Area

Presently, Metro Manila has eleven dump sites, the biggest of which is located in Tondo. However, this site is causing pollution problems to the surrounding urban and sea areas.

The proposed reclamation area provides the space for solid waste from Manila City for about 10 years using the sanitary layer method.

C. Summary of Adverse Effects and Their Mitigation

Project elements reducing environmental quality are summarized as follows:

Adverse Effect		Mitigation	
1.	Temporary air and water pollution during construction.	See Paragraph 5.2.C	
2.	Probable water and air pollution	Only light industires will be established, with provision for sewerage treatment plant. The locationing of each type of industry has been determined by considering labor intensive (low energy consumption); therefore, air contamination will be small.	

5.5 Development of Water Transport

A. General

The port facilities at the reclaimed area should consider the development plan for the Port of Manila to avoid competition and to be complementary with it.

The proposed reclaimed area considers the possibility of the following development of port facilities:

- Wharf for P.O.L. unloading; and

Major refinery factories of crude oil are located in Bataan and Batangas. At present, some of the petroleum products refined in Bataan are shipped to Pandacan Tankages by small barges, and those in Batangas are transported to Pandacan Tankages by a pipeline of 8 inch diameter. Therefore, it is imperative that the petroleum products refined in Bataan and Batangas will be transported to the P.O.L. storage area in the reclaimed area.

B. Summary of Adverse Effects and Their Mitigation

Project elements reducing environmental quality are summarized below:

	Adverse Effect	Mitigation
1.	There will be navigation related pollution from tank cleaning and accidental oil spills.	This can be minimized if the P.O.L. storage area is properly designed, equipped and operated.

5.6 Summary of Environmental Impacts

A summary of the probable environmental impact is shown in Table 59-10.

Table 59-10 PROPOSED PROJECT ELEMENTS AND PROBABLE ENVIRONMENTAL IMPACTS

Proposed	Probable Environmental Impacts			
Project Elements	Favorable Impacts	Adverse Impacts		
Inland Road Construction (C-5 and C-6)	1) Increase of transport mobility and accessibility	l) Temporary air and water pollution during construction		
	2) Realization of land use potentiality	2) Population displacement		
	 3) Increase of land value in direct influence zone 4) Better community cohesion 5) Better population distribution 	3) The embankment along C-5 and C-6 will slightly change existing drainage pattern and affect birological and ecological conditions of a limited surrounding area		
		4) Loss of some fishpond area		
Offshore Coastal Road Construction and Recla-	1) Increase of Trans- portation mobility and accessibility	1) Temporary water turbidity 2) Loss of bottom dwelling		
mation work	2) Creation of new land (890 ha. approx.)	area for sea organisms 3) Loss of some fishponds		
	3) Realization of land use potentiality			
	4) Increase of land value in direct influence zone			
	5) Better community cohesion	n n		
	6) Better population dis- tibution			
	7) Increase of value of fishes produced in the direct influence zone			
Development of Reclaration Area	l) Establishment of labor- intensive and export oriented industries	 Temporary air and water pollution during construction 		
	2) Promotion of urban renewal			

Proposed	Probable Environmental Impacts			
Project Elements	Favorable Impacts	Advarse Impacts		
Development of Reclamation Area (cont'd)	 3) Generation of employment opportunities 4) Future Petroleum, Oil and Lubricant (P.O.L.) storage area can be separated from the urban area 	2) Probable water pollution, if waste waters from industries are not properly handled		
	5) Provision of solid waste disposal area will provide clear and sanitary environment			
Water Transport Development (P.O.L. tankers)	l) Better utilization of the port facilities of the North Harbor due to decongestion	1) Probable navigation- related pollution if wash from tankers is not properly handled		

CHAPTER 6. SUMMARY OF IRREVERSIBLE COMMITMENTS OF RESOURCES

The irreversible commitments of resources are summarized as follows:

	Irreversible Commitment		Effect
<u>In l</u>	and Road Construction (C-5 and C-6)		
a.	Increase of transport robility and accessibility in the direct influence zone.	а.	Positive
b <i>.</i>	Increase of land use potentiality and land use value in the direct influence zone.	ь.	Positivo
c.	Loss of fishpond area.	c.	Negativ
0£ £	shore Coastal Construction and Reclaration Work		
a.	Increase of transport mobility and accessibility in the direct influence zone.	a.	Positiv
ь.	Increase of land use potentiality and land use value in the direct influence area.	ь.	Positiv
c.	Employment opportunity.	c.	Positive
đ.	loss of fishing ground.	d.	Negativ
e.	Loss of bottom dwelling area for sea organisms.	e.	Negative
Dev	relopment of Reclamation Area		
а.	Establishment of labor-intensive and export- oriented industries.	a.	Positiv
ъ.	Promote urban renewal.	ъ.	Positiv
c.	Establishment of P.O.L. storage area.	c.	Positiv
d.	Establishment of solid waste disposal area.	d.	Positiv
e.	Probable water and air pollution.	e.	Negativ
Dev	relopment of Water Transport		
a.	Decrease of congestion in the Port of Manila.	а.	Positiv
ь.	Probable navigation-related pollution at P.O.L. terminal.	ъ.	Negativ