(c) 排水処理設備

排水処理は製油所単独で計画すると同時に、オリノコ・ヘビーオイルの生産地を含めた総合的な排水処理計画が大切となる。従って、製油所の排水については、次に示す水質を満足するように、アンモニア、硫化水素及び油分を除去する設備で処理する。

рΉ	5.8~8.6
アンモニア	30网以下
赞化水素	5 种 以下
SS	30㎞以下
油分	1000以下

(d) 挤煙脱硫設備

副製品を燃料とするポイラー排煙脱硫装置を設置し、脱碳率は90%とする。 脱硫方式は、湿式による排煙脱硫方式とし、排煙中の硫黄酸化物を石膏として回収する。

41.3 共通設備の頻説

共通設備のブロック・フロー・ダイヤグラムをFIG 4.1 に示す。 以下各設備について述べる。

(1) 用役設備

(a) 水蒸気発生および分配設備

水蒸気発生設備はプロセス個有設備として、前第1章、第2章および第3章で述べられている。

本設備は2系列より成る各プロセスの正常運転時および1系列が定期修理を行っている運 転時の両ケースおよび、原油生産地に1年を通して安定して電力を供給する事を考慮し、効 本よく水蒸気を発生するように設計されている。

ボイラー用水処理設備で脱イオン処理された処理水は脱気器に送られ蒸気の注入により。 密存験素が除去される。脱気水は給水ポンプで昇圧され、給水加熱器を軽てボイラードラム K送られる。

水蒸気発生設備で発生した水蒸気及び電力発生設備より損気された水蒸気は、オンサイト および共通設備の水蒸気バランスに合致する様、各蒸気の供給圧力レベルに調整された後、 分配される。

(4) 発電および分配設備

本設備で発電される電力は製油所内の各消費設備および原油生産地に供給される。本設備 は、主発電設備、初期始動用発電設備等の主要設備から構成されている。 発電機駅動用スチームターピンに給気される超高圧水蒸気($100 kn/cd\Omega$, $500 \, \mathrm{C}$)は一部高圧蒸気($50 kg/cd\Omega$, $405 \, \mathrm{C}$)。中圧水蒸気($16 kg/cd\Omega$, $280 \, \mathrm{C}$)および低圧水蒸気($4 kg/cd\Omega$, $165 \, \mathrm{C}$)として途中より抽気される。

(c) 用水受入および処理設備

用水はオリノコ川から取水して、パイプ輸送で製油所に供給された初川水を使用する。 原水は製油所内で爆集花袋設備、砂炉過設備で処理され、タンクに貯蔵される。次いで、 そのまま、また一部は更に処理された後、冷却水、ポイラー用水、工業用水、飲料水、消火 用水に使用される。用水処理のブロック・フロー・ダイヤグラムを FIO. 4.2 に示す。

(a) 絕水設備

凝集沈殿設備および砂沪過設備で処理された用水は、次いで活性炭吸着設備で処理され、更に炭炭酸塔、陽イオン交換樹脂塔および除イオン交換樹脂塔で処理され、ボイラー用水となる。活性炭吸着設備で処理する理由は、用水中に含まれている油脂 1.5 m/L を除くためである。

(e) 是缩水回収設備

製油所のオンサイトおよびオフサイトのリポイラー、ヒーターよりの凝縮水はポリッシャーで処理された後、ボイラー用水として再利用する。発電用として使用された、復水器よりの凝縮水はそのままポイラー用水として使用される。

(f) 飲料水設備

本設備は凝集花殿設備および砂炉過設備で処理した用水を塩素で殺菌し飲料水化する。本設備は塩素注入設備、飲料水タンク及び高架タンクより構成される。

(a) 冷却水設備

本設備は、製油所で必要な冷却水を冷却塔で所定温度まで再冷却し、連続的に循環再使用に供する。

尚、冷却水の補給水は、パイプ輸送された用水を凝集沈殿設備および砂沪過設備で処理したものを用いる。

本設備は冷却塔、冷却水ボンプおよび薬品注入設備等の主要設備から構成される。 製造所 各設備で冷却に使用された冷却水は冷却水戻り主管を経て冷却塔の塔頂に戻され重力で落下 する内に空気と接触することによって再冷却され下部の水槽に貯る。損失分(蒸発飛散損失 およびブローダウン)と同量の水が構給された後冷却水ボンブで製油所内各機器に供給され 循環再使用される。

冷却塔の設計条件は次に示す通りである。

冷却塔入口温度 : 433℃

冷却塔出口温度 : 322℃

大気湿球温度: 27.2℃

避 格 度 5.0

(6) 燃料設備

本設備は製油所で製造される燃料ガスおよび燃料油を受け入れ、ポイラーおよびプロセス 加熱炉等の燃料使用設備に供給する。

特に、燃料油設備は貯蔵タンク、燃料油ポンプ、フィルターおよび燃料油の粘度を下げるための加熱器の主要設備から構成される。

尚、減圧残油およびアスファルトの輸送に当たっては、外気包度を20℃(最低温度)と して設計基準とした。

(i) 空気設備

本設備は製油所で使用する計装用空気および雑用空気を供給する。

本設備は空気圧縮機,空気貯槽および空気脱湿器等の主要設備から構成される。空気はフィルターおよびサイレンサーを備えた吸入口から圧縮器に取入れられ多段圧縮された後,冷却器を通って空気貯槽に入る。計装用空気は貯槽から脱湿器に入り所定露点に乾燥されて空気式制質機器および計器に供給される。

(i) 不活性ガス設備

本設債は製油所で必要なシール用,パージ用,補修用およびテスト用の窒素ガスを発生させ供給する。

本設備は空気圧縮機,圧縮空気を冷却する冷却器と冷凍機,空気中の水分と炭酸ガスを除去する吸着器,処理された圧縮空気を更に冷却する熱交換器と膨張タービン,圧縮空気を液化する液化器,液化空気を所定純度の窒素と廃空気に分離する精留塔および液体窒素を気化する蒸発器等の主要設備から構成される。

② オフサイト設備

(a) 貯蔵設備

本設備は下記の目的に応じた各種タンク群から構成される。

(1) 原油タンク : 原油の安定供給をはかるための貯油

② 中間タンク : 精製装置の運転および保全上必要となる油の中間貯油

(3) 製品タンク : 最終製品油の貯油

(4) そ の 他: 自家燃料油タンク

(1) 入出荷設備

本設備は、本章の4.1.2(I)に示された入出荷設備の設計基準を満足するものであり、主として改資原油、稀釈用軽質軽油の出荷ポンプまたオフガスが余剰に発生する場合はコンプレッサー、製油所内だけに限定した製品出荷配管設備および検量設備から構成される。

(c) 排水処理設備

製油所に発生する排水は①オンサイトより排出される硫化水素, アンモニアおよび油分等を含む排水, ②用役設備およびオフサイト設備より排出される排水, ③雨水による油分を含む排

水、④雨水による油分を含まない排水に分類される。

排水は上記の区分に合わせて別々に、排水溝設備により集められ、排水の性状に合わせて 処理される。

オンサイトよりの排水は他の排水とは区別され、まず排水ストリッパーで処理され、含まれている硫化水素およびアンモニアが除却される。次いで CPI 油水分離設備にかけられ、含有する油分が除去される。

用役設債およびオフサイト設備よりの排水は、衛生排水については浄化槽により処理して、その他の排水は特に処理する必要はなく、上記の CPI 油水分離設備で処理されたオンサイトよりの排水と混合され製油所系外に排出される。また、雨水のうち油分を含む排水は、CPI 油水分離設備で処理された後、製油所系外に排出される。

(d) 排煙脱磷設備

本設備は、ポイラー設備より発生する排ガス中の貸黄化合物を除去して石膏を回収するものである。

ポイラー設備より発生する排煙はまずスクラバーにかけられ、粉塵が除去される。次いで 吸収塔で石灰石のスラリーよりなる吸収液と接触することにより、排ガス中の亜硫酸ガスが 亜硫酸カルシウムとして除去される。

亜銭酸カルシウムはスラリー状態で酸化器に入り、酸化されて石膏となる。生成した石膏を含むスラリーは固液分離機にかけられ、石膏が分離される。

(e) フレア及びブローダウン設備

製油所の安全運転をはかるため、各機器に設けられたリリーフ・パルプよりのガス及び 体はフレア及びプローダウン設備で処理される。この設備は、フレアーホルダー、ブローダ ウンドラム、ノックアウトドラム及びフレアースタックより構成される。

(f) 集合煙突

製油所より排出される燃焼ガスのうち、特にボイラーの燃焼ガスは排煙税債設備で処理された後、その他の燃焼ガスは直接に集合煙突に導びかれ、大気に放出される。

(g) 消火設備

消火設賃は火災の発生を防止するとともに、火災、爆発が起った場合は被害を最少限KC いとめる為設置される。

本設賃は次の3つのシステムより構成される。

- 初期消火を目的とする可動用消火システム
- 商火栓、散水設備、固定および半固定方式の泡消火システム
- ○火災報知システム

(h) コントロール設備

プラントを安全に、効率良く、かつ経済的に運転する為、運転条件は常に監視され、制御された。

また、運転実績の記録は運転特性の分析に利用されるとともに、マーケットプランニング 等マネージメントに役立られる。コントロールハウスはオンサイト設備および用役、オフサイト設備に各1ケ所設置される。

(i) 通信設備

本設備は次の2つのシステムより成る。

私設自動交換機システム

製油所内に自動交換機による電話機を設置し、製油所外に電話する場合はダイヤル直通 とし、また外部よりの電話については交換手により接続される。

放送システム

製油所の円滑な運転を行うため、放送システムを設ける。 このシステムは動力源、増市 設備、拡声器及び送受話器のステーションより構成される。

(i) 照明設備

製油所の夜間の円滑な運転のためプロセス装置、ユーティリティ装置及びタンクヤードに 屋男設備を設ける。

また、道路の照明については、車の安全操行の為、約40m間隔で約400 Wの照明をつける。

(1) その他の設備

以上に述べた設備の外、次に述べる諸設備が設置される。

·道路, 外播設備

• 建屋設備

Building	No.s	Floor Area, m
Administration Office	1	3,000
Maintenance Shop	1	2,000
Warehouse	3	2,000
Laboratory	i	2,000 500
Engineering Office	1	1,000
Control Room	3	2,000
Powerhouse	2	4,000
Substation	20	4,000
Firehouse	1	500
Cafeteria	1	500
Clinic	1	300
Rest House	2	200
Gatehouse	2	100

4.2 フルードコーカーケース用共通設備

4.21 はじめに

この節では、先に述べた共通設備の検討基準に基づいて、フルードコーカーケースに用いられる用役設備およびオフサイト設備を検討した結果およびこれらの設備の建設費を示す。

4.2.2 検討結果

(1) 用役設備

フルードコーカープロセスのオンサイトにおける用役必要量のデータに基づいて、製油所全 域で使用する用役必要量を算出した。尚、原油生産地に供給する電力は、170,000 BPCDの 原油生産の場合、150 MWを必要とするので、フルードコーカープロセスでは158,160 BPSD の原油生産を必要とすることから、原油生産地に供給する電力は1262 MW となる。

用役のバランスについてはTable 4.1 およびFIO. 4.3 に示す。

(a) 水蒸気発生および分配設備

本設備は、高圧スチームポイラーと超高圧スチームポイラーの2種類のポイラーよりはt される。

高圧スチームボイラーを中的とする水蒸気、電力発生設備は、オンサイトへ水蒸気および電力を供給することを目的としており、オンサイトの系列数に対応して2系列設置される。 高圧スチームボイラーは、フルードコーカーケースから発生する GO ガスおよび特助蒸料と してのオフガスを燃料とする。また、この高圧スチームボイラーの運転、定修計画はオンサイトの設備と同様に考えられる為、予備は設置されない。

一方、超高圧スチームボイラーを中軸とする水蒸気、電力発生設備は原油生産地への電力供給とオフサイトおよび用役設備への水蒸気、電力の供給を目的としている。この超高圧スチームボイラーは、フルードコーカーケースの副製品であるコークスを主燃料とし、さらにオンサイト設備で発生するオフガスを補助燃料とする。

系列数としては、予備を含めて4系列設置され、通常は3系列が稼働する。また、との設 億の各圧力レベルのスチームヘッダーは、超高圧スチームボイラーと高圧スチームボイラー で共適とし、オンサイト用の高圧スチームボイラーが故障した場合は、予備の1系列が終 して必要永蒸気を供給できる様計画されている。

(b) 発電設備

本設備は18,000KWのスチームターピンおよび発電機を2系列設置し、オンサイト設備の電力をまかなう。スチームターピンおよび発電機は予備を置かず、オンサイト設備と同様の運転、定修計画とする。

また、用役設備、オフサイト設備および原油生産場の電力は 55,000kwのスチームタービンおよび発電機を4系列設置し、そのうち1系列を予備とする。

Table 4.1 Utility Balance of Fluid Coker Case

	Elec.			Š	Steam		 				Water						
	Domes	2	5	웊	!					¢		1					Fwel
		-1	ž	(341)	§	â	ross	BFW	Cond.	Water	Wetor	Kawa Vers	Foul	C.W.	χ Ω	Š	ئ
	⋛						1/H						W. 1101			- 1	Ì
1. On-Site Facilities	32 840	۲	35	٤										T/H		MM Kcal/H	H/Im
	>	_	3	70	4	E	-160	475	-272	0	90	C	CYE-	0.77	۶	١	
4. Ottate Fedities.	7,18	•	0	0	10	63	1	· ·	•	•		•	2	1	Ş	3	2,023
3. Utility Facilities				-	•	;	3	>	ř	5	v)	0	0	0	13	۰	٥
· Steam Gene, System												-					
(CO Boller)	2,220	•	4 7	. 28	<u> </u>	361	•	į	į	;							
(By-Pro, Utilization) (*1)	16.070			} •	.	3	ī	Ì	272	462	•	0	7	0	ဆ	298	٥
(*) (*)	2/2/27	7//-	7.7	0	ೱ	<u>م</u>	ş	7	591	22	280	0	-188	8	ac.	650	• •
· Fower Gene. System												•	}	2	0	No.	Э
(CO Boiler)	-35,400	0	365	0	-58	300	•	•	•	•	•						
(By-Pro. Utilization)	-165,000	773	Ę	•		} ;	>	•	>	> -	0	0	0	0	×	٥	0
			t .	; >	101	-7.1	0		-529	0	0		0	24,600	8	0	0
(7) writing (2)	7,100	0		•	0	0	0	0	0	22	-1,518	2,112	-110	C	~	۰, ۳	• «
Coomit water system	11,300	0	0	0	0	0	-1.024	c	c	•		•			?	3	>
· Other Utility System (*3)	1.240	0	•	c	•		•	• •	> 1	>	2011	э	-141	-34,280 -	\$	0	0
		.	.	,	,	>	>	0	0	0	0	0	0	270	v	. •	٥
•	-128,530	0	0	0	0	0	-1 802				1				+		
				·	•		_	>	>	>	0	2,112	- 805	•	•	774	447.4

("1) Include Flue Cas Desulfurization Unit

+ Indicates Quantity Used

^{(&}quot;2) Include Water Treating System, Pure Water System Etc. ("3) Include Air System, Inert Cas System etc.

⁻ Indicates Quantity Made

発電機駆動用スチームタービン

(1)

型 式:一段抽気背圧型×2基

給気条件 : (8ターピン人口)

正力: 50 kg/cd0

温度 : 405℃

抽気条件

压力: 16 kg/cd0

排気条件

正力: 4 kg/cd0

温度 : 178℃(推定)

②

型 式:三段抽気復水型×4基

給気条件 : (8ターピン入口)

压力: 100kg/cdG

益度 : 500℃

抱気条件 :

温度 : 405℃(推定) 温度 : 280℃(推定) 温度 : 165℃(推定)

発電機

墅 式 : 全閉水冷却式同期発電接

容 量: 18,000 KW×2基

55,000KW×4基

電 圧: 138以

フルードコーカープロセス用の用役設備の能力をTable 4.2に示す。

② オフサイト設備

(a) 貯蔵設備

フルードコーカーケースの製油所オフサイトのタンクフローを FIG. 4.4 化示す。 また 原料タンク、中間タンクおよび製品タンク等のタンク・リストは Table 4.3 化示す。

(1) 排水処理設備

オンサイトより発生する硫化水素およびアンモニア等を含む排水は362 T/IIであり、^{Ch} をストリッパーで処理し、次いで CP1 油水分離設備で処理する。

Table 4.2 General Definition of Utility Facilities (Fluid Coker Case)

Item	Capacity per Unit	Q'ty	Note
Steam Generation System			
Ultra High Pressure Steam	260 T/H	4	One unit for stand-by
High Pressure Steam	200 T/H	2	
2. Power Generation System			
by Ultra High Pressure Steam	55,000 KW	4	One unit for stand-by
by High Pressure Steam	18,000 KW	2	
3. Water Treating System	2,120 T/H	1	
4. Pure Water System	250 T/H	3	One unit for stand-by
5. Condensate Treating System	170 T/H	2	
6. Potable Water System	5 T/H	1	·
7. Cooling Water System	18,000 T/H	2	
8. Fuel System			
Fuel Gas	400 x 10 ⁶ kcal/H	1	
Vacuum Residue	220 x 106 kcal/H	1	
9. Air System	1,800 Nm ³ /H	3	One unit for stand-by
10. Inert Gas System	350 Nm³/H	2	

Table 4.3 Tank List (Fluid Coker Case)

Din(G	Flow Rato	Rato VIV	Storago	Not Storage Capacity XI	Tank Capacity X1	No. of Tanks	Total Tank Capacity Kl	Remarks
Mixed Crude Oil	205,588	32,688	30	980.640	133,000	80 FE	1,064,000	FR, Mixer, Suction Hoator CR.
(Diluent) Vacuum Residue	87,117	13.852	3.6	48,482	\$1,000	ť	\$1,000	Insulation CR, Heater, Suction Heater
Coker Naphtha				<u>.</u> ·	5,000	ਜ ਜ	5,000	DR. CR. Issueleston
Sturry Slop Oil					20.000	ન ન	20,000	CR, Heater, Suction Heater DR.
Naphtha, CN L. & H.C.O., VCO, CCO S109 Ou	14,844	2,360	ણ ણ જે જે	8,260 59,514	62.000 4.000	: स स (१)	62.000	CR. Insulation CR. Heater, Suction Heater
Improved Crude Oil	125,000	19,875	7	139,125	75,000	7	150.000	FR. Mixor
Total							1,450,000	

Note FR: Floating Roof Tank

CR: Cone Roof Tank

DR: Dome Roof Tank

Table 4.4 Construction Cost of Utility Facilities
(Fluid Coker Case)

Item	Capacity	106 Japanese Yen
Steam Generation &	260 T/H x 4,	19,238
Distribution System	200 T/H x 2	•>,530
Power Generation &	55,000KW x 4,	18,545
Distribution System	18,000KW x 2	±0,019
Water Treating System (Including Potable Water System)	2,120 Т/Н	944
Pure Water System	250 T/H x 3	2,815
Condensate Treating System	170 T/H x 2	305
Cooling Water System	18,000 T/H x 2	2,442
Fuel System		89
Air System	1,800 Nm ³ /H x 3	- 181
Inert Gas System	350 Nm ³ /H x 2	505
Total		45,064

Table 4.5 Construction Cost of Offsite Facilities

(Fluid Coker Case)

Item	106 Japanese Yen
Storage System (Total Tankage 1,436,000 KI)	14,142
Loading and Receiving System	628
Waste Water Treating	1,940
Flue Gas Desulfurization System	5,022
Fire Fighting System	3,022
Control System)
Communication System	
Lighting and Earth System	8,987
Flare and Blow Down System	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Common Stack	
Auxiliary	
Total	30,719

油水分離設備で処理した後、用役設備およびオフサイト設備より発生する排水と混合して 製油所系外に排出される。排出される排水の性状は下記の通りである。(雨水は除く)

Flow Rate	805 T/H
H ₂ S	2 154
NH ₃	1 3 1/2
COD	17150
OIL	5 93
SS	20 🕬
рН	6~8

尚、雨水は油分が混入する場合、 CPI 油水分離設備で油分を 1 0 m以下として、油分を含まない雨水と混合し、製油所系外に排出する。

(c) 挤煙胶磺設值

排煙処理量 1.6×10°Nm/H

税 侯 率 90%

石膏生成量 280 T/H

石跃石消費量 16.4 T/H

發發消費量 30 T/H (As 98 € HaSO4)

(3) フルードコーカーケース用共通設備の建設費

下記に示す条件での用役設備およびオフサイト設備の建設費をTable 4.4 および 4.5 に示す。

建 設 垓 : 日本,千葉県

建 設 貴 : 1980年の中頃をベースとしエスカレーションは含まない

: 機器類一式、労賃、設計費およびコントラクターの経費を含む

4.3 ユリカケース用共通設備

4.3.1 はじめた

との節では、先に述べた共通設備の検討基準に基づいて、ユリカケースに用いられる用役設施 およびオフサイト設備を検討した結果およびこれらの設備の建設費を示す。

4.3.2 検討結果

(1) 用役設備

ユリカプロセスのオンサイトにおける用役必要量の情報に基づいて、製油所全域で使用する 用役必要量を貸出した。

尚、原油生産地に供給する電力は、170,000 BPCDの原油生産の場合、150 MW を必要と

Table 4.6 Utility Balance of Eureka Case

		Eloc.			Steam						Water	H .			Coolin	Cooling Water	Fire	
		Power	UHD	윺	(Sat)	ę,	3	LOSS	BFW	Cond.	Puro Water	Indu. Water	Raw	Foul	.¥.	CW. M.C.W.	Cons	8
		жж			,		•	T/H							T.		MA Keylik	7/19
1. On-Site Facilities		33'660	0	28	٥	160	154	130	280	-335	•	2	0	528	18.980	25	218	-2.60g
2. Offsite Pacilities	-	4,300	0	•	0	12	62	-15	•	ż	0	٧2	0	0	•	۶		
3. Utility Facilities					0								•			2	•	>
· Steam Generation	£	27,900 -1,190	-1.190	7,	0	139	\$	100	-581	814	613	185	0	-101	130	2	ž	<
· Power Ceneration		-208,000	1,190	55	0	-311	4	0	*	415	0	0	• •	0	19.300	8	} <	> <
- Water System	(*3	1.200	0	•	0		0	0	0	0	-613		2,310	-127	0		> -4	> c
 Cooling Water System 		12,550	0	0	0	0	ò	-1,150	0	0	0	1.309	0			828	•	, ,
· Other Utility System	6	1.240	•	•	0	۰	0	٥	0	•	•	0	0	•		9	• •	,
		-127.150	0	0	0	0	0	0 -1,395	0	0	•	0	0 2,310	-915	•	0	1,618	-2.698

("1) Include Flue Gas Desulfurization Unit

* Indicator Quantity Used

^{(&}quot;2) Include Water Treating System, Pure Water System etc.

^{(&}quot;3) Include Air System, Inert Cas System etc.

Table 4.7 General Definition of Utility Facilities (Eureka Case)

Item	Capacity per Unit	Q'ty	Note
1. Steam Generation System			
Ultra High Pressure Steam	240 T/H	6	One unit for stand-by
2. Power Generation System			-
by Ultra High Pressure Steam	46,000 KW	6	One unit for stand by
by High Pressure Steam		-	•
3. Water Treating System	2,310 T/H	1	· :
4. Pure Water System	310 T/H	3	One unit for stand by
5. Condensate Treating System	200 T/H	2	· :
6. Potable Water System	5 T/H	1	•
7. Cooling Water System	20,000 T/H	2	:
8. Fuel System			
Fuel Gas	308 x 10 ⁶ kcal/H	1	
Vacuum Residue	410 x 10 ⁶ kcal/H	1	•
9. Air System	2,000 Nm³/H	3	One unit for stand-by
10. Inert Gas System	350 Nm³/H	2	

するので、ユリカブロセスでは 158,710 BPSDの原油生産を必要とすることから、原油生産地 K供給する電力は 1 2 6.6 MW となる。

用役のパランスについては Table 4.6 および FIG.4.5 に示す。

(a) 水蒸気発生および分配設備

本設備は、超高圧スチームポイラーより構成される。

系列数としては、予備を含めて6系列設置され、通常5系列が稼働し製油所全域の水蒸気および製油所と原油生産地に供給する電力を発生する水蒸気をまかなう。超高圧スチームポイラーの各系列は整合性を考慮して同規模とする。

この超高圧スチームポイラーはユリカプロセスより副生するピッチ専焼とする。

オンサイト1系列の定修期間中は、予備の系列以外にもう1系列を運転停止し、定修を行うことができる。

(6) 発電設備

本設備は46,000KWのスチームタービンおよび発電機を6系列設置し、1系列は予備とし、 5系列で製油所および原油生産地をまかなう電力を発生させる。

発電機駆動用スチームターピン

型 式:三段抽気復水型×6基

給気条件 : (8タービン入口)

压力: 100kg/cdQ

温度 : 500℃

抽気条件 :

温度 : 405℃(推定) 温度 : 280℃(推定) 温度 : 165℃(推定)

発電 梭

型 式 : 全閉水冷却式同期発電機

容 量: 46,000KW×6基

電 正: 13817

ユリカプロセス用の用役設備の能力をTable 4.7に示す。

② オフサイト設備

(a) 貯蔵設備

ユリカケースの製油所オフサイトのタンクフローを FIG. 4.6に示す。また,原料タンク,中間タンクおよび製品タンク等のタンクリストは Table 4.8に示す。

(b) 挤水处理設備

オンサイトより発生する硫化水素およびアンモニア等を含む排水は 277 T/11 であり,こ

Table 4.8 Tank List (Eureka Case)

	Flow Rate	Rate	Storage	Not Storage Capacity	Tank Capacity	No. of	Total Tank Capacity	Romarks
Fluid	CSAB	Q/TX	Days	Ø	又	Tanks	ጀ	
Mixed Crude Oil	206,323	32,805	30	984,150	133,000	oo	1,064,000	FR, Mixer, Suction Heater
Light Gas Oil (Diluent)	47.613	7,570		52,990	28,000	6	\$6,000	ő
Vacuum Residue	84,656	13,460	3.5	. 47,110	20,000	H	20,000	Insulation CR. Heater, Suction Heater
L. & H. GO, LCO	32,139	5,110	3.5	17,885	19,000	н	19,000	స్ట
VGO, HCO	91,671	14,576	3.5	\$1,016	54,000	-4	24,000	ğ
Slop Oil					4,000		4,000	Insulation CR, Hoster, Suction Heater
Improved Crude Oil	125,000	19,875	7	139,125	75,000	73	130,000	FR, Mixer
Total							1,397,000	,

Note FR: Floating Roof Tank CR: Cone Roof Tank

-- 145 --

Table 4.9 Construction Cost of Utility Facilities
(Eureka Case)

Item	Capacity	106 Japanese Yen
Steam Generation & Distribution System	240 T/H x 6	23,757
Power Generation & Distribution System	46,000KW x 6	20,530
Water Treating System (Including Potable Water System)	2,310 Т/Н	1,024
Pure Water System	310 T/H x 3	3,367
Condensate Treating System	200 T/H x 2	331
Cooling Water System Fuel System	20,000 T/H x 2	2,707
Air System	2,000 Nm ³ /H x 3	116 - 192
Inert Gas System	350 Nm ³ /H x 2	505
Total		52,529

Table 4.10 Construction Cost of Offsite Facilities (Eureka Case)

Item	10 ⁶ Japanese Yer
Storage System (Total Tankage 1,397,000 KI)	13,697
Loading and Receiving System	260
Waste Water Treating System	1,659
Flue Gas Desulfurization System	4,527
Fire Fighting System) }
Control System	
Communication System	
Lighting and Earth System	9,044
Flare Stack and Blow Down System	3,014
Common Stack	
Auxiliary	
Total	29,187

れを排水ストリッパーで処理し、次いでユリカプロセスからの排水と混合して、 CP1 流水分離設備で処理する。油水分離設備で処理した後、用役、オフサイト設備より発生する排水と混合して製油所系外に排出する。

掛出する処理した排水の性状は下記の通りである。(雨水は除く)

Flow Rate	915 T/H
11 ₂ S	4 550
NfL	2 2 n
COD	208 K*
OIL	6 छ•
88	16 ஜ■
ρН	6~8

尚、雨水については、油分が混入する場合、別途に上記の CP1 油水分離設備で油分を 1 0 km以下まで除去した後、油分を含まない雨水と混合して製油所系外へ挑出する。

(c) 排煙脱磺設備

排煙処理量 1.3×10 Nm/H

段 资 率 90%

石膏生成量 20.8 T/H

石灰石消費量 121 T/H

銹酸消費量 1.9 T/H (As 98 € H₂ SO₄)

(3) ユリカケース用共通設備の建設費

下記に示す条件での、用役設債およびオフサイト設備の建設費をTable 4.9および4.10に示す。

建 設 珍 : 日本, 千葉県

建 設 費 : 1980年の中頃をベースとしエスカレーションは含まない

: 機器類一式, 労賃, 設計費およびコントラクターの経費を含む

4.4 M-DS ケース用共通設備

441 はじめに

との節では、先に述べた共通設備の検討基準に基づいて、M−DSケースに用いられる用役^{役員} およびオフサイト設備を検討した。

結果およびとれらの設備の建設費を示す。

Table 4.11 Utility Balance of M-DS Case

		Elec.			Stoam						≱	Water		:	Coolin	Cooling Water	Fuel	ซ
-		Power	A H5	윮	는 (Sg.	ĝ	3	TOSS	BFW	Cond.	Pure Water	Indu. Water	Indu. Raw Water Water	Foul Water	.¥.	M.C.W.	Const	ğ
	\vdash	χ						T/H							F	T/H	MM Kcal/H	SEL/H
1. On-Site Facilities		42,880	Ö	4	0	116	22	-124	357	433	0	168	•	-385	12,380	25.	624	-2,485
2. Offsite Facilities	-	4,300	•	0	٥.	11	57	4.	٥	-39	0	v		0	•	ው	•	0
3. Utility Facilities		-																
- Steam Ceneration (*	Ê	22,200 -1,167	-1,167	0	0	139	172	-105	-357	863	384	233	0	-165	170		870	0
- Power Generation	<u>Y</u>	-203.000	1,167	Ŷ	0	-266	481	0	٥	-371	0			0	17,300	64	•	٥
· Water Systems	6 2	1.000	0	0	0	0	0	•	0	۰	-384	-1,427	1,907	*	0	13	4	•
 Cooling Water System 		10,000	0	0	0	0	0	-897	0	•	0	1.021	•	-124	-30,130	-780	•	•
Other Utility Systems ("3)	ç.	1.200	0	•	0	•	•	Ö	٥	0	0	0	0	0	280	9	٥	٥
	<u>. T</u>	-121,420	0	0	0	٥		0 -1.137	0	•	0	•	1,907	-770	0	۰	1,496	-2,485

(*1) Include Flue Gas Desulfurization Unit

+ Indicates Quantity Used

- Indicates Quantity Made

^(*2) Include Water Treating System, Pure Water System etc.

^(*3) Include Air Systom, Inert Gas Systom etc.

4.4.2 検討結果

(1) 用役設備

M-DS プロセスのオンサイトにおける用役必要量の情報に基づいて、製油所全域で使用する 用役必要量を算出した。

尚,原油生産地に供給する電力は、170,000 BPCDの原油生産の場合、150 MW を必要とするので、M-DS プロセスでは151,055 BPSD の原油生産を必要とすることから、原油生産 地に供給する電力は1205 MWとなる。

用役のバランスについては Table 4.11 および FIO. 4.7 に示す。

(a) 水蒸気発生および分配設備

本設備は、超高圧スチームポイラーより構成される。

系列数としては、予備を含めて6系列設置され、通常5系列が稼働し、製油所全域の水煮気、および製油所と原油生産地に供給する電力を発生する水蒸気をまかなう。超高圧スチームボイラーの各系列は整合性を考慮して同規模とする。

この超高圧スチームポイラーはM-DSプロセスより副生するアスファルト専焼とする。 オンサイト1系列の定修期間中は、予備の系列以外にもう1系列を運転停止し、定修を行うととができる。

(b) 発電設備

本設備は44,000KWのスチームタービンおよび発電機を6系列設置し、1系列は予慎とし 5系列で製油所および原油生産地をまかなう電力を発生させる。

発電検駆動用スチームターピン

型 式:三段抽気復水型×6基

給気条件 : (@ タービン入口)

正力: 100kg/al0

温度 : 500℃

插気条件 :

臣力: 50kg/cdO 臣力: 16kg/cdO 臣力: 4kg/cdO

| 温度 : 405℃(推定) | 温度 : 280℃(推定) | 温度 : 165℃(推定)

発電機

型 式 : 全閉水冷却式同期発電機

容 量: 44,000 KW×6基

電 臣: 138 🛪

M-DSプロセス用の用役設備の能力をTable 4.12に示す。

Table 4.12 General Definition of Utility Facilities
(M-DS Case)

Item	Capacity per Unit	Q'ty	Note
1. Steam Generation System			
Ultra High Pressure Steam	240 Т/Н	6	One unit for stand-by
2. Power Generation System			one one for stand-by
by Ultra High Pressure Steam	44,000 KW	6	One unit for stand-by
by High Pressure Steam	_		
3. Water Treating System	1,910 T/H	1	
4. Pure Water System	200 T/H	3	One unit for stand-by
5. Condensate Treating System	250 T/H	2	
6. Potable Water System	5 T/H	i	
7. Cooling Water System	15,500 T/H	2	-
8. Fuel System			
Fuel Gas	230 x 106 kcal/H	1	
Naphtha	50 x 106 kcal/H	1	
Vacuum Residue	344 x 106 kcal/H	1	
9. Air System	1,900 Nm³/H	3	One unit for stand-by
10. Inert Gas System	350 Nm ³ /H	2	-

Table 4.13 Tank List (M-DS Case)

Fluid	Flow Rate	Rate	Storage	Not Storage Capacity	Tank Capacity	No. of	Total Tank Capacity	Romarks
	GSAS	KI/D	Days	汉	고	Tanks	Ø	
Mixed Crude Oil	196,372	31.223	30	936,690	127,000	· 20	1,016,000	FR, Mixor, Suction Houter
Light Gay Oil	45,317	7,205	4	50,435	26,500	~	53,000	CR.
L. & H. G. Ou	21,374	3,398	3.5	11,893	13,000		13,000	Ç.
VCO & DAO	97,537	15,508	3,5	54,278	26,000	, #4	26,000	CR,
Vacuum Roxiduo	81,283	12,924	3,5	45,234	48,000	-	48,000	Insulation CR, Heater, Suction Heater
Retinery Fuel (Naphtha)	876	139	3.5	487	200		200	DR.
Slop Ou					4.000	⊷	4,000	Insulation CR, Heater, Suction Heater
Improved Crudo Oil	125,000	19,875	۲	139.125	73,000	2-	150,000	FR, Mixer
Total						-	1,340,500	

CR: Cone Roof Tank
DR: Dome Roof Tank

② オフサイト設備

(a) 貯蔵設備

M-DS ケースの製油所オフサイトのタンクフローをFIG. 4.8 に示す。また、原料クンク、中間タンクおよび製品タンク等のタンクリストはTable 4.13 に示す。

(1) 排水処理設備

オンサイトより発生する硫化水素およびアンモニア等を含む排水は 385 T/H であり、これを排水ストリッパーで処理し、次いで CPI 油水分離設備で処理する。

油水分離設備で処理した後、用役設備およびオフサイト設備より発生する排水と混合して 製油所系外に排出する。

捺出する処理した排水の性状は下記の通りである。(雨水は除く)

Flow Rate	770 T/H
Hz S	3 tt#
NH,	19 gs
COD	187 550
01F	5 gg≋
SS	20 છ•
рН	6~8

尚、雨水については油分が混入する場合、別途に上記の CPI 油水分離設備で油分を10m以下まで除去した後、油分を含まない雨水と混合して製油所外系外へ排出する。

(c) 挤理脱磺設備

挤煙処理量 1.2×10°Nm/H

段 赞 率 90%

石育生成量 248 T/11

石灰石消費量 14.4 T/H

餐廠消費量 2.3 T/H(As 98 \$ Ha SO4)

③ M-DS ケース用共通設備の建設費

下記に示す条件での、用役設備およびオフサイト設備の建設費をTable 4.1.4 および 4.1.5 k示す。

建 設 逸 : 日本,千葉県

建 設 費 : 1980年の中頃をベースとし、エスカレーションは含まない

- : 機器類一式,労賃、設計費およびコントラクターの経費を含む

Table 4.14 Construction Cost of Utility Facilities (M-DS Case)

Item	Capacity	106 Japanese Yer
Steam Generation &	240 T/H x 6	20,192
Distribution System		4 - 4
Power Generation &	44,000KW x 6	19,450
Distribution System		
Water Treating System	1,910 T/H	856
(Including Potable Water System)		
Pure Water System	200 T/H x 3	2,460
Condensate Treating System	250 T/H x 2	318
Cooling Water System	15,500 T/H x 2	2,113
Fuel System		108
Air System	1,900 Nm³/H x 3	186
Inert Gas System	350 Nm ³ /H x 2	505
Total		46,188

Table 4.15 Construction Cost of Offsite Pacilities (M-DS Case)

Item '	10 ⁶ Japanese			
Storage System (Total Tankage 1,340,500 KI)		13,209		
Loading and Receiving System		263		
Waste Water Treating System		2,017		
Flue Gas Desulfurization System		4,323		
Pire Fighting System				
Control System				
Communication System				
Lighting and Earth System		8,724		
Flare Stack and Blow Down System				
Common Stack				
Auxiliary		<u> </u>		
Total		28,536		

第5章

第5章 原油サンブルの分析

本調査のペースとして, ヴェネメェラ側に提供を依頼したサンプル原油の入手とその処理結果 は, 下記の通りである。

5.1 原油サンプル入手

5.1.1 ヴエネズエラ側への提供依頼

第1次現地調査時,1979年10月3日の打ち合せにおいて提供を依頼し, * Record of Discussions * Kで提供が約束された。(10月10日)

5.1.2 入手遅延の経過

当初, 昭和54年11月中旬のタンカードで日本への輸送予定であったが,「サンブル油を採油する予定であった油井が故障のため動かせず,未た準備できていないが努力中であり,いつ渡せるか等詳細は数日の内に改めて連絡する」との鉱山エネルギー省(MEM)からの回答が,公電(1979年10月26日付)ドで連絡あった。結局,11月中旬の船積みにはまにあわず,次のタンカーの12月下旬に延期された。

5.1.3 輸送船スケジュール

サンプル原油の輸送を,ソ連絡タンカー"LUKHOVITSY"号(ヴェネズェラからの日本へ Lute Oil 原料輸送)のデッキに船長に依頼して乗せてもらう。

1979年12月21日 CARDON 出発

Maraven S.A. の Cardon Refinery にて積込み

1980年 1月25日 岩国到着

5.1.4 通關、受領

岩国にて通関し,無事5ドラムのサンブル油を受領する。

5.1.5 サンプル原油の水切り蒸留

5 drums のサンブル原油を水切り後、1部常圧蒸留,減圧蒸留処理を実施し、3プロセスグル ープへ

水切り原油

域圧残渣油

を原治分析。および改質プロセス検討用サンプル油として配分した。

1980年2月末に配分完了した。

ドラム中のサンプル原油は、ドラム毎に遊離水の量に差があり、平均して9多含有している。 のを 0.2% までに水切りした。

5.1.6 予備検討への分析結果の利用

サンプル原油遅延にともない,その分析結果を予備検討に使用できなかった。

5.2 原油分析

サンプル原油の分析結果の代表的なものを以下に示す。

5.2.1 オリノコ原油の試験方法

(1) 原油分留試験方法

原油は、ASTM-D-2892 準拠回転パンド型精密蒸留装置にて、分留条件は下記に示す過りである。

Sample Name	W-N	rgo	LVGO	HÝGO	YGO"	APS-RE	VPS-RE
カット温度 (C)	1BP ~205	$\overset{205}{\sim}_{343}$	$^{343}_{\sim 455}$	455 ∼500	343 ∼500	343Э	500⊝
真空度 (mH9)	100	10	1	0.35	1~0.35		
遺 流 比	5:1	5:1	1:1	1:1	1:1		

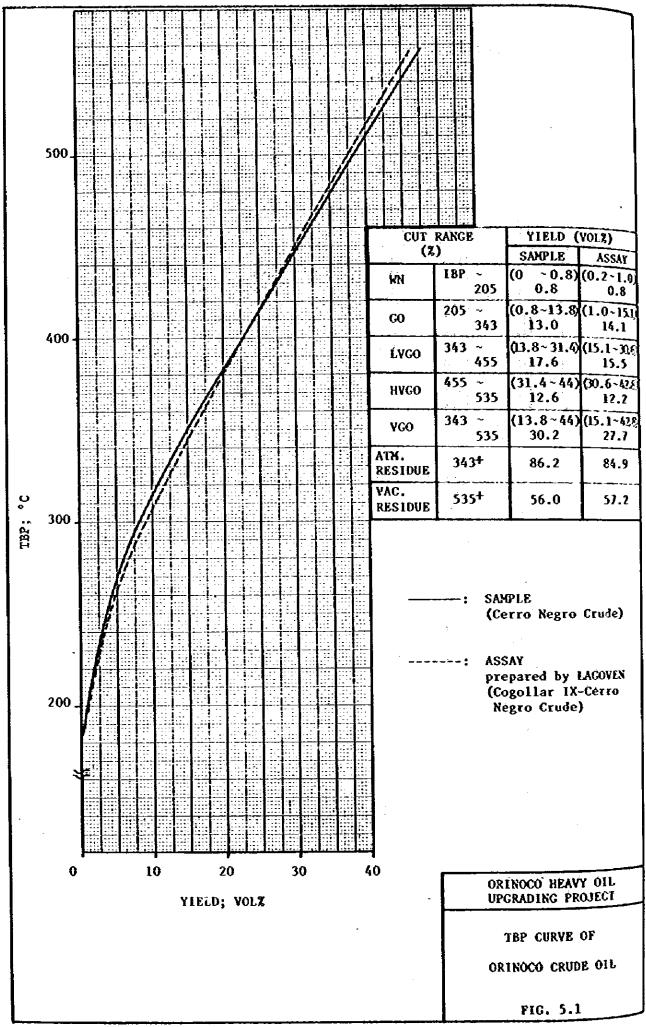
(2) 原油及び留出油試験方法

原油及び留出油の試験項目と試験方法は,下記に示す通りである。

試験項目	試 験 方 法	試験項目	試 験 方 法
比 重	J I S - K - 2 2 4 9		J18-K-2283
# G1	J18-K-2254	D M B	LP-230/69
蒸 留	ASTM-D-1160	セタン指数	JIS-K-2204, 5, 7
贫 黄 分	JIS-K-2541	残留炭素分	J 1 S - K - 2270
窒 素 分	JIS-K-2609	引火点	J18-K-2265
水分	J18-K-2275	煙 点	J IS-K-2537
水泥分	J18-K-2603	段	J 18-K-2272
塩 分	J18-K-2604	全酸質	J I S - K - 2502
アニリン点	J18-K-2256	重金属	JP1法
旋動点	J18-K-2269	FIA	J 1 S - K - 2536

(3) サンプル原油名

Cerro Negro Crude Oil


522 オリノコ原油の試験結果

ォリノコサンブル原油の分析結果をTable 5.1 に示す。

Table 5.1 Test Result of Orinoco Crude Oil

Simple Name	W-N	LGO	AR	LVGO	HYGO	YGO	YR	Crude
Cat Kange (°C)	1BP 205	205 343	343+	343 455	455 500	343 500	500+	
Yell (Yol%)	- 0.8	13.0	86.2	17.6	7.3	24.9	61.3	
S ₂ . Gr. (15/4°C)	0.8423	0,9030	1.038	0.9558	0.9800	0.9626	1.062	1.019
187	157.0	233.0	361	348	435	354	410	241
5%	172.5	244.5	383 <u>.</u>	362	450	368	494 (1%)	298
10%	176.0	251.0	406	370	454	375	506 (2%)	334
20%	180.0	258.0	448	378	458	380	516 (3%)	398
30%	184.0	267.5	485	388	461	400	524 (4%)	456
40%	188.0	275.5	500	396	464	414	324(42)	508
50%	1920	283.0	(35%)	404	468	427		300
60%	195.5	191.0		414	473	439		
70 %	199.0	299.0		422	478	451		
80%	203.5	307.5		435	483	461		
90%	209.0	319.5		445	495	474		
95%	214.0	332.0		454	505	458		
97%	217.0	343.5		462	515	498	-	
EP	220.0	348.5		476	524	506		
TIR/L 98.0	0.1(0.1 0	98.0 1.5/0.5	35.0 [65.0	98.0 2.0	98.0 2.0	98.0 2.0	4.0 96.0	40.0 60
Seffer (nt#)	0.67	2.02	3.96	3.27	3.29	3.27	4.21	3.75
Nuogea (nt%)		•	0.65	0.16	0.32	0.20	0.73	0.58
(utppm)	0.9	130						
Trier (101%) SS & W								Trace
Aztice Point (°C)	45.0	44.1		43.6	23.5	10.3		0.70
Va,	43.0	77.1		43.5	53.5	48.3		
30°C (cst)	1.534	6.251						
50°C (cst)	1.798	3.675		47.37	505.4	80.64	(155°C)	
75°C (cst)	(€20°C)						1789	2,468/2,579
93.9°C (cst)			2858	7.093	26.74	9.711	609.5	505.2/519.8
Post Point (°C)		-50€	+52.5	-20.0	+5.0	-100	(175°C)	+27.5
Cetage Index		33			-			
CR (st≩)			20.6	0.05	0.62	0.17	29.5	18.0
Fash Point (*C)								120
Saske Point (mm)	18.5							
Component P)	83.3							
13 <u>1</u> 0	0.7							
Ä	16.0							
44 (350°C) wt%		•	0.482			0.002	0.784	0.474
(750°C) wife	-		0.460			4.002	0.609	0.451
=								
fe (stppm)			30			0.1 -	55	30
Ni (utepm)			110			0.i -	160	110
Na (atppm) V (atppm)		•	850			0.1-	1190	840
(-424)			480			0.1-	660	420
(ak XOH/k)								3.09
(FFW PIB)		:						3,200/1,210

Ist cane of Orinoco crude oil is shown in Fig. 5.1.

5.23 分析結果の比較

前記代表分析結果の他に、いくつかの分析結果とLAGOVEN作成のCogollar IX-Cerro Negro Crude Mixture の分析結果(ASSAY)との比較を、原油、常圧残渣油、減圧残渣油の主要性状 Kついて、Table 5.2 に示す。

この比較によると、Cerro Negro Crude Oil サンプル油と LAGOVEN 作成 Cogollar IX-Cerro Negro Crude Mixture の Assay とは大差なく、オリノコ Cerro Negro 地区の代表原油 性状としては、どれを使用しても問題はない。

したがって,分析結果として詳細なものまで,出してある LAGOVBN 作成 Assay を検討べー スとして代表させることとした。

第2次調査において、ヴェネズェラ倒と協議し、以上が確認された。

Table 5.2 Comparison of Main Analysis Data

ANALYSIS

SAMPLE	CUT.PT.	TEST"	Sp. Gr. (15.4°C)	Sulfur wt%	CCR wppm	V Wppm	Ni wppm	Ash wt%	No mpgw	Asphaltene wt%
	ļ	∢	1.019	3.75	18.1	420	110	0.451	840	1
Crude Oil	ı	Ø	1.0199	3.87	17.0	310	120	0.246	1,100	I
	ı	ASSAY	1.011	3.67	13.3	392	8	•	ı	1
Atmospheric	650°F+	∢	1,038	3.96	20.60	480	110	0.46	850	1
Residue	650°F+	æ	1,0353	4.12	20.40	410	130	0.264	1,002	13.3
	650°F+	ASSAY	1.034	4.04	17.6	484	120	4	1	
	930°F+	∢	1.062	4.21	29,50	099	160	0.609	1,190	ı
	950°F+	æ	1.0514	4.26	ı	1	170	0.357	1,500	!
Vacuum Residue	830°F+	O	1.045	4.14	22.79	559	148	0.3	1,190	i
	995°F+	ASSAY	1.062	4.32	25.7	654	162	1	i	I.
	950°F+	ASSAY	1.058	4.26	23.6	616	153	ı	ı	ı
	851°F+	ASSAY	1.049	4.17	20.5	546	135	·	1	\$

* A, B, C : Testers ASSAY : LAGOVEN'S ASSAY

第6章

第6章 現地調查報告書

61 第1次現地調查

第1次現地調査団は、国際協力事業団によって1979年10月に派遣され、下記の目的をもって調査が実施された。

- (1) 基本的前提条件の確認
- ② 原油サンブル人手の手配
- (3) 予備T/Rの検討

_{たむ、}現地講査に当り、在ヴェネズェラ日本国大使館

野村 豊 特命全権大使

角田 勝彦 参事官

光 川 寛 一等書記官

K十分な街援助と便宜をはかって頂いた。

本報告書の構成は、以下の通り。

調査団の構成

調査の概要

詞 査 結 果

6.1.2 調査団の構成

(1) 第1次現场調査団

広瀬 鮮一 団 長 (コンサルタント)

揖 斐 敏 夫 技術協力政策 通産省資源エネルギー庁,石油部開発課

請 川 幸 治 石油精製技術 通産省工業技術院 公害資源研究所

安 木 秀 夫 調 整 役 国際協力事業団 鉱工業計画調査部工業調査課

超 谷 泰 久 石油精製技術 (コンサルタント)

塚 慈 舞 忠 「石油精製技術」 (コンサルタント)

② ヴェネズェラ側との打ち合せ時の調査団強行者

角田 勝彦参事官 在ヴェネズェラ日本国大使館

光 川 寛 一等書 記官 在ヴェネズェラ日本国大使館

(3) オリノコ原油生産現場までのヴェネズエラ倒随行者

Dr. Edison Perozo

Petroleum Engineering

Manager, Orinoco Oil Belt

PDVSA

(4) ヴェネズェラ側の応対者は "Record of Discussions" (付録2) K記録されております。

6.1.3 調査の概要

- (1) 9月30日(日) 東京出発, ニューヨーク泊
- (2) 10月 1日(月) ニューヨーク発 カラカス着16:00-19:00 日本国大使館 光川-等書記官とスケジュール調整および打ち合き
- (3) 10月 2日(火)
 - 10:15~12:05 日本国大使館ドで野村大使,角田参事官、光川一等書記官と打ち合き、 および団員内打合せ
 - 14:00-19:00 団負内打ち合せ
- (4) 10月 3日(水)
 - 10:10-12:10 鉱山エネルギー省関係者と協議
 - 15:00-17:00 PDVSAと協議
 - 17:30-18:00 団員内打ち合せ
- (5) 10月 4日(木)
 - 10:00-12:00 PDVSAと協議
 - 14:45-16:10 LAGOVENと協議
 - 16:30-17:00 日本国大使館へ中間報告
- (6) 10月 5日(金)
 - 9:00-13:00 INTBVBPと協議
 - 15:30-18:00 団員内打ち合せ
- (7) 10月 6日(土)
 - 8:30-12:30 団員内打ち合せおよび資料検討整理
- (8) 10月 7日(日)
 - 8:30-10:00 打ち合せ覚書検討
- (9) 10月 8日(月)
 - 8:00- 9:15 カラカス発 Morichal 着
 - 9:15-14:30 Cerro Negro, Morichal, Jobo

オリノコ重賃油ペルト地帯視察

14:30-17:15 Morichal 発 カラカス着

- (10) 日 9 日 (火)
 - 10:00-12:00 日本国大使館にて打ち合せ
 - 14:00-17:00 団員内打ち合せ
- 间 10月10日(水)
 - 9:00-12:00 団員内打ち合せ
 - 14:20-15:05 鉱山エネルギー省にて最終協議

Record of Discussions 化署名交换

- 15:45-16:15 日本国大使館へ報告
- 16:15-16:30 団負内打ち合せ
- (ロ) 10月11日(木) カラカス発, ニューヨーク泊
- (は) 10月12日(金) ニューヨーク発
- (11) 10月13日(土) 東京帰着

6.1.4 調 査 結 果

第1次現地調査団は、ヴェネズェラ側との協議化あたり、抵附"JICA-1およびJICA-2" (付録1参照)を持参し、協議のペース資料とした。

クェネズェラ例との協議,および調査の結果は下記の通り。

(f) 協議結果

第1次現地調査の結果を、添附"Record of Discussions"として両者の合意事項をまとめ、 玄山エネルギー省レイエス次官補と調査団長の間で署名し、交換した。(付録2参照)

- ② 鉱山エネルギー省より受領資料
 - (a) 原油分析值

"Cogollar IX-Cerro Negro Crude Mixture"の原油分析値を受領し、検討ペースだすることとした。(付録3参照)

その他に "Pilon Crude" および "Morichal Crude" の分析値も受領した。

- (b) The heavy oil industry in Venezuela
- (c) Investigation y desarrolla del procesamiento de las crudos pesados de la faja petrolifera del Orinoco
- (d) Faja petròlifera del Orinoco cronograma de proyectos pilots
- (e) Pianification primer modulo faja petrolifera del Orinoco
- (f) Faja petrolifera del Orinoco
- (3) 日本国大使館より受領資料
 - (4) カラカス案内
 - 🕠 ヴェネズェラ紹介

6.2 第2次現地調査

6.2.1 猪 胃

第2次現地調査団は、国内での予備検討後、国際協力事業団によって1980年5月に派遣され、 下記の目的をもって調査が実施された。

- (1) 予備検討結果の報告
- (2) F/S用追加基本的前提条件の確認
- (3) F/S 用経済検討ペースの確認
- (4) F/S 用建設計画の情報, データの調査

なむ、現境調査に当り、在ヴェネズェラ日本国大使館

角田 詩彦 公 使

吉田 · 裕 一等書記官

に十分な餌援助と便宜をはかって頂いた。

本報告書の構成は、以下の通り。

調査団の構成

調査の頻要

讀 査 結 果

6.2.2 調査団の構成

(1) 第2次現场調査問

コンサルタント 広 瀬 鮮 一 長 团 涌産省資源エネルギー庁 石油部開発課 技術協力政策 後藤数一 通産省工業技術院 公害資源研究所 石油精製技術 請川幸治 国際協力事業団 欽工業計画調查部工業調查課 譚 藝 役 安木秀夫 (コンサルタント) 石油精製技術 組 谷 泰 久 (コンサルタント) 塚 越 輝 忠 石油精製技術 (コンサルタント) コスト調達調査 薄 井 勲 (コンサルタント) 飯村昭正 律設計查調查

(2) ヴェネズェラ倒との打ち合せ時に調査団随行者

角 田 騎 彦 公 使 在ヴェネズェラ日本国大使館 吉 田 裕 一等書 記官 在ヴェネズェラ日本国大使館

(3) 調査団は、A班(広瀬、後藤、請川、安木、綱谷、塚越)と、B班(広瀬、薄井、敷村、 綱谷)の2班に分かれ、A班は前記調査目的の(1)、(2)、(3)を、B班は(4)を中心に調査を実著 した。 (4) ヴェネズェラ側の応対者は、"Record of Discussions" (付録 5 参照) 化記録されている。

623 調査の頻要

- (i) A班およびB班
 - (a) 5月 3日(土) 東京出発(18:45)PA800 ニューヨーク着(18:15)
 - (b) 5月 4日(B) ニューヨーク発(9:45)PA217 カラカス着(14:15)

17:20-18:10 日本国大使館吉田一等書記官とスケジュール調査および団員内打ち 合せ

- (c) 5月 5日(月)
 - 8:30-12:00 団員内打ち合せ
 - 14:00-16:00 日本国大使館にて角田公使、吉田一等書記官と打ち合せ
- (2) A 班
 - (a) 5月 6日(火)
 - 9:00-12:00 団員内打ち合せ
 - 14:30-17:00 鉱山エネルギー省 (MEM)関係者と協議
 - 17:30-19:00 団員内打ち合せ
 - (b) 5月 7日(水)
 - 9:00-12:00 PDVSAにてMEM, PDVSA, INTEVEP, LAGOVENと協議
 - 14:20-15:20 PDVSAにて協議総接
 - 15:30-18:40 闭負内打ち合せ
 - (c) 5月 8日(木)
 - 9:00-11:00 団員内打ち合せ
 - 11:45-16:10 LAGOVEN KTMEM, PDVSA, INTEVEP, LAGOVENと協議
 - 17:20-18:00 日本国大使館へ中間報告
 - 19:00- 3:00 B/D原積作成
 - **(4)** 5月 9日(金)
 - 7:30-11:20 団員内打ち合せ(B/D検討)
 - 15:00-16:00 PDVSAにて協議
 - 14:00-18:10 B/D タイピング
 - (e) 5月10日(土)
 - 8:00-16:00 B/D メイピング
 - 17:00-18:30 B/D検 討

```
(f) 5月11日(日)
    9:00-13:00
                 B/Dコピー
    15:30-16:00
                 B/D製 本
 (g) 5月12日(月)
                 鉱山エネルギー省にてMEM, PDVSAとB/D検討およびB/n
    10:00-11:20
                 署名交換
                 団員内打ち合せ
    14:00-16:00
 (h)
   5月13日(火)
    9:00-12:00
                 調査結果整理
                 調査協力者挨拶,資料整理
    13:00-16:00
                 団員内打ち合せ
    18:30-19:30
                 カラカス発 (9:30) PA218 ニューヨーク着 (14:15)
 (i)
   5月14日(水)
                 ニューヨーク発 (11:00) PA 801
   5月15日(木)
 (i)
                 東京着(18:10)
 (k)
    5月16日(金)
(3) B
        琏
                 カラカス
 (a) 5月 6日(火)
                 太平電業(工事会社)
    10:00-12:00
                 蕨 田 組(工事会社)
    14:45-16:00
                 材料, 工賃, 工事費等の調査
    16:30-18:00
                 INBLECTRA(設計会社)
                設計基準、設計能力等の調査
 (b) 5月7日(水)
                 カラカス
                 RIVACO(工事会社)
  9:00-10:30
                 材料、工賃、工事費等の調査
    11:00-12:00
                 JGC Office
                  ノモ整理, 今後のスケジュール調整
                 SADB(工事会社)
    15:20-16:00
                 材料、工賃等の調査
                  Caracas 発 (7:45) Ciudad Bolivar 着(8:45) by AVENSA
 (c) 5月 8日(木)
                  Job Site 調査(ヘリコプタードで)
    10:30-13:30
    14:00-18:00
                  Ciudad Bolivar発 Pto. Ordaz 着
                  車にて道路調査(道幅、曲り、橋、勾配、樹林等)
 (d)
    5月 9日(金)
                  Pto. Ordaz
```

	8:00-18:00	Pto. Ordaz → Sidor → Harbor (VANDAM)
		港灣設備,機材搬出道路調查
		工事設備能力等の調査
(e)	5月10日(土)	
	7:00-18:00	Pto. Ordaz → Pto. La Cruz
		車にて道路調査
(1)	5月11日(日)	Pto. La Cruz
(g)	5月12日(月)	Pto. La Cruz
	8:00-18:00	Pto. La Guanta → La Encruci Jada → TRAVEN
		車化て Pto. La Guanta ~ La Encruci Jada 間の道路調査
		TRAVEN で陸送費調査
(N)	5月13日(火)	Caracas
	8:00-12:00	資料整理
	14:00-18:00	Pto. Guaraguao → Pto. La Guanta → Barcelona
		港灣設備,機械搬出道路調查
	19:25-20:00	Barcelona → Caracas by Aeropostal
(i)	5月14日(水)	Caracas
	9:30-12:00	JGC Office
		資料整理,今後のスケジュール調整
	14:00-16:00	日本郵船(船会社)他
		港灣,輸入許可,通閱等調查
		設計諸資料調査
(j)	5月15日(木)	
	9:45-10:45	Caracas → Maracaibo by Aeropostal
	14:00-17:00	AFCA(製缶工場)
		工場設備と能力調査
	18:50-19:50	Maracaibo → Caracas by Aeropostal
(%)	5月16日(金)	Caracas
	9:00-12:00	JGC Office
	·	調査レポート作成
	14:00-15:00	藤 田 組(工事会社)
		材料,工賃,工事費等の調査
	15:30-17:30	JOC Office
		校金,保険他諸程費調査

(1) 5	月17日(生)	Caracas
9	:00-12:00	JGC Office
		調査レポート作成
14	:00-18:00	JGC Office - Sabanagrande
		事務所,宿舎用什器,備品,食料等調査
(n) 5	月18日(日)	Caracas
(n) 5	月 19 日 (月)	Caracas
7	:00-20:00	VANDAM & IMOSA (製缶工場)
		工場設備,能力等調査
		調査レポート作成
(o) 5	月 20 日 (火)	Caracas
9	:00-10:30	日本大使館
		B班 調查概要報告
11	1:00-11:30	SADE (工事会社)
		材料,工賃等調査書督促
12	2:00-13:00	VANDAM(製缶工場)
		工場設備,能力等調査
1	4:00-14:30	SADE (工事会社)
		材料,工賃等調査書餐促
1	5:00-16:00	JGC Office
		婦国準備
1	6:30-18:00	RIVACO(王事会社)
		材料,工賃,工事費等調査
(p)	5月21日(水)	
	9:30-14:15	Caracas 発 New York 着 PA218
(q)	5月22日(木)	
1	1:00	New York 発 PA 801
(r)	5月23日(金)	
1	3:35	東京着

6.2.4 講 査 結 果

第 2 次現地調査団は、ヴェネズェラ側との協議および調査化あたり、茶附 "JICA-1 **** JICA-2" (付録 4 参照)を持参し、協議、調査のペース資料とした。

ヴェネズェラ何との協議,および調査の結果は下記の通り。

(1) 協議結果

第2次現地調査のうち、A班の調査結果を添附 "Record of Discussions" として、両者の合意事項をまとめ、鉱山エネルギー省レイエス次官補と調査団長の間で署名し交換した。(付録5参照)

② 現地調査項目

第2次現地調査のうち、B班の調査結果の詳細は本報告書に旅附されないが、その結果は、 経質化製油所の計画において充分参考にされている。

調査された項目について列記すると、下記の通りとなる。

(a) 装置および材料

最近 10年来,各種工場設立が多く,プラント材料の中で品種的には過半数のものが国内 生産されているものと判断されるが,約期の面にて問題があるようである。

国内生産できないものは、厚領板、大型鋼材、特殊材質品、機械類、計器類、特殊電気接 器類、充填物等である。

製缶物(塔槽、熱交、タンク等)は、高圧物(板厚 50 m以上)以外はほとんど製作できると判断される。

したがって、輸入許可取得に際しては、国内業者優先により相当の時間と手数が予測される。(ただし、政府関係プロジェクトの場合、契約書に規定することが容易であり、この場合問題ないとのこと)。

なお,輸入制限品については,税率表が出版されている。

6) 食 料

みそ、しょう油(輸入品があるが量的に問題)以外、日本料理に必要な食料はほとんど入手できる。(YALENCIAで日本人移民省が日本的な農産物を生産している)

(c) 事務所および住民用家具, 什器

ほとんどのものが入手できる。

(4) 分 動 者

技能工が少なく、労働協定により労働者保護が強いため、定職率が低く労働効率も悪いといわれている。最低賃金制が確立されており、政権交替(5年毎)の翌年は大幅に賃金改訂が行なわれる傾向があるため注意を要するようである。

大規模プロジェクトの場合,建設業者が個別に誤談センターを設けて訳談すると共化,転 我しないよりに待遇を考慮する必要があるといわれている。

外人労働者の規制

	=	外人		現埝人
人	数	1	:	4
拾	科(合計)	1	:	4

(e) 建設機械

賃貸料は約10ヶ月にわたって全額債却として計算される場合が多いため非常に高いので、 大規模プロジェクトの場合、現地にて新品購入又は輸入(輸入関税は安い)するのがよいと 判断される。

(イ) 建設工事費の見積

- 一 土木基礎工事
- 一建築工事
- 一鉄骨工事
- 一電気工事
- 一計装工事
- R'管 I 事
- **タンクエ事**
- 一保温工事
- 一 逢 装 工 事
- 一 仮 設 工 事

現在、工事業者はどこも非常化忙しいこと、見積資料が充分でなかったこと、時間的問題、 F/S段階であること等より、残念ながらほとんど調査できなかった。

(g) プロジェクト経費

外国人の入国手続き、滞在許可、取得手続き等は首都で行なうが、それ以外の諸手続きは 地方でできる。税金は、大別して個人所得税と法人税(利益税)であるが、法人税について は、契約形態により単個規定が問題になるので注意を要する。

(h) 通関と内陸輸送

一 通 関

PTO. ORDAZ 地区では書類チェックのみであり、PTO. LA CRUZ 地区では現物検査が必要であるとのことであるが、詳細未調査。

一 内陸輸送

接架、曲り、架橋等よりMAX CARGO SIZBは3000を×30,000L×80 TONSと程 断される。

本プロジェクトは、輸送量も漢大化をり、大型機器が多く4鉱区化あるため、オリノ^{コ川} の北銀K専属の荷上げ岩壁を設けるのが好ましい。当然、道路の新設も必要である。

(i) 居住趋設

軽質化プロジェクトの場合,LAGOVEN地域だけでも建設工事の最高時 3,500 人程度投入が必要と予測されるので、工事現場近辺に宿泊施設を設ける必要がある。

第7章

第7章 残 渣 の 燃 焼

ォリノコへピーオイルを軽質化する過程において、フルードコークス、ユリカプロセスからのビッチ、M-DSプロセスからのアスファルトのような重質副製品が多量に生産されてる。

一方、租原油の生産には、大容量の電力が必要とされる。これらを考えると、重質副製品をポ 4ラー燃料として利用することが有効であろう。

しかしながら、副製品は固体が高粘度・高流動点の液体であるため、その燃烧システムへの利_{星Kは}、特別の考慮が必要になる。

軽質化プロセス計画を検討した日本の3グループ各社は、第1章、第2章、第3章において劇 製品の利用を検討している。

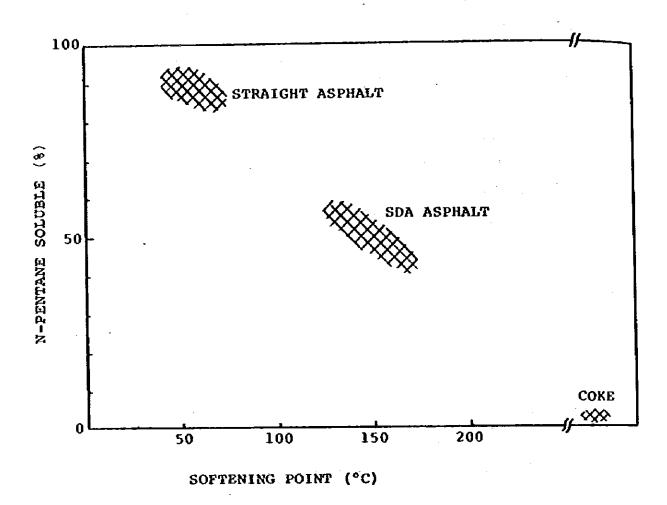
しかしながら、我々(JICA)は、その重要性を考えて、燃焼法について基本的考察を加えてみた。

7.1 試 料

直留了スファルト、溶剤脱歴(SDA)ピッチ、ユリカピッチ、コークスなどの各種重質石油製品がある。

Fig. 7.1 K重質石油製品の軟化点と油分含有量の一般的傾向を示す。 このうち直留アスファル kt, その温度を上げることによって、普通の燃烧方法で燃烧できる。

- 一般性状分析と燃焼テストを実施するため、次の2つのサンブルを選定した。
- 低軟化点(約150℃)で油分含有量の多い代表として SDA ピッチ
- ー 油分含有量が少い代表としてコークス


7.1.1 サンプル提供者

BDA ピッチ:

中東原油の減圧残渣油から生産されたプタン脱歴ピッチを日本のある製油所から入手した。 コークス:

中東原油の減圧残済から生産されたフレキシコークスを東亜石油的より入手した。

FIG. 7.1 SOFTENING POINT AND N-PENTANE SOLUBLE OF HEAVY RESIDUALS

7.1.2 一般性状の分析 - 般性状の分析結果をTable 7.1 に示す。

Table 7.1 Analysis of General Properties

Industrial Analysis		Flexi coke	BDA-Asphalt
Calorific Value, K	cal/kg	7,720	9,420
Moisture	%	1.0	0.1
Fixed carbon		96.5	34.5
Volatile matter	H	1.2	65.3
Ash.	*	1.3	0.2
Total sulfur		5.7	5.8
Elemental Analysis (Dr	y basis)		
C	%	94.4	83.5
Н	#	0.5	8.5
o		0.2	1.9
N		0.6	0.9
S		5.7	5.8
Ash, composition			
V	ppm	2,460	1,500
Ni		610	280
Fusibility of Ash			-
Softening Temp.	°C	810	Impossible to measure
Deformation Temp.	*	Fused	because of small ash
Fluid Temp.	•		

7.1.3 燃料のテスト

着火温度,燃烧速度および粉砕性をTable 7.2 に示す。

Table 7.2 Test for Fuel

	Flexi coke	BDA-Asphalt
Ignition Temp. (°C)	870 — 920	640 — 650
Combustion Velocity	Good	Very good
Grindability (GHI)	32	Impossible to measure, as
		adhesive matter grows

着火温度, 燃烧速度に対する揮発性分の関係を Fig. 7.2 と Fig. 7.3 に示す。

7.2 燃 焼 法

燃料の粘度を調整し噴霧するために稀釈油として貴重な軽質油を使用することなしに、 農業品を直接燃焼させる方法を観説する。

7.2.1 贷 粉 炭 燃 焼

徴粉炭燃焼のシステムフローを Pig. 7.4 に示す。副製品は、200 メッシュ 65~80 パーセントの徴粉に徴砕し、空気で燃焼炉に送られる。

この種の燃焼は、石炭燃焼の分野で広く使用されており、石油製品としては次の様な実績がある。

- 一 . デラウェア市発電所
 - とれは,フルードコークを燃焼用に設計した最初の発電所である。
- 一 マラソン石油のデトロイト製油所

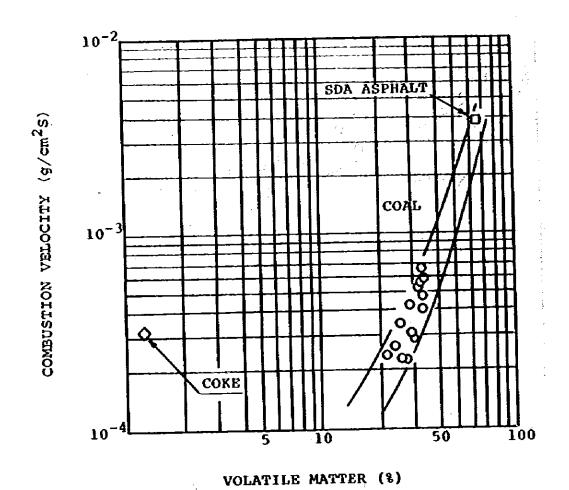
粉砕フルードコークスとオフガスまたは、残渣油が燃焼される。

7.2.2 流動床燃焼

凌動床燃焼のシステムフローを Fig. 7.5 に示す。

との方法は、石灰石やドロマイトのような不活性粒子と空気によって形成される流動床の中で 燃焼させる。

伝熱管は,洗動床中化挿入し,またフリーポード帯にも置かれる。


次に本法の特色をあげる。

一 低質石炭,コークス,重質石油製品等の各種燃料が燃焼できる。

PIG. 7.2 IGNITION TEMPERATURE

FIG. 7.3 COMBUSTION VELOCITY

- _ 可燃物(燃料)が,流動床形成物の2パーセント以下なので,安定した燃焼が期待できる。
- _ 低い燃焼温度(800-900℃)が適用でき、したがって低 NOx 汚染が期待できる。
- ポイラーは,ヒートフラックスや伝熱係数が大きいので,通常のポイラーより小型になる。
- _ 石灰石,またはドロマイトの働きにより脱硫効果がある。
- 粒子が床の中で焼動しているので、伝熱管のスラッギングが少ない。

FBC法は以上のように顕著であり、これからの技術である。

しかしながら、その技術は開発中であり、ポイラー製作業者や研究所では、商業プラント実現 化のためにパイロットプラントの実験テストを実施している。

音究開発状況を次に記す。

英国

NCBは、 FBCによる石炭燃烧の研究を開始した。

最近,Babcock 社は Rensiew,Scotland で約 20 T/11 スチームのポイラーのテストを行なっている。

美国

研究開発のプロジェクトは 10 以上である。例えば Rivesville, West Verginia では 1977 年K 136 TAIのデモンストレーションプラントが運転化入った。

日本

1960年後半から、工業廃棄物燃焼目的に研究が開始され、商業プラントも稼動している。 1978年、石炭技術研究所と4社のポイラー製作業者によって共同研究が開始され、201/h パイロットプラントが1981年にテスト運転開始される。

73 副製品燃焼に関する考察

7.31 フルードコークス

コークス燃焼ポイラーの実績からして、フルードコークスの燃焼法は費粉炭燃焼がよい。 しかしながら、との方法を採用する場合、次の点に注意が必要であろう。

(1) 着火と燃焼

フルードコークスの揮発分合有量が低く、着火点が高い(約 900℃)ので、粒子の温度を着 火温度化上げて、その温度を保つことが必要化なる。

これは, 次の方法で達成できる。

ー・パーナー

パーナーを下側に置き(U形),高い火炎温度が高温スラックに対して輻射熱を接近させることによって保たれる。単一のノズルを使用するよりも、小さなノズルを多くして火炎をより大きくし、輻射熱を燃料の表面が放射するようにする。

長方形のパーナーで円形ノズルよりも大きな円周を作るようにする。

一 一次空気温度

粒子温度は、燃焼前に着火温度まで上昇させなければならない。粒子と空気混合物の心臓 温度が高いほど着火は早くおとる。

- 補助燃料

火炎を安定に保つために、必要全熱量の 10% 以下の補助熱料が必要であり、コーカーソ ロセスのガスが使用される。

(2) 粉 砕

徴粉炭燃焼するには、燃料は特定の適当な粒子に粉砕される。

フルードコークスの粉砕は、Hardgrove Grindability Index が低いので、消費電力が大となる。

粉砕機の表面の摩耗が大であるので、材質選定が重要である。

7.3.2 BDAアスフアルト

(1) 發粉炭燃烧

揮発分が多く、着火点がフルードコークス化比べ低いので、安定した着火と燃烧が復程炭 焼法で可能である。

しかしながら、軟化点はそれほど高くなく揮発分がフルードコークスより多い。したがって、 粉砕機と配管内で粘着する粒子の形成をさけなければならない。

また、多量の鉄粉アスファルト貯蔵においては、固化の問題を検討しなければならない。 ハンマータイプミルが粉砕用として採用されるが、大規模化に当ってはテストが必要である。

(2) 资勤床燃烧

流動床燃焼法として, 次の2方法が考えられる。

(a) 液体供給

液相で供給するためには、プロセスからでてくる副製品は約250℃以上の高温に保たなければならない。その場合、低圧スチームでは不十分で、ホットオイルシステム等の焦熱システムを考えなければならない。

(b) 图体供給

必要な粒子サイズは、1~7m 能なので、粉砕条件は微粉炭燃焼法と比較して厳しくない。 以上、両ケース共流動床燃焼は開発中であり、下記のような解決させるべき種々の問題がある。

一 空気比,流動床温度,脱硫物質の種類, Ca/S モル比,圧力等が脱硫効率に関係して, 注意深く検討されなければならない。

Table 7,3 By-Product vn. Combustion Method

Method Condition required By-Product	8	THE PROPERTY OF A PROPERTY OF THE PROPERTY OF		
By-Product	pon	For oil firing, viscosity at burner is $20 \sim$ 30 cst usually.	Powder 65-80% through 200 mesh.	For solid, 1—7 mmp size. For liquid, viscosity is less than 6,000 est for pumping.
	Sination	Conventional fuel oil is burned by this method.	Coal combustion and coke combus- tion are existing.	Under development. Pilot plants are existing,
BDA asphalt Volatile matter > Ignition point Softening point Hardgrove index	> 50% + 650°C + 160°C	In order to use conventional fuel oil firing method, low viscosity oil is required as diluent. For direct combustion of the M-DS asphalt, Maruzen Oil Co. proposes to use an internal mixing steam atomizing type burner.	According to the test of the sample, care will be required to pulverize the BDA asphalt to fine particles.	In feature, the FBC will be used for firing BDA asphalt. In the case of feeding in solid phase, it will be possible to pulverize it to 1 ~ 7 mm\$\theta\$ with Hammer mill.
Euroka pitch Volatile matter 40 ~ 50% Ignition point Softening point 200°C ~ Hardgrove index 150 ~ 160	40~50% 200°C~ 150~160	-	It will be pulverized.	In future, the pulverized pitch will be burned by the FBC.
Fluid coke Volatile matter = 2% Ignition point = 900 Hardgrove index = 30	30 °C 4 4 4		Commercial boilers are operated. Harder than coal, but it is not so difficult to pulverize. Supporting fuel is required.	In future, the coke will be burned by the FBC.

二 均一燃烧

流動床内で均一燃焼が行なわれるよう燃料供給口を配置する。

_ 伝熱管の選択

伝熱管は流動床に浸されるので、管の材質は腐蝕防止に留意し選定する。

- 粒子の飛散

造動床燃焼システムでは、燃焼効率は未燃焼粒子の飛散によって主化決定される。 したがって、サイクロンダストの燃焼と炭素燃焼セルが検討されなければならない。 以上、造動床燃焼は近い将来必ず採用される技術である。

7.4 割製品燃焼のまとめ

炎雄システムと副製品の関係のまとめをTable 7.3 K示す。

蒸焼と粉砕テストを実施しなかったが、ユリカピッチも具羽化学工業例のエンジニアとの計議やデータに基づいてテーブルの中に含めてある。

7.5 高統黄・高金属含有に関する問題点

との問題は、 Fluid coke, BDA-Asphaltの両者に共通する問題である。

• 何れの黙科も疑責分社約 5.8% である。燃料ガス中の SOx は、約3,500 ppm 発生する。との内約5%が SO; に転換すると考えると、Boiler 出口の SO; は 170~180 ppm に達し、賃息度(DEW pt.) が上昇する。したがって、次の配慮が必要である。

ECONOMIZER 給水温度 ≥ 190℃

Air preheater 出口掛ガス温度≥ 180℃

- 高質黄、高パナジュースによる高温質酸(High Temp. Corrosion)については、金属表面温度が約600で以下ならは問題はないとされている。然加剤としてMg-hydroxide を注入する方法もある。(添加量は燃料に対して1/2000~1/6000)
 - 一転に添加剤を使用した場合は、灰の融点を高める効果と高温霧蝕を軽減する効果、また SO: よりSO: への転換を抑制する効果、すなわち低温霧蝕を抑制する効果があると考えられている。

ATTACHMENT

ATTACHMENT

ATTACHMENT-1: JICA-1 & JICA-2 (First Survey)

- JICA-1, General Description
- JICA-2, Talking Paper
- Attachment to JICA-2, Confirmation Item of Basis of Peasibility Study
- Attachment to JICA-2, Preliminary Terms of Reference
- ATTACHMENT-2: Record of Discussions (First Survey)
- ATTACHMENT-3: Crude Assay of Cogollar IX-Cerro Negro Crude Oil Mixture
 - Bnsayo de Productos Combustibles de crude Cogollar IX-Cerro Negro No.LV.5C-C.79

ATTACHMENT-4: JICA-1 & JICA-2 (Second Survey)

- JICA-1, General Description
- JICA-2, Talking Paper
- Attachment to JICA-2, The Report of Preliminary Study of Feasibility Study
- Attachment to JICA-2, Confirmation Items of Bases of Economic Study
- Attachment to JICA-2, Information and Data on Construction Planning

ATTACHMENT-5: Record of Discussions (Second Survey)

ATTACHMENT-6: Minutes of Meetings (Presentation of Draft Final Report)

THE UP-GRADING PROJECT

OF ORINOCO HEAVY OIL IN THE REPUBLIC OF VENEZUELA

--- GENERAL DESCRIPTION ---

1. Venezuelan Government's Request

- (1) In April 1978, the Venezuelan Government officially requested the technical cooperation of Japan in a letter of the Minister of Energy and Mines.

 The requested cooperation mainly consists in conducting studies and evaluations, from a neutral point of view, of various proposals to the Government made on an industry basis, on which the Government has difficulties in making judgements.
- (2) In accordance with the request, the Japanese Government sent a preliminary survey team to Venezuela in late August 1978 to discuss how to develop the cooperation with the Venezuelan Government. At the discussion, Venezuela requested the Japanese Government to conduct a feasibility study on processes for up-grading the Orinoco heavy oil.
- (3) The content of the request is as follows:
 - (a) Purposes of Feasibility Study

It is planned to produce the Orinoco heavy crude around 1985, for which a plant of a 100,000 - 120,000 BPSD class is expected to be built to up-grade and refine the crude. A feasibility study is to be made to judge what process could be best used for the plan, making examinations on mainly the processes proposed by three groups of Japan.

(b) Prerequisites of Feasibility Study

Properties of the Orinoco heavy crude and estimated grade of the product synthetic crude shall be presented. By-products from the up-grading shall be used to generate the steam for crude production and the energy needed for up-grading.

(c) Scope of Feasibility Study

The feasibility study excludes the survey on financing, the marketing of the synthetic crude, the infrastructure and site selection of the plant.

(d) Supply of Data

All data necessary for the feasibility study shall be provided by Venezuela.

2. Response of Japanese Government

The Japanese Government studied the approach based on the report of the preliminary survey team, and determined to conduct the feasibility study following the procedures below. In March 1979, Japan notified the Venezuelan Government of this decision via the Japanese Embassy in Venezuela, confirming the basic prerequisites and requesting the supply of crude samples. Procedures for the feasibility study are as follows:

(1) Objectives of Feasibility Study

This study is intended to make clear the respective features of the three processes proposed by three groups of Japan for the up-grading of the heavy crude to be produced in the Orinoco Heavy Crude Development Project located on the north side of the River Orinoco, and to provide the data necessary for the selection of a process adequate for the construction of a commercial plant.

(2) Scope of Feasibility Study

Technical and economic studies will be conducted with limitations to the plant facilities for the up-grading of the crude:

- (3) Procedures for Execution
 - (a) Conduct a preliminary study based on basic prerequisites and crude samples.
 - (b) After deciding the terms of reference for the feasibility study, send a P/S survey team to Venezuela to hold discussions and to do a field survey.
 - (c) Perform work in Japan and prepare a report.

3. Dispatch of First Survey Team

With regard to the confirmation of the basic prerequistites and the requested supply of the crude samples, it has been determined that the execution schedule is to be somewhat modified to accelerate the progress of the study. That is, the First Survey Team will be dispatched to Venezuela to do the following work:

- (1) To confirm the basic prerequisites
- (2) To obtain the crude samples
- (3) To discuss the preliminary T/R which is prepared as a result of the preliminary survey

4. Project Execution Shedule and Execution Manner

The project execution schedule and execution manner are set as per Fig. 1 attached.

POTAL GOODDI MATEUN WORK				-					-	o.	c		
		-	9 7 9						. ;)	 -	C	-
	0-	=	12	~		4	<u>^</u>	٥		0	 	<u> </u> 	
	 						T						
		:	!		-	,		•					
Matthew to be the standard to	-	:	•	-									
Detaine up of Study Content	;	- : : ;	<u> </u>	<u> </u>		<u>-</u>		-					
	_]												
THE PIRMT BUNDA.	-	-		-						-			
Contrepation of Basic Condition								-					
Bearing to Survey Tems		•								-			
Canda Basole		<u> </u>	Į	_									
The state of the s		-	. 1	1	- T			-		•		_	
LISIS AND THEFT OF CHUDE SARVILE	-			<u>ر</u> -		-		_	-				
MENTALIA STUDY AND SUPERKY OF PROCESS UNITS	· ·	:		L: -	<u></u>		- - -		;		•		
 ! !												_	
Windshoom of Preside Control of the			•			_				-		•	
Parents Process	-		-		· <u>-</u>		-			_			
			<u></u>	_							-		
STATISTICS OF THE STREET OF COMON PACIFICATION				I		F					-		
AND ALL AND AND AND COLUMN CO					-	_					_		•
UCALLEY PRESIDENT					-								
***			-					_					-
	-		-		_ 		Ì						
ON FOR THE BICONDUBURYXXXXXXXXXX				-	L	_	<u> </u> -					-	
	-		-		<u> </u>		<u> </u>	1				-	
	•									-			
Translation of Enth Crosses													
Survey of Lucal Conditions and Evaluation Dan-		-				_			I				
DETAILED STUDE			<u>-</u> -										
Promote tion of Propose School and Utility Plan										-			
mentality Utilization	VILLIBATION	 						-					
Transfer of the manufacture of the section of the s	_		•	-	-								
Proporation of Office wien, what Plan, old			-	- :		_							
ECONOMIC STUDY							• ;	_	1	I			
Entranties of Construction Cost and Operation Cost				1.7						Ī			
Keesomie Austynia	,	· 											
			-			-					I		
Product a relati	<u>·</u>	_				<u> </u>							_
444444444	_		_		_		-	-					

THE PIRST SURVEY TEAM

THE UP-GRADING PROJECT

OF ORINOCO HEAVY OIL IN THE REPUBLIC OF VENEZUELA

- TALKING PAPER -

1. Objectives

The Japanese First Survey Team sent by the Japan
International Cooperation Agency (hereinafter referred to as
"JICA") is expected to accomplish the following scope of work
by exchanging views with the authorities concerned in the
Republic of Venezuela, so as to meet the real needs of Venezuela:

- (1) To clarify the contents of plans of the Venezuelan Government
- (2) To confirm the basic conditions for the feasibility study
- (3) To confirm the dilivery of Orinoco crude sample
- (4) To discuss the preliminary T/R
- (5) To visit Orinoco project site
- (6) To collect relevant information and data in Venezuela

2. Members of the First Survey Team

The members of the JICA First Survey Team are as follows:

Name	<u>Function</u>	Title
Mr. Sen'ichi HIROSE	Project Kanager (Chief of the Te	Consultant to JICA
Kr. Toshio IBI	Policy in Technical Cooperation	Deputy Director Development Division Petroleum Department Agency of Natural Resources and Energy, HITI

Name	Function	<u>Title</u>
Dr. Koji UKEGAWA	Petroleum Refinery Engineering	Senior Scientific Officer National Research Institute for Pollution and Resources, MITI
Mr. Hideo YASUKI	Coordination	Deputy Director Industrial Survey Division JICA
Mr. Yasuhisa HOSOYA	Petroleum Refinery Engineering	Mechanical Engineer Consultant to JICA
Mr. Terutada TSUKAGOSHI	Petroleum Refinery Engineering	Chemical Engineer Consultant to JICA

Address : Japan International Cooperation Agency

P.O. Box No.216, 48th Floor

Shinjuku Mitsui Bldg.

2-1, Nishi Shinjuku, Shinjuku-ku

Tokyo, Japan

Telephone: Tokyo (03) 346-5287 ~ 9

Cable : JICAHDQ TOKYO

Telex : J22271 JICAHDQ J

3. Schedule of the First Survey

Schedule for the first survey is considered to be as indicated in the attached Fig. 2.

This tentative schedule is to be further developed and adjusted through discussions with you so as to accomplish the objectives of the survey most efficiently.

Your cooperation in this regard will be much appreciated.

4. Hethod of Approach by the First Survey Team

The survey team will visit government organizations and Orinoco site and exchange views on the proposed subjects with responsible officers.

Upon completion of the survey, the survey team will prepare minutes of meetings, which are to be signed and exchanged with the Venezuelan side.

5. Information Required

- (1) The contents of plans of the Government of the Republic of Venezuela
 - a) Present status of Orinoco Oil Belt
 - b) Master Plan for Orinoco Development
 - c) Organization for Orinoco Development including upgrading plant
- (2) Basis of Feasibility Study

Please refer to the attached "Confirmation Items of Basis of Feasibility Study".

- (3) Delivery of Orinoco Crude Sample

 Please refer to the attached "Confirmation Items of Basis of Feasibility Study".
- (4) Terms of Reference for Peasibility Study

 Final terms of reference will be determined after the first survey and the preliminary study. The preliminary

 T/R we have in mind at present is shown in the attachment.

- (5) Visit to Orinoco Project Site a) Schedule arrangement b) Transportation arrangement c) Permission and guide for Site visit (6) Relevant Information and Data And the second i de la companya de l and the second of the second of The state of the s The state of the state of the

SCHEDULE OF FIRST SURVEY TEAM

) 11 (THU)			A 4	* ************************************		4
10 (WED)	I			•		1
9 (TUE)			Ι	-		
8 (MON)		ORINOCO				
7 (sun)					-	
6 (SAT)						
S. (FRI)		garage days	1			-
(THI) 7		I &				
3 (WED)		E E				
OCTOBER 2 (TUE)						
DATE	Internal Meeting (Japanese Embassy and Team)	(2) Meeting (3) Orinoco Site Visit	Internal Meeting	Meeting	Final Meeting with (MEM and Team) (Signing to Minutes of Meeting)	Incernal Mecting (Japanese Embassy and Team)
V	â	8 8	3	છ	9	<u>.6.</u>

A-9

ATTACHMENT TO JICA-2

THE STUDY ON

UP-GRADING OF ORINGCO HEAVY OIL

VENEZUELA

CONFIRMATION ITEMS OF BASIS

OF

FEASIBILITY STUDY

(FOR THE FIRST SURVEY TEAM)

OCTOBER, 1979

JAPAN INTERNATIONAL COOPERATION AGENCY

CONTENTS

I.	EXECUTION	1		
II.	PLANNING	3		
5	o de la companio del companio del companio de la companio del companio de la companio de la companio del companio de la companio della compan			

the transfer of the property of the second state of

I. EXECUTION

1.	May we	call	THE	STUDY	ON U	P-GRADING	OF
	ORINOC	X HEAV	IIO Y	" for	this	project?	

- (a) Yes
- (b) No
- Please submit your organization chart and the official title and name of each responsible person for Orinoco development.
- (a) Name
- (b) Adress
- (c) Telephone & Telex
- (d) Title
- (e) Person name
- Please decide your key person for contacting and communication.
 - (1) Contract General
 - (2) Project General
 - (3) Engineering
 - (4) Financing
 - (5) Marketing
 - (6) Orinoco Field
 - (7) Sample Oil Supply

- (a) Name
- (b) Adress
- (c) Telephone & Telex
- (d) Title
- (e) Person name
- 4. Please arrange and send the sample crude oil by the following conditions:
 - (1) Kind of Crude Oil

Same oil as the study base.

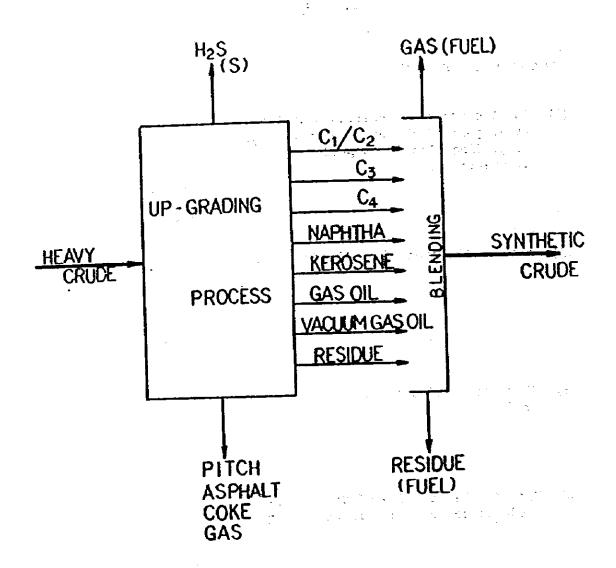
- (2) Quantity of Sample oil Pive (5) drums (sealed)
- (3) Condition of Sample Oil Water separated oil at production site.
- (4) Receiving time arriving at Japan as early as possible, because the oil will be study base.
- (5) Shipping fee paid by Venezuela side.
- (6) Consignee is JICA.

- (a) Yes
- (b) No

☆ s. Transportation of Crude Oil

who is responsible person?

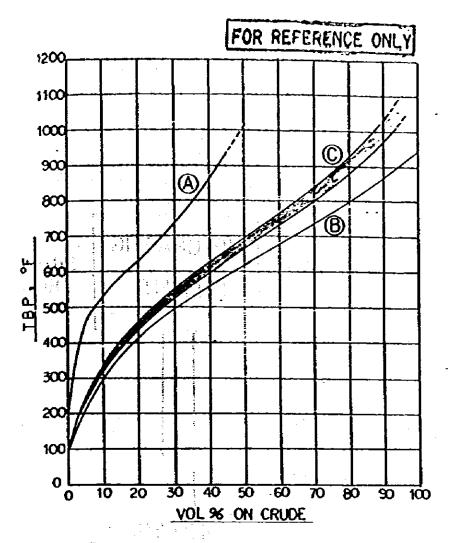
一个个人的 ""


- (1) How to arrange the crude shipping?
 - (a) Sampling of crude oil
 - (b) inland transportation from Orinoco to the port of Caracas.
 - (c) Shipping arrangement and loading to ocean going vessel
- (2) When is expected date of crude shipping?
 - (a) Sampling of crude oil
 - (b) arriving at port
 - (c) Schedule of ocean going vessel
 (Venezuela to Yokohama)

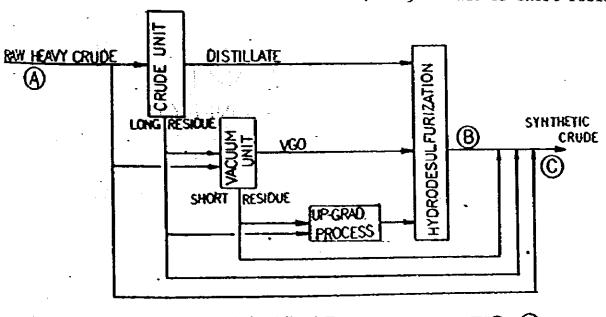
 $(x_1, \dots, x_n) = (x_1, \dots, x_n) + (x_1, \dots, x_n)$

II. PLANNING

PURP	OSE OF UP-GRADING	
(1)	Is it correct to understand that the final goal of the Orinoco heavy crude up-grading plan is to produce synthetic crude?	Please select & mark it!
		(a) Yes
		(b) No
	en de la companya de La companya de la co	(Reason)
(Ż)	What is the type of synthetic crude?	Pásai piu 1
		(a) Oil excluded gases
	• • •	(b) Oil excluded gases
		(c) Oil excluded gases LPG & Naphtha
		(d) Other (
(3)	Where is destination of synthetic crude?	
		(a) Export
		(b) Domestic
		(c) Export & Domestic
(4)	What is the capacity of Orinoco heavy crude to be up-graded in this study?	
		(a) 100,000 BPSD feed
		(b) 125,000 BPSD feed
		(c) Other (BPSD feed)
	•	(Brob Leed)
(5)	Is it allowable to include residue in the synthetic crude?	Refer Fig.2
	•	(a) OK (b) No
(6)	Is it necessary that the material balance is fitted between the field and the refinery?	
	and the resulting.	(a) Yes (b) No
	Refinery crude charge (100,000 BPSD) = by-product from refinery = Field boiler fuel = Steam Generation = Crude production for refinery crude charge	


(equivalent 100,000 BPSD)

TYPE OF SYNTHETIC CRUDE


FIG. 1

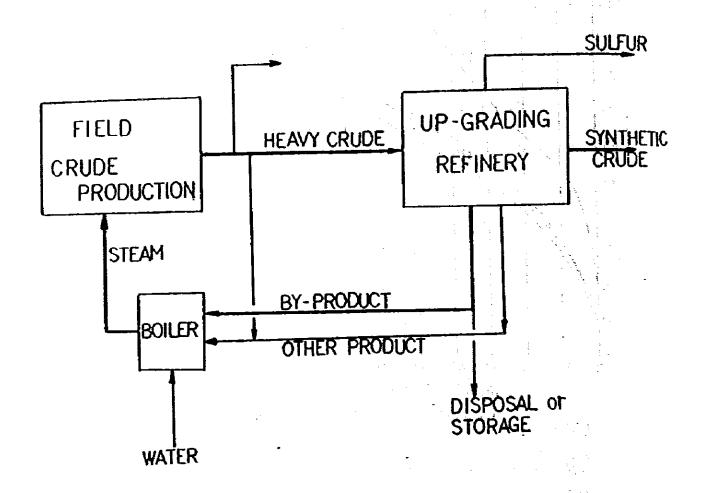
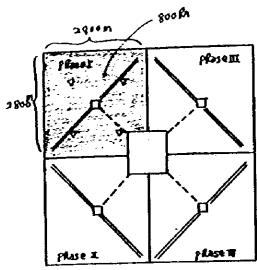
(- 4 -) A - 15

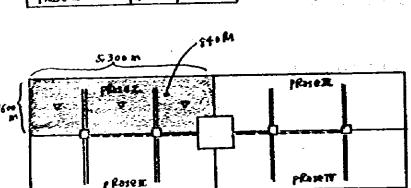
A - RAW HEAVY CRUDE

- . incl. Residue
- B SYNTHETIC CRUDE (all up-grading) ... no residue
- C SYNTHETIC CRUDE (partial up-grading) ... incl. residue mixed with raw crude, long residue or short residue

SYNTHETIC CRUDE OIL 6 5 7A-16

FIG. 2


FIG.3 MATERIAL BALANCE (FIELD * REFINERY)

	product from refinery, what is used for boiler fuel?	
		(a) Refinery distillate(b) Synthetic crude(c) Raw heavy crude
,	(b) In case of excess of by-product from refinery, what is used for by-product?	
		(a) Disposal or storage
		of by product (b) Production of excess crude by excess steam
दाग्छ ।	PLAN	
SIL	EMBI	Refer Fig.4 (& Table 1)
(Plea	se plot thèse places on a map.)	
	383	Please select, mark it
		& indicate!
	Where is the Orinoco heavy crude production field?	·
	production recta.	(a) Morichal
•		(b) Selonegro
٠.		(c) Other
1		(where is it?
(2)	Where is the up-grading plant site?	
		(a) Morichal
		(b) Selonegro (c) Other
	es.	(Where is it?
	. `` 	
(3)	How many places are considered as the up-grading plant site for 100,000 - 120,000 BPSD of Orinoco heavy crude?	
		(a) 1 site
		<pre>(b) few sites (Separate plant site)</pre>
		(Where are they?
(4)	Where is the injection field of steam that is produced by by-product fuels of the up-grading process?	
		(a) Morichal
		(b) Selonegro (c) Other
		(c) Other (xhere is it?
		•
-		

☆ 2.

FOR REFERENCE ONLY

1 place (each 5 years) 2 km max. Stea**m** Transmission 1.6 km max. Fuel Transmission 51 wells Injection Production 133 wells

.2 places Boiler (each 10 years) 2.5 km max. Steam : Transpission Fuel 3.7 km max. Transmission 52 wells Injection Production 141 wells

(each 10 years) 2.85 km max. Stea≖ Transmission 3.9 km max. Fuel Transmission 50 vells Injection Production 133 wells

1 place

1 - 5 year Phase I Phase II 6 ~ 10 year Phase III 11 ~ 15 year 16 - 20 year Phase IV

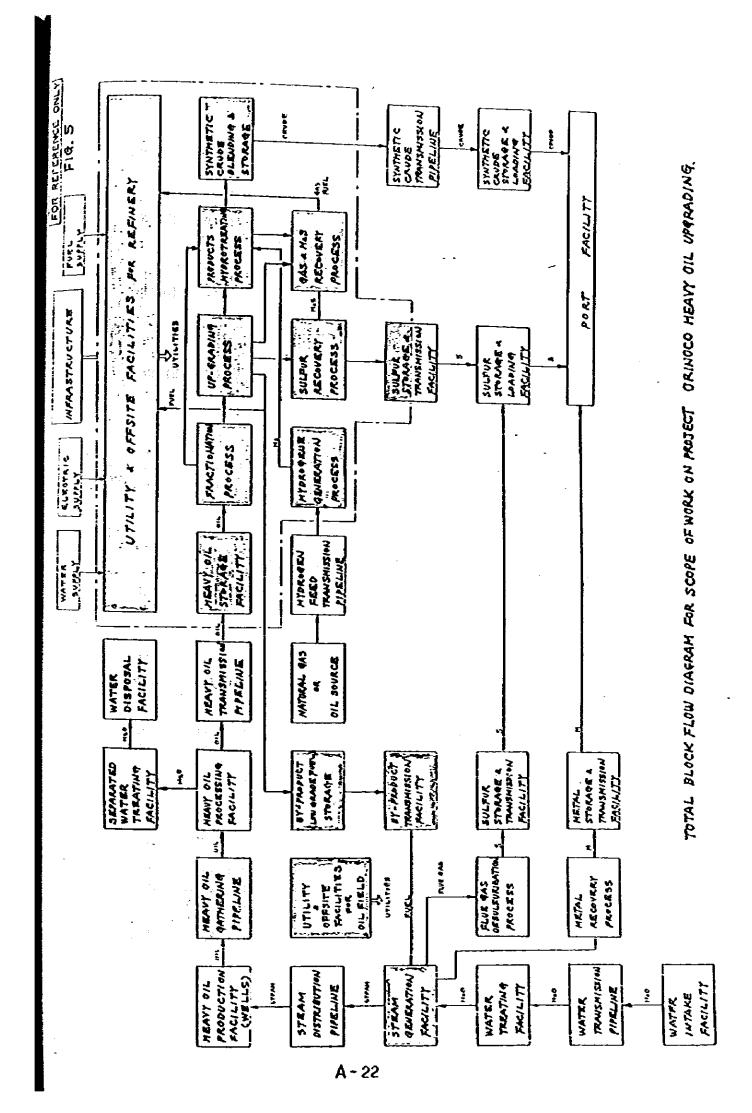
PRose 14

Refinery Site D Boiler Site Steam Main Transmission pipe - Boiler Fuel Transmission Oil Block Station

Boiler

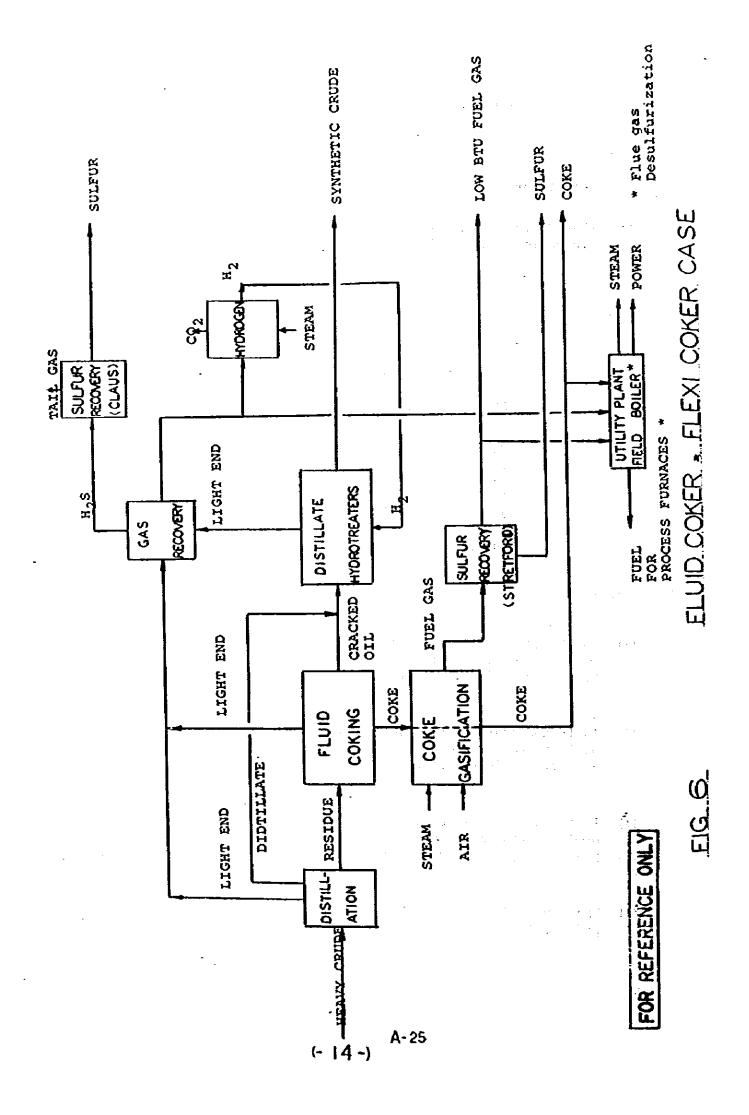
FIG. 4 FIELD MODEL

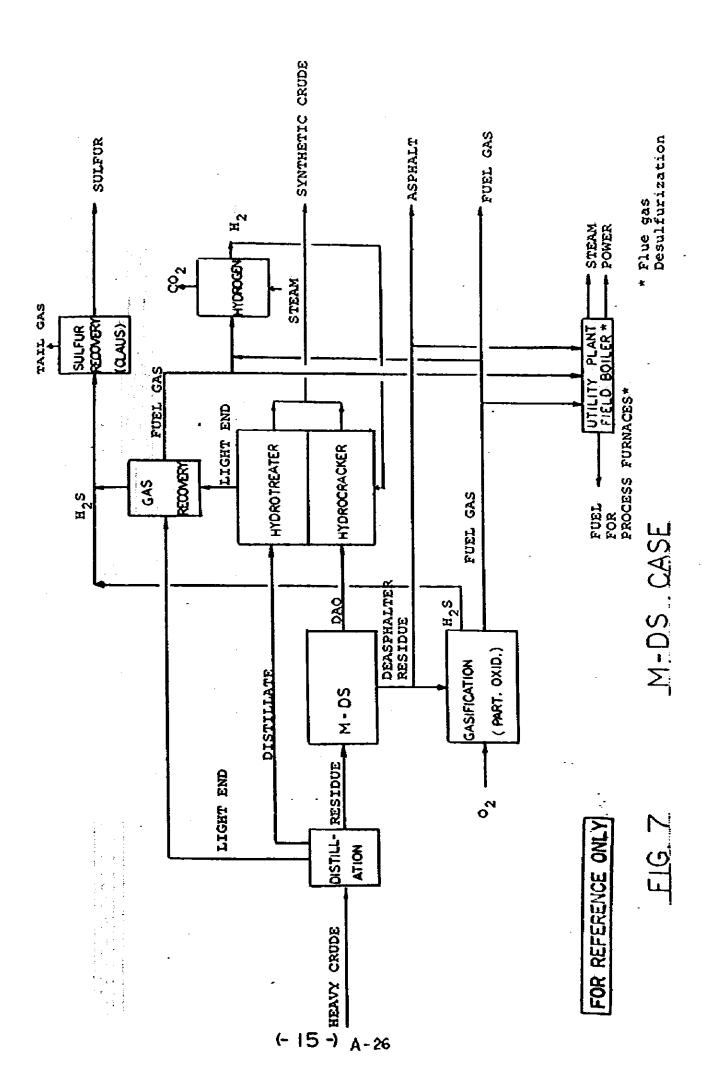
(-8-) A-19

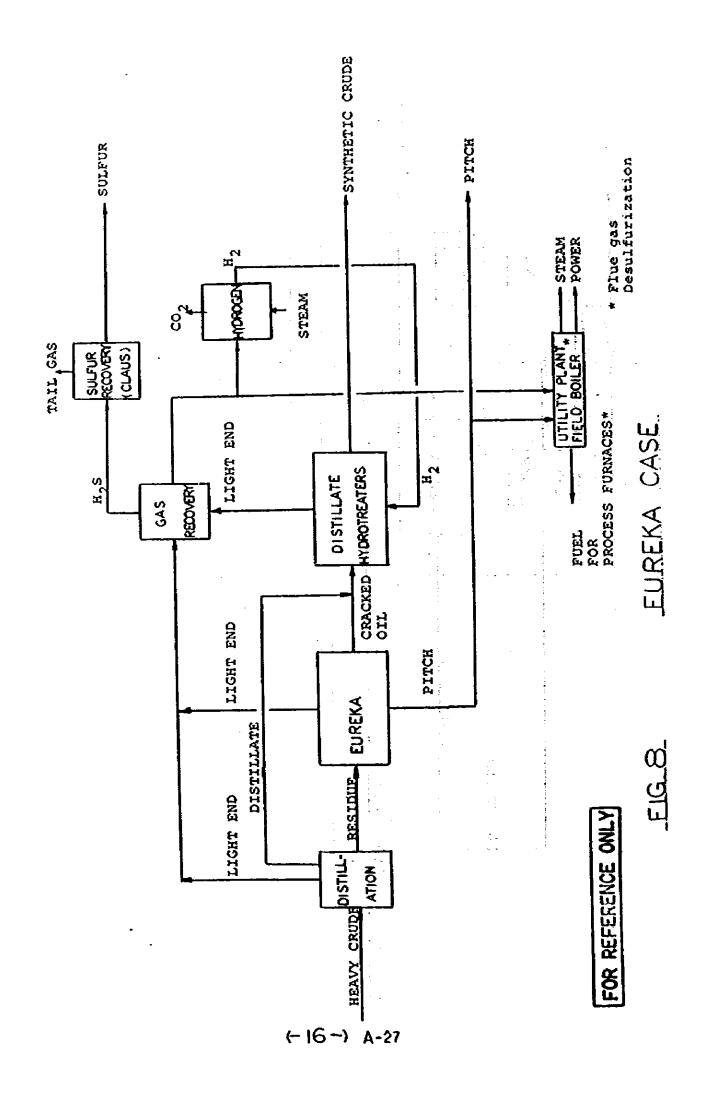

TABLE-1 FIELD MODEL FOR SITE PLAN

		
i EUD	REFERENCE	AMI V
	NECENTION	UNLE

		EXAMPLE	YOUR PLAN	1
(1)	Crude Production Rate per a well of a hexagon	300 BPOD	BPOD	
(2)	Life of Well	5 years	years	STEAM
(3)	Production Hethod		Kethod	ТИЛЕСТОН
(4)	Distance between well and well	230 m	th.	135m ()
(5)	Refinery Site Area (one place)	1,000 m x 1,000 m	· ·	CRUDE PRODUCTIO
(6)	Boiler Site Area (Movable)	250 max 250 ma		
(1)	Operation Life of Refinery	20 years	уеатѕ	
(8)	Injection Steam pressure at boiler	70 kg/cm²G	kg/cm ² G	
(9)	Transmission Distance of Steam (Maximum)	3,000 m	a.	
(10)	Refinery Charge Capacity	100,000 BPSD	BPSD	
(11)	• • • • • •	6.0 BBL/steam Ton	BBL/steam Ton	
		3.0		
	•	1.5		-


. :


	(5)	Where is the boller plant site for steam injection?	
			(a) Morichal (b) Selonegro
			(c) Other
		•	Where is it?
			la de la companya de La companya de la co
	161	Where is the loading port of the	
	(0)	synthetic crude?	
			(a) Puelto ordaz (b) Other
			(Where is it?
3.	SCOP	e of work	Refer Fig.5
		•	
	(1)	What is the scope of work for the P/S?	Please mark it!
		(as hard range)	
		(a) Up-grading Refinery	(a) Yes (b) No
		(b) By Products (Low-grade fuel) Storage & Transmission Pacility	(a) Yes (b) No
		(c) Steam Generation Facility	(a) Yes (b) No
	(2)	What are the items of Study for the P/S? (as soft range)	
		(a) Heavy Crude Oil Analysis/ Testing	(a) Yes (b) No
		(b) Technical Study	(a) Yes (b) No
		(c) Economic Study	(a) Yes (b) No
☆ 4.	ORIN	OCO HEAVY CRUDE OIL	
			Please fill up in the
	(1)	What is the name of Orinoco heavy	blank.
		crude for this P/S?	
			crude
	(2)	Where is the field of heavy crude production or proposed field of development?	•
		•	field



	(3)	Do Aon usas cus rierd was an	
		above field?	(a) Yes (b) No
			(a) 1e3 (b)
		Loughbonn place dive US	•
		If you have the map, please give us	
		a copy of the map.	(a) Yes (b) No
	(4)	Do you have the analysis data of the	
		Orinoco heavy crude for this F/S?	(a) Yes (b) No
			(a) tea (b) no
		i de la companya de l	
		If you have the analysis data, please	
		give us a copy of the analysis data	
		as basis of study.	(a) OK (b) No
•			(a) OR (b) No
		•	
	(5)	What do you suppose the price of	· · · · · · · · · · · · · · · · ·
	(-,	Orinoco heavy crude at the up-	•
		grading plant fence?	
			US\$/88L.
			on (year)
A.			
₹ ₹ 5.	SYN	RETIC CRUDE	
-		a a sa	
	(1)	Is the synthetic crude a main	
		product?	(a) Yes (b) No
			(4) 204 (2)
		·	•
	(2)		
		crude fixed or not?	
			4. 4. 4. 4. 4. 4. 4.
		(a) fixed by by-pass of up-grading	(a) Yes (b) Ko
		process	
			(a) Yes (b) No
		(b) maximum up-grading	(a) 1es (b) No
			,
	(3)	What are the properties of synthetic	
		crude?	
		And do you have variation of the	
		properties?	
			•
		(a) API Gravity	- <u>-</u>
			(a) 20°API min.
		·	(b) 22°API min.
			(c) 25°API min.
			(d) 27°API min.
			(e) 30°API min.

		(b)	Sulfur Conte	nt		
					(a) 1 wt% max. (b) 0.5 wt% max. (c) 0.3 wt% max.	
		(c),	Other		()	
	(4)	What	do you suppo	se the price of		
	·	Synt	inecie crude a	t plant fence?	US\$/BBL.	
			• · · · · · · · · · · · · · · · · · · ·		on the condition of	
	* ·		w Programme of the control of the co		19A°	
	:		-		wt% S year base	
				Syn. Crude	Est. Price US\$/BBL.	
		-	API	Sulfur (wt%)	at years	
			22	1.0		
			- 24	1.0		
	:		26	1.0	<u> </u>	
			28 30	1.0 1.0		
			32	1.0		
			Sulfur	premium	US\$/0.1wt% S	
A.			-			
公 6.	SULF	DR	· ·		Refer Fig. 6	,
•	(1)	prod	it necessary to fuct from the rodesulfurizat	o recover sulfur sour gas of ion units.		
			- -		(a) Yes (b) No	
	(2)	proc		o recover sulfur gas of furnaces e refinery.		
				- -	(a) Yes (b) No	
	(3)	proc	luct from the	o recover sulfur flue gas of boiler		
	1 - 1 - 1	bra	nt using by-pr	oducts fuel?	(a) Yes (b) No	
	(4)		t type of sulf	ur shall be		
	. * <i>i</i>	proc	duced?		(a) Molten	
					(b) Solid	
	- 200				• •	
	. =					
	. •					

	(5)	What is the price of Sulfur product at plant site?	
			US\$/Ton
	(6)	Where is the destination of the sulfur product?	
	(7)	What is the purpose of utilization of sulfur?	
	(8)	Now much tonnage is consumed for the above purpose of utilization?	Ton/D.
☆ 7.	BY-I	PRODUCT (LOW GRADE PUEL)	
	(1)	What is the use of the by-product?	(a) Fuel
	(2)	Now many places are required for boiler plant sites?	(b) Other industries sites.
	(3)	Now far is it from the up-grading plant site to the each boiler sites?	Km (min) Km (max) Km (average)
		What is the price of by-product at the up-grading plant site or the boiler plant site?	US\$ /MMBTU site
		Is it necessary to store the by- products for boiler fuel.	(a) Yes (b) No
	(6)	Is it necessary to use dual fuel?	(0) 000
	,	(a) for operation of boiler during shutdown of refinery	(a) Yes (b) No
		(b) for burning technology of by-product	(a) Yes (b) No

	(7)	How to relate to operation of field boiler and refinery for	
		fuel supply?	(a) Shutdown of boiler (b) Dual fuel (c) Other
	(8)	When burning or transportation of by-products is difficult, is by-product processed in the refinery?	(a) Yes (b) No
☆ 8.	STEA	M	
	(1)	How much heavy crude shall be produced by injection of steam used by-products fuel?	BPSD
			brov
	(2)	How much steam is required for production of the above crude or unit rate of steam and crude?	Ton/D.
			Ton Steam/ BBL Crude
	(3)	What are the required specifications of injection steam at well head? Pressure Temperature	Kg/cm ² G °C
	(4)	What is the price of steam at the boiler plant site?	US\$/Ton on Year
	(5)	What kind of steam supply method is applied for steam injection?	(a) Constant Continuous (b) Not Constant Continuous (c) Constant Intermittent (d) Not Constant Intermittent
	(6)	In case of the "Not-Constant Steam" supply, what percent of boiler capacity to total average operating capacity is required normally?	

- (7) In the case of intermittent steam supply, what is the utilization of steam?
- (a) Boiler stop
- (b) Steam supply to other wells
- (c) Steam loss

SITE DATA 9.

Please give us the following data on the conditions of the selected site. And please plot the oil wells, proposed up-grading plant site, boiler plant sites, utility sources, etc on the map.

- Can you give us the maps? (1)
 - (a) General map of the area
- (a) Yes (b) No
- (b) Detailed map of the area showing highways, railroads and sidings, streams, surrounding communities, neighboring industries, harbours, airports, and so forth, together with future development plan.
- (a) Yes (b) No
- (c) Topographic map of the area showing commediate adjoining areas and indicating use of property, that is, residential, commercial, agricultural and so forth, together with future development plan.
- (a) Yes (b) No
- (d) An enlarged section map of the site showing contours and defining area and boundaries in relation to North.
- (a) Yes (b) No
- . (e) Aerial and ground photographs of the entire site.

A The State of the

(a) Yes (b) No

10.	UTIL	ity s	OBBITA	 The constant of the constant of t		
	(1)	Wate				
		(a)	What kind of water source in the plant site is available for the plants?	(a) River water (b) Lake (c) Wells		
		(b)	•	Please plot on the map.		
-		(c)	What do you suppose the supply cost at the plant?	US\$ /Ton on year		
		(đ)		Quality (a) Good (b) Bad		
				Quantity		

- (e) Are there any restrictions or regulations on taking water or installing water intake, including right-of-way?
- (a) Yes (b) No

(a) Good (b) Bad

(f) Please give us daily temperature records for the past several years.

			Time,
	°C a	it l	
1 - 1	°C a	t	
A 3 7	°C a		
		(

- (g) Please give us the analysis report and data of water.
- (a) OK (b) No
- (h) Is the water supply outside the scope of this study?
- (a) Yes (b) No

(a)	Can we expect the outside source	
.	of electrical power available for the plants in the area?	
	·	(a) Yes (b) No
(b)	Please give us details of the outside power source. Where is it? How is the power capacity supplied? Where is the supply point and the route?	KW
	What are voltage, phase and	
-ر	frequency.	V Phase Hz
(c)	If the power source is under planning or construction, when will the power be available?	
		(Year)
	What is the supply cost?	US\$ KW
		on (Year)
(e)	If the power is not available from the outsite source, own power generation shall be planned?	
	Prainted	(a) Yes (b) No
(£)	What is used as fuel for power generation?	•••
•	•	(a) by-product
•		(b) Synthetic Crude(c) Natural gas
(g)	To the cleanade assess from the	
(3)	Is the electric supply from the outside out of scope of this study?	
		(a) Yes (b) No
(b)	What are the valtage and phase of electric power in the plant.	
ing territoria. Bergeralah	e Makan	<u>V</u> <u>Phase</u>
i rij.		
14 (3)		

(2) Blectric Power Supply

Fuer	anbhr1	
(a)	May we understand the natural gas to be available for fuel and/or	en e
	hydrogen resourse?	(a) Yes (b) No
(b)	Where is the supply point and route?	North Control of the
	What is the transmission method?	
	What is supply temperature and pressure at the supply point?	°C Kg/cm²G
(c)	When the gas will be available?	
,-,		(a) Now (b) Future (Year)
(d)	What is the supply cost at	
(0)	plant site?	us\$/scp
(e)	How reliable will it be?	(a) good (b) bad
(£)	Please inform us of the heat- ing value, pressure, composition?	BTU/SCP Kg/cm ² G
		C ₁
		N ₂
(9)	If the natural gas is not available, shall own fuel be used for the sources?	1 24 1 25 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	What is own fuel?	(a) Yes (b) No
		(a) Offgas, LPG & by-product (b) Offgas, LPG &
		Distillates
(ի) Is the fuel supply from the outside covered by the scope of this study?	
		(a) Yes (b) No

11. GENERAL PACILITY

(1)

11.	OEMBRIG PROTECTI						
-	(1)	Comm	unication System				
	÷	(a)	Can we expect the following public communication system available in the area?				
		- •	Telephon Cable Telex Mail	(a) (a)	Yes Yes Yes Yes	(b) (b)	No No
		(b)	Should the plant have its own communication system?				
			What is the system?	(a)	Yes	(p)	No
	. :	. •	Telephon Cable Telex	(a)	Yes Yes Yes	(b)	No
		(c)	If the public system is under or construction, when will it be available?				
				L		((Year)
		(d)	Are there any regulations and restrictions?				
1			Please give us its summary.		Yes		
			-	(a)	OK	(p)	Ко
	(2)	Mair	tenance Facility				
7		(a)	Are there local shops and subcontractors who will support the maintenance work for the plant?				
			Hechanical workshops	(a)	Yes	(b)	No
	•		Riectrical workshops		Yes		
			Garages for automobiles Service shops for		Yes	- •	ХО
			construction equipment	(a)	Yes	(b)	NG
* .	*	(p)	Please describe the status of the area industries in present and future. Can you describe it?				
- ,	• .;		_	(a)	Yes	(b)	Ко
		(c)	Should the plant have its own maintenance facility?	. ·			
			 				

(a) Yes (b) No

(3)	Safel	cy Pacility	e transfer de la companya di series de la companya di series de la companya di series de la companya di series La companya di series de la companya
	(a)	Are there municipal fire fighting facilities in the area?	(a) Yes (b) No
	(b)	Are there any regulations and ordinances on fire fighting facility and plant layout?	(a) Yes (b) No
	(c)	Are there any medical facilities	
	(0)	in the area?	(a) Yes (b) No
	(d)	Should the plant have its own fire fighting facility and medical facility?	
		Redical Lacinty.	(a) Yes (b) No
(4)	Prod	uct Shipping	eg da de
	(a)	Is it correct to understand that products (synthetic crude & sulfi shipping is outside the scope of	ur)
		this study and battery limits of the study is the area inside the fence of the plant?	14 of Lorent Lorent
		Echoc of the Family	(a) Yes (b) No
	(b)	How many days shall be assumed as storage of products in the plant area before transmission to the port?	
			(a) 1 week (b) 2 weeks (c)days
(5)	Was	te Treatment and Disposal	
	(a)	Please give us laws or regula- tions on the waste treatment and disposal in the existing refineries.	
			(a) OK (b) No
	(b)	Do you have any regulations for air pollution?	(a) Yes (b) No
	(c)	Do you have any regulations for water pollution?	(a) Yes (b) No
			fal rea int no

(6) Plant Building

If the general practices for the buildings are available, please give us a copy of the following from the existing refinery and oil production station.

Customary Office Requirements Workers area Parking areas Locker room Cafeteria Sanitary facilities Prevailing type of architecture (a) OR (b) No

ATTACHMENT TO JICA-2

PRELIMINARY

TERMS OF REFERENCE

THE STUDY ON UP-GRANDING OF ORINOCO HEAVY OIL

OCTOBER, 1979

JAPAN INTERNATIONAL COOPERATION AGENCY

PRELIMINARY

TERMS OF PEFERENCE

FOR

THE STUDY ON UP-GRADING OF ORINOCO HEAVY OIL

The study will be conducted on the following major investigation items, and the subsequent sections present the study outline.

- 1. Analysis of sample oil.
- 2. Site survey.
- Review of the various process features of the four processes (Flexicoking, Pluidcoking, the M-DS process and the Eureka process.)
- 4. Plant planning and plant definition.
- 5. Investment and operating costs estimation.
- 6. Economic analysis.
- Utilization of by-products.
- 8. Evaluation of Processes.

I. OBJECTIVES OF STUDY

1. General

In consideration of the world demand for petroleum products which will continually increase, it is necessary to evaluate not only the conventional reaserves but also the future alternatives.

In the presence of large reserves of the Orinoco heavy oil and the decline of reserves of Conventional crudes in Venezuela, it is meaningful to study the route of upgrading the heavy oil.

For these purposes, JICA intends to develop a plan relating to up-grading of the Orinoco oil, which will lead to the production of a synthetic crude oil.

ភពស្គួល និសាក កិច្ច 🐯 😁 😁

2. Purpose of the study

The study intends to supply informations required for process selection that is used for evaluation of construction plan of commercial plant for upgrading of Orinoco heavy oil.

An object of process for the study is limitted to four schemes using the four processes (Flexicoking, Fluidcoking, the M-DS process and Eureka process).

BASIS OF THE STUDY AND INFORMATION TO BE FURNISHED BY MEM

- 1. Orinoco Heavy Oil.
 - (1) Official name of the crude oil for the study.
 - (2) Analysis of the crude oil.
 - (3) Supply Conditions.

 Available at the plant fence at the pressure of _____ psig. (kg/cm²g)
- 2. Through-put Capacity.

100,000 BPSD

3. Main Product.

A synthetic crude that has no more than 22°API specific gravity, no more than 1% sulfur content. The synthetic crude is defined as the product oil excluding gas and LPG.

4. By-products

- (1) By-products are to be used to generate steam that is used for production of raw crude and for other purposes at onsite and offsite facilities.
- (2) Sulfur recovery units are installed for a hydro-desulfurization unit and for a by-product combustion furnace.

Recovered sulfur is solidified in particle form to premit sale or storage.

5. Site

General information on the site is based on a map of the project area showing the following:

- (1) Anticipated up-grading site.
- (2) Crude oil wells.
- (3) Anticipated site of steam generation for injection.

n kan mula araba da kan mengalah berada da kelalah berada da kelalah berada da kelalah berada berada berada b Berada da kelalah berada da kelalah berada bera

- (4) Supply point of water for utilities and boiler feed.
- (5) Supply point of electric power, if available.
- 6. Steam Generation for Raw Oil Production.
 - (1) Boiler capacity.
 - (2) Average operating ratio.
 - (3) Steam temperature and pressure.
 - (4) Boiler plant location.

III. SCOPE OF WORK

- Analysis of Sample Oil.
 - To prepare the uniform sample for analysis by blending crude sample of five drums.
 - (2) To analyze the uniform sample to obtain the basic data for the up-grading process.
- Confirmation of Basis of the Study. (by 1st Survey Team)
 Items to be confirmed are as per described in II.
- Site Survey. (by 2nd Survey Team)
 - (1) To explain the results of preliminary study on the four processes (Flexicoking, Fluidcoking, the M-DS process and the Eureka process)
 - (2) To collect data and information for planning of the up-grading plant.
 - (a) Geographical data.
 - (b) Utilities supply conditions.
 - (c) Infrastructure conditions.
 - (d) Conditions related construction works.
 - (e) Basis of Economic Analysis.
- 4. Review of the Technology of the Processes.
 - (1) Features.
 - (2) Process development.
 - (3) Feedstock and yield.
 - (4) Process description.
 - (5) Process flow diagram.
 - (6) Utility requirements.
 - (7) By-product utilization.

- 5. Plant Planning and Plant Definition. Process scheme for synthetic crude production. (1) Overall material balance. (2) Product quality. (3) Utility facilities. (4)
 - Oil handling facilities. (5)
 - Offsite facilities. (6)
 - Utilities requirements. (7)
 - Operating requirements. (8)
 - General plot plan. (9)
- Investment and Operating Costs. 6.
 - Capital Requirements. (1)
 - Operating Cost. (2)
 - Costs of Production. (3)
- Economic Analysis. 7.
 - Basis and procedure. (1)
 - (2) Profit & loss.
 - (3) Cash flow analysis.
 - (4) Internal rate of return.
- Utilization of By-product. 8.
 - (1) By-product.
 - (2) Transmission system.
 - (3) Combustion characteristics and performance of boiler.

Capital Capital Company of the Capital Sales

网络克尔 电压电流 医黄霉素

A DESCRIPTION OF THE STATE OF T

化氯化二氯甲基二氯烷二二氢氯基

- 9. Evaluation.
 - (1) Technical.
 - (2) Economics.
 - (3) By-product.

IV. REPORTING

- 1. All documents shall be prepared in English.
- Metric system shall be used for units, except for the conventional ones broadly used in the petroleum industry.

pagisan set in

ATTACHMENT-2

Caracas, October 10, 1979

Record of Discussions

The Venezuelan authorities concerning with Orinoco Oil development, which are Ministerio de Energía y Minas, Petróleos de Venezuela S.A., Lagoven, S.A. and Instituto Tecnológico Venezolano del Petróleo, and the Japanese First Survey Team for the Up-Grading Project of Orinoco Heavy Oil in the Republic of Venezuela, sent by Japan International Cooperation Agency (hereinafter referred to as "JICA"), had discussions based on the attached paper JICA-1 and JICA-2.

The schedule of discussions and persons who participated in the discussions are listed in the attached sheets annex-1 and annex-2.

Both parties confirmed the paper JICA-1 and exchanged views based on the paper JICA-2.

The following is a summary of the result of discussions.

1.- Supply of the Orinoco Heavy Oil.
The Venezuelan authorities concerned will make every possible effort to supply 5 drums (200 l/drum), completely sealed, of the raw Orinoco heavy oil sample to JICA.

2.- Basic Conditions for the Study

- 2.1 Feed Oil of the Up-Grading Refinery
- (1) Name of the Raw Orinoco Heavy Oil Cerro Negro crude oil
- (2) Peed Oil to the Up-Grading Refinery Mixture of Cerro Negro crude oil and diluent for the oil productions.
- (3) Diluent for the Oil Profuction Distillate, mainly gas oil of the up-grading refinery is recycled.

- (4) Rate of Diluent

 Diluent/Cerro Negro crude oil = 0.3/1 on volume basis.
- (5) Analysis Data of Raw Orinoco Beavy Oil for the preliminary study use.

 As per the attached analysis data
- (6) Capacity of the Up-Grading Refinery
 To produce 125,000 BPSD of product oil
- 2.2 Product of the Up-Grading Refinery
- (1) Kind of Product (Synthetic crude)

 Improved crude oil including maximum middle distillate
- (2) Properties of Product

 Gravity: About 25°API 28°A//

 Sulfur: 1 HTS max.

- (3) Residual Oil

 Residual oil of the raw crude oil shall not be included
 in the product.
- 2.3 By-Products of the Up-Grading Refinery
- (1) Use of By-Product

 Fuel for the generation of steam and electric power

 for the oil production and the up-grading refinery.
- (2) Boiler Plant Site
 One centralized boiler plant in the up-grading refinery
- 2.4 Sulfur Recovery
- (1) Recovery Sources

 Sour gas of hydrodesulfurization units and flue gas

 of furnaces and boilers
- (2) Type of Sulfur
 Moltan Sulfur for export
- 2.5 Steam and Electrical Power Requirements for Oil
 Production
- (1) Steam 📑

1.5-3.0 Barrel crude oil/Ton steam at continuous injection stage.

Pressure of steam is 1400- psig at the outlet of boiler

(2) Electrical Power

50-60 MW at continuous injection stage for the production of the crude oil to be fed to the up-grading refinery of which capacity is per item 2.1(6).

3.- Scope of Work

The feasibility study excludes the survey on financing, the marketing of the synthetic crude, the infrastructure and site selection of the plant and is limited to the plant facilities for the up-grading of the crude.

The detailed scope of the work is shown in the attached annex 2.

4.- Reporting

- 4.1 All documents shall be prepared in English.
- 4.2 Metric system shall be used for units, except for the conventional ones broadly used in the petroleum industry.

Dr. Arévalo Gurman Reyes Director General Sectorial Ministerio de Energía y Minas 8 Llinose

Senichi Birose

Chief of the Japanese First Survey Team for the Up-Grading Project of Orinoco Heavy oil in the Republic of Venezuela

c.c.: Petroleos de Venezuela S.A.

c.c.: Lagoven S.A.

C.C.: Instituto Tecnológico Venezolano de Petróleo.

-	បl ហរុ	터 이 보고 이 의 기 이 의 기 이 의 기 이	
STATE .	TIME	PLACE	ALTENDANT
October 3, 1979	10:10 - 12:10	Ministerio de Energia y Minas	Attached MGM's members list, the Japanese first survey team's members list and
			Mr. Katsuhiko TSUNODA Councilor, Embassy of Japan, Caracas
-			Mr. Hiroshi MITSUKAWA First Secretary, Embassy of Japan, Caracas
÷ .			
October 3, 1979	15:00 - 17:00	petrolens de Venezuela S.A.	Attached PETROVEN's members list, the Japanese
		in the second se	first survey team's members list and
- T	4 D (1		Mr. Katsuhiko TSUNODA Councilor, Embassy of Japan, Caracas
* *			Mr. Hiroshi Mirsukawa First Secretary, Embassy of Japan, Caracas
	÷ .		

Attached Puthoven's members list and the Japanese first survey team's members list	Attached LAGOVEN's members list, the Japanese first survey team's members list and Mr. Terukazu KATAOKA Director, C.Itoh & Co. de Venezuela S.A.	Attached inflivip's members list and the Japanese first survey team's members list	Attached LAGOVEN's field members list, the Japanese first survey teams members list and Dr. Edison Perozo, Petróleos de Venezuelasa Mr. Minoru NAGATA, Japan National Oil Corporation	Attached MEM/ PETROVEN's members list and the Japanese first survey team's members list and Mr. Katsubiko TSUNODA Councilor, Embassy of Japan, Caracas Mr. Hiroshi MITSUKAWA
Potróleos de Venezuela S.A.	Lagoven, S.A.	Instituto Toenológico Venezolano del Petróleo	Cerro Negro, Morichal and Jobo fields	Ministorio de Enorgia y Minas
10:00 - 12:00	14:45 - 16:10	9:00 - 12:00	9:15 - 14:30	14:00 -
October 4, 1979	October 4, 1979	October 5, 1979	October 8, 1979	October 10, 1979
•		A-50		

MINISTERIO DE ENERGIA Y MINAS

Dr. Arévalo Guzmán Reyes Director General Sectorial de Hidrocarburos

Dr. Ernesto Agostini Jefe de la División de Conservación

Dr. José Manuel Tineo Director de Planificación Económica

de Hidrocarburos

Lic. Rene Arreaza Asistente del Ministro

Dra. Mariella Ricardo Jefe del Dpto. de Refinación

Dr. José G. Mendez Z. Asesor de Exploración

Dr. Ricardo Nuñez Jefe Dpto. de la División de Refinación

PETROLEOS DE VENEZUELA, S.A.

or. Luis Plaz Bruzual

Diréctor de PDVSA

Er. Edison Perozo

Petroleum Engineering Manager Orinoco Oil Belt - PDVSA

Dr. Carlos Borregales

Orinoco Oil Belt Coordinator -

PDVSA

Dr. José Prats

Planning Hanager. Refinery Coordinatio:

PDVSA

Dr. Angel Behrends

Refinery Coordinator - PDVSA

Dr. Carlos de Castro

International Affairs

INSTITUTO TECNOLOGICO VENEZOLANO DEL PETROLEO

Dr. Néstor Berroeta	Gerente, Grupo de Refinación y Petroquímica
Dr. Paulino Andreu	Gerente, Grupo de Ingeniería de Procesos
Dr. José Luis Calderón	Gerente, Grupo de Análisis y Evaluación
Lic. José Rafael Malpica	Gerente de Información y Relaciones
Dra. Carmen Alvarez	INTEVEP (Project evaluation) Chemical Engineer
Dra. Adelina Ayerbe	Chemical , Catalyst Characterization
Dr. Dominge Rodriguez P.	Process Design, Combustion Engineer
Br. Franzo Marruffo	Manager, Process Eval., Head Combustion Process, Ch. Eng.
Dr. Jacinto Pachano	Process Development, Deasphalting
Sra. Marina de Camejo	Coordinación de Eventos

LAGOVEN, S.A.

Dr.	R.V. Mandini	Central Division MNAR	PROD. DEPT.
Dr.	M.J. Treviño	Plan. Coor. Dept.	DSM Production team
Dr.	A. Sosa	Prod. Ing. de Petroleo	Ing. de Proyectos
Dr.	K. Vasquez	Prod. Planificación DSM	Ing. de Prod.
Dr.	J.R. Luengo	Pet. Engineer	Heavey Oil Projects Production Department
Dr.	Forest Lighty	Coordination Team	DSM Project
Ďr.	A. Santos	Jefe Ep. Exploración Paja Department	Prod. Dept.

LAGOVEN S.A. (FIELD)

Ing. L. J. Rengel V. Oper. Superintendente

Ing. Luis Izarra

Superintendente de Producción

ing. Gesoniel Zambrano Special Projects Superviser

Dr. Alfredo Vasquez B. Sup. Relaciones Públicas

Annex-2

SCOPE OF WORK

- Analysis of Sample Oil
 - (1) To prepare the uniform sample for analysis by blending crude sample of five drums
 - (2) To analyze the uniform sample to obtain the basic data for the up-grading process
- Confirmation of Basis of the Study (by 1st Survey Team)
- 3. Site Survey. (by 2nd Survey Team)
 - (1) To explain the results of preliminary study on the four processes (Flexicoking, Fluidcoking, the M-DS process and the Eureka process)
 - (2) To collect data and information for planning of the up-grading plant
 - (a) Geographical data
 - (b) Utilities supply conditions
 - (c) Infrastructure conditions
 - (d) Conditions related construction works
 - (e) Basis of Economic Analysis
- 4. Review of the Technology of the Processes
 - (1) Features
 - (2) Process development
 - (3) Feedstock and yield
 - (4) Process description
 - (5) Process flow diagram
 - (6) Utility requirements
 - (7) By-product utilization

5.	Plant Planning and Plant Definition
	(1) Process scheme for synthetic crude production
	(2) Overall material balance
	(3) Product Quality
	(4) Utility facilities
	(5) Oil handling facilities
	(6) Offsite facilities
	(7) Utilities requirements
	(8) Operating requirements
	(9) General plot plan
	•
6.	Investment and Operating Costs
	(1) Capital Requirements
	(2) Operating Cost
	(3) Costs of Production
7	Economic Analysis
•	(1) Basis and procedure
	(2) Profit & loss
	(3) Cash flow analysis
	(4) Internal rate of return
^	
8.	
	(1) By-product
	(2) Transmission system
	(3) Combustion characteristics and performance of both
9.	
	(1) Technical

March 1997 Both St.

(2) Economics

(3) By-product

THE MEMBERS OF THE FIRST SCRUEN TEAM

FOR

THE UP-GRADING PROJECT

QŦ

ORINOCO REAVY OIL IN THE PEPHBLIC OF VENEZUELA

<u> </u>	Function	Title
Mr. Sen'ichi BIROSE '	Project Manager (Chief of the Team)	Consultant to JICA
Mr. Toshie 131	Policy in Technical Cooperation	Deputy Director Development Division Petroleum Department Agency of Natural Resources and Energy MITI
Dr. Koji UKEGAWA	- Petroleum Refinery Engineering	Senior Scientific Officer National Research Institute for Pollution and Resources MITI
Mr. Bideo YASUKI	Coordination	Deputy Director Industrial Survey Division JICA
Mr. Yasucisa EOSOYA	Petroleum Refinery Engineering	Consultant to JICA (Mechanical Engineer)
Mr. Terutada TSUKAGOSHI	Petroleum Refinery Engineering	Consultant to JICA (Chemical Engineer)

Address : Industrial Survey Division

Mining & Industrial Planning and Survey Dept.

Japan International Cooperation Agency

(JICA)

P.O. Box No.216, 48th Floor

Shinjuku Mitsui Bldg.,

No.1, 2-choze, Nishi-Shinjuku,

Shinjuku-ku, Tekyo, Japan

Telephone: Tokyo (03) 346-5287 - 9

Cable : JICAEDQ

Telex : J22271 JICAMDQ J

ATTACHMENT-3

LAGOVEN, S. A.

(Filial de PETROLEOS DE VENEZUELA) Refineria de Amuay-Judibana

12 de junio de 1979

LAB-79-0093

LAGOVEN - CARACAS

Departamento de Planificación

Atención: Sr. Humberto Vidal/Sr. Karl Hazeica

Ref: Ensayo de Productos Combustibles de crudo Cogollar IX - Cerro Negro

Nº LV.5C-PC.79

Con la presente les hacemos llegar el ensayo de crudo CÓGOLLAR IX - CERRO NEGRO efectuado en muestra de 8.5 °API representativa de la mezcla 50/50 % de los crudos Cogollar IX y Cerro Negro, según su cable COP 023 del 6/4/79.

Observaciones:

Fracción lubricante:

- a) Naturaleza: Nafténica.
- b) Rendimiento: 17.8% Vol. Comparable con crudos convencionales.
- c) Indice Viscosidad: Menos 115

Asfaltos:

 a) AC-10 y AC-20: Altas pérdidas por calentamiento y baja ductilidad. No cumplen especificaciones AASHTO H226-761. Tabla 2. En caso de necesitar mayor información, sírvanse comunicárnoslo.

Atentamente.

LAGOVEN-AMUAY Luis Urdaneta Y.

Rodol fo E. Parra

Orig. y 10 copias

cc: Depto. de Comercio y Suministro-Caracas

Atn.: Sr. L. Diaz

Depto. de Producción-Caracas

Atn.: Sr. J. Roger

Asuay:

Gerente Técnico
Gerente de Operaciones
Planif. e Ing. de Proceso
Contraloría
Coordinación
CIRA
Archivo Central (2)
Laboratorio (3)

CRUDE: COGOLLAR IX - CERRO NEGRO

COUNTRY: YEREZUELA

REPRESENTATIVE CF: 50/50% COGOLLAR IX AND CERRO NEGRO

REPORT Nº LV.SC-PC.79

REPORT DATE: JUHE, 1979

REPORT BY: RODOLFO E. PARRA 8.

DATE RECEIVED: MARCH 29, 1979

DATE DISTILLED: APRIL 27, 1979

ASSAY RUN BY: LAGOVEN, S. A.

LABORATORY - AMUAY REFINERY JUDIBANA - FALCON, VENEZUELA

SPONSORED BY: LAGOVER, S. A.

PLANIFICATION DEPARTMENT CARACAS, VENEZUELA, S. A.

🤢 ្ំ ខែមេរិកស្ថិ សូមតែលា

TIBLE)

coord coords it . CESSO SECTO

L7.50-20.73

THOLE CRUDE DATA

CETALLA		121	3.5
PECEC CHART	, 	9G-10	1.511
NU CE	-	st. 5	3.47
HERCHTAN SULF	ur .	#T/ 274	310
POLE PONT		·\$	•50
H PROSER		¥7. 2	0.57
PLIES NO SES	est .	10L s -	1.0
SALT CONTEXT, N	•a	M Wiscosec	, 230
Con Carbon		¥1. 5.	13.3
H21-0-550L1131	-	VT, FP4	: 36
NEJT. NO. IDAGO	 	~ C)	1.39
	-		· - i
1	- ,	120F, est	16517
. 1	EMBUTC 1	143° 8, c51	5544
		130°F, eSt	831
ASCERUEF			
		145°F, SEC	
	SATIONT UNICESAL #	130°F. SEC	27503
	Iron	Vt. ope	
Petels ·	रिश्ववीच्य	Wt. spm	192
·	Rictel	Yt. pos	Į ĮĮ į

LIGHT HIDEOCARSONS		
t or cruce	1EOIT	عجدد ا
ETHINE MO CONTER	0.91	0.01
PICINE	0.03	9.08
40 \$47 HE	\$5.0	0.61
HORIZE SUTANE	0.01	0.97
do remaie -	\$6.0	0.03
NOTINAL PENTANG	0.01	0.32

TABLE 2

C20073 11 • 01550 31250

L¥.5C-2C.79

PERCENT DISTILLED VS 15/5 JASSAY STILL TEMPERATURE (FAMRENDEIT)

13.5 Call 20041	<u> </u>			TOTAL D	57KLES -	***	er carês	• ••		
3 3 47	•	74	מ	У	ف	59	78	13	<u> </u>	46
		:				•				i
- 100 -									-	
										
300		· .			1					l i
					l					- =
. ≾0					ŀ	ļ		1	•	1
439		1.1	2.4	1.7	2.1	2.5	2.3	3.3	3.7	4.2
	- -					7		_	1	
500	1.3	5,2	5.8	6.4	5,9	7.5	3.2	8.9	9.5	19.2
-						İ		.,,	.	i
\$00°	11.0	11.7	12.5	13.8	14.0	IS. 1	15.8	15.5	17.4	13.1
200	19.0	19.8	20.5	21.3	22.G	22.5	23.5	24.3	25.9	25.8
				-				 		
800	₹5.6	27.4	28.2	79.1	29.9	30.5	31.5	32.3	33.1	34.0
<u>-</u> _			-	•		1			1	
900	34.8	35.5	35.4	37.4	33.1	39.0	39.9	49.5	41.5	42.5
1000	·					1	ĺ			
	} -	!	1	ţ	}	1	l <u>. </u>	<u> </u>	<u>i</u>	į

TEMENTURA	••	•	.	אטרי זיטאר א	₹.	3	GHAVENAN	311 40118	•-		7 SUMA 136	* *	SUNA DE		
0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	TEMPE GDS F		7 17	20 4 60 4	5105	184	FSPFCI	> ^r 4 ×	4 1 1 4 A 4 167 60S (1710 AN	14 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	12 406.1	₹ ∀ 00Γ × ∀ 40℃	7 44 FT.	7 X 40F
0 0.0 0.07 0.09 0.04 10.0 0.0500 0.05	e	0.0	9	0.01		< 40 <	0.174.	0.00574					**		
0.0 0.05 0.13 0.10 119.8 0.5541 0.10445 0.0 0.07 0.25 0.24 92.7 0.119.8 0.15704 0.0 0.07 0.25 0.24 92.7 0.1119 0.119704 0.0 0.07 0.25 0.24 92.7 0.1119 0.119704 0.0 0.07 0.27 0.25 0.24 92.7 0.1119 0.119704 0.0 0.07 0.27 0.25 0.24 92.7 0.1119 0.119704 0.0 0.07 0.27 0.27 0.27 0.27 0.27 0.27 0	c	e e	6	0.0		147	0.407G	0.03920							
0.00 0.07 0.29 0.210 110.8 0.2840 0.19700 0.19	2	0	0.0	0.13	-	-	9.5431	0.64745					_		
0 0.0 0.0 0.72 0.28 0.21 94.9 0.2250 0.1570# 144570 114 84.0 97.3 25.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		0	0.0	0,29	-	119	0.5440	0.10+15							
0.0 0.02 0.25 0.24 92.7 0.4311 0.13970 1.4445 110 173.0 92.7 73.0 420. 205.0 0.74445 0.24445 0.24445 110 173.0 92.7 73.0 420. 205.0 1.05 0.72 0.25 0.24 1.71 1.54 91.41 0.13970 1.4445 110 1.34 91.4 1.71 1.54 91.4 1.71 1.54 91.4 1.71 1.54 91.4 1.71 1.54 91.4 1.71 1.54 91.4 1.71 1.54 91.4 1.71 1.54 91.4 1.71 1.74 91.4 1.4625 110 1.25 91.4 4.55 91.4 1.71 1.74 91.4 1.4025 110 1.75 91.4 1.74 91.4 1.4025 110 1.75 91.4 1.4025 110 1.75 91.4 1.4025 110 1.40		C		0.23	.	90	0.550	1270#	-						
205.0 0.72 0.04 0.01 0.0 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0	0	0.0	•	9.25	•	6 5•	0.6311	0.13970	-						
#25 220.0 0.74 1.74 1.34 34.1 0.45.4 1.37449 1.4445 119 173.0 0.77 4.455 220.0 0.74 1.34 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4	0	₹.	•	14.0	Ξ.	70.	SCAR.S	. 6-707.0	1.4570	۲ <u>-</u>	•	1.7.	٥.4°	0.0	č
#55	~ 7	2	_	1.71	_	7.5	ノネハエ 。こ	73475	1.4445	110	~	7.74	73.3	e c	ċ
### 250.0 1.18 3.92 3.51 30.5 0.4735 3.29744 1.4570 118 4453.7 77.0 235 \$50 265.0 1.22 5.14 4.55 26.4 0.4635 110 577.7 110 577.7 110 555.2 575.3 37.1 341 \$53 266.0 1.00 6.74 25.2 0.4013 7.24462 1.4424 110 7145.0 477.7 1445.0 575.3 37.1 341 \$54 265.0 1.00 6.74 2.22 25.4 7.412 10.0754 1.4470 110 1145.0 477.7 1445.0 575.0 1.00 10.24 9.20 25.1 1.4212 11.37 2.2.1 1.4212 11.470 110 110 1145.0 575.0 575.0 1.00 110 11.420.0 110 110 1145.0 575.0 575.0 1.00 110 11.4012 11.401	4	2	_	2.74	~:	2	0.44.0	2.70077	1.4510	¥	204.	5.00	144.5	c -0	\$
\$50	7	8	_	3.92	~	5	0.4735	3.29744	1.4570	& I I	z	74.0	235.3	0.0	Č
\$6 280.0 1.00 6.74 5.44 25.5 0.9013 7.24502 1.4745 110 955.0 \$7.50.0 1.00 1.00 1.24 7.54 25.5 0.9013 7.24502 1.4745 110 1145.0 \$7.50.0 2.17 12.41 11.32 22.1 7.4213 1.4042 1.4470 104 146.3 \$7.50.0 2.17 12.41 11.32 22.1 7.4213 1.4042 1.4042 105 146.3 \$7.50.0 2.17 12.41 11.37 20.0 1.4042 1.4042 105 146.0 \$7.50.0 1.30 16.44 15.72 14.7 0.9052 10.74402 1.5014 106 2042.3 \$7.50.0 2.10 18.64 17.1 0.9052 10.74402 1.5014 106 2042.3 \$7.50.0 2.10 20.0 10.0 10.0 10.0 10.0 10.0 1	Š	3	_	5.14		28	. 0 . MA 2.2		1.4525	911	575.3	.47.1	341.5	0.0	?
\$\begin{array}{c} 295.0 & 1.00 & 0.34 & 7.54 & 25.5 & 0.9013 & 7.24\n^2 & 1.47\n^2 & 1.00 & 1	-	ç	=	^	Ψ,	\$	0.8033		1,4000	7	757.7	ν.σ.φ.	4.4.8	c. c	•
\$25.0 \cdot 1.90 10.24 9.29 23.6 0.9111 0.9524 1.4470 11.32 22.1 1.4212 10.07524 1.4470 10.07524 1.4470 10.07524 1.4470 10.0421 1.4522 10.0421 1.4622 10.0421 1.4622 10.0421 1.4622 10.0421 1.4622 10.0421 1.4622 10.0422 1.4622 10.0422 1.4622 \q	٥	\$	_	٠.	^	\$?	7 1 €0° c	•	. 4745	~ 	0.450				
343.5 2.17 12.41 11.32 22.1 7.4212 10.07524 1.4042 105 1 1 255.0 2.17 15.14 15.77 20.0 0.9221 14.74073 1.5010 105 1 1 255.0 1.50 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	•	٥	_	۷.	•	~	0.4111	•	1017.	110	1145.0				
\$6 343.5 2.73 15.14 13.77 20.0 0.920 13.52504 1.4942 105 106 14042 17.54 17.54 17.1 0.952 10.4973 1.5016 106 14042 10.0520 1.30 16.44 17.54 17.1 0.952 10.4973 1.5016 106 7042 25.20 18.64 17.54 17.1 0.952 10.4973 1.5016 106 7042 25.20 2.71 20.65 19.64 16.4 0.952 10.4972 1.5135 110 25.07 25.07 2.05 2.07 2.07 2.07 2.07 2.07 2.07 2.07 2.07	-	£	~	1	=	> >	9.4212		1 . 4470	¥C-	1440.3				
71 355.0 1.30 10.44 15.79 18.7 0.0421 14.74073 1.5016 106 1404. 98 370.0 2.20 18.64 17.54 17.1 0.0522 10.4442 1.5084 106 7042. 25 385.0 2.71 20.65 19.64 17.1 0.0537 18.7072 1.5112 110 2507. 52 400.0 2.74 22.74 21.09 15.1 0.0537 18.70 1.5135 110 2507. 53 400.0 2.77 27.05 20.04 14.7 0.0420 24.01110 1.5154 114 2781. 54 45.0 1.97 27.05 20.04 14.7 0.0420 24.01110 1.5154 119 3010. 51 45.0 2.21 20.24 28.13 14.0 0.0425 28.4074 1.520 1.514 120 3455. 51 475.0 2.04 35.02 32.12 13.3 0.0472 31.3205. 51 475.0 2.10 35.78 34.70 13.0 0.0420 34.57712 1.5200 177 4106. 50 510.0 3.10 36.97 37.37 12.0 0.0420 34.57712 1.5204 1.5304 13.7 4106. 52 535.0 5.36 42.79 40.80 12.2 0.0427 40.3504 1.5304 1.5304 1.5304	V:	~	α.	3.1	13.77	o v	0.9340		C707.	105	60				
370.0 2.20 18.04 17.54 17.1 0.0527 10.70762 1.5084 108 7042. 25 385.0 2.71 20.05 19.04 15.4 0.0567 14.70762 1.5135 110 2507. 52 400.0 2.04 22.74 21.09 15.1 0.0587 20.77124 1.5135 110 2507. 70 415.0 2.37 25.06 23.00 15.5 0.0626 24.01110 1.5154 114 2741. 815.0 2.37 27.05 20.04 14.7 0.0470 24.01110 1.5174 119 3016. 81 425.0 2.21 20.24 28.13 14.0 0.0725 24.40774 1.5200 171 3283. 81 425.0 2.10 35.22 32.12 13.3 0.0772 31.3205. 81 400.0 2.10 35.78 34.70 13.0 0.0920 34.57712 1.5244 124 4515. 82 510.0 3.10 36.97 37.37 12.0 0.0920 34.57712 1.5244 124 4515. 83 53.0 5.86 42.79 40.86 12.2 0.0920 34.57712 1.5304 13.2 2014.	*	3		9.0	₹	7	0.0421		1.5010	101	94.		=		
25 345.0 2.11 20.65 19.64 15.4 0.9587 14.76762 1.5135 110 2507. 52 400.0 2.04 22.74 21.09 15.1 0.9587 20.77124 1.5135 110 2507. 79 435.0 2.37 25.06 23.90 15.5 0.9626 24.91110 1.5174 119 2016. 83 455.0 1.97 27.05 20.04 14.7 0.9679 24.91110 1.5174 119 3016. 83 455.0 1.59 30.63 29.93 14.0 0.9725 24.40764 1.5200 1.71 3283. 84 475.0 2.21 29.24 28.12 13.3 0.9725 24.40764 1.5200 1.72 34.82. 84 475.0 2.10 35.78 34.70 13.0 0.9820 36.57712 1.5244 1.74 4515. 85 510.0 3.19 36.97 37.37 12.0 0.9820 36.57712 1.5244 1.74 4515. 85 535.0 5.84 42.79 40.86 12.2 0.9847 40.3564 1.5304 1.32 2014.	Φ	2	~	4	17	17	0.0522		1.5084	¥01	4				
\$2 400.0 2.04 22.74 21.09 16.1 0.0587 20.77124 1.5135 110 2507. 79 415.0 2.37 25.06 23.00 15.5 0.0620 25.06444 1.5154 114 2741. 80 430.0 1.97 27.05 20.04 14.7 0.0470 24.91110 1.5174 119 3010. 81 425.0 2.21 29.24 28.13 14.0 0.9725 24.40764 1.5200 1.71 3285. 81 425.0 2.34 33.62 32.12 13.3 0.9725 24.40764 1.5200 1.72 34.52. 81 425.0 2.10 35.78 34.70 13.0 0.9820 34.57712 1.5244 1.77 4106. 80 510.0 3.10 36.97 37.37 12.0 0.9820 34.57712 1.5244 1.77 4106. 82 535.0 5.84 42.79 40.86 12.2 0.9847 40.3564 1.5304 1.32 2014.	N	Š.	~	4.0	_	14.	1950.0		1.511	=	\$				
79 #15.0 2.37 25.00 25.90 15.5 0.90.20 25.00.00.00 1.5154 114 2741	•	Ş	~	2.7	7	-4-	1 450° u	0.7712	1.5135	- 10	÷	-			
\$\langle \text{a45.0} \text{1.67.0} \text{24.0} \text{1.67.0}	┣~	2	~	\$.0	~	75.	0.0000	7700 7	1.515#	T	÷				
33 445.0 2.21 20.24 28.13 14.3 0.4705 27.05591 1.5200 121 3283 51 455.0 1.59 30.63 29.93 14.0 0.9725 24.4070+ 1.5214 124 3455 87 475.0 2.04 35.62 32.12 15.3 0.9772 31.32954 1.5240 126 5432 14 490.0 2.10 35.78 34.70 13.0 0.9702 33.44470 1.5240 127 4106 50 510.0 3.19 35.97 37.37 12.0 0.9620 54.57712 1.5244 124 4515 95 535.0 5.62 42.79 40.86 12.2 0.9647 40.33954 1.5304 132 5019	0	2		7.0	Ĉ.	14.	0.0470	4.4	1.5174	o -	2				
\$1 455.0 1.59 30.63 29.93 14.0 0.9725 24.40764 1.5214 124 3455.87 475.0 2.94 33.62 36.12 13.3 0.9772 31.32954 1.5240 126 3432.14 490.0 2.16 35.78 34.70 13.0 0.9820 35.57712 1.5240 127 4106.25 510.0 3.19 38.97 37.37 12.0 0.9820 35.57712 1.5244 124 4515.95 535.0 3.82 42.79 40.86 12.2 0.9847 40.3364 1.5364 132 5019.95 535.0 5.82 42.79 40.86 12.2 0.9847 40.3364 1.5304 132 5019.95	M	ş	~	?	2.	14.	5070.0	7.05	1.5200	17.	£				
87 475.0 2.04 35.62 32.12 15.3 0.9772 31.32954 1.5240 120 3432. 14 490.0 2.10 35.78 34.70 13.0 0.9820 33.44470 1.5240 127 4106. 50 510.0 3.19 38.97 37.37 12.0 0.9820 34.57712 1.5244 124 4515. 95 535.0 5.82 42.79 40.88 12.2 0.9847 40.33864 1.5304 132 5019. 95 535.0 57.21 100.00 71.39 1.8 1.0815 101.06790	w.	ζ.	7.5	0	¢.	14.	0.9725	4	1.55.1	170	55.				
14 490.0 2.16 35.78 34.70 13.0 0.9020 33.44470 1.5240 127 4106. 50 510.0 3.19 38.97 37.37 12.0 0.9020 34.57712 1.5244 124 4515. 95 535.0 5.02 42.79 40.86 12.2 0.9447 40.33964 1.5304 132 5014. 95 535.0* 57.21 100.00 71.39 1.8 1.0015 101.06796	20	ζ.	?. ~	3.6	?		0.0772	1.32	0925.	١٧٥	~				
50 510-0 3.19 38.97 37.37 12.0 0.9820 34.57712 1.5284 124 4515. 95 535.0 5.82 42.79 40.86 12.2 0.9847 40.33964 1.5304 132 5019. 95 535.0* 57.21 100.00 71.39 1.8 1.0815 101.06796	-	ŝ	~	5.7	7	13.	2040 U.	3.4447	1.5200	127	\$0				
95 535.0 5.82 42.79 40.86 12.2 0.9A47 40.33964 1.5304 132 5019. 95+ 535.0+ 57.21 100.00 71.39 1.8 1.0015 101.06796	Š	2	×	6.0	3,4	12.	0.4820	4.5771	1.5244	4~-	5.15				
95+ 515.0+ 57.21 100.00 71.59 1.8 1.0015 101.00790'	•	٠. د	5.4	7	4	7.	0.9A47	0.3390	1.5304	132	970				
	Ò -	ζ.	57.2	0.0	7		1.0015	1.0079							

8.5 GAS APT

COGOLLABAG. NEGRO DATHS LATRIMHICTIONS Y CALCHILANOS

SUMA X DESO

A PESO T SUMA & PESO

!	
	A.V. 134-R AVE
1	
	かいいい しょしいてい かいししていき
	次に 10~ 1×
	COCOLLA-6.

0924X		7 ,		4" g = 01 7 (A 4 " 1, 2 1, 1, 3 - 4	1	220 970	× 1 × 1	4 4c 91.7 2 4 . 18 4c . 2 4	1		41 . 47 · 1 L	<u>:</u>	* 14401	. 76 26.
TEND, F	F T IVIC	10 FT.31		TVCLUVA'T AENIA TGAS	144	ESSECTATION	2 mg/2 - 2 mg/	12 06 50 4	0.800 / Cacs on	*C 4-40.	V5 40 %	4	1 to 1111 to	د در
_	Ç	47 5.14	1.17	\$ = 45	90°18	1705	3, ~	1. >545	2040.1			~	75.5	c c
	7	_	7	40.4	_	•	20.00	-3-1-V	1377			3	c	0 0
474. 534	1.71			27.7	12.02	07/1.0	17.7	1.5145	4.047.				7	٠ ج
		-		7.00			21.0	I Sec	1.4744		40.00	1	د . د	· ·
			7	10.01	ペコーベス	マフーフ・モ	7.74	7.5701	少くてコー		41 00 0	701	, C,	ر ا د
			7	17.50	₹7°50	ガス 人ひ **:	5 . 3	7,7057	0107.1		40000		· ;	, ,
			•	25.4 4.6	01.7	1636.0	2~.~	73.40 4	~~?~	-	0,0110	101	S C	C
		~ ~ ~	_	77 1	10.01	A & & &	7.17	~~~~	1.5.16.	. 10.0	30 TH C		0	¢
050 351	1 15-14			4. 4. A. A. A. B. A. B. A. B. A. B. A. B. A. B.	15.77	# CO	10.74	C - C - C - C	1.5100	1.11			ج د د	, c
		7	~	75.57	10.01	1760.:	47.46	× 22	00 ly . I	47 °C	3.1.5	121	c c	0
		Ξ.		75.01	10.70	つんしつじつ	7.73	5.247.1	1.5124	1-1-2	7211.0	ر د د د د د د د د د د د د د د د د د د د	, c	6
		Ţ		55.42	13.43	0.4777	17.15	3. 63.7	1	0.75		*	٠ د د	0
	\$9.		~ . ⁴	X . 3	7, 64	こうくうつい	¥ 6 4	7.00.5	1.5002	1,00		127		3
		3	14.1	12.05	12.72	٦.	٠	3.4120		~ 7 .	4.7° 4	071	, c	
	<u>.</u>	7	₹.,	٦.	12.20	٦.	5.75	5.52.10	1.5504	1.70	6.424.0	2	, c	6
			*FSI~1.115					•	•	•	,	•	•	•
			1 1 1 1 1 1 1 1	•	-									
			.4441.	-	•	421.Fab + 4.	4.11. GALMIN	T T TT TAILED !	+ 1. 4º					
	יי איי איין די	505 L	10205 14605	CIFICA + X	x + USign :		* 24.8:	T WEST						
• \$66	57.5	<u>-</u> :	•	4141.	20-04	4.54	16.57	٦	٠ ٨		-			•
4000	?o		-		\$ 4.01	,	7.7.	7	4		-	•		
951+	20.5	•	~			7 2	21.7	Ė	0		•			
752•	77.2		_	_	-		15,00	· c	2				•	
***	41.55	~ · · · · · · · · · · · · · · · · · · ·	_	4550.	A 3 . 5 %	\c."3	10.4	.	-					
*20+	24.0		_			70.5	2	c	3					
505	21.0	•	7			10-3	12.73		•					
# 5 P	3 1 2	•		.0145	-	5.77	14.77	c	5, 0					
INTELAL	w.	401 \$	\$ 99	× 4.9	0 % 0	21.7	· ·	1980	24.3		£	250	ii K	
				250	٠ د د د	· ~	.,	900	· •		64	- /		
u G d		1 7% "	_	14.05	14.01	1		1 -				~~	40	
11 22 27	⇒			1.00	55.35	20.00	41 /	5-05	3	200	00.77	10.55	· · ·	
											•	,		

TABLE 4

क्या । । - ११६०० ४१६२० विकास £Y.5C-FC.79

HYDROCARSON COMPONENT ANALYSIS

'53 CJT 2017	.# v#	54 TO 18	
S CUT POST	र ग	SAS 10 20	
TELO CUT TAGE	10L 5	0 - 0.25	
ELD ON CRICE	10L 1	0.25	3.5

		SAS CHR	K			
-	80,3	LE	1. 191.1	<u> </u>		
·	. GE 64	S .	on circle			
£7+ME	\$.7	1	0,01			· -
MOTING	32.4		0.01			
THE SUTANE	16.5		0.05	<u> </u>		
ABUTUSE	23.5		9.01	<u> </u>	. 15	L
SENTANE	10.4	<u> </u>	0.01	L		
-PENTANE	5.4	<u>i</u>	0.62	1		
Transferteaning		1				
LIGHTWILDUTANE	j	1_				
2=ETATUFENT ANE	1	1			-	<u> </u>
SALTHTUPENTANE		. [1		
COCRETINE		1		•		
es-£zes\$						
EASTER LINES CELL	-			Ī		
2400 ETHTU ENTANE	_			<u> </u>		
METHOLOGISTAME				1		-
2-Environe					44 July 1	
130 A THY DENTANG		T				
- INCOMPERATE						
CLUDITIME						
seato-इ						
\$304.41;		-				
Pulufing	V2C 8					
KLANTHENES	VOL 4					
49941765	FQ. \$				7	

ACTINE FELIS INSTANCETORS IN FRACTIONS SHOWN IN THEIRS IS SHORE IN CONTINUE FROM THE ACTION OF AND CONTINUE FRACTIONS OF ANY CONTINUE AND CONTINUE AND CONTINUE ACTIONS OF ANY CONTINUE ACTION OF ACTION OF ACTION OF ACTION OF ANY CONTINUE ACTION OF ACTIO

					•
 COSCILLA	įx	•	(EU)	REGRO	

LV.50-20.39

					[(1.50-70.7)	,
		USA	OFFICE ATES			
13.3 CUT POINT (3.3 CUT POINT	4 M	68-41 20-25	491433 20523	101-ses 205-as	4)i .cg 205 -200	471-424 205 -24
TELD CIT ENGE TIELD ON COLOR WORDONE SEARCE SEARCE FOTH, SAFIR MERCHETAL	100, 5 100, 5 100, 6 100, 6 10, 6 11, 5 11, 59	0.2 - 1.9 0.3 0.5 35.9 0.343 0.55 7	1.0 - 2.8 1.3 1.9 33.3 0.859 1.60	1.0 - 5.1 6.1 3.1 31.0 0.971 1.25	i	1.0 - 5.1 5.1 3.3 29.3 0.811 1.45
SHOOLE POINT LUML MO. FREEZING POINT CLOUD FORT	3H	25 44 <-199 N/C	\$3 \$2 <-100	₹2 41 <-100	23 42 <-100	₹! 41 <-190
POUR POINT MALINE POINT	4	<-100 i15	<-100 113	<-120 119	<-100 113	<-109 117
MINGTHE MOEL - LIVE		1.4379	39 1.430)7 1.4555	38 1.4525	35 1.4600
MONINGLERK ,	13L 1	37.3	56.5	75.5	10.1	73.9
VISCOSTIES FEMERATIC - 20 F 100 F 100 F	රා ය රා	8.0 1.39 0.72	18.0 1.92 0.83	32.9 2.40 1.03	24.0 2.20 0.97	49.9 2.85 1.15

TABLE 6

כסכטרושא וא - כנאאס אנפשס

MIDDLE DISTILLATES

	-	V: - 14,	400.480	390.650	169.065	401-690	\$450		
** * * * * * * * * * * * * * * * * * *			•			414			
13/3 CUT POWE	_	20% 343	765.310	310.343	319.370	075-503	A		1
63	1	15.1	5.1 . 10.2	10.2 . 15.1	10.2 . 10.6	9.81 - 0.1	1.51 - 15.1		
אונים באי אישיים		:	;	0 7	*	17.6	10.0		
with on chose	_	14.1			•		- 5	•	
with about	. <u>.</u>	6.1	7.7	12.7	- i - i - i - i - i - i - i - i - i - i	7,0 		** ***	
	ş	24.9	28.2	20.8	19.7	23.1	23.0		
On De	-	. 305	0.903	0.923	0.936	0.915	0.916		
	<u>.</u>	2.12	2.15	2.30	3,00	2,41	2.43		:
AND PLANT		111	211	106	105	, 601	601		
H 100 100 100 100 100 100 100 100 100 10		2	٤	22	21	≈	\$2	-	
CETAME MOEN		7	×	ş	36	31	Ä	 	
C.C.O. POWT	 	×/¢	1 3/x	3/8	N/C	3/N	N/C		
1019	_	2	. 06-	09-	05-	-75	χ.		
PERMETAL WOLL . 6/4		1.4770	1.4757		1.4970	1.4928	1.4340		
MELLY AD ID-174							4.01		
*******	-								
. 100-	÷	5,65	5.30	12,70	18.50	7,70	8.8		
	÷	2.91	2.00	5.40	06.9	3.70	&		
****	2	2.27	2.18	1.90	4.85	2,79	2.05	•	
	÷	1.70	1.63	2.70	3.20	2.00	2.05		
	<u> </u>				-	· · · · · · · · · · · · · · · · · · ·		- - 	
				· ·			-		
	-		11.21	14.05	-				
Ć.	<u>. </u>		46.57	\$1.06	. !	!			
entracters vf. Per	ı	90	•	43	195	13	83		

		. !		TABLE 7	•	-		
10-5)	COCOLEAR IX - CERRO MECRO	CCARO MCCRO			٠.	LV.5C-PC_79	77	
				CAS OILS		•	•	
	<u> </u>	752-851	0%·6.180	5-k: b:054	630:651	5th -05.4	260.488	
11 5 Curpoder C ve	-	400-455	452-510	\$10-515	343:455	343-535	135.535	
אלום כתו ששפנ אפרי א	1.15.1 . 22.7	22.7 - 30.6	0.00 - 3.00	39.0 - 42.3	15.1 - 30.6	15.1 - 42.8	30.6 - 42.8	
•	7.6	7.9	# 8	3.8	15.5	27.7	12.2	
	-	26.7	34.8	40.9	52.9	29.0	7.90	
CRAVITY		14.6		:2:3	15.8	14.2	12.8	·
ישוברינים משיריונה		2.969	0.979	0,985	0.961	0.971	0.931	
TOTAL MARNE		3.28	3.3	3,35	3.27	3.20	3.29	
AND POINT	110	120	127	(3)	117	123	128	
CON CARRON UT. 4	<u> </u>	\$1.°0	0.53	1.70	60.0	0.20	9.74	
POUR POINT		Ŏ.	£	ģ		8	Q	
	1:5105	1,5185	1.5262	1.5304	1:5145	1.5209	1.5278	
44.07, 40, -+ 40H's-		-			5.28			
mrecetu ut, s	0.03	0.15	0.24	0.27	0.09	0.19	0.25	
VACOUTES	-						i : :	 - - -
4114 CINC CANA C . 150	0,84	270.0	1800,0	•	117.0	405.0		
	13.5	65.5	164.0	480.0	25.5	65.0	530.0	
•••	6,5	26.4	72.5	0.171	14.5	25.5	92.0	
and and a	5.1	11.6	28.0	53.0	7.0	15.0	14,0	
				•	•	·		
Variability.	-						0.91	
	-	-					0.19	
and the motor					-		0.43	
A, B,	16.01	18.09	18,04	18,04	16.23		13,06	
	55.35	86.20	87.08	\$9.15	16.55	-	58.07	

				TABLE	E A			_	-
•		COCOLLAR IX - CERRO NECRO	CERRO NECRO			J	LV. SC-PC, 79	\neg	
]		-	MENOUA	6UA		-		
13 4 CUT PONET		83.5	446.	752-	455-	* 67.8 510	235		
** \$ CUT POINT	. \$	34.9	- e e		. F. 69. A	61.0	57.2		
A44440 CB44440		1.034	1.037	1,041	1.049	1.059	1.062	:	
בסגיר מורנת	5.5	7.0		4.10	4.17	4.26	25.7		
	5	0.59	3.61	0,64	£ .	0,78	0.62		
POUR POWE	and KOM/ and	3.24 > 120	7. 120	21.30	621-7	2115	021•^		
3000 3122 = 530 ₀ E 3000 = 500 ₀ E	2 3 2	2945 306 164	4150 410 214	7100 594 293	1345	4546	1967	:	-
						- :		: :	! : :
A850LUTE VIC 140 P	13604	2100	4495			*		; ;	
METALS VARABULA MERCEC	111	18.2 12.3 13.0	÷ ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	122	546 135 13	616 153 71	654 162 18	•	
	**			! !			25,93 2A.17		
		7							

TABLE 9

(CALCE)		
<u> </u>	COSCILLE IX - CERNO 15630	
L		LY.5C-2C,79
_		

WIFE	CISTILLA	1 E	9
------	----------	-----	---

*			
·	-	VALY USE	0274123 188J
tha cat some	# 11	779-995	
SES CUT POINT	< v7	#15-325	
rela an ence	70. 1	25.9 - 42.8	
TIELD OF CACE	30L 1	17.3	
140-73×1	·Q. :	33.9	
GRANTY	.751	13.4	
yforčsunit -	14-14	9.317	
tota sera	et, e	3.35	
CON CYTRON	≯ 7, ⊈	0.50	
APPLICE POINT	+	175	
PEFFACTIVE DOES 1 APC		1.52\$5	
NEVT. HQ. (0-174	~ 2015n	5.57	
MIROSEM	· 17. \$	9.25	
POUR POINT	+	40	
PAI CONTENT	¥7, %		
THE MELTING FORT	+		
PROSITY DEEK		115	
VISCORT ES.			
ENGLISHE & USE	ı\$r	1224	-
4 132-5	خ. د	130.0	
a U5-\$. 150	53.0	 -
1207	خ	-23.5	
SATSOLT CHIVETELL A 100-P	भर	\$669.5	
9 1 2 4	. 180	113.6	

PHENOL I ROCEPT	
meiol t	SEAT'S
CATS YCLE	25 E-125
CE#4355	USE Cut
Présouvoi	-
U193	
<u>r-e</u>	<u> </u>
SAM STOCK	-115-
vi	. = 53
หา	- ž
УI	27
viscos (1)	
GRANITY	
C241 (417)	
'/-e-	···

Table as the white are those on the lags and and the important to the late, we consider

:

2000	COGOLLAR	COGOLLAR IX - CERRO NEGRO	4EGRO				LV.SC-PC.79	. 79		-	
			STS	KAIGHT REDI	STRAIGHT REDUCED ASPHALTS	\$		·			
MSPECTION	416 G 436 S	15 5 CUT POINT F VT	0 1 1 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7 P O P P D P P D P P P P P P P P P P P P	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	V15COS1TY POISES 140 F	V15COS1TY KINEMATIC 225 F	SPECIFIC CRAVITY SO SO	TFOT. Ouct & Per- 60°F dida	Pēr-	Spot
SAMPLES INSPECTED			-			-				 	
07	81.4	+869		123	65	4495	448	1.038			
× 0×	. 89.8	+065	999	66	214	684	188	1.027			
MO. 3	84.9	+059		111	66	2114	.311	1.033	55.	1.49	
									_		-

STANDARD GRADES (From Correlated Date)	• • • • • • • • • • • • • • • • • • •			•		-			
902 00:	89.0	÷009		101	061	850	210	1.028	
25 300	84.5	+959		112	93	2250	340	1.034	
% 70°	82.0			121	65	4200	415	1.037	
01-54	87.9	615+	-	103	162	1000	525	1.029	
36	85.1	643+	- -	110	102	2000	300.	1.033	

NEG.

2.56

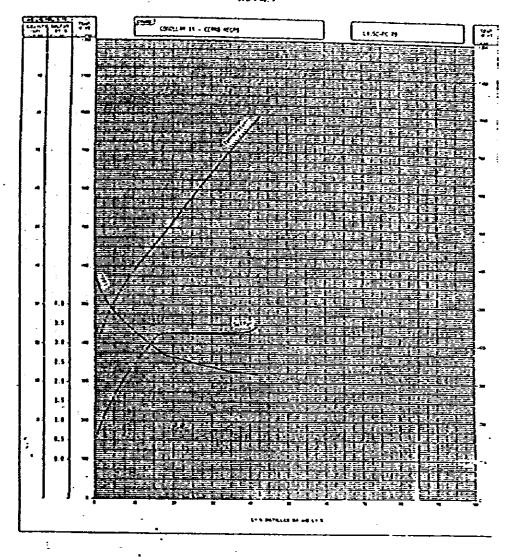
65

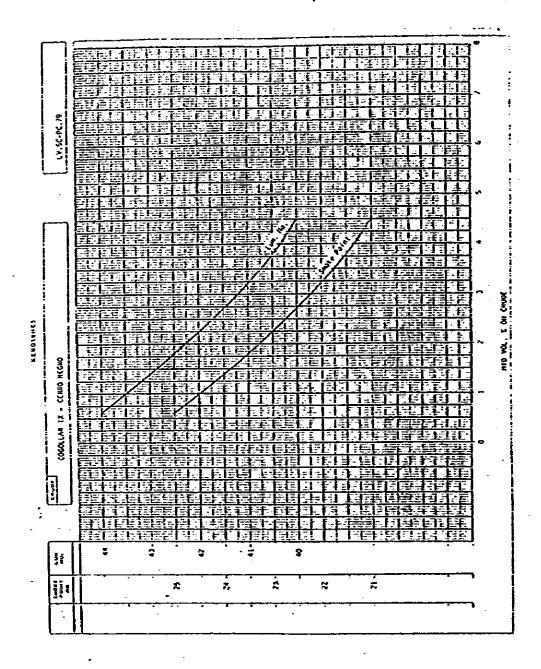
1.030

233

1102

154

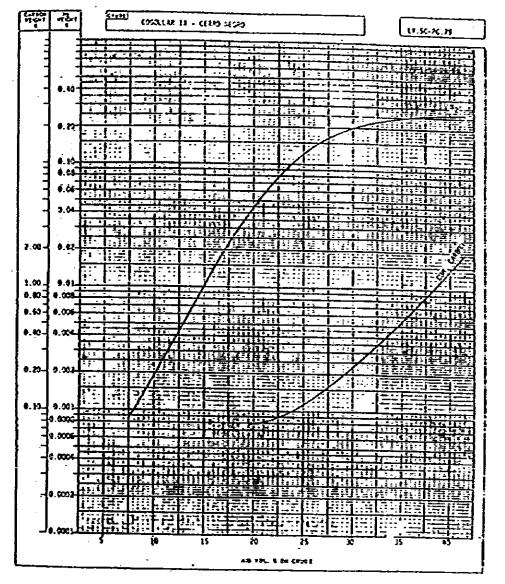

104


617+

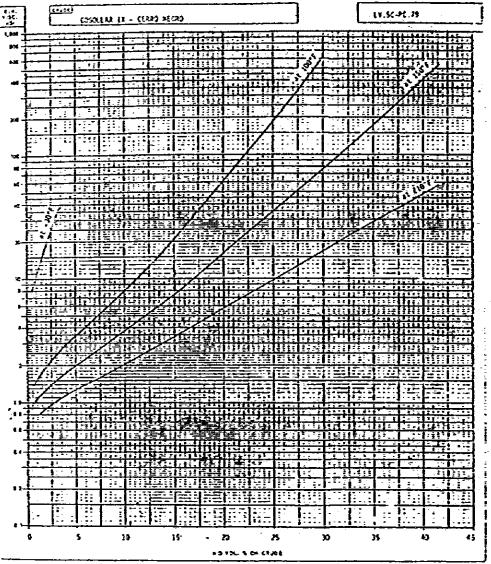
87.6

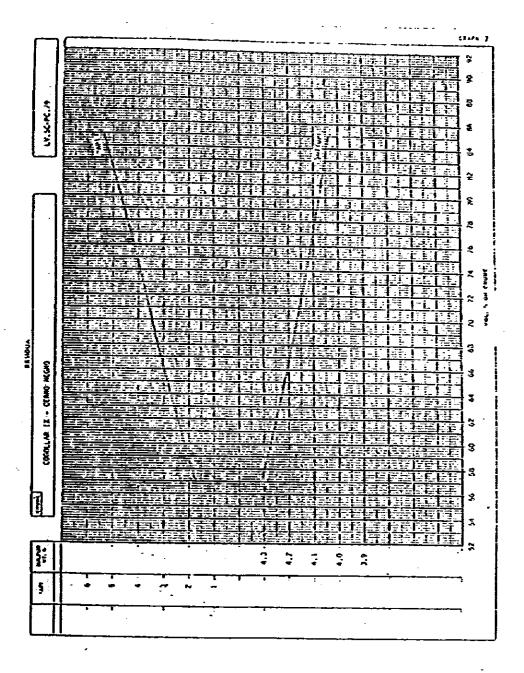
9 9

Clara as a

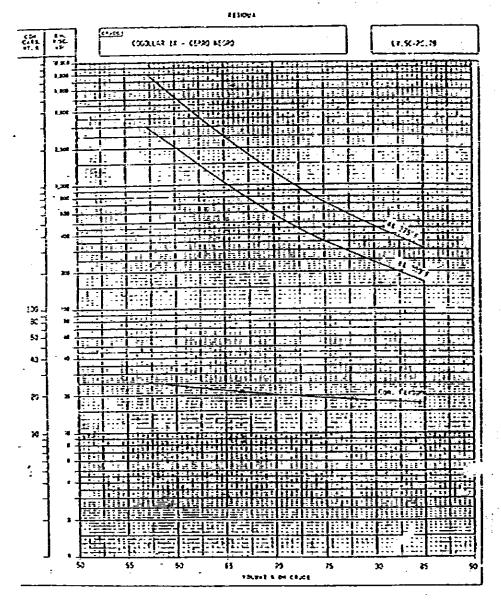

401	1994	CONCILM 11 - CESSO MECASO CAS ON S
-		IV.SCH.,B
15	-	Hallow and Aller St. A. There of C. J. W. The Mills of Aller Mills in the C. J. W. The Mills of Aller Mills in the C. J. W. The Mills of Aller Mills in the C. J. The Mills of Aller Mills in the C. J. The Mills of Aller Mills o
*		
•		A MARTINE AND
H		
*		
		A CONTRACTOR OF THE CONTRACTOR
	40	
•	*	THE CONTRIBUTION OF THE PARTY O
	-20	This property of the control of the
1	- 45	
1	-14	ALL TO THE PARTY OF THE PARTY O
j		
-	- (20)	
		+45 PL 20 Et 20 12 20 22 26 28 30 12 31 31 45 42

A-76

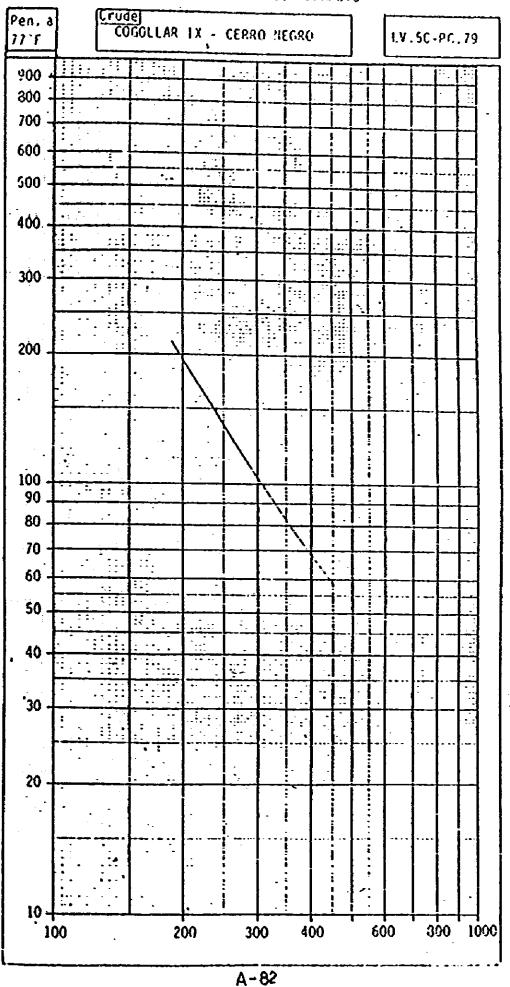

GRAPH NO. 5
MIDDLE DISTILLATES AND GAS OILS

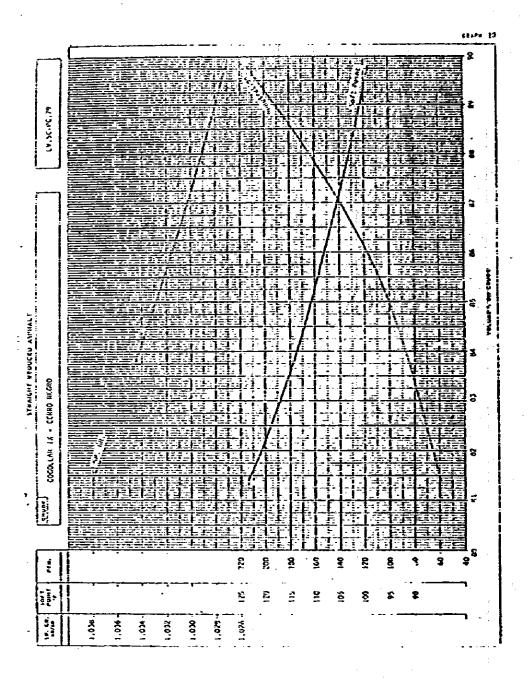

e irc	COGRETAR IX - CESSO NEGSO	LV.SC-PC.79						
	25000000000000000000000000000000000000							
3.5300	海河海河河河河河河河河河河河河河河河河河河河河河 河河河河河河河河河河河河河							
1.5250-								
1.5200								
1.5150	3至2日2月2日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日							
`` <i>`</i> ```	三百百百百百百百百百百百百百万百百百百百百百百百百百百百百百百百百百百百百百							
1.5100	5台美国西西西西西西西西西西西西西西西西西西西西西西西西西西西西西西西西西西西西							
1.5100								
,,,,,								
1.5350								
	三三三三三三三三三三三三三三三三三三三三三三三三三三三三三三三三三三三三三三							
1.5000	三言語 医多角膜 医多角膜 医多角膜 医多角膜 医多角膜 医多角膜 医多角膜 医多角膜	阿里里的马帕拉里兰 克克						
ا ا								
1,4550	353年第二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十							
1.4300	空軍医国 三三百萬甲甲基 化甲甲酚 西马葡萄萄酒							
	C表表質医無理理解 / 经基础 第25 表							
1,4850		ata 200 200 444 445 15 16 16 16 16 16 16 16 16 16 16 16 16 16						
1.4809								
3.4758								
1.4700								
1								
1.4659								
1,4500								
11.4559								
, , , , ,								
1.4500								
1								
1								
1.43%								
1								
1.4450								
1.435		三						
1. 35		47 50 60						
	0 10 . 20 30	**						
1	NID VOL. 4 On CRUDE							

CRAPH, PO. 5
MODEL DISTRICATES AND GAS DIAS

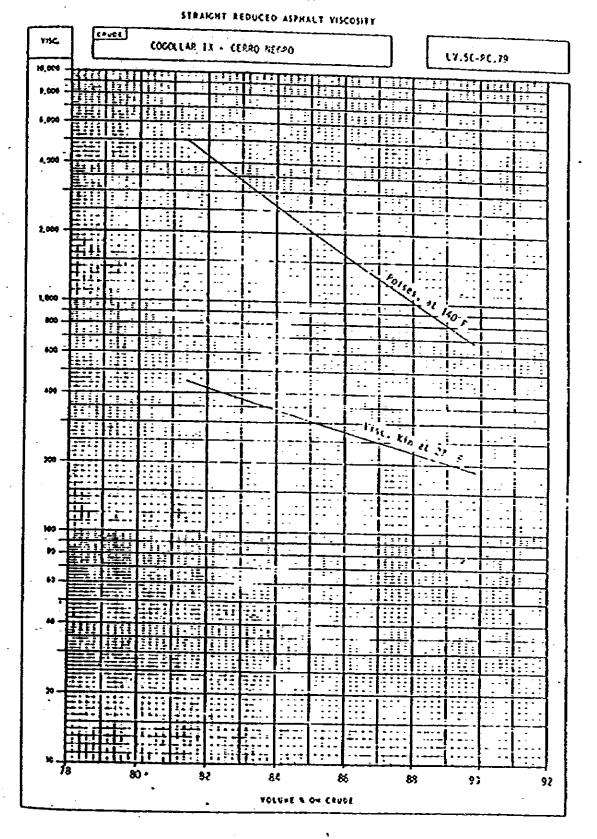


GRAPH NO. 8 HICCLE DISTIBLATES AND CAS DILE

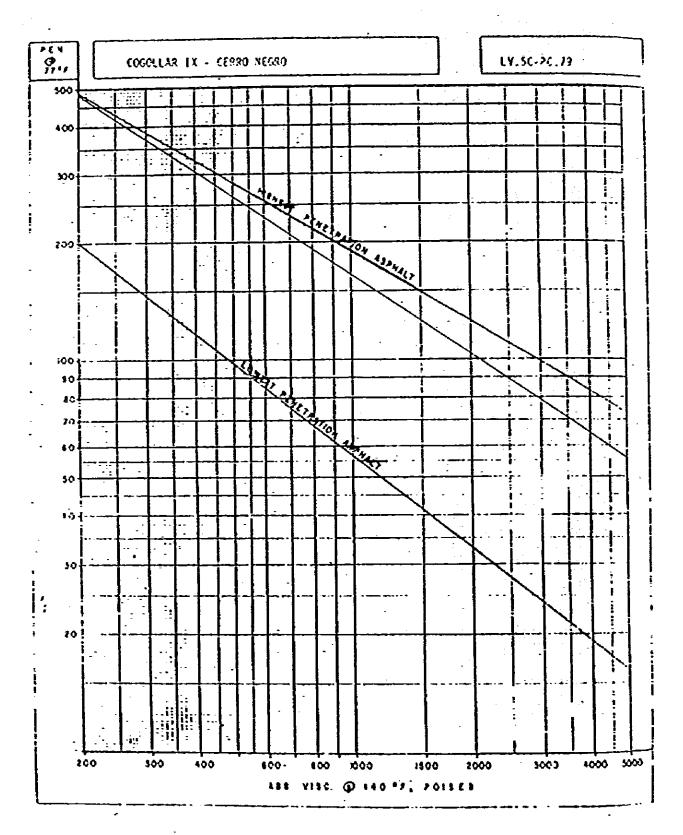




\$8479 bp. 3



GRAPH IND. 9 STRATGHT REDUCED ASPHALTS



GRAPH HO. 11

SI .OK HAANS
TJAHGEA OZOUDBA THOLATE
GIHEROITAJIA HOITATIEST TIEODELY DEA
G HOITAJITHEDI BOARS YTIEODELY DEA

CRUDE INSPECTION PRIMARY DATA

ASSAY STILL CUTS		£U	EL PRO	DUCTS	ASSAY	,									
23-75		• · •	•	·-· -	-	. .						LAŠŠAY	12041	PAGE NO	2.1011
COGOLI	AR i '' —	اعدد! ا× - (CERR	ייייני. יייינייי	GRO 	eser marg					_	LV. 5	C-70	. 19	
COUPONENT					1		-				-				ĺ
	• .				•										
Cur. NO.	1 .	2	3	4	5	ė] I	8	q	ه.	1				-
TEUP INITIAL OF	:3	401	428	455	482	509	536	563	293	617					
FINAL OF	401	329	455	492	503	526	%)	590	617	550					
VIELD VOL	0.12	0.74	1.03	1.18	1.20	1.57	1.64	1.18	222	212					
MELO RANGE, BNT. VOL. NI	0.25	0.97	1.71						10.11						,
(FINL VÓL. N)	0.97	1.31	2.74	3.92	5.12	6.69	8.33	10.11	12,33	15.05	-				·
MO FOINT, YOL N	0.61	1.34	2.23	3.33	4.52	5.91	7.51	9.22	11.22	13.69					
PRESSURE, NW, HG. ABS.	. 10.	10	10	10	10	10	10	10	10	10					
MEFLUX MATIOUSED	21	21	21	2.1	2:3	31	21	5 1	≵1	21	_				-
OST, UNIT TYPE	15/5	- 15/5	15/5	15/5	15:5	15/5	15/5	15.5	15:5	15.5		1			
81 @ 67°C	14370		14510		1,4425	14486	1,9195	14805	1,4870	1.4342					
GRAVITY, PAPE	34.9	34.1	32.3	30.5	289	26.9	25.5	23.8	22.1	20.3					·
SULFUR WE'S	०.८ऽ१	0.810	1,063	1.328	1.591	1.885	2.130	2.374	2.627	2.928)				
ANRINE FT, OF	118	119		118		134		110		105					ļ
EREEZE PT. *F	<-100	<-100	¢-100	₹-100]				
CLOUD PT. *F	3/c		5/c		\$/c		5/c		S/c			Į		-	
FOUR PT. "F	K-100		4100		₹160		-90		-10			ľ	·		-
MIROGEN, WT. %		<u> </u>					40009		"	0.006		i			=
MAFINS VOLL	-			} —						-		}			
XAPTH. YOLL	-						-								-
ARCH. FIA VOLZ	37.3	62.7	69.2	% .9	87.1	88.3	 			- 				į	
VSC CINEMATIC	8.01	1	20.73			-					· -	-			
6100.Ł	1.39	1.75		2.56		3.98		7.06		15,43		1			
@LSO*F	0.98	1.18	1.35		1.85	2.22		3.40		6.10					
47100F.	,	0.82		1.07		1.38		1.88		2.91					
SHOKE PT. mra	25		23	-	21		I								
wa ko.	44	<u> </u>	42		40		<u>-</u>]		·		i ·		
•	= : .										• •		·	** *** · ·	

aldan algelegelege sylmaya. Be en socia en socia	TA DEL PRODUCTS ASSAT	•		tact no tor s
COGOLIAR TX -	CERRO NEGRO		43347 L(1-1	16 - 76. 19
CORNEL				
ere va				
Cut. 95 II II	13 14 15 14	1 1 1 1	io 21 2t	25
75147 OHTESE 24. 953 \$71	354 223 252 27	1 556 833 551	587 S14 350	. FS&
FOAL 25. \$1 BH	75 BI 77 10	4 123 151 H	3:0 350 351	
	2.01 210 222 20			2.34
regrees 1505:6361	856 20.63221329	1521.1321.233069	3) 5313291	42.91
	0.63 2213 2195 22.4	33.29.283069 33.69	25.31 3891 404	1275
VOPOST, 196 1 15.71 17.46 1	940 2168 235 25	17 28 14 227 412 14	34.1 37.163144	9.58
		***	1	1. 1. 1. 2
PATIONSED	, h 1	- 1 × 2× 5		
251,061,041		SI-75C STILL -		
	·	7	• • •	
! - }	1 - -			i.
- Distrible 13.5 13.1 1	16.4 16.1 15.5 14.	.1 14.3 [4.0 13.3	13.0 12.6 12.4	[12.]
Section 1221 1252	(214) 232 3 283 3.2	35,210,3212,3,299	3 2273.2113.34	3.910
ANEXE 27, 25. 106	111 118	121 126	128	139
20.00	-20 0	15 30	95	50
	-20 0	[15] [30]	12	1201
	ll.		111	
18.7501 PHYC 15087	(5135 LSI	1323	1526Q (\$25)	15300
WIPOLEY WILL	204 01	4 23	021	0.27
}		→	1 ~ -	
* ** * * * * * * * * * * * * * * * * * *	208 0.10	0.17 0.32	93.0	1.90
STEER 25.0	56.0[96.3] 223	LS (024		
\$152 es	15.1 21.0 39.	8 75.01020	1100 3190	5-20
\$200.75	5.50 6.90 10.	52 8.91 2110	280 451	519
				1 1 1
	 	· • • • • • •	·	╊ ╌ ╃╌┠
	╶╎╌┩╌╏ ╸	-	- -	
البيها ببطيع يدار		. I _ L I	I I I	I

ISAMITA CRUDE INSPECTION PRIMARY GATA MILEMOS

SUEN CANADAS					
FACEL FACEL ASTAY	Total attal and and and a said				
COGOLLAR IX- CEARO NEGRO	LV. SC-2C. 23				
(O-10/4VI	1				
ue w					
CIT MA					
1514 What 45. 461 564 W.					
▗▗┄ ▗▗╌┈═╏╼╌╏ ╸═ ╏ ┈ ╏ ┈ ╏ ┈ ╏					
vecavor 4.15 9.13 14.08	}				
1 1 1 2 1 2 1 2 0.97	+				
5.12 155515.05					
WO PONT, YOL & 3.05 10.10 9.01	╅━╁╸┇╌╸				
╶╶┈╎┈╎╾┼╼╁╼╊╼┼┈┩╾┠╸╏╼╬╍╽┈					
	_				
Carrie un 30.9 23.1 25.0					
REAR - 1251 2316 2.162					
COLOR, SATION	<u></u>				
SENT 50. 0.86 4.61	+				
2-33 'F	- -				
6 ta 19. [2.3] 5.(1)	╍┠╌╼┫╌╶╂┈┈┨				
<u> </u>	-}				
eren. 102 1.69					
PER INCEX DID TO 18555 USES					
Succes from the 21	·1				
aansur . 5/c 5/c	†···-{}-				
Jacob Parties College					
10ue 10ue 11 (4:00 -85	-}				
MONATCE.	• • • • • • • • • • • • • • • • • • • •				
MULTINE TO THE TOTAL OF THE TOT					
Winted	├ - }} -				
***	1				
<u>- - - - - - - - -</u>					
The state of the s					

Cause inspection paintagy 221A Stands	ERCOUCTS ASSAT				**************************************
	RRO NEGRO			Ly. 50	76.19
(Suscept -					
urz					
C/T. V3					
TEMP, AUT AL. W. 550 551 173				- 1	
5-AC# 351 195 995		. _ _	. -	<u> </u>	_
TELD YOUR 35.59 12.11 17.8		. i . l l			
न्ध्राद्धरः । ५००५ १० १९ २५३५				<u>.</u>	
23.64.4512 AS 45.12					
4200 1 10C \$ 2235 \$ 10 3335					
				•	
Same 24 15.6 13.1 13.4		-1:-	· · · · · ·		
Section = 1 - 325532733355					İ
NEIDE 27. 17 126		-			
faca *f 40					
SISTISC ESC 112 / 1930	· ·	-		-	
2150 7 25.5 2314 230		-1-1-	·	t	1
	 				-
		 -}}	├ ─-		-
@10 '1 7.81 3135 23.53	:			 	∤ – ∤
755. Acces # 51 - 1550 (557) 51575	; 		-		
अर्थावरक भार	 		<u> </u>		
STROOM VI	3'				
CELES AT S			<u> </u>		
CC CUS VI 2 0.09 0.10 0.50				<u> </u>]
seri so. 5.93 5.61					
UCS 270 0.43					
31CTEL 970 019					1-1
19.5 seq screeks]		
WALSHAWT 1					

CEC !!	LAR	ΙX		erro		ASSAI RO			• •				acions SC - i	76.19	
	8,1	. 22	. 4.3	••	.13	L					i -		1	i	
ur xe	-						Į l				l		ŀ		
!	52			<u> </u>	52	<u> </u>								}	ļ
acting ma, or	633	252	3 5.1	950	175						i			Ī	Ī
	8995	77.27	6934	(1.03	51.25	1									
(IST. FOL E)	505	22.73	3464	3881	4275	1		•	-		Γ.	ľ			
(113. 10L E)	100	100	100	100	100				-	ļ -					
ועי יוויונט	5.5	4.4	3.4	2.3	1.8										
ONISES VIT								-		i					
PEUT NO.	3.2 †											l -			
1		4.10	4.13	4.26	431		- 1								
	19.55] .	253	1						1			
i	8.14			ı	251	ŧ	İ		1						l
		1	>125	>125	1	1	ļ	1	ŀ	İ			i] -	l
• ' '	063				0.82	ļ									l
CON CLASSON HOLD		19 42	ንለ ትዕ	235	l .	1 .				Ì		Ì		1	
	11	10.42	2211	<u>.</u>		اً					ļ	}		1	i
ort m. 'r				-		1	1						l		
HEN @ 27 'F								_	- "				İ	1	
101212 6 189				•		1		ł	ŀ		ŀ				l
NÖXEL PHILIZ,	33			İ	162						Į	l		-	İ
	12				18]						Ì		l
TAXADLUL pen	484		ļ.	-	45	١	1								
A 108 42" A 108 42"															ĺ
9171 Mg.	. 1	_		•	•	!									
- \$150 °F					I .	L	1			·	1	Ī			
eus 'r		i			Ì	<u> </u>	1								
@110 'F	2.945	3100		ŀ.	ĺ				1						
@ 215	308	534	1345	1 13544	715	-	1		ľ						
a j.ca 1	•	1		I			1	~ .]		į		j 		1

ATTACHMENT- 4

JICA-1

THE UPGRADING PROJECT

OF ORINOCO HEAVY OIL IN THE REPUBLIC OF VENEZUELA

--- GENERAL DESCRIPTION ---

1. Venezuelan Government's Request

- (1) In April 1978, the Venezuelan Government officially requested the technical cooperation of Japan in a letter of the Minister of Energy and Mines. The requested cooperation mainly consists in conducting studies and evaluations, from a neutral point of view, of various proposals to the Government made on an industry basis, on which the Government has difficulties in making judgements.
- In accordance with the request, the Japan
 International Cooperation Agency (hereinafter
 referred to as "JiCA") sent a preliminary survey team
 to Venezuela in late August 1978 to discuss how to
 develop the cooperation with the Venezuelan
 Government. At the discussion, Venezuela requested
 the Japanese team to conduct a feasibility study on
 processes for upgrading the Orinoco heavy oil.
- (3) The content of the request is as follows:
 - (a) Purposes of Feasibility Study

It is planned to produce the Orinoco heavy crude around 1985, for which a plant of the 100,000 - 120,000 BPSD class is expected to be built to upgrade and refine the crude. A feasibility study is to be made to judge what process could be best used for the plan, making examinations on mainly the processes proposed by three groups of Japan.

(b) Prerequisites of Peasibility Study

Properties of the Orinoco heavy crude and estimated grade of the product synthetic crude shall be presented. By-products from the upgrading shall be used to generate steam for use in crude production and energy needed for upgrading.

(c) Scope of Peasibility Study

The feasibility study excludes the survey on financing, the marketing of the synthetic crude, the infrastructure and site selection of the plant.

(d) Supply of Data

All data necessary for the feasibility study shall be provided by Venezuela.

2. Procedures for the Feasibility Study

JICA studied the approach based on the report of the preliminary survey team, and determined to conduct the feasibility study following the procedures below. In March 1979, Japan notified the Venezuelan Government of this decision via the Japanese Embassy in Venezuela, confirming the basic prerequisites and requesting the supply of crude samples. Procedures for the feasibility study are as follows:

(1) Objectives of Peasibility Study

fhis study is intended to make clear the respective features of the three processes proposed by three groups of Japan for the upgrading of the heavy crude to be produced in the Orinoco Heavy Crude Development Project located on the north side of the River Orinoco, and to provide data necessary for the selection of a process adequate for a commercial plant.

(2) Scope of Feasibility Study

Technical and economic studies will be conducted with limitations to the plant facilities for the upgrading of the crude:

- (3) Procedures for Execution
 - (a) Conduct a preliminary study based on basic prerequisites and crude samples.
 - (b) After determining the terms of reference for the feasibility study, send a P/S survey team to Venezuela to hold discussions and to do a field survey.
 - (c) Perform work in Japan and prepare a report.
- (4) Dispatch of First Survey Team

with regard to the confirmation of the basic prerequistites and the requested supply of the crude samples, it had been determined that the execution schedule was to be somewhat modified to accelerate the progress of the study. That is, the First Survey Team was dispatched to Venezuela on October, 1979 to do the following work:

- (1) To confirm the basic prerequisites
- (2) To obtain the crude samples
- (3) To discuss the preliminary T/R which is prepared as a result of the preliminary survey
- (5) Record of Discussions

As a result of the Pirst Survey, the Record of Discussions as per attached was signed by both parties on October 10, 1979.

3. Project Execution Shedule and Execution Manner

Based on the above Record of Discussions, the preliminary study was conducted in Japan.

The project execution schedule and execution manner, however, have been revised as per Fig. 1.

And the Second Survey Team was dispatched to Venezuela to accomplish the following objectives.

- (1) To report the results of the preliminary study.
- (2) To confirm the additional basic conditions for the feasibility study.
- (3) To confirm the basic conditions for the economic study on the feasibility study.
- (4) To collect information and data on construction planning for the feasibility study.

Angelia de la companya della companya della companya de la companya de la companya della company

COMMUNICATION DAYS.	1979	10 11 12 1 2 3 4 6 6 7 6 9			CHRISTIAN A PRESENT A PART OF THE PART OF
FINITE DERMOD HEAVY OF UP-GRANTING PROJECT	\coprod_{i}			<u>; </u>	OVIGINAL Mehaduja waa confirmed in the Metaber ONIGINAL SCHRIUUIS 10, 1979,

JICA-2

THE SECOND SURVEY TEAM

THE UPGRADING PROJECT

OF ORINOCO HEAVY OIL IN THE REPUBLIC OF VENEZUELA

Objectives

The Japanese Second Survey Team sent by the Japan International Cooperation Agency (hereinafter referred to as "JICA") is expected to accomplish the following scope of work by exchanging views with the authorities concerned in the Republic of Venezuela, so as to meet the real needs of Venezuela:

- (1) To report the results of the preliminary study
- (2) To confirm the additional basic conditions for the feasibility study
- (3) To confirm the basic conditions for the economic study on the feasibility study.
- (4) To collect information and data on construction planning for the feasibility study.

2. <u>Method of Approach by the Second Survey Team</u>

The survey team will visit the government organization and other authorities concerned.

The survey team will be organized by two groups as Group-A and Group-B.

Group-A will accomplish (1), (2) and (3) on the scope of work in the above Section 1.

Upon completion of the survey, the survey team will prepare minutes of meetings, which are to be signed and exchanged with the Venezuelan side.

Group-B will accomplish (4) on the scope of work in the above Section 1.

Members of the Second Survey Team

The members of the Second Survey Team are organized as the attached "MEMBERS LIST".

Group A

Leader: Mr. Sen'ichi BIROSE

Mr. Kei'ichi GOTOH

Dr. Koji UKEGAWA

Mr. Hideo YASUKI

Mr. Yasuhisa HOSOYA

Mr. Terutada TSUKAGOSHI

Group B

Leader: Mr. Senichi HIROSE

Mr. Yasuhisa HOSOYA

Mr. Isao USUI

Mr. Akimasa IIMURA

Messrs. HIROSE and HOSOYA will join Group B after completion of Group A's work.

4. Schedule of the Second Survey

Schedule for the second survey is planned tentatively as indicated in the attached Fig. 2.

This tentative schedule is to be further developed and adjusted through discussions with you so as to accomplish the objectives of the survey most efficiently.

Your cooperation in this regard will be much appreciated.

5. Survey Items

(1) Result of Preliminary Study

Please refer to the attached "The Report of Preliminary Study". (1)

- (2) Additional Basic Conditions for Peasibility Study

 Please refer to the attached "Confirmation Items of
 Basis of Peasibility Study".
- (3) Basic Conditions for Economic Study on Feasibility
 Study

Please refer to the attached "Confirmation Items of Basis of Economic Study". (3)

(4) Information and Data on Construction Planning

Please refer to the attached "Information and Data on

Construction Planning". (4)

Burney Control of the State of the Control

Group A	Group 3
Tokyo PA 80	New York
New York PA 21	Caracas
Meeting at Emba	ssy of Japan
Meeting with MEM	
	Interview and Hearing at Instituto Nacional de Puertos (INP) Formiconi, SADE REVACO etc.
Heeting with PETROVEN/ INTEVER/LAGOVEN	Caracas Pto. Ordaz
J	General Survey of Orinoco Area
Preparation of R/D	Visit to Pt. Ordaz Port Authority
t#	General Survey by Helicopter
14	Visit to Vandam Guayana Factory
Submission of R/D	Pto. Ordaz —→ Pto. Guanta
Caracas New York PA 218	Visit to Pto. Guanta Port Authority
New York	Pto. Guanta Caracas Maracaíbo
Tokyo	Visit to AFCA Factory
	Maracaibo Caracas
	Preparation of Sruvey Report
	Collection of Data and Information at Caracas
	Preparation of Survey Report
	Caracas New York PA 218
	New York PA 801 Tokyo
	New York PA 21 Meeting at Embar Meeting with MEM Meeting with PETROVEN/ INTEVEP/LAGOVEN Preparation of R/D M Submission of R/D Caracas Rew York PA 218 New York PA 801

ATTACH MENT TO JICA-2

1

THE REPORT OF PRELIMINARY STUDY

FOR

THE UPGRADING PROJECT

OF

ORINOCO HEAVY OIL

IN

THE REPUBLIC OF VENEZUELA

APRIL 1980

JAPAN INTERNATIONAL COOPERATION AGENCY

CONTENTS

- 1. INTRODUCTION
- 2. STUDY BASES
- 3. PROCESS PLOW SCHEME
- 4. BY-PRODUCT UTILIZATION SCHEME
- 5. UTILITY AND OFFSITE FLOW SCHEME
- 6. SUMMARY

ATTACHMENT

ANALYSIS OF SAMPLE CRUDE OIL

1. INTRODUCTION

Based on the basic conditions for preparing the scheme of the Orinoco Heavy Crude Oil Upgrading Refinery as determined in October 1979 between MEM and the JICA survey team, JICA promptly consulted three licensors and started studying flow schemes on the identical bases.

This is an interime report on the present development of the study on the Japanese side.

This report consists of the following items:

- 1) Study Bases
- 2) Process Flow Scheme
- By-product Utilization Scheme
- 4) Utility and Offsite Flow Scheme
- 5) Summary

JICA sincerely hopes that the results of our study will prove useful to Venezuela, and for this purpose we wish to obtain various advice and further information from the Venezuelan side.

We will prepare a final report by adding further studies on construction cost, operating expenses, and general economic evaluations.

2. STUDY BASES

The basic conditions of the preliminary study has been established as a survey result of the first survey team which was sent to Venezuela in October 1979.

The main items are summarized on the "Record of Discussions" attached to the JICA-1.

3. PROCESS FLOW SCHEME

(1) Cases of process scheme

The following three (3) cases of process scheme are described in the preliminary study.

CASE	MAIN UPGRADING PROCESS	PROPOSER
Eureka Case	Eureka Process	Kureha Chemical Industry Co., Ltd. and the group
Pluid Coker Case	Pluid Coker Process	Toa Oil Co., Ltd. and the group
SDA Case	M-DS Process	Maruzen Oll Co., Ltd. and the group

Flexicoking is a residuum conversion process which integrates coke gasification with conventional fluid coking.

Energy loss is borne in course of the coke gasification and coke firing boiler is available, therefore, the fluid coker process is applied in the study.

(2) Refinery Scheme

The block flow diagrams of refinery scheme for each case are shown in Fig. 1, Fig. 2 and Fig. 3.

(Slide 1, 2 and 3)