3-2-5 Boundary and Initial Value Conditions

According to the previously mentioned facts, the model was assumed as a part of a symmetrical cylinder structure 6 km in diameter, with the Balatoc plug as its center and with no heat or flow transfer from the lateral wall.

Outside of the central area where the mining activities are seen, a recharge of 2.26 mm/day is given. From this amount and within the mining zone, 1.9 mm/day are seeping into the tunnel and remaining 1.9 mm/day are discharging into the neighboring river. As to mine drainage, underground water, including hot water coming from the bottom of the model, amounts to about 13.53 kg/s and 2.72 MW of mass and heat flow respectively. This volume is applicable only to the fan-shaped sector of 15° angle of the cylindrical model, while these values serve as important checkpoints for the calibration of the simulator.

The boundary bottom plane is located at 1500 m.b.s.l., and as mentioned in sect.3.l.5, it is assumed supply 1.05 kg/s at 273°C with a heat flow of 1.375MW in addition to an average 2 HFU of heat flow of the earth's crust. At the beginning of the simulation, a certain supply of recharge was given to a thin weathered zone on the surface, but later on to increase the speed of calculation, this zone was eliminated and recharge was given to the top block of the model.

Atmosphere temperature was fixed at 20°C, and to further simplify the model, the mining area was not considered as part of the model since its permeability must be very large.

On the other hand, this program solves transient initial value problems with appropriate boundary conditions, in our case, a rather stationary condition, an initial value must first be generated. Temperature and pressure distribution are first estimated from existing data on the surface and on the borehole AC-ID. Initial values for tem-perature distribution used in

simulation are shown in Fig. III-3-6. If estimated values differ from true values, then simulation will consume a long time to reach that value. As to the initial values of pressures, used was natural water pressure according to elevation of the point.

A time step is required for simulation of the system in the transient state, time that is related to the size of the elements and to permeability etc. In the present simulation, and judging from the results of several trials, time steps increasing in geometric progression from 20 days to 1000 years, ended the calculations at the stationary state after more than 10,000 years. The variation of mass and heat flow in the Acupan Mine are given in Fig. III-3-7.

Table III-3-1 Primary physical value of rocks

		Weathered rocks	Basement rocks	Intrusive rocks
Density	kg/m³	2000.	2700.	2700.
Porosity		.3	.001	.002
Permeability	kx, m²	1. E-12	7. E-16	7. F-16
**	kz, m²	1. E-12	7, E-16	4. E-16
Thermal conductivity	W/m°C	2.1	2.7	2.7
Specific heat	J/kg°C	600.	910.	910.

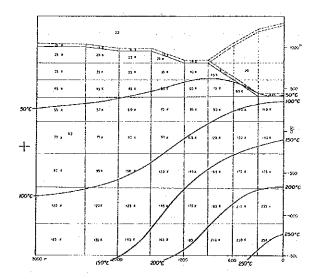


Fig. III—3—6 Estimated primary temperature distribution in °C

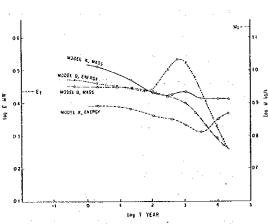


Fig. III-3-7 Variation of mass and heat flow into the Acupan mine in function of time

3-3-1 Output

For every cycle of the simulation at the prescribed time step, there is a short printout of the steam condition, rate of the fluid flow across the interface of the elements, total energy change in the elements and so on.

Fig. III-3-8 gives the results of the fluid state in each element after changing the model six times with a time step of 72 and after a calculation time of 14,967 years. This Figure displays calculated temperature T, pressure P, and vapor saturation S based on internal energy E and the fluid density D. Fig. III-3-9 indicates the mass and heat flow of the fluid across the interface. The first three lines, A6G2, A7H3 and A8P4 of this table, indicate values of the underground heat and fluid flow into the Acupan Mine, which are important check values for evaluating the results of simulation. A satisfactory simulation can be obtained by checking various output data and correct-ing them properly after every running of the model.

In the running of simulation, nine corrections to the model were given, and even after that, the results were not completely satisfactory. However, through all of these calculated results, a deep geothermal structure in the Acupan area can be estimated. Besides the given list of output other data, there are still a lot of other data such as change of convergence of simultaneous equations and change in fluid mass. Some of these are listed in the Appendices.

3-3-2 Considerations of Results

After three trials in calculation by changing the model, produced was a model D that was somewhat close to the lumped parameter model indicated in Fig. III-3-10. Here, on this model, permeability of the upper blocks were enlarged (1.2 \times 10⁻¹⁴ m²), while those of the lower blocks were rather small (2.4 \times 10⁻¹⁵ m²).

***** ACUPAN HYDROTHERHAL CONVECTION SYSTEM *****

TOTAL TIME RGYG ITER ITERG KON DOMAX DEHAX RESD RESD DELTEK NEXT DELT 0.472019E+12 72 4 381 2 0.2667371:00 0.141962E+04 0.139871E-05 0.359142E+00 0.200000E+11 0.337918E+10

CLEH.	INDEX	Ε	U	DE	00	DDE	000	<u> </u>	Р	\$	801L
	. 10.0	306346400	0 009333	+03363301E-470.	250209F-40-	101450FE30	1304646_600	3000445.4020		000005.000	4000000
A 2				+030 - 126020E-47-							
A 3				+030.914987E-47							
A 4				+03576967E-460.							
_A _ 5_				+030-1016716-46							
A . 6				+03448560E-460.							
A 7				+03356503E-460.							
A 8				+03~+587976E-470+							
R I				+03782481E+010- +03541068E+020-							
8 6				103-,2255866.030.							
-87-				103-15/0824E+030.							
B 5				+03108346E+040.							
8 6				+03145025E+040.							
D 7	150 .	302108+06	0.9650881	+03147962E+040.	250972E+00-+	739810E-070	-125486E-100 ·	101466E+030.	172407E+080+0	00000E+000	000000E+00
B 8				+03132704E+040.							
<u>_11_</u>				+03-+691425E+010.							
. 5				+03601D3DE+020.							
C 3				.060+3809SSS60+							
C 4				+035240576+030.							
ر ج ن .				+03946677E+030.							
				+03121358E+040. +03117487E+040.							
	530 • 7	**************************************	0.0101355	+03- 101727E+040.	2133116400-1	2014345-020	1110776-100-	11071054030	1 1 1 2 0 4 E TUD <u>UL</u>	000000000000000	ANDODAE FOR
0 0				+03587807E+010.							
5 6				+03484596E+020.							
D 3				+03187652E+030.							
D 4	280+	61193E+06	0.9953738	+D3436628E+030.	3696771-01-	218314E-070	.184939E-110.	387110E+020.	661303E+070.0	C0000E+000.	000000E+00
0 5				+037684926+030.							
9 9	300	036436+06	0.9662421	+03884419E+030.	1443176+00	442209E-070	.721587E-110.	972331E+020•	132996E+080•0	100000E+000	00000000
0 7	310 - 5	17404E+08	0.9357321	+03792505E+030:	158964E+00	396253E-070	.794821E-110.	138752E+030.	169876E+080.0	100000E+000.	000000E+00
9 6	350 • 1	89116E+D6	0.8904498	+036458398+030.	157296E+00~+	355850E-010	.786478E-110.	188729E+030	205753E+080+0	00000E+000.	000000E+00
E 1	330 • 9	350148+05	0.9919516	+03633262E+010.	3/4226E~U3~.	318631E-090	.18/113E-13U+	2232376+020.	111112E 1000 1	00000E+000.	00000000
E 2	340.5	1842316403	0.99763016	+03-+156824E+030+	284392E-U2-+	2911199E-080	#4422YDE~12V+	232330E*U2U+	173717E+010+0	00000000000000	00000002+00
	357	251545204	U 003043	+03325786E+030.	35054 QE -01	1458635-050	1752755-110.	44428664020.	5883476+070-0	000000000000000000000000000000000000000	00000005+00
	370.	154 383E+06	0.9721398	+03547297E+030.	876619F-01-	73649F-070	.438309E-110.	856647F+02D	918024E+070.0	00000F+000.	000000000000000000000000000000000000000
£ 6	380.5	51104E+04	0.9392408	+03423041E+030.	840508E-01-	211521E-070	.420254E-110.	132355E+030.	130319E+080.0	000000+0000	000800E+00
Ē 7	390-7	34813E+06	0.9014376	*03308342E+030.	711743E-01-	154171E-070	.355871E-110.	175864E+030.	167948E+090 • C	000008+0000	000000E+00
E 8				+03266402E+030+							
F 2				+03-,35400ZE+020.							
F 3				+03109101E+030-							
F 4	430 - 2	156651 + 06	0.989320	+03238334E+030+	251186E-01-	119168E-070	.125593E-110.	71180E+050*	88833E+070+0	D0000E+000.	000000E+00
F 5				+032Z4491E+030-							
F 6				+03117796E+030-							
r i	460+8	A15+1F+08	0.8025015	+03-+190501E+020+	2U9451E-U1-+	2425216-080	. TUES TOE-110	CT10115+030.	1070146408040	0400054000	VV4000¢*40

Fig. III-3-8 Example of calculated fluid state in each element

Fig. III-3-9 Example of calculated mass and heat flow of the fluid across their interfaces

At the Balatoc plug, in the center of the area, there is vertical fracture with a vertical permeability twice as big as the horizontal fracture.

As previously mentioned, the model considered the recharge at 19°C in such a way as to provide a certain mass flow to the top blocks depending on their surface area. It was also mentioned that a heat flow of 2 HFU was given to the bottom of the model, and in addition, to heat flow of volcanic origin given under the plug.

Under these conditions, the expected values of water flow from the Acupan Mine tunnels are 13.53 Kg./s and 2.72 MW of mass and heat flow respectively. Fig. III-3-11 shows temperature distribution under stationary conditions. From here, it can be seen that a temperature gradient suddenly becoming steep near the Balatoc plug, the same gradient measured in the well AC-1D, reveals a value three times smaller than the calculated value. Fig. III-3-12 indicates a modeling distribution of geothermal fluid, with a total mass flow of 5.86 kg/s and a heat flow of 1.95 MW, both of which are less than the expected values.

For the above reasons it, was therefore necessary to correct distribution of the rocks, their parameters, and boundary condition at depths, in that way preventing seepage of recharge into the underground, increasing of the heat flow up through the plug, and decreasing of the area of upflowing deep hot water. All these steps contribute to making easier the lateral flow of the recharge. Based on those concepts, further repetition of the simulations gave the results indicated in Fig. III-3-13.

No significant differences in permeabilities are given between intrusive rocks and basement rocks. Also, the primary geothermal fluid given to the bottom is caused to decrease radially from the center.

Fig. III-3-14 shows the temperature distribution based on initial values adopted by the previous calculation, after nearly 20,000 years. Here the thermal gradient of deep zones is lower than that of model D, tending to be close to the observed value in AC-1D. On the other hand, the presure distribution given in Fig. III-3-15 does not directly suggest the geothermal structure.

The distribution of geothermal heat and mass flow are indicated in Figs. III-3-16 and III-3-17 respectively, indicating that mass and heat flow in the Acupan Mine are 8.60 Kg/S and 2.30 MW respectively, and thus showing values closer to the observed values than in the case of model D. Should several more runnings of the simulation be conducted, results closer to the observed values could be obtained.

According to the results obtained from several simulations of the underground geothermal structure of the Acupan area, the following can be summarized:

- 1. Regardless of whether or not the basement rock is an intrusive rock, the permeability was small in the order of 10 $^{-15}$ to 10 $^{-16}\text{m}^2$ in spite of of the direction.
- 2. It is concluded that there is no eminent fracture upstream from the deep geothermal fluid. This is inferred from the fact that a strong sealing effect occurred when gold mineral bed formation was formed and volcanic activity was not so prominent to produce an active fault.
- 3. Upstream movement of the primary geothermal fluid may not be controlled by the Balatoc plug and the geological structure in the NE-SW direction.

It is considered that the flow rate of upstream movement of the geothermal fluid is nearly the same in this area, and within a radius of at least 3 kms it is assumed to be constant.

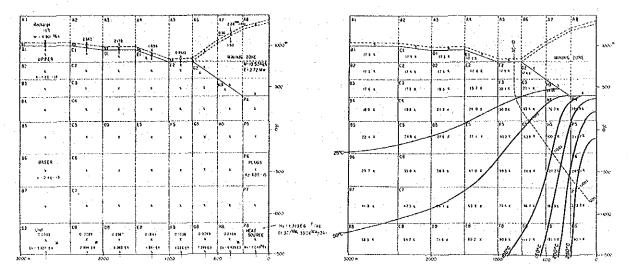


Fig. III-3-10 Simulation model D

Fig. III-3-11 Temperature distribution for mode D in °C

A. 16

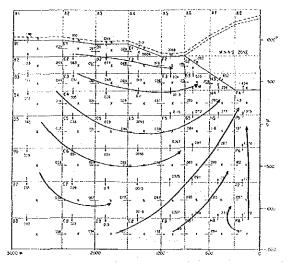


Fig. III—3—12 Heat flow distribution for model D in MW

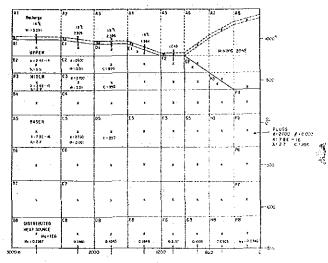


Fig. III-3-13 Simulation model K

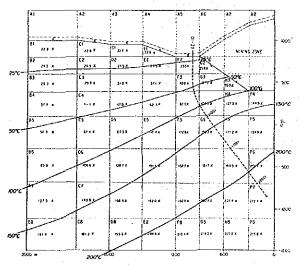


Fig. III-3-14 Temperature distribution (model K) in °C

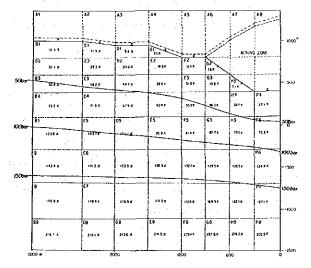


Fig. III-3--15 Pressure distribution (model K) in bar

- 4. Most of the geothermal heat flow of 33MW found in the Acupan Mine, caused by the hot spring and by drainage of the underground geothermal fluid, is deeply related to development of the Acupan Mine. Before development of the mine, manifestations must have been almost the same as hot springs around the Itogon area.
- 5. This stage, it is somewhat difficult to assure that there could have been developed high permeability fractures outside of the present simulated zone at depths lower than 1,500 m b.s.l.

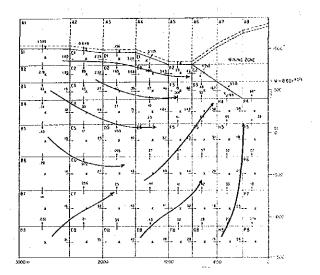


Fig. III-3-16 Heat flow distribution (model K) in MW

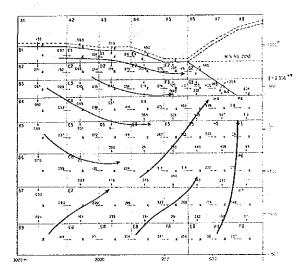
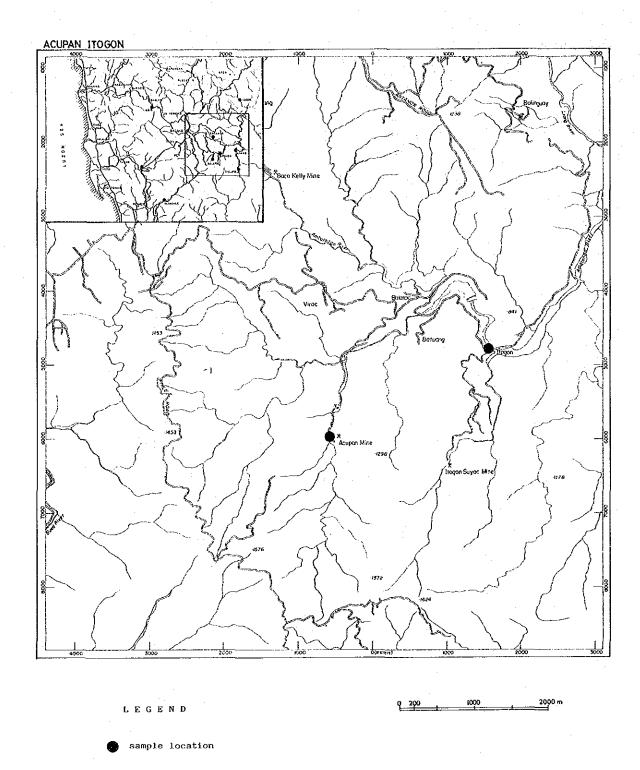
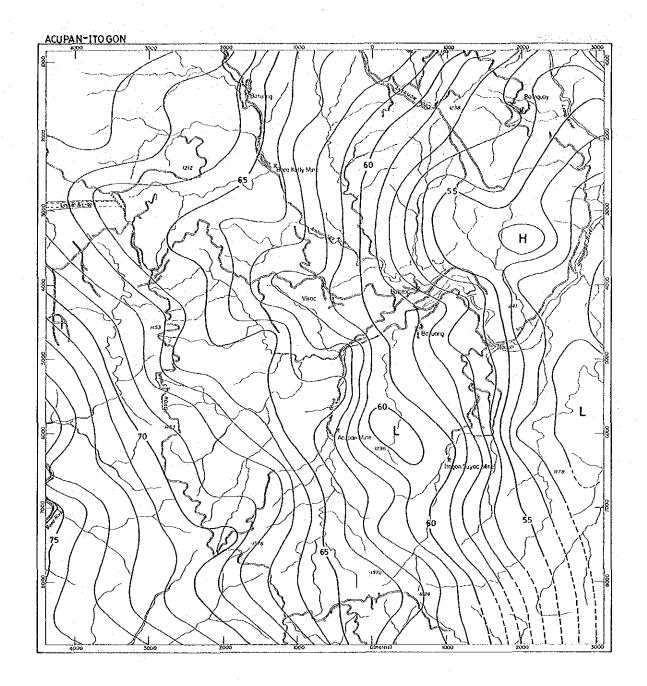
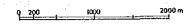
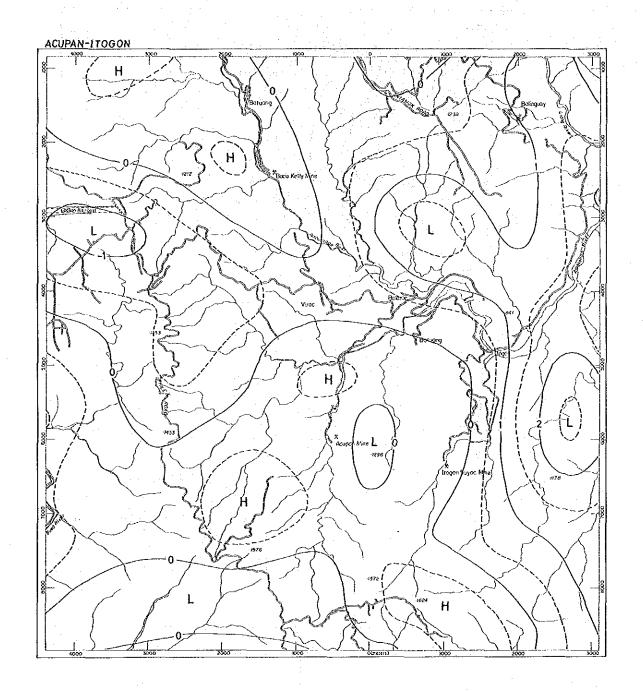



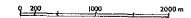
Fig. III-3-17 Mass flow destribution (model K) in kg/s

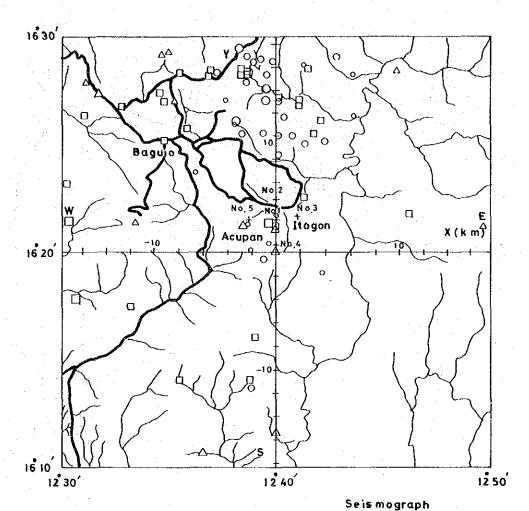

REFERENCES

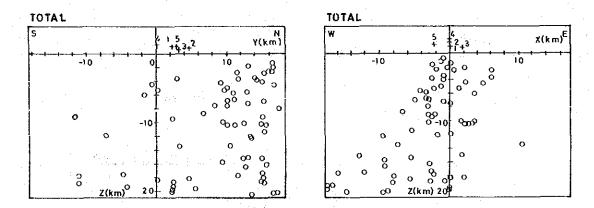
- Pinder G.F., 1979, "State-of-the Art Review of Geothermal Reservoir Modelling"; LBL Report LBL-9093, Lawrence Berkeley Lab., Berkeley, U.S.A.
- Pruess, K. et al, 1979, "SHAFT 78, A Two Phase Multidimensional Computer Program for Geothermal Reservoir Simulation", LBL Report LBL-8264, Lawrence Berkeley, Lab., Berkeley U.S.A.
- 3. Pruess, K. et al, 1980, "SHAFT 79, User's Manual" LBL Report LBL-10861, Lawrence Berkeley, Lab., Berkeley U.S.A.

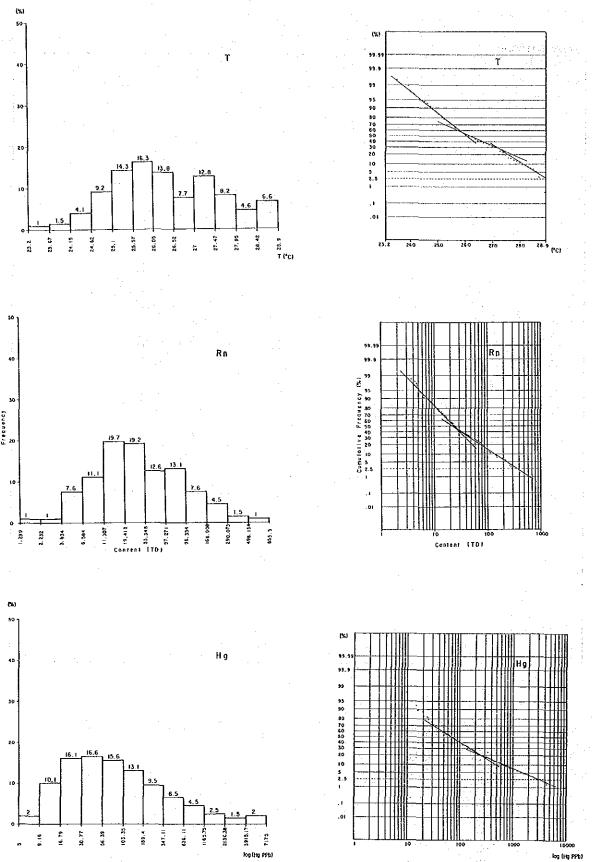

APPENDICES


App. 1 Location map of spring water samples

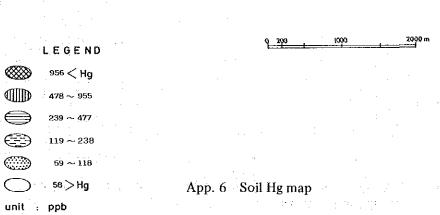

unit : mgal

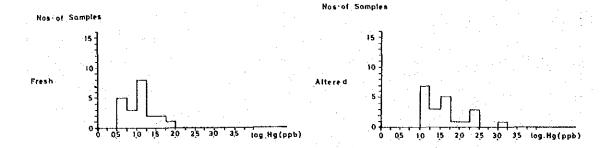

App. 2 Bouger anomaly map ($\rho = 2.6$)


unit : mgai

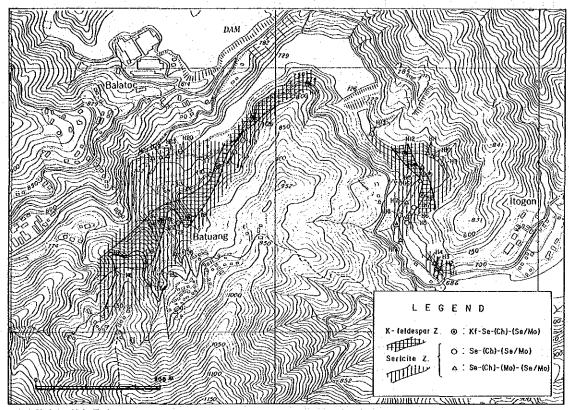

App. 3 Residual map ($\lambda = 0.25 \sim 2.1$)

| Magnitude (M)
Depth (Z)	O≤M<1	I≤M<2	2≤M<3
O < Z ≤ 10	○	○	○
10 < Z ≤ 20	□	□	□
20 < Z	△	△	△

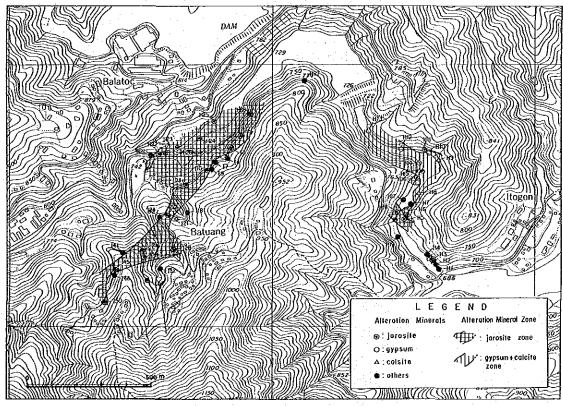



App. 4 Epicentrel and hypocentral distribution map of micro earthquakes

App. 5 Histograms and cumulative probability cahrts for T (°C), Rn (T/30 days, mm²) and Hg (ppb) surveys



App. 7 Histograms of Hg contents in fresh and altered rocks


App. 8 List of minerals in core samples of gradient holes

App. 9 List of minerals in rock samples around Itogon plus

		,	·					,	
1					Schenic Minerals SSoute Hasen's				
	ļ	ţ †		-	minerals takes Others 12 3 5 Note Chrystianals Chrystiana	garang Salan	K MK	Oride Nazrah	Note
1 j	l		j		The states and Others		ĻĮ.	1	
5er No.	Haie No.	Dryck (m)	Rock Name	චිතය වෙන යැතිනේද	To the control of the	gripuir Gripuir Basannie	calcite	porthita secculia sodosotta magnette	٠.
2	ACH-1	21.30	be anderest; topics toff	Old plug	0000 60 00 000	• • •	٥	1	
2	AGH1	45.30	andrakie fine reft	Old pileg	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			1 1	
3	AGH-1 AGH-1	15.80	andeste by the test he andeste lands (aff	O&1 pling O&1 pling		,	1	l, l	
5	ACH-2	26.70	la di grandoria	Vene grancomera	O(3) (0) 1 A Storp Front H-5 A A A D	3	1	15 - E	
6	AUH-2	51.50	hó či grandorite	Verc grandstite		Δ.	Δ.	1 . 1	
7	AGH-2	77:0 \$3.50	ho bi pranofiorite ho bi granofiorite	View grandestiff View grandestiff	A A A A A A A A A A		داما	^	
	AGH-2	95.00	to bignatelevis	Ven greadent	Ca este a la H-9 a and a loto		داه	1	
10	AGH-2	118.50	ho šii grmočovite	Ven products	a	Δ	۸ ۵		
11	AGH-2	139.50	to bi grandenia	Ven grandore				1	
12	AGH-2	164.50	ha androise prophyry	∆şlır	10 3 10 10 10 10 10 10	۵	-1	!!	
" i l	ACH-2	19250 21330	ho de granodionie ho di granodionie	Vicus grandwide Vicus grandwide	N-D A 100 N N-D A A A A A A A A A	۵	۵ ۵	j i	
15	AG25-2	242.30	ho di granodociar	Virus granodorise	to a 1 c c c c c c c c c c c c c c c c c c		ه ه	1 . 1	
15	AGS-2	259.50	ho di grandorite	Virac passeorite	[Mai U Main	۱ د		1 1	
1.	AGH-2	295 00	po de sugerça telebolik	dys.	A	.	3 12	1. i	
18 1 19 3	ACH 2	322.20 .] 355.00	ba-bi-granshorin to ethnica people of	Year productive		Δ.	10	} \	
70	AGH-3	55.00	andecia tali baccia	Macras seaments raits	60 1 5 0 1s 1 1 1 a 0 4 0 1 9		1	1	
21	AGR-3	\$0.00	No andmitte porphy ty	d) ktr	A O O O O O O O O O	1	6		
22	AGH-3	\$14,50	ho sedesite pombjin	ė) kr				1 . 1	
3 34	AGH-1 AGH-3	171,50 172,30	to and site propting askers a service	dyke Microsomography vyky	A		4	'	
25	AGH-3	304,00	to be parodorize	Varia especialistic			ļ,	,	
25	AGH-J	131.20	No de pracedorese	Virgi pranchesse	40 660 A Bas 6	_	la		
27	AGH-3	271,00	No endeade porphyry	dyle .				Δ [
29	AGH-3	200.00	ha bi panessente	Vica: providente		•	1,	1 2	
30	AGH -4	5700 5900	ha hi granadiorne ha mënise parphyra	Virus grandreite dyke		·	1	1	
n	ACH-4	11600	to M parefects	Vina granderite	[1-7 A A A O A	1	ł	ام د	
32	WORK-4	103,79	de di gradoù veza	Venc grandonia	100 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0		ļa.	{ {	
33	ACH-4	150.50	to bigrossents	Virac praeced-ent-r	100 100 100 100 100 100 100 100 100 100			1 ! !	
38 35	AGH 4	235.50	bo di grandorite bo di grandorite	Ven pundoke Ven prodoke	1-18 A O A	1	1	1 1	
36	AGH-4	261.50	to di grapatante	Ven grandone	[A] A		۵[j l	
37	AGH-I	283,42	G Htq	Virac granoment		.	6		
.33	ACH -3	27.55	bo anderste porphyty	Andreite complex	1-14 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			} I	
37 40	AGH-5 AGH-5	5±00 80,00	be sedering peoplyty men by sodering peoplyty	Andreite complet Andreite complet	100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	,		i i	
- ñ	AC23-5	11120	po to page to topich bouleans	Andreite compres Audedite complete	Algia Cigari Iac		1	ļ	
42	ACIS-5	129.50	H-ha diorita	Itogos quartz diorite	AGE GGAA O COA	. [1	A I	
13	AGB -5	119,00	As assente perphyry mets to the specific	Advante complete			à		
44	AGH-5 AGH-5	175 00	porgénty	Andreite complet			f	اما	
41	ACS -3	236.20	N discité Do sa začesta posphysy	Region quarte destite Region quarte destite		•	lo	Γ 1	
47	ACH-3	253.30	white we	Program quarte district			ı.		
43	AGH1-5	274.50	uligified rock	Broggie quantz domine		1	2		calcine states calcine states
47 50	ACH-3	302 65	Earte Schools	Program quarte d'orale	46 6 0 0 0 0 F-146 10 10 10 10 10 10 10 1		ŝΓ	<u>. </u>	LANCKER STATES
51	AGH-3	306.00 349.60	N dronte Ni Socite	Progres grante diorne Expos grante diorne	[AD] Color Ada Quintentes, Circumso, Aine. Frience	uky.			
52	AGII-3	172.50	diorize	Region quarte diornie					
53	ACH-3	379.50	diojste	liogon quartz dionite		٠,			
54	AGH-6	2333	bo sudente porphyty	5h	400 000 0 000			:	100
55	AGH-6	50.50 87.00	bo bi totalite bo bi totalite	Region Engaint Region constant					
57	AGH-6	125.35	ho di torakte	Itegen tecsûnt				3 8	
53	ACH-6	155.5G	bo bi sendare	logon tonated	0 6 0 6 6 0 6 0 0				: "
59	VCH-4	204.19	bo & touster .	From a sometime	[a]c[[a] 6[6]c[a] [] [a]				
	<u> </u>	L							

App. 10 Distribution of alteration minerals around Itogon plug (1) (Neutral Hydrothermal Alteration Zone)

App. 10 Distribution of alteration minerals around Itogon plug (2) (Jarosite Zone and Gypsum + Calcite Zone)

App. 11 Chemical analyses for core samples of gradient holes

	3101 3101 3102 3102 3102 3102 3102	21.20 45.20 75.60 102.20 26.70 51.50 17.00	andestris tall breezia breeziated rock ho andesite peophysy bo andesite peophysy granodiorite granodiorite	Old plug Old plug Old plug Vitac grannodionite	60 68 56,90 56,94 54,25	(4.84 15.26 17.09	0.14 0.12 0.14	3.14 2.13	5.84 1,56	3.53	1.24	7	13	214	7	12	108	5	18	14	7	1	238	
3 AGU 4 AGU 5 AGU 6 AGU 7 AGU 8 AGU	31-1 31-1 31-2 31-2 31-2	75.50 102.20 26.70 51.50	po augesta bothyta po augesta bothyta	OH plus	56.94	17.09		2.73	1 62											1	,			85
4 AGH 3 AGH 6 AGH 7 AGH 8 AGH	36.1 30.2 30.2 30.2 30.2	102.20 26.70 51.50	bo andesite peoples sy	Old plea		100	9.14		1,34	: 3.02	1.66		16	144	6	15	133	5	17	16	17	10	237	71
5 AGH 6 AGH 7 AGH 8 AGH	11.2 11.2 11.2 11.2	26.70 51.50	rinobonite.		54.25	2		2.71	1,20	4 16	1.03	0	- 3	292	6	14	60	. 5	14	11	6	٥	350	83
6 AGH 7 AGH 8 AGH	3H-2 3H-2 3H-2	\$1.50	•	Virac erapodiorite		18.03	B 25	3.35	1.82	. 3.85	1.12	,	9	222	6	16	53	5 -	16	,	2	Ð	323	LBS
7 ACU 8 AGU	311-2 311-2		granodiozite		67,01	11.98	0.18	2.63	0.44	0.47	4.62	25	- 13	363	9	21	155	9	15	Ξ	39	. 5	13	179
8 AGH	3H-2	17,00		Vive granodiorite	59.58	17.43	0.22	3.00	6.01	3.69	2.44	0	8	465	9	17	45	5	to ·	13	19	3	323	- 149
			granodiorite	Virse granodiorite	60,83	15.30	0.13	2.76	4.93	3,72	1,54		8	162	11	30	103	5	6	16	٠	0	,264	101
la lacu		83.30	granodwrite	Virac granodiozite	65.55	15.78	6.23	3.65	0.57	0.59	4,19	4	14	316	5	27	51	5	25	, ,	41	3 -	8	196
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	171-2	95.00	granodiorite	Virac granodiorite	37.90	16 DL	0.31).10	5.78	3.33	2.29	0	19	443	10	22	19?	5	6	18	. 9	0	333	172
18 AGH	SH-2	118.50	granodiozite	Varac granultierite	60.01	17.04	0.32	3.06	6.00	3.18	1.81	. 0	9	214	9	18	194		ä	2.6	7	0	275	143
HE AGE	31.2	139.50	granodionite -	Virus grano tionite	57.29	17.56	9.19	2.59	6.41	4.15	1,87	-1	10	399	to l	13	38	3	6	n l	ř	.0	378	100
12 AGH	311-2	155.50	ho spl andesste posphyry	dyke	64 64	15.24	0.23	1.93	4.35	3.55	2.59	3	28	343	y	12	- 5	5	,	18	24	2	334	.199
13 AGE	36-3	164.50	ha-pl andeute porphysy	dyke	56.98	16.55	0.20	1.94	5.75	3.76	2.59	. 8	,	3?t	·8	19	10	. 5	S .	111	19	0	263	133
ÚL AGE	ja:-2	192.50	pranodiorite .	Vitae granediorite	\$4.70	17.58	0.19	3.41	7.67	4.16	1.78	0	13	343	10	22	104	5.	6	13,	20	2	376	190
15 AGE	38-2	213.50	granodiorite	Vitac granodiorite	54.76	12,29	6.17	3.21	6.59	4.35	4.28	.0	- 13	336	9	13	15	3		ĸ	12	٥	149	- 83
IS AGE	38-2	242.30	granodiorite	Virae granodiorate	59.28	15.58	0.18	2.88	8 66	3.76	2.38	0	17	197	10	22	62		5	10	11.	0	254	81
Is YOU	at-≥ [:	269.50	granodiorite	Vicae granodictite	55.85	18.30	0.17	3.09	7.54	4.23	2.75	0	12	366	9	13	114	5	6	12	15	0	353	8t.
18 AGH	34-2 ;	395.00	ha andesite pointing	σρλο	5805	15,94	0,30	2.55	4.21	0,74	3.86	37 [La ĵ	224		24	91	- 01	9	U.	21	· 3	39	336
19 AGH	itt-2 :	322.70	granodiosite	Vuae granodiorite	57.51	17.21	0.19	3.33	7.52	3,80	2.41	-6	- 13	325	9	-13	94	[6	ււ	12	ı	352	107
20 AGH	H-2	355.00	ho andesite porphyty.	dyke	60.90	17.31	0.15	2.15	5.36	4.31	2.81	3	18	332	9	,	13	. 5	7	[4	u	U	389	88
21 AGH	5.83	27.55	ho -pl andesite porphyry	Andesite complex	53.55	17.10	0.18	4.38	6.70	3.49	1.21	0	15	133	6	26	282	5	9	11	6	1	210	3.2
22 AGH	18-5	54.00	ho-pt andesite peophysy	Andente complex	52.33	t 8 26	0.18	3.80	8.59	4.23	1.90	2	17	281	5	23	220	5	8	15	19	2	283	101
23 AGB	iH-5	80.00	ha andesite porphysy	Andesite complex	53.70	17.91	0.16	4.06	8.91	3.25	1.21	٥	17	176	6	24	116	5	4	6	8	0	356	92
24 AGII	ins	111.00	ho andesite porphyty	Andesite complex	50.36	16.94	0.22	4.62	7.74	3.65	1.96	0	17	187	7	18	97	5	13	12	19	0	226	213
25 AGH	H-3	129.50	bi-ha diorite	Itogen quarte dierite	49.72	17.18	0.21	4.17	9.59	3.78	1.63	. 0	- 12	153	6	27	92	5	ij	17	15	0	253	123
26 AGH	ins 📗	149.00	he andmite peoply ty	Andesite complex	53.53	15.52	0.18	4.08	7.25	3,53	1.78	3 [.19	124	1	2)	2561	5	13	17	16	0	256	329
27 AGII	มเร	175.00	bo andesite peoply ry	Andente complex	53.63	16.16	0.22	1.18	8.68	3.76	1.42	0	17	238	6	32	262	3	10	L3	- >	١.	29K	52
28 AGE	18-5	201.50	bi diorite	Itogon quartz diante	57,78	15.39	0.07	3.34	5.08	2.86	1.69	9	18	129	Б	15	21	5	14	15	10		200	54
29 AGH	H-5 .	226.20	bo-su andexte porphyry	dyke	53.45	15.93	0.19	3.55	8,47	1.93	2.20		24	360	10	21	173		12	Ω	13	0	311	98
30 AGH	:H-S :	253.10	brecciated diorite	Etegon quartz diosite	53.34	(8.23	0.40	237	3,12	4.43	2.59	8.	21	209	4	16	33	. 5	16	14	21] د	213	216
31 AGH	an-s :	274.50	breceisted diorite	Stogon quartz diozite	36.58	14.65	0.11	3.25	6.69	3.69	1.90	0.	25	138	3	8	138	s	- 11	(3	16	3	311	103
32 AGE	atis ;	302.15	breegiated diorite	Storon quartz diarite	60.10	15.24	0.08	2.72	7.05	3.69	L.18	e	. 24	202	8	34	93	5	16	11	*	а	296	57
33 ACH	iiks :	326.00	brecciated diorite	Itogon quartz diocite	55,25	16.60	0 07	3.37	7.80	4,35	1.24	0	20	164	` 1	25	45	5	6	9	,	ū	394	-48
34 AGE	: K-5	349.60	brecciated diorite	ltogos quartz diorite	59.22	14.72	0.04	3.0i	6.82	4.16	1.39	1	23	202	. 8	14	154	5	10	ιŝ	10	3	336	55
33 ACH	H-5	372.50	becceiated diorite	Itogan quarte discrite	52.25	15.26	0.49	3.80	3.03	2.31	2.50	0	25	256	8	28	38	38	u l	LS	13	0	223	214
36 AGH	R-5	399.50	brecciated dionite	Itogon quarte diarite	54.59	14,79	0.29	3.35	7.37	2.71	1.93	2	25	240	8	17	115	27	13	LS.	21	3	263	97

ho : bornblende, pl : plagioclase au : augite

App. 12 Factor components

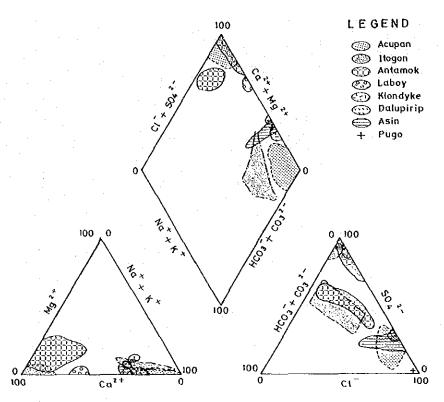
Factor		1		2		3		4		5
Contribution (%)		37.73		19.22		16.60		9.45		17.00
Elements and	SiO ₂	0.612	SiO ₂	0.649	MnO	0.889	Cu	-0.492	Ba	0.755
factor loadings	K ₂ O	0.708	MgO	-0.847	Hg	0.601	Pb	-0.728	Be	0.715
	As	0.775	со	-0.746	Zn	0.748			Li .	0.641
	Rb	0.777								
	CaO	-0.858								
	Na ₂ O	-0.765								
	Sr	-0.843								

App. 13 Analytical data sheet for spring water samples

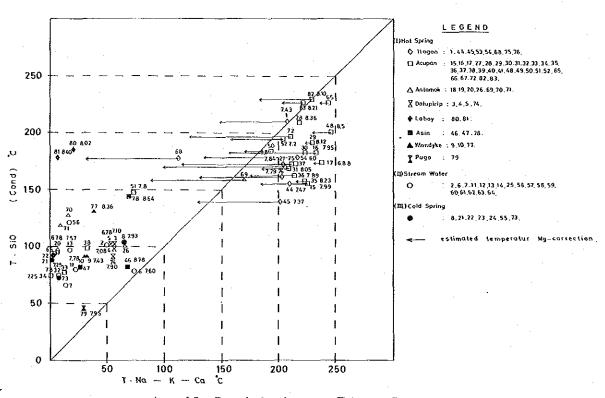
~~~~~					,					<u> </u>												
No.		1 .		2' '		3 .		4 1 11		5	ĺ	6	1	7		8		9		ED .		11
Location	ltogon		ltogen		Dalupin	P	Dalupiti		Dalupiri	P	Dalupiri	ir	Pulupiti	ip	Labelen		Klondy	kes	Klondy	kes	Kłondy	kes
Code	El		E3		14	19.2	E5		E6		£.7	-	₹\$ .		E9		1:10		EII.		E12	
Sampling Date	3, June,	82	3, June	. 82	3, June,	82	3, June,	31	3, June,	82	3, June,	82	3, June,	92	3, June	83	4 June	'82	4. June	.83	4. June,	82 .
T(°C)	50.5		27.0		44.0		41.0		43.0		32.0		21.0		23.5		39.0		45.0		24.0	
Н	7.43		7.61		7.10		20.1		6.78		1.60		7,50		7.93		7.43		7.78		7.48	
Conductivity (Rfcm)	2,348		1,701		1,361		1,429		1,361		201		315		199		2,025		2,348		451	
Discharge(Umin)			1		1-8		4.		1~8						7.5		1.5		3		·	
Chemi Ana	mgiC	ring A	op (	m.rq/t	mg/f	m.eq/f	mg/l	in eqt?	mg/C	m.eq/f	mg/C	m.eq/R	Tigm	m.eq/C	me/l	m.eq/C	Prent	fi.eq/t	me/C	m.eq/f	mg/€ .	m.eq/R
Na *	416	18.095	81.0	3.654	300	\$.699	208	9.047	200	3.699	8.00	0.348	12.5	0.544	6.50	0.283	304	13 223	388	16.877	8.50	9.370
к*	65.0	1.662	14.0	0.358	5.60	0.143	5.00	0.153	5.50	0.141	tt		1.50	0.033	le .		2.40	0.061	2.30	0.059	3.90	0.100
C*s+	9\$.0	4.590	309	15,419	\$7.0	4.341	94.0	4.691	96.0	4.790	28.0	1.397	38.0	1896	29.0	1.447	116	5.788	132	6.587	76.0	3.192
Vig 2 *	9.00	0.741	16.3	1.141	10.7	0.880	8.70	0.716	11.3	0.930	5.60	0.461	7.20	0.592	1.10	0.362	1.50	0.123	11	-	7.07	0.582
ci.	145	1.090	101	2.933	45.4	1.281	47.2	1.331	: 43.B	1.235	4.17	0.118	19.2	0.542	4.08	0.115	436	13.703	597	16.839	7.09	0.200
so	586	12.201	758	15.782	588	12.243	639	13.305	586	12.201	5.50	0.115	67.8	1.412	8.25	0,172	296	6,163	340	7.079	123	2.561
HCO2	660	10.817	47.0	0.770	6.10	0.100	8.54	0.140	7.32	9.120	87.8	1.439	62.2	1.019	97.6	1.600	30.5	0.500	10.2	0.659	70.2	1.151
$\omega_{1}$																		-	<del> </del>		ļ.——	
H2CO1				1	I													-		-		<b></b> -
Li	2.10		12	1 :	1r	-	ŧ:	-	lt .								le		tz			<del>                                     </del>
As				<b>!</b>						:									-			
В	9.63	0.891	11	-	łr.		ır	-	25	-							2.38	9.220	3.95	0.365	tr	-
S ₁ O ₂	199	4.976	49.3	0.821	50.5	0.840	46.9	0.781	50.1	0.834	29.2	0.486	21.2	0,353	52.8	0.879	39.1	0.651	39.6	0.659	30.1	0.501
NH4*																	-					
T.S.M.(mg/f)	1,287.6		1,331.6		993.1		1,058.3		1,000.0		168.3		229.6		202.6		1.277.9	•	1,543.0		325.9	
ARalinity																						
Acidity		- 1		•						i		j										
Remarks	hot sprin	B	Atream v	rater	hat sprir	ŗ.	hot sprin	18	hot sprin		stream v	vater	Stream W	ales	cold spri	uk	hot spri	V.	hot spri	mg .	Stream v	rater
Reference	6.F.D. (9/Aug/S	(2)	do		da,	•	do		do		đo		do		do		do		do		do	

No.	1	2	1		1	4	_ '	5	1	6	] 1	17		.8	1	19	:	20		21	2	22
Location	Kennon	Rd.	Kenton	Rđ.	Kennon	Rd.	Anspan		Acupan		Acupan		Antamo	·k	Antemo	ok	Antamo	x ·	Batuan		Batuana	
Code	E13		E14		EIS		F16		E17		Ei8		E19.		E20		E.21		E22		F23	
Sampling Date	4 June	782	4 June	82	4, June.	82	5, June,	22	5, June,	82	5, luce	82	7, June,	*82	7. June	32	7. June.	82	7, June	82	7, June	82
t(°C)	21.0		23.0		19.0		62.0		85.0		80.0		19.0		20.0		18.0	1.	18.5 -		19.0	
pH	7.62		7.76		7.28		1.99		7.95		6.83		7.07		6.20		6.78		6.62		6.73	
Conductivity ((E/cm)	134		374	· .	515		4,931		4,514		4.839	1	835	11.1	1,895		1.656	176	121		133	
Discharge(Umin)							5				İ		10		10 -		10					
Chemi, Ana.	ang/É	m.eq/l	mg/L	m.eq/2	mg/€	m.eq/t	mg/f	m eq/£	mg/R	m.e.1/8	mg/l	m.eq/ft	ng/t	m.eq/f	tag/R	m.ro/P	നു/2	:n.eq/l	mg/E	m.eq/k	inst\g	m.eq/8
Na ⁺	7.00	0.304	6.00	0.261	6.05	0.263	939	40.844	830	36.103	949	41.279	2.50	0.326	17.0	0.739	13.2	0.574	9.20	0.400	8.24	0.358
κ+	0.28	0.007	2.90	0,074	1.46	0.037	156	3.990	134	3.427	152	4.143	1.0	0.026	3.24	0.033	4,24	0.108	0.30	0.008	0.30	9.003
Cr1+	16.8	0.838	55.9	2,789	84.8	4.232	130	6.487	45.6	2 275	54.4	2.715	151	7.535	425	21.203	310	15.469	7.20	0.359	6.40	0.319
Mg ²⁺	2.20	0.181	6.53	0.537	8.50	0.699	8.50	0.724	8.33	0.690	2.00	0.165	24.2	1,991	27,0	2.222	63.0	5.184	4 20	0.346	6.25	0.514
a'	9.93	0.280	9.93	0.280	13.0	0.367	1,302	36.725	1,223	34.495	1,257	35.455	18.9	0.533	14.2	0.401	8.56	0.250	6.20	0.175	4.73	0.133
SO42-	7.00	0.145	91.9	1,913	194	4.039	366	7.621	351	7.308	305	6.350	319	6.642	1.24)	25.839	1,006	20.945	3.57	0.074	36.7	0.764
нсо,	29.9	0.490	12.2	0.200	28.7	0.470	352	5.769	122	1.999	515	8.440	210	3,442	40.9	0.670	85.8	1.406	72.6	1.190	35.0	0.574
$\omega_{j_{s}}$								-	i		-											
н,со,																		-:-				
Li				- 44			4.60		4.50		5.10							-				
As									i													
8						_~~	35.6	3.293	33.1	3.525	43.9	4.061										
5103	13.4	638.0	44.6	0,142	19.1	0.31%	133	2.280	106	3.429	182	3.029	33.3	0,461	37.4	0.622	44.6	0.742	37.0	8.616	40.3	8.671
NH ₄								<u> </u>														
T.S.M.(mg/l)	96.5		230.0		356.2		3,416.4		2.958.1		3,470.3		759.3		1,805.7		1,535.7		140.3		137.9	
AlkaLoity	1								!			- 1										
Acidity	L		L		Ľ.				ĺ			l										
Remarks	stream w	rater	stream z	*alet	Strtam w	ater	bot spria	·s	hotsprig 3,300L	ų.	hot spris 3,1501	n¢	co3d spri 400 L	ing	cold spri 400L	ing	cold spri 400L	ing	cold spr	ing	cold spri	ing
Reference	B.E.D. (9/Aug/	32)	do		do		do		do		do		do		đe		do		đę		do	

															_				·			
, No.	2	3	2	4 .	2	5	3	6	2	7		.8	1	•	3	10	3	11		32		33
Location	Batuang		Batuang		Antemo	k	Antemo	k	Acupan		Venbru		Acupan		Acupsa		Arupan		Yentau	·	Acupar	A
Code	£24		E25		E26		Antamo	k	Denquel	t-I	Benque	1-3	Benque	.3	Bengge	id ·	Benque	13	Beggue	1-6	Benque	1-7
Sampling Date	7, Juce,	83	7, June,	82	9, June,	82	Ī		19, Aug	.71	18, Aug	., 11	19. Aug	. 77	19, Aug	.11	18, Aug	,77	19, Au	17, '71	19, Au	8.77
T(°C)	19.0		18.0		17.5		37,0		T9.5		99		80		12.5	. •	64,5		55	7. 1	73	
pll	5.51		5.30	· ·	6,19		3,35		7.84		8.36		-		8.12		8.03		7,80		1,25	
Conductivity (40/em)	518		647		258	7. 7.	4,653	3.7														
Dischuge(C/min)	1		0.5		20		1		40				30		2~3				70		63	7
Chemi. Ans.	mg/P	ar cols	ing/R	m.eq/k	mg/R	Mps.m	mg/R	m.eq/g	m _ž jig	m.eq/l	mg/ft	m tqil	mg/R	m.eq/R	mg/Q	m.eq/R	mg/Q	m eq/f	me/l?	m.eq/9	EW/E	m.eq/R
Na*	12.6	0.548	14.8	0.644	\$,10	0.222	360	15.659	866	37.669	1.245	54.154	1.077	46.846	990	43.062	856	37.234	37	1.609	'a .	1.783
K*	0.61	210.0	0.23	0.019	0,60	0.015	22.3	0.570	117	2.992	138	4,553	158	4.041	138	3.530	122	3.120	3.9	0.100	4,7	0.120
Calls .	49,0	1.996	49.6	2.475	32.0	1.597	580	28.942	121	6.038	195	9.731	57	2.844	67	3.343	510	10.479	438	21.856	408	20,359
Mg ^{3 *}	28.6	2.370	39.0	3.209	7.75	0.638	94.0	7.735	5.4	0,444	0.3	0.025	2.0	0.165	2.2	0.181	8.3	0.683	11.2	0.922	8.5	0.699
a,	1,09	0.200	2.95	0,083	2.36	0.067	613	17,290	1,202	33.904	1,550	43,720	1,405	39.630	1,243	35,202	1,260	35.540	-7	0.197	12	0.333
2042.	230	4.739	247	5.143	52	1.033	2,199	43.786	392	8.162 .	332	6.913	540	11.243	495	10.306	410	8.537	1,440	29.983	1,420	29.566
HCO3	16.5	0.210	22,4	0.367	83.9	1.375			157	2.573	278	4.556	-		198	3.245	- 316	5.507	87	1.476	85	1.393
CO32.								_	2	0.067	10	0.333	-	-	-1	0.133	3	0.167	1	0.033	0	0.000
1t1CO3								i	6	0.097	3	0.043	-	-	4	0.064	8	0.129	3	0.048	10	0.161
Li					I		2.40		4.2		7.0		5.9		5.6		: 4.6		0.03		0.07	1
A1 .			1						<del> </del>													
В							10.60	0.981	47	4.348	68	6.290	55	5.038	57	5.273	47	4.34\$	< 0.05	0.005	0.96	9.089
SiO ₃	34.1	0.568	39.0	0.649	21.8	0.363	47.6	0,792	127	2.946	295	4.910	236	3.928	206	3.429	167	2.179	26	0.433	28	0.166
NH4 ⁺																					:	
T.S.M.(mg/X)	369.7		415.5		205.5		3,926.5		3,092.4		4,154,3		3,530.0		3,409.2		3,429.3		2,054.2		2,018 2	!
Atkalinity													<b>!</b>			ł						
Acidity																						
Remarks	cold spri	ng	coki spri	ing ·	ոկդերը ձ	ater	hot sprii 1,850£	ıř	hot sprii 3,3001	ng	hot spri 3,1501	ng	hat sprii 3,150L	¥.	hot sprii 3,850L	Ą,	bot sprin	ng .	hot spri 3,150L		Not spri 3,1501,	•
Reference	B.E.D. (9/Avg/	82)	đo		do		đo		KKTA (Sep)77	)	do		đo		do		đo		đo		da	


No.		34		35		36	İ	37		38	l	39		40	Γ	 41		42	Ϊ.	43	·	44
Location	Acupar	1	Acupa	1	Асцера		Acupar		Acupan		Acupat	 a	Acupa	ı	Arupar	·	Atupa	,	Acupt		Itogon	
Code	Benque	1-8	Велари	1-9	Benque	ŧ-10	Benque	F11 .	Bengue	t-12	Benqu:	:1-13	Bengue	144	Besque	t-15	Benque	1-16	Benge		Benque	
Sampling Date	19, Qu	t. 77	20, Au	. 77	20, Au	.,'22	20, Au	., '27	20, Aug	. 77	20, Au	£. '77	20. Au	2., '22 .	20. Au	t 11	20, Au	. '37	10. Au	z '11	19, Au	
T (°C)	57		65		52		97		63		51.5		-	-	45		24		13		94	
pH	7.25		8.23		7.89		-		7.57		7.04		7.61		7,75	-	-		-		7,47	-
Conductivity (µU/cm)																						
Discharge(Umin			15		10		.<ı	- F.		<b>.</b>	8				50		200		20,000		5	
Chemi, Ana.	mg/Q	m.eq/C	mg/C	m cq/k	m _p /C	m.eq/l	m#f£	meq/C	mg/f	m.eq/E	mg/l	m.eq/l	Ny S	m.eq/f	mg/C	wedy	mg/C	m.eqf	me/R	ni eqil	mp/L	m.co/
Na .	23	1,000	845	36.755	942	40.974	1,041	45,281	85	3.697	32	1.392	42	1.827	41	1.914	18	0.783	124	5.394	570	24.793
K ⁺	3.3	0.084	118	3.018	124	3.172	139	3,555	7.2	0.154	2.2	0.056	2.8	0.072	3.0	0.077	1.7	0.043	15	0.384	81	2.072
Ca2+	425	21.208	50	2,495	98	4.890	119	5,938	312	15.569	505	23.200	592	29.541	550	27,445	274	13,673	445	22.206	86	4.291
Mg ^{2†}	12.0	0.987	1.7	0.140	7.0	0.576	L3	0,107	2.9	0.239	11.0	0.905	3.4	0.280	3.8	9.313	12.9	1.062	15.9	1.308	4.0	0.329
α	88	0.226	935	26.313	1,142	32.212	1,360	38.361	12	0.338	6	0.169	7	0.197	10	9.282	<5	1+1.0	151	4.259	397	11.198
\$04 ³⁻	.400	29.150	740	15.408	622	12.951	438	10,161	1.000	20.821	1,520	31.648	1,500	31.232	1.475	30,711	770	16.032	1,185	24,673	655	13.638
11003	173	2.835	158	3.031	266	4.360	_		72	1.150	259	4,245	195	3,196	192	3,147	-	_		_	473	7.753
CO,2.	0_	0.000	٠. ٢	0.167	3	0.100	_			0.933	0	0.000	2	0.067	2	0.057	-	_	_		2	0.067
H ₂ CO ₃	21	0.339	3	0.048	8	0.129	_		4	0.064	58	0.935	10	0.161	6	0.097		_ :	-	_	33	0.613
Ц	0.05		4.4		4.7		5.2		6.10		0.07		0.05		0.07		0.05		9.61		3.0	
As :																						
8	< 0.05	0.005	31	2.863	45	4.163	55	5.085	0.05	0.005	< 0.05	0.005	Q.32	0.030	< 0.05	0.005	< 0.05	0.035	7.8	0.722	24	2.220
SiQ ²	26	0.433	140	2.330	153	2.546	177	2.945	46	0.766	36	0.599	35	0.566	32	0.533	30	0.499	32	0.533	137 .	2,280
NH4*		i																				
T.S.M.(mg/t)	2,071.4		3,036.7		3,410.0		3,350.3	_	1,542.2		2,429.3		2,388.5		2,317.9		1,111.7		1,975.7		2,467.0	)
Alkalinity																				- 1		
Acidity						j						ļ				į				- 1		
Remarks	hot spri 3,1501,	ng	hot spri 1990.		hol spri 2,900L	ng	hot spri 2,900 L	72	hot sprii 2,900 L	ng	hot spri 2,900 t.	az	hot spri 2,900 L	n¢	ho# sprii 2,950 L	ng	mine de 1,500L	zinage .	mine da 2,000 L		hot spri	ing
Reference	KRTA (Sep./7)	))	đo		đo		do		do		do		Jo.		do		do		đo		đo	

No.	4	5		6	1	1 .	4	3	*	,	5	0	5	1	,	1	S	3	. 5	14	5	\$
Lucrion	Hoson		Áďn		Asin		Acupan		Acopen		Acupan		Acupsa		Yenna		Itogon		Hogon		Batuang	
Code	Benguet	-19	Benque	-30	Benquet	31	ยเหเ		81.0-5		81 (3-3		BFD-1		REDS		BFD 6		8ED-7		BID8	
Sampling Date	19, Aug	, '17	Il, Aus	ווי	21. Aug	, 77	25, Oct.	,78	25, 0cm	'7\$	25, (), (	. 78	25, Oct	,75	25, Oct.	.78	25,001	, 7B	25, Oct.	78	26, Oct	. 78
T(°O	85	. :	70		41		96		87		6t		59		79		86		75		20	
pti	7.31		8.78		1.43		8.5		5.8		88		7.8		7.7		6,3		6.0		2.7	
Conductivity (ID/cm)			1		1		4,113	•	] .		4,478		1,757		1,267		1,470		2,323		638	. 1.7
Discharget (min)					2.5		60		<6		30		wy low		10		20		10		30	
Chemi Ana	ng/C	nt.eq/f	##18	m.cq/f	me/E	m.eq/C	trigit!	m odly	Piym	m.eq#	Plym	medig	mete	10.eq/€	Magn	in eq/E	mg/Q	m.eq/l	ng/6	m.eq/ft	m.eq/R	. :
N1 [*]	355	15.441	523	22.749	122	5.307	783	34.058	<u>-</u>	[-	775	33.710	187	8.134	750	32.623	183	7.960	376	16.355	8.67	0.377
K [†]	56	1.432	11	0.281	LF	0.043	125	3.197	-		88.2	2.256	18.5	0.473	88.2	2.256	36.1	0.923	62.2	1.591	D.57	0.015
O ₁ ,	152	7.585	222	11.078	64.	3.194	12.2	0.609	2.	-	234	11,677	226	11.277	85.7	4.276	103	\$.140	\$4,3	2.710	47.4	2.365
Me ^{2*}	16.0	1.317	N.D.	0.000	5.0	0.411	E.\$	9.123		-	to.	0.823	2.63	0.216	7.31	0.602	17.2	1.415	7.81	0.643	16.6	1.366
a .	233	6.572	635	23.552	200	5.641	984	27.755	-	-	1,110	10.617	204	5.754	1,110	31.309	417	11.752	191	5.387	24.2	0.683
504 ² .	670	13.950	475	9.890	108	2.249	407	8.474	-	-	449	9.349	584	12-160	272	5.663	560	11.660	481	10.015	447	9.307
нсо,	347	5.687	26	0.426	170	2,786	332	6 261		-	393	4,786	126	3.065	168	2,753	244	3.999	387	6.343	-	-
$\omega_{i}$	α.	0.000		0.067	0	0.000									-	-	<b></b>					
н,со,	34	0.548	0	0.000	21	0.339			····					1	<b></b>	<del> </del>	<u> </u>	<del> </del>	· · · · · · · · · · · · · · · · · · ·	<del></del> -		<u> </u>
Li	1.8		0.2	i	0.1	·	3.36	İ	-	-	4.11	ļ	9.48		4.55	<u> </u>	1.28		2.50	t	-	-
As				1		1	- 2 25	!		-	2.50	ļ ———	-	<del>                                     </del>	4.0		0.4		1.0		-	
B	9,5	0.879	9.5	0.879	3.3	0.305	38.9	3 599	-	-	10.9	3.784	5.26	0.487	41.8	3.867	3.57	0.330	13.7	1.267	-	-
\$ ₁ O ₂	163	1.714	32	0.533	32	0.533	267	4,414		-	210	3.495	118	1.964	244	1.061	172	2.863	195	3.245	81.3	1.353
NH4*							0.05		0.38		0.046		0.035		0.011		0.043		0.636		0.040	1
T.S.M.(mg/\$)	1,975.5		2,135.5		727.0		3.000.6				3,539.1		1,471.4		2,767.0		1,735.9		t,768.0		625.7	
Alkatinity							1												1			
Acidity									ļ													
Remarks	hot sprin	*	hot spri	*	hotsprin	a.	hot sprin 2,900L		hut sprin 3,150L	Ł	hot sprin 3,150L	A	hot spris 3,150L	ng	hot sprit 3,300 L	ve :	hot spair	18	hot spri	ng	cold spr	ing
Reference	KRTA (Sep.)77		da		do		Bt D E L (Ecb./79		do		do		do		do		do		da		do	


No.	5	5	5	7	5:	В	59	9 .	6	9	6	1	6	2	6	3	6	4	,	55		56
Location	Batmang		Batuang		Virue		Yirac		Virac		Balingu	ý	Itogon		Itagon -		Yenbra		Acupan		Acupan	
Code	BED-9		BED-19		BED-11		BED-12		BED-13		BED-14		BED-15		BED-16		BED-17		76-8-3		76-B-4	
Sampling Date	26, Oct.	78	26, Oct.	78	26, Oct.	78	26, Oct.	75	76 Oct.	78	30, Oct.	78	1, Nov.,	78	1. Nov.,	*78	31, Oct	, 78	<u></u>			
T(°C)	30		19_5		20		20		- 20		20		20 .		20		20		63.7		45.1	
pH	3.9		4.2		7.3		8.2		8.0		8.0		7.4		7.4		7.2					
Conductivity (LV/cm)	532		247		275 .	:	224		183	-	179		104		134		870					
Discharge(R/min)	·		6,000		600 ·		6,000		6,000		300		400		400		500		1			
Chemi, Am,	mg/ll	m ou /k	क्त्रु∤१	m.eq/%	3 iga	m.eq/P	fign.	m.eq/f	mg/E	w.ed.8	mr/R	m.eq/R	mg/R	m.tq/l	mgle	m.eq/2	ngjt	m.eq/R	mg/K	m.eq/l	mg/R	m.eq/1
Na [†]	10.0	9,435	7.33	0.319	4.0	0.174	4.67	0.203	6.33	0.275	5.67	0.247	2.67	0.116	2.67	0.116	7.50	0.326	1,350	59.156	25	1.987
K*	0.86	0.022	0.43	0.011	0.29	0.007	0.43	110.6	0.29	0.007	0.43	9.011	0.14	100.0	0.29	0.007	1.43	0.037	200	5.115	4.0	0.102
Ca ²⁺	12.7	0.634	13.0	0.649	42.6	2,126	30.4	1.517	20.0	0.998	47.8	2.385	19.6	0.978	23.5	1.173	220	10.978	30.5	1.522	489	24.401
Mg ² *	8.75	0.720	9.31	0.765	5.88	0.484	9.69	0.797	7.63	0.628	8.13	9.669	1.88	0.155	2.81	0.231	20	1.646	1,83	0.151	4.43	6.365
a,	24.2	0.683	27.8	0.784	3.55	0.109	1.43	0.125	3.55	0.100	3.55	0.100	3.90	0.110	4.14	0.117	6.50	0.183	1,720	48.515	3	0.085
\$0.2°	284	5.913	115	2.354	36.5	1.803	50.9	1.060	33.3	0.693	25.3	0.527	5.89	0.123	18.5	0.385	469	9.765	394	8.204	1,210	25.194
HCO3	-	-	-	-	71.6	1.173	80.8	1.324	77.1	1.264	145	2.376	69.8	1.144	734	12.030	126	2.065	394	6.457	150	2.458
CO,2-							$\overline{}$		_			·				-		<b> </b> -			-	
H ₁ CO ₃																						
U	-	-		-	-	-	-	-	-	_		******	-	-	-		-	-	6.75		< 0.01	
As	-	-	-	-	-	-	-	-	-	-				-	-		_	-				
В	-	-	-	-	-		-	-	-		-			,-	-	- '. "	-	-	5.88	0.544	< 0.1	0.009
S ₁ O ₂	74	1.232	59	0.982	24.2	0.403	27.4	0.456	42.1	0.701	49.6	0.826	45.8	0.762	23.i	9.384	27.2	0.453	372	6.191	40.7	0.677
NIG ⁴	0.049		0.050		0.015		0.140		0.015													
T.S.M.(mg/%)	414.5		231.7		238.7		208.7		190.3		285.5		149.7		809.0		277.6		4,418.2		1,726.2	
Alkalinity	j											į							İ			
Acidity	l .																					
Remarks	stream w	ale;	stream w	ajet	sicenn w	ater	stream w	ales	SI réam w	ater	stream w	ater	stream w	ater	stream w	ater	stjezn w	aler	hot spris 3,150L	8	hot sprir 2,600L	
Reference	BED EL (Feb./79		do .		đa		đo		do		đo		do		do		ತು		Sawkini et. al., (		đo	

	·														·					<u> </u>		
No. :	. 67	1	6	8	- 6	9	7	0	3	l	. 1	2	7	3	7	4	,	5	1	16		37
Location	Acupan		ltogon		Anlante		Antomo	k	Antomo	k	Acupan		Acupan		Datupiri	P	Itogon		Rogón		Klondy	ke
Code	76 B 3		76 B 11		76 h 12	•	76-B-14		76-8-15		76-R-26		76-9-27		DA		IT-1		1T-2		KL	
Sampling Date				FF 7.5											24, Sep.	, 33 .	24, Sep.	, '82	39, Sep	. 182	25, Sep	. 82
TCO	46.1		87.9		\$1.7		40.6		46.1		61.1		CoM		42,5		89.5		67.2		49.5	:
На				· · · · ·								٠.			7,90		7.68		7.79		8.36	
Conductivity (autom)										•										7.7		
Discharge(V/min)				·							1				50							
Chend. Ana.	mg/ft	m.eq/R	mg/g	m.eq/8	mg/R	m.eq/f	mere	m.cq/Q	mg/g	m.eq/E	mg/ft	m.eq/l	mg/E	m.eq/f	mg/k	m.eq/C	Marie	m.eq/R	mark	m eq/R	mg/R	m.eq/R
Na [†]	30	1.305	620	26.968	620	70.465	167	7.264	120	5.220	920	40.017	8.3	0.361	71.0	3.038	267.0	11.614	332.0	14.441	397.0	17.268
K*	4.3	0.110	8.6	0.220	107	2.737	6.1	0,156	4	0.102	110	2.813	1	0.051	2.8	0.072	43.8	1.120	53.5	1,368	≥.8	0.012
C31	509	25.399	13.2	0.659	565	18.194	1,000	19.900	753	37.575	??	3,842	19	3.942	19.9	0.993	90.6	4.521	134.0	6.687	124.0	6.188
Mg ^{2 *}	4.25	0.350	8.3	0.68)	92.0	7,570	20.5	1.687	19.1	1.572	14.1	1.160	12	0.987	2.8	0.230	12,6	1.037	14.2	1.168	0.2	0.016
cı.	4.4	0.124	516	14.554	890	\$3.310	828	23.355	302	8.518	1,270	35.822	3	0.085	7.0	0.197	55.0	1551	64.0	1.805	555.0	15.655
504 ²	,370	28.525	180	9.994	660	34.563	1,360	28.317	2,240	25.818	87	1.811	165	3,498	125.0	2.603	600.0	12.193	600.0	12.493	355.0	7.392
HCO2.	162	2.655	522	8.555	886	14.521	590	9.670	758	13.079	470	7.703	110	1.893	98.0	1.606	294.0	4.818	600.0	9.833	17.0	0.279
CO35.								i			l				0.0	0.000	0.0	0.000	0.0	0.000	. 0,6	0.020
насо,												1			0.0	0.000	0.0	0.000	0.0	0.000	0.0	0.000
li	< 0.01		2.80		1.05		0,40		0.5		4,0	i	< 0.01		< 0.1		1.4		2.0		< 0.1	<del> </del> -
As																				- <del>-</del>		i —
В	0.12	0.011	2.35	0.217	4.83	0.447	0.64	0.059	0.52	0.046	3.95	0.376	<0.1	0.009	0.3	0.028	- 4.5	8.416	5.9	0546	4.9	0.453
SiO ₂	42	0.599	191	3.179	143	2.380	82.3	1.370	69.5	1.157	254	4.227	24.8	0.413	39.0	0.649	178.0	2.963	151.0	2.513	88.3	1.470
NH.	]											l					·					1
T.S.M.(mg/f)	2.126.1		2,361.5		6,967.8		4,034.5		3,306.1		3,206.1		407.2		345		1,436		1,636		1,548	
Alkalinity											i				1.60		4.80		9.80		0.20	
Acidity					ŀ		ļ				}				0.10		0.20		0.30		0.00	
Remarks	hot sprin 2,600 L	ė	not renir	ı,	hot sprir 1,850L	·\$	hat spris 1,850£	ĸ	hot spriv 1,550L	ış.	hot sprii 3,150L	n2	cold spr 1,500£	ng.	hot sprii	ĸ	hot sprů	A.	hot spri	25	hot spri	, s
Reference	S1%kins (1979)	F.J. et al	đo .		do		do		do		do		do		BED-31( (1982)	A	40		do		do	•

No.	7	8	7	9	. 8	0 .		1	8	2		3		H								
f,pcation	Asin		Pago		Laboy		Laboy		Аспрая		Acupan	•//	Ling									
Code	AS		PU		LA-I		1.A-2		BA-1		BA-2		103C									
Sampling Date	15, Sep.	.83	26, Sep.	82	27, Sep.	. 82	27, Sep.	. 182	28, Sep.	, 82			15, Apr	., '85								
τ(°C)	73.8	٠.	36.3		47.5		47.5		81.0		62.1		66.0									
pН	8.64		7.93		8.0}		8.40		8.10		8.21		8.30									
Conductivity (ACCum)													]									
Discharge (Umin)	not sure		S		10		15		25		60~30		Ξ.									
Chemi, Ang.	mg/C	m.eq/g	mg/¥	m.co/2	mg/C	21 ps.m	mg/ft	m.eq/f	mg/ft	m.eqft	mg/Q	m.cq/E	m/kg	m.eq/C	28/f	m.eq/fi	Mag	m.eq/l	mg/f	ന.നൂറ്റ	mų/€	m.eq/£
Na *	525.0	22.836	570.0	24.793	162,0	7.047	145.0	6.307	892.0	38.799	942.0	40.974	260	11.3								1
K ⁺	12.0	0.307	3.0	0.071	2.8	9.072	1.6	0.041	129.0	3.299	145.0	3,709	5.8	0.15				i				l
Ci ²⁴	243.0	12.126	277.0	13.822	241.9	12.026	257.0	12.824	41.9	2.091	146.0	7.285	160	7.93								l .
Mg ^{2 †}	0.1	600.0	6.1	0.008	6.8	0.066	0.1	800.0	5.0	0.411	5.4	0.444	0.24	0.02								
o'	753.0	21.521	,200.0	33.848	6.0	0.169	6.0	0.169	1,280.0	36.104	1,270.0	35.822	277	781				Ì				
SO42.	217.0	4.518	2.0	0.042	930.0	19.364	910.0	18.947	385.0	8.016	420.0	8,745	646	13.4					37			Π.
HCO ₃	10.0	0.164	-24.0	0.393	27.0	0.443	13.0	0.213	19.0	0.311	541.0	8.867	Tr	0.09				i !				1
CO ₃	9.6	0.320	0.0	0.000	0.0	0.000	0.6	0.020	0.0	0.000	0.0	0.000	0.0	5,000	i							1
H ₂ CO ₃	0.0	0.000	0.0	0.000	0,0	0.000	0.0	0.000	0.0	0.000	0.0	0.000	0.0	0.000				i				1
u	0.1		< 0.1		<0.1		<0.1		5.2		5.5		0.21									1
As		i——										1						1				
В	9.1	0.842	5.1	0.472	0,1	0.009	0.1	0.009	39.5	3.654	42.9	3.969	10.6	0.981				Î				
SiO ₂	113.0	1.881	12.0	0.200	215.0	3578	194.0	3.729	388.D	6.458	374.0	6.225	49.8	0.829		<u> </u>					·	<u></u>
NH.	-			Ī														L.,				1
T.S.M.(mg/%)	2,427		2,598		1,563		1,465		3,396		3,748	į		-								
Alkalinity	0.50		0.40		0.50 .		0.20		3.20		8.90							1				
Acidity	0.00		0.10		0.10	. :	0.00		0.30		0.1G			-								
Remarks	hot sprii	e a	hot spri	ng	hot spris	ng.	hot spri	OE .	hot spriz 3,300L	ns .	hot san 3,159L	ngs	hot spri	ng								
Reference	BED-J10 (1982)	:A	do		do		do		đo		đa .		BED (1985)									



App. 14 Key diagram for spring water samples



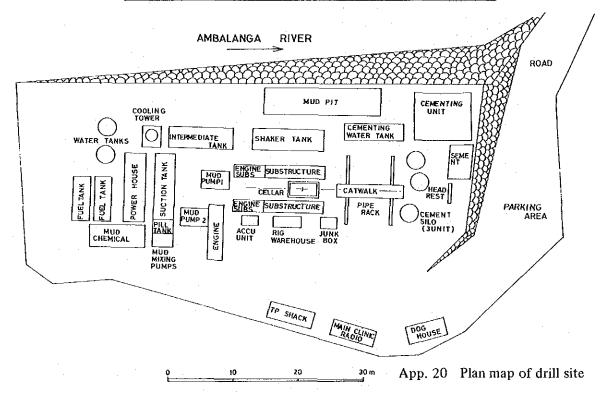
App. 15 Correlation between Tsio and T_{Na-K-Ca}

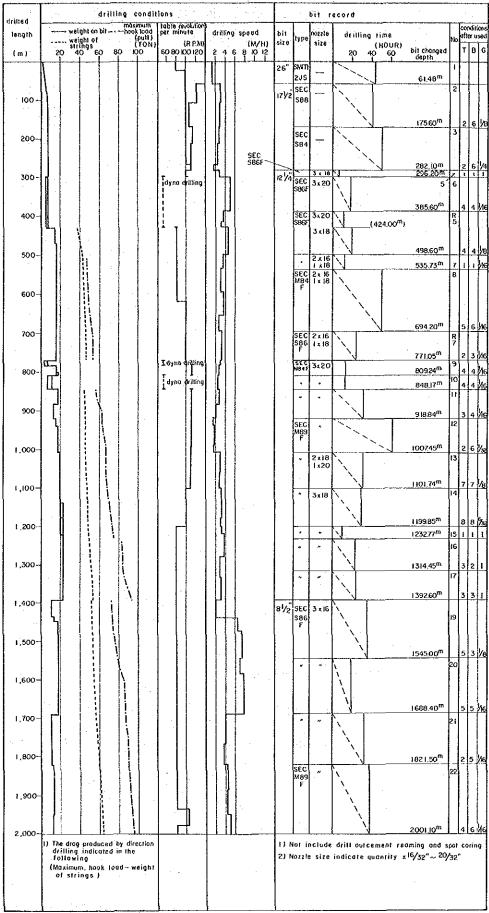
App. 16 List of O/H isotope analyses

Sample No.	Sample Location	Temperature (°C)	Disoharge (l/min)	PH	δ D (0/00)	δ ^{1 8} O (0/00)	Remarks
1	AGH-1 Drill Hole	66.2	2	7.0	-58,9	8.6	Nov., '83
2	Ambalanga River	73.8	3	7.0	-59.6	-9.3	
3	Acupan Mine 2900L	35.9	100	7.0	-66.7	-10.6	**
4	Acupan Mine 2900L	43.5	50	7.0	-70.8	-10.8	
5	Acupan Mine 2900L	41.7	150 ~ 100	7.0	-70.2	-10.9	"
6	Acupan Mine 2900L	65.0	.5	7.5	-57.8	-8.1	,,
7	Acupan Mine 2900L	90.0	10	7.5	-56.5	-8.9	
8	Acupan Mine 2900L	65.0	2	7.0	-55,5	-8.7	"
9	Acupan Mine 3150L	75.0	70	7.5	-55.2	-8.4	"
10	Acupan Mine 3150L	80.0	60 ~ 50	7.5	-64.7	-10.1	"
11	Acupan Mine 3150L	80.0	60~50	7.0	-68.0	10.7	"
12	Acupan Mine 3300L	57.1	25	7.0	-57.0	-7.8	
13	Acupan Mine 3300L	85.8	30~25	7.5	-59.6	<b>-7.6</b>	. "
14	Acupan Mine 2300L	32.8	100 ~ 50	7.0	-68.7	-10.3	"
15	Acupan Mine Drainage Tunnel	73.1	5	7.5	-68.0	9.5	Sep., '82
IT-I	Itogon Hot Spring	89.5	1	7.7	-67.2	-9.8	**
IT-2	Itogon Hot Spring	62.2	Total 10	7.8	-67.6	-9.6	,,
BA-1	Acupan Mine 3300L	81.0	25	8.1	-62.3	-7.7	"
BA-2	Acupan Mine 3150L	62,1	60 ~ 80	8.2	- 62.5	-7.6	22
DA-ST	East of Dalupirip stream			1	-71.0	10.1	,,
PRE	Precipitate at Baguio city				66.9	-9.9	· n
Errors					± 2	± 0.1	

App. 17 Chemical analyses of water samples on Phase II survey

Sample No.	Sample	Location	Temp.	pН	Na (ppm)	K (ppm)	Ca (ppm)	Mg (ppm)	Li (ppm)	B (ppm)	SiO ₂ (ppm)	SO ₄ (ppm)	HCO ₃ (ppm)	Cl [*] (ppm)
1	AGH-1, dtill l	role	66,2	7.53	670	80.0	270	28.0	3.15	31.2	135	554	693	794
2	Ambalanga st	ream water	73.8	6.66	275	46.5	203	18.0	1.05	2.16	119	1,156	193	85.1
3	Acupan mine	2,900 L	35.9	7.18	15.0	3.5	640	15.0	ND	ND	29.8	1,179	153	7.09
4	,,	2,900 L	43.5	7.44	39.0	3.3	680	9.0	ND	ND	32.5	1,630	91.5	7.09
5	"	2,900 L	41.4	7.45	37.5	3.6	650	10.0	ND	ND	32.2	1,584	110	7.09
6	. "	2,900 L	65.C	8.23	620	90.0	92.5	7.0	3.05	26.4	214	594	400	581
7	<i></i>	2,900 L	70.0	8.09	370	56.0	155	7.0	1.75	13.4	128	881	125	411
8	••	2,900 L	65.0	7.06	220	37.0	430	63.0	1.00	9.41	70.8	1,357	79.3	227
9	"	3,150 L	75.0	8.60	890	120	150	14.0	4.40	43.1	302	385	384	1,191
10	**	3,150 L	85.0	7.35	34.0	3.8	590	5.0	ND	ND	39.7	1,358	81.1	7.09
11		3,150 L	80.0	7.87	39.0	6.0	600	14.0	ND.	NĐ	47.2	1,205	67.1	10.6
12	"	3,300 L	57.1	7.59	720	100	260	18.0	3.45	34.6	207	847	270	936
13	,,	3,300 L	85.8	8.23	870	115	47.5	6.0	3.50	44.8	280	356	144	1,163
14	"	2,300 L	35.0	7.40	21.5	6.0	430	100	ND	ИD	38.0	1,293	58.0	7.09
15	" 2,30	0 L drainage	73,0	7.85	300	39.5	95.0	10.0	1.00	5.41	153	496	384	70.9

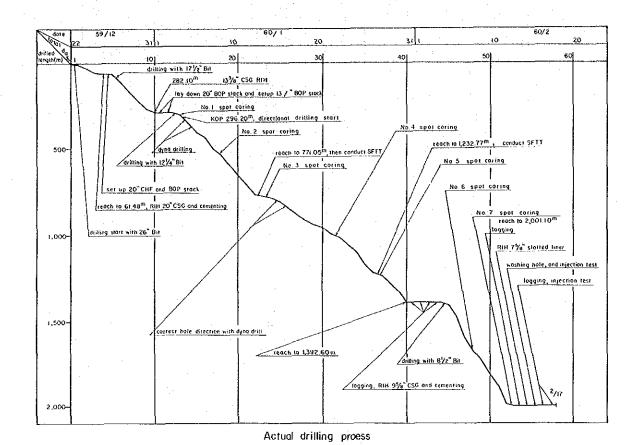

App. 18 List of main machineries


Article	Description	Maker	Quantity	Remarks
Drawworks	NATIONAL 610	NATIONAL	set	Hoist load capacity 10 line 180 ton
Engine	D 379	CATERPILLA	2 sets	Diesel engine 500HP/1200rpm
Rotary table	C 275	NATIONAL	l set	Table opening 27 1/2"
Substructure	Two Section Box on Box	DERRIC SERVICES	l set	Box:6'Wx9'Hx33'L Casing 180 ton
Derrick	Cantilever type	•	1 set	Height 40m Set back 110Ton
Mud pump No.1	7P - 50 Triplex pump	NATIONAL	l set	Volume 1,900@min (120kg/cm ³ )
Engine	ย 379	CATAPILLAR	(1) set	Use one of drawwork's engine
Mud pump No.2	8P-80 Triplex pump	NATIONAL	1 set	Volume 2,300 Vmin (160kg/cm ³ )
Engine	D 398	CATAPILLAR	1 set	Diesel engine \$25HP
Mixing pump	5x6R Centrilugal pump	TRW	2 sets	
Engine	motor		2 sets	37KW/set
Mud agitator	34" Impeller	BRANDT	5 units	with \$.5KW motor
Shale shaker	Dust unit	BRANDT	l unit	with 2.2KW motor (2 sets) 5,300 V/min
Desander	10" x double	SWACO	1 unit	Flow rate 3,780 min
Desilter	8T4	SWACO	Lanit	Flow rate 4,500Vmin
Mud tank (1)	Suction	PNOC	t unit	Volume 43.5m ³
(2)	Intermediate tank	"	l unit	Volume 43.5m ³
(3)	Setting tank		l unit	Volume 37.2m ³
Cooling tower	with blower	"	i unit	with 5.5KW motor
Generator	D 3406	CATAPILLAR	2 sets	Capacity 210KW/440V-60HZ (set)
808	21 1/4"-2000	SHAFFER	l set	API class 2000 (140 kg/cm ² )
ĺ	13 5/8**~3000		1 set	API class 3000 (210 kg/cm²)
	13 5/8"-3000		t set	u '
Accumulator unit	T15110-3S	KOOMEY	l set :	with 11KW motor
Water tank	-	PNOC	2 sets	Volume 37.8m ³ /set
Fuel tank			2 sets	Volume 22m³/set
Comenting unit	нт 400	HALLIBURTON	1 unit	with diesel engine
Water tank for cementing	]	PNOC	1 set	Votume 57.2m ³
Mud house		<i></i>	1 house	include drilling mud tester
Toolpushers office		· . •	2 houses	include tadio beacon equipment
Warehouse			i sei	•
Welder		HOBART	1 set	with dieset engine capacity 300A
Crown block	42"x5W, 55"x1W	NATIONAL	l set	1 1/8" with rope size 1 1/8"
Traveling block	40"x5W	,,	1 set	Wire rope size 1 1/8" Capacity 250T/10 line
Water swivel	พ59		1 set	,
Kelly drive	HDP roller	VARCO	i set	Hexagonal kelly pin drive type
Kelly cock	6 5/8"	омѕсо	1 set	test pressure 700kg/cm²
	20"-2000#	CAMERON	1 set	2"-2000 with side valve
Drilling spool				

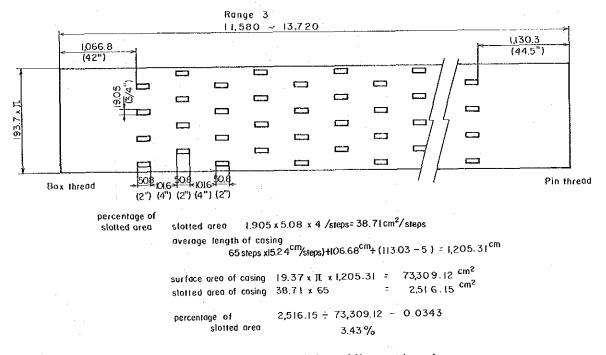
Article	Description	Maker	Quantity	Remarks
Expansion spool	12"-3000x10"-3000	CAMERON	1 set	
Master valve	E1AT-08 10"φ	WKM	i scı	ANSI 900, Gate valve
Side valve	2 1/16 M	"	2 sets	API 3000, Gate valve
Keily	5 1/4' Hexagon	DRILCO	ı	12m length
Core patrel	7 7/8"x4" double core barrel	DIABOART	2	
Drilling recorder	RGD 67D	MARTIN DECKER	i.	6 pen type
Directional sur-	Sperry sun B		1	include thermal seafed complete and container.
	Totoco (0 ~ 8° type)	τοτεο	t	include container
Float valve	4R-G	BAKER	2	
Truck crane		GROVE	1	Capacity 550 ton hydraulic type
Tite loader	FL 2201	Furukawa Industry	ı	
Desander pump	Centrifugal	ВЈ	ı	with 37KW motor
Desilter pump	.,	2.0	l i	,,
Pump for water supply	.,	••	1	with LIKW motor
Oxygen cutting installation		VICTOR	2	
Dog house		PNOC	1	
Lighting equipment	-		1 set	110V

App. 19 Tools list for drilling

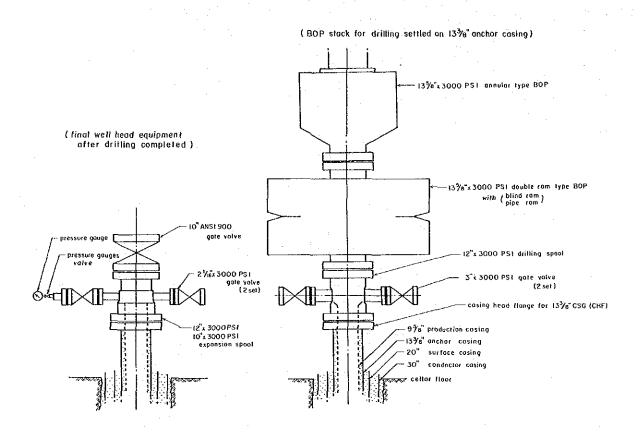
Article	Description	Quantity	Pin x Box	Remarks
Drill pipe	5" x 19.5 16/ft	266	4 1/2" IF	R-2, Grade E
ti.	5" x "	40		R-2, Grade G
	3 1/2" x 13.3 16/ft	10	3 1/2" iF	R-2, Grade E
Tubing pipe	2 7/8"	60		R-2
Drill collar	(0.D.) 9 1/2" x (1.D.) 3"	1 1	7 5/8" REG	4.56m Short drill collar
**	9 1/2" x (LD.) 3"	3	,,	R-2
**	7 3/4" x (2 3/4"~3")	11	6 5/8" REG	"
**	e	4	API NC56	"
	6 1/2" x 2 1/4"	- 15	4 1/2" REG	
Heavy weight drill pipe	5" x 50 16/ft	20	4 1/2" IF	. <b></b>
Ne it stabilizer	26" Blade type	L ·	7 5/8" REG	
"	26" Roller reamer type	1	"	
	17 1/2" "	i	**	
.,	12 1/4" Blade type	1	6 5/8" REG	Replaceable sleeve type
**	12 1/4" Roller reamer type	- 1	**	6 point Reamer
**	., .,	1	"	3 point Reamer
	8 1/2" Blade type	3	4 t/2" REG	Integral blade type
	" Roller reamer type	I,	40 .	3 point Reamer
String stabilizer	17 1/2" Blade type	2	7 5/8" REG	1.D. 3"
**	12 1/4" "	5	6 5/8" REG	" 2 2/4"
**	8 1/2" "	4	4 1/2" REG	" 2 5/8" ~ 2 3/4"
Bit sub	26" T.B, 17 1/2" TB	1	7 5/8" REG	O.D. 9 1/2"
"	12 1/4" TB	ŀ	6 5/8" REG	" 73/4"
"	8 1/2" TB	1	4 1/2" REG	" 6 1/2"
Shock sub	73/4"	2	6 5/8" REG	Hydraulic type
Hydraulic drilling jar	Down ward	2	4 1/2" IF	
	Upper ward	2		
Non-magnetic drill collar	7 3/4" x 2 3/4" x 9.4 m	2	6 5/8" REG	•
	6 1/2" x 2 3/4" x 9.4 m	2	4 1/2" REG	
	6 1/2" x 2 3/4" x 5.5 m	2	4 1/2" REG	•
Dyna drill	7 3/4"	2	6 5/8" REG	include bent sub (orienting key setting
••	6 1/2"	2	4 1/3" REG	••







 $\begin{array}{cc} \text{App. 21} & \text{Record of drilling} \\ & \text{A} - 18 \end{array}$ 

drille d	discharge	hydraulic (hadas	drilling mud o kayln	funne l	mud char	octer	
length	mud volume (m³/min)	pressure (kg/cm²)	(oC) x wayout	viscosity (sec)	PV YV WL	Mud sond	remarks
(m)		20 40 60 80 100	20 40 60	40 50 60	(CF ) 700m (CC	1.04	bentonita
	[		ž k			1.05	bentonite mud water
100	]				10 5	1.04 0.25	tignosuttanat mud
	]		oî x	[\[-]	10 11 5~6 11 12 6~7		
200-			o x		10 11 6~7 10 11 5~6		:
200			0 1				
			υX		12 13 7~9	1.05	
300 -			o x		1213 6-8	1 1 1	dyna dritting
			0.4		1011 5-6	•   •	
400 –	1		× ×		14 8 12 13 5~7		
1			ox lox		13 14 6~7	1.06 0.20	
500-			ox		11 12 5~6 8.8	1,08 +	
			k o k	🔐	12 13 7 10		
600-			ox ox		, , 9.6		
			ox ox		13-16 5-7 9.4	1,09 +	
700 -			ox ox			1.03 0.15	
			on ox		15 6~7 9.8	1.05 0.25 1.08 °	cooling towe
800			IXo Xa	45	4-15 5-6 8.4	: :	dyne drilling cooing towe working
			t o		20 10 9.7 2-15 5-8 11.5		working dyna drilling
000			ox ox	45	15~17 • 8.4 14~16 6~8 8.5		Cooling Towe
900-			XO		16~17 7~8 8,2 17 8 7.8	1.10	eor knig
İ			ox ox		12-14 5-6 B.E	1.12	
1.000			ox ox	<b>ί</b> ς		1.10	
			to t o	η,	14~15 6~8	, ,	cooling towe
1,100			oz oz	{{	12 5 7.0 12-14 5-6 9.0	1710	
			01	\{\}\\	16 7 8.8 13 5 8.5	1.09	
1,200 -			ox	P2	4~ 5  5~6   <b>8</b> .6  10~ 2 4~6  9.5	1 • 1 • 1	cooling towe working
-			x o ko		· · 9.8		working
.300 -				<b>P</b> \$	11~12 6~7 1		
			*		11~ 4  5~6  9.8  2~ 3	$ \cdot \cdot $	
.400-		│	0   X		10 5 8.8		19"
.			o X		9 4 10	1   1	colfing towe continued working
,500 -	4	▎▕▕ <del>▕</del>	0×			, ,	
,			0	]	9 4 9.4		
Leca			, i	<b>h</b> ]	9 4 9.8	1.06	
1,600-			o  x	<u> </u>	6 10 4 9.6		
[			o x	<b>f</b>	10 5 9.5		
700-			x o	]]	11 6 9.5	1 . [ . [	
ļ			o x		15 6		
1.800			d X		14 5 ·		
1			d X	<b> </b> 5	14 6 8.5 12-16 5-8 7.5	.   ,	
1,900			o x		15 6 8.5		
į			ОХ	$\mathbb{H}$	12 5 8.0 12 7 7.8		
2,000-			x o x	ll li	12 6 8.0	1 1	
			,				
.							
						٠ ١	


App. 22 Chart of drilling mud



App. 23 Chart of drilling process



App. 24 Design of slotted liner casing pipe



App. 25 Well head assemblies

App. 26 List of minerals in sludge samples of the test well (1)

No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.	Sam	iples		Z	cor	ke !	Min	25.	ls	T						lay	M	ne r	als				,	Sul	fate eral	s	C	atb	onat trak	c i	S Mi	ilica nera	ls	Fet spa	đ.				0	the	:ts	_	T	<u> </u>					
8409   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SKID   SK		division	clinoptiolite	stilbite	mordenite	Deulandire	Immontite	237	watrakite		smectife	saponite	vermiculite	chlorite/smectite	illite/smectate	chlorite	Erc.		halloysite		pyrophyliste		alunite	anhydrite	Sypsum		calcite	dolomite	siderite		&-cristobalite			plagioclase	potassium feldspar	pyrite	magnetite				epidote				Rem	arks			
Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   M	82.35 85.40					-	F	F	T	$\perp$	Ц	-	-	1	_1	3]	1				_	-	_				2		-					-	_	1	_	Н		F	l	1							
18945   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   MOTO   M						-	-				-	-	-			_	_	-									~						-	+		-				-		-							
200.5   300.5   1   1   1   1   1   1   1   1   1	146.40 \$ 149.45	ORTD			F	-	1	Ī		Ė	F					+++	*1		-	-														++					-		ï	+	1						
231.50   OCTO	210.45			_				-	-	十	1					5	-	-				-		3			1	-	-				9	7	1	1					1								
338.55  301.K  307.D  318.55  301.K  318.55  301.K  318.56  307.D  318.56  307.D  318.56  307.D  318.57  307.D  318.58  308.B  318.58  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B  308.B	213.50	EG				-				1	·				╗	<del>†</del> ††	+++	-									+						•	ŧ	+	+					-	-							
Signature	274.50 277.55	ORTD				-	-	-		1	٠				٦	#	***						-				1						+	+	—.	_			_		ì	1					-		
BOLK   1   1   1   1   1   1   1   1   1	338.55	HCI		_		+	+	+				+	1	+	-	7	***	-		_				3			2					1	-	+	1						1		_						
HCT	341.60	ORTD EG								-	•					**	**	-									_					_	+·	+						-									
HG	402.60 405.65	ORTD				ļ.			+	Ī	٠,			1	ŧ	#	+		-	-				1				-	?	- - -			+	#								Ľ	]						
BG	466.65	нсі		-		-			+	1		1	1	-	1		1										1	-	1?	-	-		1	+	2							++							_
S0,70   SULK	- }	EG								Ī		-					#		-						-		ŧ						1	+	+	+													
HCI  594.75  902.80  EG  661.85  FG  661.85  BULK  725.90  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  GRTD  G	1 1	ORTD			-				+						Ī	#	+		-												#		ŀ.	##		-	-				1	+	1						
HC	501.75	HCl				-	-		1	1,	•						+										_							+				-		-	Ì.	÷							_
HCl ++ + + + + + + + + + + + + + + + + +	597.80	ORTD EG							+	T	+	1	+		_	#	+		-								-			-			-	+		}				_	-	+							
HCl	658.80 5 661.85	ORTO							1	14	٠,				1	47	+		-					1			2				1		Η.	+		1				_	ı	+	1	_		-			_
HCl	722.85	HCI						-	+		ı	+	1				*			_				ì		-	1						-	+	2	2	_ _	1		_	1	÷							
785.90 BULK	725.90	ORTD EG HCl		_		F		-	1	,			1	1		*	+																+	++	+	+	1	1		_	+	#							
915.00 BULK 1 1 1 1 1 1 1 5 6 2 1 1 1 4 918.05 ORTD + H+ H+ H+ H+ H+ H+ H+ H+ H+ H+ H+ H+ H	786.90 789.95	BULK ORTO EG		_							;+ ;;		+	+	I	+	+		-	_									13			1	#	+	+	+						+						•	-
915.00 BULK 1 1 1 1 1 5 6 2 1 1 4 918.05 ORTD	850.95 3 854.00	ORTD	_				-			-	-				-	***	#														+		iř i	+#							1	+							_
	915.00	HCI					-	I	-	+	*   1				+	1	+			_				1			1				1		5	6				1			1	4							_
	918.05	EG		_		-		-						-					-		-			_							+		_	+	-	-						++	1						

LEGEND: a) division of the samples
BULK: bulk sample
ORTD: oriented clay sample
EG:
HCI: "

EG treated HCl treated

iantity
## abandant
## common
## a little
## rare
? not clear

Duarte Index (QI)

QI = Im x 100 / Iq

Im : Peak intensity of the mineral in the sample (cps)

Iq : Peak intensity of the pure quartz (cps)

App. 26 Chemical analyses for sludge samples of the test well (2)

979.05 982.10	division  BULK  ORTO  EG  HCI	cinoptiloite						ľ	Ħ		وا	T	T	1.7	7										т-	m	neral	4	par	-	-	τ :	1	П	1					- 1		
982.10	BULK ORTD EG			mordenit	heulandise	laumontite	wairskire		smectite	saponite	vermiculite chlorite/emerite	llife/emerice	chlorite	illite		hadoysite	Wrophyllite		alumite	anhydrite	Sypsum		dolomite	siderite		a-cristobalite	tridymite	the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	o potassium feldspar	pyrite					- epidote	umphibole	 •	R	eina.	rks	•	
									1 #		-		1 ++	+			T			2		1	ī		E		L	+ 1	6 2 H +		Ľ				1	3 #			•			-
1	1101						-	-	t		+	-	"	+		1	1	1	Ė			1	-				+			-	+	F				11+						
1046.15	BULK ORTD EG	_		_				_	1 +				6 +#	+				F					+					2	1 1	1	-				3 +	1 + +						
	HCI								+				E	**		1				-					Ė		+	T			E				1	+						:.
1110 20	BULK ORTD EG							-	1 + +			+	3 ##	##		-	-			2		+	2					<b>6</b> (			+			-		++						
	BULK					_		_	+		+	+	2	1		+	+	+		1		+	1		F		-	1	6 2	ī	l				1	5						
1174.25	ORTD EG HCI							_	+++++++++++++++++++++++++++++++++++++++		-		#	+++++++++++++++++++++++++++++++++++++++		-	-	ŀ	, .				+		L			+ 4	H +		-				٠	#						
1235.25	BULK ORTD			-		_	_		1			Ŧ		1						1			1					0 :	5 1						l	1						-
1238.30	EG HCI		-		-		Ė		++			-	111	+		1 		+					+					+ +	٠ _	+					1	+						
130235	BULK ORTD					-		-	1		1	+	2	+		1				1	$\frac{1}{1}$		1					5 7						+		2		 				
<b>!</b> ∟	HC1							L	+	-	+	+	**	+	1	4		-				1	- -					1			-					+-						
1366.40	BULK ORTD EG HCI						-		t + +				1 ++			-	-						1	+			1	2 7	+ +							3 ++ ++				-		
1427.40 1430.45	BULK ORTD EG							-	l ÷			-	] +	] +	1		+						i				1	1 6	5 2	_					1	2						
1491,45	HCI BULK			-					÷ +				3	1	1	-	-			1			2	F			1	2 5		1						**	:					
(474.30	ORTD EG HCI								+				#	<b>+</b> + +		1												F 4	-													
1558.55	BULK ORTD EG HCI								1 + +				3 #	1 + + +			1			1		+	1					+							1							
1619.55	BULK ORTD								1 +			+		1 #	+	1				1		+	1				-	7 6	2					-	1	-						
	HCI							-	+		1	+		111	†	;				-~		1	ļ	L			1			_				+	1							
1686.65	BULK ORTD EG HCI	-							+ +	-			2 ##			+				1			1				-1	+ +	+	1				-	1 + +							
1750.70	BULK ORTD EG					-			1 +				2 +#							ĩ			2				8	6 + -+	7	1				1								
1811.70	BULK ORTD		1	1			1		+ 1 +	-	+	-	2	1	+	-	+						1					1 6	2	1				1 +		1		_				
! ∟	EG HCI	1			_				+			-	114	÷	1	-	-	-		_				-				+	$\Box$	-		-	-		-	]		•				.

rision of the samples
BULK: bulk sample
ORTD: oriented clay sample
EG: "
HCI: " EG treated HCl treated

abandani common a little rate not clear

nate Index (QI)

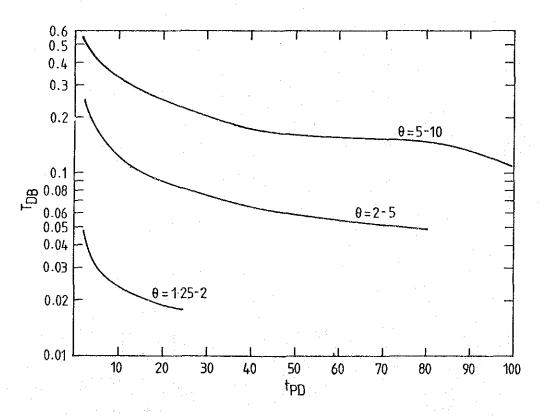
QI = Im x 100 / Iq

Im: Peak intensity of the mineral in the sample (cps)

Iq: Peak intensity of the pure quartz (cps)

App. 26 List of minerals in sludge samples of the test well (3)

San	iples		Ze	orit	e M	ine	rals		Τ			7	CI	ay l	din	eral	s	7		. :	Γ	Se	lfai iera	e Is	C N	arb line	na rals	le	Si	diça ner:	ıls					o	thei	s.		٠	Γ	-					-		 
No. (m)	division	climoptiolite	stilbite	mordenite	houlandite	laumontite	wastakite		smootite	Sandalire	wermiculing	chlorite/smeetite	illite/smectite	chiorite	illite		halloysite	kaoline	pyrophyllite		alumite	sahydrae	unsd.68		calcite	dolomite	atrapis		α-cristobalite	tridymite	quartz	plagiocas		nukd .	magnetite				atopida	amphibole				1	Ren	nark	s	٠	
1875.75	BULK		7	L	Ŀ.	Ŀ	1	1.:	b			I_		3	1	Ŀ		E		Ì.,	L	.T.:	10	J.	1				Ш		ĬĬ	6	ı	1	1 :	Ľ			1		Γ	1							
1878.80	ORTD				E	E		L	+	Ŀ	Γ	T_		4+				7	Ľ		Г	Τ.	L	I	Ŀ				Ш		#	+	+							L	]								
10,000	EG			Γ.	Γ_	[	Γ	1	1	Γ	Ι		Ľ	411	+		_				T	Τ	L						П		П	ŧ.	-						Ŀ	Γ									
1 1	HÇI					]	L.	П	+	L		E			+				Г	Γ	Г	П	Г									+		Α.		_					1								
·								Г	L	L	I	L	L	Ľ				Ŀ	L	L	L	L		L	Г	Ŀ					$\Box$			٠.		Г		·		L.	L	٠.	_		•				_
1939.80	BULK						1		1	Ŀ	Į.	1.0	Ŀ	1	ì	10	1		:		1	L	1_	L	l				П		8	7	1	1		١.	·		1	1	Ŀ								:
1942.85	ORTD			L	<u>.</u>	Ŀ	+	Ŀ	1+	L	L	Ŀ	Ŀ	++	+	L		L		Ţ		T	١.		L	L		_: ا	<u> </u>	. [	+	+	+	+	L	Ŀ	U		١.	+	1								
17,12,00	EG		L	L	L.,	L	13		+		Ŀ	L		#	+				L	Ľ	Γ	L	L	Ŀ	Ŀ	Ŀ	d					+							٠.	+	]	ż							
	HCl		-		Ŀ	L	1	L	+	L	L	L	L	L	Ŀ		_	L	L		L	L	L					Ŀ	Ц		Ė	+		L	_	L		٠	:	+		4							
			_	L.	L	Ŀ	J	1:	L	L	1	L	L		L	ᆫ	L	Ĺ		Ŀ	L	L	1_	L		L		L	Ш		_		1	Ľ	L	L	L		Ŀ	L	L			• •			_		_
2003.85	BULK	Ŀ	L	1_	L	L	1		Ŀ	T.	$\perp$	_	١.	2	1	Ŀ	L	Ŀ	L	L	L	L	L	L	Ľ	_	L	Ŀ	Ш	_	9	7	1	1	_	I	L		1	L								٠	
2009.95	ORTD			<u> </u>	L	L	+	Į.	┸	L	L	1.	L	+++	ь.	_	辶	L	L		1	l	L	1_	L	L.		ļ_,,			#		+		L.	L.	Ш	L	+	Ļ	1								
1 1	EG			Ļ	_	L	↓.	1	4	1.	1_	Į	L	1#	-	L.	L	L	Ŀ	L	1	Ļ	1	_	Ļ	<u>_</u>		L	Ш	_		+		_	<u> _</u>		Ш	L	L.	L	1								
1 1	HCI	Ш		<u> </u>	L	Ļ	1_	4.	1	L	4_	Ļ	Ŀ	ļ	1	Ŀ	_	L	L	L	L	1	1	1_	L	<u>.</u>		L.	Ц	_	_	+		_	ļ	L	Ш	L	L	L									
ļl		L	L	L_	L	L	1	丄	⊥.	L	٦.,	L	L	L		L	L	Ĺ	上	L,	L,	J_	L	1_	<u> </u>			L	Ш						L.	乚		L	L.	L	L				_				
																																										٠				ż		٠	
														_:				-																															


LEGEND:

a) division of the samples
BULK: bulk sample
ORTD: oriented ctay
EG: "
HCI: "

EG treated HCI treated

b) quantity

common a little rare not clear



App. 28 Correction term of Rous et al. (1979), for evaluating temperature recovery

App. 27 Chemical analyses for sludge samples of the test well

																														:	
Z _n ppm	59	312	736	25	23	781	152	88	118	2	115	8	63	107	15	129	212	124	7	243	292	99	\$86	8	98	28	71	45	54	63	65
Sr	210	162	135	244	218	217	234	232	249	235	156	255	237	225	230	239	224	259	220	231	257	257	148	509	237	216	74	219	249	246	251
Sb	0	0	_	0	0	0	Ä		.0	0		_	0	•	0	0		0	۲۱,	0		 . H	4	0	·	0	0		0	-	0
R5 ppm	36	71	116	32	78	25	36	30	33	33	33	25	7	22	56	4	44	35	51	43	35	53	00	36	33	37	33	28	33	33	35
Pb ppm	53	56	284	0	14	64	=	<u></u>	55	∞	77	97	۲	10	ò	13	10	<b>∞</b>	56	30	33	30	130	Ξ	19	13	10	ŗ	2 .	9	. T ?
Li	7	6	17	9	9	ڼ	m	7	∞	9	12	<u>.</u>	v,	-	9	œ	7	9	91	19	15	13	13	23	<u> </u>			0	01	6	13
Hg ppm		26		_	85	87	105	. 19		• • • •						82									<u> </u>				54	-	
Cu 1				_	<b>2</b>			98		67		72				08	_					68							52	84	42
Co Co	∞	9	=	∞	···	56	4	2	9		o	=				00		11	t~		9	00	o. 	<b>∞</b>	7	<u>_</u>		۲-	'n	v	80
Be C	m.	4	4	4	4	4	4		·	ω -	<u>د</u>	60	 	m	4	4	ന	m	4	4	4	4	6	co.	4	4	4	4	4	<del>د</del>	<u>د</u>
Ba I ppm I	139.	239	273	147	154	196	218	98	127	104	75	129	116	- 86	154	158	172	132	113	92	157	000	143	164	227	180	249	117	505	246	236
B ppm p		3	_		7	-		. 7		٠.					<u></u>		4	5	4	2		7			m	9	C2	<u></u>	7		4
Au E	0.05	0.10	0.12	0.03	100	20.0	0.0	000	0.00	0.00	0.03	8	0.00	0.00	0.11	0.00	0.02	0.00	0.01	0.01	0.01	000	0.01	0.00	0.00	00.0	0.00	000	0.00	00.0	0.01
As A		5	0	-	7	0	0		7	2	3	_	0	0	0	6	<u>د</u>	0	0	7	7	· ·	-	7		<u>«</u>	0	0	7	<u>۔</u>	0
Ag Ag	0.5	o,	9	0	0.0	0.5	0.3	9.0	0.5	0.5	6.0	9.0	0.3	0.5	0.5	4.0	0.5	0.0	4.0	4,0	0.6	5	4	. v.	~	~		<u></u>		- 7	0.3
Total A	99.23 0	99.23 0	99.71 0	99.95	99,55	00.94 0	99.93 0	00,03	99.61	00.27 0	99.53	00.29 0	99.27 0	99.77 0	0 19.66	99.83 0	99.81	00,47 0	99.59 0	99.19	99.33	99.21 0	99.54 0	00.76	99.18	99.28 0	99,82	9.71 0	9.65	0.30	90.66
IGE T	3.95 9	6 00.9	8.58	2.85	4,13 9	5.95 10	2.43	4.13 10	3.56	2,77 10	99.	3.09 10	3.00		4.33 9	4.51	5,25	2.84 10	4,57	6.15	6.19	7.32 9	7.23 9	4,13 10	4.56	5.04	3.25 9	4.07	2.88 9	2.78 10	.01
H2O- 10	0.10	0,15 6	8 90.0	0.10 2	0,14 4	0.24 5	0.17 2	0.07	0.10	0.10 2	0.14 7	0.09	0.05 3	0.02 3	0.08	0.11	0.16	0.10	0.12 4	0.11 6	0.11 6	0.11 7	0.39 7	0.15 4	0.19	0.17. 5	0.15 3	0.13	0.14 2	0.18 2	0.21 3
	0.60	2.01 0	2,06 0	0.43 0	0.68 0	0.86	0.28 0	0.39 0	0,28 0	0.51 0	0.60	0.40	0,77 0	0.72 0	1.14 0	1.02 0	0.64 0	0.93 0	0 90.1	2.15 0	1.65	0 53	2,73 0	0 61.1	0.52 0	0,71 0	0 65.0	1.72 0	0.87 0	0.62 0	0.66 0
K20 S	1.86 0	2.74 2	1.61 2	1.82 0	2.10 0	3.56	2.87 0	1.89	0 297	73 0	1.33 0	0 15.1	1.71	1.84 0	1.93	2.91	2.54 0	2.03 0	2.17	1.84 2	2.03 1	1.54	2.45 2	1.54	0 89.1	1.75 0	1.78 0	3.07	2.05	2,66	0 68.1
Na2O K	3.68	3.19 [2	1.58 4	1.10	3.64   2	3.76 3	4.20   2	3.24	3.71	3.24	1.87	3.29 I		3.61	3,47 1	3.34 2	3.01 2	3.50 2	3.12  2	2.17 1	2.80 2	3.59	1 70 2	3.55 1	3.15 1	3.41	3.68 1	3.15 3	3,26 2	3.50 2	.40
CaO %	7.28 3.	5,40 3	6.36	7.67 4.	7.85 3	6.26 3	5.14 4		8.59 3	8.80 3	9.73	8.41 3	8.56 3	8.18	7.15 3	7.41 3	7.60 3.	8.10 3	7.50 3	31 2	75 2	6.08 3	4.96	6.29	5.81 3	6.00 3	5.41 3	5.53 3	5.75 3	5.79 3	5.76 3
Q.	1.8			.64	••	-		76				24 8	-				74	•	206	1	£	.81		<u> </u>		.52 6	.56 5	.43	.45 5	44.	.55 5
28%	0.17	3.	.51 4	3.16	.19 2	1 91.	1.12	27 4	.23 4.	3.21	.39 4	3.26 5	0.18	0.24 4	3.15	0.26	3.26	0.17	0.23 2	0.33 3	0.31 3	0.16 2	0.16 2	0.16 2	0.15 2	0.14 2	0.16 2	0.08	0.11 2	0.15 2	0.15 2
MCO29	7.65 0.	6.25 0,	0 89.7	6.92 0.	6.50 0.	4.88	3.87 0.	77 0	41 0	7.46	7.72 0.	0.77.7	7.34 0	7.43 0	6.80	6.81. 0.	7.55 0	8.37 0.	7.23 0	6.65 0	7.37	5.70	6.93	6.12 0	5.92	5.58 0	5.15 0	4.94	4.88 0	5.71 0	6.25. 0
Al2O3Fe2O3MnO %	16.68 7.	15.92 6.	14.82 7.	16.80 6.	16.87 6.	15.03 4.	15.88 3.	15.75 7.	16.02 7.	16.28 7.	13.04 7.	16.01	16.99	16.35 7.	15,91 6.	16.46 6.	15.91	16.57	15.85 7	14.95 6	15.46 7	16.22 5	15.23 6	15.96 6	15.40 5	15.29 5	15.56 5	15.20 4	15.37 4	15.44 5	15.22 6
TiO ₂ A	0.51	0.66	0.59	0.86 16	0.67	0.59	0.36 1.	0.71 13	0.70			0.75	0.75	0.80	0.66	0.60	0.68	0.85	0.79	0.67	0.87	0.53				0.49	0.46	0.48			0.47
SiO ₂ Ti	53.27 0.	55.71 0.	50.95 0.	55.13 0.	54.61 0.	58.82 0.	63.60 0.	52.78 0.	52.88 0,	53.47 0.74	52.98 0.61	53.96 0.	52.51 0.	53.05 0.	55.81 0.	54.40 0.	53.27 0.	54.17 0.	55.23 0.	55.32 0.	52,74 0.	55.26 0.	57.46 0.57	59.58 0.55	59.64 0.47	59.06 0	61.81 0	60.76 0.	62.44 0.46	61.36 0.47	60.38 0
S %							_	_															-	-				-	÷		
5	532.3	581.1	629.9	678.7	727.5	776.3	825.1	873.9	922.7	971.5	1020.2	1069.0	1117.8	1163.6	1215.4	1264.2	1313.0	1364.9	1410.6	1459.4	1508.2	1557.0	1605.8	1654.6	1703,4	1752,2	1801.0	1849.8	1898.6	1947.4	1996.2
Depth from	529.2	578.0	626.8	675.6	724.4	773.2	822.0	870.8	919.6	968.4	1017.2	1066.0	1114.8	1160.5	1212.4	1261.2	1310.0	1361.8	1407.6	1456.4	1505.2	1553.9	1602.7	1651.5	1700.3	1749.1	1797.9	1846.7	1895.5	1944.3	1993.1
Sample No.	-	7	m	4	'n	9	۴-	co	6	97	=======================================	12	13	4	15	16	17	18	19	8	21	22	23	75	25	56	23	28	53	30	31
Ser. No.	т	(4	m	4	S	9	۲-	∞	٥	9	.=	22	2	7	ĭŞ	97	17	8	61	8	21	23	53	*	53	8	53	83	8	င္က	31

# App. 29 Records of the static formation temperature test

Test No. 1 (732.8 m)		Ţe	est No. 2 (1207 m)	
Measured Drilled Depth : 332.8 m CBF Vertical Depth : 701 m CBF , Elevation R.S.L.	: +120 m	Measured Drilled Depth : Vertical Depth :	t200 m CHF 1052 m CHF Elevation	R.S.L. :231 m
Date; Drill Bit Passing : 11.30, Jan/12, 1985 Circulation Halt : 0:00, Jan/13, 1985 Temp. Log Starting : 3:30, Jan/13, 1985		Circulation Halt	: 16 : 00, Jan/26, 1985 : 04 : 00, Jan/27, 1985 : 09 : 42, Jan/27, 1985	
Cooling Time, Tp: 12.5 hours	*	Cooling Time, Tp: 12.00 h	ours	
Temperature Measured Time & Date Re 62.2 °C 3 : 45, Jan/13 63.6 4 : 15, "	covery Time ∆ t 3,75 hours 4,25	Temperature Measured 86.0 °C 90.2 91.7	Time & Date 10:50, Jan/27 11:00, " 11:15, "	Recovery Time Δt 6.83 hours 7.00 7.25
65.0 5 : 15, " 65.9 5 : 45, " 66.4 6 : 15, 67.0 6 : 45, " 67.4 7 : 15, " 67.9 7 : 45, " 68.4 8 : 15, " 68.8 \$ : 45, " 69.3 9 : 15, "	4.75 5.25 5.75 6.28 6.75 7.25 7.75 8.25 8.75 9.25 9.75	92.8 93.9 94.0 94.6 94.9 95.4 95.9 96.5 97.1	11:30, " 11:45, " 12:40, " 12:15, " 12:30, " 12:45, " 13:00, " 13:15, " 13:30, " 13:45, "	7.50 7.75 8.00 8.25 8.50 8.75 9.00 9.25 9.50 9.75
69.8 9 : 45, " 70.0 10 : 00. "	10.00	97.9 98.4 98.7	14 : 00, " 14 : 15, " 14 : 30, "	10.00 10.25 10.50
Apparent Static Temperature T _{ws} : 79.1  Correlation Coefficient : 0.998 Slope of Horner Straight Line, m : 26.4°C/cycle Roux Correction Term, t _{pD} : 5.0 Roux Correction Term, T _{DB} : 0.18		99.2 99.7 100.2 100.6 101.2 101.6	14:45, " \$5:00, " \$5:15, " \$5:30, " \$5:45, " \$16:00, "	10.75 11.00 11.25 11.50 11.75 12.00
Initial Formation Temperature, T _i : 83.8°C		Apparent Static Temperatur	re, T _{WS} : 127.7 °C	•
Table -1 (3) Static Formation Temperature  Test No. 3 (1200 m)	Test .	Correlation Coefficient Stope of Horner Straight Lin Roux Correction Term, Ipp Roux Correction Term, Tpp	: 4.8	
Measured Drilled Depth : 1200 m CHF Vertical Depth : 1052 m CHF, Elevation R.S	: .L. : -231 m	Initial Formation Temperate		•
Date: Drill Bit Passing : 06:30, Jan/26, 1985 Circulation Halt : 01:30, Jan/31, 1985 Temp. Log Starting : 06:33, Jan/31, 1985				
Cooling Time, Tp: 115 hours		•	Static Formation Temperat	ure Test
Temperature Measured Time & Date Rec	covery Time, ∆t	Te	est No. 3 (1300 m)	
82.0 °C 7: 21, Jan/31 91.6 13: 07, " 96.5 20: 14, " 100.1 0: 44, Feb/1	5.85 hours 11.62 18.73 23.21	Date; Drill Bit Passing		R.S.L. : -310 m
Apparent Static Temperature, Tws : 125.0 °C			: 06 : 33, Jan/31, 1985	• .
Correlation Coefficient : 0.998 Slope of Horner Straight Line, m : 32.6 °C/cycle Roux Correction Term, tpp : 46 Roux Correction Term, TpB : 0.18		Temperature Measured 86.0 °C	45.5 hours  Time & Date 7: 25, Jan/31	Recovery Time, Δt
Initial Formation Temperature, $T_i \ : \ 130.9^{\circ}\text{C}$		99,9 106.8 111.4	13 : 11, " 20 : 21, " 00 : 52, Feb/)	11.68 18.85 23.37
Static Formation Temperature	Test	Apparent Static Temperatur	re, T _{WS} : 135.8 °C	
Test No. 3 (1400 m)  Measured Drilled Depth : 1400 m CHF  Vertical Depth : 1208 m CHF, Elevation R.S.	S.L. : –387 m	Correlation Coefficient Slope of Horner Straight Lir Roax Correction Term, tep Roax Correction Term, T _D	: 18.2	
Date ; Drill Bit Passing : 22 : 30, Jan/30, 1985 Circulation Halt : 01 : 30, Jan/31, 1985 Temp. Log Starting : 06 : 33, Jan/31, 1985	• ·	Initial Formation Temperate	ure, T _i : 141.1 °C	
Cooling Time, Tp : 3.00 hours				•
Temperature Measured Time & Date Re 106.4 °C 07:30, Jan/31 120.0 13:17, " 125.0 20:27, " 130.8 01:00, Feb/1	6.00 hours 11.78 18.95 23.50			
Apparent Static Temperature, Tws : 138.6 °C				
Correlation Coefficient : 0.989 Slope of Horner Straight Line, m : 184.4 °C/cycle Roux Correction Term, tpp : 1.2 Roux Correction Term, TpB : 0.1				

Initial Formation Temperature,  $T_i$ : 157.0 °C

App. 30 Records of temperature recovery test

unit: °C, AC-1D Well, 1985

No.		KT-1	KT-2	KT-3		KT-4	KT-5	
Date		16/Feb	17/Feb	19/Feb	22/Feb	22/Feb	28/Feb	28/Feb
Elapse	ed Time*		28hrs	73hrs		143hrs	279hrs	
	CHF	Ť-	26	33	(R26)	31.	34	
	100	÷-	38	33	(R38) (N38)	36	35	
	200	-	44	45		48	37	
	300	· —	46	:50	(R48) (N55)	53	50	(R53)
	400	-	51	54		59	57	
	500	-	55	59	(R64) (N68)	65	64	(R66)
	600	-	60	65		72	70	
	700		66	71	(R78) (N84)	81	78	(R84) (N85)
F)	800		73	80		91	87	
Measured Depth (m CHF	900	·	80	89		102	98	
E)	1000		89	99		112	110	
pth	1100	- :	97	108		120	121	
De.	1200		104	116		129	129	(R134) (N140)
red	1300		112	124		140	139	
asn	1400	62	120	134		147	151	
Me	1500	70	129	143		156	158	
	1600	80	138	152	İ	164	166	
	1700	94	146	160		170	174	
	1800	102	151	166		175	181	(R177) (N193)
	1900	110	156	170		181	188	
	2000	118	164	176		193	193	
	MCD	162	193	199	(R 195) N >200	197	204	-
	RD	2019	2019	ND	ND	ND	2018	

^{*} Elapsed Time : Time after halt of 2nd hydrofracturing (20:00, 16/Feb) at MCD

Table 2 (2)

· · · · · · · · · · · · · · · · · · ·			<u>,</u>					
N KT-6	KT-7	KT-8		[№] KT-9	KT-10	KT-11	N KT-12	
2/Mar	2/Mar	7/Mar	7/Mar	7/Mar	12/Mar	18/Mar	20/Маг	20/Mar
328 hrs	330 hrs	19 days		19 days	24 days	30 days	32 days	
_	34	_			39	37	_	
	35	_			41	38	_	
-	36	37		51	47	46	-	
49.8	45	53		53	53	53	-	
61.9	50	59		- 61	59	60	59	
68.0	58	66		66	66	66	67	
74.1	65				72	74	73	
80.8	75	-			80	82	82	
89.9	84	_			92	92	92	
99.3	94	-		ļ	102	103	106	
109.6	107	114	([8]]	115	-115	117	118	(開發)
123.6	118	-		İ	126	128	129	
133.8	129				. 137	138	140	
143.5	137				144	149	150	
155.2	150	152	(B 83)	160	159	160	159	(B 21)
165.5	156	165		166	167	166	172	en 1621
173.1	166	172	D. CO.	175	173	174	179	(B) B)
181.4	173	179	( <u>R</u> [88)	184	180	181	189	
188.5	181	187		192	189	189	195	
195.4	187	193	•	202	195	195	201	
197.4	193	198	e 2 1 4 5	207	199	199	209	/R211\
205.2	204	208	$\binom{R_{2}^{2}}{N_{2}^{2}}\binom{4}{2}$	211	209	205	. 217	(R3  4)
2021	2020	2021		ND	2025	2022	2020	

**** Kuster Elements; N : No. 27069, No Mark : No. 10504

^{**} R.D : Read value of depth meter as MCD

^{*** (}  $\ \ \$  ) : Temperature from Maximum Thermometer, R : Reverse, N : Normal

### App. 31 Records of injection test

Injectivity Test III (Hydrofracturing)

Date : 16/Feb., 1985

Method : Long time injection

Tîme	Well He	ad Pressure	Flow	rate
	(psig)	(Mpag)	(SPM)	(1/sec)
8:00	start			
8:30	1200	8.27	76	14.53
9:00	1250	8.62	70	13.38
10:00	1290	8.89	68	13.00
11:00	1300	8.96	68	13.00
12:00	1320	9.10	72	13,76
13:00	1340	9.24	77	14.72
14:00	1330	9.17	76	14.53
15:00	1330	9.17	75	14,34
16:00	1330	9.17	74	14.15
17:00	1320	9.10	73	13,95
18:00	1330	9.17	73	13.95
19:00	1320	9.10	73	13.95
20:00	1320	9.10	13	13.95

Injectivity Test II (Multitude Injection)

Date : 15/Feb., 1985

Method : Pressurizing well injection

Time	Well He	Well Head Presssure		Flowrate	
11.5	(psig)	(Mpag)	(Mpag)	(SPM)	(l/sec)
06:00 to .06:30	500	3.45	15,43	14	2.68
06:30 to 07:00	700	4.83	17.10	27	5.31
07:00 to 07:30	950	6,55	18.67	41	7,84
07:30 to 08:00	1100	7,59	19,97	55	10.61

Hole Press,: Measured pressure at drilled depth of 1450 m.

## App. 32 Records of pressure drop after inunction test

unit: Mpag, AC-ID Well, 1985

	Bill. htpag: Ac-15 well, 1705					
	No.	KP-2	KP-3	KP-4	KP-6	KP-7
, 1	Date	17/Feb	19/Feb	23/Feb	2/Mar	7/Mar
Elap	sed Time	28 hrs	73 hrs	167 hrs	330 hrs	19 days
	CHF	0	0	0	0	0
	100	0.32	0	0	0	ND
	200	1.33	0.07	0	0	ND -
	300	2.10	1.40?	8.0	0.55	0.8
	400	3.10	1.98	1.7	1.2	1.75
	500	3.97	2.88	2.5	2.5	2.75
	600	4.85	3.74	3.6	3.4	ND
	700	5.63	4.53	4.35	4.2	ND
_	800	6.42	5.28	4,75	4.75	ND
11.	900	7.10	5.96	.5.7	5.68	ND
Ü	1000	7.78	6.64	6.4	6.38	6.60
Measured Depth (m, CHF	1100	8.44	7.41	7.1	7.05	NĐ
45	1200	9.06	8,05	7,75	7.62	ND
ದ	1300	9.80	8.70	8.4	8.3	ND
5	1400	10.42	9.40	9.1	8.83	9.20
15	1500	11.10	10.05	9.8	9.55	9.95
Σ	1600	11.84	10.80	10.3	10.3	10.60
	1700	12.50	11.45	10.95	10.9	11.20
	1800	13.30	12.40?	11.85	11.77	11.95
	1900	13.95	12.81	12.50	12.48	12.60
	2000	14.68	13.45	13.20	13.0	13.10
	MCD	14.90	13.80	13.40	13.43	13.20
	RD	2019	ND	ND	2020	2021

* Etapsed Time: Time after halt of 2nd hydrofracturing (20:00, 16/Feb) at MCD

* R.D.: Read value of depth meter as MCD

* Property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the pro

Injectivity Test I (Hydrofacturing)

Date : 15/Feb, 1985

Method : Long time injection

. Michiga	. Long that M	,		
Time	. Well He	ad Pressure	Flowr	ate
	(gisg)	(MPag)	(SPM)	( l/sec )
15:30	start	_	_	
15:33	1000	6.90	70	13.38
15:35	1270	8.76	100	19.12
15:40	1320	9.10	97	18.54
. 15:45	1360	9.38	92	17.59
15:50	1390	9.58	95	18.16
16:00	1400	9.65	92	17.59
16:15	1410 j	9.72	88	16.82
16:30	1410	9.72	88	16.82
17:00	1410	9.72	. 88	16.82
18:00	1430	9.86	85	16.25
19:00	1450	10.00	80	15.29
20:00	1450	10.00	80	15.29
21:00	1450	10.00	80	15.29
21:30	1450	10.00	80	15,29

* (psi): Well head pressure guege (power per inch)

** (SPM): Strokes per minute of pumping.

1 SPM = 3.03 gal/min = 19.12 %/sec

