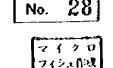
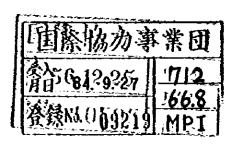
年間、おおおび 10 ものです

1 1


THE CENTRO IN TARIBLE TO THE BUTCH RESPECT

MARCHER CONTRACTOR

 $M_{\rm A}$:


THE STUDY REPORT ON THE ORINOCO HEAVY OIL UPGRADING PROJECT FOR THE REPUBLIC OF VENEZUELA

VOLUME I : REPORT

NOVEMBER 1980

JAPAN INTERNATIONAL COOPERATION AGENCY

MPI SC 80-104(½) No. 13946 712 66.8 MPT

PREFACE

It is with great pleasure that I present this report entitled "The Report on the Orinoco Heavy Oil Upgrading Project for the Republic of Venezuela" to the Government of the Republic of Venezuela.

This report embodies the results of the first survey and the second survey which were carried out (in Caracas and Orinoco area, Venezuela) from September 30 to October 13, 1979 and from May 3 to May 23, 1980 by the Japanese survey team commissioned by the Japan International Cooperation Agency following the request of the Government of the Republic of Venezuela.

The survey team, headed by Mr. Senichi Hirose, had a series of close discussions with the officials concerned of the Government of the Republic of Venezuela and conducted a wide scope of field survey and data analyses.

I sincerely hope that this report will be useful as a basic reference for development of the project.

I am particularly pleased to express my appreciation to the officials concerned of the Government of the Republic of Venezuela for their close cooperation extended to the Japanese team.

November 1980

Keisuke Arita

President

JAPAN INTERNATIONAL COOPERATION AGENCY

Guente Anita

CONTENTS

			Page	•
CHAPTER	1	INTRODUCTION		
CHAPTER	2	SUMMARY		
	2.1	OBJECTIVES OF STUDY	. 2	2
	2.2	UPGRADING REFINERY SITE	. 7	2
	2.3	ROJECT OUTLINE	. :	2
	2.3.1	Crude Oil and Product	. :	2
	2.3.2	Major Facilities	. (6
	2.4	ECONOMIC STUDY	. '	7
	2.4.1	Capital and Operating Costs	•	7
	2.4.2	Economic Analysis	-	7
	2.5	OVERALL COMPARISON		8
	2.5.1	Comparison from a Technical Viewpoint	. •	8
	2.5.2	Comparison from an Economic Viewpoint	1	0
CHAPTER	3	STUDY BASES		
	3.1	CRUDE OIL	1	11
	3.1.1	Raw Crude Oil	1	11
	3.1.2	Crude Oil	1	11
	3.1.3	Characteristics of Raw Crude Oil	••	11
	3.1.4	Supply of Crude Oil		H
	3.2	UPGRADING REFINERY	••	11
4	3.2.1	Location		11
	3.2.2	Refinery Capacity		11
	3.2.3	Configuration		12
	3.2.4	Utilities		12
	3.2.5	Storage Facilities	• • •	12
	3.2.6	Desulfurization		12
	3.2.7	Code and Standards	• • •	12
-	3.3	IMPROVED CRUDE OIL	• • •	12
	3.3.1	Yield		13
	3.3.2	Qualities of Components	• • •	13
	3.4	BY-PRODUCT FUEL		13
	3.4.1	Use		13
	3.4.2	Electric Power for the Raw Crude Oil Production		14

	3.5	BY-PRODUCT SULFUR	14
	3.6	USE OF NATURAL GAS	14
	3.6.1	Properties	14
	3.6.2	Supply Conditions	14
	3.7	COST ESTIMATION	14
	3.7.1	Capital Requirements	14
	3.7.2	Operating Cost	15
	3.8	ECONOMIC ANALYSIS	15
CHAPTER	4	PLANNING CONSIDERATION	
	4.1	SCOPE OF STUDY	17
	4.2	PRODUCT AND BY-PRODUCTS	17
	4.2.1	Improved Crude Oil	18
	4.2.2	Sulfur Recovery	18
	4.2.3	Combustion of By-Products	
	4.2.4	Diluent	
	4.3	POLLUTION PREVENTION	
	4.3.1	Water Pollution Prevention	
	4.3.2	Air Pollution Prevention	22
	4.4	SUPPLY OF DILUENT, ELECTRIC POWER AND FUEL GAS TO RAW CRUDE OIL PRODUCTION FIELD	22
	4.4.1	Diluent	
	4.4.2	Electric Power	
	4.4.3	Fuel Gas	
	4.5	SOLIDS STORAGE AND HANDLING FACILITIES	
	4.5.1	Volumes of Solids Storage	
	4.5.2	Facilities for Solids Receiving, Storage and Shipment	
СНАРТЕ	R 5	DESCRIPTION OF PROCESS UNITS	
	5.1	UPGRADING PROCESS UNITS	. 28
	5.1.1	Fluid Coker Process	. 28
	5.1.2	Eureka Process	. 32
	5.1.3	M-DS Process	. 36
	5.2	PROCESS SCHEMES	- 41
	5.2.1	Fluid Coker Case	- 41
	5.2.2	Eureka Case	
	522	M.DS Case	40

CHAPTER	6	DESCRIPTION OF UTILITY AND OFFSITE
		FACILITIES
	6.1	UTILITY FACILITIES
	6.1.1	Utilities Supply System
	6.1.2	Utilities Balances
	6.1.3	Capacities of Utility Facilities
	6.2	OFFSITE FACILITIES
	6.2.1	Storage Facilities
	6.2.2	Product Shipping System
	6.2.3	Solids Handling System
	6.2.4	Waste Water Treatment Pacilities
	6.2.5	Flue Gas Desulfurization Unit
	6.2.6	Fire-fighting System
	6.2.7	Flare Stack and Blowdown System
-	6.2.8	Control Rooms
	6.2.9	Buildings 65
	6.2.10	Others 66
CHPATER	7	UTILIZATION OF BY-PRODUCTS
	7.1	BY-PRODUCTS (HEAVY RESIDUALS)
	7.2	TYPES OF COMBUSTION 67
	7.2.1	Fluid Coke 67
	7.2.2	Eureka Pitch
	7.2.3	M-DS Asphalt 73
CHAPTER	R 8	PROJECT EXECUTION
	8.1	REFINERY PLOT PLAN
	8.2	REFINERY CONSTRUCTION SCHEDULE 77
	8.3	MOBILIZATION PLAN
	8.3.1	Labor Mobilization
	8.3.2	Procurement of Construction Equipment
	8.3.3	Unloading and Inland Transportation of Equipment and Materials
	8.4	REFINERY ORGANIZATION 81
	8.5	EMPLOYEE TRAINING PLAN
Call been	ÐΛ	CAPITAL REQUIREMENTS
СНАРТЕ	ж у 9.1	FIXED CAPITAL 89
	9.1.1 9.1.1	
	7.1.	Communication cost and the cost of the cos

	9.1.2	Paid-up Royalties	91
	9.1.3	Initial Cost of Catalyst and Chemical Filling	91
	9.1.4	Pre-operating Expenses	91
	9.2	WORKING CAPITAL	95
	9.2.1	Land Rent	95
	9.2.2	Raw Material and Product Inventories	95
	9.2.3	Catalyst and Chemical Inventories	96
	9.2.4	Spare Parts and Warehouse Inventory	96
	9.2.5	Cash in Hand	96
	9.2.6	Balance Between Accounts Receivable and Accounts Payable	96
CHAPTER	10	OPERATING COST AND ECONOMIC ANALYSIS	
	10.1	OPERATING COSTS	97
	10.1.1	Direct Production Costs	97
	10.1.2	Fixed Charges	98
	10.2	ECONOMIC ANALYSIS	100
	10.2.1	Bases and Procedures	100
	10.2.2	Result of Study	104
CHAPTER	1 i	DISCUSSION ON STUDY RESULTS	
	11.1	REFINERY PLAN	110
	11.1.1	Process Scheme	110
	11.1.2	Yield of Improved Crude Oil	110
	11.1.3	Properties of Improved Crude Oil	112
	11.2	PROCESSES AND OPERATIONS	112
	11.2.1	Fluid Coker Process	112
	11.2.2	Eureka Process	113
	11.2.3	M-DS Process	114
	11.2.4	Yields of Liquid Oil Fractions from the Three Upgrading Processes	114
	11.2.5	Hydrotreating Units	115
	11.2.6	Heavy Oil Hydrodesulfurization Unit Used in the M-DS Case	115
	11.2.7	Hydrogen Consumption by the Hydrotreating Process	117
	11.3	RESIDUAL PRODUCTS	117
	11.3.1	Combustion Systems	117
	11.3.2	-	118
	11.3.3	Utilization of Surplus Residuals	120
	11.4	ECONOMICS	
	11.4.1	Capital Requirement	. 120

	11.4.2	Operating Cost	121
	11.4.3	Economic Analysis	121
ANNEX		CALCULATION SHEET OF ECONOMIC	
		ANALYSIS	A-1

GLOSSARY

°API gravity of petroleum defined by American Petroleum Institute

BBL barrel

BPCD barrel per calendar day
BPSD barrel per stream day
BTU British Thermal Unit

°C degree centigrade

cp centipoise
cst centistokes
DAO deasphalted oil

DCF discounted cash flow °F degree fahrenheit

FOE The heating value of a standard barrel of crude oil, equal to 6.24 million

BTU (LHY)

Hr or H hour

HCR hydrocracking (unit)

HDS hydrodesulfurization (unit)

HTR hydrotreating (unit)

HP high pressure

H₂ Plant hydrogen generation plant

INTEVEP Instituto Technológico Venezolano del Petróleo

JICA Japan International Cooperation Agency

Kcal kilocalorie
Kg kilogram
LAGOVEN Lagoren S.A.
LP low pressure

MEM Ministerio de Energía y Minas

m meter

m² square meter
m³ cubic meter
MM million

pin menon

MMBTU million British Thermal Unit

MMKcal million kilocalorie

MMNm³/SD million normal cubic meter per stream day

MMSCFD million standard cubic feet per day

MW megawatt

MP medium pressure m³/H cubic meter per hour Nm³ normal cubic meter

MH man-hour
MT metric ton
% percent

wt.% weight percent vol.% volume percent

PDVSA Petróleos de Venezuela, S.A.

ppm parts per million

ROE rate of return on equity

ROR rate of return

SCF standard cubic feet

SDA solvent deasphalting (unit)
SCFD standard cubic feet per day

Sp.Gt. specific gravity

SR sulfur recovery (unit)

SCF/B standard cubic feet per barrel

Ton/H or T/H tons per hour

Ton/SD or T/SD tons per stream day

Ton/Y or T/Y tons per year

UHP Ultra high pressure

US\$ US dollar

106 US\$ million US dollar US\$/BBL US dollar per barrel

USS/MMBTU US dollar per million BTU

y year

wt.%S weight percent sulfur

VGO vacuum gas oil

FIGURES

FIG	Title	Page
2.1	Site Location Map	4
4.1	Frame of Project	19
4.2	Storage and Handling of Solid	27
5.1	Process Flow Diagram of Fluid Coker Process	30
5.2	Process Flow Diagram of Eureka Process	35
5.3	Process Flow Diagram of M-DS Process	38
5.4	Block Flow Diagram of Fluid Coker Case	43
5.5	Block Flow Diagram of Eureka Case	44
5.6	Block Flow Diagram of M-DS Case	45
6.1	Steam, Power and Water System Diagram	54
6.2	Tank Flow Diagram	61
7.1	Simplified Flow of Combustion System (Fluid Coker Case)	69
7.2	Simplified Flow of Combustion System (Eureka Case)	72
7.3	Simplified Flow of Combustion System (M-DS Case)	76
8.1	General Plot Plan (Fluid Coker Case)	79
8.2	Preliminary Project Schedule	80
8.3	Refinery Organization Chart	85
10.1	Result of Economic Study	105

TABLES

Table	· Title	Page
2.1	Overall Material Balance	3
2.2	Properties of Improved Crude Oil	5
2.3	Major Facilities	6
2.4	Cost Summary	7
2.5	Internal Rate of Return	8
2.6	Comparison of Three Upgrading Scheme	9
5.1	Experiences of Fluid Coker & Flexicoker	29
5.2	Yield of Fluid Coker Process	33
5.3	Yield of Eureka Process	37
5.4	Yield of M-DS Process	40
5.5.	Overall Material Balance	47
5.6	Properties of Improved Crude Oils	48
5.7	Capacities of Process Units	49
5.8	Hydrogen Balance	50
5.9	Sulfur Balance	51
6.1	Utility Balance of Fluid Coker Case	55
6.2	Utility Balance of Eureka Case	56
6.3	Utility Balance of M-DS Case	57
6.4	Summary of Utility Requirements	58
6.5	Capacities of Utility Facilities	59
6.6	Tank Summary	60
6.7	Storage Capacity of Solid Material	63
6.8	Properties of Treated Waste Water	64
6.9	Material Balance of Flue Gas Desulfurization	65
6.10	Building	66
7.1	Summary of By-products	68
8.1	Summary of Required Personnel	83
8.2	Trainees	87
9.1	Capital Requirement Summary	89
9.2	Construction Costs Summary	92
9.3	Paid-up Royalties	93
9.4	Initial Catalyst and Chemical Costs	. 94
9.5	Pre-operating Expenses	. 95
9.6	Working Capitals	. 96
10.1	Operating Costs	. 99

10.2	Product Price	102
10.3	Capital Expending Schedule	103
10.4	Economic Analysis Summary	
10.5	Sensitivity Analysis Summary	106
11.1	Overall Material and Energy Balances	111

CHAPTER 1 INTRODUCTION

Volume I is a report dealing with the technical and economic studies on the Orinoco heavy oil upgrading project. With a view to comparing and evaluating the three upgrading processes, the study in this report plans on three cases of upgrading refineries based on these processes, and weighes with one another on the entire refineries including process units, utilities, and offsite facilities.

Volume I has been compiled using a separate Volume II, "Supplement" as the data base. Chapters 1, 2 and 3 of Volume II give three reports submitted by the three respective groups who have proposed their own processes in response to the same prerequisite conditions.

CHAPTER 2 SUMMARY

2.1 OBJECTIVES OF STUDY

The study is related to the three processes proposed by three groups of Japan, which are the Toa Oil Co., Ltd. group, Kureha Chemical Industry Co., Ltd. group and Maruzen Oil Co., Ltd. group, for the upgrading of the heavy crude oil to be produced under the Orinoco Heavy Crude Development Project in an area of 42,000 km² wide located on the north side of the River Orinoco in the Republic of Venezuela.

The objectives of the study are:

- to make clear the respective features of the three processes and
- to provide information for the process selection in the course of planning a commercial plant for the upgrading of the heavy crude oil

2.2 UPGRADING REFINERY SITE

The Orinoco Oil Belt lies on the north side of the River Orinoco, and the area has a width of 70 km and a length of 600 km which covers the delta of the river, Monagas state and Anzoategui state and the south of Guarico state.

Fig. 2.1 shows a general map of the Orinoco area.

2.3 PROJECT OUTLINE

The upgrading schemes of the heavy crude oil proposed by three groups of Japan are as follows:

- scheme based on the Fluid Coking process proposed by Toa Oil Co., Ltd. group (hereinafter referred to as "Fluid Coker Case")
- scheme based on the Eureka process proposed by Kureha Chemical Industry Co., Ltd.
 group (hereinafter referred to as "Eureka Case")
- scheme based on the M-DS process proposed by Maruzen Oil Co., Ltd. group (hereinafter referred to as "M-DS Case")

2.3.1 Crude Oil and Product

50/50% Cogollar IX and Cerro Negro Crude Oil is processed to yield 125,000 BPSD improved crude oil having a gravity of 25-28° API and sulfur content of less than 1.0 wt. percent.

Overall material balances and the characteristics of the improved crude oils are shown in Table 2.1 and Table 2.2, respectively.

Table 2.1 Overall Material Balance

Normal operation case

		Non	nai operation case
Case	Fluid Coker	Eureka	M-DS
Feed			
Raw Crude Oil	158,160	158,710	151,055
Diluent Light Gas Oil	47,428	47,613	45,317
Mixed Crude Oil, BPSD	205,588	206,323	196,372
Natural Gas, MMNm³/SD	0.198	0.518	0.850
: Products			
Improved Crude Oil, BPSD (Synthetic Crude Oil)	125,000	125,000	125,000
Sulfur, T/SD	509.2	569.0	558.0
Diluent Light Gas Oil, BPSD	47,428	47,613	45,317
Gypsum, T/SD*	673	498	594
Fuel Gas to Field MMNm³/SD	1.08	0	0
Electric Power MW*	126.2	126.6	120.5
Surplus By-product Fuel, T/Y	746,345	899,992	792,126

^{* 365} D/Y production

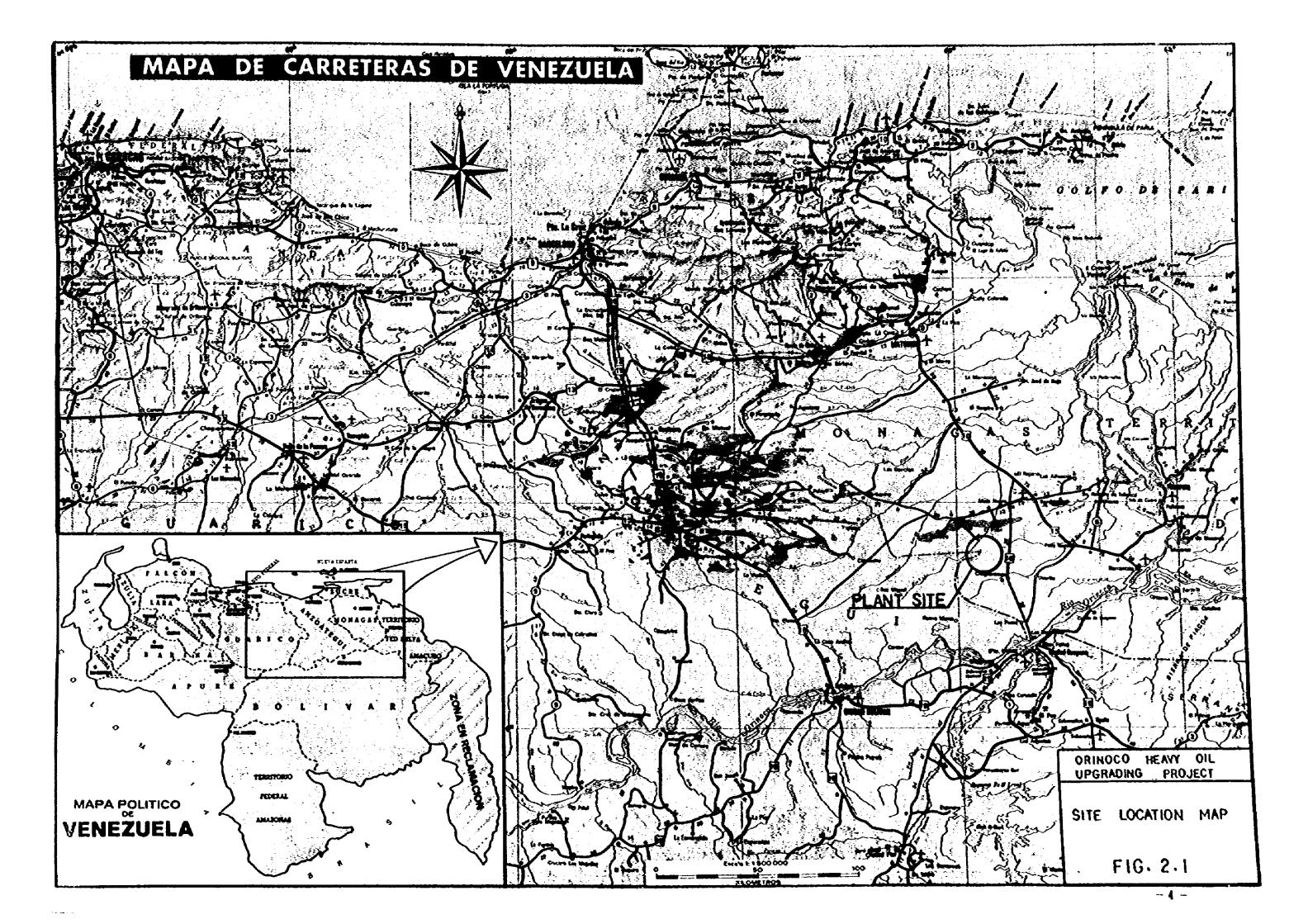


Table 2.2 Properties of Improved Crude Oils

	Fluid Coker	Eureka	M-DS
Feed			
(Raw Crude Oil)			
°API	8.5	8.5	0.6
Sulfur, wt%	3.67	8.5 3.67	8.5 3.67
Products			
(Improved Crude Oil)			
°API	25.7	25.0	26.1
Sulfur, wt.%	0.70	0.41	0.05
Viscosity			0.00
cst.@100°F	4.9	_	22.0
cst.@210°F	2.8	_	4.0
Nitrogen. wt.%	0.17		0.008
CCR, wt.%	0.147		0.13
Components, vol. %			
SR. Naphtha	_	1.0	0.2
HTR. SR. Naphtha	1.0		
HTR. SR. LGO	5.5	5.3	5.1
HTR. SR. HGO	12.9	12.6	12.1
HTR. VGO	35.9	35.1	35.4
HTR. Coker Naphtha	11.2	_	_
HTR. Coker Gas Oil	33.5	_	
HTR. Cracked Light Oil	_	7.8	
HTR. Cracked Heavy Oil	-	38.2	_
HTR DAO		_	47.2
Yield of Distillation			
C ₅ /375°F, vol. %		7.3	9.5
375/650°F, vol. %		32.4	34.0
650/1,000°F, vol. %	* *	60.3	33.5
1,000°F+, vol. %	_	_	23.0
Sulfur content of distillat	ion		
C ₅ /375°F, wt.%	0.24	0.09	0.01
375/650°F, wt.%	0.67	0.1	0.08
650/1,000°F, wt.%	0.73	0.6	0.02
1,000°F+, wt. %		_	0.03

2.3.2 Major Facilities

Three process schemes consist of the primary upgrading processes such as the Fluid Coking process, the Eureka process and the M-DS process, the pretreating processes and such secondary upgrading processes as hydrodesulfurization, sulfur recovery process and so on.

Utility facilities are planned on the basis of self-sufficiency.

Such offsite facilities as the crude oil storage, the improved oil storage and loading are planned based on the specific conditions of the project.

Major facilities planned for the respective three cases are shown in Table 2.3.

Table 2.3 Major Facilities

		Fluid Coker	Eureka	M-DS
Process Units				
Atmos. Crude Distillation	BPSD	102,800x2	103,200x2	98,200x2
Vacuum Flashing	BPSD	67,200x2	67,400x2	64,200x2
Fluid Coker	BPSD	43,600x2	_	-
Eureka	BPSD	_	42,400x2	_
M-DS	BPSD		_	40,700x2
HTR or HDS	BPSD	60,900x2	16,100x2	10,700x2
		• •	45,900x2	48,800x2
Hydrogen Generation	MMNm³/SD	0.90x2	1.08π2	1.70x2
Acid Gas Treating	Ton/SD-H ₂ S	68x2 23x2	315x2	309x2
Sulfur Recovery	Ton/SD-S	192x2 255x2	285x2	
Utility Systems Steam				279x2
Generator 100kg/cm ² G 50kg/cm ² G	Ton/H Ton/H	260x(3+1) 200x2	240x(5+1)	240x(5+1)
Power Generator	KW	55,000x(3+1) 18,000x2	46,000x(5+1)	44,000x(S+1)
BFW Treating Cooling Water System	Ton/H Ton/H	250x(2+1) 18,000x2	310x(2+1) 20,000x2	200x(2+1) 15,500x2
Tankage System				
Total Tank Capacity	10 ³ Ki	1,436	1,397	1,340.5

2.4 ECONOMIC STUDY

2.4.1 Capital and Operating Costs

For the three case schemes, the capital and operating costs are estimated. In the estimation, all costs expressed in US dollars are based on the 1980 prices (escalation factor is not included) and reflect conditions in Venezuela.

Table 2.4 shows a summary of costs.

Table 2.4 Cost Summary

Case	Capital Requirement 106 US\$	Direct Operating Cost US\$/BBL of Improved Crude
Fluid Coker	1,073.40	1.63
Eureka	1,097.50	1.62
M-DS	1,188.18	2.15

The above costs are for process units and facilities inside the battery limits of the refinery. The cost for the following facilities are not included:

- Raw crude oil processing facility
- Raw material supply pipeline and facility
- Improved crude oil pipeline
- Raw water and natural gas supply pipeline
- Housing for the refinery's employees
- Transmission facilities for diluent, fuel gas and electric power
- Transmission facilities for sulfur, by-product and gypsum
- Storage facilities of surplus by-product

2.4.2 Economic Analysis

In order to evaluate the three cases from an economic viewpoint, an economic analysis is conducted by calculating the internal rate of return (IRR) based on assumed raw crude oil cost (US\$10/BBL) and improved crude oil price (Tia Juana Medium crude price is adjusted by sulfur and gravity differentials). And sensitivity analyses are conducted by taking crude oil cost, construction cost and income tax as parameters. The details of the bases are described in section 3.8. The results of study are shown in Tables 2.5.

Table 2.5 Internal Rate of Return

	CASE	Fluid Coker	Eureka	M-DS
	ROE, %			
Income tax	50%			
Construction cost	Base	25.0	22.9	23.1
Raw crude oil	Base			
Income tax	67%			
Construction cost	Base	18.7	17.1	17.2
Raw crude oil	Base			

2.5 OVERALL COMPARISON

In this section, overall comparison and review are given on the three upgrading schemes proposed by three groups. The results of study will be described in Chapter 5 through Chapter 10. Major items having some differences in results among three schemes are enumerated in Table 2.6 "Comparison of Three Upgrading Schemes".

Details of comparison are described in Chapter 11.

2.5.1 Comparison from a Technical Viewpoint

Major differences exist in process schemes (combinations of processes), product, operation and combustion of by-product.

(1) Process scheme and product

- (a) The yield of improved crude oil derived from the raw crude oil on a volume basis is highest in the M-DS case. And the properties of improved crude oil in the M-DS case are close to the target quality. This is because of the following: Unlike the Eureka and Fluid coker processes which are cracking processes, the M-DS process is a solvent deasphalting process which can not yield light oil sufficient for use in the improved crude oil of 25°API; therefore a direct hydrodesulfurization process of high severity is adopted for the purposes of desulfurization and hydrocracking in the M-DS case. For this reason, the requirement of natural gas in the M-DS case is greater than in other cases.
- (b) Only Fluid coker case can supply off gas to the raw crude oil production field, because a lot of gas is produced by fluid coker.

(2) Operation

(a) Fluid coker and M-DS processes are operated continuously, but the Eureka process is operated on a semi-batchwise basis.

Table 2.6 Comparison of Three Upgrading Schemes

Item C	a 5¢	Fluid Coker	1	Eureka	1	M-DS
Process Scheme and	Yield		- 			
Properties of improverude oil	ed					
°API		25.7	2	25.0	;	26.1
Yield and Sulfur	vol. %	wt %S	vol. %	*L%S	rel.%	11. % S
content				_		
C, (375°F	15	0.24	7.3	0.09	9.5	0.01
375/650°F	30	0.67	32.4	0.1	34.0	0.08
650/1,000°F	55	0.73	60.3	0.6	33.5	0.02
1,000°F+	-	-	~	-	23.0	0.03
Yield of improved of vol. % on raw crude (79.0	1	78.8	1	32.8
Natural gas requirem	ents 0.198	MMNm³/D	0.518 M	MNm³/D	0.850 M	MNm³/D
Off gas to crude oil f	ieid 1.08	MMNm³/D		-		_ ,_
Upgrading process	Cokin	š	Thermal	cracking	Solvent deasphal	ting
Hydrotreating and hy desulfurization proce (HTR and HDS)	ydro- Hydro ess of cra-	treating of eked oil	Hydrotte of cracks			sulfurization foctacking
Operation						
Upgrading process (Fluid Coker, Eureka M-DS)	Contig	RIOUS	high visc randown	chwise sperature and osity pitch is from pitch dru to pitch flaker	high viso	ous perature and osity asphalt is ctly to boker
Commercial installati	on More than	10	One is in	operation.	Many sin	ะ)ข้าย หลัก
			One is as	ider constructio	o o	
HTR or HDS						
H, Consumption,	SCF/B HTR:	550	No. 1 H1	R 440	GO HDS	5 : 400
	4		No. 2 H1	R 680	VGO/DA	O HDS: 1,190
LHSY		r than 1.0	Greater t	han 1.0	YGO/D/	O HDS: 0.15
Commercial installati	ion Yes		Yes			o atmospheric IDS unit of high
Combustion of by pr	odact					
Method	Polyer combo	ized coke Istica	Pulverize combust	•	[eternal atomizin	mixing steam B
Commercial insta	Bation Many Operat	coke boilers in ion		o puherized bustion boilers	are in of	run asphalt boilers peration. However, rience of hard aspha
Economics						
Capital requireme (10 ⁴ US1)	als 1	,073	1,0	97	1,1	i88
Return on equity (Income tax 50%	=	25.0		22.9		23.1

- (b) In the Eureka and M-DS processes, there are sections as shown below, where highly viscous liquids are handled at high temperatures.
 - the pitch transfer system from the reactor bottom to a pitch flaker through a pitch stabilizer in the Eureka process.
 - the asphalt rundown line from asphalt stripper and the liquid asphalt transfer system to boiler, as described in (3) "Combustion of by-product" in the M-DS case.
- (c) The M-DS case requires large hydrogen consumption because the hydrodesulfurization of high severity is adopted. And, as many as 10 reactors of 500 ton class each are used for one hydrodesulfurization process unit.
- (d) The Fluid coker and Eureka processes have commercial experience. Although many similar solvent deasphalting processes are in operation, the new extractor developed by Manuzen Oil Co. Ltd. has no commercial experience. As for VGO/DAO hydrodesulfurization, the unit has no experience of operation that gives a high rate of DAO.

(3) Combustion of by-product

Heavy residuals are inevitably produced in the course of the upgrading of heavy oil. Therefore, it is important to review the methods of converting the heavy residuals to energy by burning them on an industrial scale.

As a pulverized coke or coal combustion method is in commercial operation, the Fluid coker and Eureka cases which use the pulverized fuel combusition leave no problem.

In the M-DS case, it is proposed to use an entrainment type of combustion with high temperature steam. However in consideration of the fact that asphalt is handled over a temperature range in which low and medium pressure steams can not be used for heating purposes, operation may not be easy especially at the time of start-up and shut-down of the process.

2.5.2 Comparison from an Economic Viewpoint

Capital requirement of the M-DS case is bigger than those of other cases, because the hydrodesulfurization of high severity has to be adopted.

However, a high price of improved crude oil can be set for the M-DS case due to better gravity and sulfur levels. On the whole, there will be less difference in ROE (return on equity) among three cases.

CHAPTER 3 STUDY BASES

This chapter describes the study bases that have been set at the meeting with the Venezuelan authorities.

3.1 CRUDE OIL

The crude oil supplied to the Orinoco heavy crude oil upgrading refinery has been set as follows:

3.1.1 Raw Crude Oil

50/50% Cogollar IX and Cerro Negro Crude Oil

3.1.2 Crude Oil

- (1) The crude oil supplied to the upgrading refinery is a mixture of the raw crude oil and the diluent which is required to pump up the raw crude oil.
- (2) Distillate of 380-510°F, produced in the upgrading refinery, is used as the diluent.
- (3) The ratio of diluent to raw crude oil is 0.3 on a volume basis.

3.1.3 Characteristics of Raw Crude Oil

Analysis data on the raw crude oil are based on "Crude assay of 50/50% COGOL-LAR IX and CERRO NEGRO (Report No. LV. 5C-PC. 79)", included in Attachment 3 of VOLUME II. As to the data which are not described in the above assay, "TABLA CARACTERIZACION DE LOS RESIDUOS (700°F+) Y DE SUS CRUDOS DE ORIGIN", included in ANNEX-C of Attachment 5, are to be referred.

3.1.4 Supply of Crude Oil

The crude oil produced at the field is given treatment such as water separation and desalting at the main station, and is supplied to the upgrading refinery battery.

Study on the main station is excluded from this study.

3.2. UPGRADING REFINERY

3.2.1 Location

The refinery will be located in the Cerro Negro oil field, south of Monagas.

3.2.2 Refinery Capacity

(1) Production capacity of the improved crude oil is 125,000 BPSD.

Feed rate of the upgrading refinery varies dependent on the process schemes.

(2) Stream days of the upgrading refinery are 330 days/year. The number of process trains and the intermediate tanks are to be studied in order to permit operation of minimum half capacity of process units during shutdown maintenance.

3.2.3 Configuration

Three cases utilizing the following processes, respectively, are to be studied.

- (1) Fluid Coker Process
- (2) Eureka Process
- (3) M-DS Process

3.2.4 Utilities

- (1) Self-supporting type to be studied.
- (2) Required quantities of water for cooling and industrial uses are available from the river and will be supplied to the battery limits of the upgrading refinery.

3.2.5 Storage Facilities

- (1) Crude oil tankage is set to have a capacity of 30 days storage.
- (2) Improved crude oil tankage is set to have a capacity of 7 days storage.
 The improved crude oil is pipelined to the shipping port.
 Study of the storage capacity at the shipping port is excluded from this study.
- (3) Capacities of intermediate tankage and by-product storage facilities are to be set by taking into account the operation of process units and boiler.
- (4) Sulfur products storage facilities are set to have a capacity of one week's supply.

3.2.6 Desulfurization

Vacuum residue is mainly used as process fuel, and its flue gas is not desulfurized. Sulfur of 90% in the flue gas of boilers is recovered as gypsum or others.

3.2.7 Code and Standards

Internationally acceptable ones will be used.

3.3 IMPROVED CRUDE OIL

Improved crude oil (or synthetic crude oil) shall not include residual oil of the raw crude oil. Required properties of the improved crude oil are as follows:

Gravity: 25 - 28°API Sulfur: 1 wt. % max.

Target yields of the improved crude oil and target key qualities of components are as follows:

3.3.1 Yield

Case	Thermal	Solvent
Component	Cracking	deasphalting
C4/375°F	10-25 Vol. %	10-25 Vol. %
375/650°F	25 min.	25 min.
650/1,000°F	50 max.	40 max.
1,000°F+	0	25 max.

3.3.2 Qualities of Components

Case	Thermal	Solvent
Components Qualities	Cracking	deasphalting
C4/375°F		
S, wt. %	0.05 max.	0.05 max.
N_2 , ppm	2 max.	2 max.
375/650°F		
S, wt. %	0.2 max.	0.2 max.
Cetane No	35 min.	40 min.
650/1,000°F		
S, wt. %	0.7 max.	0.5 max.
N2, wt. %	0.25 max.	0.10 max.
CCR, wt. %	1.0 max.	0.7 max.
Aniline Pt.	to be estimated.	
1,000°F+		
S, wt. %	N/A	1.25 max.

3.4 BY-PRODUCT FUEL

Residual oil and heavy liquid or solid product which shall not be included in the improved crude oil are used as boiler fuel.

3.4.1 Use

The by-products are utilized as fuel for the generation of electric power and steam

for the upgrading refinery. The electric power is also supplied to the crude oil production field.

3.4.2 Electric Power for the Raw Crude Oil Production

150 MW is required for the raw crude oil production of 170,000 BPCD.

3.5 BY-PRODUCT SULFUR

Sulfur in the sour gas of hydrodesulfurization units is recovered as elemental sulfur. Sulfur content of 90% in the flue gas of boilers is recovered as gypsum or others.

3.6 USE OF NATURAL GAS

Refinery off-gas and LPG are used as a feed for the hydrogen generation plant.

However, if the quantities of off-gas and LPG are less than the required quantity for the hydrogen plant, natural gas can be used.

3.6.1 Properties

$\mathbf{C_i}$	93.1 mol. %
C_2	1.9 "
CO ₂	3.7 "
C ₃	1,3 "
Total	100.0 mol. %
H ₂ S	60 ppm
Mercaptan & COS	10 ppm

3.6.2 Supply Conditions

Pressure : 500 psig
Temperature : ambient
Required quantity is available.

3.7 COST ESTIMATION

Investment and operating costs are estimated on a Venezuelan site, 1980 basis.

3.7.1 Capital Requirements

(1) Import tax and duties of equipment: not included

(2) Fund : all equity

(3) Feed crude oil inventory
(4) Improved crude oil inventory
(5) Land cost
15 days
3.5 days
no value

3.7.2 Operating Cost

(1) Salaries including all allowances for operating personnel: US\$22/MH

(2) Refinery organization

The upgrading refinery is organized by three departments: operation, maintenance and technical.

Other departments are organized outside of the upgrading refinery.

(3) For the scheduled maintenance, permanent maintenance personnel are to be supplemented by contracted maintenance personnel from outside of the upgrading refinery.

3.8 ECONOMIC ANALYSIS

An economic analysis is made by calculating the internal rate of return (IRR) based on assumed raw crude oil cost and improved crude oil price. The costs and prices are those of 1980 and escalation is not considered.

(1) Raw crude oil cost: US\$10/BBL

(2) Improved crude oil price:

The price of Tia Juana Medium crude oil having the gravity very similar to the improved crude oil is set to be US\$23.86/BBL and the following gravity differences and sulfur differences on a 1978 basis are used.

Gravity difference: US\$0.08/API

Sulfur difference: for each 0.1% S in the 650°F fraction,

Range	Value
% S less than 0.5	US\$0.25/BBL
% S between 0.5 and 1.0	US\$0.15/BBL
% S between 1.0 and 1.5	US\$0.08/BBL
% S between 1.5 and 2.5	US\$0.04/BBL
%S greater tahn 2.5	US\$0.02/BBL

Calculated values are then escalated to a 1980 basis at a rate of seven (7) percent per year.

(3) Sub-material cost and by-product cost: No value

(4) Electric power price: US\$0.023/KWH

(5) Operating rate of the refinery:

1988 - 330 days/year x 50%

1989 - 330 days/year x 100%

(6) Others

Depreciation: 16.6 years, straight line method

Inventory, chemicals: 2 months

Income Tax : 50%

In addition to calculating the IRR based on the above conditions, sensitivity analyses are conducted for the following in order to review the effects of changes in the major factors which are taken as bases for calculating the IRR.

Change item	Base	Alternatives
Crude oil cost	US\$10/BBL	± 50%
Construction cost	Base	± 20%
Income tax	50%	67%

Attachment to Study Bases

Estimation Bases of Process Data

The Process data in this study are estimated by the following bases.

	Fluid Coker	Eureka	M-DS
Main Upgrading Process	Fluid Coker	Eureka	M-DS
Yield	2&3	1 & 2	1 & 3
Properties	2 & 3	1 & 2	1 & 3
Operating Condition	2 & 3	1 & 2	1 & 3
HTR & HDS Process	<u>HTR</u>	No. 1 HTR	GO HDS
Yield	2&3.	2	4
Properties	2 & 3	2	4
Operating Condition	2&3	2	4
		No. 2 HTR	VGO/DAO HDS
Yield		2	3 & 4
Properties		2	3 & 4
Operating Condition		2	3 & 4

Bases Number

- 1. Adjusted to Cogollar IX/Cerro Negro Crude bases by using the test data of the sample crude oil.
- 2. Estimated data based on the commercial operation of similar feedstock.
- 3. Estimated data based on the test of similar feedstock.
- 4. Estimated data based on various published information.
- 5. Data obtained from the licensers of HTR & HDS processes.
- 6. Others.

CHAPTER 4 PLANNING CONSIDERATION

This chapter describes the basic considerations which supplement the study bases defined in Chapter 3. The following are the contents of this chapter.

- Scope of study
- Product and by-products
- Pollution prevention
- Supply of diluent, fuel gas and electric power to raw crude oil production field
- Solid storage and handling facilities

4.1 SCOPE OF STUDY

The study covers the facilities included in the upgrading refinery consisting of process units, by-product combustion boiler, utility and offsite facilities.

Scope of the study on the upgrading refinery is shown by the red line in Fig. 4.1.

Facilities outside of the red line are excluded from the study.

The following flows are received or supplied at the red line.

Main input flow

Mixed crude oil

Natural gas

Industrial water

Limestone

Main output flow

Improved crude oil

Diluent

Fuel gas & By-product residual

Sulfur

Electric power

Waste water

Gypsum

The process units, the utility and offsite facilities, and the by-product combustion boilers are described in Chapter 5, 6 and 7, respectively.

4.2 PRODUCT AND BY-PRODUCTS

Main product of the upgrading refinery is the improved crude oil, whereas, the following are by-products:

- Sulfur recovered from acid gas of hydrodesulfurization units
- Gypsum recovered from boiler flue gas
- Electric power

- Refinery off gas
- Residuals of upgrading processes

4.2.1 Improved Crude Oil

Target qualities of the improved crude oil are suggested by the Venezuelan side, which are shown in Chapter 3. It is considered that the improved crude oil has sufficient competitiveness in the international crude oil market.

4.2.2 Sulfur Recovery

(1) Recovered by-product

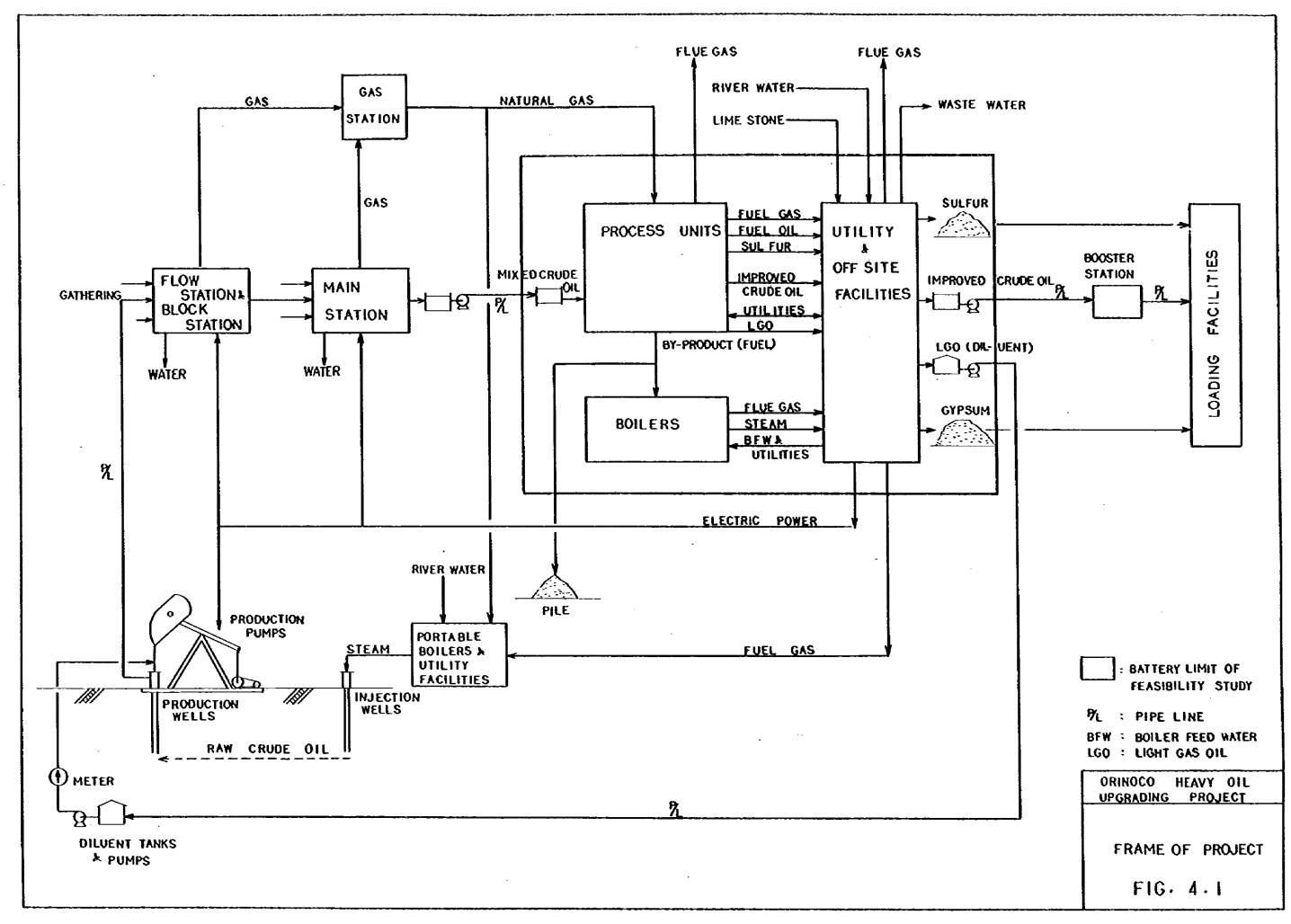
Since the sulfur content of the Orinoco heavy oil is higher compared with those of other crude oils, desulfurization is required for the production of the improved crude oil. Also, when the by-product, in which sulfur in the crude oil is accumulated, is used as boiler fuel, SO, content in the boiler flue gas is very high.

The best removal method of sulfur is to produce sulfur by-product which can be used effectively. The second best plan is to produce sulfur by-product which causes no pollution problem. In addition to those, the sulfur removal method must be inexpensive. Sulfur compounds in the flue gas can be removed by water washing; however it results in water contamination which does not mean pollution control.

Therefore, kind of sulfur by-products should be studied.

In the case of upgrading the Orinoco heavy oil large quantity of sulfur by-product is produced; therefore, the sulfur recovery method should be studied in consideration of the uses of and demands for sulfur by-products.

The largest use of sulfur compounds is sulfuric acid, but it is a by-product of smelting of non-ferrous metals. Therefore, large demand is not expected for the recovery of sulfuric acid in the case of the upgrading of the Orinoco heavy oil.


Demand for carbon disulfide, paper, pulp, sodium sulfite and sodium sulfate is not so large, while demand for gypsum comes next to that for sulfuric acid, and is expected to grow in future. Gypsum is used as such noninflammable construction materials as gypsum board and gypsum plaster, and also is mixed with cement.

In this study, the sulfur recoveries are studied based on the following conditions.

- Elemental sulfur, which is a material for the sulfuric acid production, is recovered from the off gas of hydrodesulfurization processes.
- Gypsum, which is expected to have large demand and is a non-pollution material, is recovered from the boiler flue gas.

(2) Form of elemental sulfur

Forms of elemental sulfur are liquid (molten sulfur) and solid (pelletized sulfur). Major characteristics of sulfur are shown in the table below.

were the control of t

As is shown in the table, the fluidity of sulfur is high in the temperature range of 120°C-155°C; however, above this temperature, the fluidity decreases sharply and reaches at its peak at 190°C. The handling temperature of molten sulfur is generally about 140°C in consideration of its viscosity characteristics as well as safety control for ignition by impurities such as hydrogen sulfide.

Characteristics of Sulfur

Viscosity:	Temp. (°C)	Vis. (cp)	Temp. (°C)	Vis. (cp)
-	120	10.1	180	29,600
	130	9.26	190	33,200
	140	8.40	200	31,700
	150	7.76	220	20,300
	158	7.90	240	12,200
	160	30.2	260	6,150
	165	5,380	300	2,020
	170	15,900	340	530

Specific Gravity:	Temp. (°C)	Sp. Gr.
-	121.1	1.804
	154.4	1.775
	178.3	1.767
	210	1.751
	357	1.658

Melting Point:

118.9°C

Freezing Point:

114.5°C

Vapor Pressure:	Temp. (°C)	Press. (mmHg)	
	114.5	0.0285	Sotid
	123.8	0.0535	
-	141.0	0.131	
	177.0	0.625	
	211.3	3.14	
	352.5	133.0	

It is planned that the sulfur is shipped in pelletized form, taking into consideration such liquid handling problems as storage at high temperature, transportation by pipeline and shipment by tanker.

4.2.3 Combustion of By-Products

Utilization of the by-products is described in Chapter 7. In the study, the by-products are utilized as boiler fuel and a surplus by-product which exceeds the boiler fuel requirements is stock-piled.

4.2.4 Diluent

As the Orinoco heavy crude oil has high viscosity, diluent is required to reduce the viscosity for pumping of the heavy oil.

The diluent is set to be light gas oil (Boiling range is 380-510°F) recovered from atmospheric crude distillation units in the upgrading refinery and the ratio of diluent to raw crude oil is set at 30 percent on a volume basis.

Estimated viscosities of the raw crude oil, the diluent and the mixed crude oil are as follows:

Viscosity (cst.)

Temp. (°F)	Raw Crude Oil	Diluent	Mixed Crude Oil
100	95,000	2.25	1,300
130	10,517	1.70	350
140	5,944	1.58	245
180	831	1.18	71
210	270	0.99	33

The viscosity of mixed crude oil is the same level as those of long residue of the Middle East crude.

Crude -	Kuwait	Aral Li	oian ight	Arabian Heavy		inian ight
Fraction	650°F+	650°F+	725°F+	650°F+	650°F+	725°F+
Viscosity (cst.)						
@ 100°F	980	280	700	5,500	490	1,450
@ 122°F	420	140	310	2,000	220	750
@ 210°F	42	19.5	34	118	26	46.5

4.3 POLLUTION PREVENTION

As, at present, there are no restrictions and regulations in Venezuela for pollutions control, the pollution prevention facilities are planned based on the following models:

4.3.1 Water Pollution Prevention

Waste water discharged to the adjacent river finally flows to the Paria gulf.

Therefore, regulations on water pollution should be set in consideration of river and sea water.

In this study, for the time being, the facilities of foul water stripper and oil separator as the first treatment are planned to be installed in the refinery. And the ballast water from tankers is not included because the receiving and loading facilities for tanker are excluded from the study.

4.3.2 Air Pollution Prevention

Harmful materials in the waste gas discharged from the upgrading refinery affect plants, vegetables and human being.

Agricultural products and trees are scarce in the Orinoco area, and distance and direction of residential facilities from the upgrading refinery are not clear. Therefore, regulation on the waste gas can not be fixed. There is a possibility that requirements can be satisfied by only high stack.

In this study, the facilities for air pollution prevention are planned based on the following models:

- Hydrogen sulfide included in the gas produced by such processes as hydrotreater and hydrodesulfurization is recovered as elemental sulfur.
 - However, sulfur recovery from tail gas of a sulfur recovery unit is not planned.
- (2) Sulfur dioxide included in the flue gas of process furnaces using vacuum residue as main fuel is not recovered.
- (3) Sulfur compounds content of 90% in the flue gas of boilers using the by-products as fuel is recovered by the flue gas desulfurization units.
 - Facilities for nitrogen oxide removal are not planned, for the time being.

4.4 SUPPLY OF DILUENT, ELECTRIC POWER AND FUEL GAS TO RAW CRUDE OIL PRODUCTION FIELD

Diluent, electric power and fuel gas for the production of injection steam required for the raw crude oil production are to be supplied from the upgrading refinery.

As is described in Chapter 3, the study bases are:

- stream days of the process units are 330 days/year, and

minimum half capacity of process unit is to be operated during the shutdown period (365
 330 = 35 days).

Therefore, the following considerations are made to keep stable supply of diluent, electric power and fuel gas to the crude oil production field:

4.4.1 Diluent

Diluent storage tanks are required to supply diluent continuously for the production of raw crude oil. The tanks will be installed in the upgrading refinery and/or in the crude oil production field. In the study, for the time being, the planned capacity of the diluent tanks in the refinery is 7 days' production of the diluent.

4.4.2 Electric Power

As by-products (coke and pitch) are used as fuels for the generation of steam, facilities relating to the generation and supply of electric power are planned by taking into consideration the characteristics of by-products and the combustion methods which are described in Chapter 7.

The following are basic items for the facility plans on the bases of respective combustion methods. The results of the study are described in Chapters 5, 6 and 7.

(1) Fluid coker case

Combustion method:

Pulverized fuel combustion with supporting fuel

Study items:

- spare boiler and generator
- coke storage facility
- number of trains of the Fluid coker process
- supply of supporting fuel

(2) Eureka case

Combustion method:

Pulverized fuel combustion

Study items:

- spare boiler and generator
- the Eureka pitch storage facility
- number of trains of the Eureka process

(3) M-DS case

Combustion method:

The M-DS pitch, which is directly sent from the process to the boilers with high temperature, is atomized by high temperature steam.

Study items:

- number of trains of the M-DS process
- use of vacuum residue as an alternative fuel and vacuum residue storage facility

4.4.3 Fuel Gas

Field portable boilers for the generation of injection steam are installed separately in the raw crude oil production field. Main fuel for the boilers is natural gas. However, supply of off gas generated in the upgrading refinery to the field will contribute to the refinery economy.

In order to supply the off gas to the field, fuel balance in the upgrading refinery is planned on the following bases:

- (1) Vacuum residue is used as main process fuels.
- (2) Use of the off gas as process fuels is limited to hydrogen plant and others which require gas or light liquid fuels.

4.5 SOLIDS STORAGE AND HANDLING FACILITIES

With the upgrading of Orinoco heavy oil, it becomes necessary to store and handle the solid form of raw materials and products. Their handling amounts are much more than conceivable for ordinary refineries, and can be even enormous, depending upon facility-operating and product-shipping conditions. The following points call for the solids handling at the refinery under study:

- All of the by-products (heavy residuals) are in the solid form at normal temperature, when heavy crude oil is processed by the upgrading process.
- Because crude oil to be used contains a high level of sulfur, the desulfurizer by-produces sulfur during the course of production of improved crude oil having a low sulfur content.
- When a by-product with a high sulfur content is used as fuel, the desulfurization unit of boiler flue gas also by-produces solids (such as gypsum and sulfur).
- Limestone is used as a raw material if gypsum is byproduced by the flue gas desulfurization.
 Countermeasures must be taken to cope with these points, now that they are the inevitable to be accepted by any upgrading refinery.

4.5.1 Volumes of Solids Storage

Actual solids storage volumes are determined on the basis of prerequisite conditions for each of the three cases now being studied. An illustrative model of the types and volumes of by-products is given as follows:

(1) By-products (heavy residuals)

By-products from the three process cases are:

Fluid coker case Fluid coke

Eureka case Eureka pitch

M-DS case M-DS asphalt

The above by-products other than fluid coke can be stored outdoors. For the convenience of simple calculation, here are placed the following assumptions: Either one of these by-products is produced at a rate of 4,500 T/SD; boiler can be supplied with fuel even at the time of periodical maintenance; apart from the supplies to the boiler, the surplus amount of the by-product is stored in the refinery in an amount corresponding to a month of production; and any further surplus in excess of a month of production is stock-piled elsewhere outside the refinery. Based on these assumptions, the amount stored within the refinery is calculated as:

 $4,500 \text{ T/DS } \times 30 \text{ days} = 135,000 \text{ tons}$

With the specific gravity set at 1.0 for the convenience of simplicity, the above amount will form a pyramid with a square base of 200 m and a height of 10 m.

(2) Sulfur

If crude oil is hydrodesulfurized to remove sulfur, which is recovered in the form of elemental sulfur, such sulfur is solidified for the convenience of storage and transportation. If it is produced at a rate of 500 T/SD, a week of production to be stored within the refinery is calculated as:

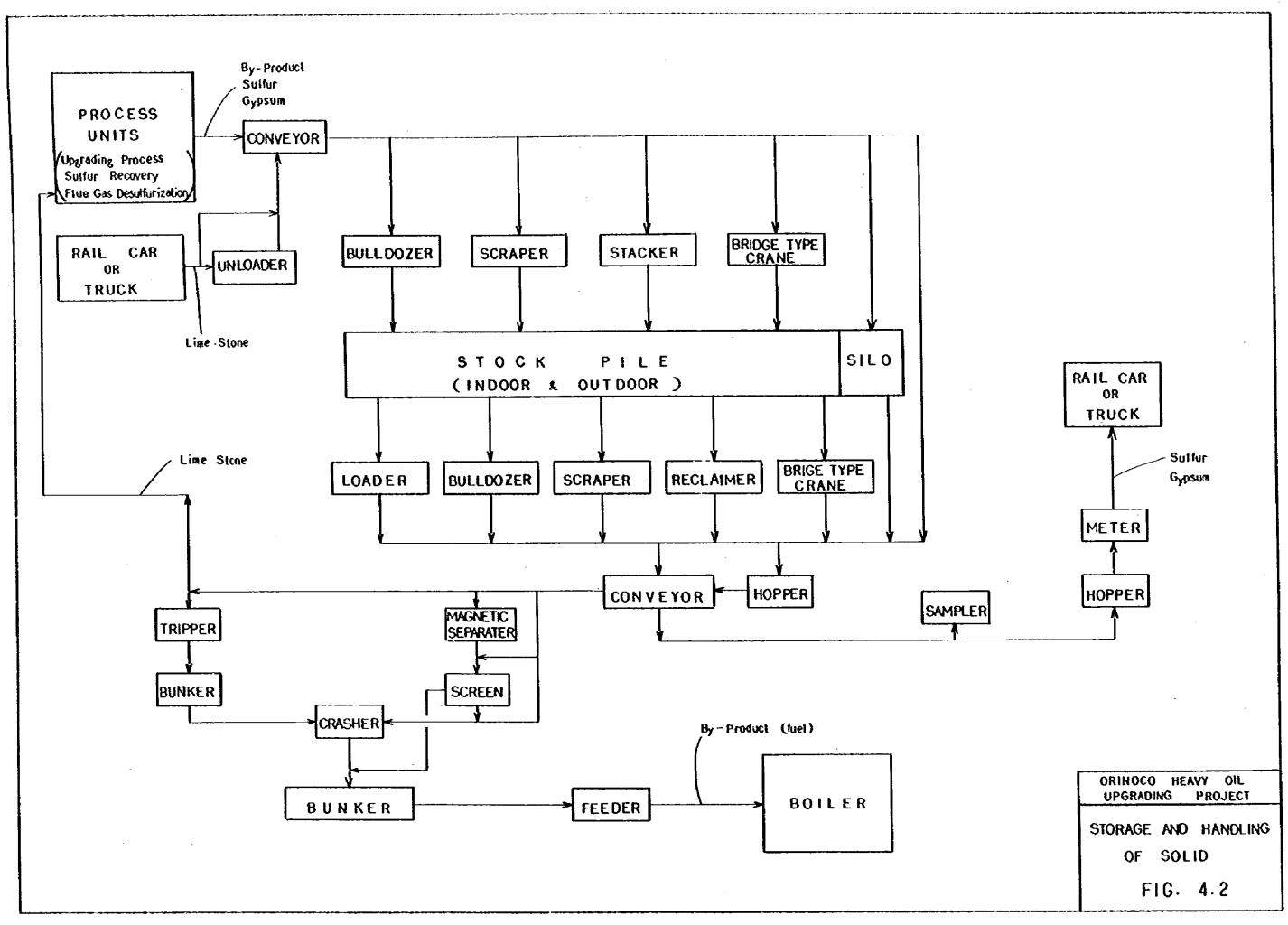
 $500 \text{ T/SD } \times 7 \text{ days} = 3,500 \text{ tons}$

With the specific gravity of sulfur set at 1.8, this amount gives a volume of about 2,000 m³, which forms a pyramid with a square base of 35 m and a height of 5 m.

(3) Limestone and gypsum

Desulfurization of boiler flue gas depends on the boiler capacity. If it is assumed that boiler flue gas is desulfurized at a rate of 150 T/SD in terms of sulfur, 470 T/SD of limestone is used to give 800 T/SD of gypsum. If limestone is stored in an amount sufficient to operate the flue gas desulfurization process for 30 days, the limestome requirement is calculated as: $470 \text{ T/SD} \times 30 \text{ days} = 14,100 \text{ tons}$. If a week of gypsum production is stored, the gypsum storage amount is obtained by: $800 \text{ T/SD} \times 7 \text{ days} = 5,600 \text{ tons}$. Since both of limestone and gypsum are not stored outdoors, a warehouse or respective silos must be installed.

4.5.2 Facilities for Solids Receiving, Storage and Shipment


Optimum methods must be selected to receive, store and ship the solid materials, taking into consideration the volumes of handling and storage, methods of storage, the terrain and layout of outdoor stock-piling ground, and whether storage is indoor or outdoor. Fig. 4.2 shows a solids flow diagram among the facilities. If consideration is given to the afore-mentioned receiving of limestone from outside and transportation of sulfur and gypsum to the shipping port, it is premised that transportation occurs only in the daytime and that railroad is the best means of transportation in the light of large daily production and shipment. However, this study excludes the problem of selecting an optimum means of transportation, anticipating that the matter will be dealt with under a plan on infrastructures.

As stated above, the by-product of heavy residuals from the upgrading process is partly consumed as boiler fuel, and the surplus amounts keep piling up as long as the refinery is in operation. Obviously, all of these surplus amounts cannot be stored infinitely in the refinery.

It is thus assumed that, except for the amount required for boiler operation, all the surplus is stock-piled elsewhere outside the refinery. Outside storage and transportation to the storage site are also excluded from this study.

For reference, the following data indicate the sizes of gondola cars commonly used for railroad transportation of coke in Japan.

Class	TORA	TOKI
Load limit, MT	17–18	35
Capacity, m ³	37.8-44.5	66.7-67.7
Length, mm	2,450-8,650	12,700-12,900
Width, mm	2,450-2,585	2,500
Depth, ram	800-970	965

CHAPTER 5 DESCRIPTION OF PROCESS UNITS

This chapter describes outlines of process units to be used in the Orinoco heavy oil upgrading refinery being studied. These process units are examined in the following three cases in which they are used for upgrading:

Fluid Coker Process
Eureka Process
M-DS Process

Descriptions in this chapter are based on the data given in Chapters 1, 2 and 3 of Volume II, which are the results of study made by all the process- proposing companies under the same prerequisite conditions.

5.1 UPGRADING PROCESS UNITS

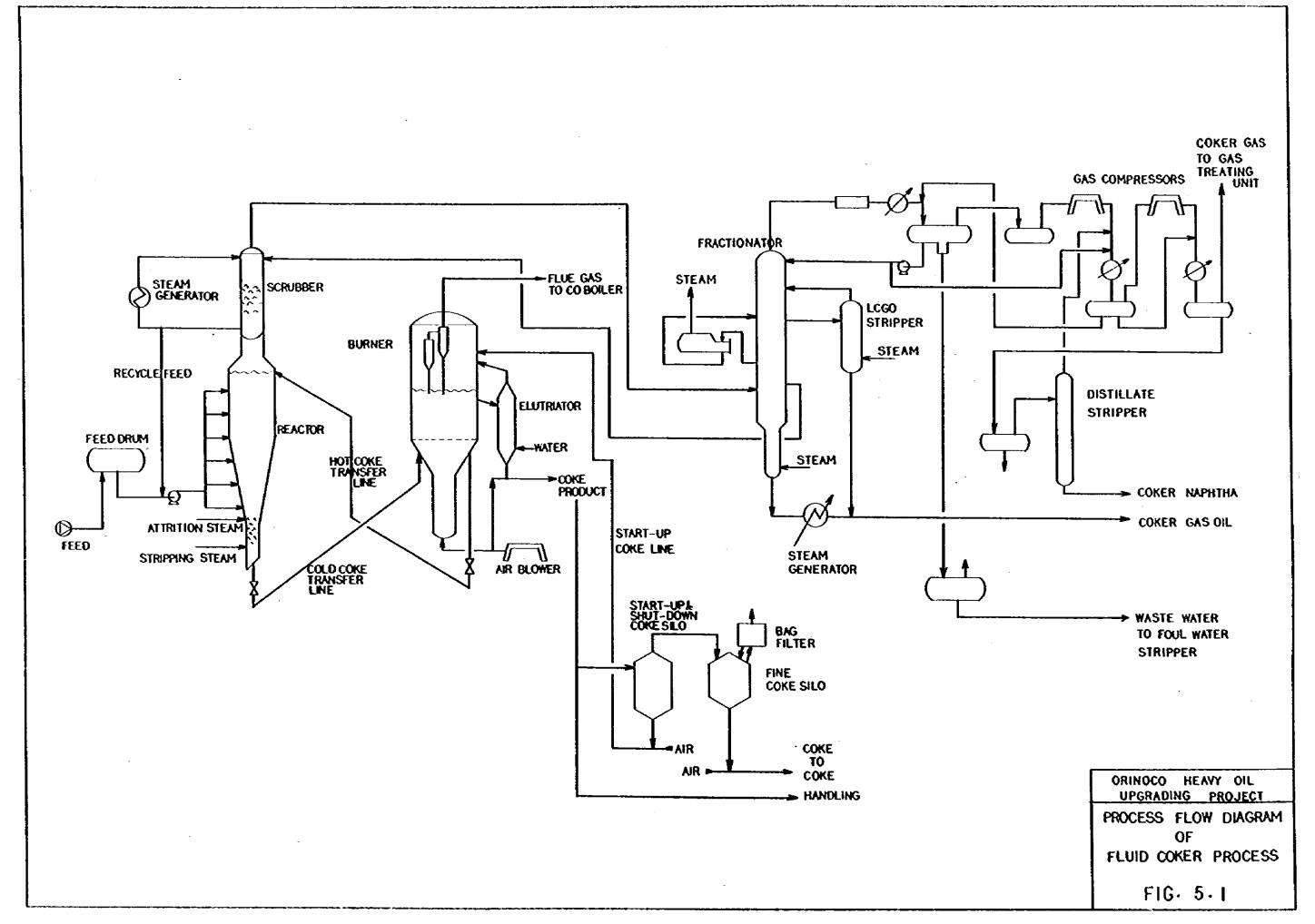
This section outlines the upgrading processes proposed by the three companies, i.e., Fluid coker process, Eureka process, and M-DS process.

For detailed information, refer to Sections 1.1, 2.1, and 3.1 of Volume II.

5.1.1 Fluid Coker Process

(1) Introduction

The fluid coker process is a continuous thermal cracking process developed by, and patented to, Exxon Research & Engineering Company (hereinafter referred to as ERE) for the thermal conversion of heavy oil of low quality to light hydrocarbons and coke. There is no other process of this type that has been commercialized or will be developed in the near future.


In this process there is used a fluidized-bed technology that has been developed as a fluidized catalyst bed cracking technology. However, instead of using a catalyst, the fluid coker process employs pulverized coke particles (50 to 2,000 microns), which are circulated between the reactor and the burner at a high temperature. Because oil is thermally cracked over the fluidized bed of coke particles circulated at a high temperature, the process does not need a furnace, and the plant based on this process can be run under severe operating conditions.

The first plant based on this process went into operation in 1954, and ever since more than 10 plants are in successful operation. Table 5.1 gives world experiences in the fluid coker and the flexicoker which will be described later.

ERE later developed the flexicoker process, wherein a gasifier is added to the fluid coker process to convert the coke by-produced in the fluid coker to fuel gas so as

Table 5.1 Experiences in Fluid Coker & Flexicoker

Company	Location	Design Capacity (B/SD)	Date Onstre	-	Remarks
	FLU	ID COKE	R		
Humble Oil Co.	Billings, Mont.	3,800	Dec.	'54	
Humble Oil Co.	Baltimore, Md.	10,000	Sept.	'55	Entire refinery shut down
Petrofina Canada Limited	Pointe-aux- Trembles, Quebec	3,800	Aug.	'56	
Marathon Off Co.	Detroit, Mich.	4,000	Oct.	'56	Plant formerly operated by Aurora Gasoline Co.
Signal Oil Co.	Bakersfield, Calif.	4,000	Apr.	'57	Plant formerly operated by Bankline Oil Co.
Phillips Petroleum Co.	Associated. Calif.	42,000	June	'57	Plant formerly operated by Tide-water Oil Co.
Getty Oil Co.	Delaware City, Del.	42,000	Aug.	'57	(")
Gulf Oil Corp.	Purvis, Miss.	4,800	Dec.	357	Plant formerly operated Pontiac Eastern Corp.
Petroleos Mexicanos	Madero, Mex.	12,000	Feb.	'68	•
Imperial Oil Ltd.	Samia, Ontario	15,000	Apr.	'68	
Humble Oil Co.	Benicia, Calif.	16,000	Apr.	'69	
Syncrude Oil Co.	Mildred Lake, Alberta, Canada	73,000 73,000	July	78 78	
	FLE	XICOKER	<u> </u>		
Toa Oil Co.	Kawasaki Japan	21,300	Sep.	76	
Lagoven	Amuay Venezuela	52,000			Onstream in 1982 under construction
Imperial Oil Co.	Coldlake Alberta	50,000		÷ 	Under constructin
Unannounced	Canada	One		-	Under design
Unannounced	U.S.A.	Two			Under design

to meet the demand for fuel of an area concerned. Toa Oil Co., Ltd. owns the first plant based on the flexicoker process, which is the only plant now in operation in the world. With its many knowhows, Toa investigated which of fluid coker and flexicoker is beneficial for the project now being studied, and proposed the fluid coker for the project. The fluid coker has the following features:

- (a) A wide range of raw materials, from light to heavy ones, can be used if they are supplied by pumping.
- (b) Attrition steam jets have been developed for the pulverization of seed coke particles, although ordinary methods can be used for this purpose.
- (c) Process equipment is mainly composed of a reactor and a burner. The reactor allows coking and a part of coke is burnt in the burner to supply reaction heat necessary for the process.
- (d) Coke is circulated between the reactor and the burner in such a way that density of the fluidized bed is adjusted by the differences in pressures and height between the reactor and the burner.

Aeration steam is ejected into the coke transporting line to aid the circulation.

- (e) The reactor and the burner are operated at temperature ranges of 850-1,000°F and 1,000-1,200°F, respectively.
- (f) The amount of coke used is determined by the amount of Conradson carbon and the reactor operating conditions.
- (g) The higher the cut point temperatures of circulated oil, the lower the coke yield becomes.
- (h) The raw material in an amount of 5-10% is usually burnt and used as the process heat source.
- (i) Economy of the fluid coker process is improved by raising the gas oil production, but 1,050°F will be a reasonable limit.

(2) Description of process flow

Fig. 5.1 shows the process flow of the fluid coker process.

The feed of heavy bil pre-heated to a high temperature is sprayed on the circulated fluidized coke particles by steam injection. The feed deposited on the surfaces of coke particles is then thermally cracked to give light hydrocarbons and coke. The coke formed remains on the circulating coke and goes to the burner. The cracked light hydrocarbons are cooled by scrubber in the top part of the reactor, and at the same time, are gotten rid of entrained coke. The hydrocarbons are then passed into distillation section, where the hydrocarbons are separated into cracked gas and cracked oil.

Uncracked heavy oil in the reactor is condensed by the scrubber and recycled to the feed line for further cracking in the reactor. Stripping steam is fed to the reactor through the bottom to remove hydrocarbons from the surfaces of coke and at the same time, to form a fluidized bed of the reactor. In addition, attrition steam is also fed to the reactor to secure successful coke circulation by crushing coke lumps and adjusting particle sizes of fluid coke.

The heat requirement of the reactor is met by circulating high-temperature coke coming from the burner. Heat is generated at the burner by taking in air and burning part of the circulated coke. Heat balance is maintained for the equipment by controlling the volume of air taken into the burner.

Net surplus coke not used for combustion as well as for circulation is withdrawn from elutriator as a by-product.

The burner generates a low-calorie gas of a high temperature, which is normally used for steam generation at CO boiler.

A series of fluid coker is filled with 2,500 tons of coke. Because the plant is started up, with a train at a time, only a silo with a 3,000 ton capacity will be sufficient for operation startup and shutdown.

(3) Process yields

Table 5.2 gives estimated yields of products from the fluid coker process.

Using vacuum residue as the raw material for the fluid coker, the process produces 62.48 vol. % (or 53.35 wt. %), based on the volume (or weight) of the feed, of cracked naphtha and gas oil, with 26.60 wt. % of coke being by-produced. The balance includes cracked gas and CO gas, both used as fuel gases.

5.1.2 Eureka Process

(1) Introduction

Eureka process was developed as a thermal cracking process producing light cracked oil easily capable of desulfurizing residue oil. This cracking process by-produces pitch, which is used for various purposes. The Eureka process was developed by, and patented to, Kureha Chemical Industry Co., Ltd. Commercial plants based on this process are now in successful operation. To commercialize the newly developed process, there was established Eureka Industry Co., Ltd. in 1972. The company constructed a plant at a site facing Tokyo Bay in Chiba Prefecture, Japan. The plant, the first of its kind, processes about 20,000 BPSD of vacuum residue, and produces about 14,400 BPSD of cracked oil which is desulfurized to give fuel oil, and also by-produces about 300,000 tons/y. of pitch to be used as a binding agent for metallurgical coke.

Another plant based on this process is now under construction in the People's Republic of China.

Table 5.2 Yield of Fluid Coker Process

and the construction of the contraction of the cont

Feed	vol.%	<u> °API</u>	wt. %
Orinoco			
Vacuum Residue (995°F+)	100.0	1.8	100.0
Products			
Gas (C ₄ -)	(18.8 Nm ³ /B)	_	(13.35)
Naphtha (C ₅ /360°F)	15.67	60	10.90
Gas Oil (360/950°F)	46.81	15.5	42.45
[Coke (Gross)]			[33.30]
Coke (Net)	-	_	26.60
CO Gas	_		6.70 Equivalent
Properties			
C ₃ Gas	C4 Gas	Naphtha	Gas Oil
H ₂ 16.7 mol.%	C ₄ = 60 mol. %	0.84 wt. %S	3.38 nt. 98
C ₁ 44.8	C ₄ 40 "	Br. No 130	29 cst@110°F
$\mathbf{c_2}^{=}$ 7.7 •	100		18 cst € 130°F
C ₂ 15.6	•		0.6 wt. % N
C_3 8.1	MW=56.8		4.0 wt. % CCR
C ₃ 7.1	LHV=28,100 Kcal/Nm ³		1.96 ppm V
100.0			1.05 ppm Ni
₩ =20.9		-	0.12 ppm Fe
LHV=11,050 Kcal/Nm ³			Br. No 43
CO Gas	Coke		
CO ₂ 12.0 mol. %	5.79 wt. %S	Mesh Size Normal	Fine Coke
CO 6.9 "	2,460 ppm V	% ŐN	% ON
N ₂ 56.5	610 ppm Ni	20 (841μ) 5	1,000µ 3.2
H ₂ S 0.5 "	70 ppm Fe	50 (297μ) 15	590µ 0.2
H ₂ O 25.0	Bulk density	60 (250µ) 25	297μ 0.4
	56 Lb/CF	80 (177μ) 55	250µ 1.3
100.0	(0.897 g/cm ³)	100 (149µ) 65	· 177μ 5.5
MW=27.4		140 (105µ) 75	149μ 15.6
(Dry Base=30.6)		200 (74μ) 95	125µ 24.9
LHV=242 Kcal/Nm ³			105μ 20.7
Dust 0.213 T/H			88µ 12.5
	•	•	74μ 5.0
			63μ 6.7
•			53μ 2.9
			$53\mu^{*} = 1.1$

Most of the petroleum residues are intricate mixtures of hydrocarbons of unknown structures which are difficult to describe in the chemistry of thermal cracking processes. Fundamentally, though, their chemical reactions are considered to include the following two reactions:

- Both paraffinic and naphthenic hydrocarbons of large molecular weights are thermally cracked to give paraffinic oils of low molecular weights containing small amounts of gaseous hydrocarbons.
- Radical condensation reaction between dealkylated asphaltenes forms higher molecular weight aromatic pitch.

These reactions are continuously carried out in a liquid phase.

The features of Eureka process are as follows:

- (a) A high yield of cracked oil is obtained.
- (b) The reactor bottom material (pitch) can be handled in a fluid state.
- (c) The produced pitch is a highly stable and homogeneous material.
- (d) The cracked gas yield is low at only 4 to 5%.

(2) Description of process flow

Fig. 5.2 shows a process flow diagram for the Eureka process.

The feed oil is preheated to 350°C by a preheater if it has a low temperature at the time of feeding, and is fed to the main distillation tower through the bottom and mixed with a circulated heavy fraction of the cracked oil. The ratio of circulated oil to newly fed residual oil is normally in the range of 0.2 to 0.3.

When the residual oil is fed to the main fractionator through the bottom, it is pre-heated to about 500°C at a charge heater and fed to one of the reactors, as directed by an automatically working switch valve. Reaction proceeds semi-batchwise at a preset cycle.

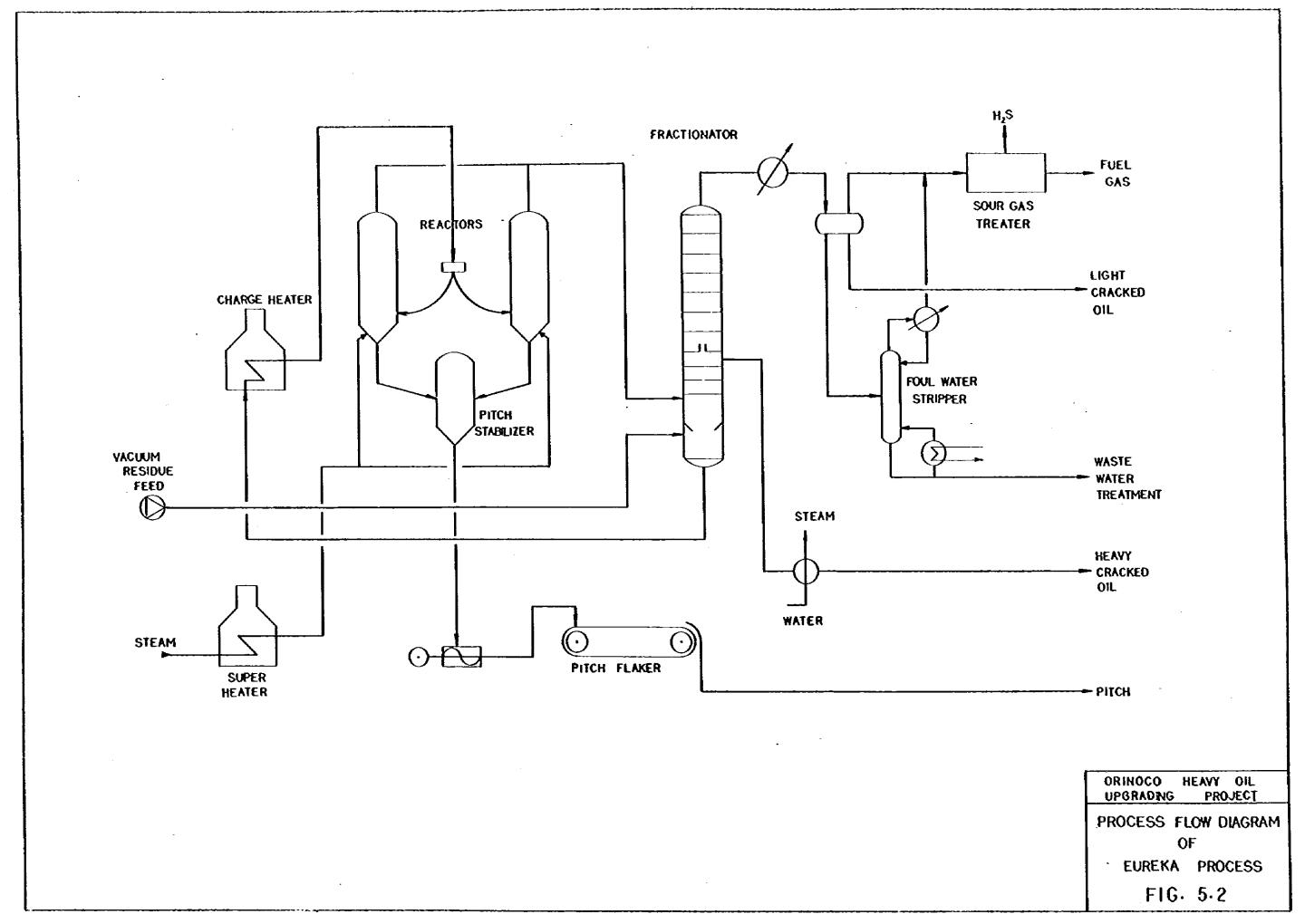
A typical 4-hour cycle involves:

Raw material feeding

About 2 hr.

Soaking

About 1 hr.


Quenching, blowdown and stand-by

About 1 hr.

Thus, the feeding operation can be switched between the two reactors at a time interval of 2 hr.

If the process is operated on a large scale, either the number of process trains is increased, or the number of reactors is increased so that several sets of the above-described cycle can be performed. In such a case it will be convenient to computer-control the switching operation.

Steam, superheated to 600-700°C, is fed to these reactors to provide them with reaction heat and to strip thus-cracked oils. A reaction temperature of 400 to 450°C is used.

With the progress of reaction, cracked oil is stripped off, and the residue undergoes condensation and polymerization to form viscous pitch. When the pitch in the reactor reaches a certain constant flow point, the reaction is terminated by spraying water directly into the reactor to cool the temperature inside the reactor down to $300-350^{\circ}$ C.

Pitch obtained is dropped by gravity into pitch stabilizer below the reactor, where a small amount of steam is fed to get rid of volatile components, and pitch is then passed into pitch flaker.

The lines and pump used for pitch transfer are designed to keep pitch flow-ability by means of a heat-stable heating medium.

Cracked oil and gas are sent to the main fractionator, where they are separated from entrained pitch and heavy fraction and the oil is further fractionated into light cracked oil and heavy cracked oil.

Cracked gas is passed to a treatment unit for the use as a fuel gas.

A large amount of steam is generated through heat recovery from cracked heavy oil.

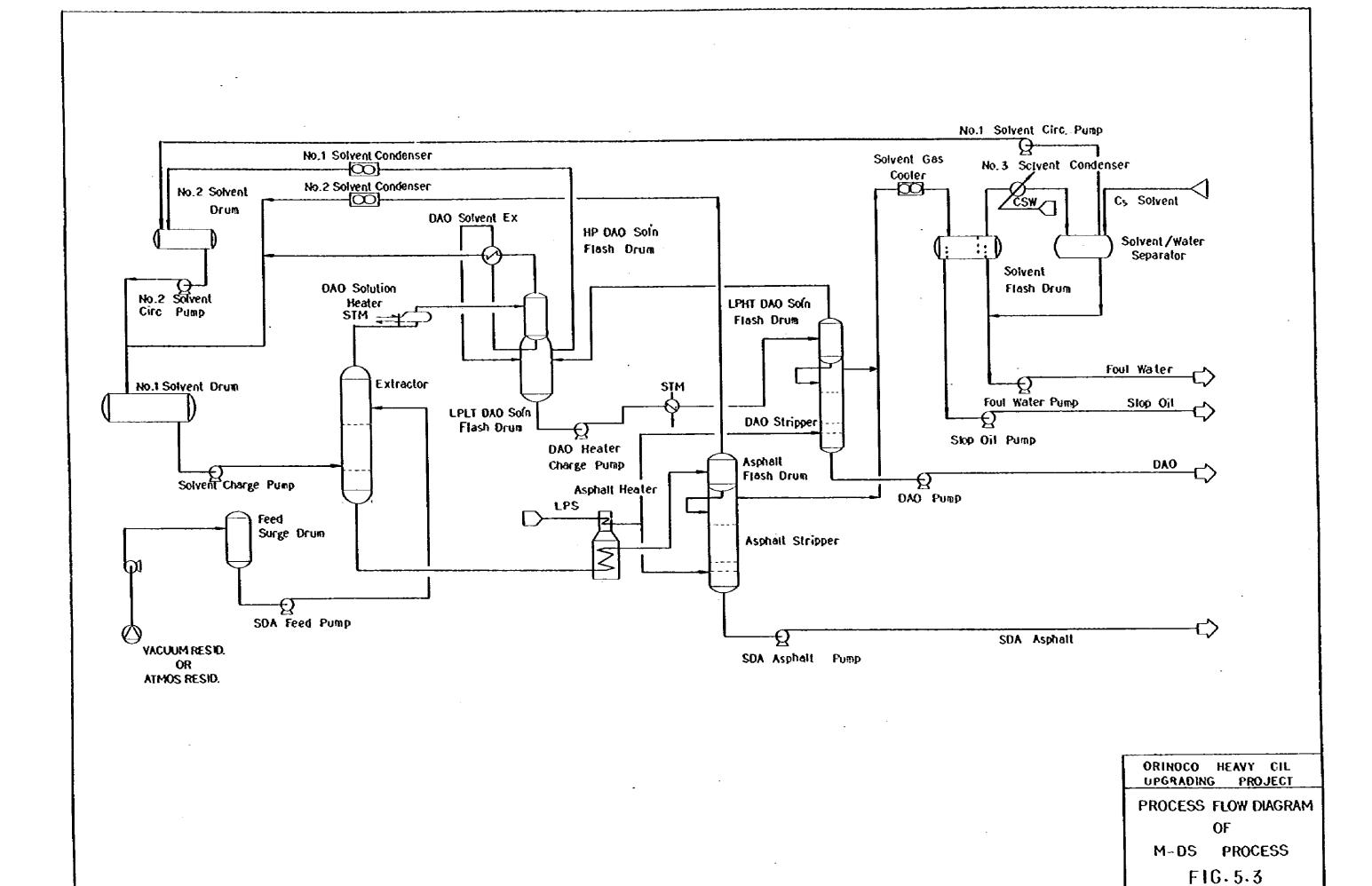
(3) Process yields

Estimated yields from the Eureka process are given in Table 5.3, below.

Using Orinoco vacuum residue as the feed, the Eureka process gives 67.85 vol. % (or 59.0 wt. %), based on the volume (or weight) of the feed, of cracked oils and 37.0 wt. % of by-produced pitch. Cracked gas is given in an amount of 4.0 wt. %, based on the feed, which percentage is less than given by the fluid coker process. This amount is totally used as fuel gas.

5.1.3 M-DS process

(1) Introduction


Solvent deasphalting process is one of the fundamental refining technologies, which has been used for more than 50 years in the petroleum industry. It was in early 1970s that Maruzen Oil has commenced on the research and development of M-DS process. In 1972 the company constructed a large pilot plant on the basis of about 2 years' fundamental studies.

Since then, the company has continued test runs with this pilot plant for about 4 years. In 1976, basic design has been completed for the construction of a full-scale plant using 33,000 BPSD of residues from Middle East crude oils. Patents for the M-DS process is under application.

Any type of feed can be used for the process, as long as the feed is a heavy oil containing a residue component. Solvent deasphalting gives deasphalted oil of improved quality. Since, however, this process is most effectively used as a pre-treatment process, suitable feed may be atmospheric or vacuum residues having

Table 5.3 Yield of Eureka Process

Feed	vol. %		°API	wt. %
Orinoco				
Vacuum Residue (995°F)	100.0		1.8	100.0
Products				
Gas			-	4.0
Cracked light oil	11.44		52.3	8.3
Cracked heavy oil	56.41		17.0	50.7
Pitch	-			37.0
Properties				
Cracked Gas			CLO	СНО
H ₂ 3.54 vol. %	Normal Cut pt.	°F	C; 482	482-1,000
CH ₄ 35.42 "	API		50.6	16.8
CO 1.73 "	Sulfur	wt.%	0.6	3.6
CO ₂ 1.39	Nitrogen	•		0.3
C ₁ H ₄ 2.07	Vanadium	ppm		<0.1
C2H6 15.16 "	Nickel	•	_	<0.1
C ₃ H ₈ 8.75	Bromine No.		84.9	42.3
C3H6 4.62	Diene Value		4.9	4.5
C4H ₁₀ 4.87	Total Acidity	_	<0.1	1.46
C ₄ H ₈ 4.82	ASTM Dist.			
1.3-C ₄ H ₆ 0.01	IBP vol. %, °F		109	426
H ₂ S 17.59 *	10 * , *		205	576
RSH 0.3	50 , ,		324	788
	90 , ,		442	928

high contents of heavy metals and asphalten.

Solvent deasphalting is in principle regarded as a pretreatment technology. The process involves deasphalting of the feed to reform it. It is widely used as a feed adjusting method in such processes as lubricant refining, hydrocracking, and catalytic cracking. Asphalt contains most of highly condensed hydrocarbons and metallic compounds detrimental to the desulfurizing catalysts. Vanadium and nickel can be easily removed by solvent deasphalting.

Industrially used solvents include light paraffinic hydrocarbons, such as propane, butane and pentane. The M-DS process has the following features over other solvent deasphalting processes:

- (a) The yield of deasphalted oil is higher.
 - Development of a high-performance extractor has enabled deasphalted oil to be obtained at a high yield by the use of a low solvent ratio, a low deasphalting temperature, and relatively high molecular weight solvents.
- (b) Costs of plant construction and operation are less expensive. Development of a high-performance extractor and plant optimization could have reduced these costs.

(2) Description of process flow

Fig. 5.3 shows the process flow of the M-DS process. The feed, i.e., either atmospheric residue or vacuum residue, is mixed with a solvent and fed to the extractor. A part of solvent is separately fed to the extractor through the bottom, to fully extract the oil remaining in the asphalt fraction. The mixture of feed and solvent is divided into an extract phase and a raffinate phase in the specially designed extractor. The extract phase, consisting of oil and solvent, is heated by an extract (DAO Solution) heater, and sent to the extract (DAO Solution) flash drum, where solvent is separated from oil and, after cooling, recycled to the solvent drum No. 2. The deasphalted oil is heated by the DAO heater and passed into the DAO stripper, where a trace amount of solvent remaining in the oil is thoroughly stripped off, and DAO free of solvent is transferred to the desulfurization section.

In the meantime, the raffinate phase, consisting of solvent and asphalt, is heated by the raffinate (asphalt) heater and then fed to the extract (asphalt) flash drum, where asphalt is separated from solvent. The solvent coming out of the raffinate (asphalt) flash drum, after liquefied, is recycled to the solvent drum No. 1. A trace amount of solvent remaining in asphalt is removed by the asphalt stripper.

Conditions for extractor operation are approximately as follows:

Temperature

100-180°C

Pressure

15-28 kg/cm² A

Solvent volume

A ratio of 2 to 4 to the feed volume.

(3) Process yields

Estimated yields from the M-DS process are given in Table 5.4, below.

Using Orinoco vacuum residue as the feed, the M-DS process gives 68.57 vol. % (or 65.33 wt. %), based on the volume (or weight) of the feed, of deasphalted oil and 31.43 vol. % (or 34.67 wt. %) of asphalt.

Table 5.4 Yield of M-DS Process

Feed	vol. %	°API	wt. %
Orinoco			
Vacuum Residue (995°F+)	100.0	1.8	100.0
Products			
DAO	68.57	8.5	65.33
SDA Asphalt	31.43	-10.6	34.67
Properties			
-	Vac. Residue	DAO	SDA Asphalt
°API	1.8	8.5	-10.6
Sp. Gr. 15/4°C	1.062	1.0108	1.1706
S. wt. %	4.32	3.52	5.82
Vis. @210°F, cst	_	700	
(€250°C, cp)			(4,000)
@300°F, cst	2,890	69	(13,00)
· (@300°C, cp)			(500)
Nitrogen, wt. %	0.82	0.418	1.58
Nickel, ppm	162	39.3	393
Vanadium, ppm	654	107.9	1,683
Asphalten (C1), wt. %		0.00	43.3
Con. Carbon, wt. %	25.7	9.07	57.0
R & B Soft. pt. °C	-		162

5.2 PROCESS SCHEMES

This Section deals with the descriptions of process schemes wherein afore-mentioned upgrading process units are incorporated to upgrade the Orinoco heavy oil. For detailed information, refer to Sections 1.2, 2.2 and 3.2 of Volume II.

5.2.1 Fluid Coker Case

Fig. 5.4 shows a process scheme diagram for the Fluid coker case.

The feed to the refinery is a mixed crude oil consisting of a raw crude and a diluent. This mixed crude feed is fractionated at the atmospheric distillation unit into light gas, naphtha, light gas oil, heavy gas oil and atmospheric residue. Of the amount of light gas oil produced by the atmospheric distillation unit, that portion of it used to mix with crude oil is branched and recycled to the oil field for use as the diluent in oil production. The remaining portion of light gas oil and other fractions are respectively passed to subsequent process steps. The atmospheric residue from the atmospheric distillation unit is then fed to the vacuum flashing unit and fractionated into vacuum gas oil and vacuum residue.

The vacuum residue, the heaviest residue obtained from distillation, is used as the feed to the afore-mentioned various upgrading process units. The upgraded oils obtained, serving as the base oils for improved crude oil, are combined with other light fractions coming out of both the atmospheric and vacuum distillation units. A part of vacuum residue is taken out and consumed as a fuel for process heaters of the refinery.

Vacuum residue is fed to the fluid coker and cracked to give cracked gas, coker naphtha, coker gas oil and fluid coke. In addition, coke combustion in this process generates CO gas in the form of a high-temperature low-calory gas.

Naphtha, light gas oil and heavy gas oil from the atmospheric distillation unit, vacuum gas oil from the vacuum distillation unit, and coker naphtha and coker gas oil from the fluid coker process are all combined together and passed through hydrotreater to saturate those unsaturated hydrocarbons in such oil fractions and make them stable. There is thus obtained an improved crude oil having lower specific gravity and containing less sulfur than the raw crude oil.

CO gas from the fluid coker process finds its use in waste heat utilization and steam generation caused by burning this low-calory gas.

Fluid coke is employed as the boiler fuel to supply the refinery with steam, which, in turn, is used to generate power, both for refinery consumption and for raw crude production.

The surplus fluid coke, other than the amount used as boiler fuel, is stockpiled in an open area outside the refinery for future use as fuel.

The cracked gas from the fluid coker process and the gas coming out of the hydrotreater get rid of hydrogen sulfide at respective acid gas treatment units. These gases are then used as part of fuel gas, recycled hydrogen gas and the feed gas to the H2 plant.

Fuel gas is used mainly as the process fuel and as a supplementary fuel for boiler which uses cold coke as the main fuel. The surplus amount of fuel gas is used for portable boiler to generate steam required for raw crude oil production.

Hydrogen sulfide is removed by acid gas treatment units and recovered by the Claus sulfur recovery unit. The sulfur element recovered is solidified and shipped as a by-product.

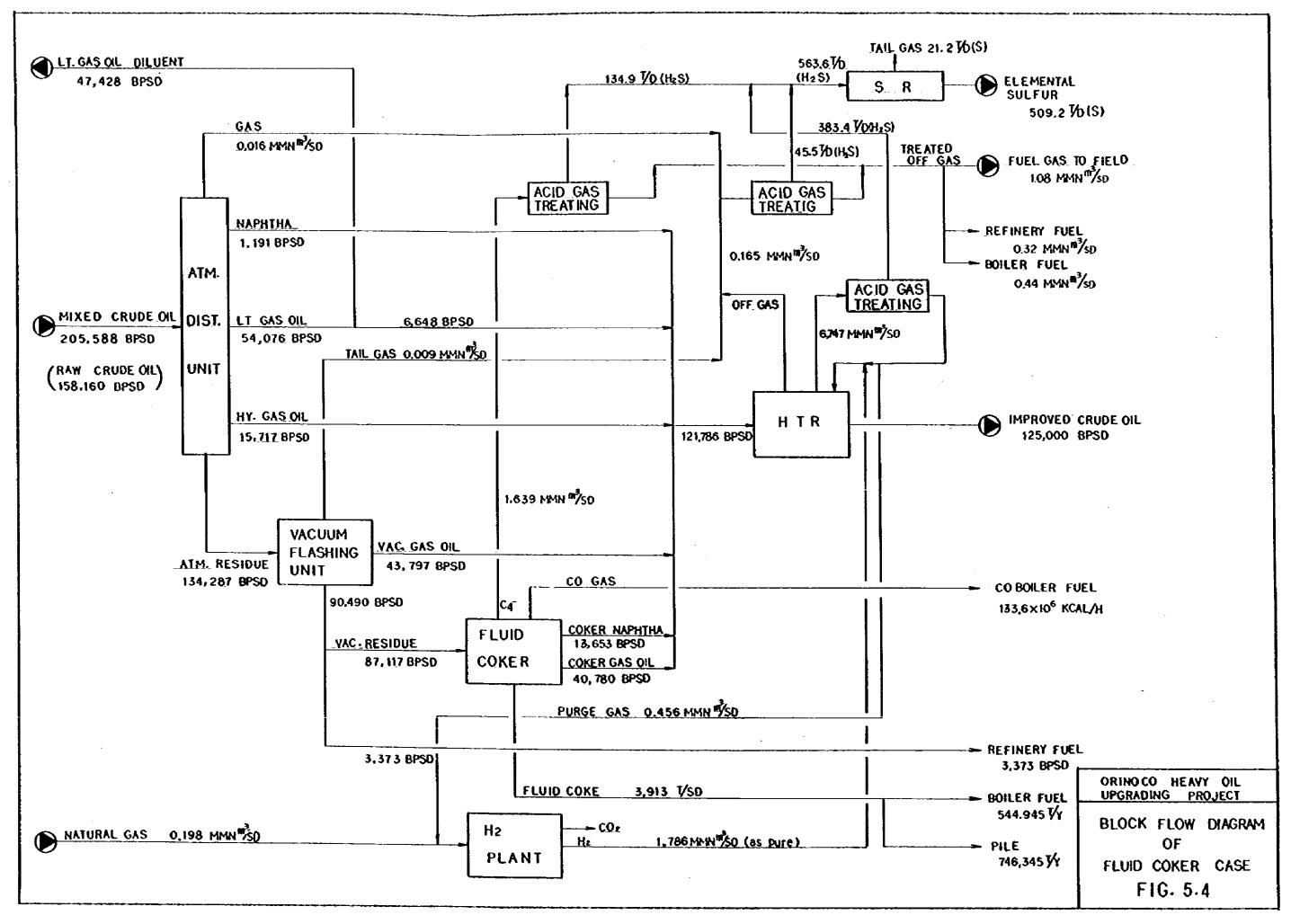
Tail gas from the sulfur recovery unit is not recovered, but is burnt into the atmosphere. Hydrogen required by the hydrotreater is produced at the H₂ plant by using natural gas supplied from outside, as the raw material. In this fluid coker case, however, part of the purge gas from the hydrotreater is used as part of the feed to the H₂ plant, after the purge gas has been desulfurized.

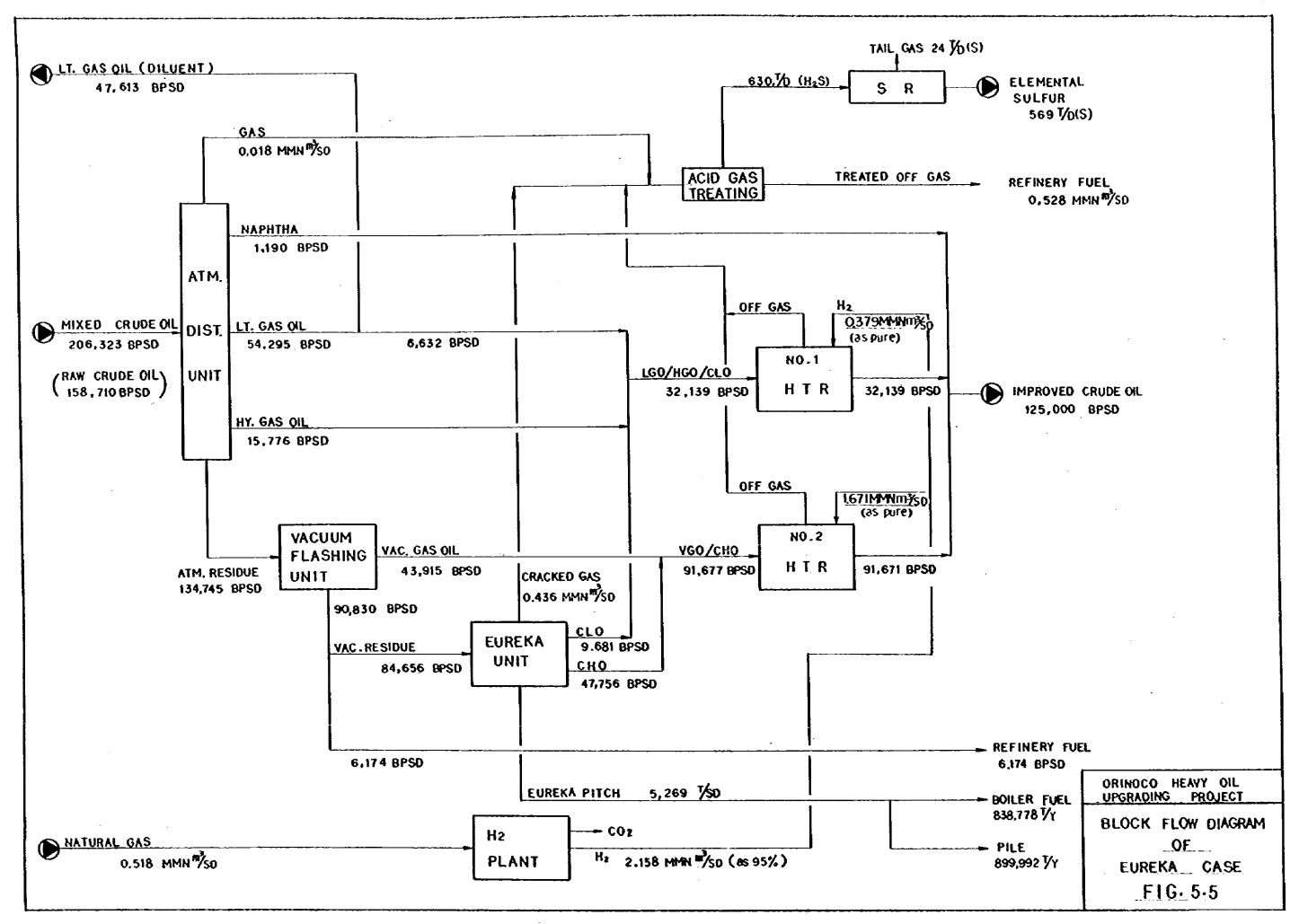
Two trains, in all, of units will be installed for the entire process. Periodical repair work is carried out alternately for one train at a time, so that the refinery can secure at least 50% operation and keep supplying fuel gas to the oil field and fluid coke to the refinery boiler.

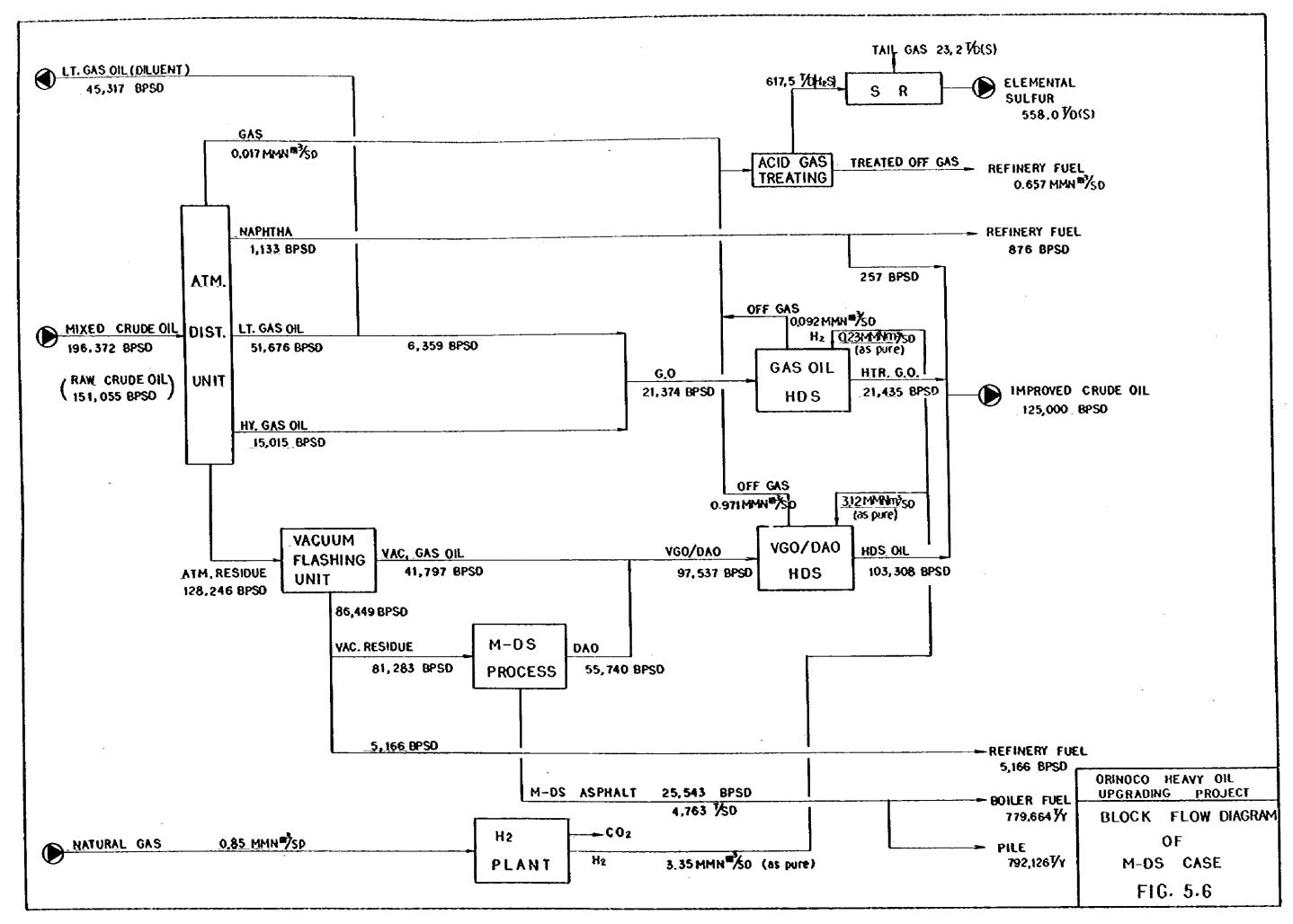
5.2.2 Eureka Case

Fig. 5.5 shows a process scheme diagram for the Eureka case.

As in the above fluid coker case, the mixed crude is processed by both of atmospheric and vacuum distillation units. Fractions from these units are used as the base oils for improved crude oil.


A part of vacuum residue is set aside as process fuel, and the remaining vacuum residue is fed to the Eureka process and upgraded to give cracked gas, cracked light oil, cracked heavy oil, and Eureka pitch.


The naphtha coming out of the atmospheric distillation unit is the saturated hydrocarbons containing a less amount of sulfur. It is mixed with other fractions with no further treatment.


Light gas oil, heavy gas oil and the cracked light oil from the Eureka process are combined together into a light oil fraction, which is desulfurized by the first hydrotreater.

Vacuum gas oil and the cracked heavy oil from the Eureka process is combined with each other to form a heavy oil fraction, which is desulfurized by the second hydrotreater.

Hydrotreated light and heavy oil fractions and naphtha are combined together to give improved crude oil. The first hydrotreater treats a feed with sulfur content of 1.67 wt. % and reduces its content down to 0.1 wt. %; the second hydrotreater treats a feed with a sulfur content of 3.45 wt. % and reduces its content down to 0.5 wt. %. Therefore, the improved crude oil will have a sulfur content of 0.4 wt. %.

The units of acid gas treatment, sulfur recovery, and hydrogen generation used in this process are similar to those used in the Fluid coker case.

Pitch from the Eureka process is used as boiler fuel. The surplus amount is stockpiled in an open area. Fuel gas, after treated by the acid gas treating unit, is consumed entirely as process fuel within the refinery. Therefore, no fuel gas can be supplied to the oil field.

The Eureka process, too, is planned to have two trains of process units for the entire process.

5.2.3 M-DS Case

Fig. 5.6 shows a process scheme diagram for the M-DS case.

Like the above two cases, the M-DS case utilizes pre-treatment by means of both the atmospheric and vacuum distillation units.

Vacuum residue is subjected to M-DS process steps, in which the solvent deasphalting process separates the feed into deasphalted oil and asphalt.

Light gas oil and heavy gas oil from the atmospheric distillation unit are treated by gas oil hydrodesulfurizer for the only purpose of desulfurization. This treatment for relatively easy desulfurization reduces the sulfur content from 2.06 wt. % to 0.15 wt. %.

Vacuum gas oil and the deasphalted oil from the M-DS process are combined and treated by VGO/DAO hydrodesulfurizer. This process is used under severe operating conditions because DAO is not only heavy, but also contains relatively large amounts of metals.

Furthermore, the improved crude oil is required to have a specific gravity as light as about 25° API. In order to meet this requirement, this process has to be provided with a hydrocracking function. As a result, this process is operated under conditions as severe as in directdesulfurization, to give a product of 25.2° API by using a feed of 10.8° API. Keeping step with severe operating conditions, the rate of desulfurization becomes higher, affording sulfur reduction down to 0.03 wt. %.

Naphtha from atmospheric distillation is partly used as fuel for the H₂ plant. The remainder is mixed with desulfurized oils to give an improved crude oil with a sulfur content of 0.05 wt. %.

Acid gas treating unit, sulfur recovery unit and H₂ plant used in the M-DS case are similar to those used in the above two cases. It should be noted, however, that the upgrading process of this case does not involve a cracking process. Gas evolves from hydrodesulfurizers only, and there is hardly obtained any surplus amount of gas. The whole amount of gas is thus consumed within the refinery. In spite of this, fuel is still in shortage, and therefore, naphtha is used as the fuel for the H₂ plant. It is impossible in this case to supply fuel gas to the oil field.

As described in more details in Chapter 7, the asphalt obtained from the M-DS process is used as boiler fuel in its high-temperature liquid state, without storage. The surplus amount of asphalt is taken out of the refinery, in its high-temperature liquid state. This case, too, uses two trains of units.

Tables 5.5, 5.6, 5.7, 5.8 and 5.9 summarize overall material balance, properties of improved crude oils, capacities of process units, hydrogen balance and sulfur balance for all the three cases.

Table 5.5 Overall Material Balance

Normal Operation Case

	Case	Fluid Coker	Eureka	M-DS
Feed				
Mixed Crude	BPSD	205,588	206,323	196,372
Natural Gas	MMNm³/SD	0.198	0.518	0.850
Products			•	
Improved Crude	BPSD	125,000	125,000	125,000
Lt. Gas Oil (Diluent)	BPSD	47,428	47,613	45,317
Elemental Sulfur	T/SD	509.2	569.0	558.0
Fuel Gas** (To Oil Field)	MMNm³/SD (MMKcal/H)	1.08 (563)	0	0
Electric Power*	MW	126.2	126.6	120.5
Gypsum*	T/SD	673	498	594
Surplus By-product	T/Y	746,345	899,992	792,126
Oil Production				
Raw Crude Oil	BPSD	158,160	158,710	151,055
Raw Crude Oil	BPCD	142,994	143,491	136,570
Electric Power (Base: 150 MW/170,0	3/W 000 BPCD)	126.2	126.6	120.5

^{* 365} D/Y production

^{** 0.485} MMNm³/SD in case of process 1 train operation

Table 5.6 Properties of Improved Crude Oils

Case	Fluid Coker	Eureka	M·DS
Peed	•		
(Raw Crude Oil)			
°API .	8.5	8.5	8.5
Sulfur, wt. %	3.67	3.67	3.67
Products			
(Improved Crude Oil)			
°API	25.7	25.0	26.1
Sulfur, wt. %	0.70	0.41	0.05
Viscosity			·
cst. @ 100°F	4.9		22.0
cst. @ 210°F	2.8	-	4,0
Nitrogen, wt. %	0.17	_	0.008
CCR, wt. %	0.147	-	0.13
Components, vol. %	-		
SR. Naphtha		1.0	0.2
HTR. SR. Naphtha	0.9	-	_
HTR. SR. LGO	5.5	5.3	5.1
HTR. SR. HGO	12.9	12.6	12.1
HTR. YGO	36.0	35.1	35.4
HTR. Coker Naphtha	11.2		_
HTR. Coker Gas Oil	33.5	-	_
HTR. Cracked Light Oil	_	7.8	_
HTR. Cracked Heavy Oil	-	38.2	_
HTR. DAO		_	47.2
Yield of Distillation			
C ₅ /375°F, vol.%	15.0	73	9.5
375/650°F, vol.%	30.0	32.4	34.0
650/1,000°F, vol.%	55.0	60.3	33.5
1,000°P+, vol.%		-	23.0
Sulfur Content of Distillation		-	
C _s /375°F, w1.%	0.24	0.09	0.01
375/650°F, wt.%	0.67	0.1	0.08
650/1,000°F, wt.%	0.73	0.6	0.02
1,000°F+, wt.%		_	0.03

Table 5.7 Capacities of Process Units

	Case	, Fluid col	ær	Eure	ka	M-DS	5
Process Units	Unit	Capacity	No's	Capacity	No's	Capacity	No's
Atmospheric Distillation	BPSD	102,800	2 .	103,200	2	98,200	2
Vacuum Flashing	BPSD	67,200	2	67,400	2	64,200	2
Fluid Coker	BPSD	43,600	2	_			
Eureka	BPSD	_		42,400	2		
M-DS	BPSD	_				40,700	2
Hydrotreater	BPSD	60,900	2	16,100	2	10,700	2
	BPSD	_		45,900	2	48,800	2
Hydrogen Generation	MMNm³/D as H ₂	0.90	2	1.08	2	1.70	2
Acid Gas	T/SĐ	67	2	315.0	2	309	2
Treating	as H ₂ S	23	2			-	
		192	2	_		_	
Sulfur Recovery	T/SD as S	255	2	285	2	279	2

Table 5.8 Hydrogen Balance

Case	Fluid Coker	Eureka	M-DS
Peed of H2 Plant		-	
Natural Gas to H ₂ plant	0.198 MMNm³/D	0.518 MMNm ³ /D	0.850 MMNm ³ /D
Purge Gas to H ₂ plant	0.456 MMNm ³ /D	_	_
Generated Hydrogen			
Hydrogen from H ₂ plant (as pure)	1.786 MMNm³/D	2.050 MMNm ³ /D	3.350 MMNm ³ /D
Consumption of Hydrogen (as pure)			
Hydrotreater .	1.786 MMNm³/D		_
No. 1 Hydrotreater	_	0.379 MMNm³/D	
No. 2		· · · · · · · · · · · · · · · · · · ·	-
Hydrötreater	_	1.671 MMNm³/D	_
Gas Oil HDS			0.230 MMNm ³ /D
VGO/DAO HDS	-	-	3.120 MMNm³/D
Consumption Rate of Hydrogen	•	•	
Hydrotreater	547 SCF/B		_
No. 1			
Hydrotreater	_	440 SCF/B	_
No. 2			
Hydrotreater		680 SCF/B	_
Gas Oil HDS	_		401 SCF/B
VGO/DAO HDS	_	_	1.193 SCF/B

Table 5.9 Sulfur Balance
Contained Sulfur (T/SD)

Normal Operation Case

Case		Fluid Coker	Eureka	M-DS
- Input -				
Raw Crude Oil (3.67 wt. %S)		932.7	936.0	890.8
- Ostput				
Improved Crude O	1	125.2	71.9	8.9
(Fluid Coker	0.7 wt. 98)			
(Euseka	0.4 wt. %S)			
(M-DS	0.05 wt. %S)			
Product Elemental	Sulfur	509.2	569.0	558.0
Tail Gas from Sulfi	ur Recovery Unit	21.2	24.0	23.2
Flue Gas from Prod (Vacuum Residue d		24.6	45.0	38.5
(Produced Total By	y-product)	(252.5)	(226.1)	(262.2)
Fluid Coke	5.79 w1. %S	•	(,	(202.2)
Eureka pitch	4.3 wt. %S			
M-DS Asphalt	5.82 wt. %S	•		
CO gas				
Сурѕит		125.3	92.7	110.5
Tail gas from Flue Desulfurization	gas	13.9	10.3	12.3
Surplus By-produc	t .	113.3	123.1	139.4

Attachment to Table 5.6 Properties of Improved Crude Oil on Fluid Coker Case

Fractions	Naphtha	neavy Naphtha	Neresche	Gas Oil	yacumii Gas Oil	Residue	Improved Crude Oil
Properties					:		
TBP Fraction, °F	C _s -375	ı	1	375-650	650-1000	ı	C; - 1000
Yield, vol %	15.0	ı	I	30.0	55.0	1	100
Gravity, API	47.5	ı	ı	27.4	20.4	ŀ	25.7
Sulfur, wt%	0.24	1	ı	0.67	0.73	1	0.70
Nitrogen, ppm	ı	ı	ı	1080	2400	1	1700
RON, Clear	ı	ı	1	i	ı	1	1
PONA, vol %	i	ı	ı	ı	l	1	l
Smoke pt. mm	ı	I	i	į	1	1	1
Cetane Ix.	ı	1	1	1	1	i	ı
Diesel Ix.	ì	ı	1	ı	i	1	ı
CCR, wt%	ı	ı	ł	ı	0.26	ı	0.147
Aniline pt. °F	ı	ı	ì	ı	i	i	1
Bromine No.	ı	i	ı	0.17	0.1 >	1	0.1 V
gBr/100mg							
Metal Content					•		(
V, ppm	ı	ſ	ı	ı	0.22	1	700
Ni. ppm	i	ı	1	ı	0.12	i	7.0
Viscosity		•					•
cst@100°F	i	ı	ŧ	1	1	l	4. (
cst @ 210°F	i	ı	ı	1.0	o. 0	i i	28

Attachment to Table 5.6 Properties of Improved Crude Oil on Eureka Case

Fractions	Light Naphtha	Heavy Naphtha	Keresene	Gas Oil	Vacuum Gas Oil	Residue	Improved Crude Oil
Properties							
TBP Fraction, °F	Cs-236	236-344	344-500	500666	666–965	I	C965
Yield, vol %	3.48	3.82	10.42	22.27	60.01	ı	901
Gravity, "API	70	49.9	39.3	24.2	20.1	i	25
Sulfur, wt%	90.0	0.09	0.16	0.25	0.54	!	0.41
Nitrogen, ppm	10	40	150	200	909	ı	ı
RON, Clear	ì	1	ı		i	1	l
PONA, vol %	ı	ı	1	1	i	ı	į
Smoke pt. mm	i	į	23	ı	ì	1	
Cetane Ix.	I	i	ł	38-40	ı	1	i
Diesel Ix.	ı	i	ı	• 1	1.	ı	1
CCR, wt%	ı	ļ	ı	i	0.58	1	i
Aniline pt. °F	i	i	ı	ŀ	ı	1	ı
Bromine No.	15	14	11	ı	ı	:	1
gBt/100mg							
Metal Content							
V. ppm	ī	1	ı	i	0.09	1	!
Ni, ppm	ı	ì	1	i	0:30	ì	ı
Viscosity							
cst @ 100°F		ı	ı	i		i	. 1
cst @ 210°F	1	ı	ì	i	i	ı	

Attachment to Table 5.6 Properties of Improved Crude Oil on M-DS Case

Fractions	Light Naphtha	Heavy Naphtha	Keresene	Gas Oil	Vacuum Gas Oil	Residue	Improved Crude Oil
Properties							
TRP Fraction of	C375	ı	1	375-650	650-1000	1000+	† უ
Yield vol %	5.6	ı	ı	34.0	33.5	23.0	100
Gravity API	55.0	ı	i	32.5	22.9	9.0	26.1
Sulfur wt%	0.01	ı	ı	0.08	0.02	0.03	0.05
Nitrogen, ppm	10	ţ	ı	45	06	135	80
RON, Clear	99	1	I	l	1	1	ı
PONA, vol %	!	ı	i	1.	1	1	ŧ
Smoke pt. mm	ı	ı	1	ı	1	1	l .
Cetane Ix.	i	i	ı	45	ı	t	ı
Diesel Ix.	ı	i	ı	52	4	ŧ	I
CCR. wt%	1	1	ì	i	0.10	0.39	0.13
Aniline pt. °F	ı	ı	ı	160	180	1	j
Bromine No.	0.0		ì	I	1	1	ı
gBr/100mg							
Metal Content						1	1
V. ppm	ł	1	i	ı	0.0	0.7	0.2
Ni, ppm	ı	i	1	ŧ	0.0	0.3	0.1
Viscosity	-						
cst @ 100°F	1	1	i	4.E	22	4500	22
cst @ 210°F	ì	ı	ı	i	ı	8	4

CHAPTER 6 DESCRIPTION OF UTILITY AND OFFSITE FACILITIES

This chapter outlines the utility and offsite facilities of Orinoco heavy oil upgrading refinery. They include all the facilities other than the process units of the refinery. Boilers using by-products as the fuel will be separately dealt with in Chapter 7. Flue gas desulfurization unit for the treatment of boiler flue gas is described in this chapter as one of offsite facilities. Description of this chapter is based on the study results given for the three cases in Chater 4 of Volume II.

6.1 UTILITY FACILITIES

These facilities serve to generate utilities necessary to operate process units and offsite facilities of the upgrading refinery. With an exception of raw water, it is intended that all the utilities are supplied by own generation, to secure stable supplies. As a special case of refinery, the utility facilities of this refinery is planned to supply the oil field with power required for crude production.

6.1.1 Utilities Supply System

Fig. 6.1 shows the entire system for the supplies of steam, power and water. The system summarized in this figure is common to all of the 3 cases. As regards steam, the following four levels of steam are used in the refinery:

Ultra-high-pressure steam	100 kg/cm ² G,	500°C
High-pressure steam	50 kg/cm ² G,	405°C
Medium-pressure steam	16 kg/cm ² G,	275°C
Low-pressure steam	4 kg/cm ² G,	165°C

Ultra-high-pressure steam is aimed at the generation of power required for crude oil production. Contemplated for this purpose are those boilers using, as fuel, a heavy residual by-produced from either one of the three upgrading processes.

High-, medium- and low-pressure steam are used for steam balance and power balance among process units and other facilities in the refinery. In the Fluid coker case, however, CO gas can be utilized to generate high-pressure steam by means of CO boilers. Both of condensation turbines and extraction turbines are used for power generation based on above types of steam. Steam-condensed water is recovered, combined with additional amounts of fresh boiler feed water, and recycled to boilers.

Cooling water for use by process units and for steam condensation is recycled, thus requiring a cooling tower.

Refinery off-gas and vacuum residue are used as fuel, but in the case of M-DS process, off-gas produced is not sufficient to cover the whole fuel needs of the refinery. In this case, therefore, naphtha is partly used as the fuel for H₂ plant.

In addition, compressed air is produced for instrumentation and process air use. Nitrogen gas is produced by air separation and used as an inert gas.

6.1.2 Utilities Balances

Tables 6.1, 6.2 and 6.3 give the utilities balance for each upgrading case. These tables indicate consumption and production of utilities, such as power, each pressure level of steam, boiler feed water, condensed water, process injection water, foul water, loss water, process cooling water, mechanical cooling water, and fuel. In the table, positive values indicate consumption, and negative values production. The utility requirements of the refinery are summarized in Table 6.4.

6.1.3 Capacities of Utility Facilities

Table 6.5 gives the capacities and number of units (including the number of stand-by units) required to maintain the afore-mentioned utilities balance.

6.2 OFFSITE FACILITIES

The offsite facilities described in this Section are understood to include all the necessary facilities in the refinery other than process units and utility facilities.

6.2.1 Storage Facilities

Oil handling system of this refinery is as shown in the tank flow diagram of Fig. 6.2. The system illustrated in this diagram is common to all the three cases. Mixed crude oil, fed to the refinery as its raw material, is stored in the refinery in an amount sufficient to operate the refinery for a month, so that stable operation can be secured without being affected by any change in the crude production situations. Since the refinery is close to the oil field, with a pipeline laid between them, such an amount of crude oil can also be stored at the main crude processing station in the oil field. From refinery standpoint, however, storage within the refinery is considered more convenient.

Intermediate tanks are not installed fully, assuming that two complete trains of process units are used, that process units are started up or shut down, with one train at a time, and that oils are charged to processes under a hot charge system. Along this line of policy, only the upgrading process and the hydrodesulfurization process are provided with feed tanks capable of storing respective feeds in amounts sufficient to run these processes for a week.

As for the storage of products, consisting of improved crude oil and light gas oil used as diluent, it is planned that improved crude oil is stored within the refinery in an amount corresponding to a week of production, assuming that it is pipelined to the shipping port and that a tank site is located alongside the shipping port for the con-

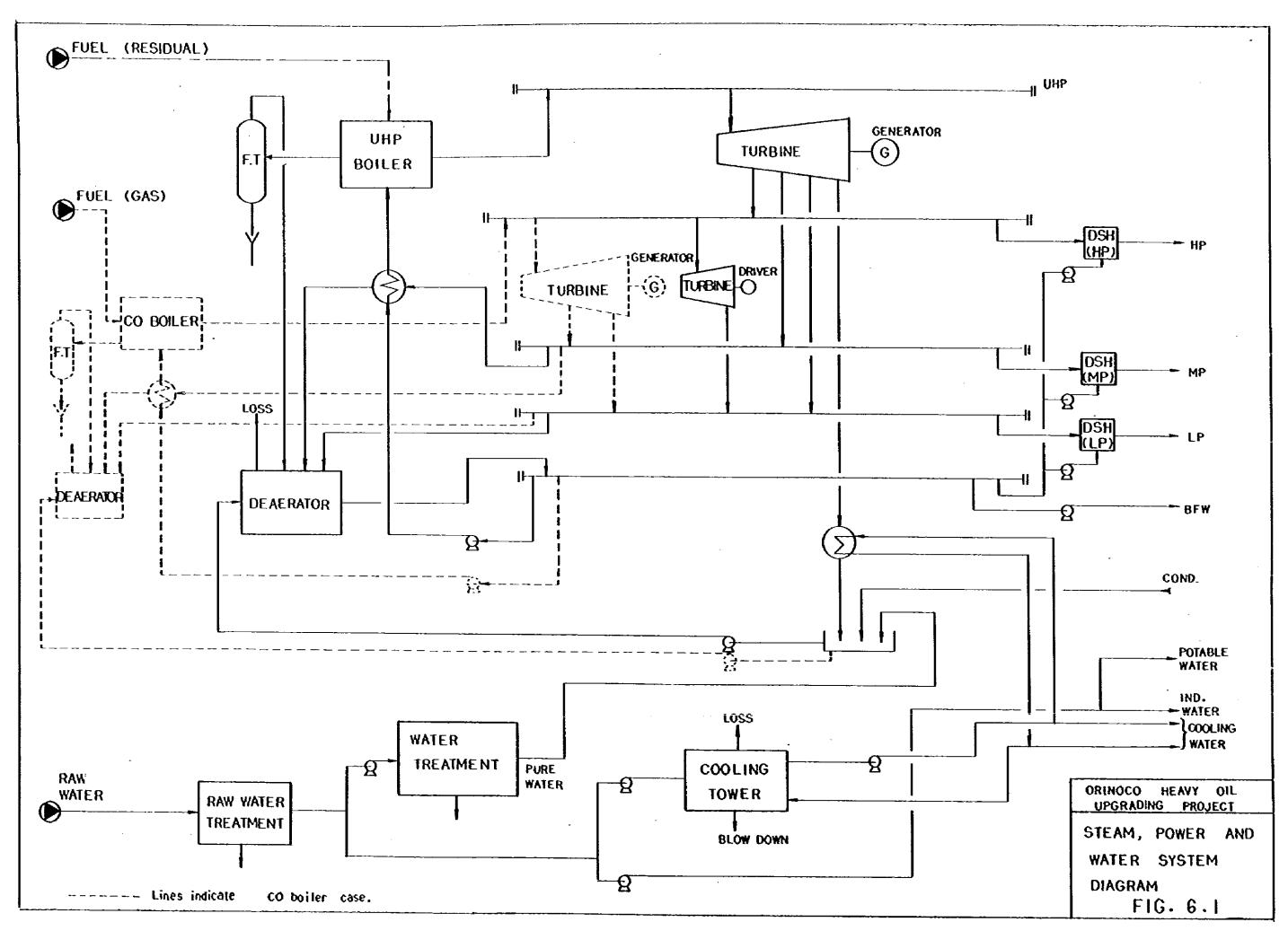


Table 6.1 Utility Balance of Fluid Coker Case

	-													NOTH	<u>.</u>	Normal Operation Care	
	Elec.			STEAM	×						WATER	_				FUEL	
	Power	0.140 0.140	兌	日景	ğ	ដ	Loss	BFW	Cond.	Pure Water	Indust	Raw	Foul	Cooling Mecha, Cons. Gen.	Mocha.	Cons.	Çen,
Itom	\$	#/#	T/H	1/1	T/H	T/H	H/T	T/H	T/H	T/H	T/H	T/H	T/H	T/H	T/H	MMKcal/H	H/In
Process Units (1 train)	16,420		\$2.6	52.6 -40.8	22.7	91.5	-80.1	237.2	-136.2	0	34.1	-	181	4,610	125	193	193 -1,311.5
Process Units (1 train)	16,420	٥	\$2.6	52.6 -40.8	22.7	91.5	-80.1	237.2	-136.2	٥	34.1	0	-181	4,610	221	193	-1,311.5
CO Boller/Constrator (1 train)	-16.590	• -	-32.6	8.04	-22.7	5,19-	-2.2	-237.2	136.2	231.2	•	•	7	٥	4	149	٥
CO Boiler/Generator (1 train)	-16,590	•	-52.6	8.04	-22.7	-91.5	ਲ ਨ	-237.2	136.2	231.2	0	•	7	•	4	149	0
Offinite Pacility	4,300	•	0	•	10.2	61.5	-15	•	-61.7		S	٥	•	0	Φ.	ò	٥
By-product Utilization (Bollet/Cenerator/FGD)	-148,930	۰	٥	0	-10.2	-61.5	-104	•	61.7	21.8	280	0	-187.8	24,790	228	\$29	0
Utility Facility	16,570	•	0	•	•	0	-1,024	•	•	484.2	-353.2	2,112.4	-251	-34,010 -881	-881	6 2	•
Total	128,400 0 To Field 126,200 Excess 2,200	2,200	0	•	0	0	1,307.6	0		0	~ × ×	2,112.4 Raw Wator Mako-up	-804.8 ↓ Disposed	۰	•	Find gas Find coke to	746 -2.623 -1.377 Fuel gas to Field 564 Coke to pilo 813

Table 6.2 Utility Balance of Eureka Caxe

	Elec.			STEAM	M						w,	WATER				FC	FUEL
	Power	UMD	£E.	HP (set)	ATP.	ដ	Long	веч	Cond.	Pure Water	Indust	Raw	Foul	Cooling Mocha. Cons. Gen.	Mocha	Cons.	ğ.
Itom	KW	T/H	т/н	T/H	T/H	T/K	T/H	T/H	T/H	T/H	т/н	T/H	T/H	T/H	т/н	WW	MMXcal/H
Process Unit (1 train)	16,830	٥	14.1	0	80.2	77.0	-65.1	290.1	-167.8	0	35.6	0	-264.1	9,490	142	. 389	-1,349
Process Unit (1 train)	16,830	•	14.1	0	80.2	77.0	-65,1	290.1	-167.8	0	35.6	٥	-264.1	9,490	142	389	-1,349
Offsite Facility	4,300	0	0	0	11.7	61.7	-15.0	0	-63.4	0	5.0	٥	0	٥	9	•	0
By-product Utilization (Boiler/Cenerator/FGD)	-180,100	•	-28.2	0	-172.1	-215.7	6:66-	-580.2	399	612.9	185.0	۰	-100.8	19,430	523	%	•
Utility Facility	15,190	0	0	0	0	0	-1,150	•	0	-612.9	-261.2	2,310.1	-286	-38,410 -817	-817	∢.	0
Total	To Field 126,600 Excess 350	0 126,600 350	0	0	۰	0	-1.395.1 	•	0	0	0	2,310.1 Raw water Make-up	-915 \frac{1}{4} Disposal	0	•	1,618 -1,080 pitch to	2,698

Table 6.3 Utility Balance of M-DS Case

	-										:			HON	net Oper	Normal Operation Case	Q
	Elec.			STEAM	×							WATER				<u> </u>	FUEL
	Powar	CHD.	急	5 <u>3</u>	ĝ	3	Lon	вгж	Cond.	Pure Water	Indust	Raw	Foul	Cooling Mecha. Cons.	Mecha.	Cons.	Çen,
Itom	\$	T/H	T/H	T/H	1/H	H/I	T/H	T/H	H/L	T/H	T/H	T/H	T/H	T/H	т/н	MMKcal/H	cal/H
Process Unit (1 train)	21,440	٥	24.7	。	58,2	125.9	125.9 -62.2	178.7	-216.7	0	83.9	. 0	-192.5	6,190	127	312	-1,242.5
Process Unit (1 cmin)	21,440	٥	24.7	0	58.2	125.9	125.9 -62.2	178.7	-216.7	0	83.9	0	-192.5	6,190	127	312	-1,242.5
Offsite Facility	4,300	•	0	٥	10.7	57.5	57.5 -14.0	0	-59.2	0	5.0	٥	0	0	ø	•	0
By-product Utilization (Bollex/Generation/FCD)	-180,800	0	4	•	-127.1	-309.3	-309.3 -101.4	-357,4	492.6	383.8	233	•	-164,8	17,470	808	870	0
Utility Facility	12,200	0	•	0	0	0	-897	•	٥	-383.8	-383.8 -405.8 1,906.6 -220	1,906.6	-220	-29,805 -771	-771	~	٥
Total	-121,420	0	٥		0	0	-1,136.8	•	0	٥	٥	1,906.6 -769.8	-769.8	0	٥	1,496 -2,485	-2,485
	← To Field Excoss	120,500					→ 5					* Raw water Mako-up	v or Disposed	귷		>% —	
									•							Asphal	∜ Asphalt to Pile

Table 6.4 Summary of Utility Requirements

Normal Operation Case

		•		peramon case
Requirement	Unit	Fluid Coker	Eureka	M-DS
Electric Power				
for Oil Field	MW	126.2	126.6	120.5
for Refinery	MW	74.2	81.4	82.5
Steam				
Ultra High Pressure	Т/Н	772.1	1,190.3	1,180.4
High Pressure	т/н	388.4	_	_
Cooling Water (Circulation)	-			
Process Cooling	T/H	9,770	19,490	12,830
Surface Condenser	T/H	24,600	19,300	17,300
Mechanical Cooling	T/H	930	870	815
Net Boiler Feed Water	т/н	484	613	384
Net Raw Water Intake	т/н	2,112	2,310	1,907
Fuel			-	
Liquid	MM keal/H	220	410	394
Gas	MM kcal/H	523	308	230
Residual	MM kcal/H	503	900	872

Table 6.5 Capacities of Utility Facilities

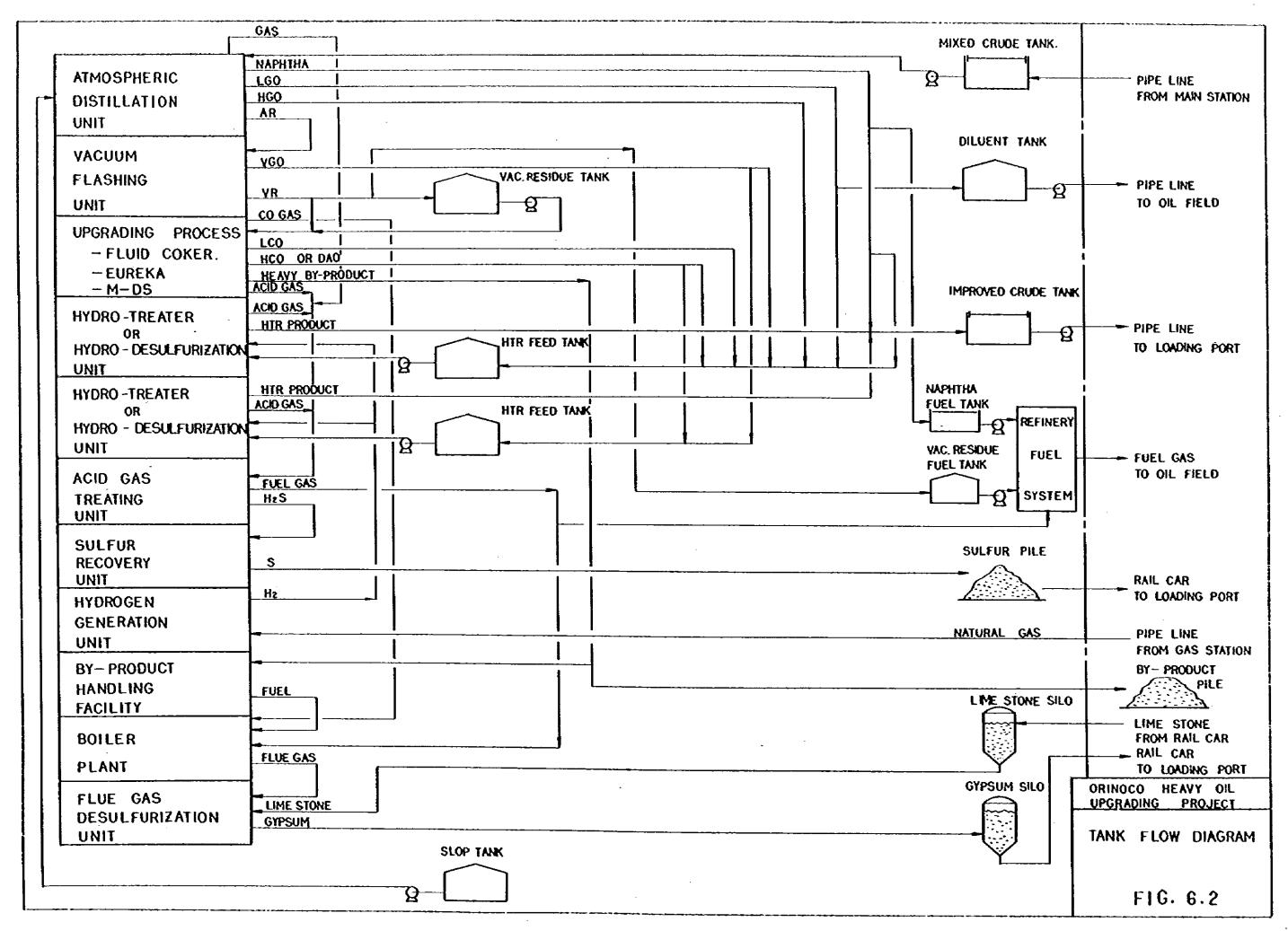
1. Steam Generator Ultra High Pressure Steam High Pressure Steam High Pressure Steam by Ultra High Pressure Steam by Ultra High Pressure Steam by Ultra High Pressure Steam character of High Pressure Steam Bry Treatment Activated carbon Adsorption Ion Exchange Demineralizatic Condensate Tank BFW Tank			}			,	ション コーニ		
Ste.	Faculty	Capacity	No.s	Capacity	acity N	No.s	Capacity	No.s	Note
Pow PA	nerator High Pressure Steam High Pressure Steam	260 T/H 200 T/H	4.01	240	240 T/H -	9	240 T/H -	9	one unit for stand-by
BF	ator High Pressure Steam High Pressure Steam	55,000 KW 18,000 KW	4 13	46,000 KW	K	v	44,000 KW	v	one unit for stand-by
	V Treatment Activated carbon Adsorption Ion Exchange Demineralization Condensate Tank BFW Tank	250 T/H 250 T/H 9,000 KL 6,000 KL	m m m m	310 310 10,000 7,500	7 7 7 7 7 Y	m m M N	200 T/H 200 T/H 10,500 KL 4,600 KL	m m r3 r3	one unit for stand-by one unit for stand-by
4. Cooling Water System Cooling Tower Raw Water Tank	em K	18,000 T/H 25,000 KL	9 9	20,000	4,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4	N 11	15,500 T/H 23,000 KL	99	
5. Air System		1,800 Nm³/H	რ.	2,000	H/emN	8	1,900 Nm³/H	m H	one unit for stand-by
6. Inert Gas System	-	350 Nm³/H	73	350	350 Nm ³ /H	8	350 Nm ³ /H	C3	
7. Potable Water System Chlorinator Tank Elevated Tank	W	5 T/H 500 KL 10 KL	ਜਜਜ	500 10	7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,		\$ 17/H \$00 KL 10 KL	еее	

Table 6.6 Tank Summary

Case		Fluid Co	oker	Eure	ka	M-DS	3
Tank capacity & Numb	er	KL	No.s	KL	No.s	KL	No.s
Mixed Crude	FR	133,000	8	133,000	8	127,000	8
Diluent LGO	CR	28,000	2	28,000	2	26,500	2
Improved Crude	FR	75,000	2	75,000	2	75,000	2
Vacuum Residue	CR	51,000	1	50,000	1	48,000	1
HTR Feed	CR			19,000	1	13,000	i
HTR Feed	CR	62,000	ŀ	54,000	1	56,000	1
Oily Slop	CR	4,000	1	4,000	1	4,000	i
Fuel Naphtha	DR	_				500	1
HTR Feed Naphtha	FR	9,000	1			_	
Others	CR	40,000		-		_	
Total		1,436,000		1,397,000		1,340,500	

FR: Floating Roof

CR: Cone Roof


DR: Dome Roof

This summary does not include tanks for water.

venience of tanker loading. In the case of diluent storage, it is condidered more convenient to locate a diluent tank in the oil field and control the storage volume in response to crude oil production. It is thus planned that the diluent tank within the refinery, connected to the tank in the oil field by a pipeline, would store diluent in an amount corresponding to a week of production. Table 6.6 gives the tank summary of each case.

6.2.2 Product Shipping System

The product of improved crude oil is transported from the refinery product tank to the terminal of the shipping port by way of a pipeline. Now that the shipping port is not yet determined under this project, conditions can not be fixed for the product transport through the pipeline. Therefore, product shipping plan is limited up to the stage where improved crude oil is pumped out of the refinery at a discharge pressure of 40

and the contract of the contra

kg/cm²G. This report thus excludes the study on the pipeline and a booster pump station, if such a station is deemed necessary.

Diluent has to be sent to the tank in the oil field. Now that the site and other conditions are not yet determined under the project, the diluent shipping plan is limited up to the stage where diluent is pumped out of the refinery at a discharge pressure of 10 kg/cm²G.

6.2.3 Solids Handling System

(1) Solid sulfur

Sulfur obtained from the sulfur recovery unit is pelletized and stockpiled in an outdoor storage yard within the refinery. This amount of storage corresponds to a week of production. Any surplus amount is transported to the shipping port and stored there in a required amount. The sulfur stored in the refinery is thus handed over to the transport facilities, study of which is not included here.

(2) Gypsum

Gypsum produced at the flue gas desulfurization unit is stored in silos in an amount corresponding to a week of production. Like sulfur, any surplus amount is handed over to the transport facilities.

(3) Limestone

Limestone, an auxiliary feed to the flue gas desulfurization unit, is stored in an amount sufficient to consume in a month. The refinery is equipped with limestone storage silos, but this study excludes consideration for the equipment required in the stages prior to the receiving of limestone into the refinery.

(4) By-products (heavy residuals) from upgrading processes

Coke and pitch from the fluid coker process and the Eureka process, respectively, are stock-piled in an outdoor storage yard outside the refinery, after boiler fuel requirement has been taken aside. This study will consider the use of belt conveyor to bring the by-product up to the fence of the refinery. Table 6.7 gives the solids storage facilities in the refinery.

Table 6.7 Storage Capacity of Solid Material

Normal Operation Case

	Case	Fluid Co	oker	Eurek	(a	M-D	S
(1)	Sulfur						
	Production	509.2	T/SD	569	T/SD	558	T/SD
	Storage yard	1,200	m²	1,300	m²	1,300	$\mathbf{w_{5}}$
(2)	Gypsum						
	Production	673	T/SD	498	T/SD	594	T/SĐ
	Silo	2,500	Tx2	1,750	Tx2	2,100	Tx2
(3)	Limestone	-				-	
	Consumption	392	T/SD	290	T/SD	346	T/SD
	Silo	4,000	Tx3	2,900	Tx3	3,500	Tx3
(4)	By-product (Residuals)	No		No		No	

6.2.4 Wastewater Treatment Facilities

Wastewater discharged from the refinery is categorized into process wastewater, oily wastewater, and clean wastewater. The first two groups of water are respectively treated before they are discharged from the refinery.

Process wastewater contains H₂S and NH₃. These components are removed by a foul water stripper. Water is then treated with a CPI oil separator. Oily water is also treated by the CPI oil separator to remove oil. Clean wastewater, such as blowdown from cooling towers and oil-free rainwater, is combined with the above treated water, and passed into guard basin, from which wastewater is discharged outside the refinery. Further facilities for the secondary and tertiary treatment is not provided under this project, because wastewater discharge standards have not yet been set. Table 6.8 gives properties of wastewater discharged after the above treatment. If wastewater properties have to be lower than these levels, treatment will require additional facilities such as active sludge treatment or activated carbon treatment facilities.

Table 6.8 Properties of Treated Wastewater

Normal	operation	case
--------	-----------	------

	Case	Fluid Coker	Eureka	M-DS
Properties				
Quantity of w	aste water T/H	805	915	770
Properties				
pН		6-8	6-8	6-8
H ₂ S	wt.ppm	2	4	3
NH ₃	wt.ppm	13	22	19
SS	wt.ppm	20	16	20
COD	wt.ppm	171	208	187
Oil	wt.ppm	5	6	5

6.2.5 Flue Gas Desulfurization Unit

A large amount of SO₂ exists in the flue gas exhausted from those boilers using, as fuel, a heavy residual by-produced from upgrading processes. Desulfurization equipment is thus required as an offsite facility to prevent air pollution.

(1) Flue gas desulfurization method

There are various methods of recovering SO₂ from flue gases. In this study there has been adopted a method in which SO₂ is recovered in the form of gypsum. Flue gas coming out of the boilers goes to the scrubber, where flue gas is moistened and cooled to a predetermined temperature, and at the same time, the gas gets rid of dust in the scrubber. Flue gas is then passed into an absorbing column, in which the gas comes in contact with a calcium-containing absorbing solution, thereby getting rid of sulfur oxides in the flue gas. The desulfurized flue gas is passed through an eliminator to remove mist, and then is discharged into the atmosphere. Meanwhile, waste liquid discharged from the cooling section is treated at the cooling wastewater treatment section to separate solids from tiquid.

Solids are taken out in the form of dehydrated cake. Water, after partly purged to the outside of the cooling system, is recycled to the cooling section to supplement fresh supply of cooling water.

Absorbing wastewater discharged from the absorbing section is sent to the gypsum production section, where gypsum is produced as a by-product.

(2) Material balance

Table 6.9 gives the material balance in the flue gas desulfurization for all the three cases.

Table 6.9 Material Balance of Flue Gas Desulfurization

Ala ental	AKATATIAN	AA AA
4 2 () 3 () 1 ()	operation	
2 4 4 2 2 2 2 2 2 2	v F	

Case	e Fluid Coker	Eureka	M-DS
Sulfur in Flue Gas	139.2 T/SD	103 T/SD	122.8 T/SD
Limestone as feed	392 T/SD	290 T/SD	346 T/SD
Gypsum as product	673 T/SD	498 T/SD	594 T/SD
Unrecovered Sulfur in Flue Gas	13.9 T/SD	10.3 T/SD	12.3 T/SD

6.2.6 Fire-fighting System

The refinery is equipped with the fire-preventing and fire-fighting means. Water for fire-fighting use is secured by tank storage. Water piping and fire hydrants are always kept at a water pressure of 7 kg/cm²G. Fire pumps, both motor driven and diesel driven types, are kept at stand-by for immediate turnout. In addition, various types of fire trucks are stationed in the refinery.

6.2.7 Flare Stack and Blowdown System

When process units are in emergency, the gases and liquids in the units are discharged through safety valves, pressure control valves, or through emergency blowdown valves of furnaces, and are burnt at the flare stack.

6.2.8 Control Rooms

In order to in egrally control the whole operations of process units, utility and offsite facilities of the refinery, the control rooms are equipped with instrumentation panels. The refinery will have three control rooms for processes, utilities and offsite facilities, respectively.

6.2.9 Buildings

Table 6.10, lists all the buildings constructed for the refinery, which are common to the three cases.

Table 6.10 Building

Building	No.s	Floor Area, m
Administration Office	1	3,000
Maintenance Shop	i	2,000
Warehouse	3	2,000
Laboratory	1	500
Engineering Office	1	1,000
Control Room	3	2,000
Power House	2	4,000
Substation	20	4,000
Fire House	1	500
Cafeteria	1	500
Clinic	1	300
Rest House	. 2	200
Gate House	2	100

6.2.10 Others

Additional requirements for facilities include communications equipment, both internal and external; lighting equipment; roads and fences; and collective stacks.

CHAPTER 7 UTILIZATION OF BY-PRODUCTS

This chapter outlines the methods of utilizing those heavy fractions by-produced from upgrading process at the Orinoco heavy oil upgrading refinery.

It is premised for the review of by-product utilization that any by-product of heavy residual is, under this study, used as boiler fuel for the purposes of steam supply to the refinery and power supply to the refinery as well as to the oil field for Orinoco crude oil production.

Information in this chapter is given in details in Sections 1.3, 2.3 and 3.3 of Volume II. In this chapter, the boiler plant capacity is adjusted in consideration of the steam balance for the entire refinery.

Basic considerations for combustion methods are given in Chapter 7, "Combustion of Heavy By-Product" of Volume II.

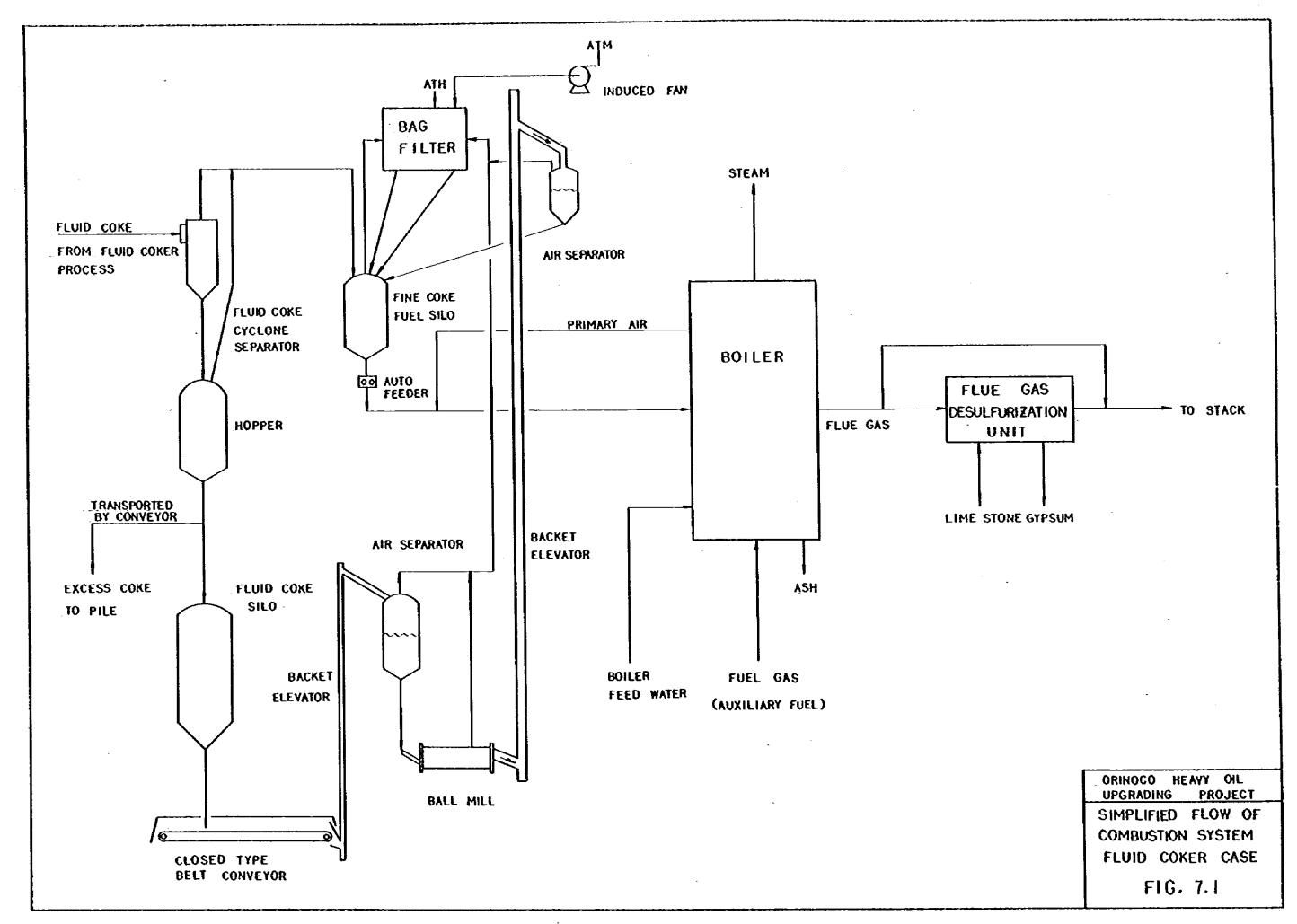
7.1 BY-PRODUCTS (HEAVY RESIDUALS)

Table 7.1 gives the quantities and properties of heavy residuals by-produced from the three cases of upgrading processes.

7.2 TYPES OF COMBUSTION

7.2.1 Fluid Coke

There are many experiences in boilers using fluid coke as their fuel. There is no problem in the use of boilers of the coke burning type. Fluid coke contains quite small amounts of volatile matter, and for this reason, it is less ignitable. When it is burnt, flames rise high. Ignition temperature is in the range of 870-920°C. Since the composition of fluid coke comparatively resembles that of anthracite, it is considered most appropriate to use the vertical U-type burning of boilers. This type is used for many anthracite-burning boilers. Coke has to be milled for better ignitability. About 90% of coke is required to have a particle size of 200 mesh or below. Another requirement is that auxiliary fuel gas is always burnt in an amount corresponding to 10% of the total boiler heat requirement, to make combustion stable against load fluctuations.


The foregoing type of combustion is achieved by the planned combustion system flow diagram shown in Fig. 7.1. Various systems may be proposed to transfer, mill and feed coke to the boiler, but there is no large difference among them.

Fluid coke withdrawn from the elutriator of the fluid coker process is air-conveyed to cyclone separators to remove fine particles. The coke of larger particle sizes is passed through hoppers into a silo. The volume of coke stored in the silo is determined by the operating conditions for both of fluid coker process and boiler plant.

Meanwhile, the surplus amount, i.e., the difference between fluid coke production

Table 7.1 Summary of By-Products

	Case	Fluid Coker	Eureka	M-DS
1.	Kind of By-product	Fluid Coke	Eureka pitch	M-DS Asphalt
2.	Total Quantity of By-Product	3,913 T/SD x 295 D/Y 1,956.5 T/SD x 70 D/Y	5,269 T/SD x 295D/Y 2,634.5 T/SD x 70D/Y	4,763 T/SD x 295D/Y 2,381.5 T/SD x 70D/Y
	Total	1,291,290 T/Y	1,738,770 T/Y	1,511,190 1/Y
3.	Balance of By-product Consumption for Boiler F	uel 1,493 T/SD x 365 D/Y	2,390 T/SD x 295D/Y 1,910.4 T/SD x 70D/Y	2,227.2 T/SD x 295D/Y 1,752 T/SD x 70D/Y
	Sub Total	544,945 T/Y	838,778 T/Y	779,664 T/Y
	Pile for stock	2,420 T/SD x 295 D/Y 463.5 T/SD x 70 D/Y	2,879 T/SD x 295D/Y 724.1 T/SD x 70D/Y	2,535.8 T/SD x 295D/Y 629.5 T/SD x 70D/Y
	Sub Total	746,345 T/Y	899,992 T/Y	792,126 T/Y
	Total	1,291,290 T/Y	1,738,770 T/Y	1,571,790 T/Y
4.	Properties of By- products	Sulfur content	Sulfur content	Sulfus content
		5.79 wt.%	4.3 wt.%	5.82 wt.%
		Metal content	Softening point	-
		V = 2,460 ppm Ni = 610 ppm Fe = 70 ppm	428°F Volatile matter	V = 1,683 ppm Ni = 393 ppm
		Balk deasity	45.3 ¥1.%	*API gravity
		56 1P/ft ³ (0.897 g/cm ³)	C 86.1 wt% H 6.1 " S 4.4 " N 1.7 "	-10.6 (Sp. Gr. = 1.1706) R & B Soft Pt. 162°C
		Mesh Size Normal	H/C 0.85 - Metal Content	Nitrogen 1-58 wt.% Asphalten (C ₁)
		% on 20 (841µ) 5 50 (297µ) 15 60 (250µ) 25 80 (177µ) 55 100 (149µ) 65	V = 1,598 ppm Ni = 400 ppm Heptane Insol	43.3 wt.% Con. Carbon 57 wt.% Viscosity 4,000 cp € 250°0 500 cp € 300°0
		140 (105µ) 75 200 (74µ) 95	Benzen Insol.	
		Fine case % on	49.5 wt.%	
		1,000 µ 3.2 590 µ 0.2	Quinoline Insol.	
		297 µ 0.4 250 µ 1.3 177 µ 5.5 149 µ 15.6 125 µ 24.9 105 µ 20.7 88 µ 12.5 74 µ 5.0 63 µ 6.7 53 µ 2.9 53 µ 1.1	10.5 wt.%	

and boiler fuel requirement, is not used for the time being, and therefore, is brought from the hoppers by means of a belt conveyor to the outside of the refinery for outdoor storage.

The coke stored in the silo is sent by means of a belt conveyor and a backet elevator to an air separator to remove fine particles. The coke of larger particle sizes is then ground in ball mills. Coke is again passed through another air separator, and fine coke ready for use as boiler fuel is stored in fine coke silo.

Coke is fed to the boiler by an automatic feeder which air-conveys the coke feed, using boiler primary air. The boiler is additionally supplied with off-gas from the refinery, as an auxiliary fuel.

Flue gas coming out of the boiler is treated by the flue gas desulfurization unit and discharged to the atmosphere through the stack.

The following table gives steam and power requirements and the balance between production and consumption of by-product coke, both in normal operation (100%) and during periodical maintenance (50%).

	100% operation	50% operation
	(295 days/yr.)	(70 days/yr.)
Steam requirements:		
100 kg/cm ² G	772.1 T/H	772.1 T/H
50 kg/cm ² G	388.4 T/H	194.2 T/H
Power requirements:		
Total	200,400 KW	182,700 KW
(Oil field)	(126,200 KW)	(126,200 KW)
Coke production	3,913 T/SD	1,956.5 T/SD
Coke quantity for boiler fuel	1,493 T/SD	1,493 T/SD
Surplus coke	2,420 T/SD	463.5 T/SD
Volume of boiler fuel gas	0.11 MMNm³/SD	0.11 MMNm ³ /SD
Volume of CO boiler fuel gas	0.33 MMNm ³ /SD	0.165 MMNm ³ /SD
Surplus volume of fuel gas	1.08 MMNm³/SD	0.485 MMNm³/SD

Taking the above requirements and balance into consideration, this study plans to generate the steam of 100 kg/cm²G and 500°C from boilers using coke fuel and to generate the steam of 50 kg/cm²G. and 405°C from CO boilers using CO gas derived from coke combustion. Major machinery in the combustion system of the fluid coker process is as follows:

Fluid coke cyclone separators Hoppers Belt conveyor for surplus coke

Fluid coke silos

Closed type belt conveyors

Ball mills

Backet elevator

Air separator

Induced fans

Bag filters

Fine coke silo

Boilers

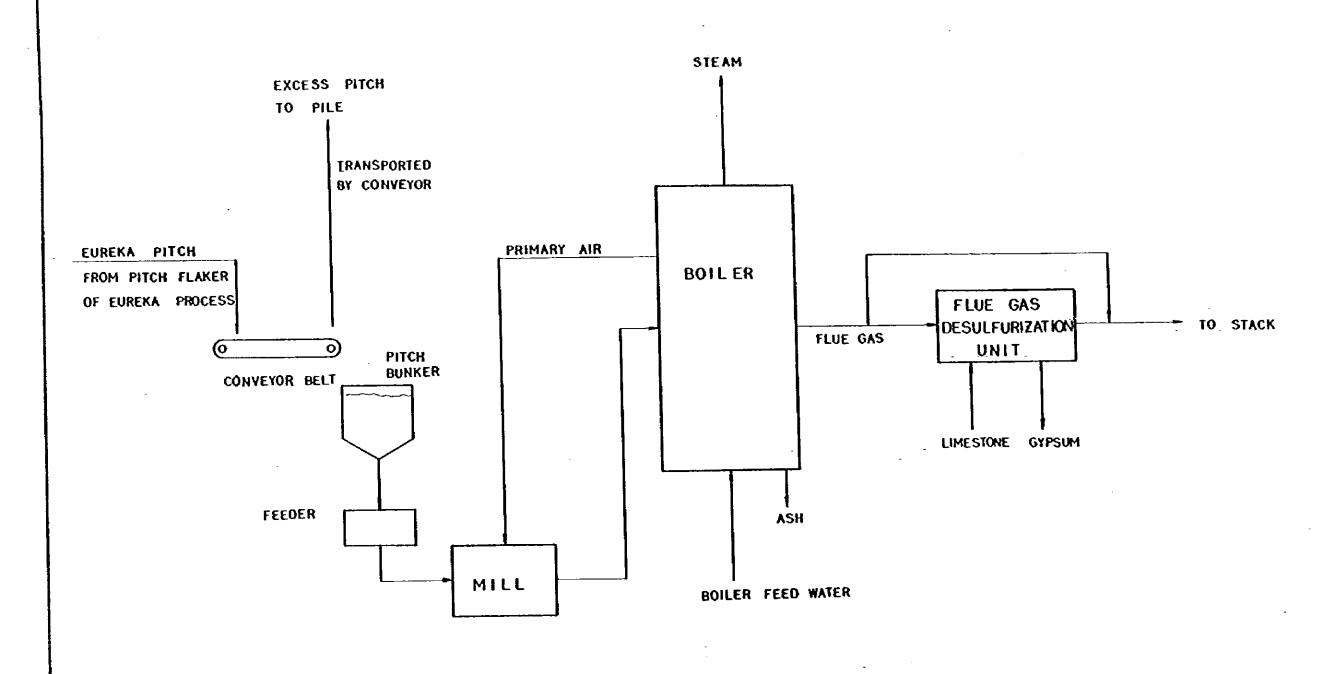
(The flue gas desulfurization unit is dealt with as an offsite facility.)

7.2.2 Eureka Pitch

Eureka pitch has a larger calorific value and gives less ash than does coal. It is said to be pulverized. Pitch is in the solid form at normal temperature, but it can be handled in the liquid form above its softening point. It is possible, therefore, to use the following two pitch-burning methods:

- Atomized liquid pitch burning.
- Pulverized solid pitch burning.

The latter type of burning has been adopted under this study for the convenience of pitch transport and storage.


Like fluid coke, pitch will pose no problem as long as pitch is pulverized as in the fine coke burning method. Eureka pitch burning is considered to required no auxiliary fuel.

The foregoing type of combustion is achieved by the planned combustion system flow diagram shown in Fig. 7.2

The pitch by-produced in the Eureka process comes out of the pitch flaker. It is transported to a pitch bunker by way of a belt conveyor. The surplus amount other than boiler fuel requirement is directly belt-conveyored to an outdoor storage yard outside the refinery, where pitch is stock-pited for future use.

Pitch has a high softening point, and is less susceptible to natural oxidation than coal. Since it has little fear of heat accumulation and natural ignition, it can be stored in an open yard. Pitch is passed from the pitch bunker to the feeder, where pitch is weighed and removed of impurities. The feeder also automatically controls the volume of pitch fed to the boiler.

Pitch leaves the feeder and goes to the mill, where pitch is pulverized and simultaneously dried by hot primary air from the boiler. This fine pitch is then fed to the boiler.

ORINOCO HEAVY OIL UPGRADING PROJECT

SIMPLIFIED FLOW OF COMBUSTION SYSTEM EUREKA CASE

FIG. 7.2

The following table gives steam and power requirements and the balance between production and consumption of the by-product pitch, both in normal operation and during periodical maintenance, for the refinery.

	100% operation (295 days/yr.)	50% operation (70 days/yr.)
Steam requirements:		
100 kg/cm ² G	1,190.3 T/H	951.4 T/H
50 kg/cm ² G	0 T/H	0 T/H
Power requirements:		
Total (Oil field)	208,000 KW (126,600 KW)	182,500 KW (126,600 KW)
Pitch production	5,269 T/SD	2,634.5 T/SD
Pitch quantity for boiler fuel	2,390 T/SD	1,910.4 T/SD
Surplus pitch	2,879 T/SD	724.1 T/SD

Major equipment in the pitch combustion system is as follows:

Conveyor belt

Pitch bunker

Feeder

Mill

Boiler

(The flue gas desulfurization unit is dealt with as an offsite facility)

7.2.3 M-DS Asphalt

As regards the combustion of M-DS asphalt, Maruzen Oil has reviewed the following four methods:

Fluidized-bed combustion

Pulverized solids combustion

Low-viscosity oil cutback, and

High-temperature atomization.

It has been revealed that:

- The fluidized-bed combustion method is at present no established technology, although it is promising in the future.
- The pulverized solids combustion method, composed of almost existing technologies, is highly practicable, but it calls for large facilities for solids handling in such steps as flake formation from molten asphalt, pulverization of flake asphalt, and storage of powdery asphalt in silos.
- The low-viscosity oil cutback method has a merit of permitting the use of ordinary atomizing methods, but vacuum gas oil, i.e., the valuable base oil of improved crude

oil, is consumed as fuel.

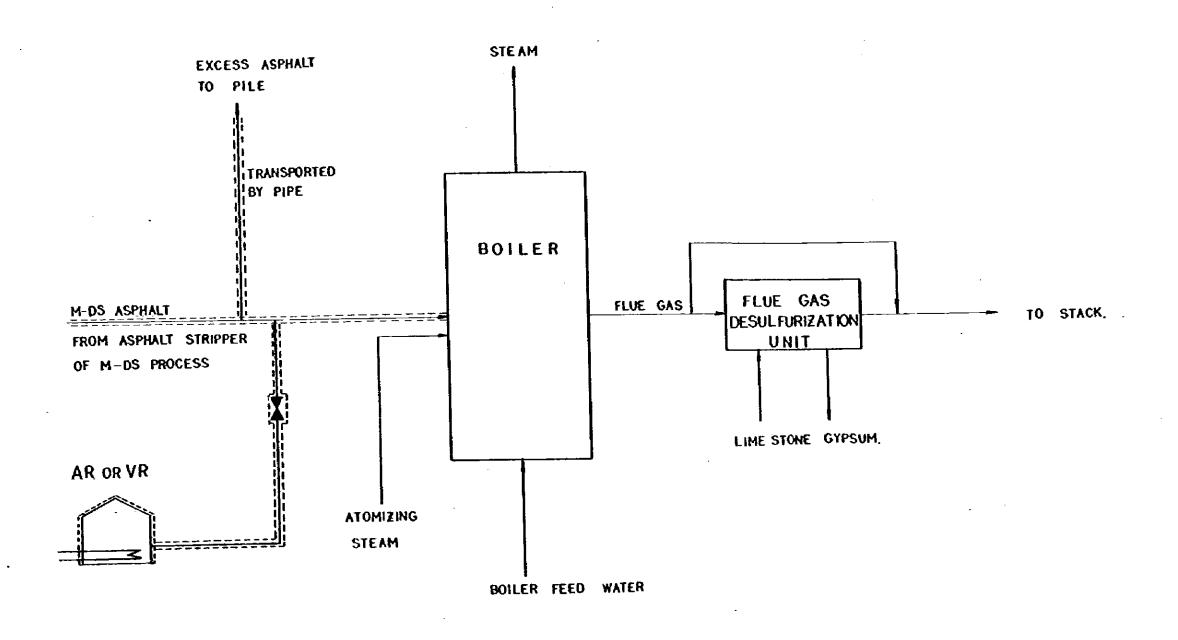
In the light of these review results, Maruzen Oil has now studied a method of burning asphalt by atomizing the liquid form of asphalt, in order to take full advantage of the solvent deasphalting process.

A small test combustion furnace was used to carry out atomizing/burning burner tests with the asphalt having a softening point of about 160°C obtained from the deasphalting process. It has been demonstrated that the same combustion as in the use of ordinary fuel oil can be accomplished by heating asphalt to decrease its viscocity to a suitable level for atomizing and by selecting those burners that enable flames to be fully swirled. Maruzen Oil thus proposes the following combustion system.

- (1) Asphalt is withdrawn from the asphalt stripper through the bottom at a high temperature of about 340°C, and it is directly transported to the burners through the pipe jacketed with hot oil, without being passed through an intermediate tank and a service tank.
- (2) High-temperature steam is used to heat asphalt fuel and atomize it through internal mixing burners and to maintain an atomizing temperature.

The direct link between the deasphalting unit and the boiler may allow the boiler operation to be directly affected by the operation of the deasphalting unit. Therefore, the asphalt combustion system is also provided with the piping that enables vacuum residue to be used as an alternative fuel in such a case as emergency shutdown of the deasphalting unit.

For this reason, a vacuum residue tank is installed as an intermediate tank, instead of installing an intermediate tank of asphalt. When deasphalting unit is not in normal operation, such as start up or shut down, the asphalt produced is not fed directly to the boiler, but is mixed with deasphalted oil and the mixture is sent to the vacuum residue tank. Fig. 7.3 shows the flow diagram for the asphalt combustion system.


The following table gives steam and power requirements and the balance between production and consumption of the by-product asphalt, both in normal operation (100%) and during the time of 50% operation.

	100% operation (295 days/yr.)	50% operation (70 days/yr.)
Steam requirements:	•	
100 kg/cm ² G	1,180.4 T/H	928.5 T/H
50 kg/cm ² G	0 T/H	0 T/H
Power requirements:		
Total	203,000 KW	176,000 KW
(Oil field)	(120,500 KW)	(120,500 KW)
M-DS asphalt production	4,763 T/SD	2,381.5 T/SD
M-DS asphalt quantity	2,227.2 T/SD	1,752 T/SD
for boiler fuel		
Surplus asphalt	2,535.8 T/SD	629.5 T/SD

-

-

للتوليدي والمراجع والمراجع

ORINOCO HEAVY OIL UPGRADING PROJECT

SIMPLIFIED FLOW OF COMBUSTION SYSTEM M-DS CASE

FIG. 7.3

CHAPTER 8 PROJECT EXECUTION

A preparative study on the project execution is described in this chapter, with a view to setting up criteria for various cost estimation to be described in Chapters 9 and 10. This chapter therefore deals with the descriptions on the following items:

- Refinery plot plans
- Refinery construction schedule
- Mobilization plans
- Refinery organization
- Employee training plan

The refinery under this study is a special refinery characterized by upgrading heavy crude oil to obtain improve crude oil. What is more, the refinery stands on the pre-requisite condition that it is going to supply the oil field with diluent, power, and fuel gas necessary for crude oil production. Therefore, execution of this project inevitably calls for a comprehensive study in which both the oil field and the refinery are taken into due consideration. The refinery to be constructed will have to have a large scale, if consideration is also given to the special process for upgrading heavy oil and to power generation by means of special boilers using a process by-product as the fuel.

8.1 REFINERY PLOT PLAN

Fig. 8.1 shows the fluid coker case of plot plan for the entire refinery. Refinery site is required to accommodate raw material storage facilities, process units, intermediate and product tanks, storage facilities other than tanks, utility facilities, and offsite facilities.

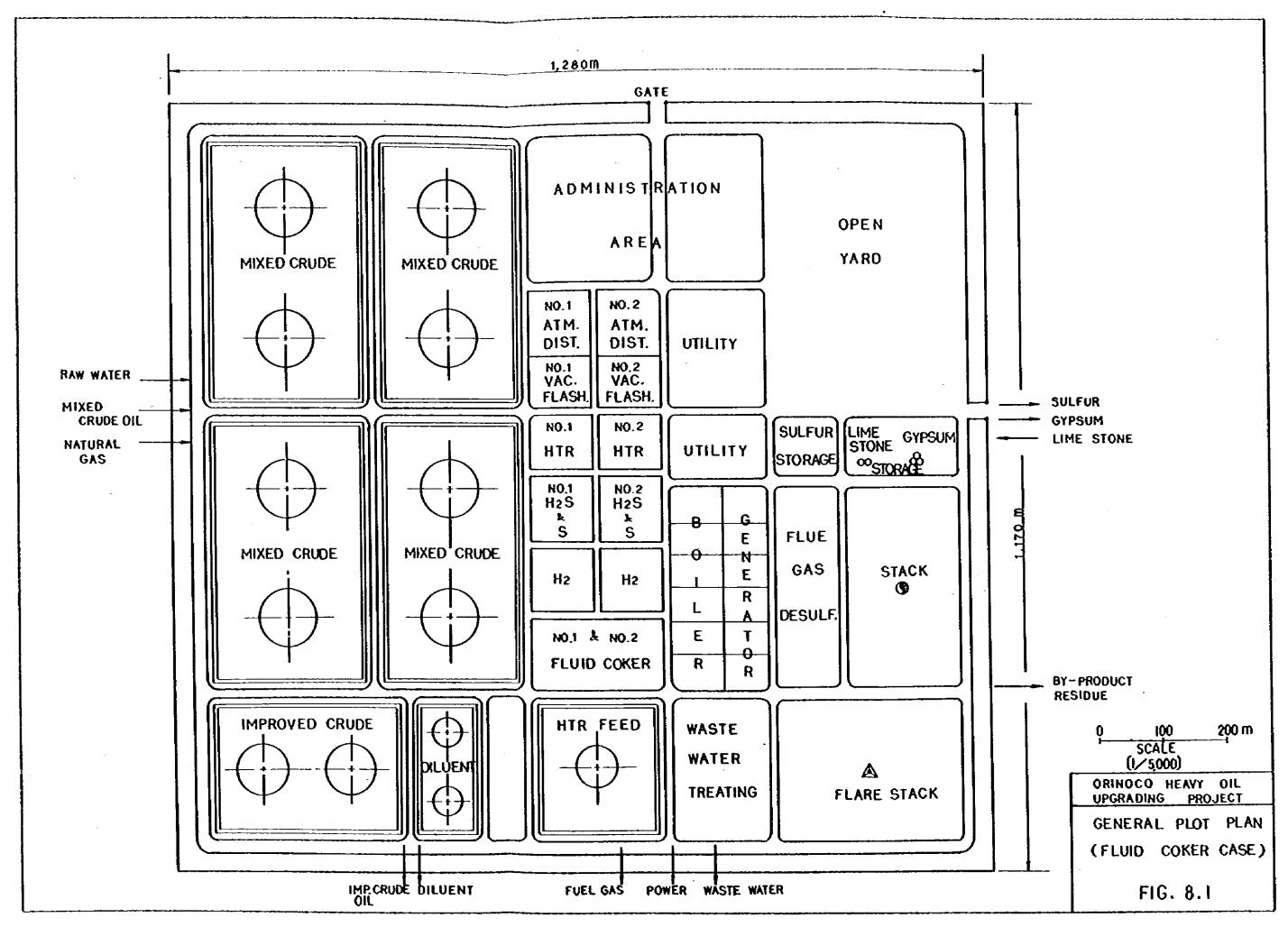
Land requirements for the three cases are almost same and about 1,500,000 m². In the case of this refinery, the major product of improved crude oil is almost immediately pipelined to the shipping port. This permits the refinery to have quite a smaller tank capacity within the refinery, as compared with those refineries from which the products are directly pipelined to tankers for loading. The same applies to the storage capacities of other by-products.

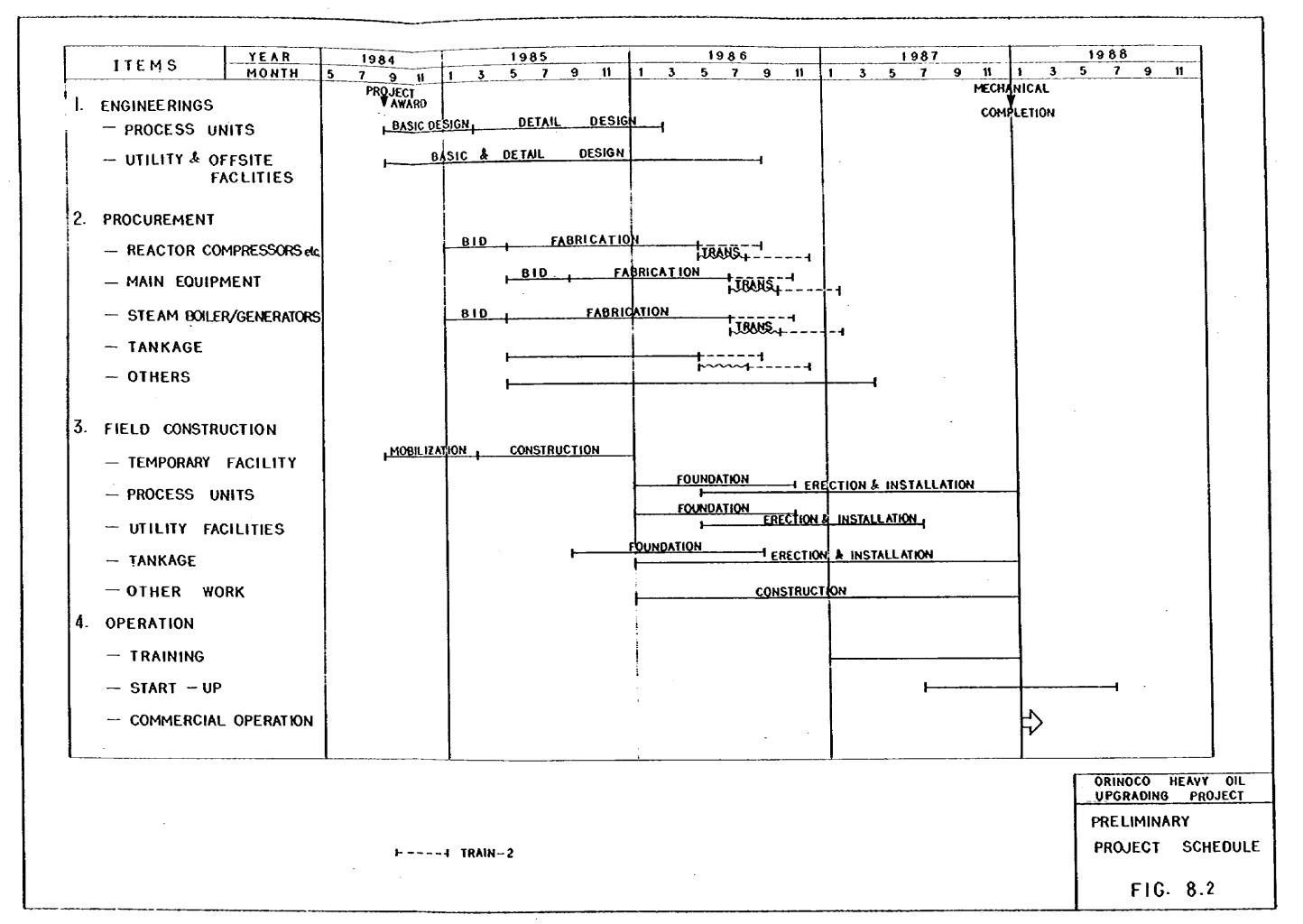
Sulfur, gypsum and fuel by-products may require a further detailed plot plan depending on the solids storage conditions.

8.2 REFINERY CONSTRUCTION SCHEDULE

An overall construction schedule must be prepared on the basis of present situations in, and planned target date of completion for, the refinery construction project, as well as on the basis of individual review by project participants, including technical development and basic design conducted by process licensors, and the design, procurement, transportation, construction and operation conducted by the contractor. The schedule described in this Section is a tentative construction schedule, common to all the three cases, prepared under the following assumptions:

- For all the three cases, the refinery is different only in the major upgrading process units, and there is no large difference from a construction scheduling point of view.
- The planned target date of mechanical completion is set for late 1987.
- The contractor is awarded the contract for refinery construction at such a time as required to construct it within the shortest period of construction work and to complete the work successfully by the target date.
- Process unit licensors are selected, and basic design data are available, before the contractor has been awarded with the contract.
- Basic design data and general specifications of the project facilities are already established at the time of contract awarding.
- Orders for major refinery equipment is put as early as possible, because the delivery of such equipment constitutes a bottleneck in the construction schedule. And the equipments having many unit numbers are to be ordered separately to some manufactuers.
- Orders for major refinery equipment are awarded by calling for bids on such equipment during a suitable period.
- Equipment and machinery shall be delivered within average periods so far experienced with similar types.
- Infrastructures, such as land prepared in good conditions, roads extending to the construction site, etc., are ready for use by the time they become necessary.
- Refinery is supplied with crude oil concurrently with the completion of construction work, but the operating rate is set at 50% for the first year on the premises that the refinery cannot be put into full operation during the initial half year.


Fig. 8.2 shows the entire refinery construction schedule prepared on the basis of the baove assumptions.


8.3 MOBILIZATION PLAN

In carrying out construction work effectively for the upgrading refinery, it is necessary to estimate how many workers can be put into construction work throughout the construction period, as well as during the peak period(s). Estimated number of workers offers an aid to the plans on accompanying infrastructures. Studies will be made also on the procurement of construction equipment, as well as on unloading and land transportation of equipment and materials.

8.3.1 Labor Mobilization

Workers engaged in the refinery construction include those supervisors who supervise and coordinate the entire construction work as the work is under way at the

construction site, along with those workers who are directly engaged in the work, such as foremen, skilled labor, semi-skilled labor, and unskilled labor.

As regards the mobilization situations, a peak will come during a period from late 1986 to early 1987, and 3,500 to 4,000 workers will be required during that period. The labor requirement throughout the construction period is estimated at about a total of 2.0 million man-days.

8.3.2 Procurement of Construction Equipment

An on-the-spot survey has revealed that in Venezuela, the costs of construction equipment on lease are often calculated on the basis of 10 months' depreciation period. Naturally, the lease is very costly. In large-scale construction work such as contemplated under this project, it seems rather reasonable to buy new equipment in Venezuela or import new equipment from abroad.

As for the equipment required to install refineary units on the Orinoco construction site, the sizes of such equipment must be in good match with the sizes and weights of the units.

The maximum size of equipment is determined by restrictive conditions for inland transportation. If a equipment is larger than the limit set by transportation, it is divided into several pieces until they are brought into the site. They are then reassembled or reconnected for installation on the site. It will thus become necessary to use such construction equipment as adequate for this knock-down method of installation.

This precaution is not required if the roads for inland transportation to the refinery is newly constructed, including bridges and/or overbridges, if any.

8.3.3 Unloading and Inland Transportation of Equipment and Materials

Equipment and materials imported under this project will be unloaded and cleared at Pto. Ordaz or Pto. La Cruz area.

A wharf with unloading facilities will be constructed and used exclusively for the unloading operations under this project. Therefore, unloading capacity will pose no problem.

As regards the inland transportation from the unloading wharf to the Orinoco construction site, it is estimated from an on-the-spot survey that, except for the case of new road construction, the maximum size of transportable equipment will be 3,000 m/m in diameter and 30,000 m/m long, with a weight of 80 tons per shipment.

8.4 REFINERY ORGANIZATION

This section deals with an organization and a manning plan required to operate the refinery.

This organization and associated manning plan are worked out on an assumption that the refinery

under study is one of the refineries operated by the Venezuelan company concerned and therefore that general administration of the refinery under study will be integrally controlled at its headoffice. Even if personnel engaged in general administration is placed actually in the refinery, this study does not include such personnel in this organization, nor include labor cost for such personnel in the operating cost.

As detailed in Fig. 8.3, the refinery organization largely consists of the three departments of Operation Department directly in charge of operation, Technical Department, and Maintenance Department.

The refinery organization is headed by a refinery manager, to whom three department managers directly report. These three department managers are responsible for the activities of their respective departments.

Table 8.1 shows the number of personnel required to operate the refiery under this organization. There is little difference of personnel requirement among the three upgrading process cases. Thus the number in this table can be regarded as common to all cases.

Technical Department:

Technical Department is organized by three sections of Technical service, Production Planning and Laboratory. The Department is in charge of the following tasks:

- Setting of various operating standards.
- Planning on process unit operations.
- Preparation of production plans.
- Planning, review, and execution of maintenance, improvement and trouble-shooting for the refining.
- Technical studies.
- Operation and administration of laboratory

Technical Department covers all the technical matters associated with refinery operation, as well as with product quality control.

Operation Department:

Operation Department, organized by Process Section, Utility Section, and Offsite Section, is in charge of the following tasks:

- Operation and maintenance of process units.
- Operation and maintenance of utility facilities.
- Operation and maintenance of offsite facilities, including oil blending and transport, receiving of crude oil and shipment of products, and storage and shipping of other materials.
- Preparation of oil handling plans.
- Preparation of statistics recording refinery operation, material receiving and shipment, etc.

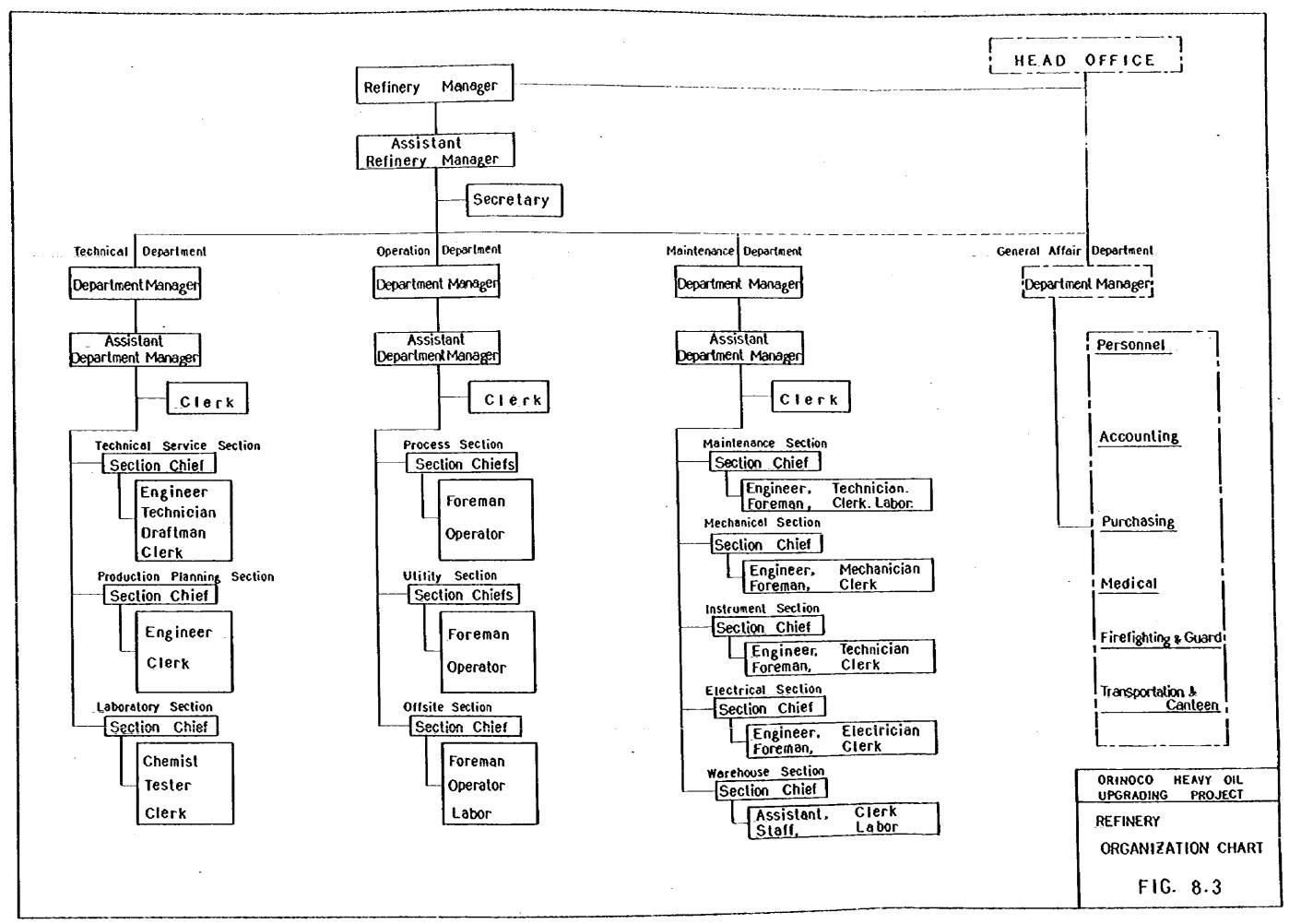
Table 8.1 Summary of Required Personnel

	Personnel Class	Manager Class	Supervisor Class	Foreman Class	Operator Class	Clerk & Worker Class
	Operation	Day	Day	Shift	Shift D	ay Day
1.	Refinery Manager	1				
	Assistant Manager Secretary	ı				2
2.	Technical Department	2				2
	Technical Service Sect.		12			4 2
	Production Planning Sect.		4			1
	Laboratory Sect.		2		4 X 5	4 1
3.	Operation Department	2				2
	No. 1 Process Sect.		2	1 X 5	10 X S	1
	No. 2 Process Sect.		2	1 X 5	10 X S	1
	No. 3 Process Sect.		. 2	1 X 5	6 X 5	1
	Boiler/Generator Sect.		2	1 X 5	6 X 5	1
	Utility Sect.		2	1 X 5	6 X S	1
	Offsite Sect.		2	1 X 5	6X 5 2	0 1+30
4.	Maintenance Department	2				2
	Maintenance Sect.		2	1 X 5	2 X 5 4	l5 3 + 15
	Mechanical Sect.		2		_ 2	2+10
	Instrument Sect.		2	1 X 5	2 X 5 1	10 1
	Electrical Sect.		2		1	16 1
	Warehouse Sect.		2			4 1+8
	Total	8	40	40	260 12	26 87
	Grand Total		561			-

Operation Department is directly responsible for refinery operation. The Department gets prepared for continuous operation in 5 shifts in every 24 hours.

Maintenance Department:

This Department, organized by five sections of Maintenance, Mechanical, Instrument, Electrical, and Warehouse, is in charge of the following tasks:


- Planning on maintenance and repairs of equipment.
- Preparation of execution plans.
- Routine repair work.
- Ordering for minatenance work to outsiders, supervision and inspection of such work.
- Preparation of statistics on maintenance work.
- Setting of standards associated with maintenance.
- Preparation and control of parts- and material-purchasing plans.
- Preparation of statistics on maintenance materials.

Maintenance Department gets prepared for accomplishing repair work, deassembly and tepairs of machinery, other than large work conducted at the time of periodical maintenance. A part of workers in this Department need working on a shift basis for the repair work during operation.

General Affairs Deaprtment:

Although this Department is not included in the refinery organization, its roles, such as listed below, must be accomplished for smooth operation of both the refinery and the owner company. If the headoffice of the company regards a refinery as a division, the General Affairs Department is often incorporated in the refinery organization. In this study, however, this department is excluded from the refinery organization, as intended by the Venezuelan side. The department is in charge of the following tasks:

- Personnel control and salary payments.
- Employee welfare.
- Planning and execution of personnel education and training.
- Budgeting and accounting.
- Administration of land and buildings.
- Guard keeping and anti-pollution measures.
- Fire-fighting.
- Clinic operation and control; Employee safety and hygienic control.
- Public relations.
- Mess hall operation and administration.
- Canteen.
- Other general affairs.

8.5 EMPLOYEE TRAINING PLAN

Smooth operation of the refinery can be secured by training refinery employees. Thus, a training plan is required for the personnel described in the previous section. The cost of this training plan is included in the capital cost as one of the pre-startup costs.

The trainees include both the foreman class and the operator class of Operation Department. Among operators, chief operators serve as the key person of each shift group, and they need especially long-term training.

The method and period of training are based on the following program:

- The class of foremen who operate process units:
 They are trained first at a similar process plant or a model plant for 6 months, to learn refinery operation. After this period, they are allow to attend the construction work of their own refinery for another 6 months, during which period they learn the organization
- The class of foremen who operate utility and offsite facilities:
 These foremen attend the construction work of their refinery for 6 months to learn the organization and functions of utility and offsite facilities for which they are responsible.
- Chief operator class of Operation Department:
 Chief operators in this class attend basic lectures on the operation of the refinery, and then they are given more advanced lectures on their respective expertise. After lectures are complete, they are given actual field training at an existing refinery in Venezuela. It will take 12 months to complete this course.
- General operator class:
 Operators are trained at the construction site for 6 months.
- Laboratory testers of Technical Department:

and functions of the new refinery.

Testers are lectured and field-trained at an existing refinery in Venezuela for 6 months.

As regards the management class and the employees with whom Technical and Maintenance Departments are manned, it is assumed that they already have sufficient technical knowledge. Therefore, they are given no special training.

The foregoing program should be carried out prior to the startup of refinery. After the refinery has been put into operation, all employees are trained with field practice during 6 months of test operation period. Table 8.2 gives the number of trainees and the periods of training for the respective classes.

Table 8.2 Trainees

Class of Trainee		Number of Trainee	Training Months	Training Place
1.	Foreman of Process Sect.	15	6	Existing Refinery
			6	Plant Site
2.	Foreman of Utility & Offsite Sect.	15	6	Plant Site
3.	Chief Operator of Operating Department			
	process sect.	25	12	Existing Refinery
	utility sect.	10	12	Existing Refinery
	offsite sect.	5	12	Existing Refinery
1 .	Operator of Operating Department			
	process sect.	105	6	Plant Site
	utility sect.	50	6	Plant Site
	offsite sect.	25	6	Plant Site
	Tester of Laboratory sect. in Technical Department	24	6	Existing Refinery
	Total	274		

CHAPTER 9 CAPITAL REQUIREMENTS

This chapter deals with the capital requirements for the construction of Orinoco heavy oil upgrading refinery which has been outlined up to Chapter 8, above. The capital requirement refers to a sum of capital to be invested by the time when the refinery is put into commercial operation. It is largely divided into fixed capital (subject to depreciation) and working capital (not subject to depreciation). These two types of capital include the following items:

Fixed capital:

- Construction cost
- Paid-up royalties
- Initial costs of catalyst and chemicals
- Pre-operating expenses
 (As regards the interest rates imposed during construction period, the total capital requirement is covered by fund on hand, and therefore, interest is not included in the fixed capital.)

Working capital:

- Land
- Raw material and product inventories.
- Catalyst and chemical inventories.
- Spare parts and warehouse supplies.
- Cash in hand.
- Balance of accounts receivable and accounts payable.

Table 9.1 gives a summary of capital requirements.

Table 9.1 Capaital Requirement Summary

		Fluid Coker Case	Eureka Case	M-DS Case
		(10 ⁶ US\$)	(10° US\$)	(10° US\$)
1.	Process Unit	460.6	452.2	554.7
2.	Utility Facilities	274.5	320.0	281.3
3.	Offsite Facilities	187.1	177.8	173.8
4.	Paid-up Royalties	2.09	2.13	2.39
5.	Initial Catalyst and Chemicals	5.73	5.10	25.26
6.	Pre-operating Expenses Fixed Capital $(1-6)$	16.40 946.42	16.64 973.87	16.64 1,054.09
7.	Working Capital	126.98	123.63	134.09
Tota	l Capital Requirements	1,073.40	1,097.50	1,188.18

The subsequent Sections 9.1 and 9.2 will describe the standards and methods used to calculate respective cost items, and will give estimated costs.

9.1 Fixed Capital

9.1.1 Construction costs

Construction costs have been estimated on the following premises:

- (1) Construction costs are estimated on an assumption that the plant concerned is constructed in the Orinoco area.
- (2) Construction costs are calculated on the "present price" basis, wherein equipment/ material costs and labor cost, as of middle 1980, are used. Future changes in prices are not taken into account.
- (3) Construction costs include construction material cost, labor cost, design & engineering fee, and contractor expenses.
- (4) The construction material/labor costs include total direct material/labor costs, wherein battery limit units, such as listed below, are installed, and also include include indirect field expenses and worker wages.

The battery limit units involved are as follows:

Furnaces

Fire protection work

Tower, reactors and internals

Paving and concrete works

Heat exchangers.

Compressor shelters

Pumps

Control houses

Motors

Catalyst handling equipment

Compressors

Construction equipment

Pipings

Machinery

Instruments

Temporaly offices, warehouses and locker

rooms

Electrical devices

Field tests

Insulation work

Tools

Structural steel work

Work-related expenses

Final washing

Othe field expenses

Others

Special wages

These items apply similarly to utility and offsite facilities.

- (5) Design & engineering costs and contractor expenses have been estimated from past experiences. These must be added to obtain an estimated total construction cost. They include the following items:
 - If process owners are involved, their costs for basic design and specifications,
 and their cost for check on the contractor's detailed design.
 - The contractor's costs for detailed design, procurement, expediting, inspection, construction machinery and tools, office expenses, construction work supervision, and indirect contractor expenses.
- (6) The following items are not included in the estimated construction cost, assuming that they can be used as established infrastructures:
 - Land preparation for construction work.
 - Geological surveys.
 - Special foundation work.
 - Port facilities.
 - Roads extending up to the refinery.
 - Head offices.
 - Formalities, taxes and expenses inherent to the region.
- (7) Procurements are based on bids called by the contractor.
- (8) There would be no delay in construction work caused by weather conditions.
- (9) Material and labor costs are based on estimated values.
- (10) This construction cost does not include the cost of facility required to be

constructed outside the battery limit (fences) of the upgrading refinery to connect the refinery with outside facilities. Table 9.2 gives detailed breakdowns of these costs.

9.1.2 Paid-up Royalties

Royalties are individually agreed upon between a licensor and a licensee. For the convenience, estimated, figures are presented here. They constitute present values in 1980. In this study, no escalation of royalties is taken into account. Table 9.3 gives estimated paid-up royalties.

9.1.3 Initial Cost of Catalyst and Chemical Filling

This is the costs of catalysts and chemicals to be filled prior to the operation of refinery. These costs are based on present prices (1980) in Venezuela. No escalation is taken into account. Table 9.4 summarizes estimated costs.

9.1.4 Pre-operating Expenses

Pre-operating expenses are required during construction period until test runs are finished. They include the following items:

(i) Operator training cost:

This cost comprises salaries paid to the trainees during their training period and the training expenses. The cost is calculated on the basis of a personnel training plan described in Chapter 8.

(2) Administrative cost:

It is customary to account the salaries of refinery management and administrative staff and related indirect cost within the pre-operating expenses. In the case of this project, however, it is premised that these costs, required in the initial period prior to construction work and during the construction work, are regarded as an administrative cost of company head office. Thus, the administrative cost of the refinery is taken into account only for a year prior to the startup of commercial operation.

(3) Test running cost

The costs calculated under this category include the costs for those persons sent by process licensors and the contractor to help test-run the refinery, in addition to the costs of chemicals and utilities consumed during test runs.

Table 5.5 summarizes the estimated pre-operating expenses.

Table 9.2 Construction Costs Summary

	Capacity		Fluid Coker Case	or Case		Eureka Caso	977		M-DS Caso	
-	per unit in	Capacity	No.s	Cost 10* US\$	Capacity	No.s	Cont 10° USS	Capacity	No.s	Cost 10° USS
1. Process Units										
Atmospheric Distillation	BPSD	102,800	13	56.5	103,200	64	26.6	98,200	н	55.0
Vacuum Flashing	GSAB	67,200	61	40.3	67,400	67	40.5	64,200	н	39.3
Fluid Coker	BPSD	43,600	C1	172.1	1	1	1	ı	ı	i
Eureka	250	•	ı		42,400	73	151.9	1 8	í	1 8
SOW	BPSD S	:	: ,	3	1	H		00/:04	NI (0
HTR/HDS	osae	006'09	71	101.8	16,100	rt c	0.00	10,700	N 6	181 3 2 5
:		ŧ	, ا	,	20%.	4 6	N 00 V	20'04	40	9.5
	COLUMN TO THE	OK'0	·1 c	20.00	21.00	40	. A .	700,	40	7.4
And Car Treating	1/SD 41.5	255	4 (4	18.6	285	4 C4	1 61 60 60 60	273	÷ 64	9.61
Sub-total			l	460.6			452.2			554.7
2 Melity Facilities										
	1/H	260/200	4/2	117.2	240	9	144.7	240	·	123.0
Power Constator System	X	55,000/	4/2	113.0	46,000	φ	125.1	4,000 000,	v	118.5
Mary Company Company	2/4	15,000		4.5	2,310	•	6.2	016.1	-	5.2
Water Treatung Systems	17/11	03.6	-1 E*) <u></u>	028	e en	20.5	200	4 CT	15.0
Contents Recovery System	- A-	170	. CI	10	88	· C4	0,	250	. ~	6.1
Cooling Water System	T/H	18,000	63	14.9	20,000	63	16.5	15,500	61	12.9
Fuel System	1/4EN	008 1	1 ლ		2.000	ē cē	2.5	1.900	l ~	0 + 0 +
That Cas System	H/aEZ	380	ત	. es	350	121	3,1	350	. (1	3.1
Sub-total				274.5			320.0			281.3
3. Offsite Facilities.	;	•		•	***		4	•		9
Storage	Z .	1,436		% 7: °	7.75		\$.00 * -	1,040.1		٠٠ <u>٠</u>
Loading & Unioading	¥,5	51/10 101	r	o E	200	C	2 -	193	ç	12.3
Wasto Water Ireaning Flux Cas Desithirization	H/«HX •OI	1,6	à ⊷€	30.6	1.3	۱,	27.6	1.2	! ~ 4	26.3
Fire Fighting System	1									
Control System										
Communications System	8 _			. 73			, ,,			- 23
Lighting & Earth	1 1			1			•			•
A LEGG OF DIOW COM!		-								
Sub-total				187.1			177.8			173.8
•				0000			040			2 000 t
Total Construction Cost	-			7.776		•	2			4,007,0

Table 9.3 Paid-up Royalties

	Capacity	E.	Fluid Coker Case	Eure	Eureka Case	M-DS Case	Case
	per unit in	Capacity	Rayalties 10° US\$	Capacity	Royalties 10° US\$	Capacin	Royalties 10° USS
Fluid Coker	BPSD	43,600 × 2			i	1	
Eureka	BPSD	ı	ı	42,400 X 2		i	ı
M.DS	BPSD	1	ı	ı	ł	40,700 × 2	
Hydrodesuifurization	BPSD	2 × 006'09	•	16,100 X 2 45,900 X 2	* *	21,400 × 2 48,800 × 2	
Hydrogen Generator	MMNm ³ /SD as H ₂	0,90 X 2	94,0	1.08 × 2	0.53	1.79 × 2	3,0
Sulfur Recovery	T/SD as S	255×2	0.54	285×2	0.58	279 X 2	0.57
Flue Gas Desulfurization	10° Nm³/H	1.6	1.11	1.5	1.02	1.2	86.0
Total			2.09		2.13		2.39

* Included in construction cost

Table 9.4 Initial Catalyst and Chemical Costs

	Capacity	Fluid (Fluid Coker Case	Eure	Eureka Case	M-D	M-DS Case
	por unit in	Capacity	Cost 10° US\$	Capacity	Cost 10° USS	Capacity	Cost 10° USS
Fluid Coker	BPSD	43,600 × 2	0.34	1	ì	•	1
Eureka	BPSD	ı	ı	42,400 X 2	0.03	1	1
M-DS	CISAR	1	ı	ı	i	40,700 × 2	0.87
Hydrodesulfurization	BPSD	2 × 006 09	4.00	16,100 × 2)	3.43	$21,400\times1/48,800\times2$	21.98
Hydrogen Generator	MMNm3/SD as H2	0.90 × 2	1.12	1.08×2	1.35	1.79 × 2	2.13
Acid Gas Treating	T/SD as H2S	67.4×2 22.8×2 191.7×2	0.09	315×2	0.10	308.8 X 2	0.10
Sulfur Recovery	T/SD as S	255 X 2	0.15	285 X 2	0.17	279 × 2	0.16
Flue Gas Desulfurization	10° Nm3/H	1.6	0.03	1. L.	0,02	7	0.02
Total			5:73		\$.10		25.26

Table 9.5 Pre-operating Expenses

		Fluid Coker Case	Eureka Case	M-DS Cases
		(10 ⁶ US\$)	(10 ⁸ US\$)	(10° US\$)
1.	Operator Training	7.25	7.25	7.25
2.	Administrative Costs	3.19	3.19	3.19
3.	Startup Costs	5.96	6.20	6.20
	Total	16.40	16.64	16.64

9.2 WORKING CAPITAL

Working capital is a fund necessary for the refinery production activities. The working capital includes the following items:

9.2.1 Land Rent

If land is purchased, the cost required can be regarded as an item of fixed capital, which is not subject to depreciation, unlike the fixed-capital items described in the preceding Section. If land is on lease, the rent required can be included in the operating cost, as described later. However, land cost is not evaluated in this study and rather regarded as free of expense, as instructed by the Venezuelan side.

9.2.2 Raw Material and Product Inventories

Raw materials and products are assumed to have average inventories as much as 50% of tank storage capacities. Inventory investments have been calculated by multiplying these inventories with respective unit costs.

Unit costs are assumed to be as follows:

Raw crude oil

: US\$10/BBL

Light gas oil in mixed crude

: Similar to the cost of raw crude oil.

Improved crude oil

: Operating cost of the refinery (a value obtained after sales of power and fuel gas have been

deducted.)

Light gas oil in the mixed crude oil is circulated between refinery and oil field, and it is regarded as non-priced. Since, however, an initial quantity of gas oil has to be purchased from outside for crude oil production, this quantity is taken in the cost calculation.

9.2.3 Catalyst and Chemical Inventories

No process for this refinery is required to replace catalysts in short periods. Thus, no inventory of catalyst is included in the working capital. Chemicals are held in stock in amounts sufficient to operate the refinery for two months. Costs of these inventories are included in the working capital.

9.2.4 Spare Parts and Warehouse Inventory

Costs of spare parts and warehouse inventories are estimated at 2% of the total construction cost. These costs are included in the working capital.

9.2.5 Cash in Hand

It is planned that two months of expenditures from direct operating cost, i.e., the operating cost excluding raw material cost and depreciation cost, is always held in cash.

9.2.6 Balance Between Accounts Receivable and Accounts Payable

A month is set as a period of grace until the refinery receives payments for its products. Thus, a month of turnover is appropriated for the account receivable. Similarly, a month is set as a period of grace for the payments of raw material costs. Thus, a month of purchase is appropriated for the account payable. The balance between the afore-mentioned account receivable and the account payable is appropriated in the working capital. Table 9.6 gives the estimated working capital amounts.

Table 9.6 Working Capitals

		Fluid Coker Case	Eureka Case	M-DS Case
		(10° US\$)	(10° US\$)	(10 ⁶ US\$)
1.	Land		_	_
2.	Oil Inventories	36.93	37.77	36.41
3.	Catalyst and Chemical Inventories	0.01	0.07	0.10
4.	Spare parts and Warehouse Supplies	18.25	19.00	20.20
5.	Cash in hand	11.23	11.11	14.99
6.	Balance of Accounts Receivable and Accounts payables	60.56	55.68	62.39
	Total	126.98	123.63	134.09

CHAPTER 10 OPERATING COSTS AND ECONOMIC ANALYSIS

This chapter deals with the calculation of operating costs required for the upgrading refinery, using the capital requirement calculated in the preceding chapter as the base, and evaluates the economics of the refinery.

10.1 OPERATING COSTS

The operating costs are grouped into direct production costs and fixed charges. Table 10.1 give a summary of operating costs. The direct operating costs are given as the operating costs from which raw material cost and depreciation cost are deducted.

In the sections below there will be described the bases and methods used to estimate respective cost items.

10.1.1 Direct Production Costs

(1) Raw material cost

The raw material cost includes the following items, which are calculated by multiplying respective unit costs with the required quantities.

Raw materials Unit costs

Raw crude oil (in mixed crude oil) US\$10/BBL

Diluent (in mixed crude oil) Non-priced

Natural gas (raw material for H₂) US\$3/MMBTU

Limestone Non-priced

(2) Catalysts and chemical

With the operation going on at the refinery, it becomes necessary to make-up the catalysts and chemicals. Costs of these materials are estimated on a yearly basis, and are appropriated in the direct production cost.

(3) Utility cost

If utilities are purchased from outside, a cost must be accounted for this purpose. Such a cost may vary with the changes in the operating rate. In the case of this project, however, no utility cost is accounted. Because the refinery is planned on a utility self-sufficiency policy and industrial water, the only item to be supplied from an outside source, is regarded as free of charge.

(4) Operating supplies

Operating supplies include such items as lubricant, grease, instrumentation recording sheets, office supplies, automobile gasoline, etc. The cost for all these items is set at 0.15% of the refinery construction cost.

Although the direct production cost may also include product packaging cost and

yearly patent charges, these items are not considered under this project.

10.1.2 Fixed Charges

(1) Depreciation

Depreciation cost is calculated by applying the following depreciation method to the fixed capital obtained as in the preceding chapter.

Depreciation method:

Straight line method

Depreciation period:

16.6 years after plant start-up

Salvage value ratio:

0%

(2) Property Taxes

The property taxes imposed on fixed assets are usually appropriated in the fixed charges, but they are not in the case of this project.

(3) Insurances

These are the cost for various insurances paid after the plant goes into operation, but they are not included in the operating cost calculation of this study.

(4) Maintenance and repair cost

This item is required to proceed with smooth operation of the plant, and includes the costs for periodical maintenance, daily and periodical inspections, evaluations, accident forecasting, and small repairs. This cost is calculated totally by multiplying the construction cost with the following factors:

Process units:

4%/annum

Utility facilities:

3%/annum

Offsite facilities:

1.5%/annum

(5) Operating labor cost

This cost is required for those operators who run the refinery facilities. The number of personnel fixed as in Chapter 8 is multiplied with a unit cost of US\$22/man-hour which corresponds to an average salary payment, to give this cost. The cost includes allowances other than salaries, and welfare cost, etc., in addition to salaries.

(6) Plant overhead

This cost is required for the administrative and clerical services to the refinery, and includes administrative personnel cost and office expences. The cost is totally calculated as 44% of the operating labor cost.

Apart from the foregoing direct production costs and fixed charges, a refinery necessitates general administration cost and marketing cost, if the refinery is regarded as an independent company.

Under this project, however, these costs are excluded from the operating costs as

they are appropriated in the head office expenses.

Table 10.1 Operating Costs

	Fluid Coker Case	Eureka Case	M-DS Case
1. Direct Production Costs			
(10 ⁶ US\$/Year)			
(1) Raw Material Cost	528.60	541.19	527.11
(2) Catalyst & Chemicals	4.41	2.37	22.68
(3) Utility Cost	-		-
(4) Operating Supplies	1.37	1.42	1.51
Sub Total	534.38	544.98	551.30
2. Fixed Charges			
(106 USS/Year)			63.50
(1) Depreciation	57.02	58.66	63.30
(2) Taxes	_	-	
(3) Insurances	_	-	33.24
(4) Maintenance & Repair	29.08	30.66	
(5) Operating Labor Cost	22.57	22.57	22.57
(6) Plant Overhead	9.93	9.93	9.93
Sub Total	118.60	121.52	129.24
3. Total Operating Costs	652.98	666.50	680.54
(10 ⁶ US\$/Year) 4. Direct Operating Costs (10 ⁶ US\$/Year)	67.36	66.65	89.93
5. Direct Operating Costs			-
Per unit crude oil	0.99	0.98	1.39
(US\$/BBL of Mixed crude oil)	1.29	1,27	1.80
(US\$/BBL of Raw crude oil) (US\$/BBL of Improved crude oil)	1.63	1.62	2.15

Total operating costs mean the costs from 2nd operating year until 16th operating year.

10.2 ECONOMIC ANALYSIS

The refinery economics is analyzed based on those data calculated as in Chapter 9 and Section 10.1 of this chapter. Results of this analysis will be referred as a guide to a further detailed analysis which will be carried out in the future.

The economic analysis is carried out by adding sensitivity analysis to the evaluation of base cases. The sensitivity analysis includes the following items:

Construction cost, and

Raw crude oil cost.

10.2.1 Bases and Procedures

The economic analysis is carried out on a fixed 1980 basis. The refinery is studied on the premises that it will go into operation in early 1988. No consideration is given to any escalation of costs for the period from 1980 to 1988. The analysis utilizes the calculation of return on equity (ROE) on a discounted cash flow (DCF) basis.

(1) Definition of terms

The economic analysis in this study employs the method of ROE(DCF), as designated by the Venezuelan side. The ROE(DCF) equation is given by:

$$\frac{\sum_{i=0}^{n} \frac{Ei}{(1+r)^{i}} = \sum_{i=0}^{n} \frac{Ai}{(1+r)^{i}}$$

Where r = ROE(DCF)

E_i = Equity capital investment in the i-th year.

A; = After-tax profit plus depreciation.

n = Project life plus construction period expressed in years.

(2) Study bases

Premises for base cases are set as follows:

(a) Base-case refineries:

Base cases are the following three cases of plans for an Orinoco heavy oil upgrading refinery:

Fluid coker case

Eureka case

M-DS case

(b) Operating rate at the initial stage of operation:

The refinery cannot be put into full operation for a year after it is started up. It is assumed that during that year the refinery operates at a rate of 50% and goes into full operation from the second year. Full-scale operations of units and facilities are set as follows:

Process Units:

330 days of operation per year at their design

capacities.

Utility facilities:

365 days of operation throughout the year at

their design capacities.

Offsite facilities:

365 days of operation throught the year at their

design capacities.

(c) Raw material cost

The cost of raw crude oil is set at US\$10/BBL on the 1980 basis. Light gas oil used as the diluent to be mixed with raw crude oil passes through several processing steps outside the refinery, but the diluent throughput of the refinery never change; that is, the quantity of incoming diluent in the mixed crude oil is always equal to the quantity of the diluent leaving the refinery for circulation. Therefore, the diluent cost is not calculated as it is formally considered as nil. The cost of natural gas used as the raw material for hydrogen is set at US\$3/MMBTU. The cost of limestone, the auxiliary raw material for gypsum production, is regarded as nil.

(d) Construction cost, operating cost, etc.

These costs are based on the calculations given in Chapter 9 and Section 10.1.

(e) Product price

The price given in Table 10.2 is used for the main product of improved crude oil (synthetic crude oil). That part of light gas oil used as the diluent is not calculated for its product cost, just as described for the raw material cost in paragraph (c), above.

By-produced sulfur and gypsum have no price. Among the utilities supplied to the outside of refinery, the products of power and fuel gas would have the following prices on the 1980 basis:

Power:

US\$0.023/KWH

Fuel gas:

US\$3/MMBTU

(f) Financing aspects

Capital requirement of this project is totally met by owned capital, with no loan being used.

(g) Capital expending schedule

Capital investment is all owned capital. Table 10.3 gives a capital expending schedule.

(h) Project schedule

The refinery project proceeds on the following schedule:

Completion of construction work:

Late 1987

Table 10.2 Product Price

Case	Fluid Coker	Eureka	M-DS
Improved Crude Oil			
Quantity, BPSD	125,000	125,000	125,000
°API	25.7	25.0	26.1
Sulfur of Crude, wt.%	0.70	0.41	0.05
Sulfur of 650°F+, wt.%	0.73	0.60	0.024
Tia Juana Medium Crude Oil			
°API	26.4	26.4	26.4
Sulfur of Crude, wt.%	1.5	1.5	1.5
Sulfur of 650°F+, wt.%	2.3	2.3	2.3
Price, USS/BBL@1978	23.86	23.86	23.86
Price of Improved Crude Oil			
Gravity difference, *API	0.7	1.4	0.3
US\$/BBL	-0.056	-0.112	-0.024
Sulfur difference of 650°F+, wt.%	1.57	1.7	2.276
US\$/BBL	+1.125	+1.32	+2.66
Price, US\$/BBL @ 1978	24.929	25.068	26.496
Price, US\$/BBL @ 1980	28.54	28.70	30.34

Table 10.3 Capital Expending Schedule

		1984	1985	1986	1987	1988
1.	Fixed Capital					
	- Construction Costs		20%	50%	30%	
	 Paid-up Royalties 	_		_	50%	50%
	 Initial Catalyst and Chemical 		-	_	100%	
	 Pre-operating Expenses 				50%	50%
2.	Working Capital					
-	- Oil Inventories	_			50%	50%
	 Catalyst and Chemical Inventories 	_	_	-	100%	 .
	 Spare parts and Warehouse Supplies 		-	~	50%	50%
	- Cash on Hand	_	_	_		100%
	 Balance of Account Receivable & Account Payables 	_	_	_	-	100%

Refinery start-up:

Early 1988

Full-scale operation:

Early 1989

(i) Project life

Project life is set at 20 years after the refinery goes into operation.

(j) Depreciation

Depreciation is as set in the preceding section.

(k) Income tax

Setting is as follows:

Tax rates:

50% and 67% (two cases)

Taxing system:

Uniform method.

Tax holiday:

None

(1) Dividend

Payment of any dividend is not considered in the ROE(DCF) calculations.

(m) ROE(DCF) calcualtion

ROE is calculated on the assumption that the construction will go into start in early 1984. Fiscal year closes at the end of the year for all incomes and expenditures.

(n) Sensitivity analysis

The following sensitivity analysis are carried out for the above base cases (2 income tax cases for each of the 3 process cases; hence, 6 cases in all):

Construction cost:

20% decreased case

20% increased case

– Raw crude oit cost:

50% decreased case (US\$5/BBL)

50% increased case (US\$15/BBL)

10.2.2 Result of Study

The calculation results of ROE based on the above bases and procedures are summarized in this sub-section.

(1) Base case

The calculation results of base cases are shown on Table 10.4.

Table 10.4 Economic Analysis Summary

	Case	Fluid Coker	Eureka	M-DS
		R	OE,%	·
Income Tax	: 50%			
Construction cost	: Base	25.0	22.9	23.1
Raw Crude Oil	: Base			
Income Tax	:67%			<u>-</u>
Construction cost	: Base	18.7	17.1	17.2
Raw Crude Oil	: Base			

(2) Sensitivity analysis

The calculation results of sensitivity analysis are shown in Table 10.5.

(3) Consideration

(a) Fluid coker case

In the fluid coker case, the relation between ROE and raw crude oil cost is shown in Fig. 10.1 (A) using parameters of construction cost and income tax.

Income tax 50% case:

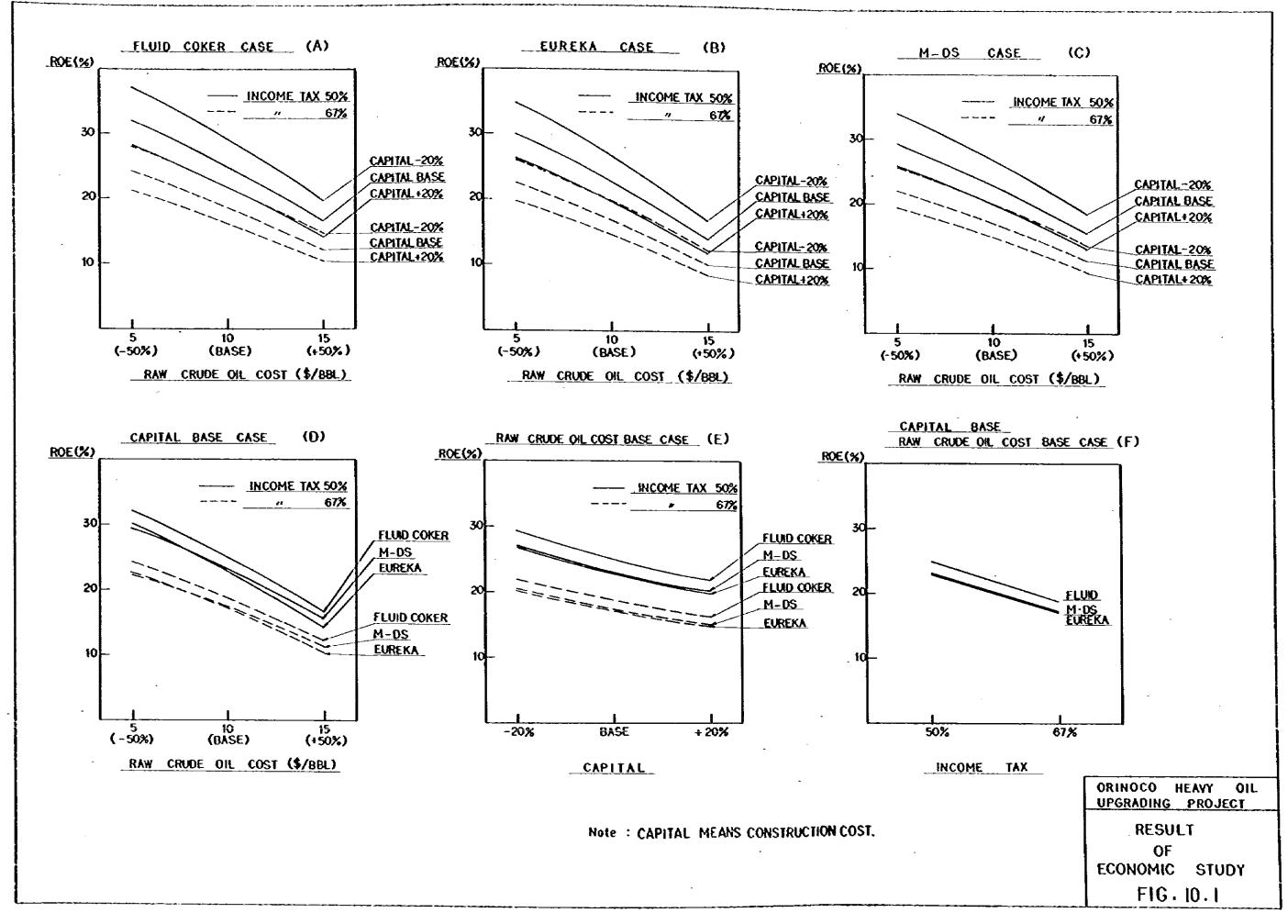


Table 10.5 Sensitivity Analysis Summary

Sensitivity Iten	15	Case	Fluid Coker	Eureka	M-DS
Income Tax	Construction	Raw Crude		ROE: %	 · · · · · · · · · · · · · · · · · ·
50%	Base	Base	25.0	22.9	23,1
50%	Base	-50%	32.0	30.0	29.4
50%	Base	+50%	16.6	14.2	15.6
50%	-20%	Base	29.2	26.8	27.0
50%	-20%	-50%	37.1	34.9	34.2
50%	-20%	+50%	19.8	17.0	18.6
50%	+20%	Base	21.9	19.9	20.2
50%	+20%	-50%	28.3	26.4	25.9
50%	+20%	+50%	14.3	12.0	13.3
67%	Base	Base	18.7	17.1	17.2
6 7%	Base	-50%	24.2	22.6	22.2
67%	Base	+50%	12.2	10.3	11.4
67%	-20%	Base	21.9	20.0	20.2
67%	-20%	-50%	28.0	26.3	25.7
67%	-20%	+50%	14.6	12.5	13.7
67%	+20%	Base	16.3	14.8	15.0
67%	+20%	-50%	21.3	19.9	19.5
67%	+20%	+50%	10.4	8.7	9.7

Income Tax

: Tax rates 50% and 67%

Construction

: Construction cost

Base study base

-20% 20% decreased case

+20% ... 20% increased case

Raw Crude

: Raw crude oil cost

Base study base (US\$10/BBL)

-50% 50% decreased case (US\$5/BBL)

+50% 50% increased case (US\$15/BBL)

Raw crude oil cost	ROE	
50% increase	8.9% decrease	
50% decrease	6-8% increase	
Consturction cost	ROE	
20% increase	2-4% decrease	
20% decrease	3-5% increase	

Income tax 67% case:

Raw crude oit cost	ROE		
50% increase	6-7% decrease		
50% decrease	5-6% increase		
Construction cost	ROE		
20 % increase	2-3% decrease		
20% decrease	2-4% increase		

Income tax increased case from 50% to 67%:

ROE decreases

4.9%

(b) Eureka case

In the Eureka case, the relation between ROE and raw crude oil cost is shown in Fig. 10.1 (B) using parameters of construction cost and income tax.

Income tax 50% case:

Raw crude oil cost	ROE
50% increase	8-10% decrease
50% decrease	7-8% increase
Construction cost	ROE
20% increase	2-4% decrease
20% decrease	3-5% increase

Income tax 67% case:

Raw crude oil cost	ROE
50% increase	6-8% decrease
50% decrease	5-6% increase
Construction cost	ROE
20% increase	2-3% decrease
20% decrease	2-4% increase

Income tax increased case from 50% to 67%:

ROE decreases 3.9%

(c) M-DS case

In the M-DS case, the relation between ROE and raw crude oil cost is shown

in Fig. 10.1 (C) using parameters of construction cost and income tax.

Income tax 50% case:

Raw crude oil cost	ROE	
50% increase	7-8% decrease	
50% decrease	6-7% increase	
Construction cost	ROE	
	NUE	
20% increase	24% decrease	

Income tax 67% case:

Raw crude oil cost	ROE	
50% increase	5-7% decrease	
50% decrease	5-6% increase	
Construction cost	ROE	
	2-3% decrease	
20% increase	2-3% decrease	

Income tax increased case from 50% to 67%:

ROE decreases

4-8%

(d) ROE comparison on base case of construction cost

The relation between ROE and raw crude oil cost on the base case of construction cost is shown in Fig. 10.1 (D).

Income tax 50% case:

ROE of fluid coker case is about 2% higher than ROE of Eureka and M-DS cases.

ROB of Eureka case and M-DS case are reversed at a point of raw crude oil cost US\$8/BBL.

Eureka case requires much charge of raw crude oil and its sensitivity effects to ROE.

Income tax 67% case:

Same as 50% case

(e) ROE comparison on base case of raw crude oil cost

The relation between ROE and construction cost on the base case of raw crude oil cost is shown in Fig. 10.1 (E).

Income tax 50% case:

ROE of fluid coker case is about 2% higher than ROE of Eureka and M-DS cases.

Income tax 67% case:

Same as 50% case

(f) ROE comparison on income tax sensitivity

The relation between ROE and income tax on the base cases of construciton cost and raw crude oil cost is shown in Fig. 10.1 (F).

Income tax increased case from 50% to 67%:

ROE decreases about 6%

(4) Computer output

The calculation sheets of economic analysis for the following three cases are attached in ANNEX.

Fluid coker	Eureka	M-DS
base	base	base
base	base	base
50%	50%	50%
	base base	base base base 50% 50%

The calculation sheets include:

- Profit and loss (Income statement)
- Funds outlook
- Cash flow analysis

CHAPTER 11 DISCUSSION ON STUDY RESULTS

The study results were described in Chapters 5-10 on the three process cases. In this chapter there will be discussed major items of process evaluation. Discussion in this chapter excludes those items which are common to all the three cases and thus require no further study or those well-known units, such as distillation units, acid gas treatment units, sulfur recovery units, hydrogen generation plant, and general offsite facilities.

11.1 REFINERY PLAN

11.1.1 Process Scheme (Refer to Figs. 5.4, 5.5 and 5.6)

Major differences in process combinations of the three cases lie in the upgrading and hydrotreating processes. The fluid coker case and the Eureka case use the steps of:

Thermal cracking → Hydrotreating

to upgrade raw crude oil into improved crude oil. On the other hand, the M-DS case makes use of:

Deasphalting - Hydrodesulfurization/cracking

for the same purpose. In the former two cases, thermal cracking produces light cracked oil, which is treated by a hydrotreating unit capable of relatively easy operation to obtain improved crude oil, wherease in the latter case, a solvent deasphalting unit gives deasphalted oil of heavy quality (having a specific gravity of 1.0108), which is mixed with vacuum gas oil, and the mixture (having a specific gravity of 0.9944) is used as the feed to hydrocracking to obtain improved crude oil.

Hydrocracking of this mixed feed of heavy quality is operated under severe conditions than is hydrotreating in the former two cases. Whether the planned upgrading refinery is a success or a failure almost depends on smooth operation of this hydrocracking step in the latter case.

11.1.2 Yield of Improved Crude Oil (Refer to Table 5.5)

Table 11.1 summarizes the overall balances of materials and of energy for the three cases. The yield of improved crude oil and the energy yield are as follows:

	Fluid coker	Eureka	M-DS
Yield of improved crude oil			
Vol.% on raw crude oil	79.0	78.8	82,8
wt.% on raw crude oil	70.4	70.4	73.5
Calorie % on raw crude oil plus	71.4	70.7	72.8
natural gas			

Yield of salable products (improved crude oil, off-gas and electricity)

Table 11.1 Overall Material and Energy Balances

F 1.08 x 295 M	1012 kcal/Y	MMNm ³ /D × D/Y	MMNm ³ /Y	1012 Kcal/Y
0.558 409 135 0.508 0.850 671 221 2.39 0.850 671 221 2.39 W. Crude Oil BPSD T/D 10° T/Y 10° 2 kcal/Y 158,160 25,420 8,389 82.07 158,160 25,420 8,389 82.07 151,055 24,280 8,012 78.39 Refinery & Boiler Fuel 10° 2 kcal/Y F = Fluid Coker Case M = 12.27 M = 12.27 Whitefull/Energy Refinery to Seo kcal 10,000 kcal/kg is used as hearting values of by the 3 secures 10,000 kcal/kg is used as hearting values of by the 3 secures 10,000 kcal/kg is used as hearting values of by the 3 secures 10,000 kcal/kg is used as hearting values of by the 3 secures 10,000 kcal/kg is used as hearting values of by the 3 secures 10,000 kcal/kg is used as hearting values of by the 3 secures 10,000 kcal/kg is used as hearting values of by the 3 secures 10,000 kcal/kg is used as hearting values of by the 3 secures 10,000 kcal/kg is used as hearting values of by the 3 secures 10,000 kcal/kg is used as hearting values of by the 3 secures 10,000 kcal/kg is used as hearting values of by the 3 secures 10,000 kcal/kg is used as hearting values of by the 3 secures 10,000 kcal/kg is used as hearting values of by the 3 secures 10,000 kcal/kg is used as hearting values of by the 3 secures 10,000 kcal/kg is used as hearting values of by the 3 secures 10,000 kcal/kg is used as hearting values of by the 3 secures 10,000 kcal/kg is used as hearting values of by the 3 secures 10,000 kcal/kg is used as hearting values of a kcal/kg is used as		. 00 - 00	, 496	
No Crude Oil No C		1.05 X 295 0.485 X 70	352.6	4.4
W Crude Oil Process W Crude Oil Process W Crude Oil Process W Crude Oil		;		ı
SPSD 1/2 10 ³ T/Y 10 ¹³ 10 ³ T/Y 10 ¹³ 10 ³ T/Y 10 ¹⁴ 10 ³ T/Y 10 ¹⁴ 10 ³ T/Y 10 ¹⁵ 10 ³ T/Y 10				ļ
158.160 25,420 8,389 82.07 Units E 125,000 158.710 25,510 8,418 82.36 151,055 24,280 8,012 78.39 151,055 24,280 8,012 78.39 151,055 24,280 8,012 78.39 151,055 24,280 8,012 78.39 Refinery & Botler Fuel 10 ¹² kcal/Y Refinery & Source Acade as hearting values of improved caude oils, (They are not indicated by the 3 crours.) Refinery & Losses & Errors F 10 ¹⁰ Refinery & Losses & Lasses & Errors F 10 ¹⁰ Refinery & Losses & Lasses & Errors F 10 ¹⁰ Refinery & Losses & Lasses & Errors F 10 ¹⁰ Refinery & Losses & Lasses & Lasses & Errors F 10 ¹⁰ Refinery & Losses & Lasses & Errors F 10 ¹⁰ Refinery & Losses & Lasses & Errors F 10 ¹⁰ Refinery & Losses & Lasses & Errors F 10 ¹⁰ Refinery & Losses & Lasses & Errors F 10 ¹⁰ Refinery & Losses & Lasses & Errors F 10 ¹⁰ Refinery & Losses & Lasses & Errors F 10 ¹⁰ Refinery & Losses & Lasses & Errors F 10 ¹⁰ Refinery & Losses & Lasses & Errors F 10 ¹⁰ Refinery & Losses & Lasses & Errors F 10 ¹⁰ Refinery & Losses & Lasses & Errors F 10 ¹⁰ Refinery & Losses & Lasses & Errors F 10 ¹⁰ Refinery & Lasses & Errors F 10 ¹⁰ Refinery & Lasses & Errors F 10 ¹⁰ Refinery & Lasses & Lasses & Errors F 10 ¹⁰ Refinery & Lasses & Lasses & Errors F 10 ¹⁰ Refinery & Lasses & Lasses & Errors F 10 ¹⁰ Refinery & Lasses & Lasse	Process	Improved Cr	nde Oil	
158,160 25,420 8,389 82,07 Units F 125,000 158,710 25,510 8,418 82,36 151,055 24,280 8,012 78,39 Refinery & Boiler Fuel 10 ¹² keal/Y F 10,34 E 13,26 M 12,27 Whaterial/Energy E E E I I I I I I I I I I I I I I I I			103 T/Y	1012 kcal/Y
153,710 25,510 8,418 82.36 151,055 24,280 8,012 78.39 Refinery & Boiler Fuel 10 ¹² keal/Y E 13.26 M 12.27 W 12.27 Teallities E Burde Coker Case E Burde Coker Case M 12.27 Mitterial/Energy Boiler for Elec. Supply to Field -355 IKW is converted to 860 keal 10,000 keal/kg is used as heating values of improved crucked clus. (They are not indicated by the 3 grouns.) F 1.86	Units		5.904	\$0.08
151,055 24,280 8,012 78.39 Refinery & Boiler Fuel 10 ¹² keal/Y F			5,930	26.30
Refinery & Botler Fuel 10 ¹² kcal/Y F 10.34 E 13.26 M 12.27 W 12.27 W 12.27 Utility E E Eureka Case M M NDS Case Operating days/year Refinery Re			5,887	28.87
for the first converted to 860 kcal 10,000 kcal/kg is used as heating values of improved crude oils. (They are not indicated by the 3 grouns.) F = Fluid Coker Case M = 13.26 White Dutility F = Fluid Coker Case M = 13.27 Utility F = Facilities F = Facilities E = Eactilities E = Eactil	kcal/Y			
E 13.26 M 12.27 F — Fluid Coker Case E — Bureka Case M — M.DS Case M — M.DS Case Operating days/year Refinery Boiler for Elec. Supply to Field — 365 IKW is converted to 860 kcal 10,000 kcal/kg is used as heating values of improved crude oils. (They are not indicated by the 3 groups.) F 1.86 F 1.86				
F — Fluid Coker Case E — Eureka Case M — M-DS Case Operating days/year Refinery Boiler for Elec. Supply to Field — 365 IKW is converted to 860 kcal 10,000 kcal/kg is used as heating values of improved crude oils. (They are not indicated by the 3 grouns.) F 1.36				
F — Fluid Coker Case E — Euroka Case M — M-DS Case Operating days/year Refinery Refinery Boiler for Elec. Supply to Field — 365 IKW is converted to 860 kcal 10.000 kcal/kg is used as heating values of improved crude oils. (They are not indicated by the 3 groups.) F 186				
F — Fluid Coker Case E — Euroka Case M — M.DS Case M — M.DS Case Operating days/year Rofinory Boiler for Elec. Supply to Field — 365 IKW is converted to 860 kcal 10.000 kcal/kg is used as heating values of improved crude oils. (They are not indicated by the 3 groups.) F 186	Utility	Elec. to Oil Fi	ield	
E — Euroka Case M—— M-DS Case Operating days/year Refinery Boiler for Elec. Supply to Field —— 365 IKW is converted to 860 kcal 10.000 kcal/kg is used as heating values of improved crude oils. (They are not indicated by the 3 groups.) F 1.86	Facilities	ΚW		1012 kcal/Y
M—— M-DS Case Operating days/year Refinery Boiler for Elec. Supply to Field —— 365 IKW is converted to 860 kcal 10.000 kcal/kg is used as heating values of improved crude oils. (They are not indicated by the 3 groups.) F 1.86				0.95
Operating days/year Refinery Refinery Boiler for Elec. Supply to Field —— 365 IKW is converted to 860 kcal 10,000 kcal/kg is used as heating values of improved crude oils. (They are not indicated by the 3 groups.) F 1.86				560
Notinory Rollor for Elec. Supply to Field —— 365 IKW is converted to 860 kcal 10.000 kcal/kg is used as heating values of improved crude oils. (They are not indicated by the 3 groups.) F 1.86				167
IKW is converted to 860 kcal 10,000 kcal/kg is used as heating values of improved crude oils. (They are not indicated by the 3 eroups.)		Surplus By-produ	ıct	ļ
10.000 kcal/kg is used as heating values of improved crude oils. (They are not indicated by the 3 eroups.)	Material/Energy	103 T/Y	1012 kcal/Y	اجا
10.000 kcal/kg is used as heating values of improved crude oils. (They are not indicated by the 3 eroups.)	Losses & Errors		603	l
F 1.86	1012 1040		8.10	
			7.43	
. N	n 1.38			
æ Σ	R 222			

Calorie % on raw crude plus	78.0	71.9	74.0
natural gas			

The M-DS case gives the highest liquid yield of improved oil. However, as regards the energy yield of a sum of salable products including improved crude oil, off-gas, and electric power, the Fluid coker case gives the highest value.

11.1.3 Properties of Improved Crude Oil (Refer to Table 5.6)

	Fluid coker	Eureka	M-DS
Improved crude oil			
Gravity, °API	25.7	25.0	26.1
Sulfur, wt.%	0.7	0.41	0.05
Yield of fractions			
$C_s = 375^{\circ}F$, vol.%	15	Δ7.3	∆9.5
375 – 650 , "	30	32.4	34.0
650 – 1000, "	Δ55	460.3	33.5
1000+, "			23.0
Sulfur cont. of fraction			
C ₅ - 375°F, vol.%	△0.24	△0.09	0.01
375 – 650, "	△0.67	0.1	0.08
650 1000, "	0.73	0.6	0.02
1000+, "	_	_	0.03

Improved crude oils from these three cases meet the requirements for the specific gravity and the sulfur content of 25°API or higher and 1.0 wt.% or lower, respectively. But when yields of fractions and their sulfur content are closely scanned, some fractions are found to fail to reach the target levels (as indicated by the delta marks).

11.2 PROCESSES AND OPERATIONS

11.2.1 Fluid Coker Process

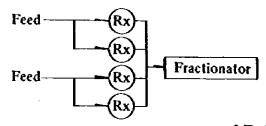
Feed oil is directly fed to the reactor to proceed with continuous cracking reaction on the fluidized bed which is formed by heated coke particles. This cracking process is already a technically established process. In addition to continuous operation, the fluid coker process has the following excellent features:

- The reactor is of an internal heating type in which no furnace is used; hence, the reactor does not require the maintenance of a furnace, such as decoking.
- -- The fluidized bed is heated by burning those coke particles formed by the reactor; there is no need of consuming variable liquid fuel oil.

Coker operation is easy and stable. Maintenance of units is roughly similar to ordinary cases. The reactor, the burner and the coke transport lines are lined with refractory materials. The materials get little damage, thus requiring only a little repair work in every 2 or 3 years.

An item of precaution to be taken in operation and maintenance is the clogging of units by fine coke. Toa Oil has already solved this problem.

Today, many commercial fluid cokers are in successful operation, and they are highly reliable. No problem will be posed by the installation of two 45,000 BPSD units planned.


11.2.2 Eureka Process

The Eureka process is almost the same as the delayed coker process in its unit combination. The cracking unit of this process is operated in a semi-batchwise manner. Its operation is thus similar, but these processes are different in that the delayed coker uses a cracking reaction at a high temperature for a long period (on a 24-hour cycle) to carbonize the feed up to the coke. On the other hand, the Eureka process produces highly aromatic pitch by blowing a large amount of steam superheated to a high temperature into the unit to proceed with cracking and polymerizing reactions with the residual pitch, while suppressing its gasification ratio as low as possible. Precautions should be taken in the following points:

- Plugging of pipes caused by solidification of pitch.
- Fatigue in the materials of both the reactor and the flaker, due to the changes in temperature.

Troubleshooting of these difficulties are already established, and there is no special problem in operation. A commercial unit having a capacity about 20,000 BPSD is successfully in operation at Chiba Works of Eureka Industry. Another similar unit having a capacity of 20,000 BPSD is now under construction in the People's Republic of China.

It is planned in the study to adopt the following two trains of units to treat 84,656 BPSD of feed.

x 2 Trains Rx: 2 Reactors

There are two separate feed lines for 1 train, therefore, the feed quantity per feed line amounts to 21,164 BPSD. The capacity of unit is roughly on the same level as the scale of the unit now in operation. Thus, it is unlikely that such a capacity may cause any problem.

11.2.3 M-DS Process


Maruzen Oil has designed an extractor having a special internal mechanism, and developed a process for effectively separating oil fractions, asphaltene and metals from heavy residues at a low solvent ratio. A 24-BPSD pilot plant based on this process is now in operation for a research purpose. Care should be taken in operation on the following points:

- Pipe clogging due to asphalt solidification inside the pipes.
- Contamination of solvent lines caused by entrained heavy oils.

In spite of the requirement for precautions on the above points, similar types of many solvent deasphalting units are in operation on commercial scales, and they pose no special problem of operation. Examples of other solvent deasphalting units in commercial operation are as follows:

- A 13,500 BPSD SDA/demetalizing unit at Corpus Christi Refinery of Champlin Oil
 Co.
- A 60,000 BPSD unit at Richmond Refinery of Chevron Oil of the U.S.

It is planned in the study to adopt the following two trains of units to treat 81,283 BPSD of feed.

Extractor 4,100\$ X 23,000 mm, 8,128 BPSD/Extractor Five extractors are arranged in parallel for a train.

11.2.4 Yields of Liquid Oil Fractions from the Three Upgrading Processes

Refer to Table 5.2, 5.3, and 5.4.

	Yield of liquid oil on feed
Fluid coker cracked oil:	62.48 vol.% (53.35 wt.%)
Eureka cracked oil:	68.85 vol.% (59.00 wt.%)
M-DS DAO:	68.57 vol.% (65.33 wt.%)

The M-DS process gives the highest yield, followed by Eureka and Fluid coker in the decreasing order. It should be noted, however, that M-DS DAO is of heavy quality, requiring to use hydrocracking in the subsequent step. Liquid yield of the Fluid coker is lower than that of the Eureka process because of high gas yield of the Fluid coker. This gas

is used as a supplementary boiler fuel. Any surplus amount will be supplied to the oil field.

11.2.5 Hydrotreating Units

The GO hydrodesulfurization unit used in the M-DS case, is aimed at desulfurizing a feed of only light straightrun oil. Its operation is easy and stable.

The hydrotreating unit in both of the Fluid coker case and the Eureka case is used to saturate the mixture of low-metal cracked oil and straight-run gas oils, while at the same time desulfurizing it. Its operation, too, is easy and stable. These processes are all based on established technologies. The catalysts used remain active for 1 to 3 years and pose no problem.

11.2.6 Heavy Oil Hydrodesulfurization Unit Used in the M-DS Case

(VGO/DAO HDS in the M-DS case)

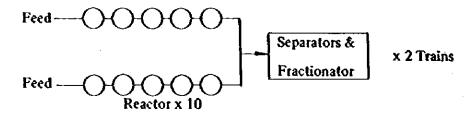
The feed oil of VGO/DAO mixture to be treated by the hydrodesulfurization unit has a specific gravity as quite high as 10.8° API. In order to achieve a target Sp. Gr. level of 25°API set for improved crude oil, attention will be paid to the design and operation conditions of hydrocracking. From its experiences in the hydrodesulfurization of the atmospheric residue of Middle East crude oil, Maruzen Oil has set the following conditions.

(1) Operating conditions

Space velocity (LHSV):

 $0.15 \, v/h/v$

H₂ consumption, chem.:

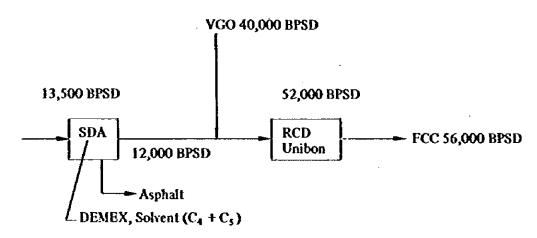

1,030 SCF/B

It is noteworthy that the space velocity is significantly lower than in ordinary hydrodesulfurization. Form this space velocity we understand Maruzen's intention to allow the cracking reaction to proceed to a larger extent by taking a long contact time.

(2) Schematic flow of units

It is planned in the study to adopt the following two trains of units to treat 98,537 BPSD of feed.

Because of a low space velocity there are used as many as 10 reactors for 1 train. There are two separate parallel lines for 1 train, each of which has five reactors, as schematically illustrated below.



Based on the above conditions and unit arrangement, Maruzen gave the estimated yield and properties of the improved crude oil. These estimated results seem to allow some room for further study on the following points:

For one thing, severe cracking is required to upgrade the feed by as large as 14.2° API from 10.8 to 25.0 in terms of specific gravity. It becomes crucial, therefore, to select an optimum hydrodesulfurization/cracking unit capable of affording this extent of upgrading, while suppressing gas evolution to a low level, as set by Maruzen Oil.

With regard to the content of metals, the feed oil (VGO/DAO mixture) is similar to the atmospheric residue of Kuwait crude or Khafji crude. In this regard, the afore-mentioned operating conditions are unlikely to give significant damages to catalyst activity.

As an example of VGO/DAO processing, there may be mentioned Corpus Christi Refinery of Champlin Oil Co.

As seen in the sketch above, 12,000 BPSD of DAO is mixed with as much as 40,000 BPSD of VGO, and the mixture is used as the feed to RCD Unibon. No information is available on process performance of this refinery.

It is tentatively assumed that the construction periods described in Chapter 8 and 10 are same for all of the three cases.

Actually, however, the construction period in the M-DS case may be relatively longer than in other cases, as far as major refinery equipment is concerned. For example, the VGO/DAO hydrodesulfurization units used in M-DS have 20 reactors of a 500-ton class having large wall thickness. If high-pressure separators are taken into account, the number of large size units is exceptionally large for a single project. The manufacturers of these types of equipment are limited in their number and supply capacity. They are, for example, Creusot-Loire (France), Nuovo Pignone S.P.A. (Italy), Babcock & Wilcox (the U.K. and the U.S.), Nooter Corp. (the U.S.), The Japan Steel Works (Japan), Kobe Steel (Japan) and MHI (Japan).

Dependent of the timing of project, the procurement of these types of machinery

may pose problems, such as extended construction period, cost increases, etc. Care should be taken fully to practical work problems, such as land transportation of these types of equipment.

11.2.7 Hydrogen Consumption by the Hydrotreating Process (Refer to Table 5.8)

Case	Unit	H ₂ Consumption
Fluid Coker	HTR	547 SCF/B Feed
Eureka	#1, HTR	440 "
	#2, HTR	680 "
M-DS	GO HD\$	401 *
	VGO/DAO HDS	1,193 "

The above levels of hydrogen consumption are considered reasonable for the most part, when they are evaluated from the feed properties and the reaction conditions.

11.3 RESIDUAL PRODUCTS

All the three cases produce quite large amounts of residuals (See Table 5.5). It is premised, as base of the study, that either residual shall be utilized as the fuel for industrial boilers. The residuals obtained in the three cases are fluid coke, Eureka pitch, and M-DS asphalt. All of them are solid at normal temperature, and contain high levels of sulfur and metals. (See Table 7.1).

11.3.1 Combustion Systems

(1) Fluid coke: Pulverized fuel combustion.

Fluid coke shows a Hardgrove Index of 30 or less. It is harder than ordinary coal, but it can be pulverized easily. Coke is finely pulverized by mills to a particle size of 200 mesh or higher (80% pass through 200-mesh screen). Fine coke thus obtained is sent together with air to the burner for combustion.

Fluid coke has an ignition temperature of about 870°C. Its inflammability is remarkable at a high temperature. In order to avoid unstable combustion caused by the high ignition temperature, the burner requires a supplementary fuel in an amount of about 10% of the total heat quantity. Fine coke is usually atomized downward in a U-type firing manner. Fluid coker boilers are already in commercial operation for the power generation purpose. When this case is adopted, there will be no problem to be concerned with. A thermal efficiency of about 85% can be expected.

(2) Eureka pitch: Pulverized fuel combustion.

Eureka pitch has a softening point of 220°C and a volatile matter of 45.3%. It has

a lower ignition temperature and better inflammability than fluid coke. As a brittle solid, the pitch can be crushed easily by a hammer mill, according to the licensor. Good inflammability makes Eureka pitch fully usable as a boiler fuel on a commercial scale. Combustion requires no supplementary fuel.

(3) M-DS asphalt: High-temperature liquid combustion

Maruzen Oil proposes a system of burning M-DS asphalt in the liquid form at a high temperature, using conventional steam-atomizing type of burners. This system is not so easy, as compared with the ordinary cases of heavy oil combustion by means of similar boilers. In the past, there was a case where asphalt was used for industrial boilers, but in that case the asphalt used had a pour point of 50°C or less.

Asphalt handling was far easier than the handling of M-DS asphalt which has a softening point of about 162°C.

Maruzen Oil has the opinion that the asphalt of 360°C and 100 cst can be atomized and burnt by blowing steam superheated to as high as 500°C into the inside of the burner. No technical data has been reported so far on the combustion of M-DS asphalt or similar substances. Therefore, if this system is to be put to practical use, careful commercialization tests will be required to investigate this combustion system and the mechanism of its fuel piping system. Major items of study in commercialization are as follows:

- (a) Mechanism of atomization
- (b) Keeping all fuel lines at high temperatures.
- (c) Replacement of asphalt with light oil in fuel lines.
- (d) Coke deposit on the burner tip.
- (e) Safety of fuel lines.

Meanwhile, JICA conducted a pulverization test using BDA asphalt (See Chap. 7, Volume II) which has similar properties to M-DS asphalt, with a view to utilizing it for solids combustion. The test turned out to be a failure, because a sticky material was formed in the ball mill, and its deposition caused the mill to fall into troubles. As a result, it has been concluded that M-DS asphalt and similar material is difficult to be pulverized fuel combustion method. If, however, a particle size of 1-7 mm is permitted, pulverization seemed to be practicable, judging from the situations in this pulverizing test.

Commercialization of a fluidized-bed combustion boiler (FBC boiler) is anticipated several years ahead from now. If it is completed, M-DS asphalt in the solid form will become a promissing useful fuel.

11.3.2 Power and Steam Supplies

A boiler plant has been planned for each of the three schemes, assuming that the

proposed combustion methods described in the preceding subsection 11.3.1 can be put into practical use.

(1) Requirements of power and steam

The requirements of electric power and steam for normal operation are as follows:

	Fluid coker	Eureka	M-DS
Electric power, KW	200,400	208,000	203,000
for oil field, "	126,200	126,600	120,500
for refinery, "	74,200	81,400	82,500
Steam, for refinery T/H (process use only)	323.7	416.0	- 485.8

(2) Number and capacity of boilers

It has been assumed that the boilers would be in operation for 365 days a year and that a spare unit is installed.

	Fluid coker	Eureka	M-DS
CO Boiler, 50 kg/cm ² G	200T/H X 2		
Boiler, 100 kg/cm2G	260T/H X 4	240T/H X 6	240 T/H X 6
Power generation	18 MW X 2	_	_
	55 MW X 4	46 MW X 6	44 MW X 6

The CO boilers use, as its fuel, a mixture of CO gas from the coker burner and refinery off-gas. These boilers are located separately from the coke boilers.

(3) Consumption of by-produced residual fuel

(See Table 7.1)

	Fluid coker	Eureka	M-DS
Residuals, Consumption	545	839	780
10 ³ T/Y			
Residuals, Produced 103 T/Y	1,291	1,739	1,572
Residuals, Surplus 103 T/Y	746	900	792

As obvious from the above table, all the three cases give surplus by-products in amount more than 50% of their production.

(4) Other items

- Flue gas desulfurization:— A wet type recovery method has been adopted in this study, wherein lime shurry is used to recovery sulfur from flue gas at a recovery rate of 90% (See Table 6.9).
- High-temperature corrosion (Anti-vanadium corrosion measures):— Corrosion caused by vanadium at high temperatures can be prevented by the use of magnesium hydroxide, (Mg (OH)₂), and/or the optimum arrangement of

- superheated-steam pipings.
- Low-temperature corrosion (Anti-sulfur corrosion measure):— As a counter-measure against low-temperature corrosion caused by sulfur, the feed water temperature is set at as high as 190°C.

11.3.3 Utilization of Surplus Residuals

If a power and steam generation plant is planned in accordance with the premises set for by-product use, each of the three process schemes produces a large surplus, as given in the table below.

	Fluid coker	Eureka	M-DS
Surplus Residuals T/D	2,262	2,727	2,400
Surplus Residuals T/Y	746,345	899,992	792,126

Fluid coke, Eureka pitch or M-DS asphalt is produced in quite a large surplus. This valuable fuel resource cannot be left without any planning on its utilization. This surplus residual is not studied, however this matter is one of important items to be reviewed prior to the realization of the project. Utilization of surplus by-product will have to be decided, inconsideration of the future prospect as to how the demands will develop for power, fuel gas, or gas for chemical use in the Cerro Negro area. The surplus by-product should be, in principle, consumed in the area.

If this resource can be priced low, its economically effective utilization may be found in the following fields, depending on its demand:

- (1) Conversion to electric power, which is supplied to EDELCA.
- (2) Conversion to fuel gas and feed gas for chemical plant; and the recovery of vanadium (V) and nickel (Ni).
- (3) Use as a special binding material of steelmaking coke.

11.4 ECONOMICS

11.4.1 Capital Requirement (See Table 9.1)

The capital requirement for the upgrading refinery is as given in the table below. It should be noted that this requirement is estimated on the 1980 basis. In order to estimate budget for the planned schedule, the capital requirement will have to be escalated in response to the time.

	Fluid Coker	Eureka	M-DS
Total Capital Requirements	1,073.40	1,097.50	1,188.18
(10 ⁶ US\$)			
Cost reference	100	102	111

The capital requirement of the Fluid coker case is almost the same as that of the Eureka case, whereas that of the M-DS case is 10% higher. This is because the VGO/DAO HDS process is much costly, despite the fact that the M-DS process itself is relatively less expensive than Fluid coker and Eureka processes.

11.4.2 Operating Cost (See Table 10.1)

The total operating costs of the upgrading refinery are as follows:

	Fluid coker	Eureka	M-DS
Total Operating Costs (10 ⁶ US\$/Y)	652.98	666.50	680.54
Total Operating costs per unit improved crude oil (US\$/BBL)	15.83	16.16	16.50
Direct Operating Costs (106 US\$/Y)	67.36	66.65	89.93
Direct Operating Costs per unit improved crude oil (US\$/BBL)	1.63	1.62	2.15

There is no large difference in the total operating costs among the three cases. As for the direct operating cost, the M-DS case is most expensive. This is because of a high construction cost and because the cost of catalyst used in the VGO/DAO HDS process pushes up the direct operating cost significantly.

11.4.3 Economic Analysis (See Table 10.4)

The following ROE Values are given by the DCF calculations in the base case of an income tax rate of 50%.

	Fluid coker	Eureka	M-DS
ROE	25.0%	22.9%	23.1%

The Fluid coker case gives the best ROE, owing to the sales of fuel gas, ROE level of the Eureka case is roughly the same as that of the M-DS case.

The M-DS case gives a good ROE level in spite of its somewhat higher capital requirement and operating cost. This is because its improved crude oil having the lowest sulfur content can be favorably priced.

ANNEX

CALCULATION SHEET OF ECONOMIC ANALYSIS

- CASE NO. F501 Pluid Coker Case
- CASE NO. E501 Eureka Case
- CASE NO. M501 M-DS Case

ANNEX

UNIMUCIJ HVY-O PJ TEM NO. BASEBASE CASE NO. F301	*************************	
******	**************************************	
**************************************	***************************************	JUH MD. DATE 19800721 ENGINEER T.SHIMOG

PROFIT 6 LUSS

	0000	0000 0 0000 4 %	2	2 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	22 52 52 52 52 52 52 52 52 52 52 52 52 5	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	
RI VERNUI, IMP. CRUDE LECTRIC DUMER FUEL GAS INT. RECEIVED TOTAL EXPENSIS RAW MATERIAL CAT. CCHEM.	000000	60 00 00 00 00 00 00 00 00 00 00 00 00 0	81 848 181 8 81 848 181 3 81 848 181 44 8 81 84 84 8	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	24.0	5000
RI VENUI, IMP. CRUDE ILECTRIC PRWER FUCL GAS INT. RECEIVED TOTAL EXPENSI,S RAW MATERIAL CAT-ECHEM.			040 INI 04 N	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2342	_
C POWER CEIVED CEIVED CEIVED CEIVE			OHO INI AH A	247274 24		11 12 12 12 12 12 12 12 13 13 13 14 14 14 14 14 14 14 14 14 14 14 14 14	72 74 74 74 74 74 74 74 74 74 74 74 74 74	_
EXPENSIS RAW MATERIAL			101 04 5	101 00 00 101 00 101 00 101 00 101 101	1	121 125 125 125 126 126 126 126 126 126 126 126 126 126	24420	4
EXPENSIS RAW MATERIAL CAT-COHEM-			0-4-3	22.00 2.00 2.00 2.00 2.00 2.00	828 844 144	528597		1255299
·			O-4 -0	20 20 20 20 20 20 20 20 20 20 20 20 20 2	8285 644 144	528597		
			າ	100			5285978	528397
(110,110%)				-	138	1001	13691	4961
			00	50			ō ō	00
(PA 1 R 1	· -		220801	290001	2908	290801	290801	29080
			500	99321	200	G.	12666	9932
DEPRECIATION 1 01				8407¢	3701	点 0	4010	5707¢
		0	038677	6529754	652975	6529751	652975	652973
* PROFIT BEF. TAX Of	0		238974	6023241	602324	602324	6023241	602324
* Ir.Conf TAX	0	- 5	119487	201162	301162	301162	301162	301162
* Phille IT AFT. TAX 01			129487	301162	301162	301162	301162	301162
CIN PHILL (T	0		1194871	1205491	7216131	10229731	13241351	1623297
			119487	1205491	721	4	11 102297	11 10229731 132413

- Continued -

770000					-		1	F901		
-	117	12	13	44	â	16	1 2	8 4	67	20
	1994	1005	7667	1997	1000	1060	2000	2001	2002	2002
# 181-VENUE			- -							
IMP CRUNE I LECTRIC MIMER I UEL GAS INT. RECEIVER	25,27	11727 2042 5240	117277 25427 926001	224271 224271 226001	22424 24424 24424 24424	324271 5264271 526601	25427	227722 254271 526001	254271 254271 526001	254271
1	1255299	12522991	1255291	125299	12552991	12552991	12552994	12552991		10
SISNEGKI			! :							 t ! ! ! !
KAW MATERIAL	5265971	528897		528597	126397	1795856	5285971	5285971	5285971	5285971
07111108 071111108		000	4	50	3	-T	-	-i •	107 v	074
CPERATION SUPPLY	1961	19461	1969CT	13691	- 6967 - 6967	16951	19691	1961	13694	13091
INSURANCES	-	•	•	Š	8		6	4		
SPERATE 6 TERATE	729780	25040	245721	22572	72572	225/25	22572	22572	22940	290801
FILANT OF	12000	C 1	0	900	30	000	993	2	99.	993
CEPRECIATION 1NT. PAIC	0.000	201070	910	0 10 10 10 10 10 10 10 10 10 10 10 10 10	•	5	0 TO C	5	5	Š.
2017A	+	- 60000	652979	652975	65.00	6529751	6529751	6529751	652931	6529751
" PALITETT BEES. TAX	602324	1465508	602324	6023241	602324	602324	6023245	602324	602324	6023241
* INCOME TAX	301162	301162	301162	201162	301162	301162	301162	501162	501162	301162
. PROFIT APT. TAX	301162	301262	301162	301162	301162	301162	-4	301162	201162	301162
STUDEN SHOW SHOW STREET	19264391	22276211	25287831	2829945	5151107	34322691	3733431	10654504	12075404	46369171
	-	- 1 1 1 1 1	·							

- Continued -

- Continued -

10**050**DI					
	22	22	23	24	
	2007	2005	2006	2007	£D.S
# RLVENUE					
IMP. CRUDE LLECTRIC PUMIX FUEL GAS INT. RECEIVED	11772731 254271 5266001	1172721 25427 525001	11722 2542 5260	11 22 22 23 24 24 24 25 20 20	229567681 4938221 10257001
101AL	12552991	12552991	12552991	1255299	244783046
# EXPENSES					
CAT-COMENIAL	5285971	528597	528597 44101	728597	10307633
OPERATION SUPPLY TAXES	1000	126921	26921	1080	197675
INSURANCES ACAIR EAINTER ACAIR UPERALING LASOR	225721	22572	2290801	229	400000000000000000000000000000000000000
DEPRECIATION INT. PAID	94420	700	100		60
	630169	1096665	1096466	09666	126013461
* PRUFIT BEF. TAX	625130	090069		07669	11876967
# INCOME TAX	Sacare	3296.701	3296701	3296701	5958475
* PROFIT ART. TAX	312565	329670	3296701	329670	2928489
* CUM. PROFIT	4949482	5279131	360H4201	16848565	

RESTROS CORDA

		2	^	*	~	•		•	0	01
	1984	1983		1987	1988	1989	1990	1661	1992	1993
* CASI 110T			- -		•	• - -	- → -	-		
NVESTRENT.		1844501	461120	\$	106301	-5	- 5	- 5	- <u>ō</u>	
いしゅつじ しゅうしい		3	6,112	7667	•	5	5;	ō;	5	
LAIT TANTOCKA		D O	5 6	1000	000	ō ō	ō ē	ōō	5	00
	-	0	5	62.	20	3	50	55	55	
CA16CHEM 12V.		ōō	50	}~ -4	3	ōō	ōō	ō ō	55	
SPARELWAREHUUS	-	5	5	91301		5	5	5	0	
A/C REC PA/S.		00	56	55	11230	55	55	ōō	ō ō	
REPUND UP LOANS		- 5	- 5		~ ō	- 5	-5	- _ē	- ō	
6801 FY 01V10END	ō ō	ē ē	56	- - -	56	ō ō	- -	.	ōō	•••
10174		1894901	461120	3192601	104804		0	0	10	
Z] H\$VD #		i i		!				a.s.		
RETAINED EARM PROFIT ARX		- 55	-55	- 50	1765031	3581781 3011621	358178	3581784 3011621	3581781	358178
¥ 1 ± 1 ± 1 ± 1 ± 1 ± 1 ± 1 ± 1 ± 1 ± 1 ±		ō	5-	5-	701	5701	3701	5701	2701	õ
LUANS		1844801	461120	3192601		66	88	66	.99.	
CAPITAL	6	1		0	i	0	0	100	_	
10111111111111111111111111111111111111		-007484	4611201	95	121	5817		5817	3581781	358178
* 502000		-5	-5-	-9.	67873	1927855	3581781	3583781	358178	358178
SULFACE SULFACE	0	0	0	0	07893	4260701	7842481	11424251	12006021	1658779
SHALLANCE OF LUANS	~ ō ō	10000	6493701	1008490	90,000	1008490	9648301	9648301	964830	964890

- Continued -

RODDIEGO SONDE

		7.3	54	**	57	7.97	17	1.8	64	2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1994	1995	7667	1007	1998	0667	2000	2002	2002	2003
* CASH HUT		•							~ ~ .	
INVESTMENT		0	ō	- 5	- 6	ō	-5	ō	ō	•
CONST. COSTS	-	ō	ō i	ō:	ō:	56	ō	5	ō	
PATUND ROYALTY		 	55	55	55	30		5 5	ōō	~ 0
OPE. EX	5	. 5	ō 6	56	50	ō 6	õõ	56	5	
CATECHEM INV.		5 6	55	55	50	Ş Q	50	56	55	00
Α,	ō (5	56	ō ē	00	ō ō	56	56	ō	~ (
A/C 480 PA/.	55	66	56	50	56	55	50	56	56	
REFUND OF LUAMS		ā		- 5	- 5	ō	ō	ō	- 5	
>+103W		-55	55	ōŏ	ō ō	ō ō	55	öö	56	00
•	+0	0					ō	0	0	
* C>S+ -8								. .		
RETAINED EARM.	256176 201162	358178	556178	556178	358178	358178	356178	358178	3581781	358178
DEPRECIATION	91016	귿	707	57016	Ö	70	107	5	91016	27016
LUANS EWILTY	55	00	00	- - -	<u></u>	55	60	55.	55	
CAPITAL	- 6	-		- 5	- 5	0	1	0		0
10TAL	3581781	187860	358278	18786	3581781	3581781	3581781	1921381	3581781	356178
* sugplus	1	3 8,	•	192TA60	-	358178	3581781	358178	358178	356178
* CUM. SURPLUS	22169361	25751331	29333101	32914871	- 36496641	4007841	43660181	47241951	50823721	0400440
* DALANCE CF CTANS	1008796	ŝ		• • • •	8	764830		9648301		964830

- Continued -

0011008

F C N G S

- Continued -

STREAT ST		* 0	508 111111111111111111111111111111111111
		000	SUS
CASH (UUT INVESTMENT CONST. CUSTS PAIDUD GOYALTY INIT.CATECHEM. OIL CASH OIL OIL CASH ON MAID A/C RECPAY. OIL CASH OIL CASH OIL CASH OIL OIL CASH OIL OIL CASH OIL OIL CASH OIL CASH OIL OIL CASH OIL OIL CASH OIL OIL CASH OIL CA	00000000000		
CONST. COSTS PAIDUD ROYALTY PAIDUD ROYALTY UNIT.CATCOLEM, PREDPE. EXINS. OIL CATLCHEM INV. CASH ON HALD A/C RELPAY. REFUND OF LOANS DIVIDEND TOTAL CASH IN RETAILED LAKE. PROFIT AFF 7A CASH IN CASH			
CONST. CUSTS PAIDUD ROYALTY INTEGRAL TO CONST. CASH ON HARD DIVIDEND DIVIDEND TOTAL CASH IN CA	55555555555555555555555555555555555555		1073440
TATE	5555555555	· ~	
PREDPE. EXING. 1000 OIL CATECHEM 1000 SFATEGLARELUUS 1000 A/C RECPAV. 000 ENUITY 0F COANS 000 ENUITY 0F CANS 000 TOTAL CASH 100 CASH 10	555555-55		2090
CASH ON HAID OF CASH IN CASH I	55555-55	_	1640
SFAREGWARLINUS. 1 01 CASH ON MAIN 0 01 A/C REC.—PAY. 01 ERUITY 01 DIVIDEND OF LOANS 0 01 TOTAL 01 CASH 1N 01 C	5555-55	-	7697
CASH ON HAIRD A/C REC.—PAY. KEFUND OF LOANS DIVIDEND TOTAL CASH IN KETAIRED LAKE. CASH IN CASH IN CASH IN CASH IN CASH IN CANIS C	55 55		1825
KEFUND OF LOANS 0 0 0 0 0 0 0 0 0	-55		60560
CASH 114 CANUS CA	-		
CASH 1N CASH 1N CASH 1N CASH 1N CEPHECIATION CANNS CANTAL CANTA		ō ō	00
TOTAL CASH 1N CASH 1N INETAINED LANG. PROFIT AFF 7AA 1 342091 3 LUANS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		5	
CASH 1N KETATUED LAKU. PROFIT AFF 7AA 1 3125651 3 LUANS	-0	~0 111111111111111111111111111111111111	1073440
AF 7AX 1 342751 3 AF 14A 1 342091 3 AT 14A 6 342091 3	- - -		
AFF 7AA 1 342065 3 AFF 144 F 34209 1 0	32967	32967	6884940
174 00 01	52967	n	004500
177 0 0 0 0 0 0 0 0 0			964830
		ō -	964830
	-0	ő	0
107762	52967	3296	47.4
* 5UNPLUS 346775 32	329670 329670	329670	6776330
# CUM. SURVIUS 9767325 611	61169921 0440661	67763301	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
ALANCE (1) LUANS 1 9648301 SOUTTY 1 9648301	9648301 9648399	V648301	

		YEAR	3.12	R100	PAYOUT FER	ď
-		is.	24.98	KLTUKN	RATE OF R	ž
	O	5811503	946459	5938489	1073440	5
8	οi	8 2 2		2967		0
8	4	2967	0	2967	0	8
8	8	2967	0	2967	0	8
ö	3	4677	420	1256	0	8
0.0	0 P P P P P P P P P P P P P P P P P P P	356178	37016	301162	0	O
6	4	5817	20	0110	o	8
õ	6	5817	Š.	0110	0	8
8	770	5817	S S	0116	•	8
9	263	5017	Š	0110	0	\$
Š	570	5817	č	0110	0	\$
ŝ	973	5817	ş	0110	0	6
å	466	5817	Š	0110	0	66
Ş	083	5417	ę	0110	0	ç
<u>۽</u>	500	5617	ş	0116	0	8
3	55	5817	201	0110	0	ŝ
₹.	018	5817	5	0116	0	3
7	22	3817	202	0110	0	ŝ
20.	299	5817	ć č	0116	0	Š
ñ	747	2817	Š	0110		9
4.	2782	6189	202	1940	1980	8
ď	16355	33926			319260	96
ģ	9522	77	o	0	6112	86
80	14758	18440	o	•	8445	98
8	0	0	B.	0		8
	; ;		(+)	(1	<u> </u>	¥ 1
DI SCCUN	•	HSAD F	DEP146C-	χ.π.Ε.Ψ 1. Ε.Ψ	アンピンスー	
				a E		
					סטרר	10##030ULL
	- >	:) J	n C		
	s - s -	J < Z <	₹ U. Ų.	I V V		

DRINGCO HVY-O PJ ITEM NO. BASEBASE GASE NO. ESOL	•	** ** ** ** ** ** ** ** ** ** ** ** **
	**************************************	···
************ * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	
	***************************************	JON 140. DATE 19800722 ENGTHEER T.SHIMDG

.

.

2 F 1 7 6. LUSS

		~	6	4	5	•	·-	80	٥	
	1986	1985	1986	1987	1988	1989	1990	1661	1992	1995
30N3A 43 +				 						
TMP. CRUBE LUCCIRIC POWER LUCLISIC SAS	030	000	000	000	12734	1183876 255071	11838761	11838761	11838761	1183876
INT. RECEIVED		0 0			0000	12095831	12093	12093831	12093831	1209383
		*				· · · · · · · · · · · · · · · · ·		# · · · · · · · · · · · · · · · · ·	* : : : : : : : : : : : : :	; ; ; ; ; ;
CAN MATERIAL CAT-CANGM-		00	-55	00	2705931		3411891	3411891	341189	541189
UTICITIES UPERATO SUPPLY		00	55	00	1000		14291	16291	14251	1420
TAXES INDURANCES		ō ō	56	00	56			56	56	
CONTRACTOR CANDE	5 5 5	55 	<u> </u>	οō·	222.20		225721	20360	225724	20360
1.6507 09 1.677870157197 187. 0510		555	555	666	586691		99321	586631 586631 01	99521 986631 01	200 200 200 200 200 200 200 200 200 200
i		0	0		1 2959161	666911	6665111	6665111	6669111	666911
* PROFIT BEE. TAX	0	0	-0	0	208775	5428721	5428721	542872	542872	542872
# INCOME TAX		- 5	-2.	- 5	104388	2714361	2714361	271436	2714361	271436
* PRUBLE ARE. TAX		6	-5-	0	104388	2714361	2714361	271436	2714361	271436
**************************************		- 0	- 0	0	104388	375824	6472601	9186961	11901311	1461367

- Continued -

- Continued -

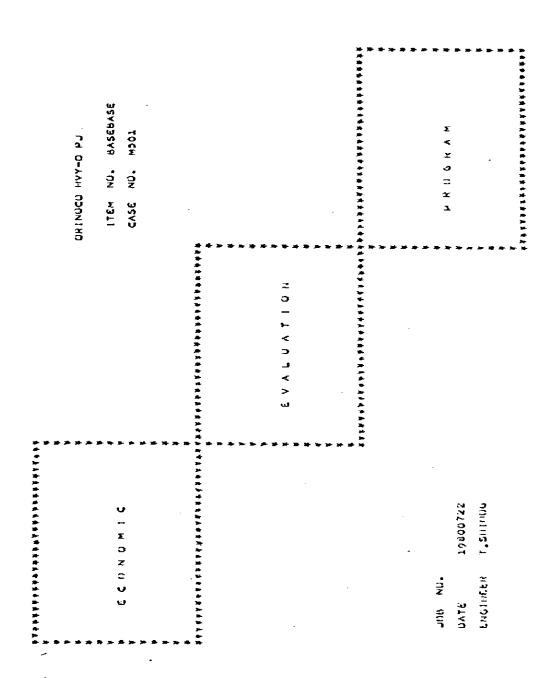
•	O.X Ir	3 ►	S							
									!	!
9 0 2 3 1 0 1 2 2 3 1 3 1 4 1 1 1 1 1 1 1 1		12	CT	3.4	1 ST	16		0 7	6.7	20
	1 3974	1995	1996.	1797	1908	1999	2000	2007	2002	2003
# INFOCULE			-				. 		- -	
IMP. CRUDE ELECTRIC POW,R FUEL GAS INT. RECEIVER	255676 255671 100000	11838761 255071	200	OP (₩ ₩ ₩	1183876+ 255071 0	11838761 255071 01	11838761 235071	8 N	2.0
10TAL	1 12093831	1209389	12093831	1209383	1209381	12093831	12093831	12093831	1209383	1200383
S#812444 = 5				- -		· -	· — — •			
KAW MATERIAL CAT.CCHEM.	241189	n	2411891	541189	5411691	5411891	23701	23701	5411891	3411891
UTILITIES COGRATIC SUPPLY TAXES	1,22,1	200	- no	14291	1420	14291	2 % 4 4 2 % 5 4 4	14251	16291	242
INSCRANGES CANAGE CONDAIN	0000		303601	303601	909	926	8	303601	109606	109000
CPERATING LAVOR	22572		22572	225721	125721	225721	225721	225721	99321	225721
CCPRECIATION	1000000		100000000000000000000000000000000000000	100	8 6 6 8 C	5866	8	586631	386691	586637
101401 Team of the Total Team of the Team	4	+	666911	066311	-116959	666511	6669331	1216999	1116999	666511
+ + + + + + + + + + + + + + + + + + +	5428721	342A72	I 34≎		542872	342872	5428721	542872	542872	5428721
4 TI-COME TAX	271436	2714361	271436	271436	2714361	271436	2714361	271436	2714361	271436
* PRUFIT AFT. TAX	271436		2714361	271436	271436	271436	271436	2714361	2714361	271436
* Cult. PROF11	17330031	20044391	2275675	2547311	28187471	1080000	33616191	36330331	11644066	41759271
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 1 6 1 1 1 0					J

## RECEIVED IMP		22	22	8.8	2.4	
REVENUE 1183876 118387		2004	2005	2006	2007	SUM
IMP. CRUDE,)					
EXPENSITS HAW MATERIAL LATER TOTAL CAT-CCACH CAT-CC	IMP CRUDE ELECTRIC PRINT FUEL GAS INT RECEIVED	00 00 00	1183876 255071	255076	11.84874 2550 1000	2306552 497394 0
EXPENSES KAW MATERIAL CAT-6CHM. CAT-6CHM.	10.74 10.74 10.74	20938	20938	12093831	20938	358292
HAW MATERIAL 23701 23701 23701 23701 23701 CAT-6CHEM CAT	Ì					
TOPERATION 1425 1425 1425 1425 1425 1425 1425 1425	25 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	46	5411891	5411891	541189	10923181
MAINTENANCES 203601 303601 303601 303601 303601 303601 303601 303601 303601 303601 303601 303601 30372 32372 32372 32372 32372 32372 32372 32372 32372 32372 32372 303767	COLECTION CONTRACTOR ASSESSMENT OF CONTRACTOR CONTRACTO	N.	1,201	250	*	28478
PLANT UNT. DELPRECIATION 1NT. PAID 1NT. PAID TOTAL PROFIT REF. TAX P	MAINTER REPAIR UPERATING LATUR	2252	303601 223721	203601	203601	60720 401240
PROFIT REF. TAX 566337 601535 601	PLANT ON DEPRECIATION INT. PAID	9932	800 800	1 0 0 1 86 66	200 200	40000 40000 60000
PROFIT REF. TAX 566337 601535 601535 601535 FIRE TAX 285168 300767 300767 300767 300767 300767 300767 300767 300767 300767 300768 3	: ;	6690691	1648709	6078481	607848	12860167
PROUNE TAX 2831681 3007671 3007671 3007671 PROUPLY AFT, TAX 7851691 3007681 3007681 PROUPLY FIRST TAX 78590941 47597631 30606301 53613971	PAOPIT NEF.	566337	601535	601535	1 565104	10722797
CUM. FIRM IT 44590941 4759551 30606301	PROUNE TAX	2851681	300767	300767	300767	5541396
	CLY.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1096674	30606301	5362347	1 1 1 1 1 1 1

*
S
=
ر
5 -
∍
5
v
٥
Z
)
Œ.

			!			i	i	ESOT		
		~ .	0				! · ! ! ! ! ! ! !		~	0.7
	1984	1985	1986	7987	1988	- 686T	1990	1661	1992	1993
* CASH UUT							- 	- -		
TE GET A CONT		000	7497	2793	1061301	- 6	- c	¯ c	¯ ō	
00%1 COS18	-	1000001	4749701	. 6	•	ō	ōō	ō	0	_
PAIDUR RUYALTY	-		ō.	107	10901	5		5	0	
		ō ō	õõ	92001	Ş	00	ōō	ō ō	ō ē	~ (
172	-	· -	5	100001	180801	-	56	5 6	ōō	0
CHES	-	-	5	~	4	-	5	ō (0	•
いたとならなと、たちについの		ōō	56	1000	2	50	ō c	õõ	öö	
A/C 28/C - PA/*) ō	55	55	55	22690	55	50	ōō	56	, 0
			- (- ;	-;	- 3	-;	- ?	-;	-
SEASON OF COARS		- -	ōč	5 5	ō c	56	56	50	<u> </u>	0 (
C-106ND		5 6	55	55	55	5	õõ	55	55	,0
101AL	0	13	1 4	2	040	0	1			
	- - - - - - - - -	-			~					3 1 3 1 7
CASM 12								~- -		
CAR	5	0	6	56	ဝိုင်	230099	660000	330000	2300991	000000
PRUFIT AFT TAX		00	55	56	1000000	1966	3866	4 40	586631	004T-7
		6	4.0	2707	~ ~	- c	- ā	~ č	c	•
L0073	55	189990	474970	327730	55	50		55	55	• •
CAP 17AL	6			-		ō		0		
1017L	9	1065687	-0/00/0	3279301	1450521	3	1660055	iòi	1060000	6600CC
\$01@xi0 +	C		1		900	1660000	330099	230099	200000	\$3000
. CUM. SUMPLUS	0	0	0		120585	5886001	7186991	10487981	13788971	1708996
TALANCE ()F LIANS	- 66	169990	1000000	9928901	1068266	1008266	9928901	9928901	9928901	992890
	>							•	•	

FUNCE CONTINE


		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						4 > 1		
		7.5	CT.	7.4	5.7	91		87	1 6 6	20
	7667	1795	1996	1997	1998	1999	2000	2001	2002	2003
A CASIT HUT			- - .					 		• • • • • • •
トニのまでいるとこと	56	- 66	- 6 6	- 60	- 6 6	- 5 6		-00	-66	0,
00000 00000 00000 000000		500	555	566	> ō ō	õõ	•	556	ōōi	004
	55	55	55	55	553	55	55	50	55	00
CATCHEM INV.	55	66	55	55	55	55		55	ōō	00
SPARECWAREHUUS CASH ON HARD		ō-ō	ō ō	<u> </u>	ō ā	55	ōō	55	56	
A/C 181 C 174.	5-	6	6	5	55	6	ō ·	ō.	55	
LEFUMD OF LUANS	6	0	- 5	- 6	- 6	- 5	6	-5	- 5	0
\$1,08,01,00,000 \$1,08,00,00,00	56	66	50	00	55	55	ō	56	ō ō	00
TUTAL			0						+0	0
1840			- - -	·						
RETAINED EARD. PRUFIT AFT TAX	27,1436	2500991	2200991	200000 271406	2714361	2300991	2200991	220009	3300991	2714361
ONDER CITY	58663	584631	586631	586631	~	58663	586631	58643	586631	28663
COANS FOUTY	55	65	- 6 6	00	00	00	55	66	700	-
	- 5 -				- 5	6		- 6	- 6	0
1014L	330091	-660066	1000000	3300991	1660056	1660055	1660055	3300991	1660055	00000
\$01410\$ +	1330086	3300001	190000	2300991	330099	330009	2300994	330099	330099	330099
* CUM. SURPLUS	2039093	23691941	26992931	30293921	33594911	36693901	40196891	43497681	46798871	5009986
* FALANCE OF LUANS P	992890	792 K90 I	1069266	2928901	7928901	9928901	9928901	9928901	992890	992890

- Continued -

3 C Z C 4

	127	22	23	24	
	2004	2005	2006	2007	SUM
+ GASH DUT					
ことののかけるだって	- ō	- 6	- 60	- 56	्य । य
ONST.		55	56	00	, ,
PREDPC. EXTUS.		ō ō	55	50	9
	56	ō ō	ō ō	õõ	<u>~</u> ~
STARGEARCH CONTRACTORS	555		ō ō	55	11110
A/C RECPAY.	5	5	ā ⁻	<u>-</u>	20 00 00
SNYDT DE TOURS		00	00	22	
_	10	0	10	- + 0 I	O
<u>ا</u> ح	0	ō	0	10	1097440
PRUPIL APRIL	285169	300768	0000 0007 0007 0007	300768	6000000 400000 400000 600000
ر نو نو	•	· ·	-		
LOANS EQUITY		ō ō ·	55	55	000000
CAPITAL			0	0	
10TAL	1 2	300768	0.0	0	7800
**************************************	318367	ý200	9200	3007681	6230653
CUM. SUIR'L	5326352	161.0532	59298861	62306531	
FINAL SIF LUANS FOULTY	49289	99289	20 1D	9928901	
		; '			

•	e	5237764	973809	5361397	1097440	_
Š	<u> </u>	2 2		8	0	2007
3	2254	300768	0	300768	•	2006
3	2	2076	ο.	90	Φ.	2002
3	2	826	77.	8316	o	2004
200	٩.	6000	2:663	71.45	•	2003
ö	≏.	2000	\$	7253	0	2002
ဦ	<u>٠</u>	0000	468 4	7747	0	2007
5	22.7	6000 0	866	7140	0	2002
4	20	0000	500	7243	0	1995
ŝ	27	0000	866	7243	0	1998
80	2	6000	ŝ	7240	0	1977
***	* *	0000	\$9≅	7243	0	19%6
Š	3	0000	ş	7243	0	1903
127	ž	2000	990	7240	•	するか「
7	187	2000	2 00	7243	0	2007
767.	300	2009	866	7145	0	7667
-230	87.8	6000	\$	77.43	0	7067
. 291	ŝ	6000	866	7143	0	30.5
3	799	9000	3 0 6	7243	0	1900
400	ş	30	866	8040	2450	196X
Š	17689	32793	0		27.7.5	~ ≈67
.00.	147	74.0	0	0	74.57	9201
. 814	15465	10999	0	9	c	1982
9			0	0	0	3
			? !	?	(:	
FATE	0.0	*O1.	2011411	<u>.</u> €	2.2	YEAR
0156000		S	E 0.12	7 1 12 C A C A B F F A	- Tank	
					770	7500000

- Continued -

- Continued -

770000++07	• • •	• •	n n :							
4		12	1.3	- · · · · · · · · · · · · · · · · · · ·	- 54	1 26 -		7 9 7	19	20
1	1996	1005	1996	1007	1998	0661	2000	2001	2002	2003
* REVENUE						-				
	124444 14444 100	125152	~~	1251525 242761 01	44 44 44	44	47	242781	1251525 242761	224
10174	12758051	12758031	12758031	12758031	12798031	12758051	12758031	12758031	12758051	1275803
* NYFONSES				l		 -				
CAT COMES.	22680	••	5271101	527110	226801	327110	5271101	5271101	\$271101 226801	5271101
CPERATIO SUPPLY TAXES	19767		בלל. בעלל.	2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1410	18181	10101	200	15151	15151
INSURANCE S	10 01		332401	33240	332401	09260	332401	332401	932401	332401
INGRATING LANUR	22572	225721	2202	22572	725721	22572	225721	225721	22572	225721
LEPRECION INT. DAILON	69498	60408	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4040	4444 4444 100	40 40 40 40 40	4646	8045 8045 10	\$0 \$0 \$0 \$0 \$0 \$0	186409
1017	680346	- 940089	6805461	6603461	- ¢\$00%	-945099	- 940089	680346	6805461	6803461
* PRUFIT DEF. TAX	595257		5952571	3	525	595257	595257	595257	5952571	595257
* 17,50ME TAX	297628	2776281	297528	297628	2976281	2976281	297628	2976281	2976281	2976281
* PROFIT AFT. TAX	297629	2776291	2916291	297629	2976291	297629	2976291	2976291	. 6	2
- CIM ()E T	18962251		24914811	27091091	30&6737	33843631	1661896	3979621	42772491	4574877
			5 E E P E E # 1 1 .	# # # # # # # # # # # # # # # # # # #	1 6 1 7 1 6 1 1 1 6			; ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !		

10000##6T					
	21	2.2	23	42	
	2004	2005	2006	2007	SUM
* RVENUE					
TMP. CRUDE	1251525	1251525	1251525	242781	24404704
FUEL GAS	00	00	00	00	00
TOTAL	12758051	12756031	12758031	12758051	24878080
+ EXPENSES					1
NAW MATERIAL CAT*COHEM*	227110	5271101	527110	5271101	10278623
1 071L171ES 1 0PERAT'G SUPPLY 1 1AXES	10161	0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	10101	15161	302%
MAINTE & REPAIR	332401	0000	100	000000000000000000000000000000000000000	900
CEPATION CASSA CEPATION CASSA CEPATION CASSA CAS	380981	700	1000	100 100 100 100	1004001
10TAL	695347	617048	6170481	6170481	13131471
# PROFIT BEF. TAX	620650	658735	658460	خەت ن	11740073
+ INCOME TAX	310328	1772656	329377	329377	5673335
+ PLUFIT AFT. TAX	310328	329378	3273781	3293781	5673356
1 + CUM. PRUFIT	4885205	5214582	- 1989:456	54733361	

- Continued -

- Continued -

# 120 2 120		2000 2000 2000 2000 2000 2000 2000 200	2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	00000000000	- 0000000000000000000000000000000000000	0000000000	000000	0000
00000000000000000000000000000000000000		0055000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	o 8 0		1 1 6 1	; 6	0 1
000 000 000 000 000 000 000 000 000 00	00000000000000000000000000000000000000	125			•	000000000		
A # # # # # # # # # # # # # # # # # # #		2222222	4 4 00 400		•	000000000	500000	
CAR.). CAR.). CAR. CAR. CAR. CAR. CAR. CAR. CAR. CAR		20022300	4 00 dec 10		•	000000000	00000	٥
7 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		12:	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0000000000000	•	500000000	0000	0
# X X X X X X X X X X X X X X X X X X X		2222	000 000 In 000 000 000 In 000 000 In		555555		ō ō	00
K. L.		199 191			00000000	500000	5	0
# # # # # # # # # # # # # # # # # # #		1010	000 1000 1000 1000 1000 1000	000 000	000 000	5555	, ō	οō
CAR. 1		141	100 100 100 100 100 100 100 100 100 100	0000	0000	0 0	ōč	56
CAR. 1. AX 00 00 00 00 00 00 00 00 00 00 00 00 00	10010	141		000	000	ő	55	٠ō°
CAR. 1	10010	6 t t l		00	00		ō	Ö
CAR.:	50469	6612	946			55	ōō	56
7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-	į	E	ō				
CASH (N PRUFIT AFT TAX 000 DEPRECIATION 01 01 01 LUANS 01 2019601 5	-	_		-		- - - - - - - - - - - - - - - - - - -		
#50 CAR.1. 1 01 01 01 01 01 01 01 01 01 01 01 01 0	- -			- -			 -	
CCIATION 1 01 2019601 5	55	22	172934	2976291	2976291	2976291	3611271	361127
20104601 2010460100000000000000000000000000000000		ō-	24.7	e S	٠ د	0	640	4
) ()	•n•	206120	5.5	56	56	ō ō	õõ	56
-			; -	-	-	; -		•
	- 1	- 7	-	~ • • • • • • • • • • • • • • • • • • •		0 1	-0 = -	0 1
19601 504	50489	612		21	361127	9611271	3611271	3611271
			587	7	361127	3611271	3611271	3611271
		-	•	-	_			
COIT SOUPLUS I	10		587641	1048614	7820171	11421431	15032691	18643951
# INTANCE IN LUANS 1 01 201950: 706		10729691	10729691	10724691	10729691	10729691	10729691	10729691
100 TOS 10	COVO/ -	0						

0074004

FUNDS CUTLOCK

	-	•							**********	
	 -	~ ~i	n T	⇒ :	£ 	7 7		ਰ ਜ	61	2
	1 1994	1995	1996	1997	1998	1999	2000	2001	2002	2005
* CASH OUT			- 							
INVESTMENT		ō	- 6	Ċ		- c			-	
CONST. COSTS			6	0		· -	· -		00	. ·
1214・ひろうないこのます。	5 ō	0 0	00	00		ōē	•	ō (5	
UPE EX			õ	•			56	56	5 6	
CATECHEM INV.		00	ō ō	ο ö	o c	ō ō	5 ē	ē ē	56	•••
SPARECWAREHOUS	5	0	5	0	-	5	õ	5	50	0 ر
- AVG - BU BU BV V	55	00	ō ō	55		55	ō ō	<u> </u>	500	• • •
SERVINE OF LARGE				-			-	•	·	•
	55	5-0	56	56	00	50	56	ō ō	ō ō	
(·IVIDEND	! !	0	0	0	5	5	5		5 6	0
	0	0					-0		10	
CASH IN			i	i			- ~ - 1 1 1 1 1 1 1 1 1		+ ~ ~ ! ! ! ! ! !	
	_	_	_	-	_	_	• -	-		
RETAINED EARD. PRUTIT ART TAX DEPRECIATION	2976291	261127 2976291 6367981	261127 297629 53498	261127 297629 69498	361127 2976291 638981	361127 297629 63498	361127 297629 63498	261127	2611271 2976291 634981	361127 297629 63498
LUAMS	- - -		5	-5	- 5	ō	~ <i>ō</i>	− 5	- 5	
. E001 TY		ō-	ō -	- -	<u>.</u>	ē.	<u></u>	ō	5	•
CAPITAL	0	o	- 6	ō	6	- 5	-5	ō	- -	٥
101AL	3611271	3611271	3611271	3611271	3611271	3611271	3611271	3611271	13	119
* SURPLUS	3611271	2611	4	7	6112	1 4		3611271	361127	361127
รถาสมาร -พกว +	2225521	3	-	989	36700251	4031131	43922771	47334031	51145291	5475655
		9 + 4 9 9 9 9 9 9	* -	÷ ~- 	**************************************	- - - - - -	-			
* DALANCE OF LUANS D	10729691	10729691	10729691	10729691	10729691	10729691	10729691	10729691	10729691	1072969

- Continued -

	4	*	3		
8 I 9 E N I 8 F Y 17 E F E E E E T 8 B B B B B B B B B B B B B B B B B B	-	2003	2000	2007	5 U.M.
* ÇASH OUT					
FEDELS NACT	- 00	- 0 0	- 6 5	00	116816
PA1000 (02/2)		000	66		2390
PACOFE GALLS	550	55	553	55	0 0
CATECHEM INV.		56	55	55	700
CASE CA HAZO		õõõ	õõõ	ōōō	0 0 0 0 0 0 0 4 0 0 4 0 0 4 0
:		5-	, -	•	,
REFUND OF LUANS EQUITY DIVIDEND		555	555	000	
1014t 1114t 114t 1					1188160
* CASH 12		!		· -	
NETAINEO CARM. PROFIT ART TAX DEPRECIATION	3484271 3484271 380491	329578 329578 0	02020 020076	5293781 5293781	5627400 1034096 204068
COANS		-00	-55	-55	1072969
CAPITAL		-6			
10141 10141	348427	3293781	5293781	3293781	90003
* SURPLUS	•	5	3243781	129378	6812213
SO.	2824082	6132439	6482836	64122131	
* LALANGG UF CUANS		07296	07296 07296	10729691	

A-23

	U	Ξ ∨	ت ن ن ع	_J < Z <	s - >	
10"#020"ILI.	סוובו.					
YEAK	1 K C C C C C C C C C C C C C C C C C C	######################################	06PREC- -1ATION (+)	FLOX FLOX	0.6.8	O I SCOUN
3 3 3 5 5 5 C C C	0000 0000 0000 0000 0000 0000 0000 0000	01	φ.;	2000 2000 2000 2000 2000 2000 2000 200	10000 10000 10000 10000 10000	043044
 40050000000000000000000000000000000000	000000000000000000000000000000000000000	i	00000000000000000000000000000000000000	taadaaaaaaaaaaaaaa tadaaaaaaaaaaa tadaaaaaaaa	14	10000000000000000000000000000000000000
ກ ສຸກ ສຸກ	1188160 5 RATE UF RETU PAYGUT PERICO	5873336 RETURN RICO	1054068	475 × 475 ×	តុ	