2-2-3 Measurement of Radon Concentration

A hole of 60 cm depth is drilled with a hand-auger and an etch cup (made of Terradex) is buried bottoms up in the hole and covered (Fig. II-2-10).

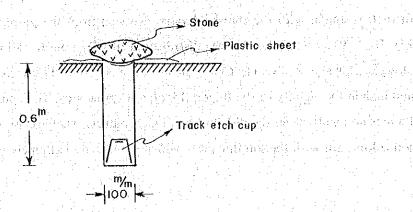


Fig. II—2—10 Planting of Track Etch Cup

After about 3 weeks, the cup is retrieved and sent to Terradex for track etch count. The corrected values (Table II-2-1) correspond to the number of tracks in 30 days for a 1 mm² area. Fig. II-2-11 shows the frequency distribution of the logarithm of radon concentration (in tracks per mm² per 30 days). The distribution is very regular and the probability curve (Fig. II-2-12) gives a threshold value of 1.6 corresponding to 39.8 tracks per 30 days per 1 mm².

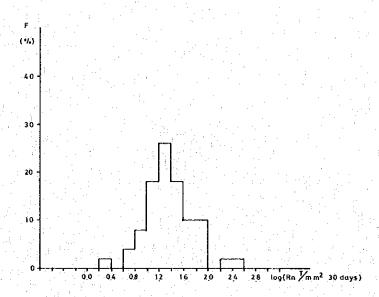


Fig. II-2-11 Frequency of Diagram of Rn Gas Concentration

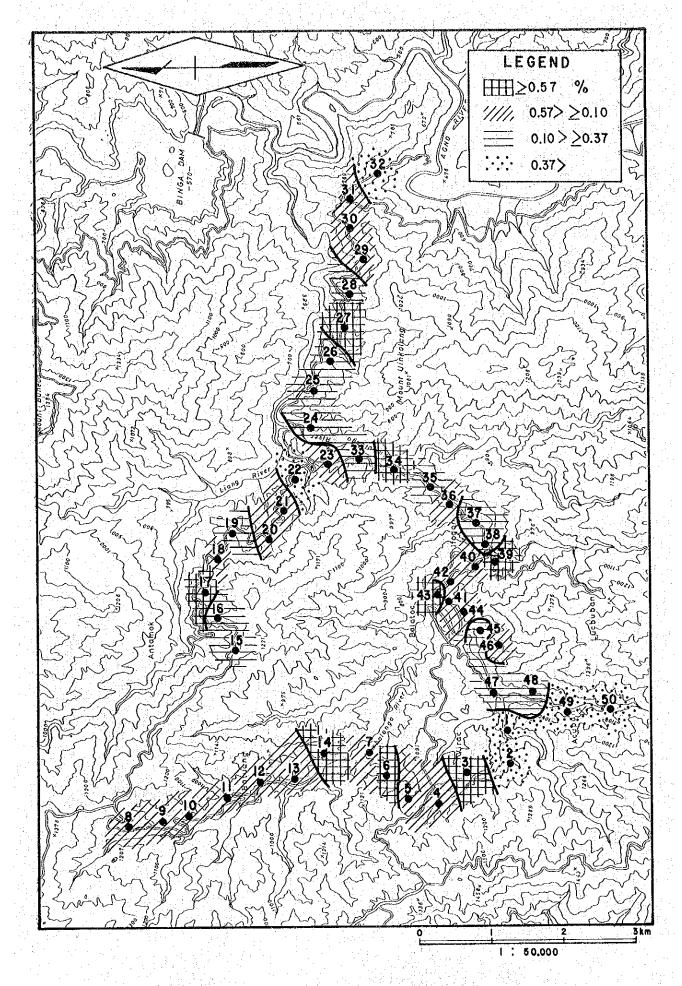


Fig. II-2-9 Distribution Map of CO₂ Gas Concentration

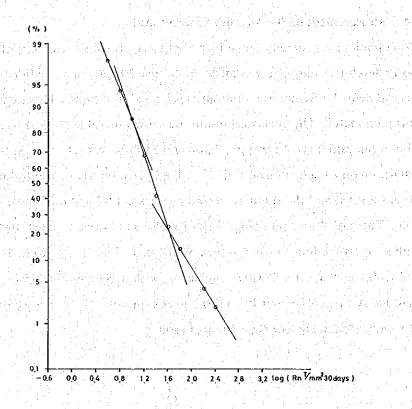


Fig. II-2-12 Probability Plot of Rn Gas Concentration

The mean value (\bar{x}) and standard deviation (v) obtained from the frequency diagram (Fig. II-2-11) are 1.37 and 0.38 respectively. The map of radon concentration (Fig. II-2-13) has been drawn using \bar{x} , $\bar{x} \pm v$ and $\bar{x} - 2v$ as limits. It shows a large domain of relatively high/radon concentration from the Itogon Bridge hot spring to Acupan Mine. But the most striking feature of the radon distribution is a large positive anomaly in the vicinity of Batuang which corresponds geologically to the presence of andesite and granodiorite-porphyry. The outlined anomaly thus reflects this geological difference rather than the presence of geothermal fluids at depth. On the other hand, a large negative anomaly appears in the northeastern part of the field which corresponds geologically to intermediate and basic cruptive rocks.

2-2-4 Measurement of the Mercury Concentration

Soil samples are generally taken from the A_1 layer. But as the soils of the surveyed area are poorly developed sampling was made in the first 20–30 cm excluding the A_0 layer. The analysis was made by flameless atomic absorption method using a Hiranuma HG-1 type mercury concentration meter. The analytical results are shown in Table II–2–1. The maximum, minimum and mean values are 4,385 ppb, 9 ppb and 83 ppb, respectively. As shown by the frequency diagram drawn on a logarithmical scale (Fig. II–2–14), the Hg concentrations fall in two groups. The mean value (\bar{x}) and the standard deviation (v) are 1.92 and 0.65 respectively on the logarithmic scale. The probability plot (Fig. II–2–15) also shows two populations of Hg values. The distribution of Hg content in soil is drawn on the map (Fig. II–2–16) with the limit concentrations of \bar{x} , $\bar{x}\pm v$ and $\bar{x}-2v$. Positive anomalies, with a Hg content higher than $\bar{x}+v$ (2.57), occur around Acupan Mine and Itogon Bridge hot springs. The northeastern part of the area however, shows relatively low Hg contents in soil.

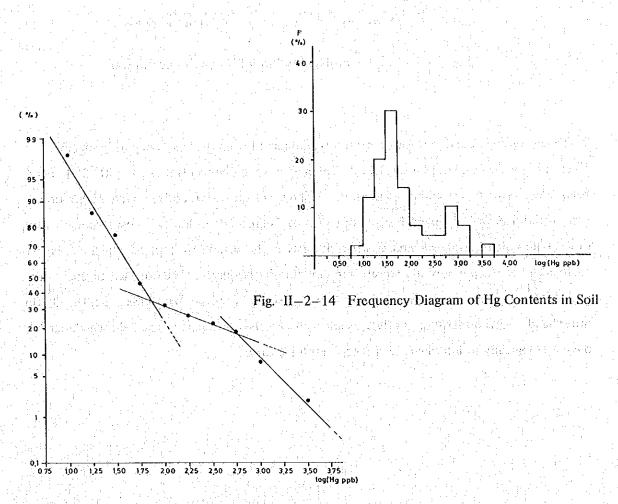


Fig. II-2-15 Probability Plot of Hg Contents in Soil

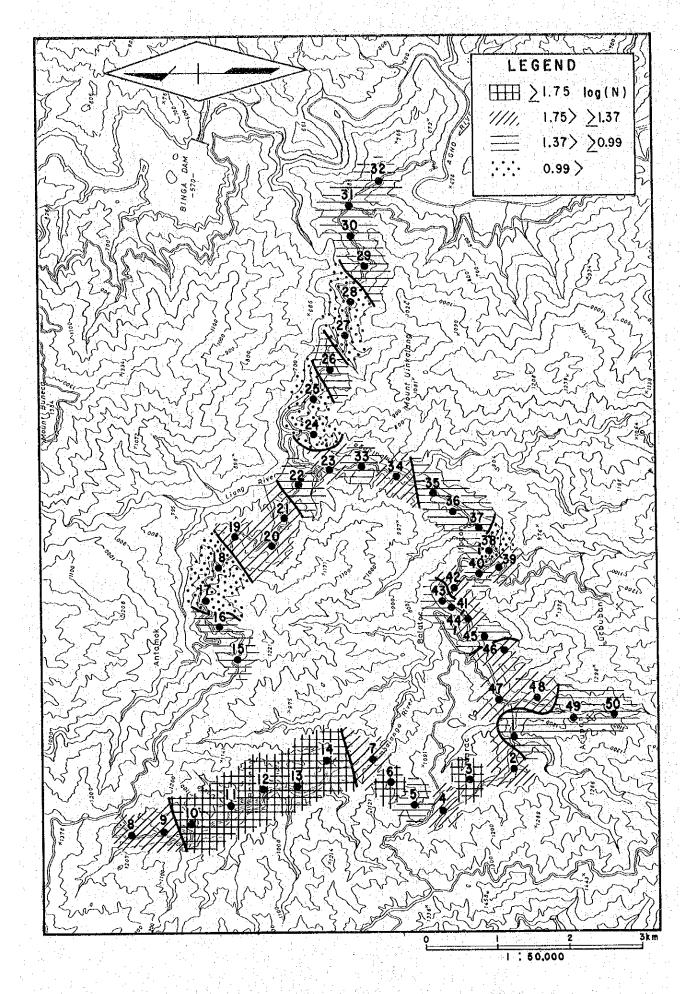


Fig. II-2-13 Distribution Map of Rn Gas Concentration

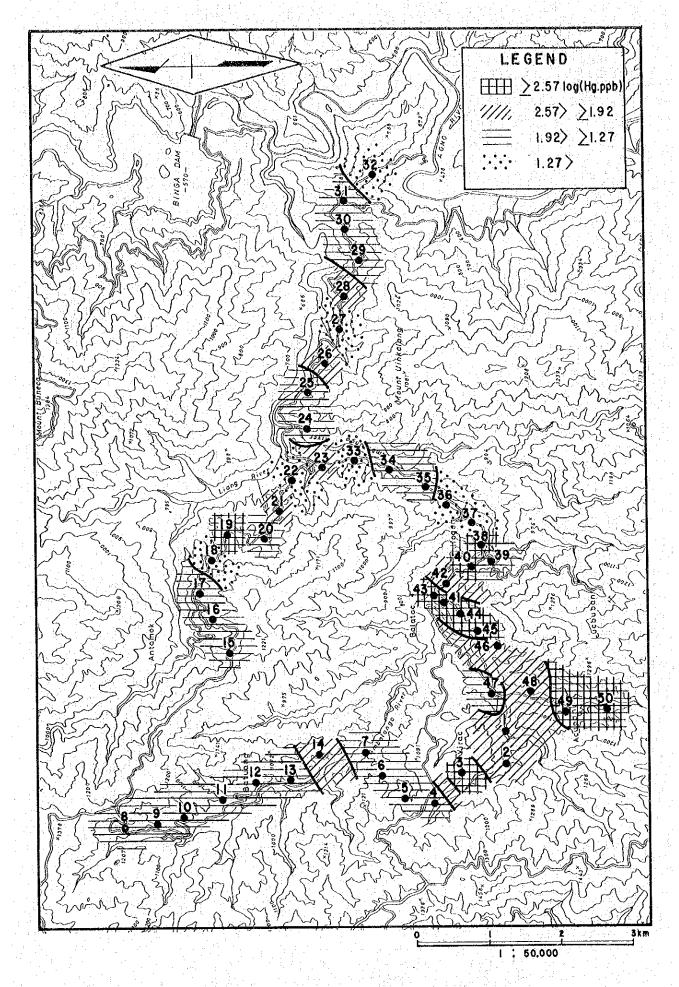


Fig. II-2-16 Distribution Map of Hg Contents in Soil

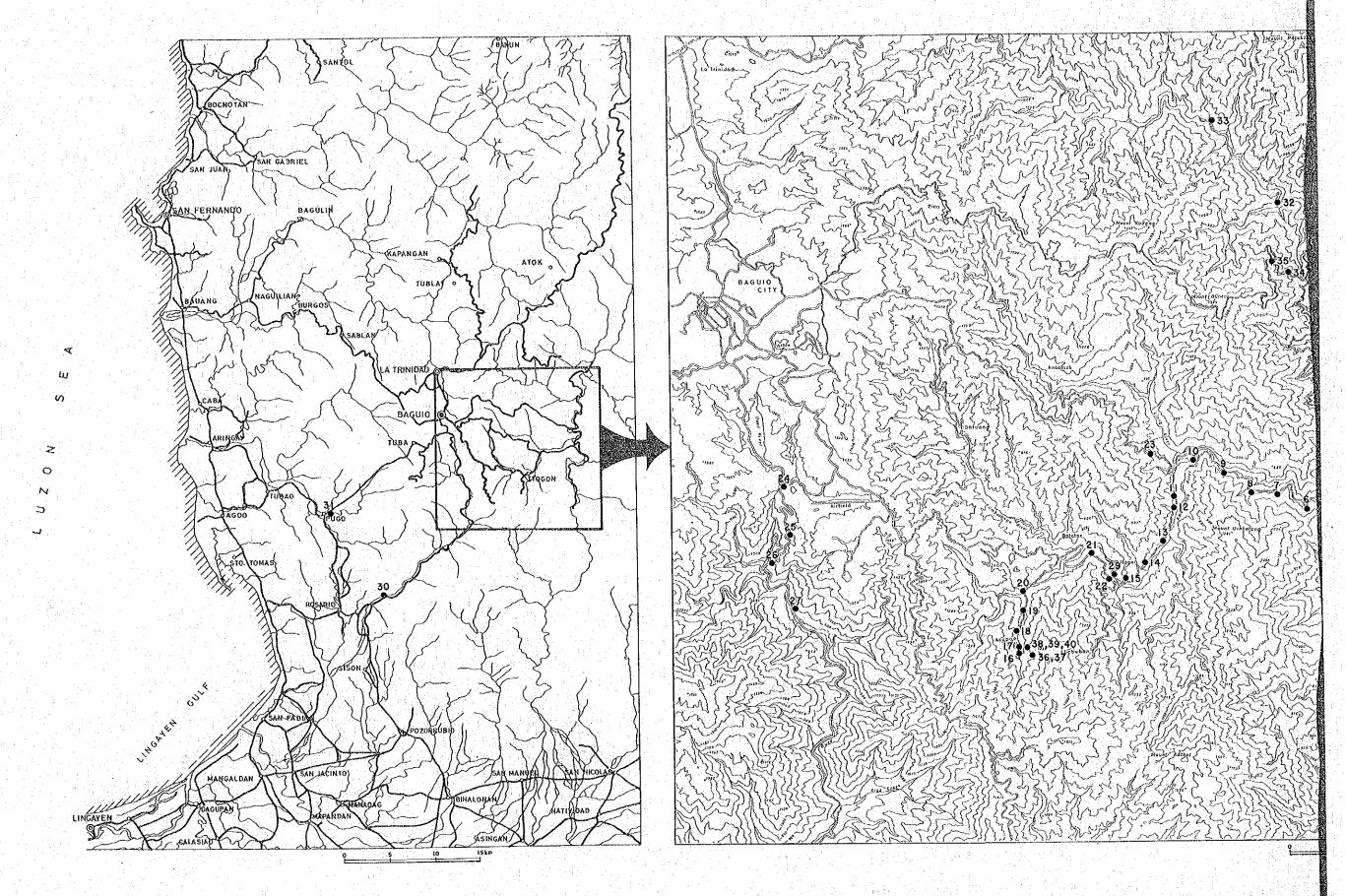


Fig. II-2-17 Location Map of Rock Samples for Hg Analy

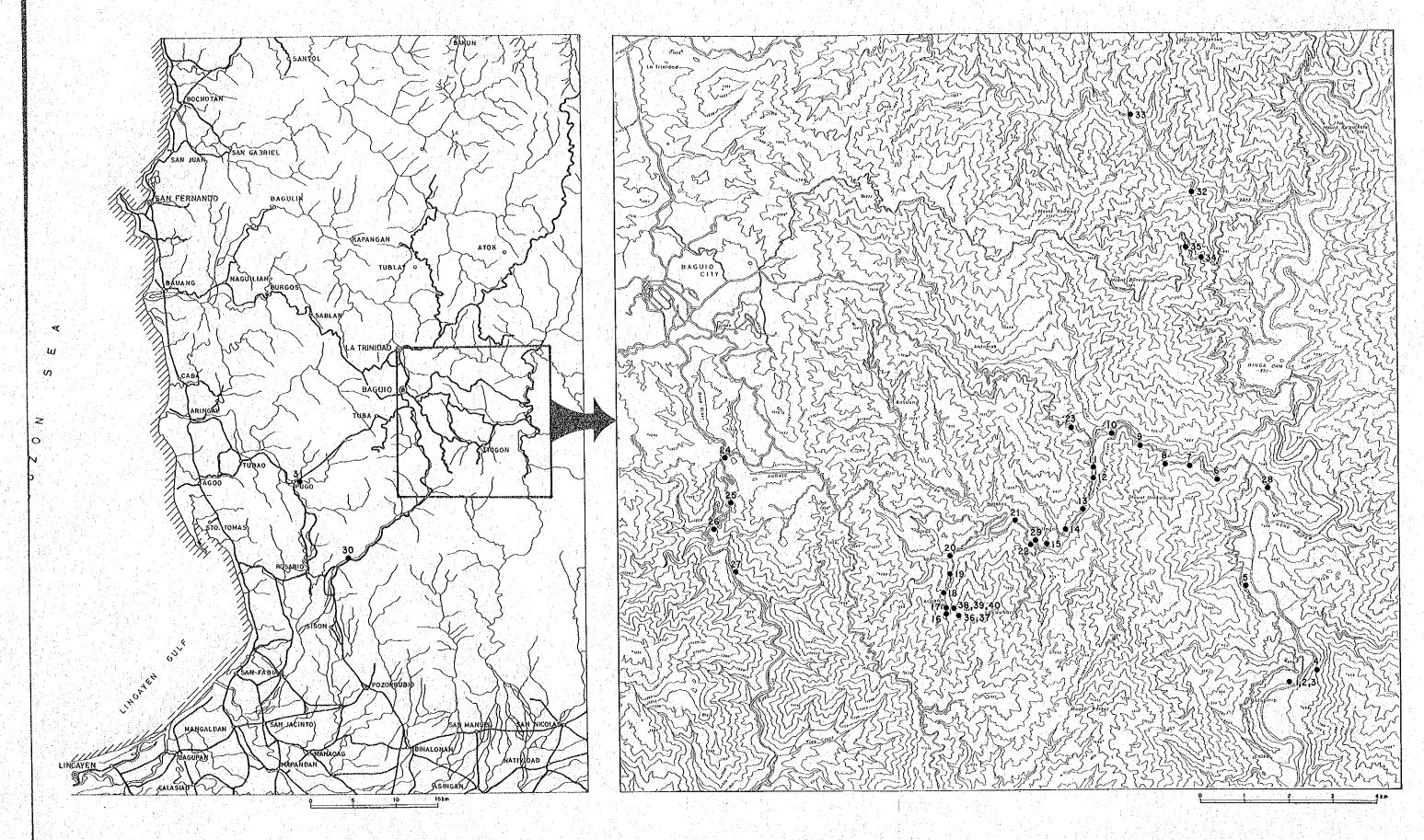
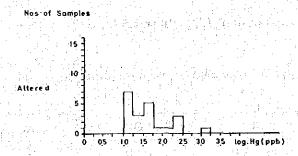


Fig. II-2-17 Location Map of Rock Samples for Hg Analysis

Table II-2-2 shows whether a given sample analyzed for mercury is altered or fresh. Sampling locations are shown on Fig. II-2-17. With reference to Table II-2-2, the following are the average Hg content of host-rocks of hot springs;

Dalupirip: 25 ppb (mean of no. 1, 2 and 3)

1togon : 1,078 ppb (no. 29)


Klondyke : 19 ppb (no. 30)

Pugo : 269 ppb (no. 31)

Laboy: 21 ppb (mean of no. 32 and 33)

Acupan: 156 (mean of no. 36, 37, 38, 39 & 40).

It can be noted from the above data that host rocks from the Itogon Bridge and Pugo hot springs and from Acupan Mine show particularly high mercury contents. The frequency

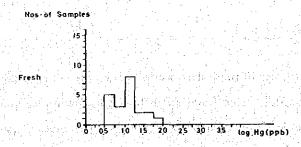


Fig. II-2-18 Histograms for Hg Contents in Rocks

diagrams of mercury contents of altered samples on one and of unaltered ones on the other, are shown on a logarithmic scale in Fig. II—2—18. The minimum duplication appears on both diagrams between 1.00 and 1.25, but in most cases the Hg content is higher in altered samples than in fresh ones. It is not sure whether this alteration is linked with the hydrothermal alteration associated with the gold mineralization in the area, or whether it is connected with the hot spring alteration. For the time being, we can consider it to be related to the post-mineralization hot spring activity. As a matter of fact, relatively high Hg content (43 and 34 ppb) in no. 21 and 22 are found at Itogon Bridge even in altered rocks that are not the hot spring host rocks, where as, in the Acupan Mine, rocks that underwent strong mineralization-alteration (shown by abundant pyrite and chalcopyrite) have relatively low Hg contents (12—24 ppb, no. 16 to 20). This is also the case for sample no. 14 from Ambalanga River. On the other hand, the host rocks of some hot springs, for example the Laboy River hot spring, show low Hg contents. This reveals that the geothermal fluids perhaps did not always cause an enrichment in mercury.

2-2-5 Factor Analysis of T, CO₂, Rn and Hg in Soil

The coefficients of correlation between the different parameters are as follows:

	T	CO ₂	Rn	Hg
T	1.00	-0.20	0.24	0.19
CO ₂		1.00	0.29	-0.18
Rn			1.00	0.07
Hg				1.00

The number of sets of these data seems to be quite small to allow statistical considerations. The correlation coefficients between the different parameters are characteristically very samil, too. However, the degree of connection of the four parameters may be tested using, for convenience sake, the following criteria:

$$0.7$$
 to 1.0 (-0.7 to -1.0); rather strong connection

0.4 to 0.7 (-0.4 to -0.7): good connection

0.2 to 0.4 (-0.2 to -0.4): slight connection

0.0 to 0.2 (-0.0 to -0.2): really no connection

As the radon (Rn) content shows correlation of 0.24 and 0.29 with temperature (T) and carbon dioxide (CO_2) content respectively, there are slight connections between Rn and T and

Table II-2-2 Analytical Data Sheet of Rock Samples for Hg Analysis

	Location	Geological	Rock name	Alteration	Hg contents	Remarks
۵	Daluping	Pugo	andestite meta-volcanies fine grained, schistose	deep green, altered hydrothermally, Py. diss.		host rock for discharging hot spring
				silicified strongly, quartz vein rich.	12	
			incent Ly of the factor	altered by the internative ventures.	į v	
<u> </u>		Aguno batholith	homblende diorite	fresh, although hb, is altered to chio, partialy.	10	
78	alone S. Liane	Pueo	meta-sediments of coarse basic pyroclastics	fresh, dark gray in colour.		
I	*		meta-sediments of fine basic pyroclastics	fresh, deep gray in colour.	40	
٠.		Basement	green schist	fresh.	S	
<u> </u>		2	meta-sediments of basic pyroclastics	fresh, although Py imp. imp.	173	
13		_	actinolite schist	sherhed strongly.	2 6	
ส.	along S. Ambalanga	Aguno bathouth	hombiende donte	tresh, straugh the contered to this and Pv diss weakly	. 41 4	
				fresh, no Py, and hb, is fresh,	12	
		*		altered by ore mineralization, hb, is altered to chlo. & bio.	10	
		*	quartz diorite	fresh, although hb, is altered to chlo, partially, no Py.	10	
₹	Acupan	Balatoc plug	dacite	altered by mineralization, calcite, Py, Cp.rish. hb, is fresh.	12	
		Aguno batholith	quartz diorite	attered. Py.& Cp.rich. hb is altered to chlo. & blo. partialy.	2	
4			hornblende quartz diorite	altered. Py diss. & stringer rich. hb.is altered to actinolite.	12	
	•	•	hornblende diorite	altered. Py stringer rich. hb is altered to chlo.	14	
: :				altered, much Py, stringer & dss., hb.1s aftered to chlo.	<u>*</u>	
=	Itogon	Zig. Em.	andesitic lapilli toff	altered, argillied,	C 4 6	
			andesite dyke	altered, chioritized & quartz veined, much Fy, sumger & diss.	, -	
۲ ×	Antamox	Aguno bathouth	normolende dionite	fresh, ry, also, weakly and bearing management	10	
4	Acamon Ru.	WTondy Ke	andesing hiff breesing	fresh, deep green in colour, chlo, & calcite rich,	27	
1			diorite	fresh. hb.is altered to chio. partialy.	7	
-		Klondyke	andesitic coarse tuff	fresh, calcite rich.	\$	
ਜ਼	along S. Liang	Pugo	chlorite schist	fresh, calcite veinlet network and bearing malachite.	\$	
=	Itogon	Balatoc plug	dacite breecia	altered. Py, diss, with calcite veinlet network.	1078	host rock for discharging hot spring
×	Klondyke	Klondyke	tuffaceous sandstone	fresh, dark gray in colour.	51.6	
A.	Pugo hot-sping	Rosano		altered. chloritized and much Py. diss.	607	
<u>,,,</u>	Laboy	Aguno batholith	hornblende quartz diorite	altered to white, calcite veinlet nich.	7.7	
1 1	•			aftered, hb.is altered to chlo, & epr., calcife & ry, fich.	* :	
		•	hornblende dionte	fresh, greenish gray, hb.is black in colour, no Fy.	77	
		2	micro hornblende diorite	fresh grayish green, ho is fresh no Py.	A 5	bost rock for discharging hot spring
∢:	Acupan		diorite	silicined strongly, hows altered to chio, Py diss.	101	9-11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-
		2000	andesite	shoulded shouldery.	190	
	*	Danieloc pius	vario Macca (mic)	altered, pale green chlo, & calcite rich	48	
			(older)	altered, pale green, chlo & calcite rich	298	

between Rn and CO₂. There is also a slight negative correlation between T and CO₂ content. However, there is really no correlation between Rn content and Hg content. Using the four variables: T, CO₂ and Rn content in soil air, and Hg content in soil, a principal factor analysis can be made although the number of parameters and sets of data are both small. Nevertheless, the factor analysis, within the range covered by the data, allows examination of the advantages and problems of the different methods used in the geochemical exploration.

The Pearson integrated correlation factors are obtained from the raw data, and the following results are derived after the Varimax rotation for factor loading (See also the geographical representation on Fig. II-2-19).

ſ		first factor	second factor
	$\dot{\mathbf{T}}$	0.530	0.120
	CO_2	-0.349	0.491
	Rn	0.202	0.572
	Hg	0.400	-0.049

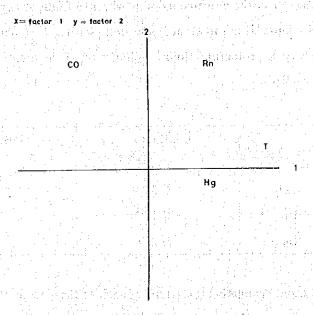


Fig. II-2-19 Factor Loading for Variables

This shows the T and the Hg content as first factors, and the CO_2 and Rn content in soil air as second. The contribution of the factors are similar (0.604 for the first factor and 0.585

for the second), and this may be expalined by the general dilution of the values taken by each variable. However, analysis of each variable yields the following communalities:

T 0.296
CO₂ 0.363
Rn 0.368
Hg 0.162

All these values are small, especially those concerning the T and the Hg content. This means that there is a strong influence of some peculiarity outside the first and second factors, as previously seen in the examination of the degree of connection of one variable with respect to the others. In conclusion, judging from the factor analysis of the 50 sets of four variables used in the survey, there may be some doubts about the efficacy of some of these factors as exploration indices. Conversely speaking, the positive or negative correlation between the different variables probably become inexplicit because the geothermal manifestations at the surface are not very strong.

As regards the significance of this factor analysis, although many problems remain unsolved, the T and the Hg content apparently act as first factors and, as the distribution maps of these two parameters (Fig. II-2-5 and II-2-16) shows a good correlation with hot springs, we may say that these reflect the movements of geothermal fluids at depth. On the other hand, since the CO₂ and Rn contents in soil air act as second factors, these parameters do not seem to be related to the activity of geothermal fluids. Calculation of the factor weights of each parameter yields the following results:

		first factor	second factor
Ì	T. L.	0.387	0.091
	CO_2	-0.274	0.376
	Rn	0.167	0.443
	Hg	0.271	-0.031

Using these data, and calculating the scores of each of these factors for every measurement point, the distribution maps of Fig. II-2-20 and II-2-21 showing factor scores are obtained.

Without forgetting the limitations already pointed out earlier, it may be inferred that the first factor corresponds to the activity of geothermal fluids, and the second one to the presence around Batuang of andesites and granodioritic porphyries.

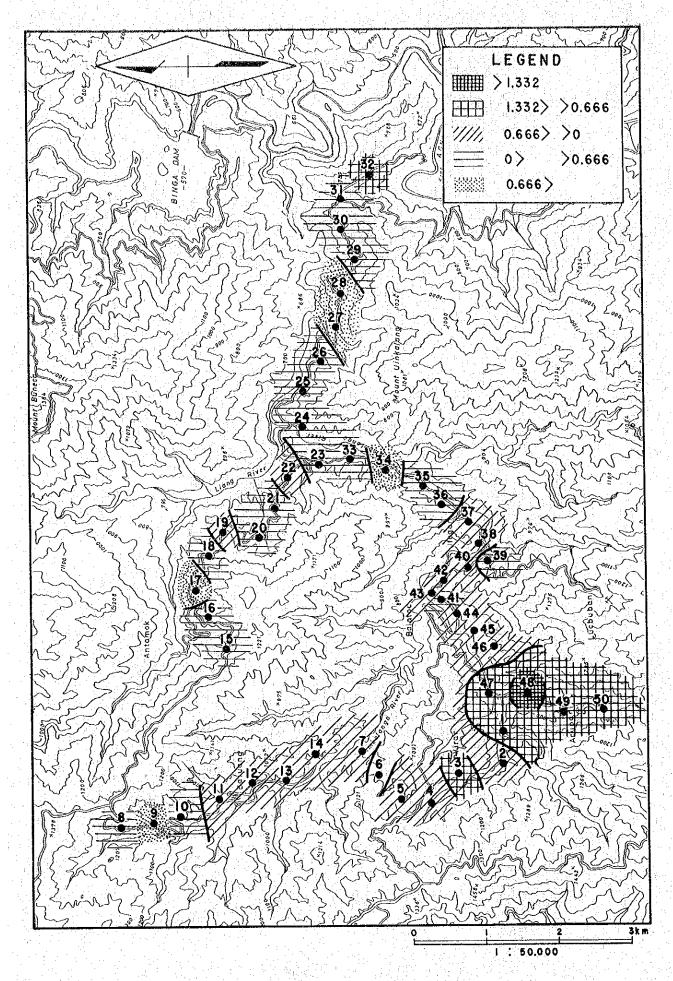


Fig. II-2-20 Distribution Map of Factor Score (Factor-1)

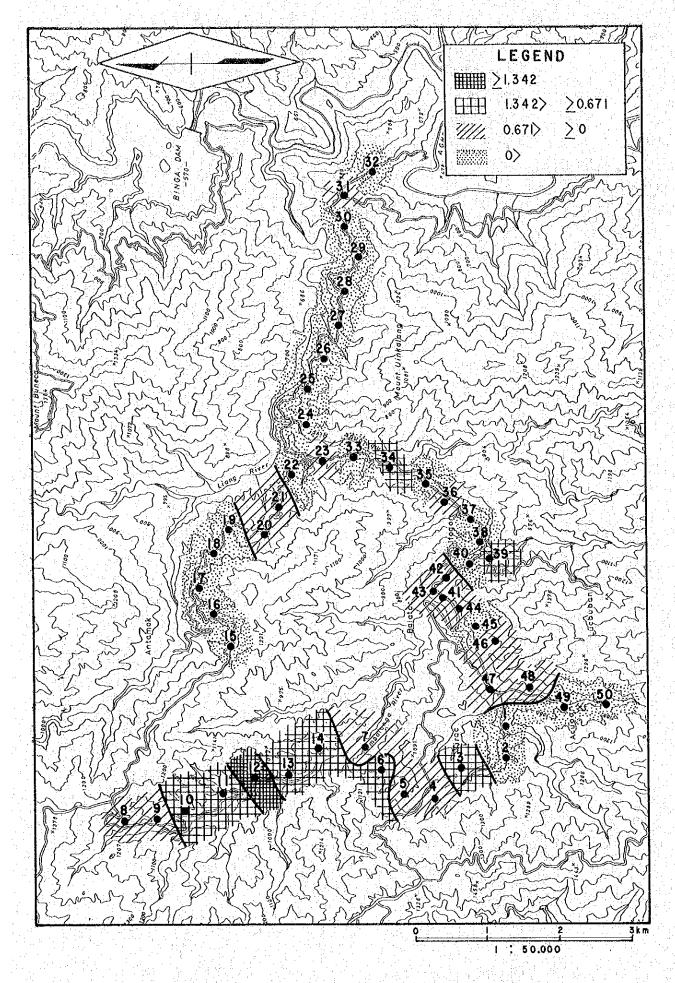


Fig. II-2-21 Distribution Map of Factor Score (Factor-2)

2-2-6 Measurement of T, CO₂, Rn and Hg in Soil

Of the four parameters considered in the geochemical exploration at one meter depth, the temperature and the mercury content in soil reflect the activity of geothermal fluids, whereas the other two variables which do not seem to be directly linked with the activity, reflect geological differences. Concerning the connection between mercury content and mineralization, the relation is not very clear between gold-silver mineralization and mercury content. However, within the limits of the sampling method, may be disregarded any relation between mercury content and copper mineralization. It is generally observed that for copper and gold-silver mineralizations occurring in a given area at a given period of time, the gold-silver stage, in many cases, postdated the copper mineralization. The mercury enrichment, likewise probably occur in the later stage of a given series of geothermal fluid activity. The reason for this may be the evolution of the chemical characteristics of the associated intrusive and extrusive rocks. In any case the distribution of mercury contents reflect the whole activity of geothermal waters accumulated at depth over a long period of time.

Carbon dioxide and radon contents, which were measured at intervals of about 500 m reflect geological differences rather than geothermal fluid activity. It is possible, however, that other correlations will appear if the intervals between sampling points will be reduced and the superficies of the surveyed area be reflected.

Unfortunately, the activity of underground geothermal fluids does not act very strongly on the four parameters measured at the surface. This causes limitations on the effectiveness of these parameters with regards to the understanding of underground processess. For interpretative investigation of movements of hydrothermal fluids at depth, measurements not only of the first factor, namely the temperature and the mercury content, but also the carbon dioxide and radon concentrations should be made. However, concerning the measurement of carbon dioxide content, as the soils of the surveyed area are poorly developed, it is difficult to obtain at each point the same condition for measurement of the gas concentration, and it is perhaps sufficient, for this geochemical exploration at one meter depth, to measure the temperature, the mercury content in soil and the radon concentration.

2-3 Geochemical Survey of the Hot Spring Water

During this survey, 10 hot spring water samples were taken from seven (7) locations: Dalupirip, Itogon, Klondyke, Asin, Pugo, Laboy and Acupan mines. Gas samples were also taken from exhalations. Chemical and isotopic analyses were done on the water samples. The locations of the hot spring are shown in Figure II-2-22; and summary is given in Table II-2-3.

2-3-1 The Source Regions of Hot Springs

The Dalupirip hot spring ascends from within the boulders below the Agno River. The source area measures approximately 6m x₁ 7m where three (3) horizontal pipes were constructed within cubicles for drainage of the hot spring. The sampled water was taken from the drainage pipe having the highest temperature (42.5°C). The total discharge was observed to be 150 1/min., temperature ranges from 37.2°C to 42.5°C and field pH of 5.5. Found under the sedimentary pebbles along the Agno River are green andesitic altered pyroclastic rocks, which suffered strong pyritization and silicification but no bleaching was observed. Many quartz veins and calcite veinlets were also observed as well as white crystals of gypsum and green crystals of iron sulfate.

Itogon hot spring is located at 150 m to 300 m above Itogon bridge. The host rock could be the Balatoc plug or the andesites that intrude it. There are three main springs in the area where temperature ranges from 41.3°C to 89.5°C, pH 6.5 to 7.5, and discharge at approximately 101/min. Two samples were taken from the springs having the highest temperatures. The host rock, where spring water discharges along its joint surfaces, suffered grey green alteration with calcite veinlets. Besides gypsum and iron sulfates, there are also large amounts of calcite sinters. Hot spring gas bubbles were observed at the spring with the highest temperature. Of the 87 ml of the gas collected, only 0.05 ml contained H₂S while 86.95 ml contained CO₂.

Klondyke hot spring is located near downstream of Bued River. The host rocks consist of andesitic pyroclastic and conglomeratic formations. Numerous calcite veins were also observed. The hot waters probably discharges along a NE-SW trending fault zone and along the associated joint surfaces. Temperature ranges from 44°C to 49°C and pH is 7.5. White to yellow precipitates of acicular sulfur crystals are locally observed. Collection of gas bubbles were done using gas detection tube and showed that CO₂ concentration is less than 0.05% and H₂S is below detection limit.

Asin hot spring is located at approximately 10 km from the city of Baguio. The locality was reconstructed so that the thermal discharge flow to a 4m x 8m area of the fluvial sediments and accumulates into a pond-like reservoir, thus no discharge rate was taken. Measured temperature is 73.8°C and pH is 8.0. Gas bubbles in the pond were collected and analyzed using gas detector and showed that CO₂ and H₂S concentration are below detection limit, i.e. less than 0.05% and 0.005%, respectively. No precipitates of sulfur were observed.

Pugo hot spring is located at the left bank of the Pugo River. The fluid discharges at two locations from within sedimentary fluvial sand. Temperature is from 35.3°C to 36.3°C while

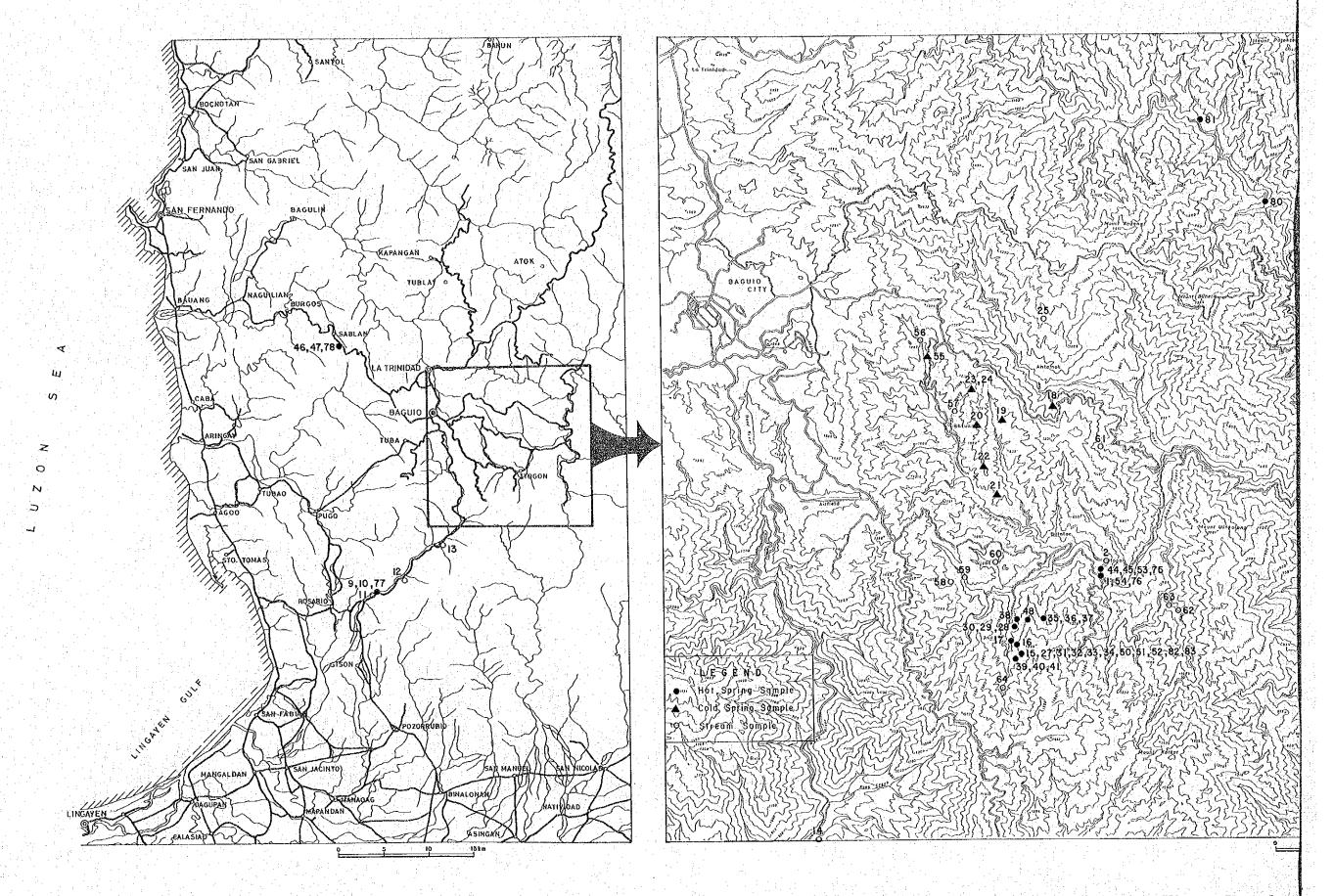


Fig. I -2-22 Location Map of Spring Water Samples

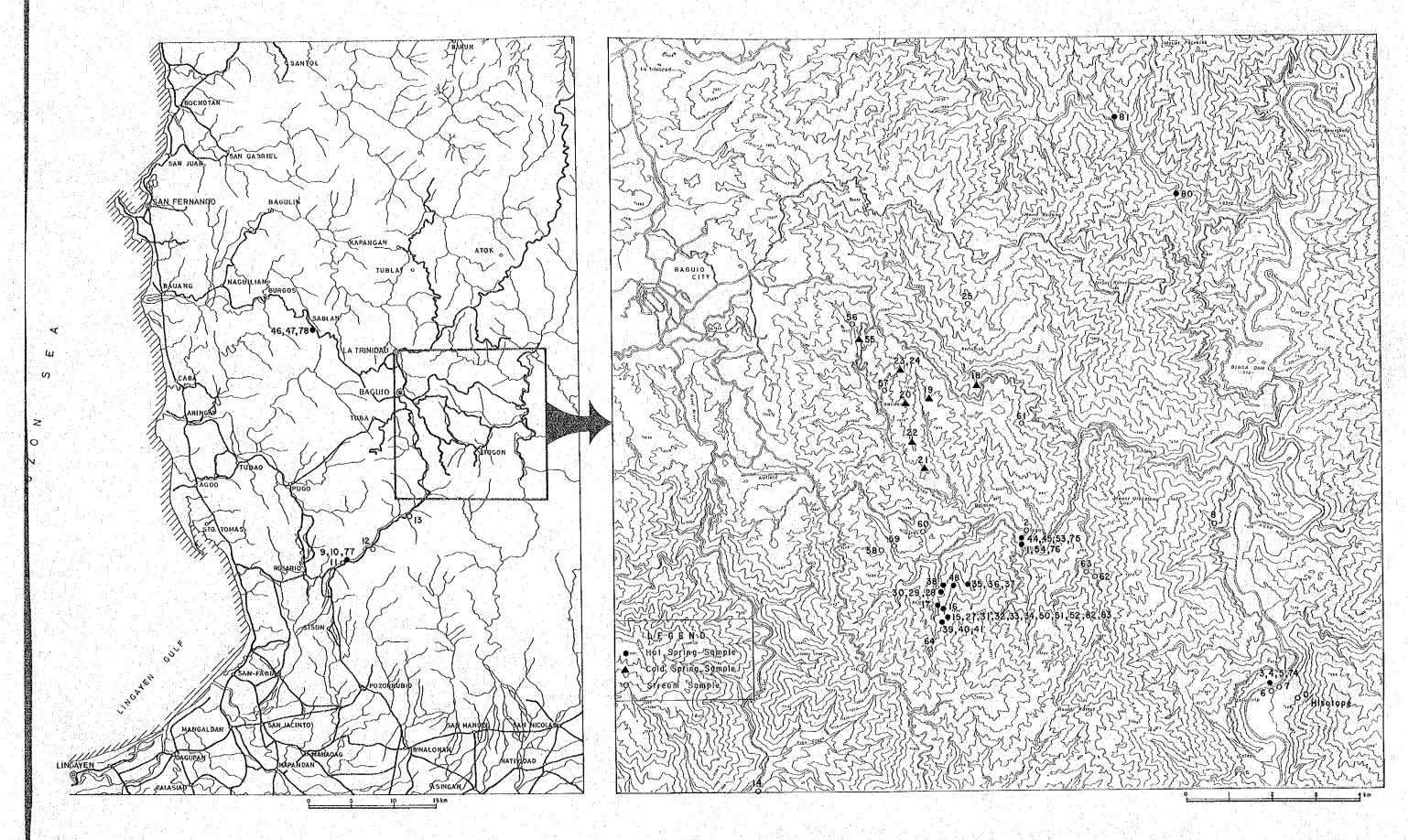


Fig. I -2-22 Location Map of Spring Water Samples

Table II-2-3 List of Spring Water Samples

			200	1.0		1.0	. ''		
COUNTRY ROCK/GEOLOGY	gravels on Pugo formation	Balatoc Plug along the contact between lower Balatoc Plug and overlying deteric	andesitic tuffaceous sandstone (Rosario Formation)	gravels	gravels on tuffaceous sandstone (Rosario formation)	hb qtz dionite	granite	dionite	andesite
DEPOSIT	caloite & quartz vein. CaSO4 & FeSO4 films	calcite veinlet, calcite sinter, gypsum-like crystals, FeSO4	calcite vein	none	none	calcite thin veinlet along jointing	calcite epidote veinlet;	gypsum and calcite yein	
3AS H ₂ S	1	90:00	<0.005	<0.005	<0.005	1	1: ,	ļ	
%V GAS CO ₂ H	-	99.94	<0.05	<0.05	<0.05	1			¢-
DISCHARGE VOL. (L/min.)	> 50	v	10	not sure	5-6	10	15	25	08-09
Hd	5.5	7.5	7.5	8.0	7.0	7.0	7.0	7.5	8.0
TEMPERATURE (°C)	42.5	89.5	49.5	73.8	36.3	47.5	47.5	81.0	62.1
ELEVATION M. a.s.l	420	089	240	260	80	099	700	Acupan mine 3300 tevel (519m)	3150 level (565m)
HOT SPRING LOCATION	Dalupirip	Itogon	Klondyke	Asin	Pugo		Laboy	Balatoc (Acupan Mine)	
SAMPLE	DA	IT-1 IT-2	以	AS	D.d.	LA-1	LA-2	BA-1	BA-2

Table II-2-4 Analytical Data Sheet for Spring Water Samples

	11	Klondykes	E13	4, June, '82	24.0	7.48	451	ł				-1		8	$-\dagger$	70.2 1.151					٦ ع	30.1 0.501	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	325.9			stream water	60	
	10	Klondykes		.32					m.eq/g	16.877	. ' 1	6.587		16.839	-	0.659			1		0.365	5 0.659					hot spring		
		Klon	E11	4, June,	45.0	7.78	2,348			388		132			340	40.2			1		3.95	39.6		1,543.0			hous	မွ	
les	6	Klondykes	E10	4. June, '82	39.0	7.43	2,025	1.5	me/λ m.eq/λ	304 13.223	2,40 0.061	116 5.788		5	296 6.163	30.5			I.		2.38 0.220	39.1 0.651		1,277.9			hot spring	op	
ater Samp	8	naien		3, June, '82					m.eq/R	6.50 0.283	1.	1 447	- 1		8.25 0.172	009'1 9'						.8 0.879					cold spring		
W gung		Labeien	E9	3, J.	23.5	7.93	199	7.5	m.eq/2 mg/2	0.544 6.	0.038 tr	1.896 29.0	0.592 4	0.542 4	1.412 8	9.76 91.01						0,353 52.8		202.6	•			op	
eet for S	7	Dalupirip	E8	3, June, '82	21.0	7.50	315		т≘ _у/вш	12.5 0.	1.50 0.	38.0 1	7.20 0.	19.2 0.	67.8 1.	62.2						21.2 0.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	229.6			stream water	op	: . - :
Analytical Data Sheet for Spring Water Samples	9	Dalupirip	£7.	3, June, 82	22.0	7.60	201		mg/ℓ m.eq/ℓ	8.00 0.348		28.0 1.397	5.60 0.461	4.17 0.118	5.50 0.115	87.8 1.439						29.2 0.486		168.3			stream water	op	
Analyti			H			7	71		т.еq/8 п	. 669'8	0.141 tr	4.790	0:930	1.235	12,201	0.120						0.834							
	v	Dalupirip	E6	3, June, '82	43.0	6.78	1,361	7~8	, %/gm	200	5.50	0.96	11.3	43.8	586 1.	7.32			Į.		±	50.1		1,000.0			hot spring	op	
)le II-2-4	4	Dalupirip		3. June, '82	0.	38	1,429		mg/2 m.eq/2	208 9.047	6.00 0.153	94.0 4.691	8.70 0.716	47.2 1.331	9 13.305	8.54 -0.140			1		TT	46.9 0.781		1,058.3			hot spring		
Table		Da	ន	9	41.0	7.08	1	4	m.eq/R m		0.143	4.341 9	0.880	1.281	12.243 639	1		ļ	Ħ		E	0.840		1,	:		hc	qo	
	3	Dalupirip	E4	3. June, '82	44.0	7.10	1,361	2~8	mg/R m	200 8.	5.60 0.	87.0 4.	10.7 0.	45.4 1.	588 12.	6.10 0.100			11		i i	50.5 0.		993.3			hot spring	op	
	2								. м.еа/g . п	ı	0.358	15.419	1.341	2.933	15.782	0.770			1			0.821					. ,		
		Itogon	E3	3. June. 82	27.0	7.64	1,701	i.	m _K /Q	84.0	14.0	309	16.3	104	758	47.0	i.		Ħ		₽	49.3		1,381.6			stream water	ор	
		Itogon	153	3, June, '82	50.5	7.43	2,348		mg/2 m eq/2	416 18.095	65:0 1.662	98.0 4.890	9.00 0.741	145 4.090	586 12.201	660 10.817			2.10		9.63 0.891		1 -	2,287.6			hot spring	8.E.D. (9/Aug/82)	
	N.			ng Date	+		ictivity (a)(cm)	Discharge(2/min)	Chemi. Ana				Mg ²⁺		SO4 ²	нсоз.	∞,2-	H ₂ CO ₃	1	As	ga.	6		(mg/k)		Acidity		Reference	

22	Batuang	3	7, June, 82	.0	6.73	7					_				35.0 0.574						40.3 0.671		137.9		cold spring			
	Ba	E23		0.61	9	137		E							1.190						0.616		=======================================				g.	
21	Batuzng	E22	7, June, '82	18.5	6.62	121	· -	mg/g r	9.20		0.00	- 111			72.6					- 1	37.0		140.3		cold spring		မှ	
20	×		.82				1	т.еа/2	0.574	0.108	15.469	5.184	_	20.946	1.406						0.742				guin			
	Antamok	E21	7, June,	18.0	6.78	1,656	10	g mg/g	13.2	4.24	310	63.0		1,006	82.8						44.6		1,535.7		cold spring	400F	පි	
19	Antamok		7, June, '82			S		2 m.eq/R	0 0.739	24 0.083	21.208	0 2.222	1.1.	25.839	0.670						4 0.622		5.7		cold spring	_		
	Anta	. E20	7, Ju	20.0	6.20	1,805	10	m.eq/2 mg/2	0.326 17.0	0.026 3.24	7.535 425	91 27.0	0.533 14.2	6.642 1,241	3,442 40.9						0.461 37.4		1,805.7		cold	400	ಳ	
18	Antamok	E19	7, June, '82	19.0	7.07	875	10	те/2 т.	7.50 0.3	1.0 0.1	151 7.5	24.2 1.991	18.9 0.5	319 6.6	210 3.4						27.7 0.4		759.3		cold spring	00E	do	
	V	ш	11.7	1	7	8	1	m.eq/g m	41.279	4.143	2.715	0.165	35.455	6.350 3	8.440 2		-			4.061	3.029		-				70	i
17	Acupan	E18	5. June, '82	80.0	6.88	4,839		mg/2	949 4	162	54.4	2.00	1,257 3	305	515		1	5.10		43.9	182		3,470.3		hot spring	3,150L	တ္	
16			.82					m.eq/2-	36.103	3.427	2.275	0.690	34.496	7.308	6661					3,525	3.429				gui			
	Acupan	E17	5. June, 82	85.0	7.95	4.514		g mg/g	830	134	45.6	8.38	1,223	351	122			4.50		38.1	206		2,958.1		hotspring	3,3001	op	
15	ngd.		5, June, '82			2		β - m.eq/β	40.844	3.990	6.487	8.80 0.724	36.725	7.621	5.769			09		35.6 3.293	2.280	-	6,4		hot spring	10.		
	Acupan	913	5, 31	62.0	7.99	4,932	2	m.eq/2 mg/2	63 939	0.037 156	32 130		0.367 1.302	4.039 366	0.470 352	5-		4.60		35.	0.328 137		3,426.4			3,350L	ę,	
14	Kennon Rd.	E15	4, June, '82	19.0	7.28	\$15		mg/R m.	6.05 0.263	1.46 0.0	84.8 4.232	8.50 0.699	13.0 0.3	194 4.0	28.7 0.4						19.7 0.3		356.2		stream water		qo	
					7.	8		m.eq/2 m	0.261	0.074	2.789	0.537	0.280	1.913	0.200			1			0.742		es				P	
13	Kennon Rd.	£14	4, June, 82	23.0	7.76	374	r	тв/2	00.9	2.90	6:55	6.53	9.93	91.9	12.2						44.6		230.0		stream water		op	
12	Rd.		, '82					m.eq/g	0.304	0.007	0.838	0.181	0.280	0.146	0.490						0.389				stream water		(82)	
	Kennon Rd.	E13	+	-	7.62		ii)	mg/R	7.00	0.28	16.8	2,20	9.93	7.00	29.9						23.4		5.96		stream		B.E.D. (9/Aug/82)	
Ŋ.	Location	Code	Sampling Date	TO	Ha	Conductivity (un/cm)	Discharge(2/min)	Chemi. Ana:	Na+	κ ⁺	Ç2+	Mg ² +	Ö,	\$0 ₄ ² -	нсо3.	°5.	H ₂ CO ₃	T.	As	8	SiO ₂	NH4+	T.S.M.(mg/k)	Alkalinity	Remarks		Reference	

33	Acupan	Benquet-7	19, Aug., 77	73	7.25		-	- 1			`-	<u>, </u>	* .		85 1.393		10 0.161	0.07	1.1.	9	28 0.466		2,018.2		hot spring	3,150L	g
	Α		77 1	1	7			_	\dashv				- 1				0.048			, :	0.433						
32	Acupan	Benguet-6	19, Aug.,	55	7.80		20	mg/2	- '	3.9	438	11.2		1.440	87	1	3	0.05		< 0.05	26		2,054.2		hot spring	3,1501	g
31	- T	et-5						m.eq/2	37,234	3.120		- 1		8537	5.507	0.167	0.129			4.348	2.779		សុ		ring	1	
	Acupan	Benguet-5	18, Aug.,	64.5	8.05					0 122	-21	8.3		6 410	5 336	3 .	8	4.6		3 47	6 167		3,429.3		not spring	3,150L	පි
30	Acupan	Benquet-4	19, Aug. 77	5	2			/g m.eq/g	7		- 1	2	3.5	5 10.306	3.245	4 0.133	4 0.064	5.6		57 5.273	6 3.429		3,409:2		hotspring	3,150L	
	Acı	Ber		72.5	8.12		2~3	m.eq/2 mg/2	46.846 990	4.041 138	2.844 67	0.165	39.630 1,248	11.243 495	. 198					5.088 5	3.928 206		3,5		l of	,	op
29	Acupan	Benquet-3	19, Aug., 77	30	1		30	mg/R m	1,077 46	158 4	57 2	2.0 0	7	540 11			1 3 1	5.9		55 5	236		3,530.0		not spring	3,150L	do
			77			<u>.</u>		m.eq/R	54.154 1	4.553	9.731	0.025	43.720 1,405	6.913	4.556	0.333	0.048			6.290	4.910				-	6	
28	Acupan	Benquet-2	18, Aug., 77	66	8.36			mg/2	1,245	178	195	0.3	1,550	332	278	10	3	7.0		89	295		4,154.3		hot spring	3,150L	op
27	en.	Benquet-1	19. Aug., 77					m.eq/R	37.669	2.992	6.038	4 0.444	33.904	8.162	2.573	0.067	0.097	2		4.348	2.946		2.4		hatenming	01	r, (77)
	Acupan	Веле	19. 4	79.5	7.84		40	m.eq/2 mg/2	998 66	70 117	42 121	7.735 5.	90 1,202	86 392	157	2	9	4		0.981 47	0.792		3,092.4		1	3,300L	KRT (Sep
26	Antemok	Antamok		37.0	3.35	4,653		mg/g m.e	360 15.659	22.3 0.570	580 28.942	94.0 7.7	613 17.290	2,199 45.786				2.40		10.60 0.9	-		3,926.5			1,850L	qo
		4			3 6	4		m.eq/R n		0.015	1.597 \$	0.638	0.067	1.083 2,1	1.375						0.363						
25	Antemok	E26	9 Tune '82	17.5	6.79	258	20	mg/9	5.10	09:0	32.0	7.75	2.36	52	83.9						21.8		205.5	te uz		stream water	op
24	a	9	. %2	î				m.eq/8	11	3 0.019	-	3.209	5 0.083	5.143	0.367	+					0.649					cold spring	
	Batuane	F25	7 Time %2	1001	2.30	647	0.5	/2 mg/9		6 0.73	1.31.	0 39.0	0 2.95	9 247	0 22.4	1 -					. 39.0		415.5		:	S DIOS	op G
23	Ratuano	E74	7 11100 187	10.0	5.51	518	1	mg/2 m.eq/2	12.6 0.548	0.61 0.016	+	28.8 2.370	7.09 0.200	230 4.789	16.5 0.270	1					34.1 0.568		369.7			cold spring	B.E.D. (9/Aug/82)
c Z			Court Date	1		ductivity	1					Mg ²⁺		SO42-			H.CO.	3	As	A	SiO	NH4+	(mg/k)	Alkalinity	Acidity	Remarks	Reference
		Т,	<u>1.°</u>					1_				<u> </u>			17		1.7	1									

No. 54 55 55 55 57 57 58 59 59 50 50 50 50 50 50	4	пс	Benquet-18	19, Aug., "77					9/ m.eq/8	24.793	2.072	4.291	0 0.329	11.198	13.638	7,752	0.067	0.613	3.0			2.280		57.0			not spring		
March Marc		Itoge	Вепс	19,	94	7.47		. 5	1.17			11.5	Ÿ. 11			473	2	38	С			. 17	1 1 1	2,46			not	පි	
According 3-4 3-5	43	pan	duet-17	Aug. '77				000	-2							ĭ	1.	T	.61	Nail Nail	_			15.7			e drainage		
According 1, Acc		Acu	Ben	20,	43	_		20.0	1. 1	141				:: :				1						1,9				do do	
No. 24 35 35 35 31 31 32 32 33 40 41 30 40 41 41 41 41 41 41 4	42	,pan	quet-16	Aug., 77				0		3.55			-	12.11			_	1	3.05				1 - 1	11.7			ne drainage 100L		
No. 34 35 36 37 38 39 39 40 40 41 Bernquest-S bernquest-O bernquest-O<		Ag	Ber		24	i		20(1: 1:		3	117			10.00	·								<u> </u>			1,5	ဗိ	
No. 34 35 35 37 38 39 40 n Acopan	4.1	upan	nquet-15	, Aug., '77		7.5			-	1	-	 							0.07		i i	1		317.9			ot spring 900L		
Acquired 34 35 36 37 38 39 44 Demotraced Benquetori		A	Be		45	7		50	1 1					ļ	232 1,47									,2,			ъ 2,	ğ	
No. 34 35 36 37 38 39 39 n Accupan Accupan <th< td=""><td>9</td><td>cupan</td><td>enquet-14</td><td>0, Aug., 77</td><td></td><td>61</td><td></td><td></td><td><u></u></td><td>-</td><td>~</td><td></td><td>1</td><td>╁</td><td></td><td></td><td></td><td></td><td>0.05</td><td></td><td></td><td></td><td></td><td>388.5</td><td></td><td></td><td>ot spring 900L</td><td>0</td><td></td></th<>	9	cupan	enquet-14	0, Aug., 77		61			<u></u>	-	~		1	╁					0.05					388.5			ot spring 900L	0	
No. 34 35 36 37 38 39 n Acupan Acupan Acupan Acupan Acupan Acupan Acupan Banquet-10 Benquet-10 Benquet-11 Benquet-12 Benquet-12 Benquet-13 137 65 2.2 2.0 Acupan Acupan Acupan Acupan 137 12. Benquet-10 Benquet-11 Benquet-12 Benquet-13 Col. Aug. 77 20. Aug. 77 </td <td></td> <td> V</td> <td></td> <td></td> <td></td> <td>7</td> <td></td> <td></td> <td>1 .</td> <td></td> <td></td> <td>-</td> <td>506</td> <td>1</td> <td>.648 1,5</td> <td></td> <td>.000</td> <td>- : - : : : : : : : : : : : : : : : : : : :</td> <td></td> <td></td> <td>- :</td> <td></td> <td></td> <td>2</td> <td></td> <td></td> <td><u> </u></td> <td>0</td> <td></td>		V				7			1 .			-	506	1	.648 1,5		.000	- : - : : : : : : : : : : : : : : : : : : :			- :			2			<u> </u>	0	
No. 24 35 36 37 38 38 38 31 31 31 31 31	39	Acupan	3enquet-13	20, Aug., 7	51.5	40.7		~	\vdash	17	-		-				-	١,	0.07			1424		2,429.3			hot spring 2,900L	QQ.	
No. 34 35 35 35 37 38 38 31 39 31 39 31 39 31 39 31 39 31 39 31 39 31 39 31 39 39					,				F		0.184	200	4 4 4	0.338	0.821 1,		0.033	0.064				0.766							
n. Acupan. Acupan. Acupan. Acupan. Acupan. Acupan. Benquet-10 Benquet-11 g Date 19, Qug. 177 20, Aug., 777 20, Aug., 770 20, Aug., 777 20, Aug., 770 20, Au	38	Acupan	Benquet-1	20, Aug.,	63	7.57			-	+-	(1)	100	1		1.4	-	-		0.10		10	de la		1,542.2			hot spring 2,900L	op	
No. 34 35 36 36 33 nn Acupan Acupan Acupan Acupan Acupan Benquet-10 Benquet-10 Benquet-10 Benquet-10 Benquet-10 Benquet-10 Str. 20, Aug., 777 20, Aug., 777 20, Aug. 778 20, 20, 20 20, 20, 20 20, 24, 25 20, 21, 20, 20 20, 20, 20, 20, 20, 20, 20, 20,			-						m.ea/R	45.281			1113	100	10.161						5.088						80°		
No. 34 35 36.	37	Acupan	Benguet-	20, Aug.,	76			ī	-		1		1.3	+ -	1-	, i i			5.2		55			3,380.3			hot sprin 2,900L	οp	
No. 34 35 5 5 n. Acupan Acupan Acupan Benquet-8 Benquet-9 Benquet-9 ig Date 19, Qug. 77 20, Aug. 77 20, Aug. 27 56 65 52 indivity 7725 65 7789 indivity 7725 8.23 100 set 425 21.208 845 36.755 942 Ana. mg/R misq/R msq/R mg/R 700 845 36.755 942 23 1.000 845 36.755 942 425 21.208 84 3.018 124 Ana. 23 1.000 845 36.755 942 1120 0.987 1.7 0.140 7.0 8 0.226 935 26.373 1.142 1130 2.835 188 3.081 266 21 0.339 3 0.048 8 0.05 0.005 13 12.868 45 CO.05 0.005 31 2.868 45 CO.05 0.043 140 2.330 153 ing/R) 2.091.4 3.0567 3.410.0 ing/R) 2.091.4 3.0567 3.410.0 ing/R) 2.091.4 3.0567 3.410.0 ing/R) 2.091.4 3.0567 3.410.0 ing/R) 2.091.77 ing/R) 2.091.70 ing/R) 2.091.77 ing/R) 2.091.74 ing/R) 2.091.77 ing/R	9		-10	14.					m.ea/g		3.172	4.890	0.576			4.360	0.100	0.129			4.163	2.546							
No. 34 33 n Acupan Acupan Benquet 8 19, Qug., 77 20, Aug. 17.25 8.23 thirty 7 20, Aug. 23 1,000 845 7.25 11.008 845 3.3 0,084 118 8 0,226 935 425 21.208 50 17.0 0,987 1.7 17.0 0,987 1.8 17.3 2.835 188 0 0.000 5 21 0,339 3 0 0.005 31 26 0,433 140 117 26 0,433 140 117 26 0,433 140 31.50L 26 0.433 140 117 26 0,433 140 31.50L 25,000L 100 8	40	Acupan	Benguet	20, Aug.	52	7.89		10			124	86	7.0				1	. 4			\$	153		3,410.0			hot sprii 2,900L		
No. 34 In Acupan Benquet-8 Is Date 19, Qug., 177 S7 7.25 hivity 2) (mi) 5 Ana. mg/K m.eq/K 23 1,000 3.3 0,084 425 21,208 14.00 29,150 173 2,835 0 0,000 21 0,339 0,05 0,05 0,005 26 0,433 iny Mg/K) 2,091.4 iny Noe KRFA Noe (Sep./77)	:		6	17.	1				m.ea./2	<u> </u>		2.495				3.081	15				2.868	-	1		ř.		ogs.		
No. 34 In Acupan Benqueri g Date 19, Qug. 725 whity 23 23 425 Ana. mg/Q Ana. mg/Q 425 23 23 23 23 23 23 23 333 425 C0.05 C0.05 C0.05 C0.05 C0.05 Mg/Q Ana. mg/Q 11.400 C0.05 C0.05		Acupar	Bengue	20, Au	65	8.23		15	me/2	845	118					+ +:	100	7.1	1		15					5-1		op.	
No.	34	9	iet-8	1777					12.0	-1			-	4 7 7	29.150			1 7 7	77.5				·				+ 1 + + 2 +.	(17)	
No. Location Code Sampling Date T (C) Conductivity Conductivity Conductivity Conductivity Mg ²⁺ HCO ₃ Co ²⁻ Co ² Co ² So ²⁻ So ² So ² So ² So ² T (Right) As As As As Reference Reference		Acupa	Bengu		1 : "	7.25	-	5 (11)				425	12.0	8	1,400	173	 	21			V 0.0	26		2,091			7 4	1	
and the company of the first of the company of the compan	o'N	Location	Code	Sampling Date	۳رگ	Ho	Conductivity	Discharge(R/m)	Chemi Ana	N3 +	K	Ca2+	Mg ² +	្ត	SO ₄ 2-	HCO.	21.5			As	B	SiO ²	NH, +	T.S.M.(mg/k)	Alkalimity	Acidity		Reference	

No.	1							1						1			1				Ī		T				-			
No. 4.5 Assistant Assi		55	ang	8)ct., 78					78										1/				040	7			Suruds		
No. 1.5			Batu	BED	26, C	20	2.7	638	30						***					lij.	-			o	625.			χο] Σ	တို	
No. 45 447 Address		54	uo	7-7	Oct., 78			8			. 1		17.7			.5		£ .	4.4	-50				920	0.89			spring		
No. 4,			Itog	BED	25,	75	6.0	2,37	10				_			71				7			= !		7.1			hot	ор	
No. 45 46 47 48 46 47 48 49 50 51 52 48 40 40 40 40 40 40 40		53	gon	D-6	, Oct., 78			170		3.3										1.28	\neg			0.042	735.9			t spring		
No.			Ito	BE	- - - - -	98	6.3	1,4	20			7		-		21.5							-	1				ğ	ð	
No. 45 46 47 48 49 50 51 51 51 51 51 51 51		52	сирап	ED-5	5, Oct., '78	6	7	,267	0				77				717			4.55	4.0	7.		0.031	0.797			tot spring 1,300L	0	
No. 45 46 47 48 46 51 50 61 61 61 61 61 61 61 6			*	m.		7.	7.	4	4	_			-	3.216	-														3	
100 100		51	Acupan	BED-4	25, Oct. 7	- 65	7.8	1,757	very low			1	37	1						0.48	ı			0.035	1,471.4			hot spring 3,150L	op	
No. 45 46 47 48 49 50										├ -			1,3	0.823			4.786					3.784	3,495			, i.		86		
No. 45 46 47 48 49 49 49 49 49 49 49		\$0	Acupan	BED-3		61	8.8	4,478	30			88.2		01		449	292			4:11	2.50	40.9	210	0.046	3,539.1	e la		hot sprin 3,150L	op	
No. 45 46 47 48 48 48 49 49 48 49 49										m.eq/8	,	1	1	1			ı	;		1		1.	1	1				82		
No. 45 47 48 No. 45 Asin Acupan tion Itogon Asin Acupan Benquet.19 Benquet.20 Benquet.21 BED-1 sing Date 19, Aug., 77 21, Aug., 77 21, Aug., 77 25, Oct., 77 no. 85 70 41 96 ucivity 878 7.43 8.5 ucivity 2.5 1.432 1.7 21, Aug., 77 25, Oct., 77 ucivity 2.5 1.2.4 2.5 6.0 4.115 ucivity 355 18.441 52.3 22.749 12.2 8.50 1.6 i. Ana. mg/k m.eq/k mg/k m.eq/k mg/k 1.25 2.5 60 i. Ana. 1.57 2.85 2.2 11.078 64 3.194 1.2.2 i. Ana. 1.58 2.58 2.25 11.078 64 3.194 1.2.2 5.5 1.35		4	Acupan	BED-2	25, Oct.	87	8.9		9>	_		.(1	+-	j	1	1						1	0.38		* () * () * ()		hot spri 3,150L	op	
No. 45 46 47 100 1		84	-		t., 78					m.eq/2	34.058	3.197	17.	1	27.755	8.474	6.261				15	-			9			ring L	3LC (42)	
No. 45 46 47			Acupa	BED-1	25.00	96	8.5	4,115	09	1000				1	- 5					3.3(2.2	1		0.0	3,000			hot sp 2,900	BED-I (Feb./	
No. 45 46		47		uet-21	77, Ju					Г	1		1.		1	1	2.786	0.000	0.339			12.		1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0			guing		
No. 45 46 46 46 46 46 46 46			Asin	Beng	21.0	41	7.43		2.5	1/8 mg/2							1.0	<u> </u>		0					727.			hot	કુ	
No. 45		46	0	iq uet-20	A 112 .77		8								1 :-				1,50	0.2		+			35.5			t spring		
100. 45 100. 100. 45 100. 100. 45 100. 100. 100. 45 100. 85 100. 85 100. 153 100. 160 10			Asi		17	: :	2, 0			eq/2 mg		-		1.N. T.	572 835				-:				1	1	1.5			h	ફ	
No. No. No. Uniting Date (uctivity (uctivity) (uctivity		45	okon	enquet-19	A 110 "77		3.7			. 🗔	1							1		8 -		1			5.276,			ot spring	CRTA Sep.(77)	
Cocation No. Cocation No. Cocation No. Cocation Co							,	T	(R/min)				1		12	9	6									^				
Figure 10 to		2	Location	Code	Sampling	100	3 2	Conducti	Discharge	Chem. A	+ sz	+_∠	Ç2+	Mg2+	ם'	SO ₄ 2-	нсо3	 03°3.	H2CO3	1	As	_ 	Sio	+ vHN	T.S.M.(m	Alkalinit	Acidity	Remarks	Referenc	

				T					т.ед/Д	1.087	0.102	24.401	0.365	0.085	25.194	2.458					600.0	0.677							
98	Acupan	1030	1		46.1				mg/R	25	4.0	489 2	4.43	3	1,210 2.	150			V 0.01		V0.1	40.7		1,726.2			hot spring 2,600L	ę,	
									m.ea/g	59.156	5.115	1.522	0.151	48.515	8.204 I	6.457					0.544	6.191						F.J.	
99	Acunan	60.36	0.07		63.7				тв/д		200	30.5	1.83	1,720	394	394			6.75		5.88	372		4,478.2			hot spring 3,150L	Sawkins F.J. et. al., (1979)	
4				. 78					m.eq/R	0,326 1,360	0.037	10.978	1.646	0.183	9.765	2.065		2 T	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1	0.453					water		
2	Acupan	11 000	2000	31, Oct.	20	7.2	870	500	mg/2	7.50	1.43	220	20	6.50	469	126			1	1		27.2		877.6			stream water	og.	
63				.78					m.eo/l2	0.116	0.007	1.173	0.231	0.117	0.385	12.030		1.		1	1	0.384			1		water		
	Ifroon	200	DED-10	1, Nov., 78	20	7.4	134	400	mg/R	2.67	0.29	23.5	2.81	4.14	18.5	734			_	1	ι	23.1		809.0			stream water	g	
				, 78					m.eq/l	0.116	0.004	0.978	0.155	0.110	0.123	1.144				L	-1	0.762					water		
	tooon		PED-13	1, Nov., '78	70	7.4	104	400	mg/g	2.67	0.14	9.61	1.88	3.90	5.89	8.69			1	ŧ	i I	45.8	1 . 1 . 1	149.7	-		stream water	કુ	
61	76			., 78					m.eq/R	0.247	0.011	2.385	0.669	0.100	0.527	2.376					1 1	0.826	To the second				water		
	Rolinguay		BED-14	30, Oct., '78	50	8.0	279	300	mg/Q	5.67	0.43	47.8	8.13	3,55	25.3	145			1	1		49.6		285.5			stream water	မှ	
09			_ 1	t., 78				1	m.eq/2	0.275	0.007	0.998	0.628	0.100	0.693	1.264			1	ı	1	0.701	15				water		
	Virgo		SED-1	26, Oct	20	8.0	183	6,000	2 mg/2	6.33	0.29	20.0	7.63	3.55	33.3	77.1			ì	1	1	42.1	0.015	190.3	* : 		stream water	go	
65			71	26, Oct., '78) i.e.			m.eq/R	7 0.203	3 0.011	1.517	9 0.797	3 0.125	1.060	1.324			1	1.	1	0.456	40				stream water	-	
	Viena	707	\$ED 17	-26, O _c	20	8.2	224	6,000	g mg/g	4.67	0.43	30.4	1000	4.43	50.9	80.8			1	7.1 41)	ı,	27.4	0.140	208.7		1	strean	કુ	
85			1	26. Oct., '78					m.eq/g	0.174	- 2000 6	2.126	.8 0.484	3.55 0.100	1.803	1.173			1	1	1	0.403	0.015				stream water		
	Visco	7	BED-11	26.0	20	7.3	275	909	/R mg/R	4.0	0.29	42.6	5.88		9.981	71.6			I I	1	-	24.2	0.0	238.7			strea	စ္မ	
2.5		aug.	-10	26, Oct., '78	1 1 141.			0	у/ъе-ш	7.33 0.319	0.43 0.011	13.0 0.649	9.31 0.766	27.8 0.784	115 2.394	1			1	1	1	0.982	0.050	7			stream water		
-	ŝ	ATTEN TO	BED-10	. 26,0	19.5	4.2	247	000'9	/2 mg/2			-		1	_	1			i.	1	-	2 59	o	231.7			stre	8	
3	3	Simming	6	26, Oct., 78					R m.eq/R	⊢÷	0.86 0.022	7 0.634	8.75 0.720	.2 0.683	5.913				1	1	1	1.232	0.040	1 71			stream water	BED-ELC (Feb./79)	
	p	Dec	\rightarrow		20	3.9	\$ \$32	min)	mg/g	10.0	#1.5 #1. 1.5	12.7	8	24.2	284				ı	a :	i	74	0	3 414.5	· · · · · · · ·		stre	BEI	
ž		Location	Code	Sampling Date	τిం	Нď	Conductivity (12)(cm)	Discharge(R/min)	Chemi. Ana.	* EX	K+	C ₂ 2+	Mg ²⁺	5		HCO3-	∞³²-	H ₂ CO ₃	ា	As	μΩ	SiO2	NH4 ⁺	T.S.M.(mg/R)	Alkalinity	Acidity	Remarks	Reference	

77	/ke		5, *82					m.eq/2				0.016			0.279	0.020	0.000				1.470					ring.	
	Klondyke	KL	25, Sep.,	49.5	8.36		31 1 1 21	1	397.0	2.8	124.0	0.2	7.7	355.0	17.0	9.0	0.0	< 0.1			88.3		1,548	0.20	000	hot spring	ę
9/			ъ., "82					m.eq/g	332.0 14.441	{	6.687	1.168		12.493	9.833	0.000	0.000		_		2.513	V				ring	
	Ітодоп	IT-2	29, Sep.,	62.2	7.79	1 <u>2-21</u>		2 mg/2		-	134.0	14.2		0.009	0.009	0.0	0.0	2.0		5.9	151.0		1,686	9.80	0.30	hot spring	န
7.5			p., '82					m.eq/2	11.614		4.521	1.037	1551	12.493	4.818	0.000	0.000			0.416	2.963					zing	
	Itogon	11-11	24; Sep.,	89.5	7.68	3 - <u>1 - 1 - 1</u>		2 mg/2	267.0	43.8	90.6	12.6	55.0	600.0	294.0	0.0	0.0	1.4		4.5	178.0		1,436	4.80	0.20	hot spring	op
74	фi		24, Sep., '82			: .		m.eq/R	3.088	0.072	0.993	0.230	0.197	2.603	1.606	0000	0.000			0.028	0,649					Suiz	rcy (
	Dalupirip	PΘ	24 Se	42.5	7.90		50	Z mg/Ω	71.0	2.8	19.9	2.8	7.0	125.0	0.86	0.0	0.0	< 0.1		6.0	39.0		345	1.60	0.10	hot spring	BED-JICA (1982)
73	u	12						m.eq/2	0.361	0.051	3.942	0.987	0.085	3.498	1.803					0.009	0.413	4 - 1 - 1 - 1				pring L	
	Acupan	76-B-27		Cold				γ mg/8	8.3	2	79	12	. 3	168	110			< 0.01		< 0.1	24.8		407.2			cold spring 1,500L	op
72	r.	97						m.eq/Q	40.017	2.813	3.842	1.160	35.822	1.811	7.703					5 0.370	4.227		-			ring L	
	Acupan	76-B-26		61.1				2 mg/R	920	110	77	14.1	1,270	- 8.1	470			4.0		3.95	254		3,206.1		. (1) . (1)	hot spring 3,150L	ફ
71	nok	51						m.eq/2	5,220	0.102	37.575	1.572	8.518	25.818	13.079					2 0.046	1.157		1			oring L	
	Antomok	76-B-15		46.1	2.51			g mg/R	120	*	753	19.1	302	1,240	798			0.5		0.52	69.5		3,306.1			hot spring 1,550L	ę,
70	nok	14						m.eq/R	7.264	0.156	49.900	1.687	23.355	28.317	9.670			0		4 0.059	1.370		.5			ning L	
_	Antomok	76-B-14		40.6				g mg/g	167	6.1	1,000	20.5	828	1,360	290			0.40		0.64	82.3		4,054.5			hot spring 1,850L	ę
69	mok	12						m.eq/R	70.465	2.737	28.194	7.570	53.310	34.563	14.521			25		3 0,447	2.380		8.			pring)L	
L	Antamok	76-B-12		51.7				2/8m 8/	1,620	. 101	565	92.0	1,890	1,660	988			1.05		4.83	143		8.796,9			hot spring 1,850L	qo
89	g	-11						m.eq/2	26.968	5 0.220	0.659	3 0.683	14.554	9.994	8.555			2.80		35 0.217	3.179		5.1			hot spring	
	Itogon	76-B-11		87.9				/8 mg/8		3.8	13.2	8.3	516	5 480	5 522			2.6		1 2.35	9 191		2,361.5		- 10 cm	hot s	al do
67	an	5						л.еа/8	1.305	3 0.110	25.399	4.25 0.350	4 0.124	28.525	2.655			15		12 0.011	0.699		5.1			hot spring 2,600L	Sawkins F.J. et al (1979)
<u> </u>	Acupan	76-B-5		46.1			(uin	mg/R	30	4.3	-808	4	4.4	1,370	162			< 0.01		0.12	42		2.126.1			hot sprii 2,600L	Sawkin: (1979)
No.	Location	Code	Sampling Date	r(°c)	Hď	Conductivity (unicm)	Discharge(2/min)	Chemi. Ana.	Na+	\mathbf{K}^{+}	Ca2+	Mg ²⁺	ם	SO4 ²⁻	HCO ₃	CO32-	H2CO3	п	As	В	SiO ₂	NH4+	T.S.M.(mg/l2)	Alkalinity	Acidity	Remarks	Reference

								m.eq/R																				
							***	m.eq/k mg/k															. + 1 2 %					
								тд/й т.е																				
								т.ед/й п															· · · · · · · · · · · · · · · · · · ·					
							¥	mg/2															na Prad Prad Pr					
						1		m.eq/R	1 + 1 - - - -																			
						t		/2 mg/2												7 5	1			= -				
								mg/R m.eq/R																				
								т.еа/2 тв	40.974	3.709	7.285	0.444	35.822	8.745	8.867	0.000	0.000			3.969	6.225			<u></u>				
83	Acupan	BA-2		62.1	8.21		.0809	т у/д	942.0 40	145.0 3	146.0	5.4 0	1,270.0 35	420.0	541.0 8	0.0	0.0	5.5	\$44 1. 4 4. 4 5. 4 5. 4	42.9	374.0 6		3,748	8.90	0.10	hot spring 3,150L	op .	
82.			,*82					m.eq/R	38.799	3.299	2.091	0.411	36.104	8.016	0.311	0.000	0.000			3,654	6.458		1			80		
8	Acupan	BA-1	28, Sep.,	81.0	8.10		25	2 mg/2	892.0	129.0	419	5.0	1,280.0	385.0	19.0	0.0	0.0	5.2		39.5	388.0		3,396	3.20	0:30	hot spring 3,3001	ç	
1.5	oy.	2	27, Sep., '82					g m.eq/R	.0 6.307	.6 0.041	-	1	6.0 0.169	.0 18.947	.0 0.213	.6 0.020	0.00 0.000	10		.1 0.009	.0 3.229		55			hot spring	#1111 1411 1411	
	Laboy	LA-2			8.40		15	m.eq/2 mg/2	7.047 145.0	0.072 1.6	12.026 257.0	0.066 0.1	0.169 6.	910.0	0.443 13.0	0.000	0.000	<0.1		0.009 0.1	3.578 194.0		1,465	0.20	0.00	hot	op	
80	Laboy	LA-1	27, Sep., '82	47.5	8.02		10	a v	162.0 7.0	2.8 0.(241.0 12.0	0.8 0.0	6.0 0.	930.0 19.364	27.0 0.4	0.0	0.0	< 0.1		0.1	215.0 3.		1,563	0.50	0.10	hot spring	6	
			T		~			m.eq/g	24.793	0.077	1, 1	0.008	33.848	0.042	0.393	0.000	0.00.0			0.472	0.200							
70	Puzo	D.	26. Sep. '82	36.3	7.93		S		570.0	3.0	277.0	0.1	1,200.0	1	24.0	0.0	0.0	< 0.1		5.1	12.0	1 2	2,598	0.40	0.10	hot spring	op	
78			25. Sep., '82				ure	m.eq/8	0 22.836	0.307	0 12.126		0 21.521	0 4.518	0 0.164	9.6 0.320	00000	1		1 0.842	0 1.881	1	7			hot spring	BED-JICA (1982)	
	Asin	AS	T.	1.5	8.64	1.0	Discharge (2/min) not sure	. mg/2		12.0	243.0	0.1	763.0	217.0	10.0	6	0.0	0.1		9.1	113.0		R) 2,427	0.50	9.6	hot s		
QZ	Location	Code	Samoline Date	τ(°C)	Ha	Conductivity	Discharge (g)	Chemi. Ana.	Na+	Κ ⁺	رء²+	Mg ²⁺	ם	5042-	HCO3-	83.5	₩.003	្ន	Ąs	В	SiO2	NH4+	T.S.M.(mg/R)	Alkalinity	Acidity	Remarks	Reference	

pH is from 5.5 to 7.0. Total discharge is estimated at about 10 to 15 1/min. The water samples was taken from a well-like reservoir where hot spring gas bubbles were observed. The detection tube shows that this gas contains less than 0.05% CO₂ and less than 0.005% H₂S. The rocks outcropping in the bottom of the river at 6 to 7 meters beneath the hot spring are middle grained pyroclastic sandstones, which are chloritized and pyritized.

There are three occurrences of hot springs in the Laboy River. One at upstream, one at downstream, and one 100 m above the downstream. Near the upstream and downstream, the water discharges along the joint surfaces of an amphibole-bearing quartz-diorite which suffered a general silicification with transformation of amphibole into epidote or chlorite and development of numerous calcite veinlets. The pyritization is particularly strong in the host rocks of the upstream hot spring. For each of these two hot springs, the discharge is around 15 l/min, temperature range is 47.5 to 48.6°C while pH is 7.0. No gas bubbling was observed in the area. However, the rocks around are covered by a relatively thick deposit of white crystals of gypsum. At about 100 m upstream from the downstream spring, hot water discharges from the pebbles of the bottom of the river and mix with the river water. Temperature is 38.5°C, pH is 7.0 and discharges at a few l/min.

Hot waters are emitted at several places in the galleries of Acupan Mine. Water sampling was done at levels 3,300 and 3,150. For sample at 3,300 level, the discharge was running down a concrete channel after its springing from a drilling hole. Temperature is 81.0°C, pH is 7.5 and discharge rate is 25 l/min. Ambient temperature was 66°C. Geologically, the area consists of dioritic rocks intruded by andesitic dykes. The pale green amphibole is altered to chlorite; the rocks are strongly pyritized and silicified. On the ventilation pipes, which are in contact with the gallery walls, a large amount of white crystal resembling gypsum has deposited. At the 3,150 level, the fluid also discharges from a drilling hole but flows directly to the bottom of the gallery, where it was sampled. The andesite is particularly silicified in this area. Discharge rate is 60 to 80 l/min, temperature is 62.1°C, and pH is 8.0. Ambient temperature was 62.0°C. At this level, gas is also emitted together with the hot water but sampling was impossible due to extreme heat which made breathing difficult.

2-3-2 Chemical Composition of the Hot Spring Waters

The results obtained on the samples collected during this survey are shown on Table II-2-4 together with those reported by B.E.D. (Aug. 9, 1982), KRTA (Sept. 1977), B.E.D.-E.L.C. (Feb. 1979) and F. J. Sawkins et. al. (1979). The sampling locations of the present survey are shown on Fig. II-2-22.

Richard Bell Sign Describert in 1919

Key-diagrams of the chemical compositions of the hot spring waters are shown on Fig. II-2-23 for Acupan and Asin hot springs, on Fig. II-2-24 for Itogon, Antamok, Dalupirip, Laboy, Klondyke and Pugo hot springs and on Fig. II-2-25 for stream waters and cold waters. On the basis of these key diagrams, the following characteristics were obtained for the hot springs of the different areas:

Acupan Mine: Two types of water composition can be distinguished: the Cl⁻ type, which is rich in chloride ions, and the SO_4^2 type, rich in sulfate ions. This difference in anionic composition affects the cation proportions of the waters such that the Cl⁻ type is rich in Na⁺ and K⁺, and the SO_4^2 type is rich in $Ca^{2,+}$. A close relationship between this chemical difference and the space distribution of the springs was found, i.e. the Cl⁻ type waters are restricted to the Balatoc plug and the SO_4^2 type waters are distributed outside the plug (Fig. II-2-26).

Itogon: As regards the proportion of anions, the SO_4^2 -/HCO₃ + CO₃ ratio fluctuates around 3/2 and the Cl⁺ from 0 to 50%. For the cations, $Na^+ + K^+$ accounts for 60% to 100%, the rest being Ca^{2+} and very small concentrations of Mg^{2+} . The anionic composition is similar to that of the SO_4^{2-} type of Acupan Mine but since the $Na^+ + K^+$ concentrations are high, the waters are also similar to the Cl⁺ type. The Itogon hot spring waters may thus be considered as waters of the Cl⁺ type of Acupan Mine correlatively enriched in SO_4^{2+} and $HCO_3^{2-} + CO_3^{2-}$ (Fig. II-2-24).

Antamok: Most of the waters have SO_4^2 as dominant anion and Ca^{2+} as dominant cation, thus resembling the SO_4^2 type of Acupan Mine. Sample no. 69 (76–B–12), however, is rich in Cl⁷ and Na⁺ + K⁺ and thus similar to the Cl type waters of Acupan Mine. This sample was taken from the 1,980 level.

Laboy: Only two samples were analyzed, but in both cases, SO_4^{2-} is the dominant anion and Ca^{2+} is the dominant cation; Na^+ and K^+ are absent. Both samples clearly belong to the SO_4^{2-} type of Acupan Mine (Fig. II-2-24).

Dalupirip: The principal anion is SO_4^2 , with small amounts of $HCO_3^2 + CO_3^2$, while the principal cations are $Na^+ + K^+$. This composition is similar to that of the Itogon spring waters (Fig. II-2-24).

Asin, Klondyke and Pugo: All these samples have Cl⁻ rich and Na⁺ + K⁺ rich compositions. As shown in Fig. II-2-25, the stream waters and cold waters have Cl⁻ as anion and Ca^{2} + Mg^{2} as cations.

The chemical compositions of hot spring waters may thus be classified according to the relative proportions of the anions SO_4^{2-} , Cl^- and CO_3^{2-} + HCO_3^- on one hand and the cations Na^+ + K^+ , Mg^{2+} and Ca^{2+} on the other.

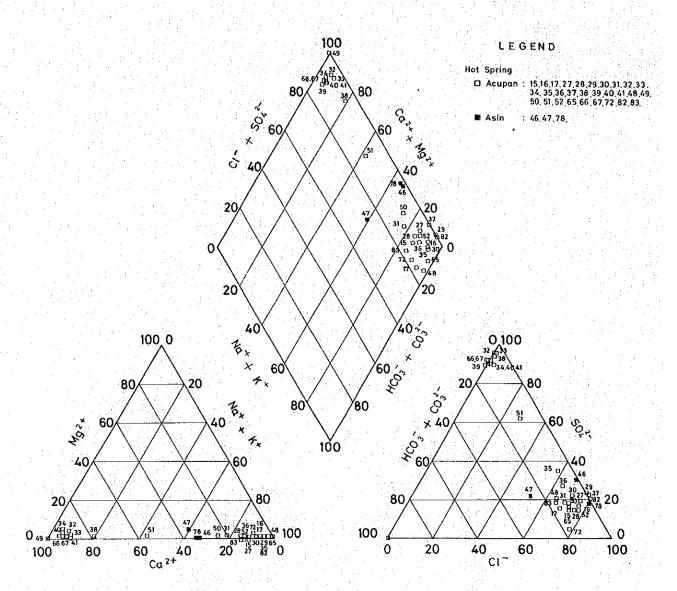


Fig. II-2-23 Key-Diagram for Acupan and Asin Hot Spring

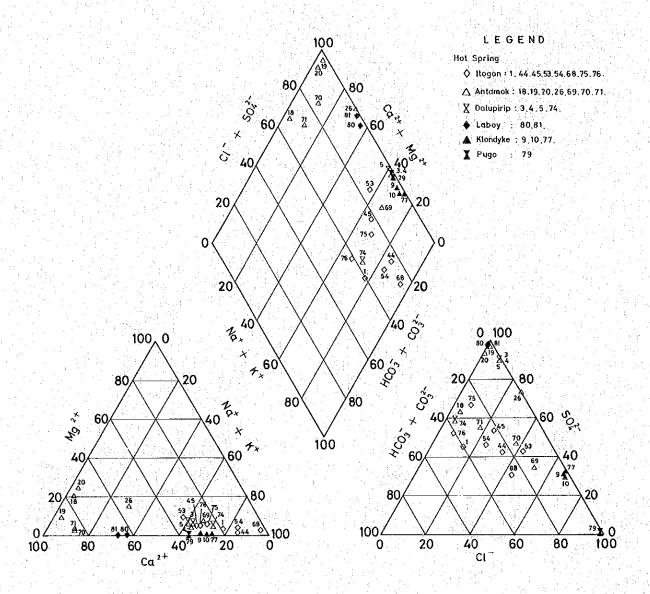


Fig. II-2-24 Key-Diagram for Itogon, Antamok, Dalupirip, Laoby, Klondyke and Pugo Hot Spring

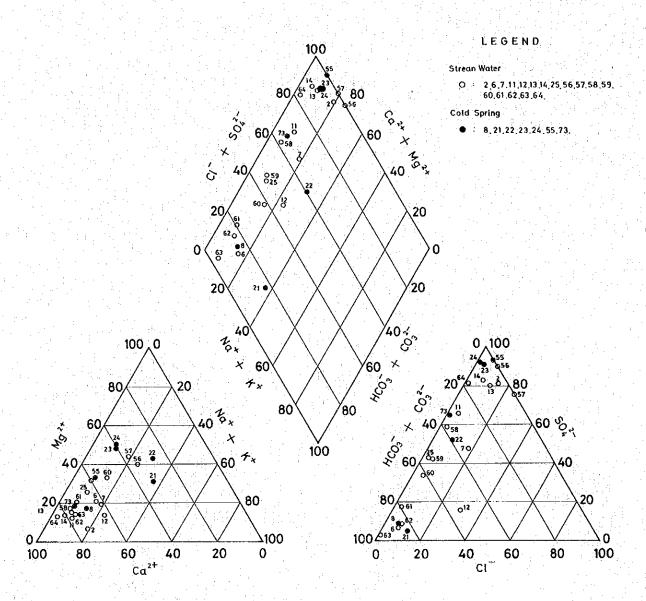


Fig. II-2-25 Key-Diagram for Stream Water and Cold Spring

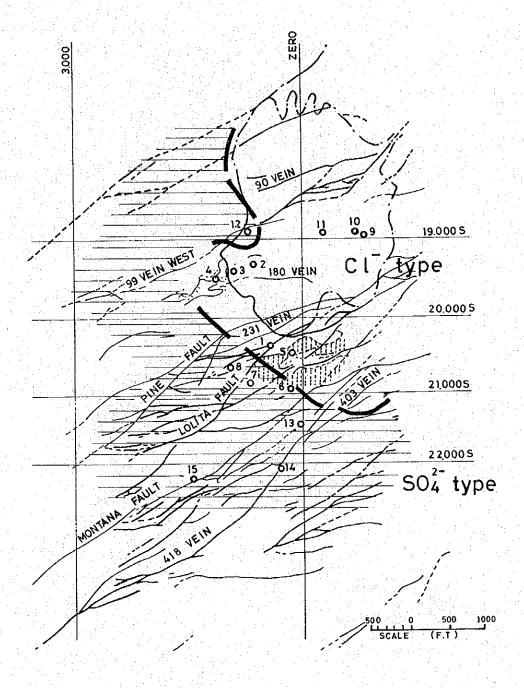


Fig. II-2-26 Chemical Zoning of Spring Water Samples at Acupan Mine