trol must be performed actually on the unit and the suitable chemical injection rate must be decided.

ii. Change to All Volatile Treatment for drum water treatment. When phosphate is used for the drum water treatment, it is possible that the boiler tube will be attacked by the free caustic. To avoid such condition, Kyushu Electric Power Co. adopts all volatile treatment (AVT) even in the case of the drum type boiler and prevents the damage of material by the water quality. In the adoption of AVT, first the frequency of condenser in-leakage must be minimized.

(d) Making of monthly report about water analysis (See Table 5C-17)

如此的是我自己的问题。 网络萨哈拉金泽

他们的"自己的"的"这个人",这种感到

As an elemental data for monthly report, daily analysis data on every items shall be recorded through one month period. It can be used for checking purposes.

고 우 프 티			_ م				×8.5	6000-			
edSuper Hea- ted Steam	5	5	4~6		2			00-10-			
SaturatedSuper Steam Hea- ted Steam	N- W				° ₹		<u>ල</u> ල	S			-
Sat S	5-	7	4~6		2		5. %	-5000-			1
1 I ne	N - Z		an a	1	2.9 5.7	2~3	9.6	0.3	1	1	1
Boiler Saline	G-1	3~5	7~12		0~1	1~8	8.5 ~9.1	2.20 0	1		
1	S-2	4	11~/	1	د د د		8.9 ~9.2	-0006		1	~15 ~
Main Steam	S-1	1~3	6~10		.		8.8 ~9.4	-0005			1
	T-M	22	<i>ب</i> تر7		° 1			-0008-	Î		
Ammonex Outlet	S-2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	8 <u>2</u>		° V]	8.3 ~8.3		1		l.
Am	S-1	1~2	4~6		0~		8.4 ~8.8	-0005-0006	a di senerali d Senerali di senerali di sene		
	M-2				0~1		8.3 9.0	-0.02			° 2
hund	M-1	2 2	۲2		-0 ~		8.2 -8.9	5000-		1	° ~
t u t	S-2	4~8	10~14		0~		9.2 8 ~9.4 ~	,000	~ 0 <u>~</u>	~1.6	20 ~60
Condensa Out1	S-1	2~5	7~10	1	0 2	1	8.9 ~9.2	000-		~1.0	~ 5 ~ 40
3	6-1	7	4~6		0 ~	1	8.7 ~9.1	-0.01-0007-0			20 ~ 80
(je	M-2			0.02	<u>مح</u> ا		8.7 ~9.2				Ŷ
nlet ressu	T E	~2	<i>L~</i>	0.05	° 2	1 	9.0 ~9.2	0008	1	1	~
zer I Hi-P	S-2	3~5	7~12	.01 0	0 ~	1	5.6~	-2000	° ₹	80 T	10~~
Economizer Inlet (Feedwater Hi-Pressure)	S-1	ĩ	6~10 7	0.03	0		8.6 ~9.4	000	१	~1.7	~
(Feed		1~2	4~7 6	-0.02 0.03 0.01 0.03 -0.04-0.05-0.03-0.05	0 ~		8.2 8 ~8.6 -	-0.01-0007-0007-0008 0.01 -0.03	°~		10 ~ 50
Sample Location	Unit	P. Alkalinity CaCO ₃	inity	H A	Chlorides ppm as NaCl	Phosphate ppm as PO ₄		Silica ppm as SiO ₂	Copper ppm as Cu	Ammonia ppm as NH ₃	Dissolved Oxygen

RATIOS OF SODIUM TO PHOSPHATE

DATA DONE BY JICA " Table 5C-13 SYSTEM ANALYGRO Table 5C-13 SYSTEM ANALYSES DATA DONE BY JICA TEAM (Gardner/Snyder)

Unit	Sample	Time	рН*	Cond. (µS/cm)	Cation Cond. (µS/cm)	Fe (ppb)	Temp. (°C)
S-1	Condensate	Aug. 10	9.3/9.6	9.45	0.83		36
S-2	Condensate	Aug. 10	9.25/ 9.55	8.53	0.45		36
S-1	Condensate	Aug. 11	9.357 9.65	10.8	0.85		35
S-2	Condensate	Aug. 11	9.3/ 9.6	10.1	0.41		35
G-1	Condensate	Aug. 11		5.6	0.92		
G-1	Superheated Steam	Aug. 11		5.7	0.95		
G-1	Saturated Steam	Aug. 11		5.8	0.87 ~0.98		
S-1	Ammonex A	Aug. 11		9.8	0.50		
S-1	Ammonex B	Aug. 11		0.58	0.62		
S-2	Ammonex A	Aug. 11		10.2	0.43		
S-2	Ammonex B	Aug. 11		10.2	0.43		
S-2	Ammonex C	Aug. 11		6.2	0.39		
S-1	Condensate	Aug. 12	9.45/ 9.75	13.0	0.99		35
S-2	Condensate	Aug. 12	9.40/ 9.70	12.5	0.33		34
S-1	Condensate	Aug. 13	9.4/9.7	12.0	1.0		36
S-2	Condensate	Aug. 13	9.1/9.4	6.2	0.32		36

* left/right = at sample temp / at 25°C (by graph)

Unit	Sample	Time	pH	Cond. (#S/cm)	Cation Cond. (4S/cm)	Fe (ppb)	Temp (°C)
S-1	Condensate	Aug. 17		9.5	0.34		
S-2	Condensate	Aug. 17		7.2	0.31		
G-1	Condensate	Aug. 18	8.55/9.1	3,5	0.66		48
G-1	Superheated Steam	Aug. 18	8,8/9.1	3.6	0.81		37
6-1	Saturated Steam	Aug. 18	8.856.15	3.9	0.65		37
G-1	Boiler Saline	Aug. 18	9.3/	18.0	13.0		35
S-1	Condensate	Aug. 18	9.6/9.9	19.0	0.70		34
S-1	Ammonex B	Aug. 18	9.2/9.9	19.0	0.89		47
S-1	Ammonex C	Aug. 18	9.2/9.9	19.0	0.65		47
S-1	Main Steam	Aug. 18	9.2/9.9	17.4	0.91		45
S-2	Condensate	Aug. 18	9.35/ 9.65	11.0	0.37		36
S-2	Ammonex B	Aug. 18	8.9/9.6	9.0	0.46		52
S-2	Ammonex C	Aug. 18	8.9/9.6	9.0	0.45		51
S2	Ammonex D	Aug. 18	8.9/9.5	8.8	0.72		45
S-1	Condensate	Aug. 20	9.4/9.7	12.0	0,90		35
G-1	Feedwater	Aug. 23				12	
S-1	Eco Inlet	Aug. 23				20	
S-1	Condensate	Aug. 23				5	
S-2	Eco Inlet	Aug. 23				4	

* left/right = at sample temp/at 25°C (by graph)

Unit	Sample	Time	рН*	Cond. (AS/cm)	Cation Cond. (&S/cm)	Fe (ppb)	Temp (°C)
G-1	Feedwater	Sept. 3	.8.8			** 8	
G-1	Condensate	Sept. 3	8.2**			10**	
S+1	Condensate	Sept. 9	9.3/9.6 (9.1) ^{**}	10.5	0.55		33
S-2	Condensate	Sept. 9	9.1/9.4 (8.7) ^{**}	7.3	0.38		33
S-1	Condensate	*** Sept. 9			0.45		33
S-1	Ammonex B	*** Sept. 9		0.19	0.28		53
S-1	Ammonex C	*** Sept. 9		0.70	0.70		53

Table 5C-13 SYSTEM ANALYSES DATA DONE BY JICA TEAM

* left/right = at sample temp/at 25°C

**** by** NAPOCOR (Fe analysis = TPTZ Method)

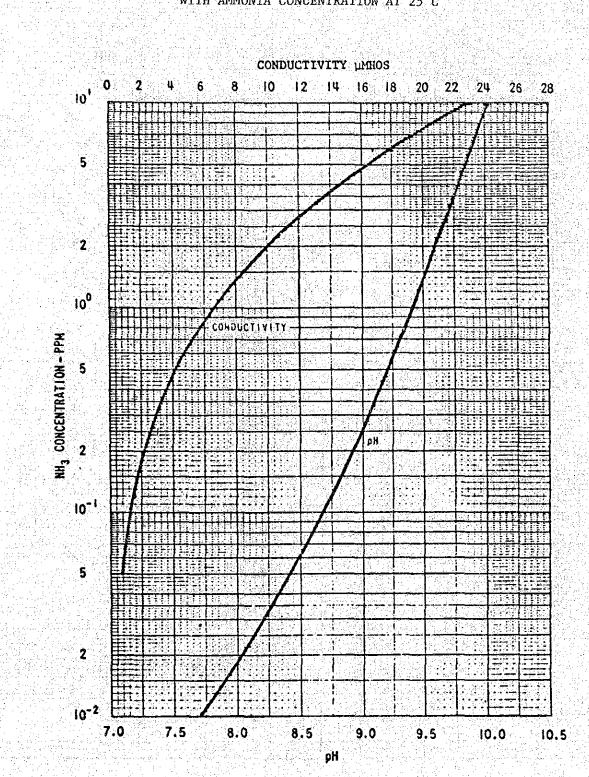
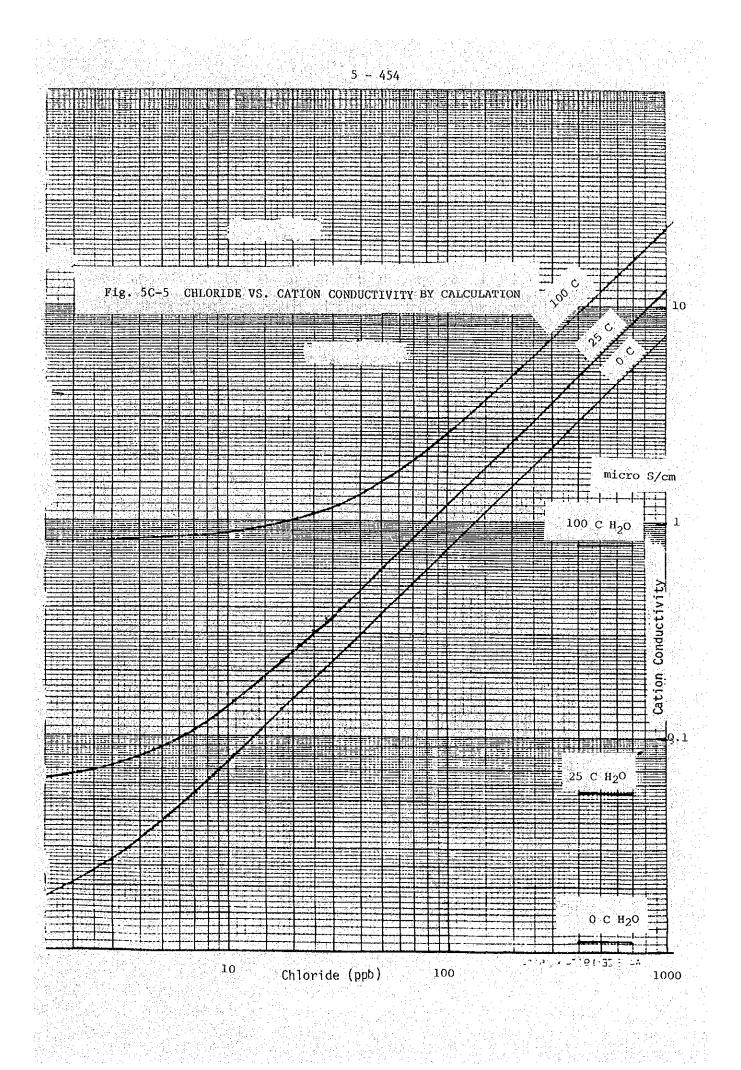
*** just after H/OH operation of all ammonexs

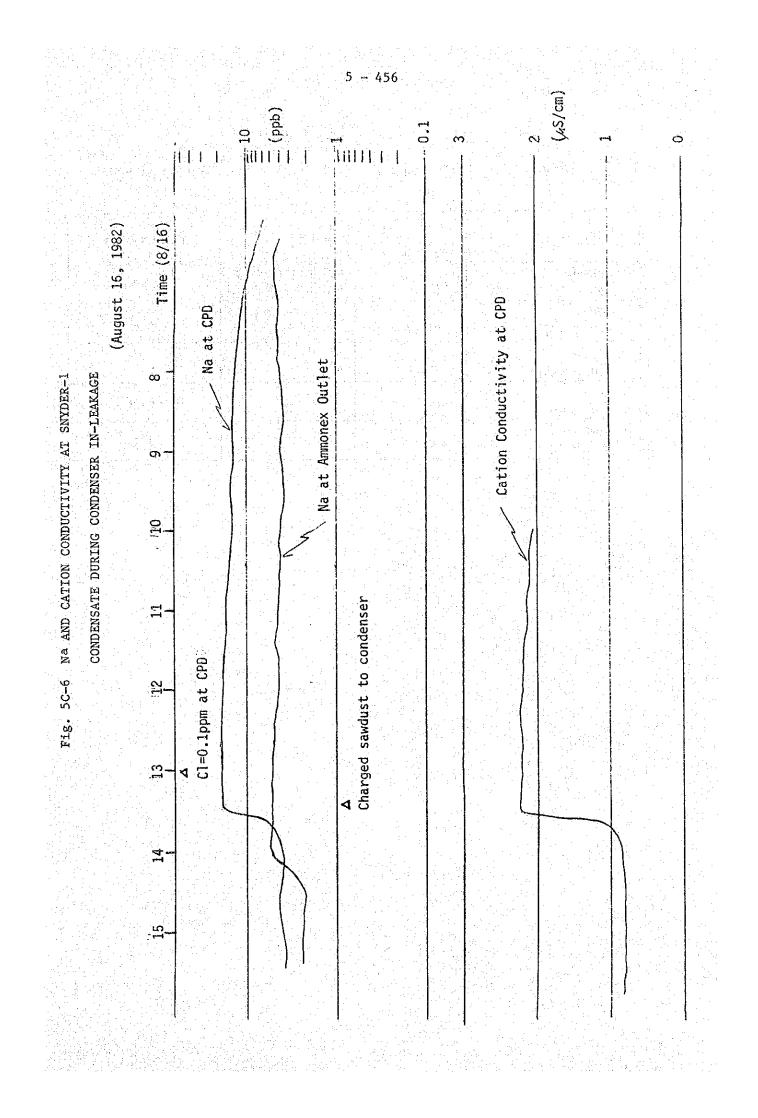
Unit	Sample	Time	рН*	Cond. (ب4S/cm)	Cation Cond. (#S/cm)	Temp. (°C)
M-1	Condensate	Aug. 24	8.6/8.9	3.2	0.51	35
M-1	Deaerator Outlet	Aug. 24	8.0/8.3 (8.0)**	2.8	0.46	35
M-1	Ammonex A	Aug. 24		0.38	0.41	40
M-1	Ammonex B	Aug. 24		0.51	0.66	41
M-1	Ammonex C	Aug. 24		0.22	0.32	41
M-1	Ammonex D	Aug. 24		0.33	0.50	42
M-1	Condensate	Aug. 25		1.8	0.49	
M-1	Deaerator Outlet	Aug. 25		2.3	0.36	
M-2	CP Discharge	Aug. 27		3.1	1.6	23
M2	Eco Inlet	Aug. 27		2.7		
M-2	Boiler Saline	Aug. 27		19	59	
M-1	Deaerator Outlet	Sept. 1			0.55	
M-1	CP Discharge			3.5	0,50	
n en en Secondo General Secondo						

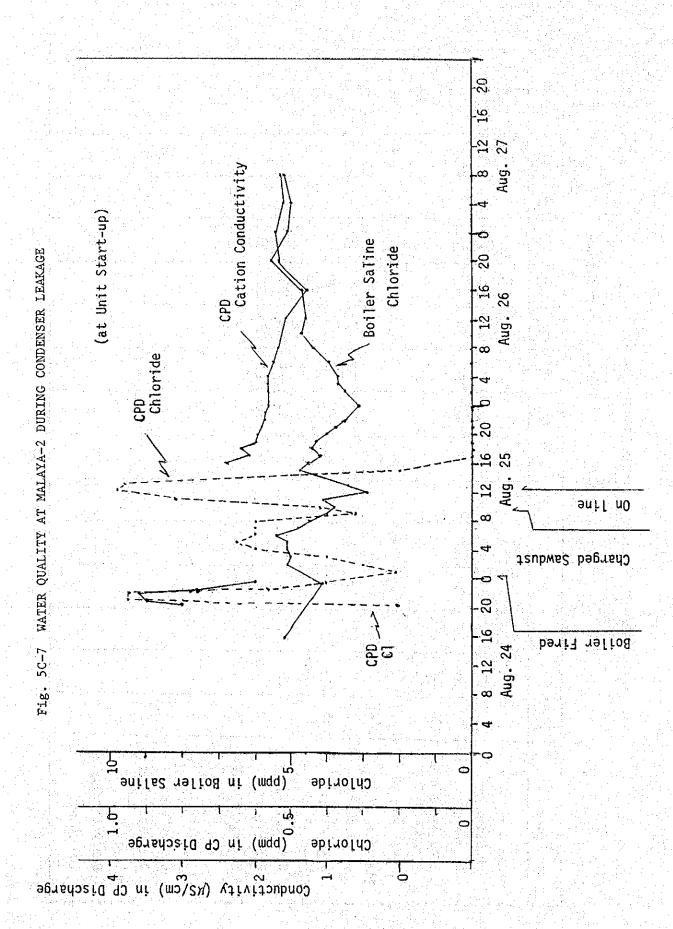
Table 5C-14 SYSTEM ANALYSES DATA DONE BY JICA TEAM (MALAYA)

* left/right = at sample temp/at 25°C

** Monitor

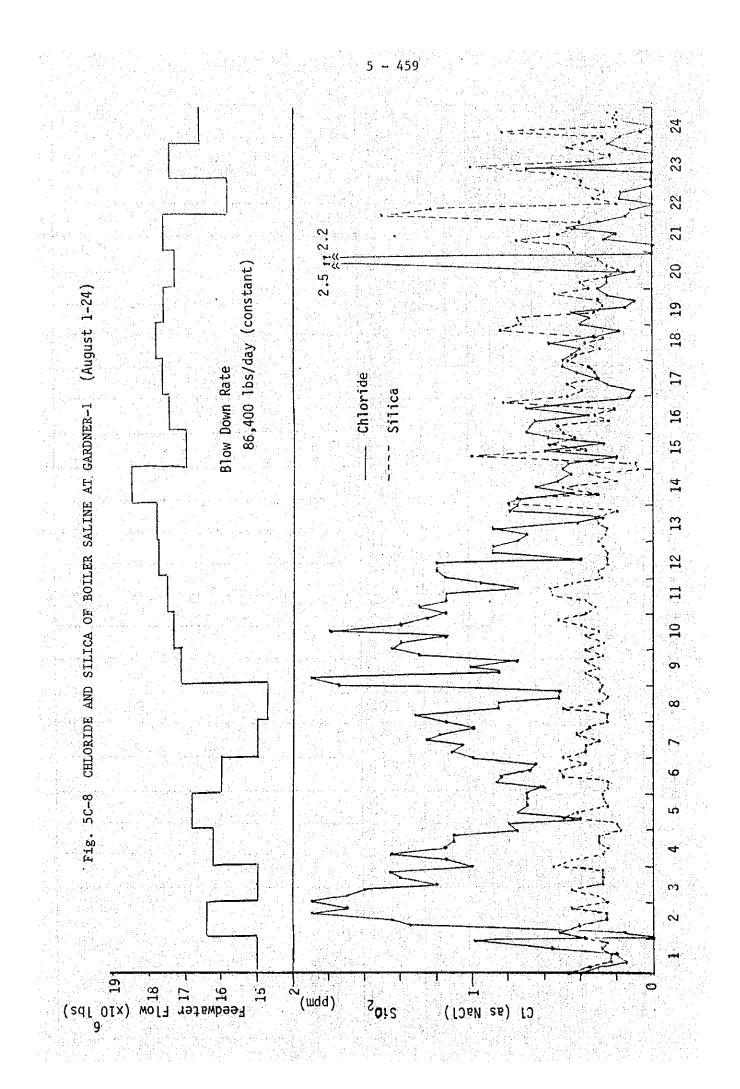

Fig. 5C-4 VARIATION OF SOLUTION PH AND ELECTRICAL CONDUCTIVITY WITH AMMONIA CONCENTRATION AT 25°C



	Аст	UAL	REQUIRED
ITEM	GSTP	МТР	
Chloride (ppm as Cl)	0.1~ 0.2	0.1~0.2 with 20mm cell 0.02~0.04 with 100mm Cell	40.02
Sillca (ppm as SiO ₂)	0.03~0.05	0.02~0.04	<0.02
Sulfate (ppm as SO ₄)	1 ~ 2	0,5~1,0	
Copper (ppm as Cu)	0.005 ~ 0.01		<0.002
Iron (ppn as Fe)	0.02~0.04		<0.01

Table 5C-15 DETECTION LIMIT OF WATER ANALYSIS AT GSTP AND MTP

di di



(qđđ)

(Indigo Carmine Method)

Table 5C-16 DISSOLVED OXYGEN ANALYSIS AT GSTP AND MALAYA

0.0 27 26 0 0 0 N 8 8 50 20 5 22 4 80 40 20 30 4 œ 5 20 80 20 10 4 20 40 20 8 <u>ن</u>م 50 9 51 40 50 50 12 10 30. 40 **1**20 20 55 20 1 30 50 10 ف 50 0 0 Ĥ 4 55 50 20 00 5 12 12 0 10 15 20 15 22 70 30 10 25 20 ខ្លួ 10 Q 8/9 100 70 80 ц П Ċ Condensate after heater Deaerator Outlet Deaerator Outlet Deaerator Inlet CP Discharge CP Discharge CP Discharge Condensate Feedwater Eco Inlet Eco Inlet Eco Inlet Gardner -1 Snyder -2 Month/day Snyder -1 Malaya -1 Malaya -2

-	
_	S. 199
. A 1	1 1
. . .	28 av 1
-	6 I
·. 🕰	
	2.1
- m	1.00
	1 N N I
- X	1 A 1, A
1.1	2012
- 64	
1 L 1 - 2	1 N.
5 . S .	5 A.S. 1
1993	24.
1. P. 4	
100	6 . J. S. S.
. VJ	
5-1	• 1. * 5. *
	1. S. C. S.
ന	144.291
	<u>, 1</u>
ાસ	
: Г. т	1.1
. 	10.751
~ &	1.135
	19 A 1 1
- Z	121 121
	2.1
	1.1.1.1.1.1
C	1.11
	ションス かみ
ഷ	
	- 1 G
_ 121	
- FT	1.121
. –	
	1.1.1.1.1.1.1
्रभ	11 12 1
_ <u>''</u> ~	
	Q. 1987
- 11 I.S.	소리 공항이
	ことがきた
- 2-	Tega da
$\sim -$	1. N. S. S.
· •	
1.20	그는 같은 것
1 ÷ -	
	1.14.1
ستر ا	1919 1917
· 14	<u>-</u>
0	i di Nata di
	1 1 H H I
Ω_4	
	er, india
그며	
드	- 1 S.
RE	
RE	
RE	
Y RE	
LY RE	
LY RE	
HLY RE	
HLY RF	
THLY RE	
THLY RE	
NTHLY RE	
NTHLY RE	
ONTHLY RE	
MONTHLY RE	
MONTHLY RE	
MONTHLY RE	
MONTHLY RE	
MONTHLY RE	
7 MONTHLY RE	
7 MONTHLY RE	
17 MONTHLY RE	
-17 MONTHLY RE	
-17 MONTHLY RE	
C-17 MONTHLY RE	
C-17 MONTHLY RE	
5C-17 MONTHLY RE	
5C-17 MONTHLY RE	
5C-17 MONTHLY RE	
5 5C-17 MONTHLY RE	
e 5C-17 MONTHLY RE	
le 5C-17 MONTHLY RE	
le 5C-17 MONTHLY RE	
ble 5C-17 MONTHLY RE	
ible 5C-17 MONTHLY RE	
able 5C-17 MONTHLY RE	
rable 5C-17 MONTHLY RE	
Table 5C-17 MONTHLY REPORT ON WATER ANALYSES (Example)	

(LXample)	FeSi0M-AlkalinitySulfateUnioride(ppm)(ppm) ² (ppm as CaCO3)(ppm as C1(ppm as C1)\$ MAX MIN AVG MA	Item (at 25°C)	Sample	(ppb)	AVG MAX MIN AVG MAX MIN AVG MAX MIN AVG MAX MIN				
Table 5C-17 MONTHLY REPORT ON WATER ANALYSES	PH Conductivity (at 25°C) (uS/cm) AVG MAX MIN AVG MAX MIN AVG	Conductivity Si02 (ws/cm) (ppb)	AVG MAX MIN AVG MAX MIN	(at 25°) (AS/cm)	AVG MAX MIN AVG MAX MIN AVG				

Reference - 5 Limit Value on Water Quality

G-1

Boiler Water Limits

<u>Pressure</u> = 1800 psig

Sodium Chloride ----- 10 ppm or less

Soluble Phosphate (following

2.6 Na-PO₄ molar ratio) ----- 2 to 4 ppm as PO₄

Silica, SiO₂ ------ 0.5 ppm or less

Total Solids ----- 100 ppm or less

----- 8.9 - 9.25 corresponding

to 2 - 4 ppm PO₄

Feedwater

- 62

pH -

pH		8	.6 to 8,9	
Dissolved Ox	cygen	0	.007 ppm o	r less
Copper, Cu -		0	.01 ppm or	less
Iron, Fe		0	.02 ppm or	less
Hydrazine, N	¹ 2 ^H 4	0	.01 - 0.07	ppm
Dardness as	CaC0,	 	n an stadio en stadio e Na stadio averatione de	

<u>G-2, S-1, S-2, M-1</u>

Main Steam and Condensate (Siemens)

	Start-up			Nor	<u>ma1</u>		
Silica, SiO ₂		50	ppb or	less	20 pj	b or	less
Total Iron, 1	Appendix Article	· · ·				1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	· · · · · · · · · · · · · · · · · · ·
Total Copper	, Cu	10	ppb or	less	3 pj	pb or	less
Sodium & Pota	assium,	i Silor Silor			si ji katal Ali		
Na^+ and K^+		20	ppb or	less	10 pj	pb or	less
Conductivity	(after						
passing th	ru cation						
resin)		0.5	micro	S/cm	0.	3 mici	co S/cm
	a ha ga shiri.						
	na sera na sera de Arra. Nomena de Arra,				equa		
onomizer Inlet		equ	ial or	less	equa		
onomizer Inlet	<u>(Hitachi)</u>	equ No	ial or ormal O	less perati	equa <u>on</u>	1 or .	
pH Dissolved Ox	<u>(Hitachi)</u> ygen	equ Nc	ial or prmal 0	less perati	equa <u>on</u> 9,2 - 9 7 ppb (1	1 or .4 max.)	less
pH Dissolved Ox Silica, SiO ₂	<u>(Hitachi)</u> ygen	equ No	ial or ormal O	less perati	equa <u>on</u> 9,2 - 9 7 ppb (1 20 ppb	l or ,4 max.) (max.)	less
pH Dissolved Ox Silica, SiO ₂ Hydrazine, N	<u>(Hitachi)</u> ygen 2 ^H 4	equ Nc	ial or ormal O	less perati	equa <u>on</u> 9.2 - 9 7 ppb (1 20 ppb 10 - 70	l or ,4 max.) (max.)	less
pH Dissolved Ox Silica, SiO ₂	<u>(Hitachi)</u> ygen 2 ^H 4	equ Nc	ial or ormal O	less perati	equa <u>on</u> 9.2 - 9 7 ppb (1 20 ppb 10 - 70	l or ,4 max.) (max.)	less

Copper, Cu ----------- 2 ppb Total Iron, Fe ----- 10 ppb Conductivity ----- 0.3 micro S/cm (after passing thru cation

resin)

	ο Ο ΄ ΄ ΄ ΄ ΄ ΄ ΄ ΄ ΄ ΄ ΄ ΄ ΄ ΄ ΄ ΄ ΄ ΄ ΄	403
<u>M-2</u>		
Ē	eedwater	
	Dissolved Oxygen	Preferably zero, and not
	an a	over 0.007 ppm
	Hydrogen Ion Valve (pR)	
	(85°C)	Between 8.6 and 8.9 for
		high pressure feedwater
		heater constructed from
		copper alloy tubes, and
		between 9.2 and 9.4 for
		feedwater heater const-
		ructed from steel
		tubes.
	Hardness as CaCO ₃	Zero
	Total Copper, Cu	0.005 ppm or less
		0.01 ppm or less
n an		Preferably zero
	Hydrazine (N ₂ H ₄)	Between 0.01 and 0.03 ppm

	011	Preferably zero
la se en la sub-la de la seconda de la s Seconda de la seconda de la	Hydrazine (N ₂ H ₄)	Between 0.01 and 0.03 ppm
	Cation Conductivity (25°C)	less than 0.3 micro S/cm

Boiler Water

Hydrogen Ion Valve (pH)	Between 9.5 and 10
Total Solids	Less than 20 ppm
Phosphoric Acid (POa ₃)	Between 1 and 3 ppm
Silica (SiO ₂)	Preferably less than
0.3 ppm	

3) Management

a. Result of Survey

Daily laboratory analysis and performance reports about chemical equipment such as demineralizer, ammonex are checked by the chief of shift and submitted to the superintendent. However, it is observed that copies of these reports are not submitted to the Plant Manager, except only in cases of abnormal phenomena. Statistical analysis of the water analyses data, the arrangement and resolution about the water quality log or special test, etc., is scarcely performed which is mainly due to manpower deficiency. Monthly and yearly reports about water quality analysis and chemical consumption are not also submitted. It is also observed that chemistry control is not religiously maintained because of too much paper work being done.

Recommendation

Ъ

As the technique pertaining thermal power generating unit advances quickly, chemical management becomes very important. This is also true to geothermal power plants which are already operational and to the nuclear power plant that would soon follow.

Therefore, a central laboratory should be established as the managing organization about chemical works of the power station, in order to do planning and make recommendation for the improvement of chemical techniques and training. For an effective planning, an initial manpower of 5 to 7 staff members which will take charge of the enumerated tasks below should be established:

- Collection and review of water quality at each unit

- Monthly and yearly reports

- Chemical inspection and material testing during annual outage

- Advices on chemical control pertaining to unit outage

- Presence of trained personnel during chemical cleaning

- Solution of common problems of the chemical section

- Training, observation or education

- Introduction of new technique about chemical treatment (literature, equipment and analysis method)

- Thorough examination of equipment related to chemistry

In the near future, once the central laboratory is operational, an overall manpower of around 20 members should be utilized under the said laboratory to cope with problems which would arise in thermal, geothermal and nuclear power plants. The task includes special water analysis, material corrosion control and analysis, fuel and environmental pollution. Required instruments for future central laboratory

are as follows:

- Electron probe X-ray micro analyzer

- Inductively coupled argon plasma emission spectro-

photometer (multi-channel type)

- Ge (Int*) gamma-ray spectrometer

- Scanning electron microscope

- Fluorescent X-ray analyzer

- X-ray diffractometer

- Atomic absorption spectrophotometer

- Gas chromatography

- Carbon-nitrogen-hydrogen analyzer

- Total nitrogen analyzer

- Ion chromatography (dionex)

建装饰 建立分子 动脉性的 建

– Sulfur analyzer

- Metal microscope

*Int: Intrinsic (or pure)

The above instruments/equipment are installed at Kyushu Electric Power Research Laboratory.

4) <u>Demineralizer</u>

5.4

a. Specification of Demineralizer

(a) Raw Water Quality of Demineralizer

Item	Raw Wat	er	Treated Water
Ca ⁺⁺	22 ppm	as CaCO3	
Mg ⁺⁺	22	u	
Na ⁺⁺	376	11 11	
Total Cation	420	i il	0.1 ppm as CaCO3
нсоз	307 ppm	as CaCO3	
C1 ⁻	107	H start starts	
so4	6	n (1997) 	
NO3 ⁻	0	ti	
CO2	0	11	
Si02	86	N	0.01 ppm as SiO2
Total Anion	506	11	0.1 ppm as CaCO3
Fe	0.125	ppm as Fe	0.01 ppm as Fe
pH	8.3		7.0
) Raw Water Qual	lity of RC	Unit (Tes	ted by ESCO)

Ce	++				网络龙属新闻 医骨折 计分子算法	ESCO)
1. A State of the second se	1		50	ppm	нсоз-	383 ppm
Mş	3 ⁺⁺		25	ppm	C1 ⁻	342 ppm
Ne	a ⁺		320	ppm	so4	14 ppm
Тс	otal Cat	ion	e se e se		N03 ⁻	0.6 ppm
pl	H		7	.8	S102	65 ppm
Fe	e		0	.24 ppm	Total Anio	\mathbf{n}_{a}
Т	urb.		Nil		al e saite a Carlo anna Al Carlo anna	

TDS 1198 ppm

- Result of raw water quality test submitted by ESCO is NOTE: inadequate so that total cation and anion cannot be evaluated. (c) Designated Values

Location	Gardner	Snyder	Malaya
		Permutit	Permutit
Manufacturer	Graver	rermull	reimutit
Cation Exchanger			
Number	3 Units	2 Units	2 Units
Column Size	54" x 13'-6"	72" x 11'	
	(1-372mm ^Ø x4115mm ^H)	(1829mm ^Ø x3353mm ^H)	same
Pressure	100 psi	100 psi	
	(7kg/cm ²)	(7kg/cm^2)	same
Resin	Re-3 108ft ³	IR-120 172ft ³	same
Regenerant			
Up-Flow	66°Be $H_2SO_4(81bs/ft^3)$	93% H ₂ SO ₄ (71bs/ft	³)same
Down-Flow	66°Be $H_2SO_4(101bs/ft^3)$	93% H ₂ SO ₄ (112g/L-	R)same
Flow Rate	50 gpm	100 gpm	same
	(11.4 m ³ /H)	(22.7 m ³ /H)	same
B.T. Capacity	24.2 Kgrain/ft ³	19.6 Kgrain/ft ³	same
	(55.3 g/1-R)	(44.8 g/1-R)	
Total Capacity	90500 gal	136400 gal	same
an a	(286 m ³)	(516.3 m ³)	same
Degasifier			
Number	l Unit	1 Unit	1 Unit

same

		5 - 470		nanga sengen di Sengen di sengen di sengen Sengen di sengen di senge
	Anion Exchanger			
el care Alguna	Number	3 Units	3 Units	3 Units
				same
	Column Size	48" x 15'-6	60", x 91 6 H.	
		(1219mm ^{\$} x4724mm ^H)	(1524mm ^{\$} x2743mm ^{\$})	same
	Pressure	100 psi 2	100 psi 2	same
		(7 kg/cm ²)	(7 kg/cm ²)	same
	Resin	AE-61 96 ft ³	IRA-402 102 ft ³	same
		(2718 lit)	(2888 lit)	same
	Regenerant	100% NaOH 101b/ft ³	100% NaOH 61b/ft ³	same
	Flow Rate	50 gpm	100 gpm	same
		(11.4 m ³ /H)	(22.7 m ³ /H)	same
	B.T. Capacity	10.7 Kgrain/ft ³	13.8 Kgrain/ft ³	same
		(24.4 g/1-RO)	(31.5 g/1-R)	same
	Total Capacity	71000 gal	125600 gal	same
		(269 m ³)	(475.4 m ³)	same
	Mixed Bed Polis	her		
	Number	2 Units	2 Units	2 Units
	Column Size	36" x 8'	42" x 9'	same
		(914mm ^{\$} x2438mm ^H)	(1067mm ^{\$} x2743mm ^H)	same
	Pressure	275 psi		
		(19.3 kg/cm ²)		
n den Angel	Resin	Anion (AE-61)	Anion (IRA-402)	same
		11 ft ³	$24 \mathbf{ft}^{3}$	same
		(311 1it)	(679 11t)	same
		Cation (RE-6)	Cation (IR-120)	same
		17 ft ³	28 ft ³	same
		(481 1it)	(792.8 lit)	same

Flow Rate	76 gpm .	100 gpm	same
	(17.3 m ³ /H)	(22.7 m ³ /H)	same
Total Capacity	1000000 gal	514000 gal	same
	(3785 m ³)	(1946 m ³)	same
Regenerant	100% NaOH 24 1b/ft ³	100% NaOH 9 1b/ft ³	same
	(384 g/1-R)	(144.2 g/1-R)	same
	66'Be H ₂ SO ₄ 8 1b/ft ³	(93% H ₂ SO ₄ same	
الا المارية في المراجع. كولا المعالية إلى المعالية المعالية		$8 1b/ft^3$	

Effluent	Total Cation	0.1 ppm as CaCO ₃
	Total Anion	0.1
na okazio en la situaria Nationalia Nationalia della situaria	sio ₂	0.01 ppm as SiO ₂
	Fe	0.01 ppm as Fe
	рĦ	7.0
	Conductivity	0.5 micro S/cm

Note: At Gardner/Snyder Thermal Station, Graver type Demineralizer treats directly filtered water with a conductivity of 820 micro S/cm and permutit Type of Demine-

ralizer treats blended water with a conductivity of 390 micro S/cm. Blended water comes from RO unit effluent with a conductivity of 170 micro S/cm and deepwell water with a conductivity of 1300 micro S/cm.

b. Result of Survey

(a) Instrumentation of Demineralizers

The instrumentation which are mounted on the control panel of demineralizer are as follows;

985 C.S.

```
Gardner Demineralizer (Graver)
 i.
     Instruments for Monitoring
       Conductivity Meter & Recorder
          (Leeds & Northrup)
       pH Meter & Recorder (Leeds & Northrup)
       Flow Meter & Recorder (Foxboro)
     Control System for Automatic Operation
       Stepping Programmer
     Alarm Unit
       Alarm Units
     Snyder Demineralizer (Permutit)
ii.
     Instruments for Monitoring
        Conductivity Meter & Recorder (Beckman)
        Flow Meter & Recorder (Taylor)
       Flow Counter
     Control System for Automatic Operation
        Stepping Programmer
     Alarm Unit
        Alarm Units
                                       X
     Malaya Demineralizer (Permutit)
iii.
     Instruments for Monitoring
     Conductivity Meter & Recorder (Beckman) X
        Flow Meter & Recorder (Foxboro)
        Flow Counter
     Control System for Automatic Operation
        Stepping Programmer
     Alarm Unit
        Alarm Units
```

Х

X

Х

Х

X

Х

Х

X

X

Х

Х

*Legend X - - - - Out of Order

- - - - Working but necessary

to calibrate

0 - - - - - Available

As mentioned above, the monitoring instruments and control system for automatic operation are mostly damaged and all equipments are operated manually. Faulty operations may occur as a result.

5 - 474 (b) Treated Water Quality The filtered water and outlet of demineralizer are as follows;

	Filtered	Cation	Anion		Mixed B	ed Polishe	r	
Date	Water Conducti. (µS/cm)	FMA (ppm as Ca Q O3)	Conduct. (µS/cm)	SiO2 (ppm)	Conduct. (µS/cm)	P-Alkali (ppm as CaCO3)	SiO2 (ppm)	Remarks
Aug. 10	850	190	4.7 4.9	0.004	0.55 0.94		0.095	Graver (Gardner)
12		180	17	0.004	1.0		0.095	
13	810	180	7•8 6•0	0.004	0.15		0,005	
13			3•1 2•3	0.004	0.12		0.005	
16	810	180	34 8₊3	0.004	0.78		0.005	
17	810	180	10 6.5	0.004	0.32		0.005	
18	830	185	12 10	0.004	0.30		0.005	
	Deep Well							
Aug. 16	1300 *390	RO unit 70	effluent 5.4	170 S/c _	0.11		<u> </u>	Permutit (Snyder)
		ed Water	in Clear W	ell				
Aug. 24	480		5•5		0.17			Permutit (Malaya)
24			3.4		0.18			
25	450		11		0.27			
26	450		2.8		0.23			
27	480		2.5		0.25			
Sep. 1	568		2		0.22			
					FMA	& Si02	- By NAPO	OR

· • ;;

In Japan, the demineralizer is usually operated as follows; Anion Exchanger Outlet Conductivity Less than 10 micro S/cm Silica Less than 0.1 ppm as SiO₂ Mixed Bed Polisher Conductivity Less than 0.5 micro S/cm Silica Less than 0.02 ppm as SiO₂

However, treated water conductivity of Graver demineralizer becomes sometimes higher than the above values.

It is caused by no monitoring of conductivity at anion exchanger and mixed bed polisher outlet, Exhausted points are checked only by Free Mineral Acidity (FMA) (Cation exchanger), SiO₂ (Anion exchanger), SiO₂ and P-alkalinity (Mixed bed polisher) by manual analysis.

(c) <u>Regeneration</u>

Regeneration of demineralizers are carried out as

follows:

			Mixed Bed
	Cation Exchanger	Anion Exchanger	Polisher
Gardner (Graver)	1 Down Flow	4 Down Flow	\bigcirc
	2 Up Flow	5 Down Flow	8
	3 Down Flow	6 Down Flow	Ordinary
Snyder (Permutit)	1 Down Flow	1 Down Flow	Method
	2 Down Flow	2 Down Flow	2
Malaya (Permutit)	1 Down Flow	1 Down Flow	1)Column No
	2 Down Flow	2 Down Flow	
* Refer	to attached operatio	on process; Table	5C-21, 22,
23, 24	, 25 and 26.		

5 - 476

(d) <u>Regenerants Quantity</u>

Regenerants quantity is checked by dilution flow rate and specific gravity of diluted solution.

5 - 477

$\overline{)}$	temr	N-Alk. (onm as CaCO3)	C1 (bem as NaC1)	SO4 (ppm as Na2SO4)	T-Hard (ocm as CaCO3)	Ca (pom as CaCO3)	SiO2 (ppm as SiO2)	Conduct. (Micro S /cm)	FMA (prm_as Caco 3	Alexandra (1 Mariako (1
ug.	1	223	135	9	35	18	66	979	180	G/S TS
	5	285	183	16	30	20	68	894	180	
	3	340	184	14	40	24	70	970	180	je.
	4	310	170	50	46	20	90	990	180	
	5	280	174	12	42	26	65	940	180	
	6	290	160	9	48	25	83	990	180	
11 - 144 1	7	308	185	12	38	24	68	968	180	
	8	320	192	12	44	20	72	980	180	
	9	300	176	12	40	24	84	974	180	
	10	290	184	10	40	16	54	940	190	
	11	340	184	12	46	20	65	970	130	
	12	320	190	12	46	20	78		180	
	13	309	188	14	40	28	72	972	180	
	14	370	190	10	44	20	60	980	180	Set to be a
	15	260	162	10	34	17	55	900	180	
	16	290	170	15	38	20	72	(820)	180	
	17	270	182	10	42	24	62	(840)	185	
	18				na di sina sana dari di Sana tari t ari sana di s					
	19	300	116	12	34	20	42	(800)	190	
1. 1913	19						<i>₩</i> 1	+ {1398} <u>=</u> :	III RO Uni	t Inlet t Cutle
	19							(390)	Permut	it Inle
			en al caracteria da caracteria Nativa da caracteria da caracteria da caracteria da caracteria da caracteria da	en de la composition de la composition de l				n an an an an an an Araba. An an Araba		un de la companya Na companya
Aug.	27#	1 138	44	21.9	102	66	80	PH(7.3)	Fe(0.41)	MALAYA
	#	F 136	46	21.9	102	58	82.5		Fe(0.41)	
	#	3 56	24	17.5	64	54	97.5	PH(7.45	Fe(0.46)	
										1
			i Barata ya 192 1937 - Arian Shiri							
Aug	City	48 - 43	13 - 15		41 - 46	28 - 32	10.8 -	16 PH(7.3	1	TEGEN
	Rive	r ⁸² - 76	620 <u>-</u> 580		¹²⁰ - 118	75 <u>-</u> 80	6.7 -	6.0PH(7.5	X	
		Regional Constanting Long Alfrancia (1911)								
			a ser a companya A ser a companya A ser a se							
		1								

Table 5C-19 FILTERED WATER ANALYSIS RECORD

Dat	tem	M-Alkali (ppm as Ca CO3)	Cl (ppm as NaCl)		H-Hard (ppm as) CaCO3)	Ca (ppm as CaCO3)	SiO2 (ppm as SiO2)	Conduct (Micro S /cm)	FMA (ppm as CaCO3)	Rémark
g.	1	20	70		12	4			60	Snyder
	2	15	70		0	0			40	
	3	5	60						40	
	4	en de la composition de la composition La composition de la c								
	5	30	70		14	4			50	
	6	22	66		0	0			50	
	7	26	68	с. С. с. с. Алан (с. с. с	0	0			40	
	8	15	40		0	0			40	
	9	9	88	같은 가장이라. 같은 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 같이 있는 것이 같이 있는 것이 같이 있는 것이 같이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 같은 것이 같은 것이 있는 것이 없는 것	0	0			40	
	10	10	90		0	0			40	ante de la composición de la c
 	11	58	85		20	12			40	
	12	64	90		22	10			40	
	13	72	100		24	14			70	
ai Ala	14	68	94		20	8			80	
	15	74	104		22	12			70	
1 1 1 1 1 1	16	70	94		22	10	15		70	
	17	68	108		20	12	15	390	70	
	18	72	104		22	14				
	19	70	120		28	14	20		70	
	20	90	110		20	12	18		70	
	22	60	94		18	10			80	
	23	64	102		22	12			80	
	24	60	82		16	8			80	
	-									
	31	17	70						40	
	13-14 (A)									
			Sep. 17							
		Note;			er Condu			Micro S/C	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
					Water Co			Micro S/c	n	-
,			Permuti	Inlet	Water(Ble					
					Co	nductivi	ty 390	Micro S/c	n	

Table 5C-20 FILTERED WATER ANALYSIS RECORD

	Califon, Exchanger					Anion Exchanger			
Process	F1 ow Rate	Time	Remarks		Procees	F) ow Rute	ani S	Renorts	
					Service	50 gym			
	3 3				Back Wash	42 give	10 min.		
Back Wash	150 gpm	10 min.			Clouse				
Clouse		5 min.			Clouse				
	Method-1(Up Flow		Method-2(Down F1	(wo L'I	Caustic	29.77 (cpm	87 min		
1-st Introduction	2.5%Acid 45 gpm + 31 0.7 gpmH2SO4 min		4%Acid 39.2 gjm + 29 1.0 gpmH2504 mir	e E	Introduction	+ 1.75 gpm(HaQH)	H)		
2-nd Introduction	5%Acid 45 gpm + 1.4 gpmH2t:04		8%Acid 21 39.2 gpm + min 2.0 gromH2%02			Heating 110-120'F			
Displacement	45 6Pm 10		39.2 gpm 125 min	ст - Е					
Fast Rinse	92 grm	47 min		0 6 6	Displacement	29.7 gpm Heating 110-1207	23-5 min		2.6 13.6
Service	73. gpm				Fast Rinse	73. gpm	54.5 m/m		inn H
Remarks					Remarks				

Process	Flow Rate	Time	Remarks
Service	75 gpm		
Sub-Service Wash	21. gpm	10 min.	
Back Wash	25 gpm	10 min.	
Settling			
Acid Intro- duction Acid Displace & Caustic Intro	11.4 gpm +0.355 gpm(H2SO4) 5.3 gpm +0.30 gpm(NaOH) 11.4 gpm	25 min.	Heating Temp 110-120'F
Acid Displace Caustic Intro -duction	11.4 gpm 5.3 gpm +0.3 gpm(NaCH)	69 min.	
Drain Unit		11.4 min	
Raise Bed	25 gpm		
Air & Water			
Air Mixing			
Back Flush & Settle & Air			
Slow Fill	5•3 gpm	8 min.	
Fast Fill	41 gpm	3.5 min.	
Through Fill	41 grin		

Table 5C-22 MIXED BED POLISHER (GRAVER) GARDNER

											2.3 m3	30 . 8 m ³	
		Remark				Heating Temp	120°F					Less than 30	40 Micro IS/cm
NYDER		Time (min)		20			<u> </u>				, 22	68 Le	
(PERMUTIT) S	Exchanger	Flow Rate	100	40		28	+ 1.6				28	120	
OPERATION PROCESS OF DEMINERALIZER (PERMUTIT) SNYDER	Anton	Process	Service	Back Wash		4% Caustic	Introduction				Slow Rinse	Fastiikinse	
IN PROCESS O										3 . 1 m3	22 . 7 m ³		
Table 5C-23 OPERATIO		Remark											
Table	hanger	Time (min)			10	C.	so4}	11 S04)	so46	14	24		
	Cation Exchanger	Flow Rate	100		140		250 + 2.15(H2S04]	90 11 11 + 2.15(H2S04)	60 + 2.15(H2SO4)	6 0	250		
		Process	Service		Back Wash	Settle	1.5% Acid Introduction	4% Acid Introduction	6% Acid Introduction	Slow Rinse	Fast Rinse		

Table 5C-24 SNYDER THERMAL STATION OPERATION PROCESS OF PRIMARY DEMINERALIZER (PERMUTIT)

Priocess	Flow Rate(gpm)	Time(min)	Remarks
Service	100		
Back Wash	33	10	
Settle		10	
Heating Anion Resin	10 8.5	15	Heating Temp 120'F
Caustic Introduction & Acid Introduction		60	Heating Temp 120'F
Slow Rinse	10 8.5	15	
Anion Partial Rinse Cation Partial Rinse	48 55	15	
Drain		15	
Air Mix	150 cfm	20	Air Press 10 psi
Air Mix & Drain	150 cfm	10	
Refill	80	5	
Final Rinse	80	13	
Conductivity Setting			0.5 Micro S/cm

1.717

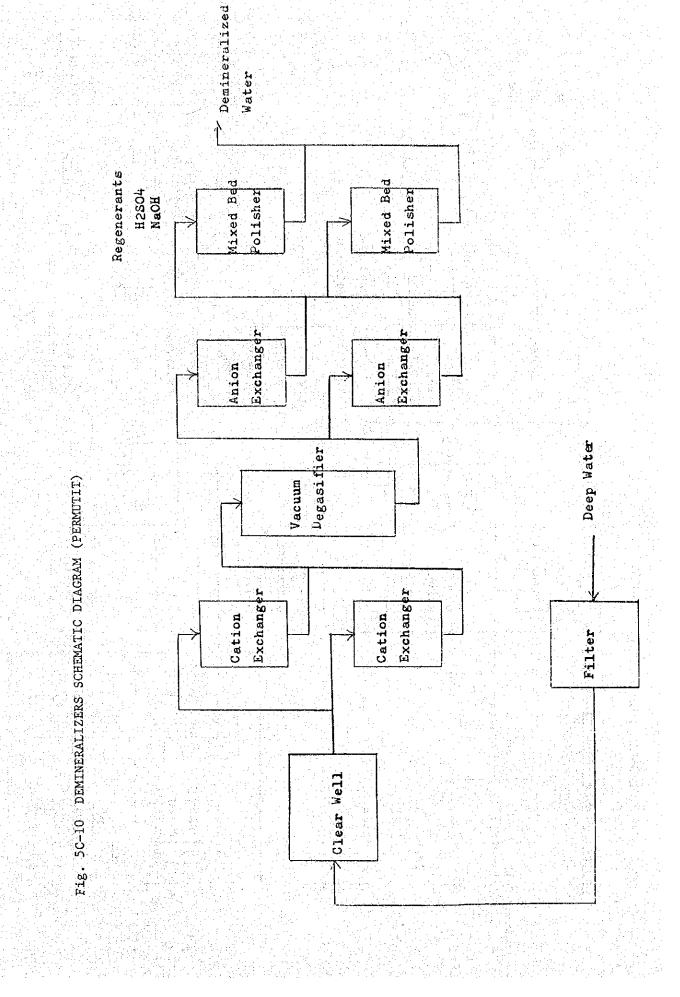
. . .

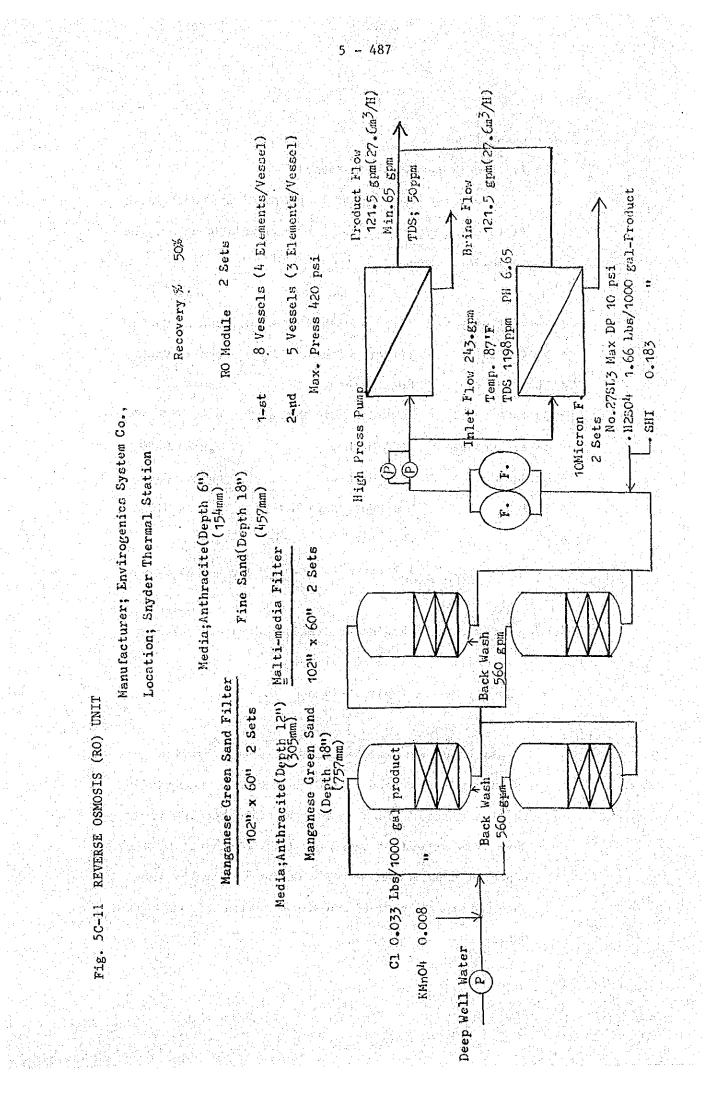
.

Anion Exchanger Process Flow Rate Time Remarks	grim)- Nax. Spm			60 mi <i>n</i> .	56 7.C ⁴ Ing Temp. 110-120'E			m Point 23 m Point 23 m Less than 10 ppm	SiO2 Ness than 0.02pp
Anion Exchanger Process Flow Rate	Gervice (200 gym (200 gym Back Wash 69 gym	Settle	Settle	Caustic(4%NaOH) 17 gpm Introduction + NaCH	(4%)56 7.0 ⁴ Reating Tem 110-120		Slow Rinse 17 gom	Rinse 102 gpm	
Remarks			S	9		4.3	End point $\frac{42}{10}$ Ed. $\frac{5}{10}$		
Cation Exchanger Flow Kate Time R	100 g pm 2 z pm) Max.	115 gpm			+ H2504 (4%)56 1.025 52 gpm + H2S04 + A2S04 20 min.]	222 gpm	102 gym	
Process	C C C C	Back Vash	Settle	1-st (1% Acid) Introduction 2-nd (4% Acid)	Introduction 3-rd (6% Acid) Introduction	Slow Rinse	Rinse	Service	

5 - 483

Table 5C-26 MIXED BED POLISHER (PERMUTIT) (SNYDER & MALAYA)


Operation	n Process, Specified Flow	Rate, Time	and Regenerants
Process	Flow Rate	Time	Remarks
Service	100 gpm		
Back Wash	43 gpm	10min.	
Settling		5min.	
Anion Heating	9.7 gpm(Temp.110-120	'F) ^{15min.}	Heating Temp 110-120'F
Regenerant Introduction	Anion (5%NaOH)S.G.1.09 9.7 gpm ÷ NaOH Cation (5%H2SO4) S.G.1 7.1 gpm + H2SO4		Heating Temp 110-120'F
Displacement	Anion 9.7 gpm Cation 7.1 gpm	15min.	Heating Temp 110-120'F
Regenerant. Rinse	Anion 39 gpm Cation 50 gpm	15 min.	
Final Rinse	69 gpm		Conductivity Less than 0.5 Micro Silica Less than 0.02 ppm


Special

5 - 484

Mixed Bed Polisher Mixed Hed Polisher ✓ Demineralized Water Tank Regenerants H2SO4 & NaOH Ion Exchange Resin Exchanger Exchange Ahlon Ahion Degasifier Mixed Bed Mixed Bed olisher Polisher Vacuum Exchanger Exchanger xchanger xchanger uxchanger Cation Cation Ahion Ahion Anlion tlear Well Degasi fier Vacuum Exchanger xchanger Exchanger RO Unit Fig. 5C-9 DEMINERALIZERS SCHEMATIC DIAGRAM RO Unit Cation Cation Cation 不 Demineralizers Schematic Diagram Multi Media Multi Media Well Filter rilter Clear in Gardner/Snyder Green Sand Filter Mdngahese Manganese Sand Filther Filter Green Permutit Graver Deep Well Water Deep Well Water

5 - 485

c. Recommendations

(a) Filtered Water Analysis Method

According to NAPOCOR thermal station site, filtered water (raw water) is analyzed based on the following methods.

	Method	Unit
* P-Alkalinity	Titrate with N/50 H_2SO_4	ppm as CaCO ₃
* M-Alkalinity	Titrate with N/50 H_2SO_4	ppm as CaCO ₃
* Chloride	Morr Method	ppm as NaCl
* Sulfate	Turbidimetric Method	ppm as Na ₂ SO
* Total Hardness	EDTA Method	ppm as CaCO ₃
* Ca Hardness	EDTA Method	ppm as CaCO ₃
* Silica	Molybdate Blue Method	ppm as SiO ₂
* pH	pH Meter	
* Free Mineral	Titrate with N/50 NaOH	PPM as CaCO ₃

Acidity

Note: Refer to attached sheets (Filtered water analysis record.)

No. - - - - - Table 5C-19 and 20.

In above method of analysis items, chloride and sulfate are expressed as NaCl and Na₂SO₄ respectively on this record. This is not suitable because it is thru this record of analysis that we calculate the expected capacity of primary demineralizers by knowing the total cation and total anion of the raw water. This is to say, the primary demineralizers capacity can be known by the following formula.

* Expected capacity of primary demineralizer*

$$\mathbf{A} = \frac{\mathbf{B} \mathbf{x} \mathbf{C}}{\mathbf{D}} \mathbf{x} \mathbf{E} - \mathbf{F}$$

Α;	Expected capacity of demineralizer	(m ³ /cycle)
В;	Break through capacity of resins	(g as CaCO ₃ /1-Resin)
С;	Resin Volume	(liter)
D ;	Total cation/Total anion	(ppm as CaCO ₃)
Е;	Resin capacity drop %	(1 - %/100)
F;	Needed water volume for regeneration	(m ³)
	(Displacement & Rinse)	

The analysis items and methods of filtered water in Japan are shown below;

Method-1	lethod-2	Method-3
(JIS-0101)		

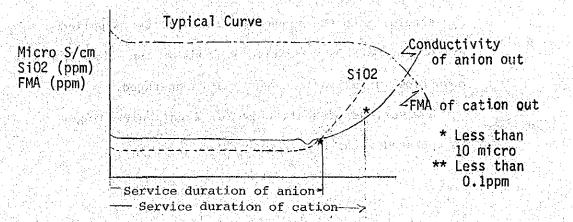
Total Hardness(T-H) Titration with EDTA Titration with EDTA

Calcium (Ca)	Titration with EDT	\mathbf{A}
Magnesium (Mg)	(T-H) - Ca	
Sodium (Na)	Atomic Absorption	(T-C) - (T-H)
Total Cation (T-C)	Ca + Mg + Na	M-Alkali + FMA Conductivity/2
Bicarbonate (HCO3)	Titration	Titration
(M-alkalinity)	with N/50 H ₂ SO ₄	with N/50 H_2SO_4
Chloride (Cl)	Morr Method	Free Mineral Acidity (FMA)
		Titration with N/50 NaOH
Sulfate (SO ₄)	Turbidimetric Metho	od

Nitrate (NO₃)

Free carbon Dioxide From graph of

(co ₂)	relation of pH	and M-alkalinity
Silica (SiO ₂)	Molybdate Yellow	Molybdate Yellow
Total Anion	$HCO_3 + C1 + SO_4$	M-Alkali + FMA
	$NO_3 + CO_2 + SIO_2$	$co_2 + sio_2$
PH	pH meter	PH
Iron (Fe)	Orth-phenanthrolin	iê –
Conductivity	Conductivity	Conductivity meter
(Micro S/cm)		
Turbidity	Spectrophotometer	
Others		"我想我,我想 我们就要是我的你?"
COD	Titration (KMnO ₅)	
TOC	TOC meter	
Frequency of	once a week	once a day
analysis		
	Regarding ray	y water analysis,

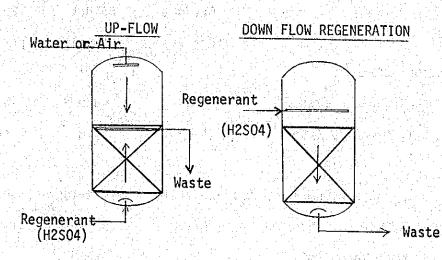

Filtered Water (Method-1) Once a week Filtered Water (Method-2) Once a day SiO ₂ of Anion and Mixed Bed Polisher Outlet Every 3 hours		recommends that it should be performed periodical as follows:
Filtered Water (Method-2) Once a day SiO ₂ of Anion and Mixed Bed Polisher Outlet		ABIOTIONS:
${ m Si0}_2$ of Anion and Mixed Bed Polisher Outlet		Filtered Water (Method-1) Once a week
승규는 방상에는 경험이 많이 물건없이 그렇게 많은 것을 많이 것 것 같아? 것이 가락에 드셨을까지 않게 하는		Filtered Water (Method-2) Once a day
Every 3 hours		SiO ₂ of Anion and Mixed Bed Polisher Outlet
		Every 3 hours
		동물에 제작물에 있었는 것들이 물러 있는 것을 한다. 것은 것은 가장 가지 않는 것을 하는 것을 하는 것을 하는 것을 하는 것을 하는 것을 가지 않는 것을 하는 것을 하는 것을 가지 않는 것을 하는 것을 하는 것을 하는 것을 가지 않는 것을 하는 것을 하는 것을 하는 것을 수 있다. 것을 가지 않는 것을 하는 것을 하는 것을 하는 것을 하는 것을 하는 것을 하는 것을 수 있다. 것을 하는 것을 수 있다. 것을 하는 것을 하는 것을 하는 것을 하는 것을 수 있다. 것을 하는 것을 수 있다. 것을 수 있다. 것을 수 있다. 것을 하는 것을 수 있다. 것을 하는 것을 수 있다. 것을 수 있다. 것을 하는 것을 수 있다. 것을 것을 수 있다. 것을 것을 수 있다. 것을 수 있다. 것을 수 있다. 것을 것을 수 있다. 것을 수 있다. 것을 것을 수 있다. 것을 것을 수 있다. 것을 것을 수 있다. 것을 수 있다. 것을 수 있다. 것을 수 있다. 것을 것을 것을 수 있다. 것을 것을 수 있다. 것을 것을 것을 수 있다. 것을 수 있다. 것을 것을 것을 것을 수 있다. 것을 것을 수 있다. 것을 것을 것을 것을 수 있다. 것을 것을 것을 수 있다. 것을 것을 것을 것을 수 있다. 것을 것을 것을 것을 것을 것을 것을 것을 수 있다. 것을
가능 수가 가는 것이 가지에 가는 것을 만들었다. 그는 것은 가장 가장에 가지 않는 것이 가지 않는 것이 가지 않는 것이 가지 않는 것이다. 이 가지 않는 것은	이는 것이 사람들을 수요한 것을 알았다. 1997년 - 이상 것이는 이상 것이 있는 것이 있다.	하는 (著作文書) 사망을 위해 있는 것은 이 가지 않는 것이 가지 않는 것이 가지 않는 것이다. 이 가지 않는 것이 있는 것이 같은 것이 같은 것이 있는 것이 같은 것이 있는 것이 있는 것이 있는 것이 있는 것이 같은 것이다.
에는 것은		
사실 사람들은 것 같은 것 같은 것을 통해 있는 것을 가지 않는 것을 가지 않는 것이다. 것은 것은 것은 것은 것은 것을 가지 않는 것 같은 것은 것은 것은 것을 같은 것은 것은 것을	나는 그는 것이 있는 것이 같아요. 것을 가지 않는 것을 수 있다.	
수 있는 것은 것은 것이 있는 것은 것은 것은 것은 것이 있는 것이 같은 것이 있다. 한 것이 있는 것 같은 것은 것은 것이 같은 것은 것은 것은 것은 것은 것은 것이 있는 것은 것이 있는 것이 같은 것이 같은 것이 같은 것이 있는 것이 있는 것이 있는 것이 있는 것이 같은 것이 있는 것이 있는 것이 있		물건 방법을 가장하는 것 같은 것 같은 것 같은 것 같은 것 같은 것 같은 것 같이 있었다. 것 같은 것 같
물건 방법 방법 수도가 가지도 물건물 지난 것이 있다. 이렇게 가지는 그 것이 가장 뒤 동안 수는 것이다. 이는 것이 수 없어? 가지는 것 같아?		
수영상업 수상에 가장 전에 관계적으로 가지 않는 것 것이라고 성격을 감독하는 것이라고 있는 것은 것이라고 말했는 것이다.		

In the filtered or raw water supply analysis, expression of results should be unified as CaCO₃ or its equivalent for easy calculation.

Note: On the attached record of analysis (Table 5C-20), chloride values are higher than FMA (Free Mineral Acidity). Further evaluation of this results shows the probable cause of the big difference in value may be due to the reagent concentrations. (b) Operation Procedure of Demineralizer

According to NAPOCOR procedure, the exhausting points of cation exchanger and anion exchanger are respectively decided with free mineral acidity and silica value but not on the conductivity value. However, the conductivity of deionized water is the most important factor when we check the demineralized water quality.

In primary demineralizer, the typical curves of conductivity, SiO₂ and FMA (Free Mineral Acidity) are shown below.


And when NaOH or NaCl leak at outlet of ion exchanger, the conductivity will be as follows; NaOH NaC1 CaCO₂ HC1 5 micro S/cm 2.5 micro S/cm 8.5 micro S/cm l ppm 43 5 ppm 25 13 10 ppm 50 ţî, 25 85 Щ 11 11.1 38 150 " 15 ppm 75 20 ppm 100 " 170 " 40

FMA at the outlet of cation exchanger correspond to NaCl. Conductivity measure is higher in sensitivity than the result of FMA analysis. Monitor continuously by conductivity.

Therefore, JICA team recommends, that the exhausting points of demineralizer should be known by conductivity and conductivity meters which are attached on the control panel should be repaired or replaced immediately. Regarding mixed bed polisher, it is also the same as mentioned above.

(c) Regeneration Method

According to the manual of demineralizer supplied by Graver both regeneration methods of up flow or down flow in cation exchanger can be operated. However, at present, only No. 2 cation exchanger is operated in up flow regeneration. When concentration of free mineral acidity (C1⁻, SO₄⁻, No₃⁻, etc.) in filtered water increase, it is better to employ up flow regeneration in order to keep higher water quality efficient. Also higher capacity will be produced with smaller volume of regenerants.

Therefore, JICA team recommends that up-flow regeneration method should be employed in Gardner (Graver) demineralizer to obtain higher quality of water effluent.

In up-flow regeneration, the most important thing is to avoid resin moving during acid introduction and also of displacement so that water or air is flowed from column top. Regeneration waste collector is installed in upper part of resin layer.

(d) Caustic Introduction & Displacement Temperature

The maximum operating temperature of anion exchange resin in R-OH type is 60°C. "In case of NAPOCOR, it is between 110°F (43°C) - 120°F (48°C)" The heating temperature should be controlled at 53 \pm 3°C in order to remove effectively SiO₂ absorped

in resin layer.

(e) Expected Capacity of Demineralizer

In primary demineralizer, the expected capacity are as follows;

			Gardner	Snyder	Malaya
in di Anta			5 N		
i di			(Graver)	(permutit)	(permutit)
12.8	lahi yata titi	199	이 사이 한 방법을 가운 사람을 했다.		

CATION EXCHANGER

Resin Volume (liter)	3058	4870	4870
B.T. Capacity (gas)	55.3	44.8	44.8
(CaCO ₃ /1-R)			
Total Cation(ppm as Ca	CO ₃) 820/2=41	0 390/2=195	450/2=225

S Resin Capacity Drop %	19/100	19/100	19/100
Regene. Water (m ³)	18	26	46
Expected Capacity	316	880	739

ANION EXCHANGER

Resin Volume (liter)	2718	2888	2888
B.T. Capacity	24.4	31.5	31.5
(gas CaCO ₃ /1-R)			
Total Anion(ppm as CaCO ₃)	257	97	192
FMA (ppm as CaCO ₃)	180	70	110
SiO ₂ (ppm as CaO ₃)	67	17	72
CO ₂ (ppm as CaCO ₃)	10	10	, 10
Resin Capacity Drop %	14/100	14/100	14/100
Regene. Water (m ³)	20	33	25
Expected Capacity (m ³ /cyclo	e) 204	774	382