2-2 Details of Each Ore Deposit

The details of ore deposits in Mindo Island are as follows.

2-1 Placer Gold prove the grant and a process of the complete of the state of the s

According to some recent unpublished data from the BMG, placer gold production in Mindoro Island is estimated 50 g/day in Mindoro Oriental and 10 g/day in Mindoro Occidental.

The placer gold dusts in Mindoro Oriental are being collected from the rivers, running in the Halcon metamorphics area, by using "sluice box" or panning. The Dulangan River (No. 1 in Fig. 11) and the Binaybay River (No. 2) between Puerto Galera and San Teodoro in the northern part are famous as a gold field. No igneous activities can be found in the Halcon metamorphics area, and it has recently become clear that gold dusts occur in the residual soil on a mountain-sides, both of which suggest the placer gold has originated from the Halcon metamorphics.

On the other hand, the placer gold dusts in Mindoro Occidental are being collected in the upper reaches of the Labangan (No. 3), northeast of San Jose. The gold field corresponds to the area of Bongabong conglomerate (which is correlated to the Punso conglomerate after Miranda (1980)). The gold dusts here are considered to have originated from the conglomerate bed.

As the fluvial sand has locally deposited at the places where the current speeds slow down, the scales of the gold deposits are estimated very small.

na karinga rikali ya Malifangia ngi arra naka ya marini kayan, andaga a a ili a nga biga salah sa ina ani da a

The Control again that a selection is the control of the control o

2-2-2 Copper

Six copper showings (Nos. 5, 6, 7, 8, 9, 10) are located near the Mindoro Fault and the Wasig Fault in the eastern central part and one showing (No. 4) is located in the northern part and another showing (No. 11), in the southern part. All of them are related to the dioritic rocks.

Four showings of Masnon (No. 6a), Manamburao (No. 6b), Shawood (No. 6c) and Bambanon (No. 7) in the upper reaches of the Pula River, are composed of chalcopyrite — pyrrhotite—quartz veins with a few sphalerite and pyrite, which have filled the fault fissures developed in the Lumintao basalt or the Ultramafic complex.

It is considered that the mineralization is related to the dioritic rocks and has filled the fissures of a NE-SW system made by the prominent geological structural line of a NNW-SSE system.

The vein widths are so narrow as 0.10-0.30 m except Manamburao which has 1.10 m in width. The copper grades are mostly less than 2.5% but high grades as 8-14 g/T Au and 12-15% Cu are seldom observed in the veins in the Ultramafic complex.

Geochemical soil survey carried out in the area covering these showings, disclosed that Cu,

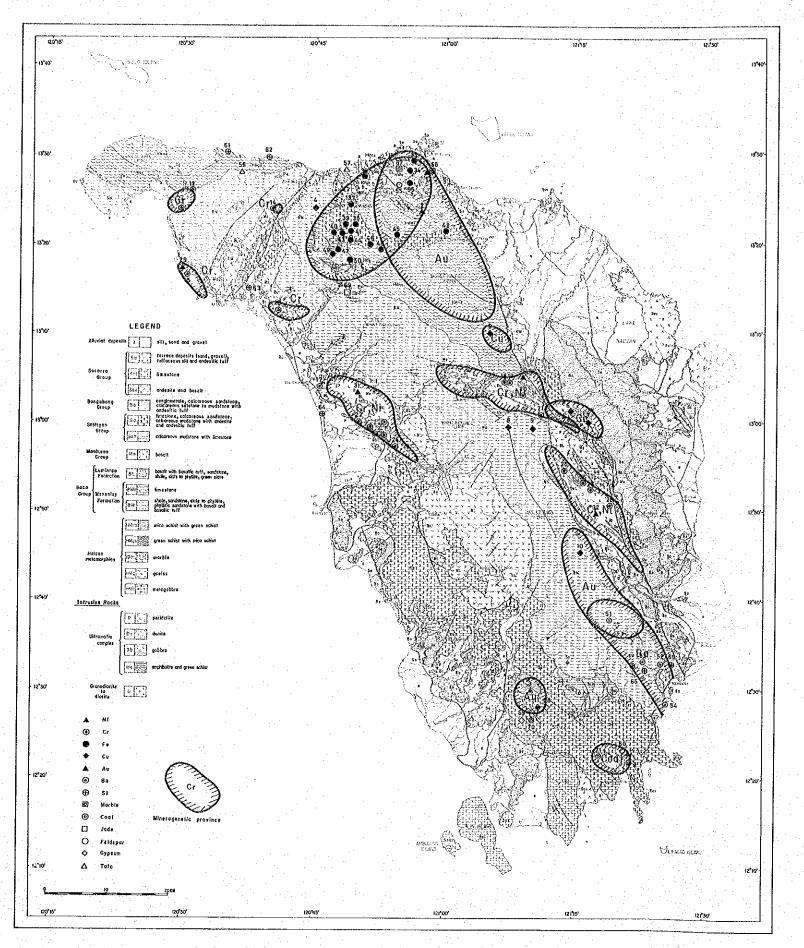


Fig. 11 Mineragenetic Province of the Survey Area

Pb and Zn contents were generally low (Cu: 3-168 ppm, Pb: 0-38 ppm, Zn: 3-151 ppm) and there were few geochemical anomalies. These facts suggest the copper mineralization is very small in scale, considering in connection with very weak rock alteration.

Acliang and Pojo showings (No. 10) located in the middle course of the Bongabong River in the southern part is the veins filling the fissility of the Mansalay Formation. The ore minerals are mainly composed of pyrrhotite with a few amount of chalcopyrite and pyrite. There are a Ultramafic complex in the 10 km east and a quartz diorite body in the 10 km east-southeast. According to the BMG report (1974) acidic dikes are exposed near the showings and so the mineralization is considered to be related to the dioritic rocks.

2-2-3 Chrome

Chromite showings occur only in the Ultramafic complex and many outcrops and float zones have been found.

As stated before, there are large-scale Ultramafic bodies (Ogos, Bongabon and Pinting with an area of more than 200 km²) which are distributed along the geological structural lines on the eastern and the western sides, and small-scale bodies (Paluan, Igsoso, San vicente, Liwliw and Balete with an area of some km²). In the former bodies a layered structure consisting of dunite, harzburgite and lherzolite is recognizable.

The geological survey found chromite showings in all Ultramafic bodies except for Balete. Their shape, ore texture, scale and host rock are listed in Table 6.

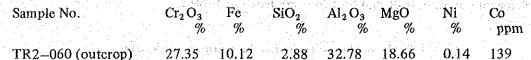
Name of Mineral Showings Texture of Ore Type Extension Host Rock Remarks Ogos No. 1 (18)*layered, disseminated idiomorphic ~ hypidiomorphic W: 6.5m, L: 10m+ dunite disseminated zone W; 5 m+ Ogos No. 4 (21) disseminated, network idiomorphic ~ xenomorphic harzburnite max. size of one orebody T: 1 m, L: 4 m It is composed of many small lenticular bodies Banus No. 2 (27)layered, lenticular idiomerphic ~ xenomerphic dunite max. size of one orebody W: 0.3 m, L: 1.5 m Orebodies occur in the sheared Masbo (25) massive, lenticular idiomorphic ~ hypidiomorphi dunite west (22)size of orebody on No. 1 showing max. 1.0 x 0.2 x 0.2 m idiomorphic ~ xenomorphic No. 1 showing consists of a few Pintin massive, lenticular central (23)harzburgite generaly cataclastic lenticular bodies (24)max. size of one orebody W: 0.1 ~ 0.5 m, L: 3 m San Vicente (14)massive, lenticular idiomorphic, cataclastic Orebodies occur in the sheared zone harzburgite Tesoso (15)layered, disseminated xenomorphic No. 1: 0.4 x 1.9 x 6.0 m dunite size of one orebody Orebodies are distorted by small (16)massive lenticular xenomorohic cataclastic harzburgite 0.1~0.2 x 3.0 x 1.5 m

Table 6 Characteristics of Chromite Showing

As is evident in the table, the layered or banded orebodies tend to occur in dunite in the densely spotted or disseminated form. Most of the crystals have an idiomorphic form and have no

^{...} This number corresponds to the number in the inventory map and table.

shear fractures, which indicates that the crystals have not moved since crystallization. On the other hand, the massive orebodies occur along faults or have been dislocated by fault. The crystals have xenomorphic and fragmental forms with a cataclastic texture, indicating some movement after crystallization. The orebodies of this type are in pod — or lens-forms which result from either compression or tension.


The occurrences of San Vicente orebody in harzburgite and Ogos orebody in dunite will be discribed as the typical chromite deposits.

San Vicente Orebody (No. 14)

The ore deposit is located on the top of the hill and can be reached by 40 minutes on foot from the highway. The Ultramafic complex found in the area is small in size (1.5 km x 1.0 km) and is intruded by gabbro and fine-grained diorite.

The chromite deposit is composed of massive orebodies of a pod shape in harzburgite. The bodies are clearly bordered from the wall rock by the small faults or sheared zones of a NE-SW system. The thickness of 0.40 m is measured in the outcrop, but it might be more than 2.00 m in the center, judging from the size of the boulders. The scale of orebody is considered to be some tens tons. Under the microscope, the ore of the outcrop consists of euhedral crystals of chromite, 1-2 mm in size, and a very small amount of acicular magnetite (0.01 mm wide), in which shear planes are intersecting each other at 30° .

Analytical values:

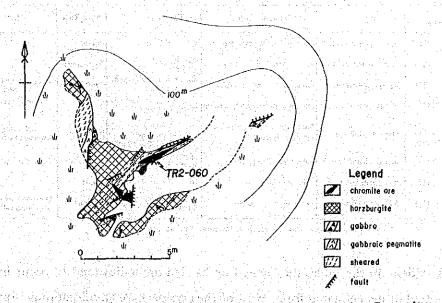


Fig. 12 Geological Sketch of San Vicente Chromite Deposit

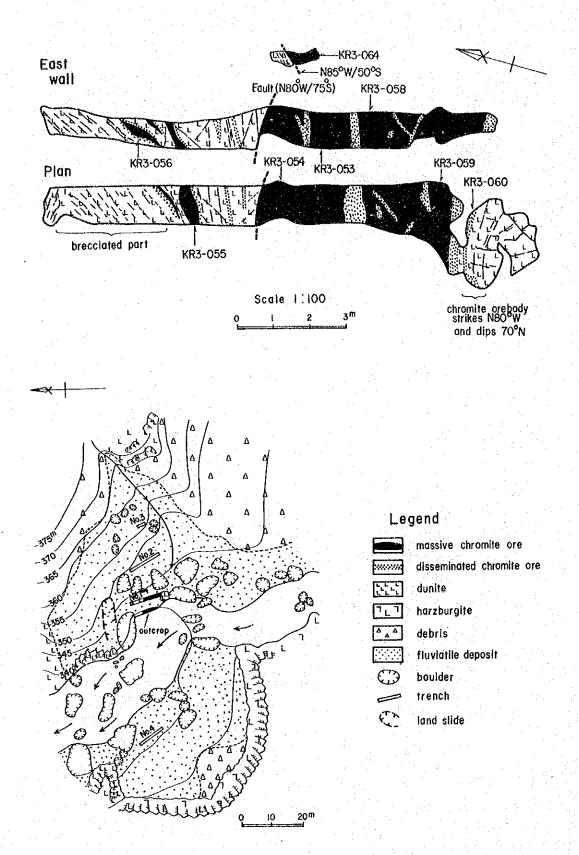


Fig. 13 Geological Sketch of Ogos Chromite Orebody (No.1 Trench)

Ogos Orebody (No. 18)

The deposit is found in a branch of the Ogos River, the western tributary of the Magawawangtubig River, 10 km south-southwest of Villacerveza.

The Ultramafic complex exposed here has a size of 22 km in an E-W direction and 10 km in a N-S direction, mainly consisting of dunite, harzburgite and lherzolite. A layered structure is apparent.

The Ogos orebody, which has been found by the geological survey, occur in dunite in the layered form. It shows a banding structure which grades from densely spotted in the center to disseminated towards the wall, tending to become finer in the grain size, and finally to the dunite with some chromite dissemination. The Ogos orebody has been confirmed to be 6.5 m thick, and it is expected to extend for some tens meters.

Microscopically, the ore is composed of euhedral and slightly rounded chromite (0.5 - 1.5 mm) in size). The grain in the central part is somewhat coarser (0.3 - 2.0 mm) in size). No shearing fractures can be observed.

Average analitical values are shown below.

Sample No.	Cr_2O_3 Fe SiO_2 Al_2O_3 %	MgO %	Ni %	Co ppm
Central part	33.71 12.35 17.54 9.47	21.63	0.13	191
Marginal part	27.05 12.69 13.24 14.80	23.05	0.13	173

The chemical components of chromite vary a little in different localities. Namely, the ores in the Bongabong body are rich in Cr and Fe (Cr₂O₃ 45%, Fe 12%, Al₂O₃ 13%) and they are classified into "metallurgical" as well as the ores of Acoje Mine in Zambales. Some of the ores in the Pintin body are rich in Al₂O₃ (Cr₂O₃ 32% Fe 9% Al₂O₃ 25%) and are classified into "Refractory" as well as the ores of Masinroc Mine in Zambales. Most of the ores in the Ogos body which is located at the middle of the two bodies, show an intermediate components.

Most of the mineralized zones are discontinuous except for the Ogos body and their scales are supposed to be small as a few tons -100 tons.

2-2-4 Iron

Many iron deposits are scattered in the Sablayan limestone area near the ridge in the northern part of the central ranges. All of them are contact metasomatic deposits which are related to the intrusion of quartz diorite — diorite of Palaeogene. The ore minerals are mainly magnetite and hematite with skarn minerals. There are three relatively large-scale deposits (Nagsabongan, Lasala and Lapa-ao) in the upper reaches of the Mamburao River and one deposit (Dayap) in the

upper reaches of the Pagbahan River. Ground magnetic survey was carried out for the former deposits to confirm their extension. The details of each deposit are as follows.

Nagsabongan Deposit (No. 39)

The deposit is located on the northern slope of the Nagsabongan creek, the eastern branch of the Mamburao River. The elevation is 700 m above sea level. The outcrop with a size of 130 m (E-W) x 50 m (N-S) x 40 m (height), extends along the creek forming a very steep cliff.

The ore minerals are mostly composed of magnetite with a small amount of fine grained (0.02 mm in size) pyrite and chalcopyrite. Hematitization has advanced along cleavages developed in the magnetite.

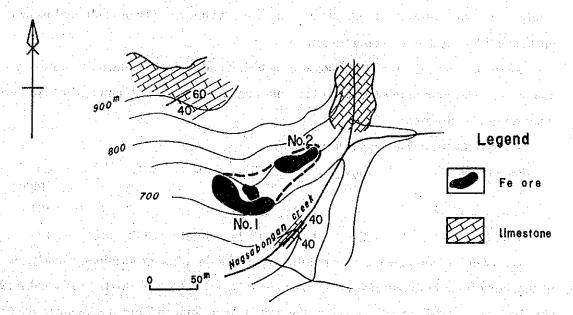


Fig. 14 Geological Map of Nagsabongan Iron Deposit

Average analytical values of outcrops:

Fe %	Cu ppm	V ppm	TiO ₂ ppm	P ppm
67.32	61	12	44	111

A stock of quartz diorite has intruded in the west of the outcrop, around which an epidote skarn zone is distributed.

Based on the results of ground magnetic survey, the magnetic globe with a radius of 100 m can be speculated for the magnetite orebody. A reserve of 8 x 10⁶ tons is expected, when a radius is 100 m, a specific gravity is 4.0 and a safety rate is 50% ($4/3\pi$ x 100³ x 4.0 x 50%). The magnetic survey has disclosed another magnetic anomalous zone on the eastern slope of the Nagsabongan creek. On the same assamption, its reserve is estimated as 4 x 10⁶ tons ($4/3\pi$ x 80³ x 4.0 x 50%).

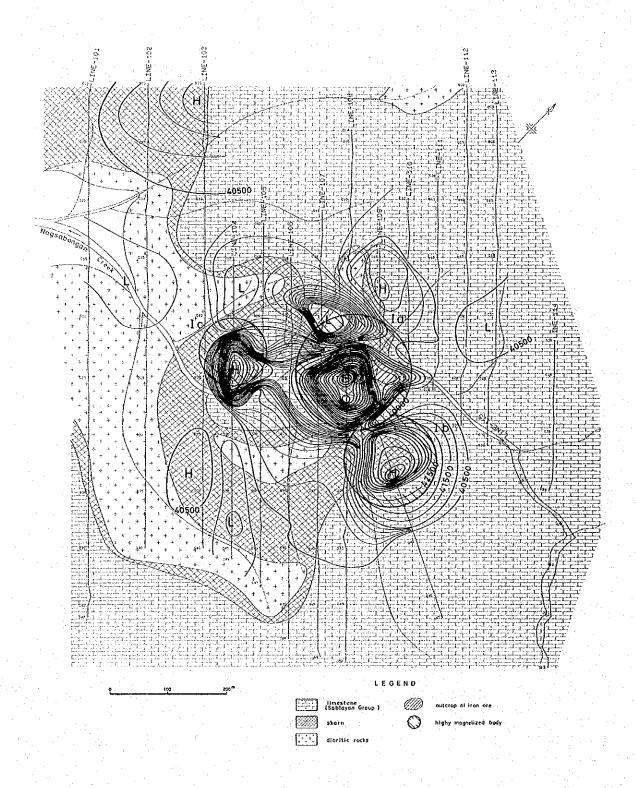


Fig. 15 Interpretation Map of Ground Magnetic Data on Nagsabongan Iron Deposit

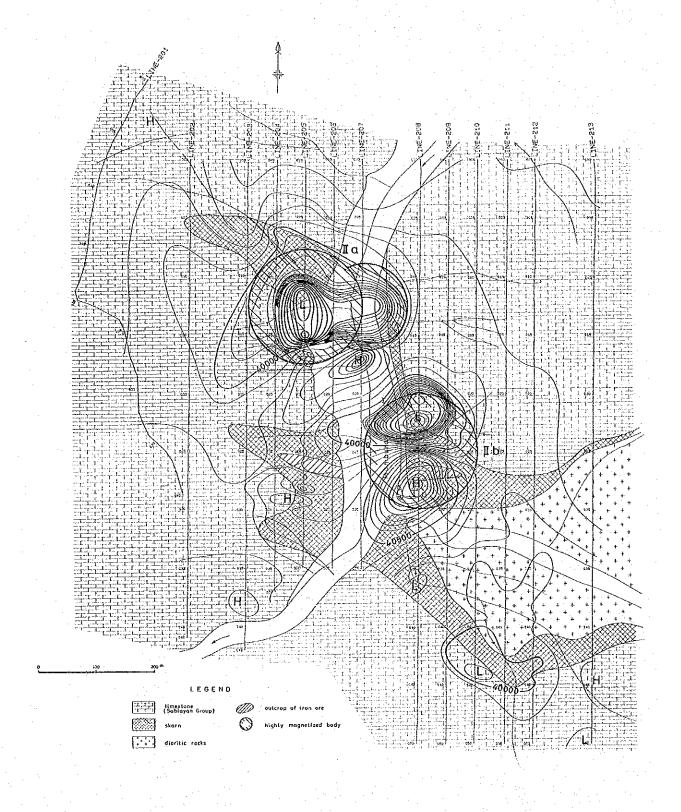


Fig. 16 Interpretation Map of Ground Magnetic Data on Lasala Iron Deposit

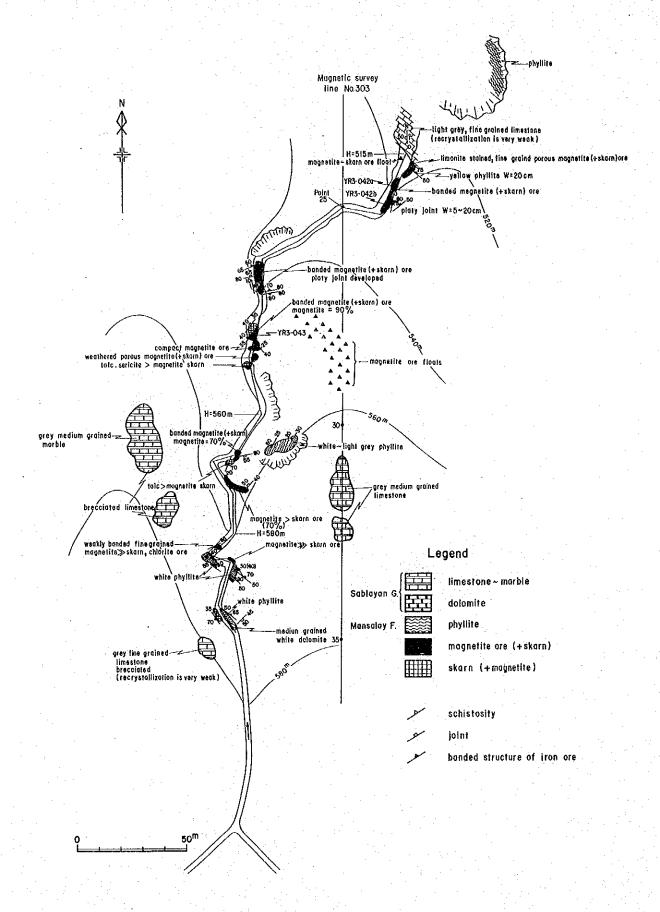


Fig. 17 Geological Route Map of Lapa-ao Iron Deposit

Fig. 18 Interpretation Map of Ground Magnetic Data on Lapa-ao Iron Deposit

Average analytical values of outcrops:

Fe %	Cu ppm	V ppm	TiO ₂ ppm	P ppm
61.10	455	94	183	348

Lasala Deposit (No. 40)

The deposit is located at the place of about 400 m above sea level, 3 km southwest of the Nagsabongan deposit. It was explored by the Mayorga Mining Company in the period from 1961 to 1964. There are many traces of trenching on the western slope of the Mamburao River.

Two magnetic anomalous zones lie facing each other with the river between. As the centers of these two zones are located on the riverbank where fluvial gravels are accumulated, their occurrence are obscure.

From the shape of magnetic anomalies, globe models can be applied for the magnetic bodies. The reserve of Ha body is estimated at 10×10^6 tons $(4/3\pi \times 100^3 \times 4.0 \times 0.5 + 4/3\pi \times 75^3 \times 1/2 \times 4.0 \times 0.5)$ and the reserve of Hb body, 8×10^6 tons $(4/3\pi \times 100^3 \times 4.0 \times 0.5)$.

Average analytical values of outcrops:

Fe %	Cu ppm	V ppm	TiO ₂ ppm	P ppm
61.10	455	94	183	348

Lapa-ao Deposit (No. 49)

The deposit is located in the upper reaches of the Lapa-ao River, 3.5 km south of the above-mentioned Lasala. Its elevation is 500 - 550 m above sea level.

The outcrops are intermittent for about 200 m along a tributary of the Lapa-ao River. The ore minerals and the texture of the Lapa-ao deposit are quite same as those of the Nagsabongan and the Lasala deposits but skarn is rich in the Lapa-ao.

Average analytical values of outcrops:

	Fe ₂ O ₃ %	SiO ₂ %	Al ₂ O ₃ S %	P %	TiO ₂ %	As %
Massive ore	53.39	4.70	0.35 0.19	0.047	0.009	0.001
Middling	31.98	_		0.021	0.020	

The magnetic anomalous zone centering at the outcrops extends toward southeast. Speculated magnetic models are a globe (radius: 150 m reserve: $4/3\pi \times 150^3 \times 4.0 \times 50\% = 28 \times 10^6$ ton) and a cylinder (radius: 90 m, length: 150 m, reserve: $90^2\pi \times 150 = 8 \times 10^6$ ton).

2-2-5 Barite

The barite deposits are of the vein type, occurring in the Mansalay Formation in the southeastern part. There are three deposits including Taoga and Mansiol, and one showing. The Taoga deposit (No. 51) had been closed since 1974 and was reopened by Filihispano Inc. in 1982. At present they are mining two barite veins which are located on the mountain slope of 700 m in elevation, striking N40E and dipping 30S, with a 0.50 - 1.20 m width, and which have a 84% grade of BaSO₄ and carry a small amount of gold (1.5 g/T) in the alteration zone near the boundary.

The Mansiol point deposit (No. 54) is composed of barite veins which were checked by the Phase II trenching. They strike N20E and dip 70N and continues more than 90 m with a 1.20 – 1.60 m width. The deposit is in preparation for exploitation.

As shown in Fig. 19, the barite showings in this area are arranged in a NW—SE direction. On the extention with a NW direction, lie a silicified zone carrying gold and a copper showing, suggesting that this arrangement may be due to the anticlinal structure of the Mansalay Formation or the Mindoro Fault along which the Palaeogene dioritic rocks were intruded and were accompanied with gold, copper and barite mineralizations of the post igneous activities.

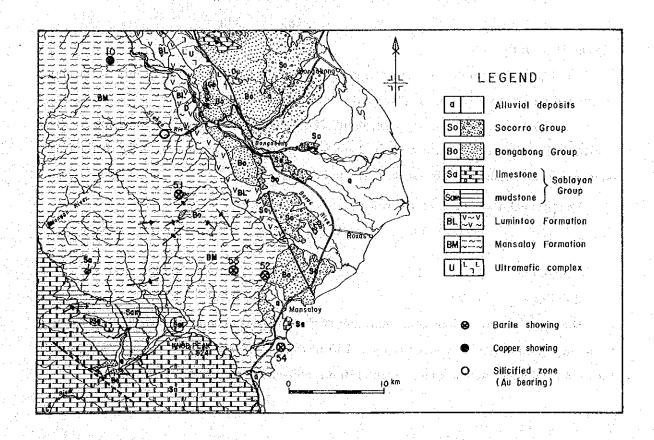


Fig. 19 Location Map of Mineral Showings in the Mansalay Area

2--2-6 Silica Sand

The silica sand deposit in this island can be divided into two types. One is the beach sand derived from the Halcon metamorphics and the another, weathered arkose of the Mansalay Formation. The former type deposits are distributed in the northwest part in a small scale, with a 80 - 97% SiO₂ grade and a few thousands tons reserve. The later type deposits are two beds of coarse grained arkose which are exposed on the mountain slope, 3 km northwest of Mansalay. According to the BMG report (1974), analitical values range from 74.5% to 86.8% SiO₂. As the rock is highly indurated, the technical and economical studies on quartz separation will be needed.

2-2-7 Marble

The marble deposits are recrystallized limestone of the Halcon metamorphics. Two mines (No. 67 and No. 68) are producing marble of 2 km³/day. The marble is white in color and fine grained. Its thickness is 50 - 200 m with a lateral extension of 800 - 2,000 m.

2-2-8 Jade

The jade is a dark green soft rock which are found in the Mansalay limestone. It occurs at only one place of the upper reaches of the Pagbahan River in the west and the Monte Cristy Mine (No. 69) is under operation.

On the mining site there are six quartz veins in limestone and the contact parts with a 1.00 – 1.50 width have been altered to jade. Here, the soft and dark colored jade is more valuable. It is, however, difficult to foresee the places of good parts because the quality changes laterally and vertically.

The related igneous rock is considered to be a dioritic rock of Eocene to Oligocene occurred 2.5 km north of the deposit.

2 - 2 - 9 Coal

The coal deposits occur only in the southern area, namely in Napician and Siay areas in Bulalacao and in Alitaytan area in the northeast of San Jose. All of them are embedded in the Sablayan Group. The coal seams in Bulalacao are intercalated by sandstone-mudstone alternation of lower group, while in San Jose, by sandstone in the limestone formation.

The coal deposits in Bulalacao have been known since long ago, and the development plans were made many times. In the period from 1952 to 1953 the BMG surveyed this area with the

USGS and recently the CDCP* carried out a systematic drilling exploration in the Napician area but did not come to the major level in the production.

The coal seams in the Napician area occur in the fine to medium grained sandstone. Six seams more than 0.75 m thick were drilled by the CDCP (Fig. 21).

Two coal seams with a 2.00 m thickness are exposed and can be traced for 3 km, though they are folded by anticlinal and synclinal structures of the NE-SW system (Fig. 20).

The calorific values correspond to the high-volatile C bituminous coal in the American coal standard (ASIM 1964). The BMG reserves above -200 m level (1955) is 6,770 thousand tons.

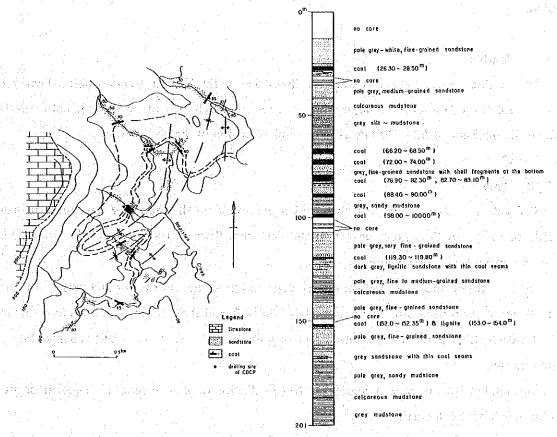


Fig. 20 Geological Map of Napisian Coal Field

Fig. 21 Core Log of Napisian Coal Field

However, it is pressumed that the following problems might arise over the exploitation.

- (1) the quality of coal is not so good (calorific value of moisture—and ash—free: 11,100 12,600 BTU/lb),
- (2) inclinations of the coal seams are steep $(35^{\circ} 40^{\circ})$
- (3) disturbance of coal seams caused by folding is expected.

^{*} Construction and Development Corp. of the Philippines.

There are three coal seams with more than 0.75 m thickness in the Siay area. The BMG reserve above -200 m level (1955) is 460 thousand tons. The calorific values are the same as the Napisian's, corresponding to the high - volatile C bituminous coal.

Ⅲ. GEOCHEMICAL SURVEY

CHAPTER 1. GEOCHEMICAL SURVEY FOR STREAM SEDIMENT

1-1 Survey Method

The geochemical survey for stream sediment was carried out with geological survey to get basic data on the mineralization in Mindoro Island.

In Phase I, 425 pcs of stream sediment samples of -80 mesh fractions were collected from the tributaries of main creeks, which keep 1 km distance in each other. To check adaptability of the geochemical survey, they were analysed for 10 elements as Cu, Ni, Cr, Pb, Zn, W, Ag, Fe, Mn and Mo.

In Phase II, geochemical survey for stream sediment was carried out in the same manner for the areas remaining untouched by Phase I and detailed survey with a high sampling dencity, for the areas with a high potential for mineral resources.

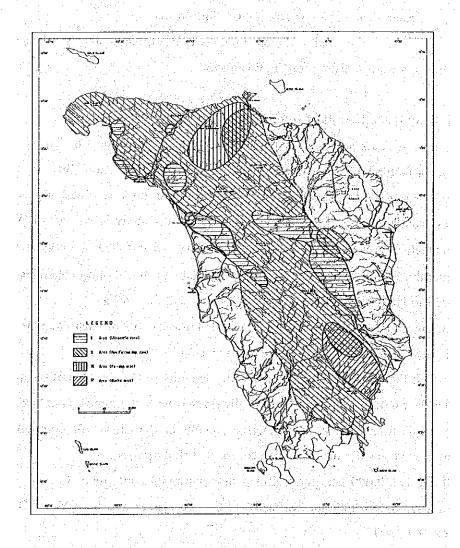


Fig. 22 Geochemical Subdivision

The Phase I survey determined the mineralized area of each mineral (mineragenetic province), 1109 pcs of stream sediment samples collected in Phase II were classified into the following four areas, and chemical analyses were made for the most effective elements for each areas.

I-Area ... The area where the Ultramafic complex is distributed and Cr of Ni deposits can be expected.

Analytical elements: Cu, Pt, Ni, Cr, Fe, Co.

II-Area ... The area where Au, Ag, Cu, Pb and Zn deposits can be expected.

Analytical elements: Au, Ag, Cu, Pb, Zn

III-Area ... The area where Fe deposits can be expected.

Analytical elements: Au, Cu, Fe, Co, V, Ti, P

IV-Area ... The area where barite deposits can be expected and Au mineralization may overlap the barite mineralization.

Analytical elements: Au, Ag, Cu, Pb, Zn, Ba

In Phase III, 27 pcs of stream sediment samples were supplementaryly taken in the copper mineralized area and were analyzed for Cu, Pb and Zn.

1-2 Data Analysis and Results of Interpretation

Among ten elements analyzed in Phase I, five elements of Ag, Cu, Zn, Ni and Cr were determined by a factor analysis as having relation with mineralization. But Ag anomalies (its threshold value is as low as 0.9 ppm) occurred in the limestone area where no igneous activities had been observed. In Phase II, Ba element was added for analysis instead of Ag in order to define the mineralized area of barite, because Ag behavior was considered doubtful.

Consequently, interpretation was synthetically made on the whole geochemical data collected from Phase I to Phase III for five elements of Cu, Zn, Ni, Cr and Ba.

A histogram and a cumulative frequency distribution curve of each element are shown in Figs. 23 and 24, and their statitic values are listed in Table 7.

As shown in Fig. 23, the histograms of four elements of Cu, Zn, Cr and Ba approximate to the lognormal distribution. But Ni values are distributed with the almost equal frequency in the whole classes, indicating that Ni has dispersed equally in the Ultramafic complex and has not been concentrated at specific places in the process of differentiation.

Plate II is a 1:250,000 geochemical map showing metal contents of Cu, Zn, Ni, Cr and Ba by using point-symbols which are distinguished by two classes, viz., t = M + S.D. - t = M + 2S.D.) and t = M + 2S.D.

The outline of geochemical anomalies is as follows.

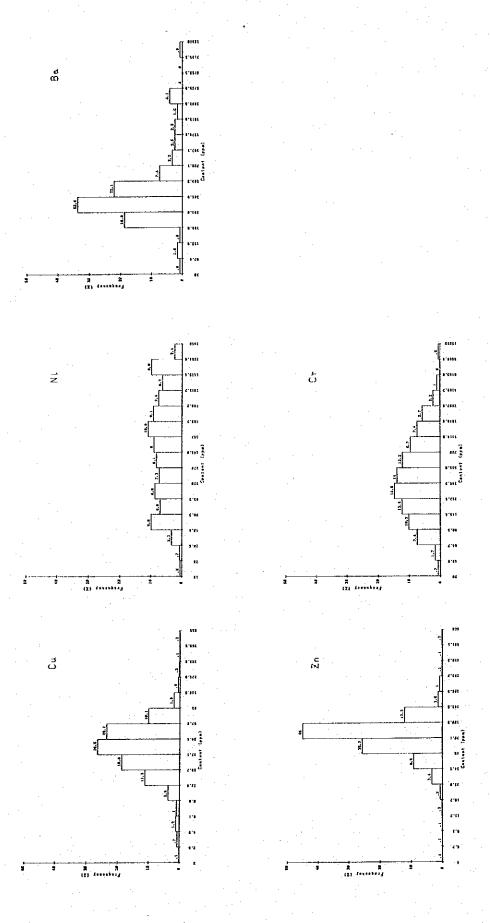


Fig. 23 Histogram of Geochemical Data (Stream Sediment)

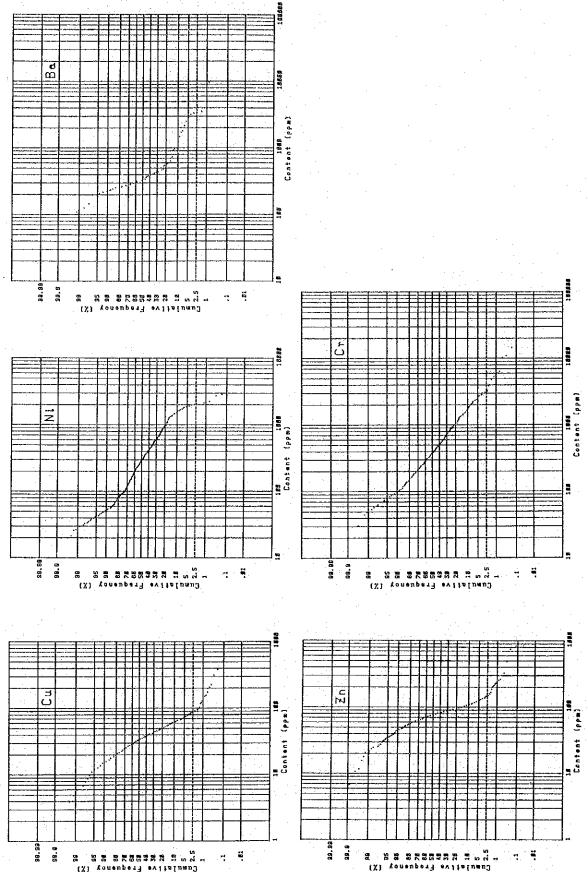


Fig. 24 Cumulative Frequency Distribution of Each Element

Table 7 Statistic Values of Geochemical Data (Stream Sediment)
(in ppm)

	Cu	Zn	Ni	Cr	Ba
Number of Samples (pcs)	1,558	1,071	913	913	213
Minimum Lagrage Albertal Lagrage	an and Assa	: 1. 7	26	45	: 5 0
Maximum	225	755	2,950	15,000	10,000
Geometric Mean (M)	31.3	73.0	278	401	478
Standard Deviation (Log)	0.286	0.189	0.536	0.473	0.342
10 ^{Log M + S.D.}	58	113	956	1,192	1,051
10 ^{Log M + 2S.D.}	107	174	3,283	3,541	2,309
Number of Anomalous Samples	. 10	14	0	12	7.

1. In the Siange River, the tributary of the Bongabong River, Cu-anomalies (Cu: 100-450 ppm) are accompanied with Zn-anomalies (Zn: 160-520 ppm). Since there are a silicified zone on the southern slope of the Siange River and a showing of Acliang & Pajo (No. 10) in the north, a copper mineralized zone is supposed to extend in the N-S direction.

Cu—anomalies obtained near the road may be caused by antificial pollution. Weak anomalies covering the Lumintao and the Rayusan River basins are in the basalt area, suggesting that the anomalies may depend on the lithology.

- 2. A weak anomalous zone of Zn (152 204 ppm) accompanied with Cu (39 158 ppm) in the Rayusan River is in the Mansalay slate zone. As any mineralization is not found, it is possibly caused by the difference of lithology.
- 3. Ni and Cr-anomalies are well coincided with the distribution of the Ultramafic complex. Weak anomalies of Ni (956 2,950 ppm) are distributed evently, and so they overlap Cr-anomalies. The Cr-anomalies with values over t (3,541 ppm) are not found in the Pintin body in the west but are concentrated in the Ogos body in the east. This Cr distribution fits well the panning results and also corresponds to the localities of the outcrops.

The anomalies extending from the Pula and the Balete Rivers show very high values as 2,426 - 10,565 ppm Cr. But geological survey proved that the anomalies originated from the pebbles of Ultramafic complex which are included in the Bongabong conglomerate.

4. The anomalous zone of Ba is distributed mainly in the southern slop of the upper reaches of the Baroc River where the Taoga barite deposit is located. The anomalous area is only 10 km² but the anomalies mass around the Taoga deposit, and so a new barite deposits can be expected.

CHAPTER 2. GEOCHEMICAL SURVEY FOR SOIL

2-1 Survey Method

In Phase III, geochemical survey for soil was carried out in the area (2 km x 3 km) to determine the scales of 3 mineralized zones of Manamburao, Masnon and Shawood, all of which are located in the upper reaches of the Pula River.

A rectilinear sampling grid (200 m x 100 m) was applied for getting soil sample at the B horizon, and the interval of traverse line was narrowed to 100 m near the mineralized zones. The number of soil samples is 591.

The samples were screened into -80 mesh fractions after natural drying and were digested in the mix acid for 2 hours. The filtrates were quantitatively analyzed for Cu, Pb and Zn by means of ICAP.

2-2 Data Analysis and Results of Interpretation

As the soil samples were composed of the Bongabong Sandstone, Lumintao basalt, Mansalay slate and peridotite, a histogram and a cumulative frequency distribution curve were made for each formation and the statistic values were computed. As a result, it has become clear that analytical data of each formation approximates to lognormal distribution except for Pb element, and means and standard deviations are almost the same values. So, all data were processed in the lump because the numbers of data are too small to be processed statistically, when the data are grouped by formation.

Table 8 Statistic Values of Geochemical Data (Soil)

	Cu	Pb	Zn
Number of Sample (pcs)	591	591	591
Minimum (ppm)	3	0	3
Maximum (ppm)	168	38	151
Geometric Mean (M) (ppm)	31.2	7.0	42.3
Standard Deviation (Log)	0.207	0.342	0.187
10 Log M + S.D. 10 Log M + 2S.D.	50.2 80.9	15.3 33.6	65.1 100.1

The distributions of values of 3 elements viz, Cu, Pb and Zn are shown in Fig. 25, where isoplethes of 10% values from the highest are drawn together with those of 2.5% values (=threshold values) in order to illustrate the general trends of anomalies.

From the synthetic study on the distribution of metal contents and the detailed geological survey results, the followings can be obtained.

- (1) Anomalies of Cu, Pb and Zn in soil, do not continue much but tends to be isolated. The Manamburao outcrop is the only place where the anomalies of three elements have overlapped each other and no anomalies have been obtained in the Masnon and the Shawood areas.
- (2) The overlapped anomalies of Cu, Pb and Zn in soil were only observed at the Manamburao, where a relatively high anomalous zone (Cu 75 168 ppm, Pb 20 43 ppm, and Zn 80 126 ppm) tends to extend in a NE-SW direction. As veins of the outcrops have filled fault-fissures of N-S, E-W and NE-SW systems, mineralization is considered to have progressed along the weak zone with a NE-SW direction.
- (3) Although two showings of Masnon and Shawood have very high contents of Au and Cu (their widths are small) and one vein continues more than 50 m, the values of three elements in soil are as low as the background values. Little rock alteration is also observed. Accordingly the mineralization is possibly very local.

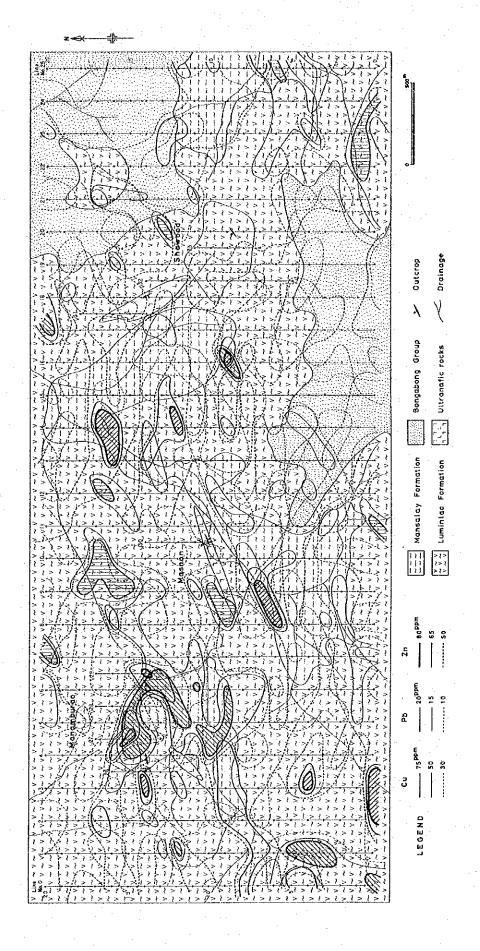


Fig. 25 Geochemical Anomalies in E-area (Soil)

CHAPTER 3. GEOCHEMICAL SURVEY FOR HEAVY MINERALS

3-1 Survey Method

In order to clarify the distribution of heavy minerals in all over Mindoro Island, a total of 105 samples were collected in Phase I at the foot of mountains of all water systems, where the current speed slows down. The samples of a fixed quantity (2,000 cm³) deposited on riverbeds were panned by professional panners.

The concentrates were separated into 8 types, such as chromite, magnetite etc. by stereo-scopic observation, microscopic study of thin and polished sections and X-ray diffractive analysis.

The Phase II survey aimed at delineating the concentrated areas of chromite, a total of 101 samples were collected by means of panning a fixed volume (1,000 cm³) of stream sediment which was taken from each tributary in the Ultramafic complex. Magnetic minerals and light minerals in the concentrates were removed by hand magnet and heavy liquid (clerici liquid) respectively. At last chromite was picked by hand under the microscope.

3-2 Data Analysis and Interpretation of the Results

At first, the panned samples of the Phase I survey were subdivided into 13 types from the differences in crystal form, transparency, color and luster. But after microscopic observation and X-ray diffractive analysis, they were grouped into 5 major components, such as, magnetite, chromite, pyrite, garnet and pyroxene and 3 minor components, such as, quartz, feldspar and sericite.

Among these components, significant heavy minerals are magnetite, chromite and pyrite whose distributions were studied as follows.

(a) Chromite

High percent of chromite tends to concentrate more on the east side than on the west and high chromite concentration always agrees with the ultramafic zone. The anomalies in the Sablayan, Bongabong and Socorro Groups are supposed to be caused by ultramafic particles in their sandstones.

(b) Magnetite

Magnetite shows a similar distribution to the chromite with a high concentration in the ultramafic zone. While, any anomalies could not be obtained in the upper reaches of the Mamburao and the Pagbahan Rivers where some magnetite deposits are known and many ore floats are scattered. There is a reason to consider that the magnetite grains might have been removed when sieving because the distance between the sources and sampling site was too short for floats to

become fine.

(c) Pyrite

The percentages of pyrite tend to be rather high in the areas of the Halcon metamorphics and the Mansalay Formation, suggesting that pyrite concentration is due to the lithology. But pyrite concentration near the Siange Cu-Zn anomalous zone may owe not only to lithology but to mineralization.

(d) Others

Placer gold is chiefly middle grained (0.5 - 1.0 mm) in size) and rounded. It is experimentally known that the gold grains occur in coarse grained sands filling interstices between big boulders. But for the panning of superficial sand on the riverbeds, a satisfactory result could not be obtained.

In Phase II, weights of chromite in the panned samples were measured. As shown in Fig. II-5, in the Ogos complex the high values were obtained in the Ogos deposit creek, tending to extend westward. An anomalous area was found on the eastern boundary of the complex in the drainage basin of the Agluban River, suggesting the occurrence at the different horizon of chromite from the Ogos deposit. It was, however, confirmed in Phase III that this anomaly owed to a chromite network in harzburgite.

In the Bongabong complex, the chromite concentration was limited in the eastern slope and nothing came out on the Bongabong drainage basin side. In short, a strong anomalous zone was detected in the area extending from the Banus orebody to the upper reaches of the Sumagi River, where a small-scale chromite showings were found in Phase III.

In the Ultramafic complex distributed in the western side, a close relationship was observed between chromite showing and amount of chromite. In the Pintin body, chromite tends to concentrate on the eastern side more than on the western side.

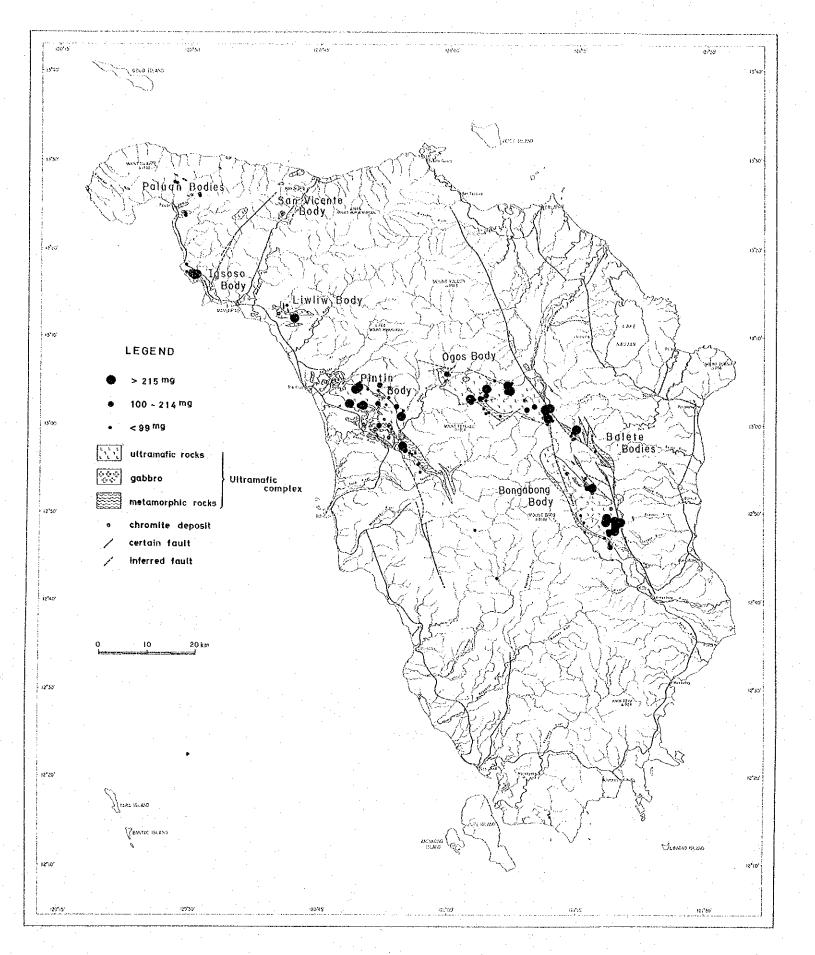


Fig. 26 Distribution of Heavy Mineral (Chromite)

IV. CONCLUSION AND RECOMMENDATION

CHAPTER 1. CONCLUSION

From the results of the geological survey, the geochemical survey and the magnetic survey carried out in all over Mindoro Island over 3 years, the following conclusions summarized are obtained.

- 1. Roughly speaking, the geological structure is characterized by the uplift zone which trends NW-SE. The older pre-Jurassic Jurassic formations are distributed in the central area and younger formations accumulate zonally on both sides of these, showing an anticlinal structure. The most distinct structures in the area has a NW-SE system represented by the Mindoro Fault and the Wasig Fault along which Late Mesozoic Ultramafic complex and Palaeogene dioritic rocks intruded with various mineralizations.
- 2. The main ore deposits are placer gold, copper, chrom, iron, barite and coal.
- (1) Placer gold is considered to be originated from the Halcon metamorphics and the Bongabong Group and has not been brought by the mineralization of post igneous activities. The scale of deposits is not supposed to be so big that the mining method using sluice box and panning is good enough because the fluvial sand including placer gold is not so large in volume.
- (2) Copper mineralization is the vein type, filling fissures developed in pre-Jurassic Jurassic formation, and is related to Palaeogene dioritic rocks intrusion. Geochemical soil survey verified that the mineralized zone located in the upper reaches of the Pula River was very limited and was not worth exploiting.
- (3) Chrome mineralization occurs in the Ultramafic complex and is classified into two types, viz, layered and massive. The complex body in the eastern central part is composed of dunite, harzburgite and lherzolite, some of which show a layered structure. The Ogos orebody found in this survey is a layered body with a 6.5 m width, a 33% grade and some tens in length (can be expected), occurring in dunite. The new outcrop (1.0 m width, Cr₂O₃ 42%) located 10 km in the east, lies at the almost same horizon in dunite as the Ogos', so the Ogos orebody can be expected to extend eastwards.

The other showings are small in scale (less than 100 tons).

- (4) Iron deposits are the metasomatic deposits which are formed by Tertiary dioritic rocks which intruded into the Jurassic and Tertiary limestone beds. The ground magnetic survey carried out in the three promising areas of Nagsabongan, Lasala and Lapa-ao has verified that each deposit is expected to have a probable ore of $12 36 \times 10^6$ tons.
- (5) Barite deposits located in the southeast are the deposits of the vein type, filling fissures in the Mansalay Formation, and are related to Tertiary dioritic rocks. A geochemical anomalous

zone (Ba; 1,260 - 10,000 ppm) was found in the upper reaches of the Barac River, which is close to the Taoga working mine. This may be an indication of new ore deposit but is considered small in scale from the geological point of view.

(6) Coal deposits occur in the Miocene alternated beds of sandstone and mudstone, with calorific values ranging from 11,100 to 12,600 BTU/lb, which correspond to high-volatile C bituminous coal (American Standard of Coal Classification).

The BMG's reserves are about 7 million tons. However, their development seems to be difficult under the present situation, because of the following problems.

(1) the quality of coal is not high enough (2) inclinations of the coal seams are steep (35° - 40°) and (3) disturbance of coal seams caused by folding is expected.

CHAPTER 2. RECOMMENDATION

In Mindoro island, 53 mineral showings were reported and additional 19 showings have been found by the survey.

The survey results have been summarized in the inventory map and the inventory table. Among the listed showings, chromite and iron deposits are promising from geological and economic-geological points of view and the following exploration can be recommended for these deposits.

1. Chromite Showings in the B-area

The Ogos orebody occurs in dunite in the layered or banded form and is the largest in scale (width: 6.5 m, Cr₂O₃ 33% and length may be some tens m). As the body is expected to extend toward east from the geological point of view, the exploration to confirm its extension is recommended. To achieve this, a trench survey using heavy equipment etc. is considered to be carried out.

2. Iron Deposits in the D-area

The ground magnetic survey estimated the ore reserve of each deposit, viz, Nagsabongan, Lasala and Lapa-ao, as a 10⁷ ton level. As the Fe-grade may range largely towards depth, a drilling exploration is recommended to get more detailed data on ore reserves and grades.

Table 9 Inventory Table of the Survey Area

-		the Contract of the Contract o	_	THE RESERVE AND ADDRESS OF THE PARTY OF THE	T	The state of the s	-	The state of the s	1			(1)
No.	Name of Deposit or Prospect	Location	Mineral Commodity	Туре	Extension	Host Rock	Mineral Assemblage	Ore Grade	Alteration	Occurrence	Accessibility	Remarks
1*	Dulangan	13°28'06", 120°57'47" Dulangan, Ori. Middle courses of Dulangan R.	Gold	Placer	1 km along Dulangan R.	Fluvial dep.	Native Au	0.3 ~ 0.5 g/man/day		Matrix filling the inter- stice between large boulders is rich in gold. Gold comes from the Halcon Metamorphics.	10 mins ride from Puerto Galera and 5 mins hike.	Ore reserve estimation is difficult because of its peculiar occurrence,
2*	Binaybay	12°22'42"~24'36"N 120°54'24"~58'24"E Binaybay, Ori. Upper reaches of Binaybay R.	Gold	Placer	10km along Binaybay R.	Fluvial dep.	Native Au	0.5 ~ 1 g/man/day	-	đo	30 mins ride from San Teodoro and 20 mins hike.	đo
3*	San Jose	12°30'N, 121°07'E San Jose, Occ. Upper reaches of Labangan R.	Gold	Placer	2km along Labangan R.	Fluvial dep.	Native Au	0.2 ~ 0.5 g/man/day		do	30 mins ride from San Jose. A jeepable road leads to the panning site.	do .
4	Balao	13°24'~25'N, 120°45'E Abra de llog, Occ. 5~6km SE of Abra de llog.	Соррет	Vein	W: 0.02 ∼ 0.2m	Hb-diorite	Ру-Ср	Au: 1.0 g/T Cu: 0.14 ~ 0.18%	?	Py and rare Cp are in Qz veinlets and stringers. Green hornfels and garnet skarn are produced around diorite body.	?	
5*	San Andres	13°10'N, 121°05'E Naujan, Ori. Upper reaches of Bukayao R.	Copper	Vein	3 outcrops within 3.5km W: No.1, 0.5~2.0m No.2, 1.0m No.3, 2.0m	Mica schist (Halcon M.)	Py-Cp-Bo- Po-Qz	(BMG) Cu (JICA-MMAJ) Layang R. 5.99% Dacdan Ck 1.86% W=0.10m Bukayao Grand Cu:0.15~0.37% R. 0.95~5.95% Bukayao Munt 4.69~9.92%				
6* (a)	Mindoro Consol Mining Corp. (Masnon dep.)	13°01'15"N,121°14'30"E Socorro, Ori. 25km W. of Pinamalayan	Соррет	Vein	4 outcrops in 50mx40m Massive sulphide lens W: 0.15~0.3m	Serpentinized peridotite	Py-Cp-Po- Mc-Chl	(BMG) Cu (JICA-MMAJ) O.C. No.1 2.95%~0.45 2 4.06%~2.05 3 4.38% 4 2.39%~2.77%(w=0.27m)	None	Massive sulphide lenses are developed along faults and sheared zone.	1 hr ride from Pinama- layan to Potol na Boto and 1.5 days hike by Pula R.	
6* (b)	do	13 [°] 01'20"N, 121 [°] 14'E do	Соррег	Vein	4 outcrops in 600mm x 200m Qz. vein W: 0.2 ~ 2.2m	Basalt (Lumintao F.)	Py-Cp-Hm	(BMG) Cu (JICA-MMAJ) O.C. No.5 0.38% 6 0.17%~2.21%(w=1.10m) 7 0.27% 8 11.41% 9 0.17%~2.12%(w=0.20m)	None	Sulphide veinlets and dissemination are in quartz vein.	đo	Cu-mineralization is considered to be very limited because of no alteration and geochemical anomalies.
6* (c)	do (Shawood dep.)	13 [°] 01'30"N,121 [°] 15'E do	Copper	Vein	2 outcrops 700mm apart (1) sheared zone W: 0.2m (2) Qz, vein and massive sulphide lens W: 1.6m	Serpentinized peridotite and basalt (Lumin- tao F.)	Cp-Py Cp-Py-Po- Hm	(BMG) (JICA-MMAJ) O.C. No.10 Cu 10.20%~15.33%(w=0.15m) Au 5.47g/t 11 1.39% ~0.45%(w=0.2m) 12 2.35% Au 1.90g/t	None	(1) Chalcopyrite vein along sheared zone. (2) Massive sulphide lenses occur in hematite rich gossan.	do	
7*	Zion Expl Corp. (Bambanon dep.)	13°00'N, 121°16'E Socorro, Ori. 22km W. of Pinamalayan	Copper	Vein	(1) Massive sulphide lens W: 0.1 ~ 0.3m (2) Qz, lens W: 0.5m	Serpentinized peridotite, basalt and slate (Lumintao F.)	Po-Py-Cp- Qz	Cu: 0.49% Cu: 0.42%	None	Cp dissemination, in	4 hrs hike from Putol na Boto Bambanon Ck.,a branch of Mayo R.	

and make the same of	Name of		141						1			(2)
No.	Deposit or Prospect	Location	Mineral Commodity	Туре	Extension	Host Rock	Mineral Assemblage	Ore Grade	Alteration	Occurrence	Accessibility	Remarks
8	Buraboy	12° 59'27''N, 121° 07'24"E Sablayan, Occ. Upper reaches of	Copper	Vein	W: 0.2m Mineralized zone: 2m	Ser. schist (Halcon M.)	Py-Cp-Qz	N.D.	? .	Mineralization along schistosity	?	от не том не на не н На не на на не на на не на
		Magasawangtubig R.										
9*	Aglubang	12°59'25"N,121°10'E Sablayan, Occ. 35km W of Pinama- layan	Copper	Bedded	Floats (7 pcs.) max. 3x2x1m in size.	Phyllitic schist?	Py-(Cp)-Qz	(JICA-MMAJ) Float (massive) Cu: 0.40% Pb: 0.71% Zn: 8.52%		Strata-bound?	1 day hike along Aglubang R. from Villacervesa.	New bedded cupriferous pyrite deposits can be expected.
10	Acliang & Pajo	12°45'N, 121°15'30"E Bongabong, Ori. Middle courses of Bongabong R.	Соррег	Vein	?	Ser-Chl-Amph- schist	Ср-Ро-Ру	N.D.	?	Sulphide veins and stringers are along the schistosity. Py and Cp disseminate in blotite quartz diorite.	1 hr ride from Bongabong bridge and a half day hike in the river.	Ore floats were collected but showing has not been checked by the survey team.
11	Amico Copper Co.	12°28'N, 121°11'E San Jose, Occ. 5.7km E of Hagdaman Peak	Copper	Vein	Very small	Interbeded sandstone, silty shale and mudstone (Sablayan G.)	Ру-Ср	Cu: 0.04 ~ 0.05%	?	Sulphide veinlets, pockets and dissemination in the calcareous concretions in the shale.	?	Outcrops could not be found.
12*	Mariri	13°26'N,121°31'E Paluan, Occ. 5km NE of Paluan	Chromite	Ortho- magma- tic	0.7mx0.7m	Serpentinite	Cr.	(JICA-MMAJ) Cr ₂ O ₃ : 40.31%	Serp.	Massive ore deposit in small ultramaphic (serpentinite) body.	30 mins ride and 1hr hike from Paluan.	Small scale ?
13*	Mariil	13°24'15"N,120°28'45"E Paluan, Occ. 3km SE of Paluan	Chromite	Ortho- magma- tic	Unknown (three ore deposits)	Harzburgite ≥ dunite gabbro, microdiorite		(JICA-MMAJ) Stockpile Cr ₂ O ₃ : 50.50% 45.82% Float Cr ₂ O ₃ : 48.93%	Serp.	ore is found as a gravel or breccia (cobble ~	20 mins ride and 20 min hike from Paluan.	Stock pile: 2T Small scale? Laterite thickness av. 1m (0.24% Ni).
14*	San Vicente	13°24'N, 120°40'E Abra de llog. Occ. 8km SW of Abra de llog.	Chromite	Ortho- magma- tic	Small lens (5~6 bodies) maximum size L: 3m, W:0.1~0.5m Horizontal extension is more than 30m judging from destri- bution of outcrop and floats.	Harzburgite	Cr.	(JICA-MMAJ) Cr ₂ O ₃ : 29.11% Al ₂ O ₃ : 19.99%	Serp.	sheared zone of harzburgite, trending N60 ~65 E with 70 S~75 N dip. Ore is massive and rich	10 mins ride and 20 mins hike from the Mamburao- Abra de Ilog high way.	Stock pile 3T and floats 8T. 9 trenches Ore reserve may not exceed 100T.
15*	Igsoso	13°16'45"N,120°30'30"E Igsoso, Occ. 10km NW of Mamburao		Ortho- magma- tic	No.1: 0.4x1.9x6.0m No.2: unknown	Dunite	Cr.	(JICA-MMAJ) Massive Cr ₂ O ₃ : 43.00% Banded Cr ₂ O ₃ : 34.14%, 38.85%	Serp.	and massive ore.	30 mins hike from the Paluan— Mamburao highway.	Pit, trench: 23 stock pile (No.2 outcrop):10T. Some extension and new deposits can be expected.
16*	Liw liw	13°12'30"N,120°40'45"E Mamburao, Occ. 8.5km E of Mamburao	Chromite	Ortho- magma- tic	4 outcrops: No.1: 0.1~0.2x3.0x1.5m 15T No.2: 0.1x2.0x8m No.3: 0.1~0.4x3.0x12m 5T No.4: 0.05x1.0x5m	Harzburgite		(JICA-MMAJ) Stockpile (massive) Cr ₂ O ₃ : 40.31%, 36.50%		probably removed by shear, occurring in	30 mins ride and 10 mins hike from Mamburao.	Stock pile: 20T Geochemical anomaly was obtained on the east side.
17*	Barabon	13°04'N, 120°45'30"E Sta Cruz, Occ. 3km E of Sta Cruz.		magma-	Lenticular W: 0.3 ~ 0.8m L: ?	Ultramafic complex	Cr.	N.D.		Chromite deposit occurs along thrust faults in the Ultramafic rocks in the shape of pad and lens with steep dip.	from Sta Cruz.	Outcrops could not be found. very small?

.

No.	Name of Deposit or Prospect	Location	Mineral Commodity	Турс	Extension	Host Rock	Mineral Assemblage	Ore Grade	Alteration	Occurrence	Accessibility	(3) Remarks
18*	Ogos No.1	13°04'30"N,121°06'30"E Sta Cruz, Oce. 40km W of Pinamalayan,		Ortho- magma- tic	Thickness: 65m	Dunite	Cr.	(JICA-MMAJ) Margin (disseminated) Cr ₂ O ₃ : 29.99% Middle (dis~dense) 31.39% Center (dense spotted) 28.28% Top (weathered sandy) 37.05%	Serp.	Layered, massive and disseminated ore.	I day hike along the Ogos R. from Villacerveza,	Extension cannot be checked by trenching, because of deep fluvial deposit,
19*	Ogos No.2	13°04'39"N,121°07'30"E Sta Cruz, Occ. 39km W of Pinamalayan	Chromite	Ortho- magma- tic	Lenticular W: 1m L: ?	Dunite	Cr.	(JICA-MMAJ) Cr ₂ O ₃ : 39.92%, 44.11%	Serp.	Layered and massive ore.	1 day hike along the Ogos R. from Villacervesa.	1 km E of No.1 showing.
20*	Ogos No.3	13°03'N, 121°09.E Sta Cruz, Occ. 36km W of Pinamalayan	Chromite	Ortho- magma- tic	Lenticular W: 0.1m L: ?	Dunite	Cr.	(JICA-MMAJ) Cr ₂ O ₃ : 37.20%	Serp.	Massive ore, striking N70 W and dipping 55 SW.	1 day hike along the Baraboi R. from Villacervesa.	
21*	Ogos No.4	13 [°] 01'N, 121 [°] 11'E Sablayan, Occ. 33km W of Pinamalayan	Chromite	Ortho- magma- tic	Network zone W: 5m + L: 2m	Harzburgite	Cr.	(JICA-MMAJ) Cr ₂ O ₃ : 45.82%	Serp.	Chromite veinlets are in a network.	1 day hike along the Aglubong R. from Villacervesa.	
22*	Pintin west	13°00°N, 120°50°E Sta Cruz, Occ. 13km SE of Sta Cruz	Chromite	Ortho- magma- tic	2 outcrops No.1: small lenticular bodies. max. 1.0x0.2x0.2m No.2: 1.0x0.15x0.15m	Harzburgite	Cr.	(JICA-MMAJ) Cr ₂ O ₃ : No.1 39.81%, 38.93%, 38.14% 41.30% No.2 40.19%, 39.92%	Serp.	Massive ore	1 hr ride and 10 mins hike from Sablayan.	Trenching work was conducted in this survey.
23*	Pintin central	120°51'30"É o 13°00'N, 120°53'E o 12°58'30", 120°53'E Sta Cruz, Occ.	Chromite	Ortho- magma- tic	1 outerop and 5 sites of float Floats ϕ max. 0.4m	Harzburgite	Cr.	(JICA-MMAJ) Cr ₂ O ₃ : Outcrop 51.40% Floats 50.03%, 53.55% 48.94%, 47.62%	Serp.	Massive ore	1 hr ride and 1 hr hike from Sablayan.	Trenching work was conducted in the past. Stockpile: 2~3T.
24*	Pintin east	19km SE of Sta Cruz 12°57'N,120°54'30"E Sablayan, Occ. 20km NE of Sablayan	Chromite	Ortho- magma- tic	4 sites of float Floats φ max. 0.4m	Harzburgite	Cr.	(JICA-MMAJ) floats Cr ₂ O ₃ : 33.18%, 30.30%, 56.10%, 33.88%	Serp.	Massive ore	45 mins ride and 1hr hike from Sablayan.	2 sites show the high content of Al ₂ O ₃ .
25*	Masbo	12°54'30"N,121°14'E Sablayan, Occ. 25km W of Bansud	Chromite	Ortho- magma- tic	2 outcrops lenticular bodies max. 1.5x0.3m I site of float Floats ϕ max. 1m	Dunite	Cr.	- T	Serp.	Massive ore, in the fracture zone trending NW-SE.	2 days hike along the Bongabong R. from Balete.	
26*	Banus No. l	Gloria, Ori. 20km W of Bansud		magma-	Lenticular W: 5cm L: 2m	Dunite	Cr.	(JICA-MMAJ) Cr ₂ O ₃ : 41.23%		Layered and massive ore.	4hrs ride by logging truck and 3.5hrs hike along the Banus R. from Bulbogan.	
27*	Banus No.2	12°52'30"N,121°16'45"E Gloria, Ori. 19km W of Bansud	ĺ	magma- tic	Mineralized zone T: 3.5m L: 45m max. scale of one body T: 1m L: 4m	Dunite	Cr.	(JICA-MMAJ) Cr ₂ O ₃ : 37.97%, 46.11%, 41.44% 43.50%, 36.05%, 43.43% 45.43%	Ѕегр.	Layered and massive ore, with a gentle dip.	logging truck	Trenching work was conducted in this survey.
28*	Banşud	12°56'30"N,121°19'E Bansud, Ori. 15km W of Bansud		magma- tic	Mineralized zone T: 0.8m L: 30m max. scale of one body T: 0.2m I·3m	Dunite	Cr.	(JICA-MMAJ) Cr ₂ O ₃ : 42.02%, 46.12%	Serp	Layered and massive ore, striking N47 W and dipping 25 SW.	1hr ride and 2hrs hike along the Bansud R, from Bansud.	

	Name	THE PERSON NAMED OF THE PERSON NAMED IN PARTY		T						-	·		(4)
No.	Name of Deposit or Prospect	Location	Mineral Commodity	Туре	Extension	Host Rock	Mineral Assemblage	Ore Grade	•	Alteration	Occurrence	Accessibility	Remarks
29	Igsoso	13°17'N, 120°30'E Igsoso, Occ. 12km NW of Mombulao	Nickel	Residual	very small	Ultramafic complex	Nickeliferou laterite	N.D.		Serp.	Secondary enrichment of Ni in the ultramaphic rocks.	0.5km hike from the Mamburao- Paluan highway,	No information could be gotten.
30*	Aglubang	13°05'N, 121°09'E Sablayan Occ. Near Villacervesa	Nickel	Residual	Ore reserve: 49 MT. (0.94% Ni) Thickness: 3~11m (av. 5.5m)	Ultramafic complex	Nickeliferou laterite	Ni: 0.94%	(JICA-MMAJ) check samples 0.46%	Serp.	Laterite covers almost all the slope and floats of the ultramatic rocks.	30 mins hike from Villa- cervesa,	Explored by Anglo Philippine Oil Corp, Eagle Pass & Aglu- bang prospect are included in this area.
31*	Paragpagan	13°03'N, 120°50'E Sta Cruz, Occ. 12km E of Sta Cruz	Nickel	Residual	L: 1400m W: 800m Thickness: 0.3~6.0m	Harzburgite	Nickeliferous laterite	(BGM and others) Laterite Ni: 0.82% Laterite sand Ni: 0.79%	(JICA-MMAJ) 2.66% 1.82%	Serp.	Ni in the ultramatic rocks.	1 hr hike from the sublayan— Mamburao highway.	Ore reserve: 4~5MT (after BMG 19774)
32	Blueridge Mining Corp.	12°49'30"N,121°17'30"E Bongabong & Bansud Ori, 1.8km WSW of Bansud	Nickel	Residual	?	Ultramafic complex	Nickeliferous laterite	Geochemical samples Ni: 0.80~2.95%		Serp.	Secondary enrichment of Ni (and Co) in the ultramafic rocks.	?	
33	Baletero	13°29'N, 120°56'E Puerto Galera, Ori. 2.5km SW of Puerto Galera.	Iron	Contact	Thickness: 2m	Schist, marble (Halcon M.)	Mt-Hm- Spec-Mn	N.D.		?	Iron body, paralleled to the schistosity, is formed by replacement of marble in the schist.	?	No information on the deposit could be collected.
34	Batalong Bato	13°28'21"N,120°55'30"E Puerto Galera, Ori. 4km SW of Puerto Galera	Iron	Contact	Thin layer of Mt. Floats ϕ max. 1m	Marble (Halcon M.)	Mt.	N.D.		?	Floats are in limited amount.	?	do
35	Savoran	13°27'N,120°54'47"E Puerto Galera, Ori. 8km SW of Puerto Galera	Iron	Contact	No.1 W: 1.0m No.2 W: 0.01m	Mica schist (Halcon M.)	Hm-Mt- Lm-Mn	N.D.		?	Ore bodies tend to parallel to the schistosity.	?	do
36	Camarong	13°27'38"N,120°50'30"E Abra de Ilog, Occ. Camarong R.	Iron	Contact	Iron blocks (φ1.5m) are concentrated along a 2.5m length.	Xenolith of limestone in gneiss (Halcon M.)	Mt-Py	Fe: 49.21%		?	Iron floats are found along on N80 E direction on the southern slope.	?	No information was obtained.
37	Barayao	13°24'12"N,120°48'58"E Abra de Ilog, Occ. Head water of Obala R.	Iron	Contact	L: 5m W: 15m	Marble, Gneiss Schist (Halcon M.)	Mt	N.D.		Skarn	Similar to Dayap (50). Mt veins and pockets in garnet-epidote skarn, which is developed near the contact between gneiss and schist.	?	
38	Little Baguio	13°22'13"N,120°49'18"E Abra de Ilog, Occ. 15km SE of Abra de Ilog.		Contact	2 float areas: No.1 cobble size Mt in a small scale. No.2 iron blocks (φ1m)	Marble, (Sablayan G.)	Mt-Hm	N.D.		Skarn	The deposit is composed of two float areas. Several tunnels were driven.	?	
39*	Nagsabongan	13°22'12"N,120°48'36"E Abra de Ilog, Occ. Headwater of Mamburao R.	Iron	Contact	Extension L: 200m+ Thickness Upper, W: 20m+ Lower, W: 50m+	Marble, (Sablayan G.)		Shipping grade > 60% (JICA-MMAJ) Fe: 56 ~ 70%	Fe	Skain	outcrop in limestone	2 days hike from Abra de Ilog by trail or from Cabacao along Mamburao R.	Ore reserve may be over 10 MT by magnetic survey. Elizalde Co, explored by means of dip needle, trench and drilling. No record has remained.

No.	Name of Deposit or Prospect	Location	Mineral Commodity	Туре	Extension	Host Rock	Mineral Assemblage	Ore Grade	Alternation	Occurrence	Accessibility	Remarks
40*	Lasala	13°21'N, 120°47'E Abra de Ilog, Occ. Upper reaches of Mamburao R.	Iton	Contact	Extension: Ore outcrops and floats are chiefly observed in an area of 130m(EW)x 100m(NS).	Marble, skarn (Sablayan G.)	Hm-Mt- Py-Cp	(JICA-MMAJ) Banded Massive Fe: 28.23% 54~6	e Skarn 8%	The deposits occur under the river bed on the western slope where epidote skarn is developed,	2 days hike from Abra de llog by trail or from Cabacao along Mamburao R.	Ore reserve is about 18MT based on magnetic survey result, Mayorga Minign Corp. also explored by dip needle, pit (2), trench (22), tunnel (2) and diamond drilling.
41*	Tiraca	13°21'50"N,120°49'E Abra de Ilog, Occ. 15km SE of Abra de Ilog	Iron	Contact	L: 7m W: 5m	Limestone (Sablayan G.)	Mt	(JICA-MMAJ) Float (massive) Fe: 59.73%	Skarn (weak)	Bedded, striking N50E, dipping 70E	3 days hike from Abra de llog or Cabacao,	Trenching: 7m Small scale,
42	Binaybay	13°21'24"N,121°00'E Binaybay Baco, Ori. 12km W of Baco	Iron	Contact	Floats (max, 1,5m in size) localized in 15mx15m	Schist and marble (Halcon M.)	Hm-Mt	Fe: 61.19%	Skarn	Floats or blocky concentration An adit exploration suggests the block concentration was connected to an ore body underneath.	?	No information was collected in Binaybay.
43*	Ak ak	13°21'15"N,120°48'E Abra de Ilog, Occ. 14km SE of Abra de Ilog	Iron	Contact	L: 10m W: 5m	Limestone (Sablayan G.)	Mt	Outcrop (massive) Fe: 51,55%	Skarn	Beddgd? in limestone (N40 W, 20 S)	2 days hike along trail from Abla de Ilog or along Mamburao R. from Cabacao,	Small scale.
44	Aglombogan	13°20'25"N,120°49E Abra de Hog, Occ. Headwater of Malaylay R.	Iron	Contact	Unknown	Marble, phyllite (Sablayan G.)	Hm-Mt	N.D.	Skarn	Mt has replaced marble along bedding planes as a lens.	?	
45	Tibano	13°21'00"N,120°54'24"E Mamburao, Ori Upper reaches of Malaylay R.		Contact	Massive iron blocks: W: 8m Floats: av. 1m in 1500x50m	Skarn (Halcon M.)	Mt-Py- Mn	Fe: 66.74%	Skarn	Iron deposit occurs in skarn at the contact between meta quartz diorite and schist.	?	
46	Bulos	13"20'N,120 [°] 51'08"E Puerto Galera, Ori. Upper reaches of Malaylay R.	Iron	Contact	Iron block: av. 1.5m	Marble, (Sablayan G.)	Mt-Hm	N.D.	?	Iron block.	?	
47*	Cobanga-on	13°19'25"N,120°47'38"E Abra de Ilog, Occ. Upper reaches of Mamburao R.	Iron	Contact	maximum size L: 3m W: 2m	Marble, phyllite green phyllite (Mansalay F.) Diorite	Mt, Hm(Cp)	(JICA-MMAJ) Fe=55.36%	Skarn	The deposit consists of many small lenticular ore bodies and occurs in limestone lens-bearing green phyllite.	2 days going up along Mamburao R. from Cabacao.	Reserve may be small, because limestone is poorly developed in this area.
48	Lagnas	13°19'21"N,120°52'30"E Puerto Galera, Ori, Upper reaches of Malaylay R.		Vein, Dissemi- nation		Basalt, phyllite (Sablayan G.)	Mt-Hm	Fe: 30~53%	Skarn	Four ore bodies crop out probody along a pre-ore fault of a N70 W direction which has controlled mine ralization in this area.	?	
49*	Lapa-ao	13°18'54"N,120°47'E Abra de Ilog, Occ. Upper reaches of Mamburao R.	Iron	Contact	Thickness: 44m,46m,	Limestone, phyllite (Sablayan G.)	Mt	(JICA-MMAJ) Fe: 33∼69%	Skarn	Ore bodies are massive and occur near boundary between diorite and Sablayan limestone. The ore contains skarn, often showing a banded structure.	2 days going up along Mamb- urao R. from Cabacao.	Reserve is about 35MT based on magnetic survey result.

***			agamodicaren entresciente de la constitución de la constitución de la constitución de la constitución de la co	-	or manuscus and manuscus definitions and a first of the first first of the definition of manuscus and		-				_	(6)
No.	Name of Deposit or Prospect	Location	Mineral Commodity	Туре	Extension	Host Rock	Mineral Assemblage	Ore Grade	Alternation	Occurrence	Accessibility	Remarks
50*	Dayap	13°17'41"N,120°48'38"E Mamburao, Ori. Upper reaches of Pagbahan R.	Iron	Contact	Outcrop, Thickness No.1=2m No.2=2m No.3=10m	Phyllite, skarn (Mansalay F.)	Mt-Py	(BMG) (JICA-MMAJ) Fe: 67.37% Fe:56.73% 70.43% 65.37%	Skarn	Bedded deposits occur in epidote-chlorite- skarn,	3 hrs ride along Pagbahan R, in dry season and 1 day hike.	Very poor accessibility.
51*	Taoga (Filhispano Inc.)	12 [°] 37'30"N,121 [°] 19'45"E Mansalay, Ori. 18km NW of Mansalay	Barite	Vein	Outcrops No.1 W: 0.50m No.2 W: 1.20m	Sandstone (Mansalay F.)	Ba-Py-Qz	(JICA-MMAJ) BaSO ₄ : 83,79%	Py, sil	Barite veins trend N45 E~N120 E with a dip of 55 ~70 S.	A logging road of 80km from Mansalay reaches the mine site.	Reserve may be some thousands ton.
52	Wigan	12°33'N, 121°25'E Mansalay, Ori. 4km NW of Mansalay	Barite	Vein	Outcrop: 10x15m	Sandstone (Mansalay F.)	Ba	N.D.	?	Barite is exposed in several pits from 0.5—1.0m deep. Floats (\$\phi\$-few cm) are scattered around the ridge.	?	
53*	Mansalay Mining Corp.	12°31'43"~12°33'29"N 12°21'03"~121'24'08"E Mansalay, Ori. 7km WNW of Mansalay	Barite	Vein	W: 1,2~1.9m H: 3m L: 17.5m	Sandstone (Mansalay F.)	Ва	N.D.	Py, chi	The yein striking N50 W dipping 78 S.	30 mins hike from logging road.	SE extension of the vein is recommended to be checked.
54*	Mansiol point	12°28'30"N,121°25'45"E Mansalay, Ori. 6km SSW of Mansalay	Barite	Vein	W: 1.6m (Max.) L: 90m (Float zone)	Sandstone (Mansalay F.)	Ва	N.D.	None	Barite floats are scattered in a N25°E direction.	20 mins hike from the Bulalacao —Mansalay highway.	Reserve is probably 1~2x10 T above sea level. Under mining preparation.
55	Ligwayan	13°26'41"N,120°54'31"E Puerto Galera, Ori. 8.5km SSW of Puerto Galera	Feldspar	Dike Sill	Outcrops: No.1, L: 25~30m No.2, L: 8, H: 1.5m No.3, W: 1.5m	Gneiss, schist (Halcon M.)	Fd-Clay	N.D.	?	Deposit is composed of friable feldspar, clay or quartz-feldspathic schist.	?	
56	Wawa	13°7'35"~28'07"N 120°36'06"~37'03"E Abra de Ilog, Occ. 12km WNW of Abra de Ilog	Talc	Lens	No importance	Talc schist in serpentinite (Halcon M.)	Тс	N.D.	?	Talc schist are discontinuous lenses in serpentinite,	?	
57	Metropolitan Mining Corp.	13°27'30"~13°29'N 120'48'~120'49'E Abra de Ilog, Occ. 12km WNW of Abra de Ilog	Talc	?	?	Marble, schist (Halcon M.)	Tc-Cal	N.D.	?	Talc may have been contamination from the interlayered schist and/or developed in the marble.	?	Stockpile: 130T
58	Amico Copper Co.	12°28'N, 121°11'E San Jose, Occ. 19km NE of San Jose	Gypsum	Vein	Very small W: 1∼10mm	Calcareous sediments (Sablayan G.)	Gy	N.D.	?	Selenite appears to represent minute bedding planes and fracture fillings in the sediments.	?	
59	Alitaytayan	12°26'30"N,121°09'E San Jose, Occ. 13.5km NE of San Jose	Gypsum	Vein	Very small	Shale (Sablayan G.)	Gy	N.D.	?	Thin veins of selenite disparse in the weathered shale.	30 mins ride and 3km's hike from San Jose,	No information was obtained.
60*	Polola	12 [°] 23'N,121 [°] 20'45"E Bulalacao, Ori. 6km N of Bulalacao	Gypsum	Vein	W: 1~2cm L: <5m ?	Siltstone (Sablayan G.)	Gy	N.D.	None	Fissure-filling.	Near the Mansalay— Bulalacao highway.	Very small scale.

÷									٠.			
												(7)
No.	Name of Deposit or Prospect	Location	Mineral Commodity	Туре	Extension	Host Rock	Mineral Assemblage	Ore Grade	Alternation	Occurrence	Accessibility	Romarks (7)
61*	Mananao	13°30'20"N,120°35'E Paluan, Occ. 14km NE of Paluan	Gravita, (constru- ction material)	Beach sand	L: 1km W: 20m H: 0.3m	Metamorphic rocks, segregated quartz (Halcon M.)	Qz, rock gravel		None	The beach sand is composed of quartz, mica schist, phyllite and green schist.	1.5 hrs from Wawa by boat.	Gravita and quartz gravel are being collected by sieve and hand picking.
62*	Maria Cristina Chemical Industries	13 [°] 29'30"N,120 [°] 39'40"E Abra de Ilog, Occ. 8km NW of Abra de Ilog	Silica	Beach sand	L: 1.2km, W: 20m H: 0.3m Positive reserve: 3,600T	Metamorphic rocks, segregated quartz (Halcon M.)	Qz	Qz=20%	None	Deposits consist of Qz-sand, pebble, cobble and boulders.	0.5 hr from Wawa by boat.	do
63*	Mamburao	13 [°] 15'N,120 [°] 37'22"E Mamburao, Occ, 4km NE of Mamburao	Silica	Beach sand	1km along the beach		Qz	Qz < 30%	None	The beach sand is composed of Qz, Sh, Hb, Chl, Mt, Serp, fragments in the order of abundance.	Near Mamburao	
64*	Barahan	13°01'N,120°46'E Sta Cruz, Occ. 7.5km SSE of sta cruz	Silica	Beach sand	2~3km along the beach.	-	Qz	Qz=40%	None	Components are Qz=slate ≥ green rock (10%) ≥ basalt > mica schist > Mt. Grain size of sand is getting bigger toward depth.	A jeepable road is leading to this place.	Study is needed from an economic point of view.
65*	Mansalay Mining Corp.	12°31'43''~33'29''N 121°21'03''~24'08''E Mansalay, Ori. 7km WNW of Mansalay	Silica	Bedded	Outcrops: No.1 W: 1~3m,400ha No.2 W: 1~2m, L: 200m No.3 W: 2.5m. L: 15m	Arkose (Mansalay F.)	Qz	Average of 16 samples SiO ₂ : 74.5~86.8%	None	Bedded arkose bed in the Mansalay F.	Near the logging road to Taoga Barite mine.	As arkose is highly indulated, a study on quartz grain separation is needed from the technical and
66*	Falcon Mineral Inc.	12 [°] 33'N,121 [°] 25'N Mansalay, Ori. 3km NW of Mansalay	Silica	Bedded	H: 20m+,	Arkose (Mansalay F.)	Qz	(JICA-MMAJ) Refined stock pile SiO ₂ : 82.40%	None	do	30 mins ride from Mansalay.	economical points of view.
67*	Marblecraft	13 [°] 29'N,120 [°] 55'E Puerto Galera, Ori. 5km SW of Puerto Galera	Marble	Bedded	L: 2km+(E-W) Thickness: 200m±	Pelitic schist (Halcon M.)	Marble	Good quality	Recryst.	Marble occurs in pelitic schist, striking E-W, dipping 0~20 N.	road of about 10km lone from	Marble craft Inc. reopened operation in April, 1983, Workers: 16 men,
68*	Dulangan	13 [°] 28'N,120 [°] 58'E Dulangan, Ori. 1km W of Dulangan	Marble	Bedded	Reserve: 110MT (provincial data, 1981)	Schist (Halcon M.)	Marble	Good quality	Recryst.	Marble are interbeded in green schist and mica schist.	Near the highway	Under operation 2m ³ /day
69*	Monte Cristy Mining Co.	Mamburao, Occ. Upper reaches of Pagbahan R.	Jade	Vein	W: 2m	Limestone (Mansalay F.)	Jade	Good quality	Ser.	Champion jade vein with 2m wide occurs in limestone. All in all, there are 7 parallel veins, but others are in a low grade or on a small scale.	From the Sablayan— Mamburao highway 1,5hrs ride along Pagbahan R. in the dry season.	Operation Workers: 30 persons stockpile: about 10T.
70*	Alitaytayan	12°26'30"N,121°09'E San Jose, Occ. 13.5km NW of San Jose	Coal	i	upper: 0.6m thick lower: 1.05m thick,	Sandstone, carbonaceous shale (sablayan G.)	l	(JICA-MMAJ) 12,624 BTU/lb (High-volatile C bituminous)	None	Two seams occur in interbeds of sandstone and carbonaceous silty sediments.	30 mins ride and 3km hike from San Jose,	Small scale ?

No.	Name of Deposit or Prospect	Location	Mineral Commodity	Туре	Extension	Host Rock	Mineral Assemblage	Ore Grade	Alternation	Occurrence	Accessibility	Remarks
71*	Napisian Bulalacao	12°22'38"N,121°18'03E Bulalacao, Ori. 9km NNW of Bulalacao	Coal	Bedded	Thickness: 0.4~2.5m+ coal seams with 0.25m thick are 4. Reserve: 6,776,000T	Sandstone, shale (Sablayan G.)		(JICA-MMAJ) Samples taken from 3 outcrops show 11,587~12,652 BTU/lb, corresponding to high volatile C bituminous coal.		a heterogeneous succes-	Bulalacao – Mansalay highway,	Recently explored by BMG and CDCP. Some problems on the development may exist such as, (1) poor quality (2) steeply inclined (3) folded.
72*	Siay Bulalacao	12 [°] 21'57"N,121 [°] 21'40"E Bulalacao, Ori. 5km NE of Bulalacao	Coal	Bedded	Thickness: 1.4m, 1.0m 0.2m, 0.2m Reserve: 460,000T	Sandstone, shale (Sablayan G.)		(JICA-MMAJ) Two samples show 11,447 and 12,814 BTU/lb. (subbituminous -B, High ~ volatile C bituminous).	None	seams with a 10cm+ thick- ness may present.	20 mins ride and 30 mins hike from the above highway.	Same problems as above are considered.

* : checked deposits or prospects

Abbreviation; Cp: Chalcopyrite, Py: Pyrite, Po: Pyrrhotite, Bo: Bornite, Cc: Chalcocite, Mc: Marcasite, Cr: Chromite, Mt: Magnetite, Hm: Hematite, Spec: Specularite, Lm: Limonite, Chl: Chlorite, Epi: Epidote, Qz: Quartz, Hb: Hornblende, Ser: Sericite, Mn: Manganese, Tc: Talc, Gy: Gypsum, sil: Silicification, py: Pyritization, O.C.: Outcrop, N.D.: No Data

REFERENCE

Andal, D.R.; Esguerra, J.S.; The Jurassic Mansalay formation, southern Mindoro, Philippines. Hashimoto, W.; Reyes, B.P. Geol. and Palaeont. of Southeast Asia, Vol. 4, p. 179-197. & Sato, T. (1968) Geology of the iron deposits of northern Mindoro, Second Geo-Andal, D.R. & Caagusan, N.L. logical and First Symposium on the geology of the Philippines (1967)and neighboring countries, Jan. 1967, Proc., Vol. 1, p. 121-136. Geology of some alpine-type chromite deposits in the Philip-Bacuta, G.C., Jr. (1979) pines. Jour. Geol. Soc. Phil., Vol. 33, no. 2, p. 44-81. Report on the geological investigation of Balao copper prospect, Balce, G.R. (1970) Abra de Ilog, Occidental Mindoro. Bureau of Mines, Manila, unpublished. Metallogenesis in the Philippines: explanatory text for the Balce, G.R.; Crispin, O.A.; Samaniego, C.M. & CGMW metallogenic map of the Philippines. Report of Geo-Miranda, C.R. (1981) logical Survey of Japan, no. 261, p. 125-148. Banba, T. (1963) Genetic study on the chromite deposits of Japan. Rept. Geol. Surv. Japan, no. 200. Geological map of Philippines. (1:1,000,000) Bureau of Mines (1963) Geology and mineral resources of Mindoro Island. Bureau of Mines (1974) Geological verification of the copper deposits at Barrio San Bravo, A.A. (1975) Andres, Naujan, Oriental Mindoro. Bureau of Mines, Manila, unpublished. Caagusan N.L. (1966) Petrography of the metamorphic rocks of northern Mindoro, Bull. Inst. Filipino Geol., Vol. 1, no. 1, p. 22-46. Caculitan, P.R.; Custodio D.; Report on the regional geological mapping and mineral canvass-Rollan R.R. & Ferrer N.V. ing of Abra de Ilog quadrangle, Occidental Mindoro, Bureau of Mines, Manila, unpublished. (1977)Progress report on the regional geological mapping and mineral Caculitan, P.R.; canvassing of northern Mindoro. Bureau of Mines, Manila, un-Gonzales R.V; Balisi, V.V. published. & Ang, V., Jr. (1976) Coleman, R.G. (1977) Ophiolites. Springer-Verlag. Geology and oil possibilities of the Philippines. Dept. of Agric. Corbby, G. et al. (1951) and Nat. Res. Tech., Bull. 21, p. 208-214. Preliminary geological investigation of silica deposits in Mansalay, De la Rosa, S.C., Jr. (1979) Occidental Mindoro. Bureau of Mines, Manila, unpublished. Encina, D.C. & Report on the Buraboy copper prospects at Sablayan, Occidental Presbitero, C.B. (1968) Mindoro. Bureau of Mines, Manila, unpublished.

Fossil algae from Mindoro Oriental Province, Mindoro Island, the Endo, R. (1968) Philippines. Geol. and Paleont. of Southeast Asia, Vo. 4, p. 211-219. Preliminary geologic report on the Mansalay district, Mindoro. Feliciano, J.M. & Phili. Geol., Vol. 1, no. 3, p. 1-11. Basco, D.M. (1947) Fernandez, J.C; Montero. P.O. Geological interpretation of Landsat-1 imagery of Mindoro Island, Philippines. Bureau of Mines, Manila, unpublished. & Teodoro, C.F. (1978) Geological investigation of the gypsum and coal prospects at Fernandez, J.C. & Barrio Alitavan, Occidental Mindoro. Bureau of Mines, Manila, Almogela D.H. (1970) unpublished. International Mineralogical Association — Papers and proceedings Fisher, D.J.; Frueh, A.J., Jr.; of the third general meeting. Min. Soc. America, Hurlbut, C.S., Jr. & Tilley, C.E. (1963) Special paper No.1. Notos on the geology of the Matabang area, Abra de Ilog, Occi-Francisco, F.U. & Velez, P.M. dental Mindoro. Bureau of Mines, Manila, unpublished. (1954)The age and nature of orogenesis on the Philippines. Phil. Geol., Gervasio, C. (1966) Vol. 20, p. 121--140. Geotectonic development of the Philippines. Jour. Geol. Soc. Gervasio, C. (1971) Phil., Vol. 25, no. 1. Larger foraminifera from the Philippines (Part 1). Geol. and Hanzawa, S. & Hashimoto, W. Palaeont, of Southeast Asia, Vol. 8, p. 187-230. (1970)Contribution to the geology of Mindoro and neighboring islands, Hashimoto, W. & Sato, T. the Philippines. Geol. and Pal. of Southeast Asia, Vo. 5, p. 179-(1968a) 197. A contribution to the study of geologic structure of the Hashimoto, W. & Sato, T. Philippines, Part I (in Japanese). Journ. Geogr., Tokyo Geogr. (1968b)Soc., Vol. 77, no. 763, p. 78-116. A contribution to the study of geologic structure of the Hashimoto, W. & Sato, T. Philippines, Part II (in Japanese). Journ. Geogr., Tokyo Geogr. (1969)Soc., Vol. 78, no. 771, p. 235–270. Hashimoto, W.; Matsumaru, K. Larger foraminifera from the Philippines, Part V. Geol. and Paleont. of Southeast Asia, Vol. 18, p. 59-76. & Kurihara, K. (1977) Geologic development of the Philippines. Geol. and Paleont. of Hashimoto, W. (1981) Southeast Asia, Vol. 22, p. 83-170. Chemical characteristics of the serpentinites in Shikoku, Japan Hayashi, M. (1968) Assoc. Min. Petr. Econ. Geol., Vol. 59, no. 2, p. 60-72. The Sanbagawa Belt (in Japanese). Hiroshima University Press. Hide, K. (1977) The North Palawan Block, Philippines: its relation to the Asian Holloway, N.H. (1981) Mainland and its role in the evolution of the South China Sea. Geol. Soc. Malaysia, Bulletin 14, p. 19-58.

Petrology of the Duke Island ultramafic complex, southeastern Irvine, T.N. (1974) Alaska, Goel, Soc. America, Mem. 138 A geological investigation of the marble deposits in Puerto Jagolino, R.B. & De Luna, Galera, Oriental Mindoro. Bureau of Mines, Manila. R.S. (1969) Fusulinid-bearing limestone pebbles found in the Agbahag con-Koike, T., Hashimoto, W. & glomerate, Mansalay, Oriental Mindoro. Philippines. Geol. and Sato, T. (1968) Paleont, of Southeast Asia, Vol. 4, p. 198-210. Volcano and volcanic rock (in Japanese). 2nd edition, Iwanami Kuno, H. (1976) Shoten. Report on the geological investigation of copper prospects at Liggayu, M.C. (1970) Barrio San Andres, Naujan, Oriental Mindoro. Bureau of Mines, Manila, unpublished. Report on the geological investigation of laterite deposits in Manlansing, P.M. & Sablayan, Occidental Mindoro. Bureau of Mines, Manila, un-Mantaring, J.M. (1970) published. Progress report on the mineral canvassing of Mindoro Island. Mantaring, J.M. & Balce, Bureau of Mines, Manila, unpublished. G.R. (1971) Extracts from the geology and oil possibilities of southwestern Melendres, M.M., Jr. (1951) Mindoro. Bureau of Mines, Manila, unpublished. Metamorphic rocks and metamorphic belt (in Japanese). Miyashiro, A. (1965) Iwanami Shoten. Petrology (II) (in Japanese). Kyoritsu Press. Miyashiro, A. & Kushiro, I. (1975)Petrology (III) (in Japanese). Kyoritsu Press. Miyashiro, A. & Kushiro, I. (1977)Chromite deposits of the Philippines (in Japanese). Metal Mining Narita, E. (1976) Agency of Japan, Oversea data no. 76. On the iron-rich peridotites in the Sanbagawa Metamorphic Onuki, H. (1966) Belt of the Kanto Mountains. Japan Assoc. Min. Petro. Econ. Geol., Vol. 55, no. 2, p. 39-47. Geological and geochemical investigation of copper prospects Reves, F.T. (1970) in Socorro, Oriental Mindoro. Bureau of Mines, Manila, unpublished. Geologic investigation of outcrops for copper mineralization in Santiago, J.U. (1970) Socorro, Oriental Mindoro. Bureau of Mines, Manila, unpublished. Selection of threshold values in geochemical data using probabil-Sinclair, A.J. (1974) ity graphs. Jour. Geoch. Explor. Vol. 3, p. 129-149.

Geology and petrology of the Masinloc chromite deposit, Stoll, W.C (1958) Zambales, Luzon, Philippine Islands. Bull. Geol. Soc. America, Vol. 69, p. 419-448. Sugisaki, R.; Suzuki, T.; Kanmera, K.; Sakai, T. & Chemical compositions of green rocks in the Shimanto Belt, southwest Japan. Jour. Geol. Soc. Japan. Vol. 85, no. 7, p. 455-Sano, H. (1979) Chemical composition of geosynclinal volcanic rocks from the Tanaka, T. (1970) Paleozoic Chichibu group in central Japan. Jour. Geol. Soc. Japan. Vol. 76, no. 7, p. 323-335. The pre-tertiary geology of southern Oriental Mindoro. Phil. Teves, J.S. (1953) Geol., Vol. 8, no. 1, p. 1-27. On the chemical composition of the Cenozoic alkaline suite of Tomita, T. (1953) the Circum-Japan-Sea Region. Jour. Shanghai Sci. Inst. Sect. II, no. 1, p. 227-306. Geology and coal resources of the Bulalacao region, Mindoro Weller, J.M. & Vergara, J.F. Oriental, Bureau of Mines, Manila. (1955)Ultramafic and related rocks. John Wiley & Sons, Inc. Wyllie, P.J. (1967)

M. (1977)

APPENDICES

Table A-1 List of Larger Foraminifera

I	Sablayan G.	WR-42	ugsanga R.	я		· ·		-	-					***************************************						***********					·		~~~~				********				·			-		Wales and Market Street, Stree	NPANTAGA CANDRAI	472-2540	*********	Marine State	Amontog
ļ		WR-64	slangan R.		-																												-												-
	Mantalay F.	YR-22	сауизап К.	~~																						•			•																
		YR-21	Zayusan R.	~					•													fera	inin	. Pota	19816	T ON																			
	· · · · · · · · · · · · · · · · · · ·	111-84	Subaang River		-																	•			٠.	- •																			ı
	Halcon Halcon			- ,																			٠.															•							
}		FR-42	19VISI RIghC				т т		т		1 1 -		1	····		·,				,			_,																						
		WR-37	VE of Magsaysay		-	×	11	- -	×		 		_		_ ×	\times		\perp	<u> </u>			_						1.	\prod					\neg					×	T		T	TT	1	\exists
1			Caguiay R.			×	++		+ $+$	+		-	 					\bot				\perp			_													_	×	1		+		-	
	Group	WR-30	WW of Burninean Point	· · · · · · · · · · · · · · · · · · ·	-	×	╁─╁				×	-			↓×				×						_		<u> </u>								1			7	×			+			\dashv
ļ	. G	FR-04	West of Mamburao Cagutay R.			×	-		- 3	<			_ _		_ .				×																				×			1	11		7
	£1002	HR-206	Labangan R.	- 		×	1 =			<	 					-			<u> \</u>																1			_	1	1		+	1-1	_	٦.
	S.	HR 205	Labangan R.		- ×	×	1	<u> </u>			-			_	1_						_ _		Ŀ												1			× :	×	1-1	_	_	$\dagger \dagger$		7
- 1				1.55	-	. ×	 -	_ _	>	۷				×			\bot				: .									×					1			1	+	11	_	+			1
` -		HR-40	East of Sablayan		<u>×</u>	×	11		>	<					×										\top						1			_	\top			+	×	1-1	_	+	 	_	\exists
	.	YR2-002	Cagutay R.		_ ×	×											\top					T			$\neg \vdash$	1	1	1		×	_	†=†	-	_		1-1	\vdash		+-	 		+	+-+		\dashv
	-	TR2-137	Banus R.	 	+						×				×	×			×				×	×	>	<		1		<u> </u>	<	1-1	+	\dashv	+	-		×	×	+		-	++		\dashv
	}	TR2-127	Banus R.	<u> </u>	\dashv	×			$\vdash \bot$		×				×							×		×		\perp ×				×1>		1-1		\top		\Box	×	_		╁─┼	×	+	† †	+-	\dashv
- 1	}-	TR2-039	Industry of Mongpong R.	Oligocene –	+	_ ×				4_	×				×	×	×				×				>	< ×				7	< ×		\neg	_	+	1			\top	1-1	×	×		+	1
	}-	(float) TR2-029	Tributary of Mongpong R.	Oligocene-	11	×		\perp			×	<u>.</u>								× :	×									\top	1		+	1	+				+-		\times	+	╂╾┼	+	\dashv
	-	(float) YR2-036	Fpaz Point	 	11	×											1.	×		Т	×			;	×						+	† †	_	×	, -				+	1-1	+	+	-	+	+
•	I	YR2-034	Tributary of Amnay R.	erroood stell—? slibbil//		×		1				Ī.					×	T								-						1 1	\dashv	+	†	$\dagger \lnot$		+	-			+	╂╌┼		\dashv
	a F	YR2-025	Tributary of Cagazay R.	Late Eocene	1 1		×				×					×						1			_		 			十			+		+-	╂┈╂	\dashv	-	1 _×	+	+	+	-	+	-
	ĭ F	YR2-0248	Thibutary of Coguray R.	Late Eocene	$\perp \downarrow$			×				×			×			1							-	 			\top	+		†	_	+	-						+	+-	$\frac{1}{x}$		-
	ğ -	TR2-005	Tributary of Balangan R.	Late Eocene		$\times \times $	\perp	×			×		×		×	×		×								\top				_	1-	1 +		×	+		$\frac{1}{\times}$	+	\ <u>\</u>			+			┪
.	apia	WR-154	West of Pocanil Bay	i	×																			_		T		1 1	×	1			7		+-	-	$\overline{}$	+	1	 	+	+		+	-
	~	WR-201	Hagdanan Peak	Miocene	×	×		_			×								×							1		×		1			1		<u> </u>	\vdash	$\neg \dagger$	×	(×	1 1	_	+-	$\vdash \vdash$	×	┨ .
		WR-34	Foot of Epiog Hill	Miocene	11		_								×	•												×		1			1	\top	+		+	+	$\frac{1}{x}$			+-	\vdash	+-	-
	-	YR-09	Кауизап К.	Miocene	1	\dashv								×						T								\Box				×	1		†		\dashv	_	_				-+	+-	1
		HR-10	North of Calintaan	Miocene	×	×									×					T							×			1			$^{\times}$	1		1	十	-	+-	\vdash		+	-	+	-
	. }-	WR-203	Bugsanga R.	Oligo,-Miocene									\perp					×		_ >	<					1-		\Box		1				-	+		_	X			+	+	-	+	1
	ļ.	WR-202	Bugsanga R.	Estly Eocene	×																							\prod	.	1				×		×		1	\top		_	+-'		 -	-
		WR-41	Bugsanga R.	Late Eocene	_	$\perp \downarrow$	_	×	_		<u> </u> ×	1 1	_																							\Box	\top	+			1				1
_		WR-204	Bugsanga R.	Боселе		.										>	<																		×		\dashv	1	$\dagger \lnot$		+	1	-	+-	1
																	+				$\frac{1}{1}$			(Nephrolepidina) ferreroi Provale (Nephrolepidina) cf. isolepidinoides Van der Vlerk	u lari		-		-		er)		-	-	×				-		1 24.				ļ
	Group or Formation Name Sample No.				.															£				n der	1	3	oine e)			Mogypsina (Lepidosemicyclina) thecidaeformis Rutten)	berge	Hok Hok													
	semation Nat						647.0	A .												g g		bler)	vale	ale X	<u>§</u>	Brac	Lem	.		nis R	Hum	Sin J									ŀ				
	mat /	Location					60	100									erk			g C	7.7	<u>ا</u>	Pro Pro	Pro ord	ع	nsis	eri (efor	So	Lan	-												
	g. /	3 /				Mol	1						-			ଞ	1. Y			stro.		rians	Trios	eroi pigir	onic	latre	nd R			cida	anata	in i				-			ones						
	fer /	' /	Carry A	ar a		and	a d	(§	ost .		یما					2	an de			mon clan		nxn _l	ang (를 sg	gei	sum	ton	ĝ,	<u>.</u>	the chi	mpl	acto					(S) (S)		ğ			ig H	1		
	ર્કું / /			ninife	ultze	htel	X	i og	od P		la) s	2		1		and (s	is V		R K	G	ď	(ma)	dina	g g	dina	dina	dina)	dina	5	clina	8	ecid	Yer)	9		in a	g G		Ser 3			2	5		l
	1// /			oram	Sch	Ĕ	Soci	[5]	dd a:	Î	, de	werb			(SSI)	arkel	een		ıı ı	dina	dina	epidi	lepi	dina dina	lepi	lepi.	lepio	lepio	II S BI	nicy	oide	\$ 6	g 8	ich		Per	iata itel a		Pari	:		18	IS Ta		
	17 /			es of Fer F	erens	diata	_ 8	stildi	a To	Smel	teroc	(So			(Re	당 당	ğ		Ħ.	(Eulepidina) cf. monstrosa Yabe (Eulepidina) cf. planata (Oppenoarth)	(Eulepidina)	(Mulitilepidina) luxurians (Tobler)	(Nephrolepidina) angulosa Provale	slepi,	(Nephrolepidina) japonica (Yabe)	(Nephrolepidina) sumatrensis (Brady)	(Nephrolepidina) tournoueri (Lemoine and R. Douville)	(Nephrolepidina) sp.	e G	loser	nrsd.	aise.	biani	Щ. Э		anat:	Fict		vata			ğ	nicularis Tan		
.	[[] / /	•		Species of Larger Foraminifera	inha	, 물	na sp noid	ia l	licat) H	S Sp	ansa	崩.	i e	suluc	vesicularis (Parker and Jones) dia minima (Liebus)	a cf.		ron (ਕ ਜੇ ਜ਼	[편]	3	ž i	ž ž	ž	ž	ž	ž	verte riace	Lepi	(Miogypsinoides) complanata (Schlumber,	(Miogypsina) thecidaeformis Tan Sin Hok	(mtogypsma) sp. s cf. fabianii (Pri	fichteli (Michelotti)	ĝ	admo	TOS SOI		a lar		.	enbo			
1/	1//			₩.	dina	Stegi	cycli	spira	ra de	spengleri (Gmelin)	yper clina	cf. dispansa (Sowerby)	fis es	nella	glot	vesi dia n	teg.		ema a	y c. II				ਵ			.		a mir	na (3	[e]	واع	tes c	"	S.	da co	venosa (Fichtel and Moll)	8	inell		<i>"</i>	ens l	iğ g	ě.	
					Acervulina inhaetens Schultze	Amphistegna radiata (Fichtel and Moll)	Asterocycina sp. Baculogypsinoides spinosus Yabe and Hanzaura	Biplanispira mirabilis (Umbgrove)	Boreins sp. Calcarina delicata Todd and Post	\$;	Oscocyclina (Asterocyclina) sp.	, t	Eorumertia en	Flosculinella sp.	Gypsina globulus (Reuss)	G. vesicularis (Parker a Halkyardia minima (Liebus)	Heterostegina cf. borneensis Van der Vlerk	H. sp.	Homotrema rubrum (Lamarck)	L. (Eulepidina) cf. monstrosa Yabe									Matguopora vertebralis Blainville Miniacina miniacea (Pallas)	gypsi			Nummulites of fabianii (Priver)			Operculina complanata Defrance	1		orbn	is si	28 SE	5		net	
		·			₹ ₹	<u>: </u>	≼ ਲੂ	Ã	8 경	0	ව ප්	۲ ۱	يًا د		Ď.	∄ ی	暑	æi	£ £	갋	-4	, i	ᆈ.	1 ,1	L.	ᆈ	<u>ا</u> د	រ ន	Maria Maria	Mgo	¥.	z z	§	z	z	8 0	j o	0	Panorbulinella larvata (Parker and Jones)	Rotalia sp.	Sorites sp.	Spiroclypeus leupoldi Van der Vlerk	vi vi	Victoriella sp	
									***************************************				3 <u>,</u>								اــــا	L.		 .	لــــــــــــــــــــــــــــــــــــــ	L	1			لـــــا															1
					•																																								

Table A-2 List of Smaller Foraminifera

Group or Formation Name	Sample No.	Location Species of Smaller Foraminifera	Planulina ariminensis	P. wuellesztorfi (Schwager)		Plenta sp.	P. sp.	Pseudorotalia schroetenana	Quinqueloculina sp.	Rectobolivina bifrons	Rota	K. sp.			U. ampullacea	U, canariensis	U, crassicostata Schwager		U. excellens Todd	U. peregrina	U sp.	Virgulina complanata Egger	Cal. Foram. gen. and sp. indet.	Catapsydrax dissimilis	C, unicavus	Cyclammina cancellata	Globigerina bulloides Blow	oporotalia			G, menardu menardu (d'Orbigny).	Globicernoides conclobatus	G. obliquis		G. triobus (Reuss)		oj	ن	Globigerina falconesis Blow	3 0	5 0	.; (C. pseudopuis				niphodo	Globorotalia crassaformis	Haplophragmoides compressa	Neogloboquadrina dutertrei	Orbulina universa d'Orbigny	Pla. Foram, gen, and sp, indet.	Pulleniatina obliquiloculata	P. primalis	Sphaeroidinella dehiscens	No Smaller Foraminifora
										Ł	19][u]				e B																						£19]	inim	F013	ojuo1	lanki	И								<u>.</u> .					_	
	<u> </u>			-1		Т.	T-	T-1					T×	Т	Т	т-		7				7	Т		Т	Т	_	- ا×	×		1	Τ-	τ_	т-		$\overline{}$	7	×	-	1	7	$\overline{}$	Т	1	Τ-	Т	T	T-	×	Т	Γ	\Box	Т	-	\neg	
.D onto	18∵122 2°C			\dashv			+	┼┤	-	+	-	- ×		-	-	┢	×		×	-		-	-		$_{\star}$	+	\star	╬	+	×	+	1	-	╁		+	\dashv	7	;	\times	<u>.</u> ;	×,	<	+	†×	+	+	╁	-	\vdash	-	\vdash	-+	+	\dashv	
	900-23			1	1		+	┼╌╏		T	1	\top	╅	╁┈	1	×	×						×	1	,	. 1	×	1		+	1	1		1	1		7	\top		×	十		×	1	T	T	\top	T						×		
	101-XI	Tangon River	†	-							1	1	1	1	T	Ī.						×				1			>	<	×			×																			\Box	\Box	\Box	
dno	811-स	Pula River 1													T							×			\perp	Ι		I	1	\perp	×	×		×	L						1		>		_i_				L	L			×	\perp	_	
Bongabong Group	117	Balete Rivet		$oxed{oxed}$		\perp	Ι.																			\perp	_		>		<u> ×</u>				×			×		\perp	\perp		╧	>	Ϥ_	_ ×	×		×	<u> </u>	×		 		×	
oqea	21-AY	Bongabong Tohur			-					_ :	× >	<u> </u>	1		<u> </u>	ļ				×	×	×							>	<	T×	×	_	L		•		×		_ _	_	\perp	_ _	1	1	\perp	1	×		×	<u> </u>	<u> </u>	\square		×	
Bor	91 (-3 <u>1</u> 4	Food to Barite Mine	×	×			1_			×	\perp					<u></u>									\perp			1	1		↓_	\perp	_							4	_	_	_	1	1	_	\perp	\perp	\perp	$oldsymbol{\perp}$	L	<u> </u> '		\perp	_	
1	478—109	/ smiM shad ot bac/i					L			_	\perp	1	\perp	\perp		ļ									_		\perp		1		1	1	L	-	L				_	4	_	_	4	\perp	╀	\downarrow	╀	ļ.,	_		ـــ	Ļ.	\sqcup	\dashv	4	
	18-114	Balete River		1		_	┺		_		_		_	\perp	-	<u> </u>			_	_		4	_	_	\downarrow	4		\perp			\bot	 	├	╄	-			+		1	+		-	+		+	+-	+-	┼-	+	╀	\vdash	\vdash	\dashv		
ļ	IR-120	Pula River			_	\downarrow	+				+	\perp	+	+	ļ	ļ		_			-[4	4	+	-	- -			- -	<	×	×	╀╌	╁	+-		$\frac{1}{\times}$	+		+	+	_	+	>	1	+	+-		+	\vdash	╁	 	\vdash	+		
	\$10~EX					4	↓_	_	\dashv		_	\perp	-	-	×	<u> </u>		_		_		\downarrow		×	+	1	-	4-	+	+	+	╂	\vdash	\perp	-	_		- -		- -	-		-}-		-		+		\vdash	╀	<u> </u> -	×	\dashv	+	\dashv	
O naya	4R-207 Sab		\sqcup		_ _	_	1		_			\perp	+	4	↓	ļ				_	_	_	4		4	+	-	+	+	\perp	-	┼	-	+		×	-	-	+	┿	+	+	+	 ×	+	+-	+	\vdash	┼—	 	-		-	+		
	80-AY				× >	< ×	×	×	×	×	+		+	+	+		-	×			\dashv	-		-+	+	+	+	+	>	+	-	+	×	+-	\vdash	$\stackrel{\sim}{+}$	\dashv						+-	+	+	╁	+	╁	-	-	\vdash	├-┤	-		\dashv	
.H valeer	·R-20 Ma	I golf ab sidA	╁╌┤			-	+		-+	-+	-	+	+	+	┢					_	_	-		┵┼	+	+	+	+	╫	+	+	+-	-	╁		+	-+	+	+	+	+	+	╫	+-	+	+	+	+	 -'	-			+	+	\dashv	
Group or Formation Name	Sample No.	Location Species of Smaller Foraminifers	Cyclammina of, pacifica Beck	Sp.		Sarotyma uotyma sp.	Martinottiella sp. p.	Mactina sp.	Trochammina sp.	Aren. Foram. gen. and sp. indet.	Ammonia sp.	Religing related Custman	B. St.	Bolivinita quadrilatera	Bulimina of, buchiana	B. margnata	B. striata	B, sp.	Cassidulina subglobosa	C. subglobosa Brady	C. of, yabei Asano and Nakamura	Ç. 89.	Cellanthus craticulatum	Chilostomella oolina	Cipicades dorsopustatiosus	C. praecartus	Cymbalopoetta squammosa	Dentalina emaciata Reuss	D sp.	rothia		E S	में से	иi	Fissurina marginata segueza	F. sp.	Florius boueanum	Cyroiding orbicularis of Orbigmy	C. soldarin u	Regulating electric	Hyslines halthin	Karrenella bradoi	Lagena striata (d'Orbieny)	L sp.	Lagenonodosaria hirsuta	L. pauciloculata (Cushman)	L sp.	Lenticulina kobulus Asano	L. nikobarensis (Schwager)	L orbicularis (d'Orbigny)	L sp.	Marginulinopus bradyi	Melonis pacificum (Cushman)	Nodosaria longiscata N	dr z	
			<u> </u>		. 51	100081	191A			1_									-		<u> </u>									Ę		otsmi			B¢n																			_	_	
Ē			L																																										····			-							⊸	

Part	Ozoup or Formation Name	Subbyan G.		<u> </u>			3ongal	Bongabong Group	Sroup			Socosto G.		//	Asnessay F.			M M	ngzabo	Bongabong Group	dnoi			Socomo G.	
The control of the	FR-20		YR2-015	нв-150	HR-114			HK-112	811-AH	101–AH					FR-207			 	KR-15	HR-112					T
X	goll ab stdA		Cagura River	isviA slrA											Abra de llog Rayusan River Ladangan River			 	Bongsbong Rhm	Balete River					
1	ımmina of, pacifica Beck	_				Ĥ					\vdash				×								-		Ţ
Marie Mari		 >			+	+	+	+	1	_	+	+			× ,	+	κ,	+	<u> </u>		<	$\langle \uparrow$	-	-	Т
1 1 1 1 1 1 1 1 1 1	Cina udryina sp.	×	_		\top	+-	-	+	1		+	_			×	+-	<u> </u>		-	_		+		+-	1
Note		×	1_		†	1	-	╂-	1		+	 				+	╁	┼-	-	<u> </u>	×	-	╁╌	-	T-
		×	Ļ			†-	\vdash		1		-	-	· · ·		P. sp.	╁╌	╁╴	-	-	L	×	-	-	┞	T
		×				\vdash	-		Ш			\vdash			Pseudorotalia schroeteriana		-	-	<u> </u>			-	F	┰	<u> </u>
Mathematical Companies Mathematical Compan		×					_								Quinqueloculina sp.	-		-	<u> </u>	ļ_		-	╁┷	1	V
Continue of the continue of	Forum. gen. and sp. indet:	×				<u> </u>	~	_							Rectobolivina bifrons								×	 -	Τ-
A			_			\dashv	^	Ţ					₁	nisera	Rotalia calcar					_			×	-	
	shman		_				^	Ţ							R. sp.							×		<u> </u>	
Control and Selection to Control and Selecti					L		┝	ļ			 ^	Ļ			Signoilopsis schlumbergeri	İ		-	_	_	L	 	×	├	1
Company Comp		-	ļ	Γ		\vdash	╀╌	-			-	×			Siphogenerina striata	†	╁╌	+	╀	┨_		T	×	╁╌	Т
	ninita quadrilatera	-	ļ		İ	H	├-	-	L	ľ	†^	-			Orbigny	×	╁	+-	-	-		1	╁╴	┿	T
X	nina of huchiana	-	×		T	+	+	+	1	T	+	+		e di		:	+	+	-	\downarrow	Ţ	+	Ť	+	1
1		-	1-	Ţ	_	+	+-	+	\bot	I	×	+		-		1	+	+	+	1	I	+);	,	Ψ.
X		+	1.	1	1		+	+	+		+	+				7	+	+	-	\downarrow		+	}	-	~
1		+,	1	1		+	+	+	1	İ		+			-	1	+	+	+	1	×	+	ť	+	Т
Companient Section Compani		-	1				+	+	1		+	+			Curatitata		+	+	+	4	I	+	+	-1-	Т
1	duina subglobosa	+		\Box	_	+	+	-	\downarrow		+	J			exoellens Todd	×	┪	\dashv		_				\dashv	ŢΪ
Variable complements Variable complements	a Brady	\dashv	_			-+	7	\downarrow	4		+	\dashv			peregrina		\dashv	\dashv	\dashv	_	\Box				
Continue Sept.	sano and Nakamura	_				-	$\hat{-}$	Ţ			\dashv								-			×	-	_	<u>_</u> _
Controlled Con						1	_	×	×	×	-								_						
Companies to the control of the co	in thus craticula tum	_	<u>L</u>				-	_	_		×				×	×	┝	H	Ļ	×		×	┢	-	×
C. Continue of the continue		+	×		İ	F	╀	+	<u> </u>		H	╀	т	1	>		\dagger	+	+	-		-	-	+	T
Continue Continue	SUSC	+		ŀ	-	-	+	H	1		ť	Ļ	1				+	+	+	+	ŀ	+		+	T
Coloreguiar bridgings Exemple		+	1			+	+	╀	\downarrow		×	+	 -		The Francisco		\dagger	+	╬	4		†	+		Т
Coheconomia bullated Bloom 1 Franchis Coheconomia bullated Bloom 1 Coheconomia bullat		╀	1	Ţ	\pm	+	+	+	\downarrow		ť	+	· T				7	-	-	_		1			7
Confidence Con	200	+	1	Ţ	1	\dagger	+	+	1	1	-+-	+			Globigerina bulloides Blow	7	\dashv	+	-	-		~~~	-		
C. Challes Bernades (a) The control of the control	TROUGH THE PROPERTY OF THE PRO	+	4	1	1	+	+	4	4		7	-	·		Gioborotalia fohsi robusta Bolli			_	×			×			
X	SST			_				-	_		-	<u>~</u>					^		×	L		×	-		F
Company Comp		×		×		•				×		×			menardii (d'Orbigny)	×	^		 	 	×	×	┝	F	
1	-		_	Ĺ			-	-	<u> </u>		Ŷ	L			menati menani (A'Othimu)	†-	+		+-	- - -		†	-	╁	
1	Reuss)	-	1	×	1	+	+		┪	×	+	+	1		month of method of (a Cityley)	1:	+	+	4	4		寸	+	+	T
1		+	-	×	1	\dagger	+				+	+	_		×	×	^	╣	<u>×</u> .	4	×	\times	-	4	ĴΤ
C		+,	1	1		\dagger	+	Ł	-	1	+	+			Globigerinoides conglobatus		-		-				×		7
C. Trichous (Recuss) C. Trichous (Recuss)		<u> </u>	4	Ţ		+	+	\dashv	\downarrow	_	\dashv	4											×		
C. Tribotus (Reusu)	d'Orbigny)	-		_		\dashv			×		\dashv	-													
X X X X X X X X X X	gueza	-				-		×				_			rrilobus (Reuss) X	×			├	 	⊹	×		-	×
C. Employed Empl		×		L			-		ļ			-					Î	×	Ľ		L		├ ─	Ţ	Τ
C. State Colored to the colore		-	Ľ			-	H	├-	1		+	-		P.		Ť	1	 x	ļ×	╆	L	+	╁	†-	Γ
Continued Cont	l'Orbigny	-	\perp	F	İ	+	ť		1	T	+	∤×	T	elir	*		1	>	}	╁	>	1	+-	Ť	٦,
C. pendodes Blow X		+	4-	Ţ		\dagger	+	-	+	1	1	+		úтя		Ī	+		():	4	4	†;	╁	+	7
C. piedode Blow X X X X X X X X X X X X X X X X X X		+	1	1	1	\dagger	\dashv	+	1		-1-	+		 104	Liconens Blow	1		— <u>}</u> -	-	\downarrow	Ţ	,	+	+	Т
Continue of the continue of		+	-	Ţ	1	+	-	+	4			+	_	ojuc	word salvound	<	-1	-	+	1	4		_	-	T
Constitution Cons			_		_							Ţ		nkı		1	1	1	-	}		1		╗	٦
C. totalenasia C. t											<u> </u>		_	el4		-			×			_		-	[
X X			_			T	-					ļ.									_				
C. trilobus (Reuss) C. trilobus (Reuss) X X X X X X X X X X X X X X X X X X X	bigny)	-	<u> </u>		L	t	╁	╀	×			├					-	-	-		L		-	V	
C. tumida C. t		×	1	×	T	\dagger	+	ľ	_		+	\vdash				T	×	┝	-	ļ	L	m	┢	-	Γ
Constrainty Constrainty	T.	+	-		1	†	╁	+	_5_		ť	+				T	╁	-	+	-	Ŀ	╁~	ť	╁	T
Comment	iloculate (Ouchease)	+	1	\prod	1	+	+	+	1		1	+				Ť	-+-	-1-		-+-	1	†;	+	-}	1
Coloborotatia crassiformis X X Coloborotatia crassiformis X X Coloborotatia crassiformis X Coloborotatia crassiformis X Coloborotatia crassiformis X X X X X X X X X	nocessa (Custonan)	+	-	1		1	+	<u> </u>			\dashv	\dashv	r		×	Ť					×	׆	+	7	χľ
Company Comp		_	_	_	_			×											_				-		7
Wager) X Haplophragmoides compresss X Y Y (gry) X	Asano						<u> -</u>	×							Globorotalia crassaformis									$\overline{}$	
	nsis (Schwager)	-	-	F		t	╁	┺			t	Ľ					╁	├-	╀	L	L	T	╁	╁	Τ
Neogrood quantum attention Neogrood quant	ris (d'Orbjony)	+	1	1	T	1	ť	+-	+	Ţ	+	+		<u>.</u>		1	+	-	+		Ţ	Ť	1,	- -	Т
X	(+	1	1	1	_	+	+	+	1	\dagger	+			Neogloboodustanna duterina		\dagger			-+-	I	-	,	+	Т
National Spin Spin Spin Spin Spin Spin Spin Spin		-	4	_			\dashv	<u> </u>			\dashv	+	-		ulina universa d'Orbigny								$\frac{1}{x}$		╗
Pallentiatina obiiquiloculata			×												×	×	^		<u>×</u>			_		-	
P. primalis Sphaeroldinella defisions	ubman)	-	L	L		T	\vdash	├	×		-	\vdash	·				-	-	-	-		-	 -	U	Ī
Sphaeroldinella defisions		╀	1	+	Ī	†	\dagger	+	+	I	>	+	_		T.	T	+-	╀	╀	-	L	†	+	t	Т
X Sphaeroldinella defluccas		+	1	\downarrow	1	†	ť	-	+	I	7	+	-T-		r. Frinans	I	\dagger	+	+	\downarrow	Ţ	+		十	T
		-	_	_	\exists	\exists	\dashv	-	4	\Box	\dashv	\dashv	——————————————————————————————————————		Sphaeroidinella dehiscens	I	\forall	\dashv	\dashv	4	_	7	ټt	+	Т
																									٠

Table A-3 Chemical Composition and C.I.P.W Norm

Location Pintin R.		Pantin R. KR2-026 orthorogen pyroxenite pyroxenite pyroxenite 43.80 0.02 1.26 5.56 2.55 0.14 44.30 2.112 0.05 0.05 0.019	Pintin R. KR2033 dunite 39.40 0.01	Pintin R. KR2-040	H	Amnay R.	1	Pintin R.	1	Cociliman				Torone	1,000	Igsoso	
		KR2101K. KR2101K. KR2101K. 917bc-026 917bc-026 91.26 91.26 91.36 91.44 44.30 91.12 91.12 91.12 91.12 91.12	6		7			FIRES K.		200				Cacac	1-100		
	1	9xthor 43x80 0.02 1,26 5,56 2,53 0,14 44,30 0,05 0,05 0,05	1 1 .		KR2-048	Г	т –	KR2_030		SB7-140	LIWIIW KB2_C4	VP2-077	VP2_078	190 647	VP7 063		15050 V 2 7 OKK
SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ Fe ₂ O ₃ Fe ₂ O ₃ Fe ₂ O ₃ Fe ₂ O ₃ Fe ₂ O ₃ Fe ₂ O ₃ CaO Na ₂ O Pao ₂ O Pao ₂ O Pao ₂ O Pao ₂ O Pao ₂ O Pao ₂ O Pao ₂ O Pao ₂ O Pao ₂ O Pao ₂ O Pao ₃ O Pao ₂ O Pao ₂ O Pao ₂ O Pao ₃ O Pao ₄ O Pao ₅ O Pao ₅ O Pao ₅ O Pao ₆	40.60 0.00 0.00 0.47 7.46 0.18 0.18 0.37 0.08 0.28 0.28 0.28 0.28 0.28	43.80 0.02 1.26 5.56 2.53 0.14 44.30 0.05 0.05	39.40		U	w	au hy	au hy	3th gaiphra	an hy		1 #	dunite	dunite	hb sabbro	30 Bo	au abbro
TiO- A-2-O- Fe2-O- Fe2-O- MaO Mas O-	0.00 0.47 7.46 0.88 0.13 38.80 0.37 0.03 0.23 0.23 0.23 0.23	0.00 1,26 5,55 6,14 6,130 0,03 0,03 1 1	100	42.30	38.80	Γ	_	44.00		46.20	1	4,30	42.50	41.50	46.90		24.50
A1203 Fe2 03 Fe2 03 Fe2 03 Ma0 Ma0 Ma2 0 M	0.47 7.46 7.48 0.13 38.80 0.37 0.23 0.23 0.23 0.23 0.23	1,26 5,56 2,53 0,14 44,30 0,05 0,05 1 1		00.0	0.00	10:0	0.21	2.33		0.20	0.02	86.0	000	000	1.28		7.00
Feb 0, Man 0 May 0	7.46 0.13 38.80 0.37 0.03 0.23 0.23 0.23 0.20	5.56 2.53 0.14 44.30 0.12 0.05 0.19	0.56	0.54	0.49	0.80		14.40		19.20		12.00	0,34	0.26	16.30		15.20
Fe0 Min O Ca0 Ca0 Ca0 Ca0 Ca0 Ca0 Ca0 Ca0 Ca0 Ca0	0.88 0.13 0.37 0.23 0.23 0.20 0.20 0.20 11.00	2.53 0.14 44.30 2.12 0.05 0.19 1 1	7,46	6.46	7.94	4.35		8.24		3.46		7.69	7.7	6,82	4,69		8.15
MmO MgO CaO Na2O K3O CaO CaO MaO CaO CaO CaO CaO CaO CaO CaO CaO CaO C	0.13 38.80 0.37 0.08 0.23 0.23 0.28 0.20 0.00	0.14 44.30 2.12 0.05 0.19 0.21	0.43	1.46	0.65	1.90	4.92			2,17		6,22	0.41	0.43	5.12	3.64	35.
MgO MgO MgO MgO MgO Mgo Mgo Mgo Mgo Mgo Mgo Mgo Mgo Mgo Mgo	38.80 0.37 0.08 0.23 0.23 0.28 0.00 11.00	44.30 2.12 0.05 0.19 1 - 1	0.12	0.13	60.0	600	0.12			0.12		0.48	0.11	0.05	0.23	0.20	0.20
Ma20 Ma20 P203 Mio Mio Ba0 Lo11 Total	0.37 0.08 0.23 0.28 0.28 0.00 11.00	2.12 0.05 0.19 0.21	41.30	41.10	40.50	40.32	7.75			8.89		15.00	39.50	41.70	7.89	7,60	5.83
Na2 O P2 O ₂ O ₂ O ₃	0.08 0.23 0.28 0.28 0.23 0.00	0.05	0.63	0.94	0.38	2.02	13.93	12.60		12.00		16'6	0.36	0.31	13.80	9.31	4.26
K2O C2O C2O NIO NIO BBO LOJ Total	0.23 0.30 0.28 0.23 0.00	0.19	0.12	000	0.03	0.02	1.89			1.58		1,45	0.12	0.04	1.42	4 2	4.86
Pros.	0.30 0.28 0.23 0.00 11.00	0.21	0.38	0.23	0.32	0.01	90.0			0.21		0.27	80.0	0.27	0,54	0.76	97.0
Cr2O3 NiO BaO LOL Total 10	0.28 0.23 0.00 11.00	1 !	0.31	0.20	0.32	0.01	0.02			90.0		0.19	0:30	0.29	0.13	0.22	0.35
7 2	0.23 0.00 11.00	!	6.39	0.34	0.24		1	٠		,		0.05	0,29	0.85	20.00	. 1	1
	0.00		0.24	0.24	65.0	1	1			1		0.02	0.26	0.35	0.01	ı	ł
	11.00	00.00	00.0	0.00	0.00	1 3	1			0.00		00.00	00.00	0.00	0.00	0.00	0.00
	40.00	0.00	00.6	00'/	10.50	10.20	66.1	1.10		2.00	- ! '	2.10	9.90	27.00	0.50	20.7	0.70
ъ.	100.83	100.58	101.01	100.94	100.85	99.24	99.77	96.16	96.00	96.09	101.57	100.66	101.51	101,87	99.25	98.07	100.65
-								2,42		0.31						2.78	7.76
68:0	1.36	1.12	2.25	1.36	1.89	90.0	0.35	1.65	2,30	1.24	2.30	1.60	0.47	1.42	3.19	4.49	2.72
ab 1.02	0.68	0.42	0.76		0.25	0.17	15.99	12,69	12.52	12.95	0.76	12,27	1.02		12.02	24.03	41,12
1.09		2.65		0.79		2.06	47.41	31.73	38.32	44,90	2.67	25.44			36.51	25.94	18.30
	: :																
at wo		77.7	0.46)0.1		1.79	5.00	12.41	15.27	5.95	0.02	6.39			12.59	1,86	0.23
		2.14	0.36	0.85	,	1,55	88.5	10.73	13.19	4,96	0.02	5.50			7.03	6.79	0.20
di ts 0.02		0.27	0.04	0.10			2.50	7		0.23		3,43			5,51		
	3.03	1.28	1.23	2.52	1.65		1,67	_		0.79	1.68	0,11.	3.47	2.11	2.20		
	22.32	10.08	10.44	20.72	13.66	3.37	3.92	8.75		17.18	13.04	0.17	28.62	21.93	2.81	12.14	14,32
다. 일 :	\$2.02	68.76	64.52	56.62	61.05	66.93	99.9				60.84 28.09	22,20	48.85	57.41	88.9		
: 경 i	Ω ν. /	90.7	82.88	ξ.	8.14	0.03	3.12		į	1	978	15.25	6.52	6.10	5.94	Š	,
i E			-			วี	77.1	9776	9 6	20.6	·		•	-		2.60	07.0
		50.0	0.02			0.02	0.40	4,43	0,46	0.38	9.0	98 1			2.43	2.18	1.90
ឌី	••••																
26'0 de	0.70	0,49	0.72	0.46	0.74	0.02	0.05	0.37	61.0	0.14	19'0	0.44	0.70	0.67	0.30	0.51	0.81
55 50	0.41			5	0.36				200		0.43	5	0.42	36.1	9		
1) i	30.				5		7	200		}	200		
	21.0		·	3	Co.1.		•				600	<u> </u>	800	7.7	5		
O. X					1		-	,					2				
Feo			٠.											-			
ľc	*										:						
_	89,16	99.62	86.62	93.33	89.71	82,31	98.17	90'56	89.34	94,05	91.16	97.79	86.06	65.16	97.90	80.96	97.45
\dashv		.84.17	83.02	83.45	81.92	86.52	50.13	36.70	54.75	54.51	82.19	48.97	83.25	84.65	40.13	35.53	26.57
MgOx100 98.42	97.78	94.60	98.83	75.96	98.42	95.50	61.17	69.26	84.10	80.38	98.12	69.02	76'86	36.86	59.05	67,52	68.83

* S.I. = $MgOx109/(MgO+Fe_2O_3+FeO+Na_2O+K_2O)$

Rock Type					-			-	The state of the s						the same of the same		
-4/		ı	21	Bungabang Bod	>-		.:			Ogos Bo	άχ				Other Bo	dies	41.1
Location	Bansud R.	Samagui R.	Samagui R.	Banus R.	Banus R.	Rosanna R.	Rosanna R.	Ogos R.	Ogos R.	Ogos R.	Ogos R.	Aglubang R. Alagag R.	Augas R.	Paluan	Mariii	San Vicente Binuanga	Binuanga
Sample No.	SR1065	KR2-082	KR2-085	TR2-131	TR2-132	YR2-080	YR2-081	KR2-102	KR2-104	KR2-108	KR2-110	SR2-155	YR2-115	FR1006	KR2-067	TR2-064	YR2-04
Rock Name	harzburgte	harzburgite	pyroxenite	lherzolite	dunite	atte	durate	harzburgite	dunite	dunite	harzburgie	dunite	dunite	harzburgite	narzourgue	harzburgite	dunize
SiO	40.12	-	43.10	37.20	34.80	43.30	34.20	45.10	40.00	37.50	42.50	38.60	36.10	38.48	39,80	40.30	40.10
Tio	0.02	0.01	0.00	0.01	00.0	10.0	00.00	0.07	00.0	0.00	00.0	0.00	00:0	0.03	00.0	0,02	0.00
AL ₂ O ₃	1,52	133	0.4)	0.85	0.20	1.16	0.14	17.1	0.24	0.20	1.07	69'0	0.33	1.76	1,06	1.42	0.72
Fc2O3	4.12	7.14	5.03	6.71	7.39	4.70	5.93	5.66	6.91	6.61	5.51	92.9	4.75	6.99	7.98	7.46	\$ 22
E FeO	3.70	0.76	2.59	0.56	0.75	2.33	1.03	1.12	0.88	1.52	2,32	0.79	0.85	11.1	0.80	0.49	670
	0.12	0.14	0.13	0.11	0.12	0.12	0.10	0.13	0.11	0.12	0.13	0.11	0110	0.10	0.11	0.12	010
MgO	38.65	40.70	47.70	40.00	44.30	43.30	47.90	33.10	43.00	46.20	42.70	41.90	46.50	34 19	22.30	28 10 .	40.50
	1.21	0.30	0.58	1.61	0.41	143	12.0	9.78	Ş	0.45	200	101	920	4.60	22.0		
201	0.02	0.07	01.0	90 0	21.0	800	000	333	3 -		200	7 .	0,00	2 6	7 60	3 6	3 3
			27.0	310	100	920	6.6	77.0	1.0	70.0	000	1.5	9 6	70.0	60.0	9 1	7
		3 6	3	100	3 6	3 6	5	t 0.0	70.0	5	000	0.14	60.0	6.01	0.07	8	0.07
5 G	10.0	7.00	81.0	77.0	0.33	0.22	0.27	0.17	0,26	0.24	0.22	0.31	0.24	0.01	0.30	0.28	97
င် င်	1	0.32	0.48	0.20	0,22	0.33	0.27	0.34	0.21	0.56	0.27	0.35	0.44	1	0.31	0.33	1
Q N	1.	0.22	0.25	0.21	 2	0.22	0.26	0.I3	0.22	0,24	0.21	0.23	0.01	,	0.23	0.22	ı
BgO	1	0.00	00.00	8	0.00	000	0.00	0.00	0.00	000	000	00'0	90.0	ı	0.00	000	0.00
[] []	10.11	10,00	1.00	11.50	9.70	2.80	9.90	3.80	12.00	6.20	4.00	9.90	10.00	12,44	9.50	10.00	7.10
Total	19.66	102.36	101:60	99,57	98.63	100.20	100.44	101.37	104.55	99.90	100.27	100.70	96'66	99.76	102.76	16'66	95.32
0 0		1 3															
8	90.0	0:30	0.30	68.0		1.18		0.24	90.0			0.83		90.0	0.41	0.24	0.41
q	0.17	0.59	0.85	0.76		.89.0		1.86	0.93		0.51	0.93		0.17	0.25	0.51	1.27
ន្ធ	£.03		0.52	1.47		2.22		3.56	0.13	0,34	2.65	86'0		4.68		3,48	0.83
2	:			:	0.41		0.27			60:0			0.65	:			
di wo	0.30		0.49	1.98		1.44		18.31	0.48	0.14	0.94	28.0	60'0	7.55			
dien	29.0		0.40	1.58		1.15		14.39	85.0	0.11	0,75	790	0.07	6,52		,	
di fs	0.02		0.0	0.18	•	0.12		1.88	50.0	0.01	60.0	0.07	0.01			**	
hy fs	96'0	2.86	1.08	0.53		1.66		0.32	1.43		2.03	0.85			60	2.80	2
ny en	25,94	23.17	10.64	4.53	- :	16.02		2.42	12.43		17.07	7.80	_	16.58	15.08	21.54	19.16
	48.81	54.00	75.52	65.54	74.05	63.54	74.28	45.99		80.13	62.04	67.20	78.14	43.48	62.62	5141	47.37
м. 2	2.00	7.35	8.41	8.39	9.35	7.26	7.27	6.63	8.35	19.6	8.12	8,07	6.72	!	01.6	737	\$ 08
-	5.97	<u> </u>										:		3.88			
	-													4.31			
	\$.0	0.02		0.02		0.02		0.13					٠.	90.0		:	
z													-	-			
<u>a</u> :	0.02	0.74	0.42	0.63	9.70	0.51	690	0.39	09:0	95.0	0.51	0.72	95'0	0.02	0.70	590	090
វ ម		0.47	0.71	0.29	0.32	0.49	0.40	0.50	031	0.87	0.40	0.57	590		0.45	040	
B		69'0	0.78	99'0	0.75	0.69	0.82	4.0	090	7.	940	273	600			9	
G.		1.62			-) .		•	}	<u>;</u>	25	<u>.</u>	3		1 30	3	0.13
Oğw.				:	1.88		5.34	*		0.25	-		1.70				
0					0.29		0.64			9.0			0.18				
2			. :		0.23		61.0			0.19			0,42				
Total	89,49	91.81	100,16	87.45	88.04	86'96	89.84	97.03	91.90	93.10	95.77	90.20	89.22	87.31	92,63	89.22	69''.8
S.I.*	83.12		85.99.	84.02	84.20	85.56	87.11	82.46	84,46	84.94	84.40	84.65	88.79	80.79	82.65	82.56	87.26
00120A	30 10																

													• :					9	
Rock Type					Ultran	Ultramafic Complex	-			,		Lumin	Lumintae Formation	_		Mansalay	Ŀ	MamburaoG	
1	0 1 1	,	Other Bodies	ļ			- 1.	Metamorphic Rocks	Ţ	Vol	Volcanie Rocks		Associ	Associated Intrusive Rocks	Rocks	Volcanic Rocks	Rocks	Volcanic R.	
ocurion	FD2 OOd	Kalete K.	- 1.	18	San Vicente	Вопдаровд К.	Rayusan R.	Oxos R.		Lumintao R.	랟		Pintin R.	ŀ	Lumintso R.	Binumain R.	Binunagin R. San Vicente Banilad Ck.	Banilad Ck.	
Sock Name	harzharaire	an hy		diorite	trondhjo-	WR1-012 green	R1-012	KR2-112 green	TR2-046	66	014	573	KR2-029	7	KRZ-017	FR1-015	TR2-069	FR-017	
- Constant	ANT SO IT			parphyry	mite schist at	schist	npunpolite	schist	amphibolite basult				dolerite	dolerite	gabbro	basalt	baselt	basalt	
5 C	91.90	49.30	43.40	09'09	68,90	50.38	50.84	47.10	47.60	48.00	48.80	50.00	\$0.80	47.20	45,50	46.37	46,30	50.52	
5 5	0.02	\$7.0		6,73	0.15	.43	<u>z</u> :	1,48	1.99	86.0	1.10	0.80	1.29	0.55	1.05	2.82	1.19	1.73	
5° 5°	1.93	06'/1		16.30	12.30	15.21		14.10	16.90	15.60	14.90	15.20	14.90	14.10	16.50	15.20	15.60	15.77	
1.6203	6.95	4.02	6.25		1.36	2.80		7,44	7.74	7.91	6,94	7.15	8.59	5.36	6.35	4.87	6.65	5.99	
	0.63	1.12	2.36	0.88	0.10	7.83	6.97	2,64	3.08	2.67	3.23	2.13	2,27	3.16	3.17	5,93	1.87	5 58	
_	0.12	0.15	91.0		10.0	0.18	0.16	0.21	0.39	0.18	0.18	0.17	0.18	0.19	0,18	0.13	0.18	0.22	
Oğ W wdr	41.50	10.10	10.10		0,43	6.91	7,08	7.96	6.57	5.85	6.33	66.9	4.95	8.16	11.20	3,94	7,92	3.77	
_	0.81	12.40	9.72		4,25	11.16	10.48	12.00	8.22	9.91	9.93	9.63	8,43	14.40	8.16	9.81	7,83	7.65	
	0.22	1.73	2.99	6.71	4,48	2.50	2.58	2.30	2.87	2.64	2.77	3,50	69.4	0.49	2.72	4.68	2,66	4,60	
	0.07	0.14	0.19	0.20	0.10	0.18	0.66	0.18	1.43	0.72	0,46	0.18	0,27	0.15	0.35	1.10	2.14	91.1	
So So Jue	0.29	0.05	0.11	0.10	0.07	0.16	0.10	0.37	0.35	0.25	0.30	0.29	0.35	90'0	0.34	0.63	0.36	0.31	
	0.35	1	1	1	1	1	ı		1	1	1		ı	,	i	ı	1	1	
O.	0.20	·	,	1.	ī		:	ı	i				ı	3	١	1			
BaO	0.00	00.0	00:0	00.0	00'0	1	1	0.00	0.00	0.00	00.00	0000	00.0	000	0.00	0.00	0.00	000	
1.0.1	7.90	2.80	7,00	1.60	1.90	1.09	0.91	2,10	1.80	3.10	2.50	4.10	2,20	2.10	3.90	X	0,40	2.40	
Total	101.99	95.66	97.34	89'26	94.05	88'66	99.22	97.88	98.94	18'46	97.44	00,14	98.92	95.92	99.42	97.82	97.10	08.66	
g, c		1.88		7.35	34.52	2.16	0,43	2.87	1.06	4.73	5.47	3.17	2.51	8,16				0.47	
. 6	0.41	0.83	1.12	1.18	0.59	1.06	3.90	1.06	8.45	475		96	. 6	80	3.07	05.9	3761	76.7	
35	1.86	14.64	24.62	56.78	37.01	21.15	22.68	19 46	34.30	2 2	1 1	3.5	200		10.50	2000	20.00	00.0	
Ę	2.12	39.57	24.76	13.77	13.16	20 75	20,45	33.63	2000	45.77	10.0	70.67	40.40	0, 5	70.62	58.05	12.51	38.92	
ne .			0.37		2	2:-	2	70:17	10.67	60.01	98.97	2.3	18.81	55.83	31.78	17,22	74.3]	18.95	
di wo		9.03	67.6	3.94	1.24	10.26	9.14	12.32	3.96	101	* 53	6.63	8,66	14.70	2.21	-0.0	90.5	60.	
di en		7.80	8.23	3.41	1.07	6.16	5.61	10.64	3.42	283	7.38	20.5	7.48	17.33	77.	2,5	60.7	96	
di fs			-			3.56	3.00			}	2	2	ę,	050		7.	r r		
hy fs	1.81					639	6.42							2.0		AT:		, ş	
hy en	15.73	17.36		5.73		11.05	12.02	81.6	12.94	27.4	20	900	4 86	200	13.03		7,64		
	60.92		11.88			!	!				}	<u> </u>	3	3	7.8	1 78		·	
	7,73					•						•••••			2	8	ì		
W.¶ Ę		3.37	5,64	0.83		4.06	3,45	4.90	5,43	6.35	7.78	5.10	4,16	7.77	7.76	2.06	3.17	8,68	
		1.69	2:36	1,42	1.36	-		4.06	3.99	3,53	1.57	3.63	5,72		1.00		4.47		
	9.04	0.47	1.63	1.39	0.23	2.81	1.98	2.81	3.78	1.86	2,11	1.52	2.45	1.04	1.99	5.36	2.26	3.39	
2 8	0.67	0.12	0.25	0.33	91.0	75.0	,	900		0				.;					
8				<u> </u>	}	·	ļ	3	1	2	2	200		*.**	۸٫۰۰	04:1	3	77.0	
p	0.52							•								.			
Ħ	0.63																		
ds	1.00															•			
Oğ W	· —																		
Q.	-										-								
⊒ F	03.44	24, 20	25.00	90,70	200	25.00													
The second secon	20.00	20.75	20.33	50.05	*7°02	20.70	36.32	95.78	97.14	74.7]	94.95	96.03	95.74	93.83	95.54	92.91	92,72	97.42	
	95.40	29.03	40.14	17.17	cora	74.57	15.61	36.79	50.29	25,50	37.08	35.04	Z3,83	47.11	47.08	19.20	37.29	17.78	
(FeO+MgO)		20.02	81,06	80.00	81.13	46.88	50.39	75.09	80.89	99'89	66.21	76,64	95.89	72.08	77.94	39 92	80.90	39.89	
]	
				-															

		Я	FR2-073 mice	Ę	57,30	60.0	2.56	0.46	50.0	46	2.22	3.52	44	0.41	1	,	00.0	8	1	172	20.33	29.79	8.33						6.13			5.75	2 %	26.0						3	74	84,25
	:	Alag R.	FR2 mice	ģ,	2		· ·	ic		, (·i	- ~		w.	<u>ن</u>			 	71 2	3	<u> </u>	. 5	8	∞	· 					٠ <u>٠</u>			٠, ٠	-1 0		: 	_		• .		92	15.74	22
		Paluan R.	YR2-039 (geen	schist	097.5	13.50	5.55	2.54	0.23	5,98	2.85	2.73	0.14	0.29	1	l	0.00	2 5	7,77	4 37	0 83	23,10	12.24						14.89		7,20	0.59		. 190			 			92.01	35.30	-70.19
	p'nes	Puerto	TR2-161 mics	SCHIS!	05.17	14.20	2.42	0,32	000	0.58	0.31	0.48	3.01	0.09	ı	1	0.00	3,70	27.05	9.80	17.79	4,06	0.95			:			4.			2.42	0.32	0.21						93.38	8,52	64.44
	Halcon Metamorphics	San Teodoro	SR1-090 TR2-161	SCRIST.	1.45	15.34	77.7	8.73	0.21	8.08	8.83	2,44	0.62	0.15	1	1	, ;	62.69	7,77	0.22	3.66	20.65	28,48					10,49	17.34	1.30	3,25	. 34 6	ì	0.35						90.44	36.54	48.07
	Ha		8		24.20	14.90	3,44	3.16	0.16	2.44	5.07	1.43	2.81	0.18	1	1	٠ و	20,20	20.00	2.25	16.61	12.10	19.80					2.19	6,08		4.99	. 23		0.42						95.83	18.37	43.57
			FRI-113 greiss		0.35	15.24	0.51	2.19	90.0	1.47	2.41	4.45	1.14	0.11	1	,	۱ .	30 30	21.46	2.57	6.74	37.65	11.24					3.13	3.66		0.74	990		0.25		•				98.10	15,06	40.16
		Camarong R. Agbuyi Ck.	FR1-039 greiss	72.64	0.18	15.02	0.52	1,37	90'0	78.0	1.57	4.61	1.54	80.0	ı	ŧ	ا ا	99.40	32.67	3.11	9.10	39.01	7.27		_			1.90	2.09		0.75	0.34		61.0						98.43	9.46	38.01
	, Ks	Sinanbalan	TR2-111 quartz	61.10	0.58	15.60	4.30	0.92	0.08	2.56	2.18	3.92	3.19	0.32	ì		5 6	97.85	18 50	2.50	18.85	33.17	8,72						6.38		1.55	27.7		0.74						94.74	17.19	73.56
Intrusive Rocks	Acidic to Intermediate Rocks		TR2-107 diorite	Ì	1.09	17.10	7.08	2.39	0.13	4.26	7.20	2.52	2.45	0.75			000	95.57	\$ 40	:	14,48	21.32	28.11		1.13	86'0			9.63		4.97	2,07		1.74	-					93.57	22.78	64.06
Intrus	Acidic to Int	Mamburao.R	FR1-024 quartz diorite	ŀ	0.74	16.62	2,56	3.81	0.10	3,84	3.87	4.09	2,68	0.20	ı	1 -	. 28.	99.14	986	0.69	15.84	34.61	17.20					3,85	9.56		3.71	1,41		0.46						97.19	22,61	50.20
		Camarong R.	FR1-041 grano- diorite	.i	0.19	16.13	0.59	1.08	0.02	0.35	2.92	5.07	0.83	0.14	1	ı	. 69:0	99.28	31.66	1.92	4.91	42.90	13.57					1.22	0.87		0.86	0.36	***************************************	0.32						98.59	4.42	24.48
Rock Tyne	34.6			SiO.	TO,	Al ₂ O ₃	F2:03	Fc0	MnO	Wgo Og	O _D O	N ₂₂ 0	K20	20.5	500	2 9	LOI	Total		. ,,	. 10	ab	. un	감	di wo	5	. di R	hy ts	hyen olfo	ી કિ	Ĕ.		e	ďe	8	t :	o S	F.00	·	Total		MgOx100
20		Location	Sample No. Pock Name			_					uo Oou							I.	ľ					-		o,	٠		mio!						0	٠	 	- 14	<u> </u>	-	S.I.*	50 10 10 10 10 10 10 10 10 10 10 10 10 10

Table A-4 Result of K-Ar Dating

				• •	
Sample No.	Rock Name	K (%)	Rad 40Ar (%)	Rad 40Ar (scc/gm x 10-5)	Isotopic Age (m.y.)
FR-39	gneiss	1.27 1.27	63.5 63.8	0.121 0.125	24.7 ± 0.8
FR-41	granodiorite	0.61 0.61 0.61 0.61 0.61	56.9 59.4 61.1 60.9 59.2	0.079 0.084 0.094 0.106 0.118	40.2 ± 6.8 lowest value 33,0 highest value 49.1
FR-103	green schist	1.88 1.88	79.6 80.9	0,278 0,285	37.8 ± 1.1
FR-24	quartz diorite	2.47 2.47	80.6 81.8	0.293 0.295	30.4 ± 0.9
YR-12	amphibolite	0.73 0.73	51.5 50.1	0.071 0.073	24.6 ± 0.9

The analyses were performed on whole rock material. Remarks:

Isotopic Age (m.y.) =
$$\frac{1}{\lambda \epsilon + \lambda \beta} \ln \left[\frac{\lambda \epsilon + \lambda \beta}{\lambda \epsilon} \times \frac{\text{Rad } ^{40}\text{Ar}}{40\text{K}} + 1 \right]$$

 $\lambda \epsilon = 0.581 \times 10^{-10} \text{ yr} \cdot 1$ $\lambda \beta = 4.962 \times 10^{-10} \text{ yr}^{-1}$

 $40K = 1.167 \times 10^{-4}$ atom per atom of natural potassium

Table A-5 Result of Rb-Sr Dating

Sample No.	Rock Name	Location	Rb (ppm)	Sr (ppm)	Rb/Sr	⁸⁷ Rb/ ⁸⁶ Sr	⁸⁷ Sr/ ⁸⁶ Sr
TR2-161	muscovite schist	Puerto Galera	150.4	54.5	2.76	7.98	0.71311 ± 0.00008
YR2-112	muscovite- chlorite schist	Catuiran River	66.4	153.8	0.43	1.25	0.71667 ± 0.00008
YR2-112 (mica)	muscovite	do	117.9	84.5	1,40	4.04	0.71678 ± 0.00009
TR2-046	amphibolite	Tributary of Amnay River	10.0	144.5	0.07	0.20	0.70866 ± 0.00010
TR2-047	amphibolite	đo	36.7	155,8	0.24	0.68	0.70619 ± 0.00008
YR2077	epidote amphibolite	Rosanna River	4,61	178.6	0.03	0.075	0.70293 ± 0.00010

Remarks: The model age calculated for the sample YR2-112 is 2.8 million years, using the data generated from the mica separate and whole rock material.

Table A-6 Assay Result of Ore Samples

7	mdd	Π	 I		1	1	Τ,			i	1	Π			,	 1	Т,					Τ.	1		:	ì	Tī	,	1)		Τ.	,			
<u>></u>		Ľ					Ľ								•		'		. '								<u> </u>		· ·			<u>L</u>			·	
Tio	188	Ľ	i 									1	- 1				Ľ	ا خنگ			·	1		ا 		I	1		1		. 1		I	ا 		l
8	A.S 70	1	1	1		.	,	1	1	. 1	ı	ı	1	I	1	1			1		ı	i	1	. 1	1		1	1	ţ	ı	i		. 1	1	1	1
6		- ţ	1	I	1	1	,	1	1	1.1	ı	ı	1	t	1	l	l	1	ĺ	ı	!	ı	I	1	i	ı	ı	. !	1	-1		Ī	ì	ı	1	1
N. O.		1	1	ı	ı	ŀ	1	1	1	ł	t	1	. 1	į	l	i	1	I	1	1	1	1	1	1	1	1	1	1	į	1	1	1	l	-1	ł	ı
D, 04	6	1	1	ı	ı	1		. 1	 I	1	1		ı	ı	1	1		1	ı	1	ł	1	ı	ı	1	1	3	1	ļ	1	1	Ī	1	ı	l	l
8	5	ı.	1	1	1	ï		Į	ı	ŀ	ı	1	1	1	ı	1	ľ	ŀ	ļ	ı	<u>-</u>	1	ı	1	ı	1	ı	ı	i	į	1	1	1	1	1	1
ž Q	ર	1;	+	ľ	i	1		ı	ı	ì	ı	ı	ı	. 1	1	ı	1	I	l	ı	. 1	1	ł	i	1	ı	1	- 1	1	ı	1		. 1	ŀ	1	!
8	9	0.23	18.23	2.35	0.22	1	ļ	ı	0.23	986	29.81	1.81	99.9	39.68	44.70	1.41	1.45	10.84	10.54	7.87	19,90	34.50	23.61	31.72	29.34	20.04	9.24	19.55	15.24	18.91	4.74	15.47	15,42	12.42	37.63	25.16
Og Og		ı	1	ı	ı	i	 'I		. I	1	1	ı	· · ·	1	4	Ī	1	 I	1	ı	 ا	1	1	3	1	1	1	 			t	-	1		<u> </u>	- 2
Al2O3 MgO	8%		ı	ŀ	1	1	1	1	1	ì	ŀ	i	1	1	ı	1	- 1.	. 1	1	ì		!	1	 I	l	ŀ	1	· I	ł		1	1	t	ı	1	1
SiO ₂	%	ı	l	I	ı	<u>:</u>		,	1	ŀ	I	}	1	1	ı	ŀ	1	. 1	1.	. 1	1	-	ı	- <u>-</u>	. 1	ı	1	ı	ı	ı	1			1		l
Fe % S		7.48	21.39	3.99	7.13	1	,	ŧ	1.92	5.99	37.70	7.63	18.52	39.18	44.36	2.83	1.20	8.95	10.55	6.63	21.26	46.73	40.86	48.88	46.69	19.59	14.58	24.17	21.99	37.65	11.67	22.76	22.37	10.94	28.27	48.64
ပ္ပ		1	1	ļ	1	1	-	I	ı	1	1		<u> </u>	1	1	1	1	ı	-	ı	1	1	1	1 4	 	-	1	1	1 2	ا ب		1	1	- 	1	4
		ı		1	!	. 1	1	1	1	- <u>-</u>	1	1	. !	ı	, . <u> </u>	Į.	,	i	ı	 I	ı		ı	ı	<u></u>	1	-	i	1	ı	1	-	ı	I	ľ	1
Cr2O3Ni &	8	ı	1	ı	ı	ı	-	1	i	1	 I		1	· 	i	1	 	1	ŀ	į	1	į	ı	1	ı	I	1	 I	i	ŀ	1	i	1	1	1	
Zn % (١ ا	ı	1.	1	ı	į	1	ı	0.01	0.00	ı		1	1.05	0.81	0.02	0.00	<u>.</u> 1	ı	ı	ŀ	0.03	0.20	0.20	0.20	0.05	0.15	0.12	0.20	0.20	0.20	0.61	0.20	0.30	8.52	0.20
Ph % 7	2	1.		i	Í.	I.	1	I	0.00	0.00	ì	1	1	0.01	0.12	0.00	0.00	1	1	ı	. 1	0.00	0.10	0.14	0.13	0.01	00.0	0.00	0.16	0.17	0.10	0.23	0.12	0.10	0.71	0.12
Cu %	\neg	0.75	0.12	0.00	0.13	-	1	1	0.00	0.26	69.0	0.37	0.15	1,41	0.42	90.0	0.00	0.00	0.00	0.00	0.00	2.77	0.45	2.38	2.05	2.12	2.21	15.33	11.93		2.49	11.95	92.0	1.01		0.42
		0.7	4	8.0	1.6	0.1	0.2	0.1		· 00	2.2	1.3		4.2	<u>о</u>	0.3		1.3	2.5	<u>ب</u>	3.4	<u> </u>		5.3		4.7	6	3.0	<u> </u>	1.2	••••		-			
u Ag		0.1	0.1	0.0		0.0	0.0	0.0	-		0.0	0.0	0.0	0.00	0.00 12.	0.02	0.02	0.2	1.5	4.0	6	2,42	Þ	14.80	3.70	0.11	06'0	5.47	8.33	1.90	Ħ	t t	井田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田	1.10		0.67
Au	+			<u> </u>																	(4		Ħ	14	(7)	_		4,			<u>.</u>	ļ				\dashv
		Mal stained skarn (float)	uo		Mal. stained amphibolite	:		: .	달	(op) :				(float)	(op)		(istone	tone							sin		٠					п		massive Py ore (float)	
lice		ned sk	minati	shale	ined an				(float)	etwork	in	ë	٠.	Py ore	Py ore	op) ur	an (do	ed san	sands	ä	ij.	y vein				o-He v	z vein		ii				ninatio		Py ore	
Оссипенсе		fal stai	Py dissemination	silicified shale	fal. stai	Oz-vein	op Op	မှ	qo	Cp-Py network (do)	Cp-Po vein	Cp-Py vein	op	massive Py ore (float)	massive Py ore (do)	Cp-Py vein (do)	Py-Qz vein (do)	chloritized sandstone	argillized sandstone	Py-Cp vein	Py-Qz vein	Cp-Po-Py vein	qo	op	op .	Cp-Py-Bo-He vein	Cp-Py-Oz vein	Cp vein	Cp-Po vein	op	op	op.	Py dissemination	op	assive	do
		_≥	<u>~</u>		≥:	0				···		O		=	. 12	C	A.	· さ	- 	Δí.	ď.						<u>.</u>	<u>.</u>	<u> </u>				Δ; —	 -	=	\dashv
		ď		R							Acliang & Pajo Dep.	Dep.										: : :_•				Dep.		ć.								
ion		Mamburao R.	D.	Abra de Ilog R.	Matabong R.	Binaybay R.	12				त के हा	San Andres Dep		ay R	ď S	Dulangan R.		Dep.		nga R.	ď	Masnon Dep.				Manamburao Dep.		Shawood Dep.		_			æ¦	_	Aglubang R.	
Sample No. Location		Mam	Odala R.	Abra	Matal	Binay	do.	ę	qo	go	Acliar	San A	ф	Sibakay R.	Amnay R.	Dulan	do	Taoga Dep.	ф	Bugsanga R.	Siange R.	Masno	do	ф	çç	Manaı	တ္	Shaw	do	qo	do	ф	Mayu R.	op -	Aglub	ор
le No.		FK1-034	FR1-043	SR1-036	SR1-046	FR1-114	FR1-115	FR1-116	FR2-078	FR2-079	WR1-142	-183	WR1-185	-024	\$ 7	-152	-157	WR1-018	-021	WR1-052	-130	127	-030	-031	-032	133	-136	-149	-025	-026	-034	-035	-023	-024	165	-033
Samp		rk1	Ŧ.	SR1-	SR1-	FR1-	FR1.	FRI	FR2	FR2-	WR1	WR1-183	WRI	FR2-024	TR2-044	TR2-152			WR1-021		WR1-130			FR3-031	FR3-032	SR2-133	SR2-136	SR2-149	FR3-025	FR3-026	FR3-034	FR3-035	FR3-023	FR3-024	SR2-165	FR3-033
L							·			•							Səi	O 1	ədd	Col	pu	s blo	CC													Į

୍ଦ୍ରୀ	l e	r				LABOR LEVA	7		Mudfessera		وموعدته	r			····		T					j					1								******	·
2	V ppm	.1	1	1	1	1	Ľ	1	1	1	1	1	1	1		1	1	١	1	I	ا 	Ľ	l	1	!	1	1	ŀ	 		l 		ŀ	1	1	
	TiO2	1	1	1	Í	T,	Ľ	ا 	1	1	1	1	1	1	ï	l	1	1	Ì	l	.1	1	1	l .	1	1	1	1	1	1	1	l L	1	ı	1	1
,	As %	١	ı	ı	Į	ı	1	1	١	ı	1	1	ı	1	ı	ì	1	.l	ı	ı	1.	ı	ı	1	I	i	ı	l .	İ	ı	l	1	1	1		1
	K %	ı	ı	ı	ŧ	l	1	1	I	1	ı	1	1	-1	1	I		l	ı	ı	1	l	1	I	l	1	٦	ŀ	ŀ	ı	ı		ı	i	1	
	Na %	ı	1	ı	ŀ	ı	1	1	ı	1	1	1	ì	ŧ	l	1	ı	1	ı	l	1	ı	ļ	ı	1	1	1	ı	ł	l	I		1	.1.	ļ	1
	Ba %	ı	I	ı	I	1	1	ì	ı	1	ı	1	1	ı	l	1	ı	1	. 1	ı	1	ı	l	ı	1	, l '	1	1	JF.	ı	ı	ı	1	ı	ì	_
	88	ı	l	1	1	l	ı	1	ı	1	. 1	1	i	ı	}	ı	ı	. 1	1	1	l	ı	1	ŧ	1	ŀ	ı	1	ı	l	ı	ī	ı	l	ļ	1
	% 0.	ı	1	I	l	ı	ı	1	1	ı	ì	!	1	ł	ı	1	ı	1	ì	ì	1	,	ı	1	i	l	ı	i	i	l	1	l	i	. 1	ı	
	% S	1	ı	ı	ŧ	ı	1	ł	1	ı	;	. !	. 1	I,	Į.	ı	.1	1	ı	ŀ	ı	1	l	1	ı	ı	ı	l.	ì	1.	l	ı	I	ı	l	1
		10.68	16.00	4.38	5.07	2.88	6.45	14.14	10.89	5.99	6.78	9.37	31.45	8.59	6.93	4.63	2.42	10.79	0.73	11.64	18.74	18.98	13.64	12,44	9.08	6.97	14.49	13.30	15.84	6.77	15.41	43.44	38.40	3.56	14.32	13.83
	Al ₂ O ₃ MgO % %	4.16	12.37	69.9	5.57	6.75	6.65	5.88	4.29	9.66	10.68	9.39	1.38	66.6	1	5.35	4.69	3.38	2,44	8.74	26.06	24.79	8.76	12.38	7.76	6.28	11.63	9.35	10.62	89.9	12.63	0.83	131	7.30		7.80
	SiO ₂	ı	1	4.48	5.74	1.22	8.44	13.14	13.92	3.66	5.72	7.78	34.14	2.38	2.39	4.00	2.24	9.46	2.28	2.96	6.78	9.02	6.34	6.76	8.65	10,91	11.26	12.96	18.00	5.46	10.11	1	l	1	08.6	9.12
	Fe % S	4.59	0.44	10.14	10.86	10.00	10.00	8.57	10.14	11.29	9.00	7.86	10.29	10.14	3.14	14.57	15.29	22,43	45.43	17.69	98.6	9.14	11.88	13.81	19.33	26.63	14.89	19.13	15.05	26.89	14.80	5.43	5.43	28.70	14.14	12.29
	Comppm	l	ı	4	5		201	97	21 1	28 1	17	13	164	70	1	19 1	16 1	422 2	,418	264	207	144	3.00	274	314	336	230 1	272 1	240	323	254 3	 I	· l	1		50
	Ni %	0.07	0.02	0.02	0.02	0.02	90.0	80.0	0.16	0.07	0.04	0.03	0.36	0.08	0.07	0.09	0.07	69.0	0.92	0.22	0.16	0.12	0.25	0.17	0.25	0.32	0.23	0.19	0.14	0.31	0.16	0.22	0.21	0.46	0.10	60.0
	Cr203	44.88	0.03	50.50	45.82	48.93	40.31	34.14	38.85	43.00	40.31	36.50	5.23	29.11	49.52	50.03	53.55	1.87	3.66	51.40	33.18	30.30	56.10	48.94	47.62	39.81	40.19	38.93	38.14	41.30	39.92	0.38	0.38	3.87	29.99	31.39
	Zn % LZ	4	ı	ا <u>تر</u>	1	l _4_	1	1	<u>ن</u>	1 	1.4	۱	ı	1	1	<u>''^</u>	1	<u>.</u> 1	1	<u>ری</u>	l l	<u>د</u>	1	1	1	<u>س</u>	1		<u></u>	1	<u>س</u> ا	1	i	 I	1	1
	Pb % 2	1	 I	 I	ı	1	1	ı	ı	ŀ	ı	1	ı	1	1	ļ	1	1	į	1	ı	1	ı	1	1	ı	-	ı	. 1	ł	ŀ	1	1	1	í	\exists
	Cu % P	1	1	1	I	I	1	1	ı	ı		l.	·!	1	1	ı	1	1	ı	ı	·	1	ı	1	ı	ı	Ī	1.	1	!	ı	í	1	ŀ		-
	Ag C	1	1	!	I	·I	i	·	I	1	-	<u>i</u>	ı	ı	ı	ŀ	i	!	ı	1	<u> </u>	-	1	1	i	1	1	1		l	i	1	í	ŀ	i	7
	Au Ag/T	ı		1		i	-	ı	 I	1		ı	 I	ŀ	ļ.	1	ı	t	1	ı		 I	1	i	1	1	I.	, E	- 	ı	ı	1	1	f	ŀ	
	V ·	ile)		le)						ile)			loat)									<u> </u>														
		massive Cr ore (stockpile)		massive Cr ore (stockpile)		0				massive Cr ore (stockpile)		-	disseminated Cr ore (float)			æ						·												erite	r ore	r ore
÷	න න	I ore (e)	Ir ore ((qo)	(float)		r ore		Sr ore ((gg)	(gp)	ated Cı	Cr ore		(float)	(op)			Or ore												e.		ous lat	ated C	otted (
	Occurrence	assive (peridotite	assive (ę	qo	qo	banded Cr ore	đ	assive (ę	g ₀	ssemin	massive Cr ore	op.	qo	မှ	laterite	ę	massive Cr ore	do	о р	qo	đo	ဝှ	do	ф	q	op	ф	q	peridotite	ð	nikeliferous laterite	disseminated Cr ore	dense spotted Cr ore
ļ	Ŏ.	ŭ	光	Ë		_		,c		Ë	_		-	Ë				Fa		Ë						. (. (<u> </u>		·.	<u> </u>	Ď,		<u>'ਜ਼</u>	ਚ	ð
													Dep.					ep.								(Tr, No.1)	(Tr, No.2)	(Tr, No.1)	(op)	(op)	(Tr, No.2)			ç,		
	lon	Dep.		Dep.				Dep.			v Dep.		San Vicente Dep.		2i R.	Dep.		Paragpagan Dep.	·	Dep.											F	χ. Υ		Aglubang Dep.	Dep.	
	Location	Paluan Dep.	op G	Mariri Dep.	မ္မ	q	පි	Igsoso Dep.	qo	ð.	Liwliw Dep	qo	San V	op	Sibacoi R.	Pintin Dep.	do	Paragi	쉭	Pintin Dep.	qo	op	육	육	qo !	ф	go.	do	ф	왕	မွ	Amnay R.	ਚ -	Aglut	Ogos Dep.	g g
	Sample No.	.007	800	KR2-069a	9690	020	YR2-037a	090-	.062	-965	KR2-055a	KR2-055b	-072	090	-030	KR2-050a	KR2-050b	045	8	-013	-005	900-	-002	KR3-011a	KR3-011b	-013	-014	KR3-019a	KR3-0195	-020	-023	-039	090	WR1-160	KR2-105a	KR2-105b
	Samp	FR1-007	FR1-008	KR2-	KR2-069b	KR2-070	YR2-	KR2-060	KR2-062	KR2-065	KR2-	KR2-	KR2-072	TR2-060	YR1-030	KR2-	KR2-	SR2-042	SR2-044	FR3-013	KR3-005	KR3-006	KR3-007	<u> </u>	K	KR3-013	KR3-014	<u> </u>	KR3-	KR3-020	KR3-023	SR1-039	SR1-060	WR1	KR2-	KR2-
			- W-				7.5		_									91C) อน	юл	O															

~	-	T-			ale and the	********	T	iye ildan Kas		d-Frank		ī''''	مستاكستم			eja-ta-dağı	·				naine.	Τ			dan dan dan da		T .			and we					<u>14.</u>	<u>چ</u>
©	> mdd	۱			· · ·		1		1	. [ı	1	l	1	l	1	<u> </u>	l 	1	Ľ	1					· 	1	1	 	1	1			106
	110 %	1	1	1	1	1	1	ļ	1	l	l	1	!	l	l 	1	1	1	1	<u> </u>	1		1	1	. 1	1	ľ	1	l	1	 	1			0.007	0.079
	As %	1	1	l	1	.1	ı	٠ ١	1	ŀ	1	1	ı	l	l	1	1	1	1	1	1		l	1	1	1	ı	1	l'	ı.	1	1	0.011	0.014	ı	1
	% %	١	ı	1	ı	ţ	1	1	1	1	1	ı	ŀ	1	ı	1	ı	1	1	1	ł	1	·	1	ţ	i	l	. 1	I	i		1	;l	1	1	l
	Na %	ı	1	ı	1	I,	1	ı	ı	1	1	ı	ı	l	I	1	1	ı	ı	ł	ı	1	1	ı	ì	1	ı	l	ı	ŧ	1	ı	l	1	1	ı
	Ba %	1	1	1		1	1	. 1	1	1	1	ı	ŀ	l	ı	ı	1	ı	 	ı	ί		1	ŀ	1	ſ	ı	I	ı	t	1	Į	I	ı	1	l
	\(\frac{1}{2}\)	ı	ı	-1	ì	1	1	i	l	. 1	ł	I.	Į.	ı	1	ı	1	ı	ŀ	ı	l'	ī	I	l	1	l	ı	ı	1	1	i	ı	ı	Ϊ.	1	l
	.% 19.	1	- 1	. 1	ŀ	ı	1	1	ı	. !	1	1	l	1		ı	ì	:	1	1	1	ı	í	ı	1	ı	1	ı	j	Ι.	1	ι	0.023	0.019	0.011	0.043
	8%	ı	ı	1	1	ı	ı	1	1	1	I	1	1	. 1	1	ı	-	ı	1.	1	1		t	ı	1	1	1	1	1	1	t.	1		0.03	1	1
		11.82	6.20	15.17	34.42	21.12	18.06	6.29	21.63	22.64	28.47	26.27	21.95	15.09	23.05	19.05	20.89	19.56	31.63	19.79	18.43	21.02	17.15	17.36	18.48	19.24	16.85	19.47	19.73	17.71	16.80	16.27	1	1	ı	1
	AL ₂ O ₃ MgO	7.55	60.6	9.49	1.29	14.44	10.06	76.6	9.47	15.23	11.10	12.43	16.88	18.15	14.80	18.39	11.97	6.42	3.97	10.09	10.76	10.90	12.69	68.8	10.77	9.79	15.65	13.64	12.85	12,40	13.40	_	0.30	0.30	l	1
	SiO ₂	6.22	5.58	6.61	5.58	9.97	10.89	5.89	7.54	14.65	27 44 3	22.57	14.89	8.13	13.25 1	12.45	11.81	11.80	19.08	8.02	6.77	10.73	4.86	10.11	8.70	8.58	6.18	8.11	9.11	12.63 1	7.06	4.87	0.98	08.0	<u> </u>	1
	Fe % S	10.86	13.29	14.00	11.57 3	11.02	9.79	29.34	12.35	1.30 1	8.85	9.77 2	1.21	13.51	12.69	11.79	10.80	12.43	8.71	11.65	11.65	10.98	11.88	18.90	11.47	1.59	12.17	9.86	10.08	10.70	11.73	12.01	61.36	60.82	67.32	56.42
	S mdd	26 1	24 1	265 1	254	194	243	575 2	191	143	152	160	173 1	196	173	160 1	192 1	46	23	184	203 1	186 1	187	270 1	192 1	186 1	171 1	188	171	182 1		189 1	1	1.	1	1
	Ni %	0.07	0.04	0.20	0.30	0.21	0.14	0.15	0.13	0.11	91.0	0.16	0.13	0.11	0.13	0.10	0.07	0.05	0.13	0.10	0.08	0.11	0.10	0.07	0.12	0.09	0.10	0.12	60.0	0.10	0.10	0.08	 I	ı	1	i
	Cr ₂ O ₃ N	28.28	37.05	45.82	6.19	9.57	14.11	5.23	13.71	30.16	18.19	23.25	29.85	37.36	27.05	30.64	37.20	34.50	27.08	42.02	46.12	37.97	46.11	41.44	43.50	44.98	41.85	41.47	41.23	36.05	43,43	45.43	1	1	1	ı
	Zn % C	1	ا بن	1 4	ı	<u>س</u> ا	1	<u></u>	<u>(n)</u>	١	-	- 2	1	1	1	1	1	i I	1	1	1	1	1	1	1	- 4	1	4	1	1 10	1 4	1	1	i		
	88	1	1	1	ľ	· I	. 1		1	Ļ	i	-	1	1	1	ŀ	1	l	1	1	ı	ı	1		1	1	1	ı	1	1	1	1	1	ŀ	ı	1
	u % Pb	ļ	1		1	.1	i	· I	ı	i	1	 	1	ı	. 1	I	ı	1	1	1	1	1	ı			_	1	1	ı	ı	1	1	ı	1	900.0	0.003
	Ag Cu	1	ł		1	1	1	. 1		1	1	1	ŀ	i	ı	1	_	. 1	1	-	-	-	ŧ	í	i	_		1	<u>-</u>	ı. J	1	í	1	ı	0	0
	Au A	1	1		i	ı	ı		- 1	1	I	-	i	1	ŀ	1	1				ı	1	t	!	I	1	ı	1	1	I	1	Į.	Ļ	I.	1	1
	▼ ~											-									• • • • •															
		weathered sandy Cr ore		ore	ed Cr ore	оте																											ore			
-	Occurrence	weathered	qo	massive Cr ore	disseminated Cr ore	massive Cr ore	op	op	qo	qo	qo	: Op	op	op.	op ·	op	op	op	့	do	go	op	တ္	go	qo	op	op	go	q ₀	တ္	ф	op	massive Mt ore	ච	op	qo
																	n)	(snt				(S)				'a'			(S)		,		ć,			
	- - -								Ë	(op)	(op)	(op)	(op)	(op)	(op)	(op)	(Siyabu)	ng (Bar	(op)			(Banus)	(op)	(op)	(op)	(Masba)	(do)	(do)	(Banus)	(op)	(op)	(op)	ıgan De			
	Location	Ogos Dep.	સ	မှာ	월.	ĝo	op	မှ	ф	ą	do	op	qo	qo	op	op	မှ	Bongabong (Banus)	đ	ę P	qo	qo	op	တို	do.	qo	ဝဉ်	တို	op	op	9	op	Nagsabangan Dep.	용	ə -	đo
	Sample No.	KR2-105c	-106	-015	GR3-105	KR3-051a	KR3-051b	-052	-053	-054	-055	950	-058	-059	090-	-064	-150	TR2-130a	TR2-130b	-114	-116	-120	-121	-122	-123	-135	-140	-142	-161	-165	-166	-167	-036	-037	KR3-028a	KR3-028b
	Samp	KR2-	KR2-106	FR3-015	8	SS	KR3-	KR3-052	KR3-053	KR3-054	KR3-055	KR3-056	KR3-058	KR3-059						YR3-114	YR3-116	YR3-120	YR3-121	YR3-122	YR3-123	YR3-135	YR3-140	YR3-142	YR3-161	YR3-165	YR3-166	YR3-167				
												-				θĭΟ	อแ	ort	C	w					-				-				;	ai O	uo	II

FÌ	E)	13	23	28	 I		1	Γ,		156	47	148	 	8		 1		121	77	77	2	73	71		 	83	33	32	Ī ,		 1
-	2 V Ppm	2		0	δ.	, 00	4	4	' 						0	<u>'</u>	-	35	0	0	-	9	8(80		·	9		<u> </u>	<u>'</u>	<u>'</u>
	TiO ₂	0.012	0.008	0.020	4 0.009	3 0.028	1 0.024	2 0.004		0.046	0.052	0.030	0.014	0.011	0.010	1 0.007	0 0.011	0.005	0.010	0.010	0.017	0.016	0.008	0 0.028	· 	0.046	0.016	0.012	<u> </u>	 	
	As %	1	l	١.	0.024	0.003	0.021	0.002	1	l 	ı	l	1	1	1	0.001	0.000	1	1	 	1 —-		1	0.000	 	. [1
	K %	1	1	1 -		1	 		<u>.</u>	1	1	ì	!	1		۱ 	1	1	ŧ	. 1	 	1	ı l		į	ι	1	· I		2.54	
	Na %	ı	ı	ı	l	1	1	ı	. [1	l —	ı	l	· I	!	1	1	1	ı	ı	l	t	l	1	1	1	١	١	1	0.35	ì
	Ba %	1	1	l	I	1	· 1	ļ	1	1	ı	I	ı	1	į	ι	1	ı		l ——	l -	ı'	'	1	1	`i —	1	1	Ľ	1	49 30
	Ca %	ı	l	1	l	1	1	1	ŀ	1	i —	Ţ	1	ı.	1	1,	1	ı	I	jì	ı	ı	١	i	1	1	ı		1	1	0.01
	% d	900.0	0.026	0.017	0.013	0.032	0.00	0.025	0.055	0.011	0.125	0.014	0.014	0.014	0.030	0.017	0.076	0.007	0.004	0.007	0.018	0.024	0.006	0.060	0.000	0.002	0.013	0.003	1	1	ł
	% %	ŀ	1	1	0.05	0.26	0.20	0.52	0.02	1	1	1	Ι	1	ı	0.02	0.35	ı	l	1	ţ	1	i	0.02	0.24	١	1	ı	0.15	1	1
		ı	ļ	ı	t	1	.		ŀ	ı	1	ı	ı	ı	ŀ	1	ı	1	ŀ	ı	ŀ	ı	i	!	ı	í	ı	1		1	ŀ
	Al ₂ O ₃ MgO	t	 	ŀ	0.21	0.23	0.25	0.36	0.25	ı	ł	. 1	1	ì	ł	0.30	0.40	1	ı	ı	i	l	ı	1.02	0.81	ł	ı	1		5.05	000
	SiO ₂	ŀ		ı	0.22	6.18	2.44	53.60	19.88	ì	.1	1	ı	1	1	3.30	6.10	1	ı	ı	ŀ	ı	l	7.72	14.06	1	ı	ı		82.40	2.55
	Fe % S	69.46	64.56	69.92	59.73	51.55	54,13	28.23 5	49.09	68.49	54.87	63.04	96.69	62.30	57.90	52.77	54.00	55.41	63.85	60.24	30.74	33.11	69.30	55.36	50.48 1	56.73	70.43	65.37	4.05	0.45 8	0.12
	Ħ	9	<u>ټ</u> ا	1	1	1	ا. <u>ب</u>	1	1	í	ا <u>بن</u>	1	1	1	1	1	<u>بن</u> ا	- 5	1	<u>و</u> ا	<u></u>	1	9	1	1	1	1	1	1	i	1
	20	i	1	1		1	:		1	 I		1	'n	- 1	1	: [1	1	1	.		ŀ	1	1	ı	ı	1	. 1	0.14	ı	
	Cr203 Ni	1		1	ı	ı	1	-	1	ı	ı	· 1	İ	1	1	1	1	ŀ	1	1		1	ı	I	 I		1	1	1		1
	Zn %		į	1	ı	ı	ı	,	į	ı	1	ı	I	j	ì	ı	ŀ	ŀ	1	i	1	ı	ı	ı	ı	i	1	1	1	ì	1
	Pb % 2	1	i	1	ı	1	ŀ	1	ı	ŀ	-1	1	ŀ	1	ł	1	ı	l	: 1	ı	ı	ı	1	. 1	ı	i	1	1	1	ı	1
	Cu % P	0.044	0.036	0.011	ı	ı	ı	•	I	0.005	0.198	0.008	0.027	0.029	900.0	1	J	0.024	0.003	0.003	0.024	0.024	0.004	1	t	0.021	0.022	600.0	1	ı	1
	Ag C	1	ı	0	ı	ı	ı		ı	1	0	0	0	0	1	ı	1	0 -	0	1	0	1	1	1	ı	1	1	0 1	1	ı	1
	Au A	1	- I	ı	t	. 1	· I	1	I	ı	ī	ı	 I	ı	· I		-	1	I.	i,	ı	1	1	1	ı	ι		i	ŀ	1	1
	V ~																			•			-		· ·		i_		ļ		
	Occurrence	massive Mt ore	qo	qo	op	qo	massive He ore	banded Mt-He-Qz ore	massive Mt-Qz ore	massive Mt ore	qo	qo	qo	op	do	qo	do	đo	qo	op	Mt-skam ore	qo	massive Mt ore	qo	qo op	qo	qo	cp	limonitized schist	silica sand (stockpile)	barite vein
	Location	Nagsabongan	op	op	Tiraca Dep.	Ak. Ak Dep.	Lasala Dep.	op	do	đo	ĝo	do	op	do op	q _o	Lapa-ao Dep.	qo	op	qo	qo	qo	do	qo	Cobanga-on Dep.	Dayap Dep.	op op	op	do	San Teodoro	Mansalay	Taoga Dep
		KR3-028c	YR3-054	YR3-064	FR2-039	FR2-041	FR1-031	TR2-090	TR2-093	GR3-028	GR3-030	GR3-031			YR3-041	TR2-096	TR2-097	KR3-032a	KR3-032b	KR3-032c	YR3-042a	YR3-042b	YR3-043	TR2-109	FR1-045	FR3-005	FR3-006	FR3-007			WR1-022
		L						.,					9J	Οų	oı														S	тэц:	Ю

Abbreviation: Cp: chalcopyrite, Mal: Malachite, Po: Pyrrhotite, Py: Pyrite, Cr: Chromite, Mt: Magnetite, He: Hematite, Qz: Quartz

Table A-7 Result of Chemical Analysis of Coal