	(3)	Do you have the field map of the above field?	(a) Yes (b) No
		If you have the map, please give us a copy of the map.	(a) Yes (b) No
	(4)	Do you have the analysis data of the Orinoco heavy crude for this P/S?	(a) Yes (b) No
-		If you have the analysis data, please give us a copy of the analysis data as basis of study.	(a) OK (b) No
	(5)	What do you suppose the price of Orinoco heavy crude at the up- grading plant fence?	US\$ /BBL. on (year)
公 5.	SYN	THETIC CRUDE	
	(1)	Is the synthetic crude a main product?	(a) Yes (b) No
	(2)	Is the properties of the synthetic crude fixed or not?	- -
		(a) fixed by by-pass of up-grading process	(a) Yes (b) No
		(b) maximum up-grading	(a) Yes (b) No
	(3)) What are the properties of synthetic crude? And do you have variation of the properties?	
		(a) API Gravity	 (a) 20°API min. (b) 22°API min. (c) 25°API min. (d) 27°API min. (e) 30°API min.
		· · ·	-

-

-

(- 12 -) A-23

(a) 1 wt% max.

(b) 0.5 wt% max.

(c) 0.3 wt% max.

{

(c) Other

(4) What do you suppose the price of synthetic crude at plant fence?

API

22

26

28

30

32

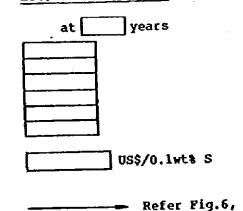
- 24

Syn. Crude

Sulfur (wt%)

1.0

1.0


1.0

1.0

1.0

1.0

us\$]/BBL.		
on the condi	tion of		
	⇒API wt% S year base		
	year base		
Est. Price US\$/BBL.			

公 6.

- SULFUR
 - Is it necessary to recover sulfur (1) product from the sour gas of hydrodesulfurization units.

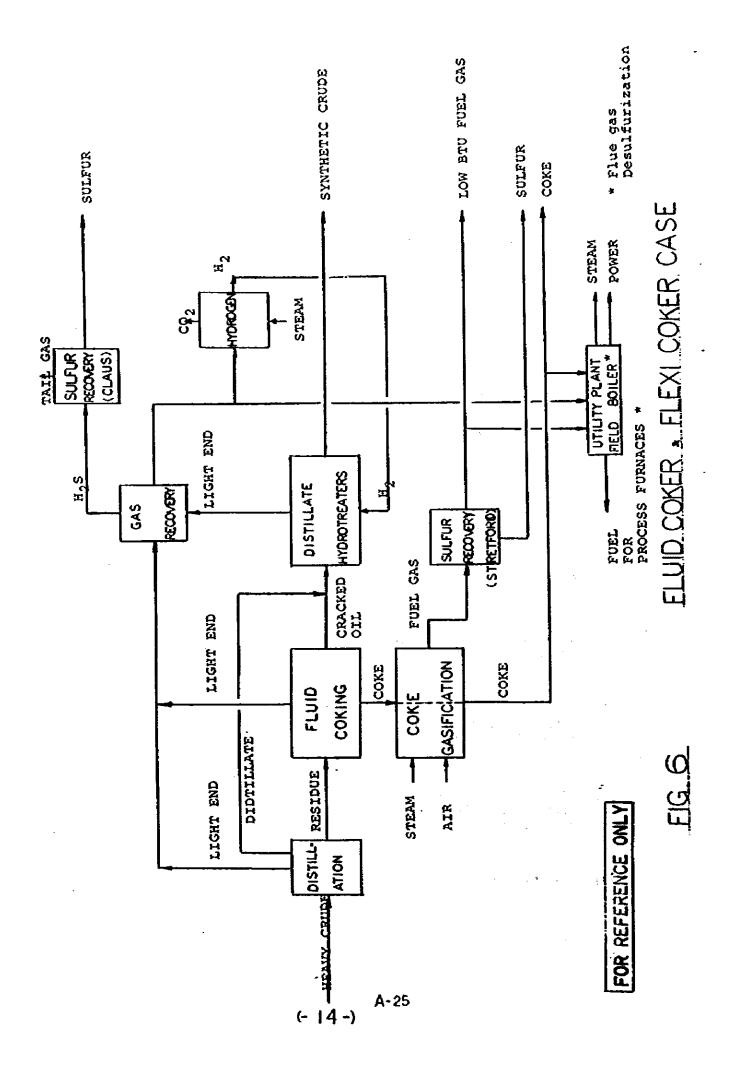
Sulfur premium

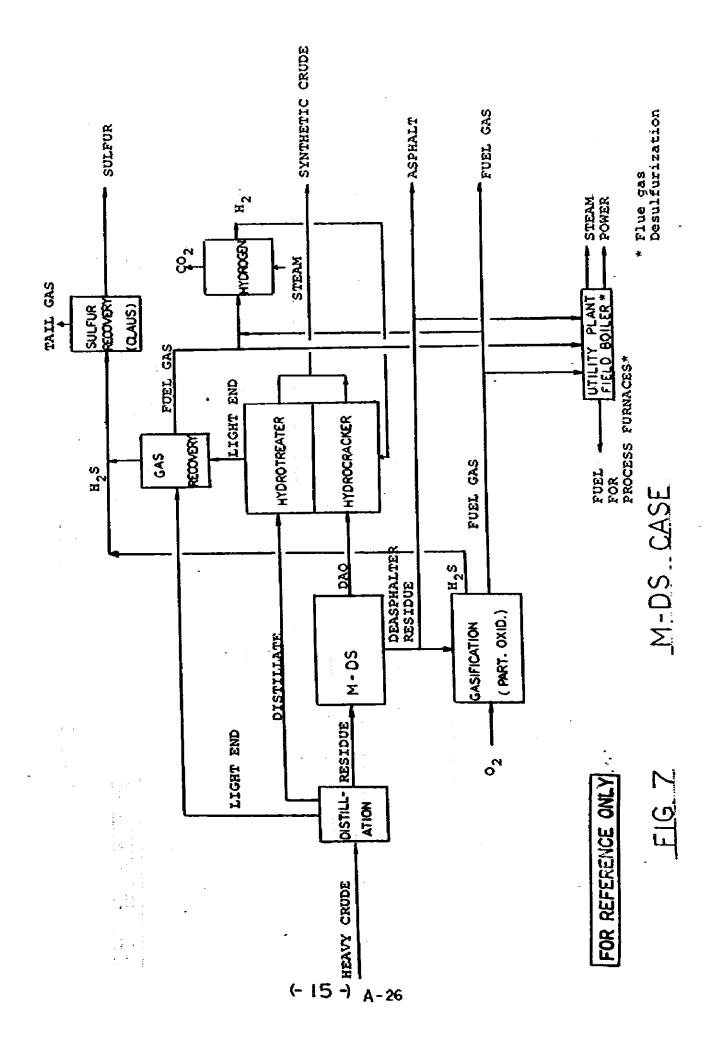
- Is it necessary to recover sulfur {2} product from flue gas of furnaces and boilers in the refinery.
- (3) Is it necessary to recover sulfur product from the flue gas of boiler plant using by-products fuel?
- What type of sulfur shall be ⇒**(4)** produced?

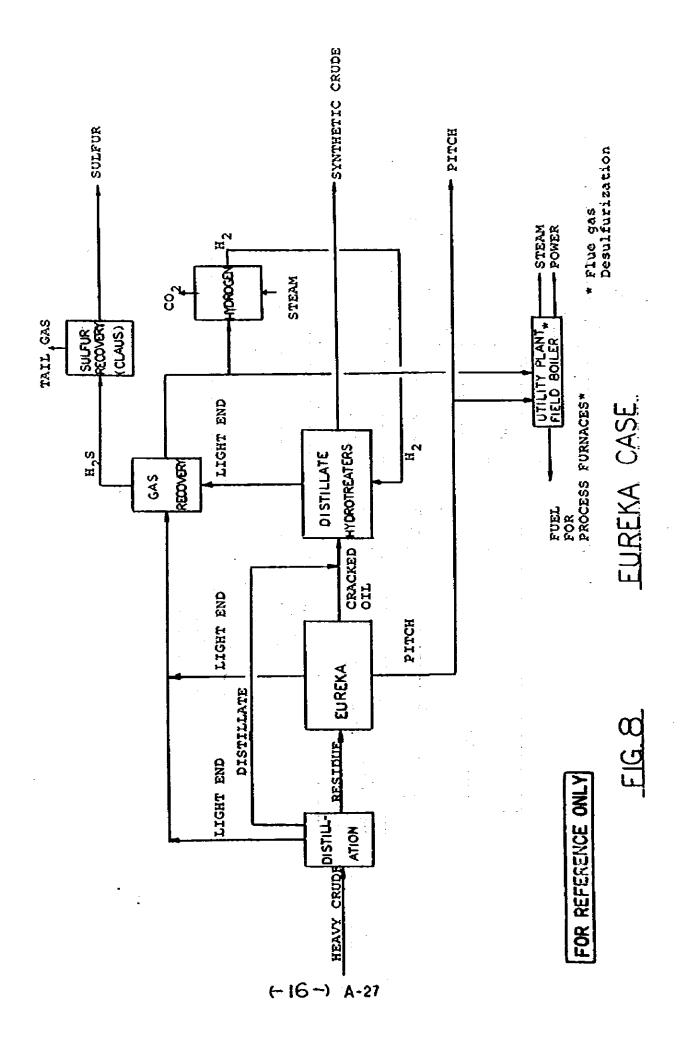
7 6 8.

)

(a) Yes (b) No

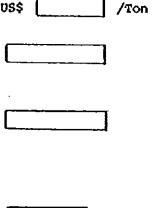

(a) Yes (b) No

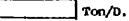

(a) Yes (b) No


(a) Molten

(b) Solid

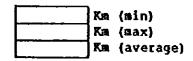
(- 13 -) A-24

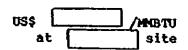



- (5) What is the price of Sulfur product at plant site?
- (6) Where is the destination of the sulfur product?
- (7) What is the purpose of utilization of sulfur?
- (8) How much tonnage is consumed for the above purpose of utilization?

ዮ ነ. BY-PRODUCT (LOW GRADE FUEL)

- (1) What is the use of the by-product?
- (2) How many places are required for boiler plant sites?
- (3) How far is it from the up-grading plant site to the each boiler sites?
- (4) What is the price of by-product at the up-grading plant site or the boiler plant site?
- (5) Is it necessary to store the byproducts for boiler fuel.
- (6) Is it necessary to use dual fuel?
 - (a) for operation of boiler during shutdown of refinery
 - (b) for burning technology of by-product

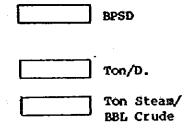



US\$

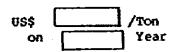
- (a) Fuel
- (b) Other industries

- (a) Yes (b) No
- (a) Yes (b) No
- (a) Yes (b) No

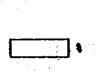
(-17-) A-28


- (7) How to relate to operation of field boiler and refinery for fuel supply?
- (a) Shutdown of boiler
- (b) Dual fuel
- (c) Other
- (8) When burning or transportation of by-products is difficult, is byproduct processed in the refinery?

(a) Yes (b) No


☆ 8. STEAM

- How much heavy crude shall be produced by injection of steam used by-products fuel?
- (2) How much steam is required for production of the above crude or unit rate of steam and crude?
- (3) What are the required specifications of injection steam at well head? Pressure Temperature
- (4) What is the price of steam at the boiler plant site?
- (5) What kind of steam supply method is applied for steam injection?


(6) In case of the "Not-Constant Steam" supply, what percent of boiler capacity to total average operating capacity is required normally?

- (a) Constant Continuous
- (b) Not Constant
- Continuous
- (c) Constant Intermittent
- (d) Not Constant
 - Intermittent

(-18-) A-29

- (7) In the case of intermittent steam supply, what is the utilization of steam?
- (a) Boiler stop (b) Steam supply to other wells
- (c) Steam loss

(a) Yes (b) No

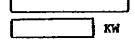
(a) Yes (b) No

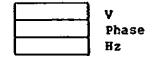
(a) Yes (b) No

(a) Yes

(b) No

9. SITE DATA


Please give us the following data on the conditions of the selected site. And please plot the oil wells, proposed up-grading plant site, boiler plant sites, utility sources, etc on the map.

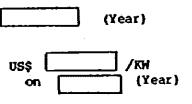

- (1) Can you give us the maps?
 - (a) General map of the area
 - (b) Detailed map of the area showing highways, railroads and sidings, streams, surrounding communities, neighboring industries, harbours, airports, and so forth, together with future development plan.
 - (c) Topographic map of the area showing commediate adjoining areas and indicating use of property, that is, residential, commercial, agricultural and so forth, together with future development plan.
 - (d) An enlarged section map of the site showing contours and defining area and boundaries in relation to North. (a) Yes (b) No
 - (e) Aerial and ground photographs of the entire site.

10.	UTIL	ITY S	0 bb T A	
	(1)	Wate	r	
		(a)	What kind of water source in the plant site is available for the plants?	
			-	(a) River water (b) Lake (c) Wells
		(b)	Where is the supply point and the route?	Please plot on the map.
-		(c)	What do you suppose the supply cost at the plant?	US\$/Ton
		(d)	How is the reliability of water supply as to quality and quantity?	
				Quality (a) Good (b) Bad Quantity
				(a) Good (b) Bad
		(e)	Are there any restrictions or regulations on taking water or installing water intake, includ- ing right-of-way?	
				(a) Yes (b) No
		(£)	Please give us daily temperature records for the past several years.	
				°C at C at C at
		(g)	Please give us the analysis report and data of water.	(a) OK (b) No
		(h)	Is the water supply outside the scope of this study?	(a) Yes (b) No
				•

-

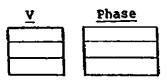
- (2) Blectric Power Supply
 - (a) Can we expect the outside source of electrical power available for the plants in the area?
- (a) Yes (b) No
- (b) Please give us details of the outside power source. Where is it? How is the power capacity supplied? Where is the supply point and the route? What are voltage, phase and frequency.

(c) If the power source is under planning or construction, when will the power be available?


(d) What is the supply cost?

- (e) If the power is not available from the outsite source, own power generation shall be planned?
- (f) What is used as fuel for power generation?

-


- (g) Is the electric supply from the outside out of scope of this study?
- (h) What are the valtage and phase of electric power in the plant.

 - Motor
 - Lighting
 - Instrument

(a) Yes (b) No

- (a) by-product
- (b) Synthetic Crude
- (c) Natural gas
- (a) Yes (b) No

(-21-) A-32

(3) Fuel Supply (a) May we understand the natural gas to be available for fuel and/or hydrogen resourse? (a) Yes (b) No (b) Where is the supply point and route? What is the transmission method? What is supply temperature and pressure at the supply point? °C Kg/cm²G (c) When the gas will be available? (a) Now (b) Future (Year) (d) What is the supply cost at plant site? /SCF US\$ (e) How reliable will it be? (a) good (b) bad (f) Please inform us of the heating value, pressure, composition? BTU/SCF Kq/cm²G **c**1 **BOLL** C2 C3 C4+ N2 ∞_2 H₂S (g) If the natural gas is not available, shall own fuel be used for the sources? (a) Yes (b) No What is own fuel? (a) Offgas, LPG & by-product (b) Offgas, LPG & Distillates (h) Is the fuel supply from the outside covered by the scope of this study? (a) Yes (b) No

(-22-) A-33

11. GENERAL PACILITY

-

(1)	Cores	unication System				
	(a)	Can we expect the following public communication system available in the area?				
		Telephon	(a)	Yes	(b)	
		Cable	(a)	Yes	(b)	No
		Telex	(a)	Yes	(b)	No
		Mail	(a)	Yes	(b)	No
	(b)	Should the plant have its own communication system?	(a)	Yes	(b)	No
		What is the system?	(2)	1.0	(0)	
		what is the system.				•• -
		Telephon		Yes		
		Cable		Yes		
		Telex	'(a)	Yes	(b)	NO
	(c)	If the public system is under or construction, when will it be available?	C]	(Year)
	(ð)	Are there any regulations and				
	1-7	restrictions?	(3)	Yes	њ	No
		Please give us its summary.		OK	-	No
(2)	Mai	ntenance Facility				
	(a)	Are there local shops and subcontractors who will support the maintenance work for the plant?				
		Mechanical workshops	(a)) Yes	(b)	No
		Blectrical workshops) Yes		
-		Garages for automobiles Service shops for) Yes		
		construction equipment	(a) Yes	(b) No
	(р) Please describe the status of the area industries in present and future.				

-

(c) Should the plant have its own maintenance facility? (a) Yes (b) No

(a) Yes (b) No

(-23,-) A-34

Can you describe it?

(3)	Safet	ty Pacility	<u>.</u>		•••	. •
	(a)	Are there municipal fire fighting facilities in the area?	(à)	Yes	(b)	No
	(b)	Are there any regulations and ordinances on fire fighting facility and plant layout?	(a)	Yes	(b)	No
	(c)	Are there any medical facilities in the area?	(a)	Yes	(b)	Ю
	(ð)	Should the plant have its own fire fighting facility and medical facility?	(a)	Yes	(Ь)	No
(4)	Prod	uct Shipping				
	(a)	Is it correct to understand that products (synthetic crude & sulfur) shipping is outside the scope of this study and battery limits of the study is the area inside the fence of the plant?		·		
		Tence of the plant.	(a)	Yes	(b)	No
	(b)	How many days shall be assumed as storage of products in the plant area before transmission to the port?				
				1 we 2 we	eks	ys
(5)	Wast	e Treatment and Disposal				
	(a)	Please give us laws or regula- tions on the waste treatment and disposal in the existing refineries.	(a)	OK	(b)	No
	(Ե}	Do you have any regulations for air pollution?	5 • • • •) Yes		
	(c)	Do you have any regulations for water pollution?	(a)	Yes	(b)) No

(- 24-) A-35

(6) Plant Building

If the general practices for the buildings are available, please give us a copy of the following from the existing refinery and oil production station.

(a) OK (b) No

Customary Office Requirements Workers area Parking areas Locker room Cafeteria Sanitary facilities Prevailing type of architecture

(- 25 -) A-36

AT TACHMENT TO JICA-2

PRELIMINARY

TERMS OF REFERENCE

THE STUDY ON UP-GRANDING OF ORINOCO HEAVY OIL

OCTOBER, 1979

JAPAN INTERNATIONAL COOPERATION AGENCY

PRELIMINARY

TERMS OF PEFERENCE

FOR

THE STUDY ON UP-GRADING OF ORINOCO HEAVY OIL

The study will be conducted on the following major investigation items, and the subsequent sections present the study outline.

1. Analysis of sample oil.

- 2. Site survey.
- Review of the various process features of the four processes (Flexicoking, Fluidcoking, the M-DS process and the Eureka process.)
- 4. Plant planning and plant definition.
- 5. Investment and operating costs estimation.
- 6. Economic analysis.
- 7. Utilization of by-products.
- 8. Evaluation of Processes.

(- 1 -) A-38

I. OBJECTIVES OF STUDY

1. General

In consideration of the world demand for petroleum products which will continually increase, it is necessary to evaluate not only the conventional reaserves but also the future alternatives.

In the presence of large reserves of the Orinoco heavy oil and the decline of reserves of Conventional crudes in Venezuela, it is meaningful to study the route of upgrading the heavy oil.

For these purposes, JICA intends to develop a plan relating to up-grading of the Orinoco oil, which will lead to the production of a synthetic crude oil.

2. Purpose of the study

The study intends to supply informations required for process selection that is used for evaluation of construction plan of commercial plant for upgrading of Orinoco heavy oil.

An object of process for the study is limitted to four schemes using the four processes (Flexicoking, Fluidcoking, the M-DS process and Eureka process).

II. BASIS OF THE STUDY AND INFORMATION TO BE FURNISHED BY MEM

- 1. Orinoco Heavy Oil.
 - (1) Official name of the crude oil for the study.
 - (2) Analysis of the crude oil.
 - (3) Supply Conditions. Available at the plant fence at the pressure of _____ psig. (kg/cm²g)
- 2. Through-put Capacity.

100,000 BPSD

3. Main Product.

A synthetic crude that has no more than 22°API specific gravity, no more than 1% sulfur content. The synthetic crude is defined as the product oil excluding gas and LPG.

4. By-products

.

- By-products are to be used to generate steam that is used for production of raw crude and for other purposes at onsite and offsite facilities.
- (2) Sulfur recovery units are installed for a hydro-desulfurization unit and for a by-product combustion furnace.
 Recovered sulfur is solidified in particle form to premit sale or storage.

(- 3 -) A - 40

ŝ

5. Site

General information on the site is based on a map of the project area showing the following:

(1) Anticipated up-grading site.

- (2) Crude oil wells.
- (3) Anticipated site of steam generation for injection.

· •

- (4) Supply point of water for utilities and boiler feed.
- (5) Supply point of electric power, if available.
- 6. Steam Generation for Raw Oil Production.
 - (1) Boiler capacity.

.

- (2) Average operating ratio.
- (3) Steam temperature and pressure.
- (4) Boiler plant location.

_ ·

(-: 4 --) A-41

III. SCOPE OF WORK

- 1. Analysis of Sample Oil.
 - To prepare the uniform sample for analysis by blending crude sample of five drums.
 - (2) To analyze the uniform sample to obtain the basic data for the up-grading process.
- Confirmation of Basis of the Study. (by 1st Survey Team)
 Items to be confirmed are as per described in II.
- 3. Site Survey. (by 2nd Survey Team)
 - (1) To explain the results of preliminary study on the four processes (Flexicoking, Fluidcoking, the M-DS process and the Eureka process)
 - (2) To collect data and information for planning of the up-grading plant.
 - (a) Geographical data.
 - (b) Utilities supply conditions.
 - (c) Infrastructure conditions.
 - (d) Conditions related construction works.
 - (e) Basis of Economic Analysis.
- 4. Review of the Technology of the Processes.
 - (1) Features.
 - (2) Process development.
 - (3) Feedstock and yield.
 - (4) Process description.
 - (5) Process flow diagram.
 - (6) Utility requirements.
 - (7) By-product utilization.

(- 5 -) A-42

- 5. Plant Planning and Plant Definition.
 - (1) Process scheme for synthetic crude production.
 - (2) Overall material balance.
 - (3) Product quality.
 - (4) Utility facilities.
 - (5) Oil handling facilities.
 - (6) Offsite facilities.
 - (7) Utilities requirements.
 - (8) Operating requirements.
 - (9) General plot plan.
- 6. Investment and Operating Costs.
 - (1) Capital Requirements.
 - (2) Operating Cost.
 - (3) Costs of Production.
- 7. Economic Analysis.
 - (1) Basis and procedure.
 - (2) Profit & loss.
 - (3) Cash flow analysis.
 - (4) Internal rate of return.
- 8. Utilization of By-product.
 - (1) By-product.
 - (2) Transmission system.
 - (3) Combustion characteristics and performance of boiler.

(- 6 -) A - 43

9. Evaluation.

.

(1) Technical.

.

- (2) Economics.
- (3) By-product.

-

.

-

-

-

•

IV. REPORTING

1. All documents shall be prepared in English.

 Metric system shall be used for units, except for the conventional ones broadly used in the petroleum industry.

-

.

1

ATTACHMENT-2

Caracas, October 10, 1979

Record of Discussions

The Venezuelan authorities concerning with Orinoco Oil development, which are Ministerio de Energía y Minas, Petróleos de Venezuela S.A., Lagoven, S.A. and Instituto Tecnológico Venezolano del Petróleo, and the Japanese First Survey Team for the Up-Grading Project of Orinoco Heavy Oil in the Republic of Venezuela, sent by Japan International Cooperation Agency (hereinafter referred to as "JICA"), had discussions based on the attached paper JICA-1 and JICA-2.

1

The schedule of discussions and persons who participated in the discussions are listed in the attached sheets annex-1 and annex-2.

Both parties confirmed the paper JICA-1 and exchanged views based on the paper JICA-2.

The following is a summary of the result of discussions.

1.- Supply of the Orinoco Heavy Oil.

The Venezuelan authorities concerned will make every possible effort to supply 5 drums (200 l/drum), completely sealed, of the raw Orinoco heavy oil sample to JICA.

2.- Basic Conditions for the Study

- 2.1 Feed Oil of the Up-Grading Refinery-
- (1) Name of the Raw Orinoco Heavy Oil Cerro Negro crude oil
- (2) Feed Oil to the Up-Grading Refinery Mixture of Cerro Negro crude oil and diluent for the oil productions.
- (3) Diluent for the Oil Profuction Distillate, mainly gas oil of the up-grading refinery is recycled.

../..

A-46

(4) Rate of Diluent

Diluent/Cerro Negro crude oil = 0.3/1 on volume basis.

-2-

- (5) Analysis Data of Raw Orinoco Beavy Oil for the preliminary study use. As per the attached analysis data -
- (6) Capacity of the Up-Grading Refinery To produce 125,000 BPSD of product oil
- 2.2 Product of the Up-Grading Refinery
- (1) Kind of Product (Synthetic crude)
- Improved crude oil including maximum middle distillate
- (2) Properties of Product

Gravity : About 25°API - 28°A//

- Sulfur : 1 WTS max.
- (3) Residual Oil
 - Residual oil of the raw crude oil shall not be included in the product.

2.3 By-Products of the Up-Grading Refinery

(1) Use of By-Product

Fuel for the generation of steam and electric power for the oil production and the up-grading refinery.

(2) Boiler Plant Site

One centralized boiler plant in the up-grading refinery

- 2.4 Sulfur Recovery
- (1) Recovery Sources

Sour gas of hydrodesulfurization units and flue gas of furnaces and boilers

(2) Type of Sulfur Molten Sulfur for export

- 2.5 Steam and Electrical Power Requirements for Oil Production
- (1) Steam

A- 47 🐳

1.5-3.0 Barrel crude oil/Ton steam at continuous injection stage. Pressure of steam is 1400-2000 psig at the outlet of boiler

~3~

(2) Electrical Power

50-60 MW at continuous injection stage for the production of the crude oil to be fad to the up-grading refinery of which capacity is per item 2.1(6).

3.- Scope of Work

The feasibility study excludes the survey on financing, the marketing of the synthetic crude, the infrastructure and site selection of the plant and is limited to the plant facilities for the up-grading of the crude. The detailed scope of the work is shown in the attached annex 2.

4.- Reporting

4.1 All documents shall be prepared in English.

4.2 Metric system shall be used for units, except for the conventional ones broadly used in the petroleum industry.

Dr. Arévalbi Guzman Reyes Director General Sectorial Ministerio de Energía y Minas

Senichi Birose

Chief of the Japanese First Survey Team for the Up-Grading Project of Orinoco Beavy oil in the Republic of Venezuela

c.c.: Petroleos de Venezuela S.A.

c.c.: Lagoven S.A. c.c.: Instituto Tecnológico Venezolano de Petróleo.

Annex-J	<u>AWTENDANT</u>	Attached MEM's members list, the Japanese first survey team's members list and Mr. Katsuhike TSUNODA Councilor, Embassy of Japan, Caracas Mr. Hitroshi MITSUKAWA First Secretary, Embassy of Japan, Caracas		Attached PETROVEN's members list, the Japanese first survey team's members list and	Mr. Katsuhiko TSUNODA Councilor, Embassy of Japan, Caracas	Mr. Hiroshi MITSUKAWA First Secretary, Embássy of Japan, Caracas	
- •	* . • .	• • • •		•		2	
터 . 거 이 거		y Minaa		s.A.		-	
>1		Encryla ,		Venezu cla		-	
51 Ol		е Т		de Ven			
의 기 이 일 ·	PLACE	Miniatorio	• <u>.</u>	Potrólens			•
ບໄ ທ	TIME	10,10 - 12,10		9 15:00 - 17:00	- - - - - -	-	
		, 1979		, 1.979			
•	SILIVO	Octoher 3.	- 49	October 3		 <u>.</u>	······································

p-49

 Attached PLTROVEN's members list and the Japanese first survey team's members list	Attached LACOVEN's members list, the Japanese first survey team's members list and Mr. Terukazu KATAOKA Director, C.Itoh & Co. de venezuela S.A.	Attached INTEVEP's members list and the Japanese first survey team's members list	Attached LAGOVEN's field members list, the Japanese first survey teams members list and Dr. Edison Perozo, Petróleos de VenezuelaSA Mr. Minoru NMZVTA, Japan National Oil Corporation	Attached MEM/ PETROVEN's members list and the Japanese first survey team's members list and Mr. Katsubiko TSUNODA Councilor, Embassy of Japan, Caracas	Mr. Hiroshi MITSUKAWA First Secretary, Embassy of Japan, Caracas	
retrolecs de Venezuela S.A.	Lagoven, S.A.	Instituto Tecnológico Venezolano del Petróleo	Cerro Negro, Morichal and Jobo fields	Ministorio de Energía y Minas	-	
10:00 - 12:00	14:45 - 16110	9100 - 12100	9115 - 14:30	14:00 -		
October 4, 1979	October 4, 1979	October 5, 1979	October 8, 1979	October 10, 1979		
		A-5	0			

í

MINISTERIO DE ENERGIA Y MINAS

Dr. Arévalo Guzmán Reyes

Director General Sectorial de Hidrocarburos

.

-

Dr. Ernesto Agostini Jefe de la División de Conservación

Director de Plànificación Económica Dr. José Manuel Tineo de Eidrocarburos

Lic. Rene Arreaza

Asistente del Ministro

Jefe del Dpto. de Refinación Dra. Mariella Ricardo

Dr. José G. Mendez 2.

Asesor de Exploración

Dr. Ricardo Nuñez

Jefe Dpto. de la División de Refinación

-

PETROLEOS DE VENEZUELA, S.A.

Dr. Luis Plaz Bruzual

Dr. Edison Perozo

Director de PDVSA

.

Pétroleum Engineering Manager Oriñoco Oil Belt - PDVSA

~

Dr. Carlos Borregales

Orinoco Oil Belt Coordinator -PDVSA

Dr. José Prats

.

.

_

Dr. Angel Behrends

Dr. Carlos de Castro

- .

Planning Manager. Refinery Coordinatio: PDVSA

-

Refinery Coordinator - PDVSA

International Affairs

INSTITUTO TECNOLOGICO VENEZOLANO DEL PETROLEO

- -

Gerente, Grupo de Refinación y Petroquímica Dr. Néstor Berroeta --Gerente, Grupo de Ingeniería de Procesos Dr. Paulino Andreu Dr. José Luis Calderón Gerente, Grupo de Análisis y Evaluación Gerente de Información y Relaciones Lic. José Rafael Malpica INTEVEP (Project evaluation) Chemical Dra. Carmen Alvarez Engineer for an of the Process Design, Combustion Engineer Dr. Dominge Rodriguez P. Manager, Process Eval., Head Combustion Process, Ch. Eng. Dr. Franzo Marruffo Process Development, Deasphalting Dr. Jacinto Pachano Coordinación de Eventos Sra. Marina de Camejo

· .

LAGOVEN, S.A.

-

.

Dr. R.V. Mandini	Central Division MNAR	PROD. DEPT.
Dr. M.J. Treviño	Plan. Coer. Dept.	DSM Production team
Dr. A. Sosa	Prod. Ing. de Petroleo	Ing. de Proyectos
Dr. K. Vasguez	Prod. Planificación DSM	Ing. de Prod.
Dr. J.R. Luengo	Pet. Engineer	Beavey Oil Projects Production Department
Dr. Forest Lighty	Coordination Team	DSM Project
Dr. A. Santos	Jefe Ep. Exploración Paja Department	Prod. Dept.

-

LAGOVEN S.A. (FIELD)

· · ·

.

.

.

Ing. L. J. Rengel Y.	Oper. Superintendente
Ing. Luis Izarra	Superintendente de Producción
Ing. Gosoniel Parbrano	Spècial Projects Superviser
Dr. Alfredo Vasquez B.	Sup. Relaciones Públicas

Annex-2

SCOPE OF WORK

- 1. Analysis of Sample Oil
 - To prepare the uniform sample for analysis by blending crude sample of five drums
 - (2) To analyze the uniform sample to obtain the basic data for the up-grading process
- 2. Confirmation of Basis of the Study (by 1st Survey Team)
- 3. Site Survey: (by 2nd Survey Team)
 - To explain the results of preliminary study on the four processes (Flexicoking, Fluidcoking, the M-DS process and the Eureka process)
 - (2) To collect data and information for planning of the up-grading plant
 - (a) Geographical data
 - (b) Utilities supply conditions
 - (c) Infrastructure conditions
 - (d) Conditions related construction works
 - (e) Basis of Economic Analysis
- 4. Review of the Technology of the Processes-
 - (1) Features
 - (2) Process development
 - (3) Feedstock and yield
 - (4) Process description
 - (5) Process flow diagram
 - (6) Utility requirements
 - (7) By-product utilization

../..

A - 56

	-2-
5. Plant Planning and	Plant Definition
(1) Process scheme	for synthetic crude production
(2) Overall materia	al balance
(3) Product Qualit	Y
(4) Utility facilit	ies
(5) Oil handling f	acilities .
(6) Offsite facili	ties
(7) Utilities requ	irements
(8) Operating requ	irements
(9) General plot p	lane transference -
6. Investment and Oper	ating Costs
(1) Capital Require	enents
(2) Operating Cost	
(3) Costs of Produc	ction
7. Econozic Analysis	
(1) Basis and proc	eoure
(2) Profit & loss	s
(3) Cash flow anal	ysis
(4) Internal rate	
8. Utilization of By-	
(1) BY-DIOGUCL	
(2) Transmission s	ystea
	macteristics and performance of boiler
	<u>-</u> <u>-</u>
9. Evaluation	to the state of th
(1) Technical	na kala shina an wara sa 17,
(2) Economics	
(3) By-product	e i de 19 de terre I

4 - 57

•

. . .

THE VERSERS OF THE FIRST SURVEY TEAM FOR THE VER-GRADING PROJECT OF

.

.

٠

.

1

.

ORINOCO REAVY OIL IN THE REPUBLIC OF VENERUELA

Naze	Function	Title
Mr. Sen'ichi ElROSE	Project Manager (Chief of the Team)	Consultant to JICA
Mr. Toshic 131	Policy in Technical Cooperation	Deputy Director Development Division Petroleum Depártment Agency of Natural Resources and Emergy MITI
Dr. Koji UKEGAVA	 Petroleum Refinery Engineering 	Semior Scientific Officer National Research Institute for Pollution and Resources MITI
Mr. Hideo YASUKI	Coordination	Deputy Director Industrial Survey Divisio: JICA
Mr. Yasuhisa EOSCYA	Petroleum Refizery Engineering	Consultant to JICA (Mechanical Engineer)
Mr. Teruzada ISUXAGOSE	I Petroleum Refinery Engineering	Consultant to JICA (Chepical Engineer)

P.O. Sox No.216, 48th Floor Shinjuku Mitsui Bldg., No.1, 2-chore, Nishi-Shinjuku, Shinjuku-ku, Tokyo, Japan

Telephone: Tokyo (03) 346-5287 - 9

Cable : JICAEDQ Telex : J22271 JICAEDQ J

-

A-58

2

ATTACHMENT-3

LAGOVEN, S. A.

(Filial de PETROLEOS DE VENEZUELA) Refinería de Amuay-Judibana

12 de junio de 1979

LAB-79-0093

LAGOVEN - CARACAS

Departamento de Planificación

Atención: Sr. Humberto Vidal/Sr. Karl Hazèica

Ref: Ensayo de Productos Combustibles de crudo Cogollar 1X - Cerro Negro Nº LV.5C-PC.79

Con la presente les hacemos llegar el ensayo de crudo COGOLLÁR IX -CERRO NEGRO efectuado en muestra de 8.5 °API representativa de la mezcla 50/50 3 de los crudos Cogollar IX y Cerro Negro, según su cable COP 023 del 6/4/79.

Observaciones:

Fracción lubricante:

- a) Naturaleza: Nafténica.
- b) Rendimiento: 17.8% Vol. Comparable con crudos convencionales.
- c) Indice Viscosidad: Menos 115

Asfaltos:

 a) AC-10 y AC-20: Altas pérdidas por calentamiento y baja ductilidad. No cumplen especificaciones AASHTO H226-761. Tabla 2. En caso de necesitar mayor información, sírvanse comunicárnoslo.

Atentamente,

LAGOVEN-AHUAY Luis Urdaneta V.

Rodol fo E. Parra

Orig. y 10 copias

cc: Depto. de Comercio y Suministro-Caracas Atn.: Sr. L. Díaz Depto. de Producción-Caracas

Atn.: Sr. J. Roger

Amuay:

1

Gerente Técnico Gerente de Operaciones Planif. e Ing. de Proceso Contraloria Coordinación CIRA Archivo Central (2) Laboratorio (3) CRUDE: COGOLLAR IX - CERRO NEGRO

COUNTRY: VENEZUELA REPRESENTATIVE CF: 50/50% COGOLLAR IX AND CERRO NEGRO

.

-

· .

REPORT Nº	LV.SC-PC.79	-	-	•	
REPORT DATE	JUNE, 1979				-
REPORT BY:	RODOLFO E. PARRA B.		•		

.

DATE RECEIVED: MARCH 29, 1979 DATE DISTILLED: APRIL 27, 1979

.

-

ASSAY RUN BY: LAGOVEN, S. A. LABORATORY - AMUAY REFINERY JUDIBANA - FALCON, VENEZUELA

A. AMUAY REFINERY FALCON, VENEZUELA

SPCNSORED BY:	LAGOVEN, S. A. PLANIFICATION DEPARTMENT CARACAS, VENEZUELA, S. A.	
	•	

TARSE	1
-------	---

CARE CONTENT IT - CERTO MECTO

• .

	-1
17.50-20.79	

.

VHOLE CRUDE DATA

14077			3.5
HCFCCIMT			1.911
 VA	·····	17_3	- 3.67
ERATA S.C.	* .	#T; 7F4	N 11
DUR POINT		-1	- +50
ITROGEN		*1.5	1 0.57
	Ent	YOL N	1.9
ALT CONTENT, N	o	PT3 Ufisse BEL	\$30
es Carbon			: 13.3
51 2522157		¥1, J.P.C	- 84
1. 10. 2040			1.39
		137F. GC	10517
1	coexit :	140"F, cSt	5544
	-	130°7, cSt	ä !
v50051-64			
	-	143°F, SEC	27531
	SATION T UNDERSAL #	130°F, SEC	4191
<u>-</u>			1 ·
Retails -	iron Tiradius	51. 000 775 - 100	33
	- Sictel	2. Wt. spm Nt. ppm	37

5 DE Chice	- 150iT	1 1002-8
ETHINE IND LICHTER	0.01	0.01
10/46	0.93	9.63.
50 841 ml	0.02	0.01
OBLE SITURE	0.01	0.07
SD PENTURE	- 0.32	0.03
HODAN, PENTANE	0.01	50_0

A- 62

<u> </u>	xax I	1 - CER	68-22# GR					L7.5C-X	.19	
2	EACENT	957111	2 75 152	5 J 55 J 7	57:UL 7E	KFEBATUS	1£ (FAH3	Exercity		
1005 112 2 61			5	тэт <u>ас;</u> к }	รรมุก.		64 <u>07 / 1</u>	[
. <u> </u>				1			<u> </u>	1	<u> </u>	
]						
 253) 	1		<u> </u> -
										i
30			ľ			ļ			ļ	: :
<u> </u>		1.1	1.4	1.7	2.1	2.5	2.3	3.3	3.7	
55	1.3	5.2	5.3	5.1	5.9	1 7.5	5.2	8.3	9.5] 1 19.
500	11.\$	11.7	12,5	13.2	14.0	35.1	15,8	15.5	17.4	13.
200	19.0	19.8	20.5	21.3	22.9	22.5	23.5	24.3	25.9	25.
800	25.6	27.4	23.2	29.1	29.9	30.5	31.5	32.3	33.1	3 34.
żo	34.8	35.6	35.4	37.4	38.1	39.9	39.9	43.5	41.5	42.
1200	•	1	-					Į	ļ	i - 1

-

•

; **L**_____ -

-

.

-

C0001140+C.NE640			1~1~00010100	*	CALCULANUS	507 5.2	. 14		· .				
	مو سو :		• •	3	UPU UPU	4)-10 4)-10 04 14-10	4 7 • •	101 AN	+ 5444 ISF	1 1 1 1 1 1 1 1	SUMA NF X VOL	, 7 2 7 2 8	(*
TEMPERATURA 603 F . + 605 C	161. 54100	00 +CNA 460		503	5 4 C 1	ж > • ж	1 167 GDS		3	2	* 4404	۰۴ بر	x where
	0.0		00.			0.00574		-	-				
đ	• •	<u>ې</u> -		 		ションチャート				-			
		- ^	9		5 H C	0.10435							
			Ş.	94.		104410	-						
•	6 . 0	r,	\mathbf{a}	~		1951.		•			4		
401.20	5.7.5	0.97	[4 0	20°0	5 0 7 X - 5		1 - 4445						
220 220 220		ŗ	14	• ~		2007	5	411		5.96	1 1		
				Ċ		Ň	3	118	3	7 9		٠	
		, <u>.</u>	2			. 573	1.4525	911	ŝ	~	- - -		
10 200		5	3	÷		- Au 2	1.4540	114	5	÷	~		٠
202 . 205			٢,	\$		0472.	3	~ 1 1	\$1				
-015 -00	-		4	-		1010	43	110	1.145.9				
17 325.	2.1	2.4	1.3	~		-	1.4470	H C I	¢ «				
50 343.	2.7	5.1	5.7	້			ヘヨクゴ・・	105	0 (6			-	
71 355.	یمر س	a. o	רי יי	z - 1		5.	23		4 A 0 3 1 0				
02.02	~ ~	•	ſ,	÷.,		C 3	0 - 0 - 0 - 3		6 5				
• • • • • • • • • • • • • • • • • • •				÷ ż			1.5135	110	2				
		- 0 - 0					515	111	741		-	-	
		0	0.0			្មី	5	119	010.				
32 445.			8.1	`		J. C	1.5200	12	3283.5				
455.	1.5	i e i	0.0	-		7 . X	~	174	55.				
~~~		0	~	4		1.5295	š	126	.32.				
490	~	5		1		3.4447	2 S	121	100.				
510.			2			54.57712	ž. N	121	2				
535.		1	Ó. A	~		6	1.5304	132	ē				
		•	•				•						

•

.

-

-.

.

-

-.

-

06501     X 4450 YNW.     7 510 X 200     7 200     7 100       000     0.00     0.00     0.00     0.00     0.00     0.00       000     0.00     0.00     0.00     0.00     0.00     0.00       000     0.00     0.00     0.00     0.00     0.00     0.00       000     0.00     0.00     0.00     0.00     0.00     0.00       000     0.00     0.00     0.00     0.00     0.00     0.00       000     0.00     0.00     0.00     0.00     0.00     0.00       001     0.01     0.01     0.01     0.00     0.00       001     0.01     0.01     0.01     0.00     0.00       001     0.01     0.01     0.01     0.00     0.00       001     0.01     0.01     0.01     0.00     0.00       001     0.01     0.01     0.01     0.00     0.00       001     0.01     0.01     0.01     0.00     0.00       001     0.01     0.01     0.01     0.00     0.00       001     0.01     0.01     0.01     0.00     0.00       001     0.01     0.01     0.01     0.00     0.	CUCULL 44-C. *** 540	. 1 C	Jaryl Sur	Sug1 Durmaty1	Y CAL		14 SUS 2.8	-	· ·		-
Vectorium     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     10000     1000     1000     1000 <th></th> <th>12 PESN1</th> <th>2</th> <th>с У с</th> <th></th> <th>. н</th> <th>0 0 1 1 1</th> <th></th> <th>ា បី</th> <th>÷ •</th> <th>T SUMA X PESO T NITPOGEND</th>		12 PESN1	2	с У с		. н	0 0 1 1 1		ា បី	÷ •	T SUMA X PESO T NITPOGEND
	MPERATURA F + 605 C	+CALC EV1				9. 12. 14 PE.S.1			+X 2 4650	コントマーン	tk k pfga ijaut
	, c	ିକ	ç,	୍					-		
	÷C	<b>`</b>	` <b>د</b> `	<b>°</b> .	~ . c * c					-	
	•	ŝ		ç -		с" :	د • •				
			ŝ		21.0	0.0	0.0		-	-	
		2	ŝ	; <del>``</del>	0.17	c * 5	٢,			•	
	20%	, <b>*</b> ,	2	2	•	C D S . C	<u> </u>				
	220.	્દ	٩,	$\overline{}$	•	200 -					
	5 255.	٩,	ж ,	ኅ.						-	
	250.	٠.	5	Ņ	5	•				-	
X1000       X1000       X1000       X1000       X1000       X1000         X1000       X1000       X1000       X1000       X1000       X1000       X1000         X1000       X1000       X1000       X1000       X1000       X1000       X1000       X1000         X1000       X1000       X1000       X1000       X1000       X1000       X1000       X1000       X1000       X1000       X1000       X1000       X1000       X1000       X1000       X1000       X1000       X1000       X1000       X1000       X1000       X1000       X1000       X1000       X1000       X1000       X1000       X1000       X1000       X1000       X1000       X1000       X1000       X1000       X1000       X1000       X1000       X1000       X1000       X1000       X1000       X1000       X1000       X1000       X1000       X1000       X1000       X1000       X1000       X1000       X1000       X1000       X1000       X1000       X1000       X1000       X1000       X1000       X1000       X1000       X1000       X1000       X1000       X1000       X1000       X1000       X1000       X1000       X1000       X1000       X10000       X10000       X10	245.	ີ	с.	и. 1	<u>د</u> د	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       1	5 010	<u>,</u>		•						0100 0	0.4015
10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10 <td< td=""><td>\$ \$</td><td>ສຸ</td><td></td><td>- •</td><td></td><td></td><td></td><td></td><td></td><td>1,0015</td><td>0100 0</td></td<>	\$ \$	ສຸ		- •						1,0015	0100 0
10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10 <td< td=""><td>- 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5</td><td></td><td>- 0</td><td></td><td>&gt; 1 4 - 1</td><td>371 6</td><td></td><td></td><td></td><td>- 0010</td><td>0 .0044</td></td<>	- 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5		- 0		> 1 4 - 1	371 6				- 0010	0 .0044
1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1			- 1			·		c° c	•• • •	· • • • • • •	2774
17.97         17.97         17.97         17.97         17.97         17.97         17.97         17.97         17.97         17.97         17.97         17.97         17.97         17.97         17.97         17.97         17.97         17.97         17.97         17.97         17.97         17.97         17.97         17.97         17.97         17.97         17.97         17.97         17.97         17.97         17.97         17.97         17.97         17.97         17.97         17.97         17.97         17.97         17.97         17.97         17.97         17.97         17.97         17.97         17.97         17.97         17.97         17.97         17.97         17.97         17.97		<u> </u>	10			51 - 1 F F	$\sim$	Z ( 0	N 1 4 7 . 0	0.000	7777°0
305.0       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00		5	-	2.	ن ج	1.55.45	3.2420	2 C -	0022°C		
400.0       1.08       20.55       19.50       57.704       7.2427         400.0       2.21       22.71       57.704       7.2427         600.0       2.21       22.71       57.704       5.2453         600.0       1.40       24.65       21.07       5.2453         600.0       1.40       24.65       21.07       5.2453         600.0       1.40       24.65       21.73       5.2473         71.0       7.44       71.057       5.2403       7.142         71.0       7.44       75.440       7.453       7.453         600.0       2.160       57.40       71.057       5.2403         71.1       77.440       75.440       7.2637       7.473         71.1       77.440       7.26070       7.794       7.794         71.1       77.440       7.2640       7.794       7.794         71.1       7.10       7.10       7.794       7.794         71.1       7.10       7.10       7.794       7.794         71.1       7.10       7.10       7.794       7.795         71.1       7.11       7.744       7.794       7.794         7.10			Ş	Ϋ́.	5.	100.00	5.2790	20-0	0.5031	0 . 54 . C	
w15.0       2.21       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1       22.1	000		, <b>"</b> •	ີ ເ	5.0	50.00	3.2920		7.125.0		
w w y y w w w w w w w w w w w w w w w w	0 E.I.S	$\sim$	1	2	-	エノシートク	5.2433	0 <b>.</b> 13			
445.0       2.12       20.77       75.71       71.057       5.2400       7.17         455.0       1.34       1.34       27.44       75.440       5.2920       7.23       1.5653         7       475.0       2.49       2.60       31.00       29.55       64.95       5.2920       7.23       1.5563         7       475.0       2.49       2.60       31.00       29.55       64.95       5.2940       0.32       25.8414         4       475.0       2.10       29.55       64.95       5.2940       0.32       25.8414         6       519.0       3.10       29.55       10.22044       5.2940       0.32       25.8414         6       519.0       3.10       29.50       37.30       37.37       3.2900       1.70       1.70       1.70       1.70         555.0       517.0       573.210       4.3000       1.70       1.70       1.70       1.70       1.70       1.70         555.0       555.0       573.210       4.3000       1.70       1.70       1.70       1.70       1.70         555.0       50.0       573.210       4.300       1.70       1.70       1.70       1.70       1.7	5 430		- <b>.</b> .	9.9	,	5 · · · · · · · · · · · · · · · · · · ·	5 × × 2 5				۰.
ussed       1.34       28.11       27.44       75.440       5.2020       7.21       1.570         ussed       2.40       2.40       5.74       91       5.2040       0.32       2.5414         ussed       2.90       2.90       31.00       20.55       64.95       5.2040       0.32       2.5414         ussed       2.90       31.00       22.04       91.565       5.2040       0.32       2.5414         ussed       3.10       3.10       37.00       32.01       91.565       5.2000       1.70       1.70       1.5705         555.0       3.10       3.10       30.91       373.210       4.3006       1.70       1.70       12.560         555.0       555.0       10.0500       69.95       373.210       4.3006       1.70       1.70       12.560	0 200	7	5	1.0	3	71.057	2.2470	2 1 0			
7       475.0       2.40       2.60       31.00       20.55       64.951       5.2040       0.32       7.5114         1       470.0       2.04       31.00       32.04       91.555       5.2040       0.32       7.5114         1       470.0       2.04       31.00       32.04       91.555       5.2040       0.32       7.5016         5       510.0       3.10       56.17       37.50       37.290       37.560       1.70       1.70       1.70       1.5640         5       555.0       3.73       30.91       37.3510       4.3040       1.70       12.563         5       555.0       50.09       190.00       190.00       190.00       190.00       1.70       12.560         5       555.0       50.09       190.09       190.00       190.00       1.70       12.560         5       555.0       50.09       190.00       190.00       190.00       170.00       170.00	455.0	7	1	A.1	7.0	75.440			1000		
u upo.o 2.04 2.64 33.64 32.64 91.465 5.2470 0.53 1.7406 5 510.0 3.10 3.10 36.19 38.54 102.044 3.2440 0.07 5.550 5 555.0 3.72 3.272 39.91 38.05 114.503 3.3400 1.70 12.5831 5 535.0 60.99 100.00 69.95 373.210 4.3040 1.70 12.5831	175				С. С.	64.955	C105.2	25 0	2.5814		
0 510.0 3.10 3.10 56.19 34.50 102.044 3.2990 0.00 0.550 0.02 5 555.0 3.72 3.72 39.91 38.05 114.593 3.3600 1.70 12.6931 0.02 5 535.04 60.09 60.09 100.00 69.96 373.210 4.3040 1.70 12.6931 0.62	1 490	ŝ	. •	5.0	5.5	-	5.2470	5 ° °	0074		
5. 555.0 1.72 3.72 30.91 30.05 114.503 1.700 1.70 17.031 0.825 5. 535.0+ 60.99 60.09 100.00 69.95 373.210 4.3040 	0 510.	-	7	÷.1	5 - 2 2	102.044	$\sim$	50 50 50			
5+ 535.0+ 60.99 60.00 100.00 69.04 373.210 4.3040 	5.55.0	5	7	5	ż	114.503	r.,	1.70	ς. ζ		
	5+ 535.0	\$	š	2.0	•	2	.304	-	-	Γ. V č	<b>^</b>
			-				:		-		

.

A- 65

.

	Cucorra	כמנטנרוא-ינ. יוניייי		********		J 1 7 1 5 5						-		
44NGG F T		ב יחנ וב ידו				1.4414 1411 GPJ ESJECTETI	12 Lt S.	U-S-+2/-15-4	1			₹ 211). ₹2.[[[43	7 2 11 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	1. 2. 1. 1. 1. 2. 1. 1.
		4			10 - 10 10	5-25		1. 2545	ケフィフ・レ				75.5	
					. 1		12.25	. 1 / 1 /				11	; c	0-0
		-						1.5125	A114 1		<b>-</b>		۲, L	¢••
410 · 705							5   1   2   -		ファトマ・		12:07	<u>`</u> :	с <b>г</b>	с <u>-</u> с
							7.74	1025.0	5522.4	-	· · · · ·	107	د . د	¢ ¢
							1	1901 4	01071		1.202 V	1 00	<b>د</b> ••	<b>6°</b>
							2.74	7, 10, 1	~~~~ "		2112	197	د <b>•</b> د	¢ ~ a
						37.5 3	7.17	くくんく		0.07	1012.0	111	0°0	¢•¢
				45.44	17.41		14.74	いいろくいち	1 5144	111-	1016	511	с. С	< - ¢
			22.22	10.1	[1.1]		****	+ . 24 55	1 51.00	N1.C	7117 0	121	د د	0.0
				to . 07	14.71		3.50	1.5 # 5 * 5	7415.1		2	553	د ن	¢ ¢
			17.71		11.23	с	17.15	1. 4074		0.70	イレンコーナ	イベー	۰°۰	¢.0
				10.40	1 J - 1		16.1	5.2452	1.5002	0.54		トペー	۰° ۲	0°0
					<	. 5						120	<b>د</b> . د	••• °
				11.05	~~~~~ ~ I	•	5.72		1.55.4	1.70	c 2 4 4 . c	<u> </u>	с <b>°</b> с	0 ° C
2	•		-631-115	,	£	•		·						
		•												
14	1 2220-	•	56444147	٠	1	A. 4- 7.15 A	40	1 1 1						
TF VP.	T 2 VOL.	1 575 30	341754451810	+	t ntso t		こうよう ど		UE 5(- T					
	5				00°09	n . 5C	10.51	-	~ ~ ~ ~	•	-			
-020	10.10	1	· ·		t t_ a ]		シューシー	-	4 <b>.7</b> 9		•	-		
451+	12.94	0 ° 5 .	· · · ·		71.49		21 22							
152+	77.20	C	<		79.45		15 0-		25.0					
***	×1.53	44 17			A3.53		10-4-		1					
	50.05	5 ° 5	<b>د</b>		40.02		· · · · ·	-	۲ <b>۰</b> ۲					
	31.63	0.7	-0- -		1-,50		د <u>ر</u> ۲۰	-	\$ <b>*</b> * *					
1447	e	C T	1.0	\$ 710.	コイ・エク		15.27	•	~~~					
71156141	•	509		C + C	050	752	1	1150		エベマ	141		124	
		202		5.0	~~~~	1.51	110	540			550	121	500	
1				14.05	10.41	10 1	15-51	TU 41 .				14.23	18.00	
۱ ۲				•										

-

-

.

•

•

-

.

TABLE	1
-------	---

-

(charle) COGOLIAR HL + CERRO NEGRO

.

14.56-26.79

-

NYDROCARSON CONFONENT ANALYSIS

	• •	
-1 11	545 70 58	
< 11	GAS 10 3	
12.5	4 - 0.25	
102.3	0.25	9
	< vi vil 1	<pre>&lt; vi</pre>

i -	[	SU	Reso I	1	
		XQ.5	110. 20.1	Į	
		ne sas	OH OPLOE	1	
ETHANE		5.7	6.91		1
POPANE	1	32 4	9.07		Ī
	-	15.5	0.65	1	
ABUTANE		23.5	2.97		
OR PENTANE		10.4			
~PENTANE		5.8	0.02		
1200-ETHTLEDIANE			1		1
LIONETHTLOUTANE	]		1		
24EDKTLZENTANE	1		1		
HEBRUPENTANE					•
CTOLOFENTINE			1		
+HETINE					
LEOMEDICTURENTANE	-				
LADWETHTUJERTANE	1			<u> </u>	
MENTLORDODITANE				<u> -</u>	
HEINTUGIANE					
LIGHETHTUPENTANE					1
SHEROUSELLNE	· .	_			
GODEINE					1
socos	1		1	1	1
Samalt:		-			1
FILM FRS	ni.				]
NAPHTHENES	mi	-			
192410					1

 $\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^$ 

TABLE 5         (2001LAX 13 - (CAP) MS30         USERT         USERT <th colspan="2" th="" usert<<=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th>	<th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>								
COOLLAT 14 - (CAPD MESIO         LISSE DISTRUCTION         LISSE DISTRUCTION         LISSE DISTRUCTION         INSECT POINT         CONDUCT INFORMATION         LISSE DISTRUCTION         INSECT POINT         CONDUCT INFORMATION         INSECT POINT         CONDUCT INFORMATION         INSECT POINT         CONDUCT INFORMATION         INSECT POINT         INSECT POINT <th colspan<="" th=""><th>(B. (1)</th><th></th><th></th><th>TABLE 5</th><th></th><th></th><th></th></th>	<th>(B. (1)</th> <th></th> <th></th> <th>TABLE 5</th> <th></th> <th></th> <th></th>	(B. (1)			TABLE 5				
$\frac{1}{1} = \frac{1}{1} = \frac{1}$				·	·····				
This cut root $\#$ rt       68-41       401-35       201 set       401 set       401 set       401 set         153 cut root       cut       20.383       205 set	(\$50LAA [1	- (ERR)	NEGRÓ			CV.5C-2C.79	j		
Is 3 Cut Advant       Cut       20-28       205/25       205-26       205-26       205       205       205       205       205       205       205       205       205       205       205       205       205       205       205       205       205       205       205       205       205       205       205       205       205       205       205       205       205       205       205       205       205       205       205       205       205       205       205       205       205       205       205       205       205       205       205       205       205       205       205       205       205       205       205       205       205       205       205       205       205       205       205       205       205       205       205       205       205       205       205       205       205       205       205       205       205       205       205       205       205       205       205       205       205       205       205       205       205       205       205       205       205       205       205       205       205       205       205		•	เรา	DISTILLATES					
Is 3 Cut Advant       Cut       20-28       205/25       205-34       205-34       205-34       205-34         rests Cut Advact       row 7       0.2 - 1.0       1.0 - 2.3       1.0 - 5.1       1.0 - 3.3       1.0 - 5.7         rests Cut Advact       row 7       0.3       1.3       4.1       2.3       5.7         rests Cut Advact       row 7       0.5       1.9       3.1       2.5       3.3         rests Cut Advact       row 7       0.5       1.9       3.1       2.5       3.7         rests Cut Advact       row 7       0.5       1.0       0.259       0.571       0.3554       0.877         rests Sufue       rt. 7       0.55       1.00       1.25       1.12       1.45         rests Sufue       rt. 7       0.55       1.00       1.25       1.12       1.45         rests Sufue       rt. 7       0.55       1.00       1.25       1.12       1.45         rests Sufue       rt. 7       0.55       1.00       <-100		-	52.01	131.41	191.51	()) au	47:		
T413 Cut 3usce       T02. 5       0.2       1.0       1.0       2.3       1.0       3.1       1.0       5.7         r413 Cut 3usce       T02. 5       0.3       1.3       1.9       3.1       2.5       3.7         equage       T02. 5       0.3       1.3       1.9       3.1       2.5       3.7         stant       1.4       1.5       1.9       3.1       2.5       3.7         stant       1.9       1.9       3.1       2.5       3.7         stant       0.540       0.255       0.571       0.854       0.8771         stant       0.540       0.255       1.00       1.25       1.12       1.45         stant       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0 <th1.0< th="">       1.1       <th1.1< th=""></th1.1<></th1.0<>	1	1					-		
$r_{41,2}$ on CD2.4 $r_{22,3}$ $0.3$ $1.3$ $4.1$ $2.9$ $5.7$ $r_{22,000T}$ $r_{22,5}$ $0.5$ $1.9$ $3.1$ $2.5$ $3.9$ $r_{22,000T}$ $r_{22,5}$ $0.5$ $1.9$ $3.1$ $2.5$ $3.9$ $r_{22,000T}$ $r_{22,5}$ $0.571$ $0.3844$ $0.217$ $r_{22,000T}$ $r_{23,55}$ $1.00$ $1.25$ $1.12$ $1.455$ $r_{22,000T}$ $r_{2,55}$ $1.00$ $1.25$ $1.12$ $1.455$ $r_{22,000T}$ $r_{2,100}$ $r_{2,100}$ $r_{2,100}$ $r_{2,100}$ $r_{2,100}$ $r_{22,000T}$ $r_{2,100}$ $r_{2,100}$ $r_{2,100}$ $r_{2,100}$ $r_{2,100}$ $r_{2,100}$ $r_{22,000T}$ $r_{2,00}$ $r_{2,00}$ $r_{2,00}$ $r_{2,00}$ <		÷ -				إحبدته المحمد الم	· · - ·		
uppediat       val. 5       0.5       1.9       3.1       2.5       3.9         itentit       val. 6       35.9       33.3       31.0       32.3       23.3         itentit       val. 6       9.440       0.259       0.521       0.284       0.281         itentit       val. 6       9.440       0.259       0.521       0.284       0.281         itentit       val. 6       9.440       0.259       0.521       0.284       0.281         itentit       val. 7       9.55       1.00       1.75       1.12       1.55         itentities       val. 7       9.55       1.00       1.75       1.12       1.55         itentities       val. 7       9.55       1.00       1.70       1.12       1.55         itentities       val. 7       7       7       7       1.12       1.55         itentities       11       12       11       1.2       1.55       1.12       1.55         itentities       11       11       1.2       1.13       1.12       1.12       1.12       1.12       1.12         itentities       11       11.13       1.10       1.10       1.11       1.11	•								
JEANTY       IAN       JS. 3       JJ. 3       JJ. 0       JZ. 3       Z3. 3         JECHE CLENTY       BAN       0.240       0.259       0.571       0.354       0.217         Intra SALVA       17.5       0.55       1.00       1.25       1.12       1.55         VERCENTINE SALVA       14       42       41       62       41         VERCENT       4       42       41       62       41         VERCENT       4       42       41       62       41         VERCENT       4       13       17       5.7       5.700       <-100	•	1							
$\begin{array}{c ccccc} \begin{array}{ccccccccccccccccccccccccccccccc$	<b>1</b>								
TOTAL SALFUR       VT. 5       0.55       1.00       1.25       1.12       1.45         VERCLATION RAFUR       VT. PPN       7       7       7       7       7       7         SACKE PONT       III       25       23       22       23       24       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       41       42       41       41       41       41       41 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
VENCLUTION RELET.       VT. PPN       7         SACKE POINT       IIII       25       23       22       23       21         LUM. NC.       E4       42       41       62       41         FREELING POINT       III       42       41       62       41         FREELING POINT       IIII       42       41       62       41         FREELING POINT       IIII       IIII       62       41       62       41         FREELING POINT       IIII       IIIII       7       7       7       7       7         CLOD POINT       IIIIII       IIIII       113       113       113       113       113         DISLING POINT       IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII						1			
LURING       44       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       41       41       42       41       41       41       41       41       41       41	VERCENTIN BUTCH	17. /24			-				
LUR.NC.       54       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       42       41       41       41       42       41       41       41       41       41       41       41       41       41	SACKE POINT	-	8	23	22	23	21		
CLOOP POINT       # $N/C$ $3/C$	lun sa			ઘર		42	41		
POLE AGENT       #       <-100       <-100       <-100       <-100       <-100       <-100         WELNE FORT       #       118       119       119       119       119       117         DEFLECTIVE SOER       E4       33       37       38       35         MEFLECTIVE SOER       E4       1.4370       1.4490       1.4550       1.4525       1.4500         NOMATICL FA       VOL 5       37.3       56.5       15.5       10.7       78.9         VSCENTIER       S0       18.0       32.0       24.0       49.9         NOMP       e9       1.39       1.32       2.40       2.20       2.85	FREELING POINT	-#	< -100	<-100	<-100	<-100	<-i%)		
WELME MONT     #     118     119     113     117       DELME MONT     #     118     119     113     117       DELME MONT     #     #4     33     37     38     35       HERELETIVE MORE     #4     33     37     38     35       HERELETIVE MORE     #.4370     1.4490     #.4550     1.4525     #.4500       MONATEL FA     MOL 11     37.3     \$6.5     75.5     70.7     78.9       MONATEL FA     MOL 11     37.3     \$6.5     75.5     70.7     78.9       MORENTEL FA     MOL 11     38.0     32.0     24.0     49.9       MORENTEL FA     MOL 139     1.32     2.40     2.20     2.85	CLOD PONT	-#	N/C	3/C	7/5	3/5	5/C		
3.8181, x081     1.4370     1.4490     37     38     35       1681, x081, x072     1.4370     1.4490     1.4550     1.4525     1.4500       100x1701, F1     100, 5     1.4550     1.4525     1.4500       100x1701, F1     100, 5     15.5     10.7     78.9       100x1701, F1     100, 5     18.0     32.0     24.0     49.9       100x1701, F1     1.39     1.32     2.40     2.20     2.85	70,8 20x1	-#		1					
IEFRACTIVE DOEL - 67C     1.4370     1.4490     8.4550     1.4525     8.4500       LEDWATCL FA     VOL 5     37.3     56.5     75.5     70.7     78.9       VOC09TrEL	NELNE PORT		i18	115	119	117	117		
1EFRACTIVE DOCE - 47C     1.4370     1.4490     1.4550     1.4525     1.4500       LEDWATCL PA     VOL 5     37.3     56.5     75.5     70.7     78.9       VOC09THEL     VOL 5     9.0     18.0     32.0     24.0     43.9       VOC09THEL     VOL 5     1.39     1.32     2.40     2.20     2.85	SIER SOE		- 44	в	1 37	38	35		
TISCESTIEL . CREMATE - TOF CF 8.0 18.0 32.0 21.0 19.9 . TOP CF 1.39 1.32 2.40 2.20 2.85			1.4379	1.4490	1.4560	1.4525	1.4500		
TISCESTIEL . CREMATE - TOF CF 8.0 18.0 32.0 21.0 19.9 . TOP CF 1.39 1.32 2.40 2.20 2.85	<b>.</b> .		ļ		1				
TISCESTIEL . CREMATE - TOF CF 8.0 18.0 32.0 21.0 19.9 . TOP CF 1.39 1.32 2.40 2.20 2.85				1	i		· ·		
TISCESTIEL . CREMATE - TOF CF 8.0 18.0 32.0 21.0 19.9 . TOP CF 1.39 1.32 2.40 2.20 2.85	LOUIDEL PA	10L 5	37.3	56.S	15.5	70.7	78.9		
, streewith 1.39 1.92 2.40 49.9 	TISCERTIES					<u> </u>	<u>†</u>		
* • • • • • • • • • • • • • • • • • • •	•	- 4	8.0	18.0	32.0	21.0	49.9		
	ſ:		E Contraction of the second se	1 .	4		ł		
	207			0.89	_1.03	0.97	1.15		
		-		-					
			-						
		- · •			-				

-

- A-68

<u> </u>	¥07#2	COGOLLAR IX - CERRO NCCRO	RO NCCRO	-			LV. 5C+PC. 79	
-			-	10011	MIDDLE DISTILLATES	·		
	1	401eh50	045-405	057-045	5*0.498	401-698	509-450	
13-5 CUT POWE	ÿ	201-143	245-310	(*(*0+C-	0/0:010	205-370		
TIELD CUT BANGE	š.	1.0 - 15.1	5.1 - 10.2	10.2 . 15.1	10.2 - 10.6	1.0 - 16.6 1	5.1 - 15.1	-
VIELO ON CINOC	Š,	14.1	5.1	4.9	8.8	17.6	10.0	
mo sour	ş	8.1	7.7	12.2	14.4	8.6		
Canvity	Ę	24.9	25.2	20, H	19.7	23.1	23.0	
A LAND DE LANDES	\$	o05		0.929	0.736	0.915	0,916	-
10144 W.L.V.	۲ ۲	2.17	2.15	2,30	<b>3,00</b>	- 2.41		
AMLINE POWF	•	Ξ	112	106	105	601	601	
CICLES MOCK		20	92	22	21	32	3	
CETANE MOET		a	*	25	36	5	8	
CLOUP POWT	•	n/C	N/C	N/C	w/C	2/2	и/с	
POUR POINT	•	-90	- 30	09-	- 50	-75		
HEFRACTIVE WOLE - 4/-C	•	1.4775	1.4757	1.4915	1.4970	J.482R	1.4340	
mEur n0, 10-174	1 5 1		-			-	4.01	
vikCOMPRCA.		-		-				
ANCHARG - KOPF	÷	5.65	5.30	12.70	15.50	7,70	6,00	
e 1361 ·	ş	2.91	2.00	5.40	06.9	3,70	Q2.'C	
arter -	2.	2.27	2.19	. 06'[	4.85	2.73	2.05	
- )/••	÷	1.70	1.63	2.70	3.20	2.00	2.05	
			ų		-			
* c			10.11	14.05	-		- - -	
12°			46,57	51.06	-	-		
a acce a	<u>.</u>	9	•	64	195	19	20	

YABLE 6

	10-25	COCOLLAR IX - CCRRO MEGRO	CCRRO MCCRO		-	•	LV.SC-PC.79	R :
	]		-		CAS OILS	-		
11 3 CUT POINT		450-757	128.621	056-150	5th-054	1 50-057	630- 412	
15 5 CUT POINT		034.(4(	400-455	015-555	510.575	343:455	242-535	57.5 27.5
	10	15 1 22.7	22.7 . 30.6	30.6 - 39.0	39.0 - 42.0	15.1 - 20.6	15.1 - 42.8	30.6 - 42.B
		7.6	7.9	٩.٩	3.0	15,5	27.7	12.2
TICLU ON CHUCH				1 24.8	40.9	22.9	59.0 1	<u>, , , , , , , , , , , , , , , , , , , </u>
				i	•	15.8	14.2	12.8
GANITY	Ì	10.0	0,0,0	0.01	500.0	0.761	1/6'0	0.931
SPECIFIC GRAVITY TOTAL MARDIE		52.5	3.28	5.2	2.35	3.27	3.20	3.29
			Vel			11	12	128
	1	. FC C		13.0	1,20	0 0	0.20	0.74
CON CANADA	4		0	1	3	•	8	ę
			1 2105	4943	1.5304	1:5145	1.5209	1.5278
		60Y6-1				5.20	-	
		50,0	0,15	0,24	0.27	0.09	0,17	×.
494460111							-	
Kin(uhtic - 100 P	+	40.0	270.0	1000.0	<u> </u>	117.0	0.01	
1.151	÷	5.61	(3.5	16n,0-	480.0	25.5	65.0	70.3
1111	÷	8,5	26.4	72.5	17.0	14.5.	5°2	0.29
		5.1	11.6	20.0	\$3.0	7.0	15.0	74,0
						-	-	
*67415								
a Jack of the	*** . **		-			•		
	41, 784					-		
inder								
A.R.		10.01	18,09	18,04	18.04	10.23	-	10.06
-						6 C 01		1 5A.07

•

(060,411 = (T60 MG0         (100,101 = (T60 MG0          (T60 MG0	-	·	-	-	TABLE	LE A			- - -	•
Current         r         Sign         Sign <th< th=""><th>-</th><th>- -</th><th>. COGOLLAR IX .</th><th>CERRO NECRO</th><th></th><th></th><th>ł</th><th>LV. 5C-PC, 79</th><th>]</th><th></th></th<>	-	- -	. COGOLLAR IX .	CERRO NECRO			ł	LV. 5C-PC, 79	]	
Cut nemt $t_{11}$ $t_{12}$ $t_{11}$ $t_{12}$ $t_{11}$ $t_{12}$				-	Ū.	IDUA .	-			
Convertion         Convertion <thconvertintet< th="">         Convertintet         Conv</thconvertintet<>	13 5 CUT FOWE	;;;	• 26 2/3	. <b></b>	752.	151	•015 •074	+546		
Office         Contract         Contract <thcontract< th="">         Contract         <t< td=""><td>10142 W 41114</td><td></td><td>34.9</td><td></td><td></td><td>69.4</td><td>61.0</td><td>57.2</td><td></td><td></td></t<></thcontract<>	10142 W 41114		34.9			69.4	61.0	57.2		
A. Martine         Y. (1)         4.01         4.01         4.01         4.01         4.01         4.01         4.01         4.01         4.01         4.01         4.01         4.01         4.01         4.01         4.01         4.01         4.01         4.01         4.01         4.01         4.01         4.01         4.01         4.01         4.01         4.01         4.01         4.01         4.01         4.01         4.01         4.01         4.01         4.01         4.01         4.01         4.01         4.01         4.01         4.01         4.01         4.01         4.01         4.01         4.01         4.01         4.01         4.01         4.01         4.01         4.01         4.01         4.01         4.01         4.01         4.01         4.01         4.01         4.01         4.01         4.01         4.01         4.01         4.01         4.01         4.01         4.01         4.01         4.01         4.01         4.01         4.01         4.01         4.01         4.01         4.01         4.01         4.01         4.01         4.01         4.01         4.01         4.01         4.01         4.01         4.01         4.01         4.01         4.01         4.01	CBAVITY SPECIFIC GRAVITY	1	5.4		1,041	040°1	. 1.055	1.062		
Consolut $v_1 \cdot v_1$ $0.59$ $0.61$ $0.64$ $0.75$ $23.5$ $23.5$ $23.5$ $23.5$ $23.5$ $23.5$ $23.5$ $23.5$ $23.5$ $23.5$ $23.5$ $23.5$ $23.5$ $23.5$ $23.5$ $23.5$ $23.5$ $23.5$ $23.5$ $23.5$ $23.5$ $23.5$ $23.5$ $23.5$ $23.5$ $23.5$ $23.5$ $23.5$ $23.5$ $23.5$ $23.5$ $23.5$ $23.5$ $23.5$ $23.5$ $23.5$ $23.5$ $23.5$ $23.5$ $23.5$ $23.5$ $23.5$ $23.5$ $23.5$ $23.5$ $23.5$ $23.5$ $23.5$ $23.5$ $23.5$ $23.5$ $23.5$ $23.5$ $23.5$ $23.5$ $23.5$ $23.5$ $23.5$ $23.5$ $23.5$ $23.5$ $23.5$ $23.5$ $23.5$ $23.5$ meaning $z_1$ $z_2$	TOTAL WARDS			-	4,10	4.17	4, 26	۳. ۲.		
Refer $v_1$ , $v_1$ $0.59$ $0.61$ $0.70$ $0.70$ $0.81$ $0.82$ Pressure $3.24$ $3.24$ $2.4120$ $2.4120$ $2.4120$ $2.4120$ $2.4120$ $2.4120$ $2.4120$ $2.4120$ $2.4120$ $2.4120$ $2.4120$ $2.4120$ $2.4120$ $2.4120$ $2.4120$ $2.4120$ $2.4120$ $2.4120$ $2.4120$ $2.4120$ $2.4120$ $2.4120$ $2.4120$ $2.4120$ $2.4120$ $2.4120$ $2.4120$ $2.4120$ $2.4120$ $2.4120$ $2.4120$ $2.4120$ $2.4120$ $2.4120$ $2.4120$ $2.4120$ $2.4120$ $2.4120$ $2.4120$ $2.4120$ $2.4120$ $2.4120$ $2.4120$ $2.4112$ $2.4112$ $2.4112$ $2.4112$ $2.4112$ $2.4112$ $2.4112$ $2.4112$ $2.4112$ $2.4112$ $2.4112$ $2.4112$ $2.4112$ $2.4112$ $2.4112$ $2.4112$ $2.4112$ $2.4112$ $2.4112$ $2.4112$ $2.4112$ $2.4112$ $2.4112$ $2.4112$	CON CANON	* *	17.6	1.01	18,6	20.5	23.6	25.7	-	:
Find, Tealure         J.24         Y-120	HIT #066 H	· · · · · · · · · · · · · · · · · · ·	0.59	0.61	0.64	0.73	0.70	0,82		<u> </u>
ensure         e         > > 120         > > 120         > > 120         > > 120         > > 120         > > 120         > > 120         > > 120         > > 120         > > > > > > > > > > > > > > > > > > >	+CUT HO. (0444)	sites t	3.24			-				
Outreet         Contrast	POUT FORT	*	21.7	7 -120		27.7g	62144			
275°     40     504     104     504     7951       200°     10     210     210     504     7951     2091       200°     10     210     210     203     617     1917     2091       200°     10     210     293     617     1917     2091       200°     495     616     616     636       Ath     17     122     13     13       Ath     17     13     13     13       Ath     17     13     13     13       Ath     12     13     13     13       Ath     13     13     13     25.93       Ath     13     13     13     25.93	VISCONTIEN SIMPARTIC = 230"F	÷	2945	4150	2100		_	-		<u>.</u>
JOOF         164         214         203         617         1817         2091           JOUT VIG Live         0014         1         2         2         2         3         6         7         1817         2091           ALL         2         0         4495         6         7         1817         2091         2091           ALL         2         2         495         5         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10	275-5	ł	000	410	292	1345	4546	7951		
Aburt vrkt.     Lase     Posts     2100     4495       Akh     Extent     210     137       Akh     Extent     120     117       Akh     120     117     122       Akh     120     117     122       Akh     13     13     13       Akh     13     14     15       Akh     18     13     14       Akh     18     13     12	3404E	2	164	214	£62	617	1917	1602		-
Auric vice.     Forus     2100     4495       Auric vice.     Forus     2100     4495       Annohum     Er Forus     210     495       Annohum     Er Forus     210     117       Annohum     Er Forus     210     117       Annohum     Er Forus     117     122       Annohum     Er Forus     120     117       Annohum     Er Forus     120     120 <td< td=""><td>- </td><td></td><td>·</td><td></td><td></td><td></td><td>-</td><td>-</td><td></td><td></td></td<>	- 		·				-	-		
Owner vick.     Lase     Poils     2100     4495       Also     unteres     2100     4495     117       Also     unteres     434     472     494       Also     unteres     120     117     122       Also     unteres     120     117     123       Also     unteres     12     13     14       Also     unteres     18,55     13     15       Also     unteres     18,76     16,76     13						i !		-	· · · · · · · · · · · · · · · · · · ·	
Ak1     Image: Second sec	ABSOLUTE VISC 100 F			4495	-					
Annohum ur reu (334 472 494 546 616 Katt ur reu 120 117 122 135 153 Annohum ur reu 120 117 122 135 153 Annohum ur reu 12 13 14 135 15 Annohum ur reu 13 14 135 Annohum 13 15 15 Annohum 13 15 15 Annohum 13 15 Annoh	HEYALS				]				•           	
Cast.     vr. enu     120     117     122     135     151       Om     vr. enu     12     11     12     15     17       Om     vr. enu     12     13     13     17       Om     vr. enu     12.5     13     16       Vr. enu     18.76     10.76     17		744 17	484	472	494	546	616	654		
www.wr.enu     12     13     14     15     17       wr.enu     19,55     19,55     10,76     11     11			120	117	122	135	(\$)	. 162		
	indur		12	3		35	1	£		
10.76		. A	<b>19, 55</b> .					25,93		-
	12.8	-	10.76					24.17		<u>-</u>
	-	 - -	:				-			

-

### TABLE 9

WHE DISTILLATES

CESOLUE II - CE220 3(520

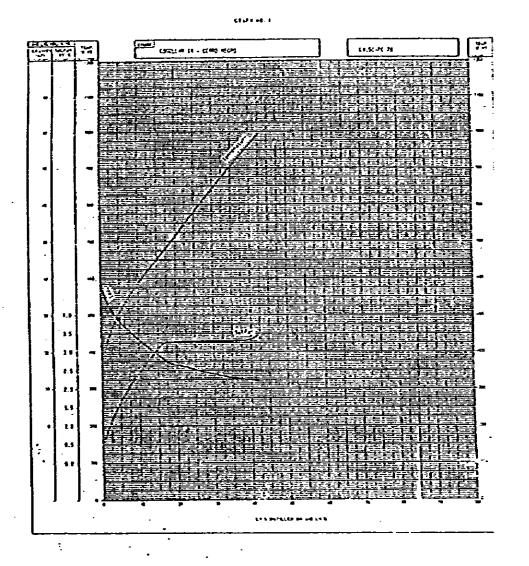
LY.5C-20.79

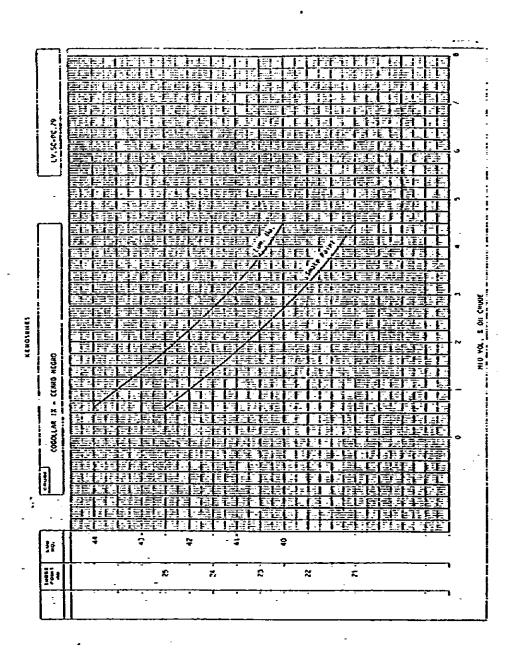
-		-		
		· [	7427 LU14	32745 <u>5</u> 1916
Ę	53 C/T 20%T	4 17	779-093	
ī	5/3 C/1 20×1	< 11	e12-335	
- {	TELD ON ANGE	ail	25.9 - 42.8	
Ì	718L9 OF CP.478	70_1	17.3	
i	43.70x1	~~·	33.9	
Í	CHAR	161.	13.8	
	SPECIPC STUNTI	54.14	0.977	
	TOTAL BLERA	<b>17, 4</b>	3.35	
	()H (J)50H	ət, 5	0.50	
-	ANKINE PONT	4	125	
	REFERENCE SCELLENC		1.5245	
	NEUT. HO. G-ITA		5.57	
ĺ	withich .	17.4	0.25	
	POR PONT	*	49	
	TAL COGENT	TL \$		
	THE WELTING FORT	· 4		1
	VISCOSITY POER		-115	1
	VISCORT ES			1
1	INGUITC + 10FF	c\$r	1224	1
	4 130-F	esr	130.0	
	* D7#	. 651	\$3.0	
	4 110-5	e\$e	-23.5	
	SUTTOUT OPPERSAULT REF	. stc	5669.5	
	3 I 197	. 550	113.6	1

PREME TO SUSCEPTION	
7-8-01 13 0-542-0182 5844353 0	डाल ज
PEDICE (71	
847A8	l l
	- 71
844 570CK	-115-
Ś	- 53
ท	- 2
S)	27
VISCOUTY GLANTY CONTINUE	
*F-en Ez-del -b-el Ca	

.

Table as this table as these as not fees pick and the importions go not fore, not constrained


•


			-		-			-		ſ	
CHUOE	COGOLLAR I	COGOLLAR IX - CERRO NEGRO	vegro		, ,	•	LV.SC-PC.79	:.79		]	
			Г	LAICHT REDL	STRAICHT REDUCED ASPHALTS	۲					
INSPECTION	VIELO V.SL. 7 CN CRUOS	15 5 CUT POINT F VT	7 LASH - CLEVELAND OPEN CUP	SORT POINT	764678A1 104	VISCOSITY POISES	VISCOSITY XINEMATIC	SPECIFIC CRAVITY AO 40	TFOT Ouct 0 60°F d	)T. Pēr dida	Spot Test
SAMPLES INSPECTED							1				
*0. 1	81.4	+869	-	123	53	495	448	1.038			
20. 2	8.68	590+	560	66	214	684	188	1.027			
C .0v :	84.9	650+		111	66	2114	311	1.033	ss.	1.49	
. 20. 4	87.6	617+		104	154	1102	233	1.030	65	2.56	NEG.
20. S							-	-			
STANDARD GRADES (From Covelered Devo)	retored Dota)		-	-	•		-				ſ
00C 08:	0.68	+009		101	061	850	210	1.028			
15 100	84.5	656+		112	50	2250	340	1.034			
1 10 ZO	82.0			121	65	4200	415	1.037			
*C~10	879	615+		103	162	1000	225	1.029	!		
×<->	85.1	643+		110	. 102	2000	300	1.033			
				-				-			

A-73

•

TABLE 10



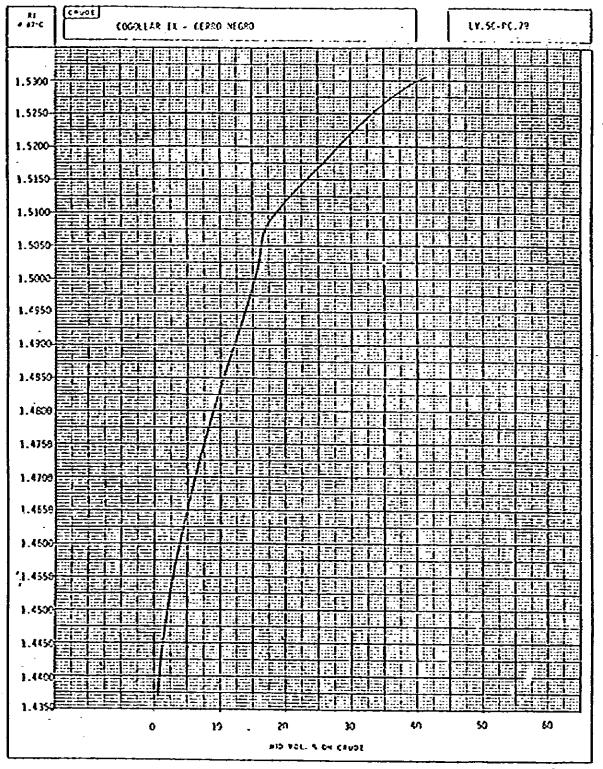


1991	79gt		ĺ.		( <b>4</b> .	<u>ee</u> j	<b>C</b> 0	au	AL	17 -	. (1	133	K									J			•				L.	(	1.5	C-H	с.н			
148 -	 - -		10. A 10		the part of the state			1	1.1. 1.1.1							i state management of the state of the	4.1. Priv. 196						is filling was		1. I. I. I.					A THE PARTY OF						
130 -					inti nt	27.154			83,944								1.11		1.144.14	,			F		1 11	Ī				Martine 14 Mart	ŀ					
150					A THE PARTY			<b>n</b>	- IK)	5	-					-	Ĩ.	len, ind	1.1			ł	ŀ				: <u>}</u>		1	- I.			etter almedia			
510 ¹			in the second		Little in Secto	i traditi			6								1		1.1.1	a ha ha					-	-		-								
200				111111	1-10-1		n na stran i dan s			1.1.1.1		-	-	11/11		į		11. 11	1.1	IN DI				10.10-1		111-111									-	
.										1.101.1		t.					1123	11111							1 14 1	وبالمحديقة المراس				E E			H III	والسالي ا		Ì
	- 64				[ Minuf				13-13(1) 1 ³⁴¹ 15-11 1 ¹⁻¹	11.41	16.000					1.1.1	the state of the	111111	njuKhi	in Church						i a cimut	÷ 111						Att Hant Plant		91. - As	і́.
•	-	1	parallar Tabutan		1. 14141			3 I -									÷		4 E					ł		11					1		ľ			
-	21		Ł.Ł					1				_	j				ŀ								Ł			-1			-		ł			
-	•				ŧ			ł		ľ		-		-	i	-			F		F	Í				-				-			.]		_	-
	·71		臣		ļ	interior " uniterior				ł		111					ł	ľ																1.111		ļ
Į			B		ł	1				F		ij							ţ		1.11		4	1		ł	i de fan de gegener i de de			ł				1	111	
	60	-		ł		- 11				ł			HILL R										4		ł	ŀ	1 1	11			1	hallen				
	30	1					51. 11 H H H H	4			F			<b>HICH</b>		1		1	F			100	1			Ę	1.461			and the set of the state of the set of the set of the set						E 5
ł	J .,93	J	<u>ہ</u>	5. 1	-Li	Г. •	ij			45	12	E		Ę	5	54) 11		手で	46	1		K K	4	E	ŧ.		E n			TH N	4	牛	<u> i fr</u>	₹£	Ē	

•

-

• •


-

A-76

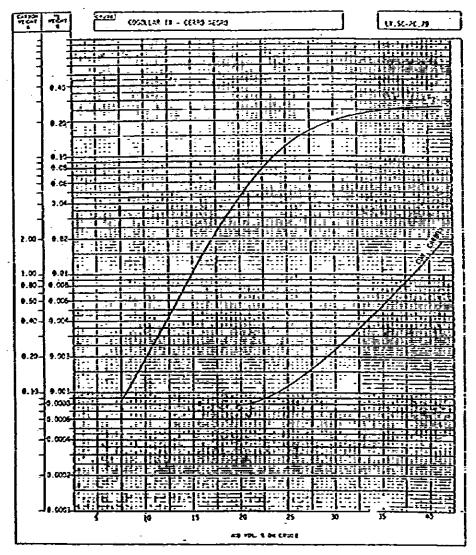
.

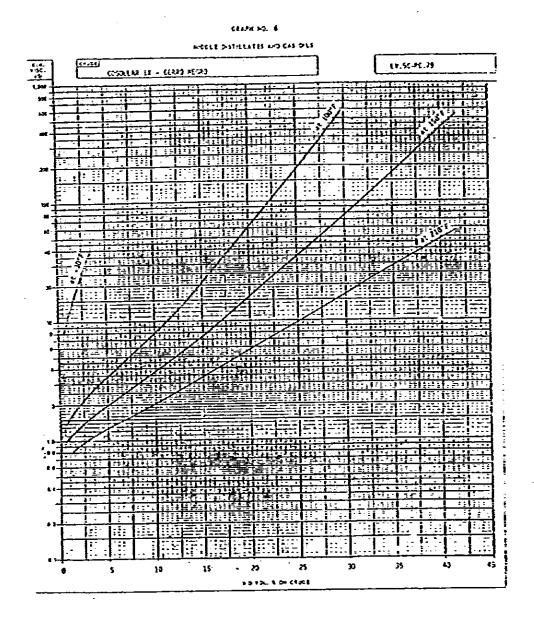
#### GRAPH NO. 4

#### MIDDLE DISTILLATES AND GAS DIES

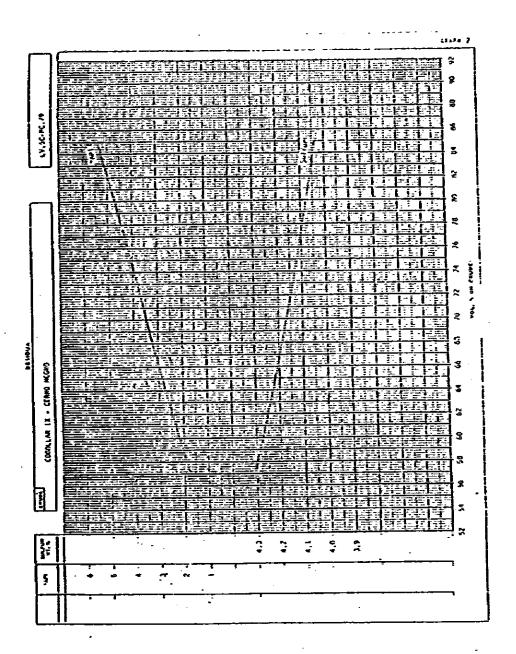


. . . . . .


. .


#### 683PX 10-5

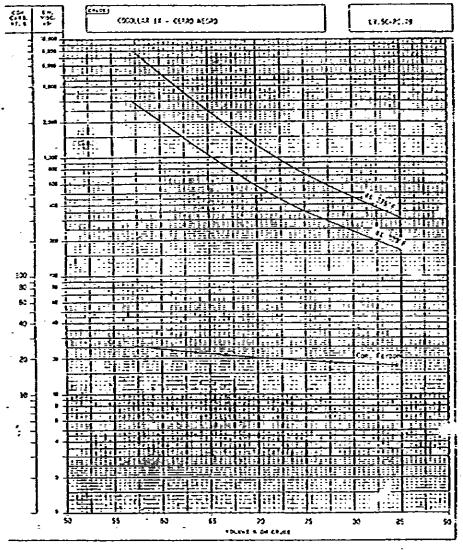
#### MODILE DISTRUCTES AND GAS DILS

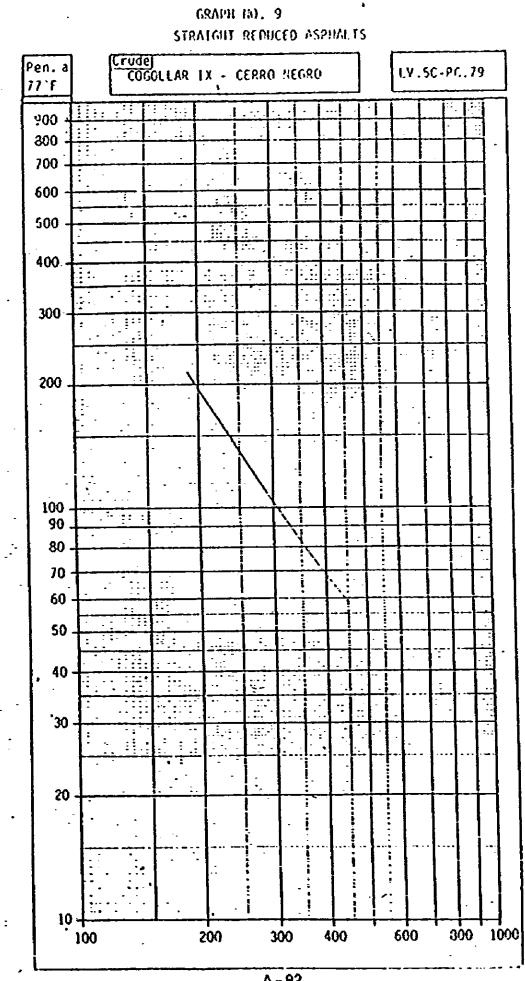

•

-





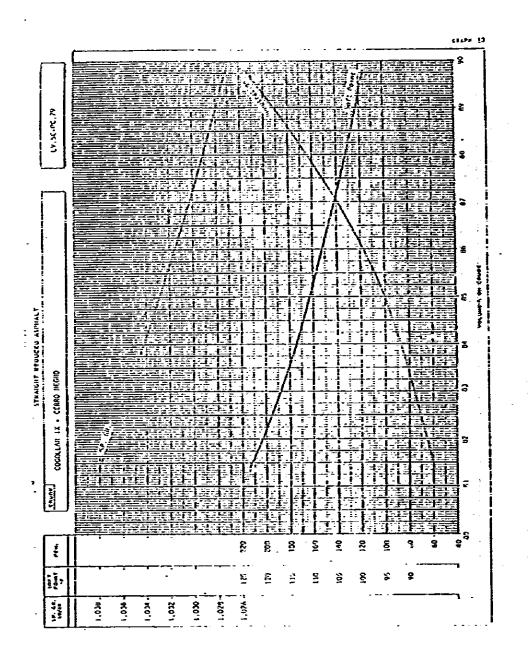

A - 79



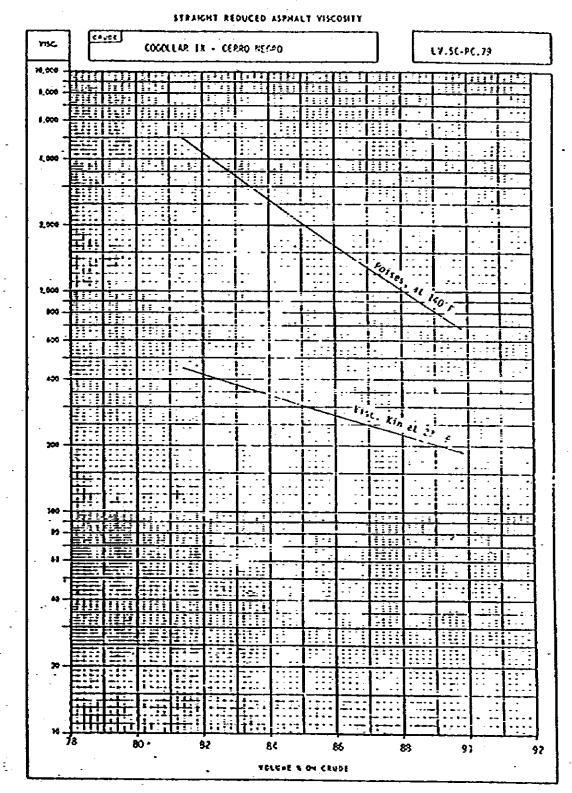



.









•

A-82

.

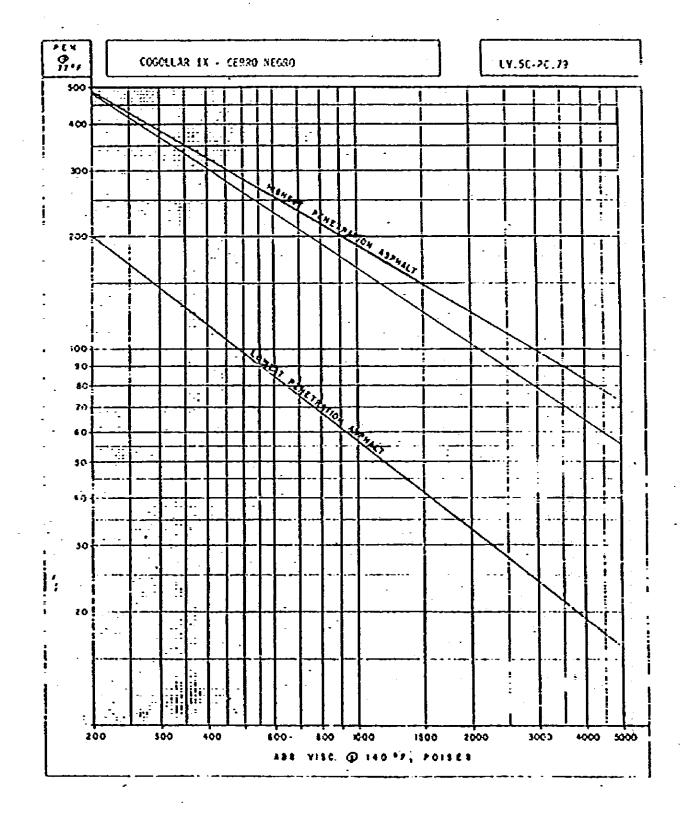


GRAPH NO. 11



.

ĩ


A - 84

٩

#### 51.6K H4AK

1

## STRAIGHT REDUCED ASPHALT VISCOSTY - PENETRATION RELATIONSHIP AND VISCOSITY GRADE IDENTIFICATION *



CRUDE INSPECTION PA	RIMARY OATA
---------------------	-------------

•

ŧ

.

. .

.

COGOLL	ARI	x - c	ERR	5 NE(	580						i	د۲.5	ALPONT	s. 19	
ONPONENT				<u>ן</u>			· [		Ē	* * · ·	-		ľ	1	
48. NO.														ł	
UT. NO.	•	2	3	4	5	6	٦	8	9	· 0		ļ	<b>_</b>	<u> </u>	<u> </u>
EMP, INITIAL, OF,	:3	401	478	455	482	509	535	563 -	<b>2</b> 40	517			1	1	
SINAL OF	491	478	455	487	509	325	563	590	617	550					
VIELD, VOL N	0,12	0.74	1.03	1.18	1.20	i.57	1.64	1.78	222	272	<b>.</b> .				
TIELO AANGE, INT. YOL N	0.25	0.97	1.71	2.79	3.92	5.12	6.69	8.33	10,11	12.33	_		ŀ		
(FIN. VOL. N)	0.97	1.11	2.74	3.92	5.12	6.69	8.33	10.11	12.33	15.05	-		1		
NO POINT, VOL 3	0.61	1.34	2.23	3.33	4.52	5.91	7.51	9.22	11.22	13.69	•				
PRESSURE.	- 10	10	10	10		10	- 10	- 10	19	50					
REFLUX RATIO USED	21	21	21	2.1	 2:1	21	21	21	21	21				- I	
	15-5	15/5	. 15/5	 15/5	 15/5	155	15'5	15.5	15.5	155	-				ļ
RI @ 67*C	14370				1.4625	14186	14745	14805	1.987	1.5932					
GRAVITY PAR		34.1	32.3	30.5	28.9	26.9	25.5	23.8	22.1	20.3	-				•
SULFUR, WT IN						-		1	1	2.928			1		
ANILINE PT OF	118	119	• • •	118		114	·   · - · ·	110	1	105		ľ			
FREEZE PT. "F	l		<u> </u>				ŀ								
LOUD PT. *F	sle		5/c	<u>}- ` −</u>	\$/c	• • • • • •	5/2	·	s/c					1.	
POUR PT. *F	K-100	┨╴──	4100		4-100	,	-90		-70						
•••••		- •				<b> </b> -	4 000			0.006	ļ				-
NITROGEN WT. N			<u></u>	· ·	·	· .						-		ł	
PARAFFINS VOLT	1											•			
NAPTH, VOLL ARON, FIA VOLL			100	i õ	lõi		<b>.</b>		ŀ	- <u> </u> -	-	- I .	-	-	
VISC. KINEMATIC	· 5 -	1				100.	2 -					-			
Q-30 °F			20.7			-					]				
@100*F	-	1.75		2.56	]	3.9		1.0		15,43	1		1		
Q150*E	0.98	1.18		· -	1.85	-	· ·	3.40		6.10				ł	
N 71005		0.8	4	1.03	<u> </u>	1.3	비	1.88	\$ <b> </b>	2.91					
SHOKE PT. ma	25		23	ŀ	21			-		•	<u>.</u>	]			
LUN 80.	44	1	42	1	40								l		ſ

		<u>r</u> × -	ce.	10 2	IE GA	ວິ				• ·	-	45347 61-1	лейсат ГС - 7	4. 4. 13	-
CHPCAENT			i	<u> </u>				Ľ-		i :	i			L	17
AL			1	1		İ				}	1				
ut. N\$	я	-4		F a	- 13	н. Н			- <b>a</b>	13	1 11	Γ'n.	- 13		l ·
Evel and the off	కు	575	551	75	:53	म	326	m	rs:	340	314	350	न्ध		1
JA31, 98,	\$P1	551	735	712	775	<b>K4</b>	сц.	551	287	<b>.</b>	350	354	*		
810,70L N			<u> </u>	2.10	<u>:</u>		•	L÷.		1	10	1.50	2.34		
ELO PANCE, SV1. VOL. M			- : _	26	-		<b>L</b>		_			1 .	<del>6</del> 2.91		
JAVALN			L	<u> </u>			·		· · · · ·	t i		ŧ	12.75		[ .
apost, vol. s	15.71	17.96	1940	21.15	2351	2531	28.19	2274	1217	34.7	37.36	31.14	41.58		1.
14.2214 A 35 4 191	4			1		1	! !	- 22 -		! i -	!	! {			<u> </u>
EFLON ATCOUSED	4		1	5			<u> </u>	5005 (			<u> </u>	<u> </u>	1		
dt. vez. type							• : ∃1••	ו אכ גדז	u –	• 	• 	•			Ι,
	_							i		ľ			Į		'
ALVIT AN	11.5	17.1	16.4	16.1	15.5	14.7	14.3	14.0	13.3	13.0	12.6	12,4	12.1		
A.FUR. NT. 5	1251	3.252	3.2:4	0.232	3,283	3.235	3.290	3.212	3.217	3.21	3.217	3.34	3.910		ŀ
NOLONE 27_15	106		ш		118		121		126	ĺ	128	<b>.</b>	134		
<b>7.4</b> .75	-40		-20		0		15		30		45		50		
				-			·							-	
64. 00262 \$ \$79 <u>0</u>		15681		L5135		15179	i	1.523		1516		15218	1530		
ADCEN, AT A			0.04			a14			a23			0.26	0.27		
CLARING MES		•	0.08		0.10		0.17		0.32		0.86		1.70		
5C CASHATC	25.0		56.0	96.7		2233		6024	-			-	•	•	ľ
<b>#</b> 150 * <i>F</i>			15.1	21.0		39.8	-	15.0	1020	1100		339.0	5:40	· _ ·	
\$11359.	3.65		5.50	6.90		10.52		K.93	21.10	23.0		452	59.9		
							•								f -
							• -				•	-	• •	-	-
		1	<u> </u>				••	-				-	••	•	
		Ī	_	·	-				_						ř
	1	†				-			-		-	-			
•••••••		34-78	~~~,	<u>-</u>				ا مد ا	i I	i i			,		ł

.

-

-

-

******

. . . .

A - 87 -

# ISLIDITA CRUDE INSPECTION PRIVARY DATA INCOM

.

.

	FREL FLORUCTS ASSAT		1486 LC \$ 14 C
The Cocourt of	- CERRO NEGRO		14147 2(1-0 3-4 3
فربا واجر ويعتقونه وماشييو			LY. 50-26. 29
co-co-(1)	╺┟╴╴╉╌╍╂╸┈╃╌╾╏╸╼╬╾╾╡╼╾	-  -	} • } · ]
U1 V2			
CIT VA			
		<u>, .</u>	
			<b>↓↓</b> ↓
FALL #	10 15		
VELO. VOL 1 4.1519	13 14 08		
	12 0.97	<b>;:</b>	
المنام يشتم من الم	3515.05	┝╴╴┠╍╼╸	╋╼╋━┛╷╽
جا بإب مدنيه م	╶╍╂╍╍╸┞┈╺╼╉╼╼╌╂╼╌╼╤╼╸╍╄╼╾╬╶╾╼		<mark>╋╺╍┿╼</mark> ╶┩╍╺╸ <mark>╎</mark>
401001.10LA 3.051	.10[8.0]		
CALVERY, FUR 10.9	3.1 25.0	-   -	
		<u> </u>	
**************************************	31(2/(2		
COLOR, SATISFE			
SENT SO. 0.86	GI		
115 VISC est 2-19 '1	╺╍╁╶╍╏╶╺╂╼╼╂╼╼┟╍╼║╌╴┟╌╸╴	· ·	·} ·
	╴╼╽┍╴╴┨╼╼╾╄╍╸╾╄╍╍╸┝╍╍╾╀╸╾╇╼╾╴	·	·┝╴╼┥╴╺┞╴╶┨
eva 4. 2.37	· [5.6]		
•151 <b>7</b> . 1.52	291		
PT-17. 1.02	1.09		
HF. ACEN & D 32 13555	1476S	<b>-</b>	╊╾ <u>┨╼</u> ╋╺╻┝╴╶
الحمالية المحترم المشار		╬─┼─	┨╼╏═╌╏╌╴╎
successor int 21		<b>. .</b> .	
- asistons, 5, 5/c	5/2		
INTERCOLAS			
POLE PORT, 14. (-10)	-85	·	
MONATICE -	··· · · · · · · · · · · · · · · · · ·	·┝╌╌╋╌╸	· • • • • • • • • • • • • • • • • • • •
NOL N			
YOL 1			
WIDENEL VOL 1			
	<mark>╌╹╂╌╍╴╂╺╴┋╌╌╺╂</mark> ╶╶╴	·   •-]	╶╊╍╋╍╉━╞╾
••••••••••••••••••••••••••••••••••••••	━┩╍╼╢ <u>╺</u> ╞╼╍╂╼╴╿┊╵ <b>╘</b> ┨╴╴	<b>.</b>	
TANK ING IN MARKET	·		

A-88

•

R1855			FUEL	5960	ects .	15511						11. A. A. A.	17.2.7	i ve	
COGOL	LAR	1X -	- CE	RRO	NEC	10		-				1.1	56.	76.	19
CONSAENT	,				Ļ.	Ļ	ļ			•	<u> </u>		1		[.]
UL 14				<u> </u>		1		ļ		L			Į	1.	
C/T, N2	—				1		i		Ţ				<b>[</b>		ĺ
rest, satisf, et.	155	551	<b>77</b> 3				ŧ.		L					1	Ī
	351	195	995		Γ				Γ				[		
meta vol s	15,53	12.11	17.3				Ī	ſ	İ -		ĺ.		1		
VECTIONE ENT. VOL N	15.05	346	2135				T						· · ·		
• · · · · · · · · · · · · · · · · · · ·	30.69	7235	9235	<b> </b>	1-	i	1	<u>,</u>		[ ]	<b>[</b>	Γ.	1		1
1070AT, YOL 8	22.85	5.10	33.35	1		i	1	1	1	ī -	1 -		Ì	1	1
	1 -			<b>i</b>	1	†·-	1		1 -	I	-		Ì		Ţ
CRAVITY, JAPA	15.6	13.Ĩ	13.4	÷	T	+	1	1-					İ.,		ļ
•	1 - I	31273	1	÷• • •	<u>-</u>	-1	╁╼╾		<b>}</b> ·		i i	i .	í		
ASLENE 21. "F	· ·	-	126	4	-	·	+-	┨-	i -			- ⁻	ŀ		İ
fold *F		-	40	t	╈	-	╆	+	1	· -					Ì
SIN VISC est	1	-	1224	ŀ	1	· [	<del> </del>	h				-			
<u>3150 'F</u>		2313	1	<b></b>			+			ŀ		<b>.</b> .			Ī
	1	F-		<u>.</u>		╉─	;	+					+ -	· -	
2175 '5	1	20.20	53.0	÷				╪╴	╉	· ·		<u> </u>			-
0210 17		33.33		<u> </u>	÷			+-		·			╉	+-	ŀ
TOTAL	1336	· <u> </u>	<del>.</del>	<u>}                                    </u>	-			+	<b>+</b>	<b>↓</b>			<u>+</u> _	. <b> </b>	1.
jaterseen ve Basic			020	'	+		1			· - · ·	· <b> </b> ,	-	4		
SITFOCES VI	1						4	<u> </u>	┨	<b> </b>		<u> </u>	<b>.</b>	1.	1
CUES VI 1				<b>_</b>				<b>_</b>		<b> </b>					1
(CA CULS VI 1		4			. <b> </b>		<b></b>		.		<b> </b>	<b>1</b>	<b>L</b> .		ŀ
SENT 50.	5.93		<u>5.4</u>	א 	Ļ	4_	1	<u> </u>	<u> </u>	<b></b>		1_		1.	
1308 290	ļ	0.43		_		Ļ	<u> </u> _	┞	L				<u>L.</u>		Ĺ
FICLE ppa	_	0.19		<u> </u>	1_	1_			L						
TRUSIN PP		0.91	<b> </b> .	$L_{-}$									Ī		Τ
VAL SEA OF 1		<u> </u> :		<u>  ·</u>							1		Γ	1	Γ
		1			1			1	T	1	1	Ť.	1	1	1-

.

.

.

27531 100300	· LA R	ıx.	- 0	ERRO	NEG	RO			-			istar LY.	121011 56 - 7	2.19	5 * 5	
CONTAINT	` <u>₽</u> `			**	35	L i	-		· -		<b> </b> -		-			
<u>urva</u>	-															
	52			<u> </u>	52	1	<u> </u>								· ·	
NEND 713, 99	439	752	351	150												
11210 POL. L				I	ſ.	1	-	<b>.</b>	·		L .	-				
(INT. NOC 1)	505	2.13	<b>11</b>	311	9215				_				-			
(11. 10. 2)	100	100	100	100	100										ļ	
CUNITY 121	55	4.4	3.4	2.3	1.8	ļ	]									
OTICES VIT							1					-				
NEWT NO.	3.21															
SELECE ST.	4.04	4.10	4.17	4.26	4.31	1			i							
SAL VIL	12.55		•		25.1				ļ		i				-	
THE JEL	18.74				254		Ì	ĺ								
POLE 2007, 19	125	>125	<b>&gt;ns</b>	>25	215		1				1	ſ				_
WINCGER WT.	063		-		0.82	ļ					ļ	i i				
COR CUTACIL MES	1.59	18.47	20.9	235	25.0	, ·	ľ	÷.	- I		1	1		ľ		
- SCET PT. "F								1			İ	1		1		
15 ( )) '1				i -			Ļ					ļ				
ALS TISC POISES @.1635		-							1							
NCLEL PM LT.	97	-			162		-		ļ					ŀ		
- HOLINY	12				18	Ŧ			1 -			1		[		
TARADIEN SPA	484		1		15			ļ					ļ	1		
155 CHEVATC # 100 49.		-	-		1	'l -		- 1	Ì	1.		ļ		1		
\$ 172 °F.		-		-		1		·				1				
\$150 °r		-	1		1					1.			<b>i</b> .		ł	
ŧυs 'ε		• -	ł		ŀ	-		·					ļ	1		
\$110 °r	2.945	310/	,	-		-		-		1			1		]	
•• ••	1 - I			5,454	-	.  -	ł	-	ŀ			1			İ	
* 213 · # 1491				- Barris - Maria						1	Į	ļ	ļ		1	
				1121	f[48]	11	E	:	1	1	ŧ	i	1	Ł	:	

.

--

-

A-90

· · · · ·

. .

. .

.

.

# ATTACHMENT-4

JICA-1

## THE UPGRADING PROJECT

OF ORINOCO HEAVY OIL IN THE REPUBLIC OF VENEZUELA

--- GENERAL DESCRIPTION ---

# 1. Venezuelan Government's Request

- (1) In April 1978, the Venezuelan Government officially requested the technical cooperation of Japan in a letter of the Minister of Energy and Mines. The requested cooperation mainly consists in conducting studies and evaluations, from a neutral point of view, of various proposals to the Government made on an industry basis, on which the Government has difficulties in making judgements.
- (2) In accordance with the request, the Japan International Cooperation Agency (hereinafter referred to as "JICA") sent a preliminary survey team to Venezuela in late August 1978 to discuss how to develop the cooperation with the Venezuelan Government. At the discussion, Venezuela requested the Japanese team to conduct a feasibility study on processes for upgrading the Orinoco heavy oil.
- (3) The content of the request is as follows:
  - (a) Purposes of Feasibility Study

It is planned to produce the Orinoco heavy crude around 1985, for which a plant of the 100,000 – 120,000 BPSD class is expected to be built to upgrade and refine the crude. A feasibility study is to be made to judge what process could be best used for the plan, making examinations on mainly the processes proposed by three groups of Japan. (-1 -) A-91

# (b) Prerequisites of Feasibility Study

Properties of the Orinoco heavy crude and estimated grade of the product synthetic crude shall be presented. By-products from the upgrading shall be used to generate steam for use in crude production and energy needed for upgrading.

(c) Scope of Peasibility Study

The feasibility study excludes the survey on financing, the marketing of the synthetic crude, the infrastructure and site selection of the plant.

(d) Supply of Data

All data necessary for the feasibility study shall be provided by Venezuela.

#### 2. Procedures for the Peasibility Study

JICA studied the approach based on the report of the preliminary survey team, and determined to conduct the feasibility study following the procedures below. In March 1979, Japan notified the Venezuelan Government of this decision via the Japanese Embassy in Venezuela, confirming the basic prerequisites and requesting the supply of crude samples. Procedures for the feasibility study are as follows:

(1) Objectives of Peasibility Study

This study is intended to make clear the respective features of the three processes proposed by three groups of Japan for the upgrading of the heavy crude to be produced in the Orinoco Heavy Crude Development Project located on the north side of the River Orinoco, and to provide data necessary for the selection of a process adequate for a commercial plant.

# (- 2 -) A-92

(2) Scope of Peasibility Study

Technical and economic studies will be conducted with limitations to the plant facilities for the upgrading of the crude:

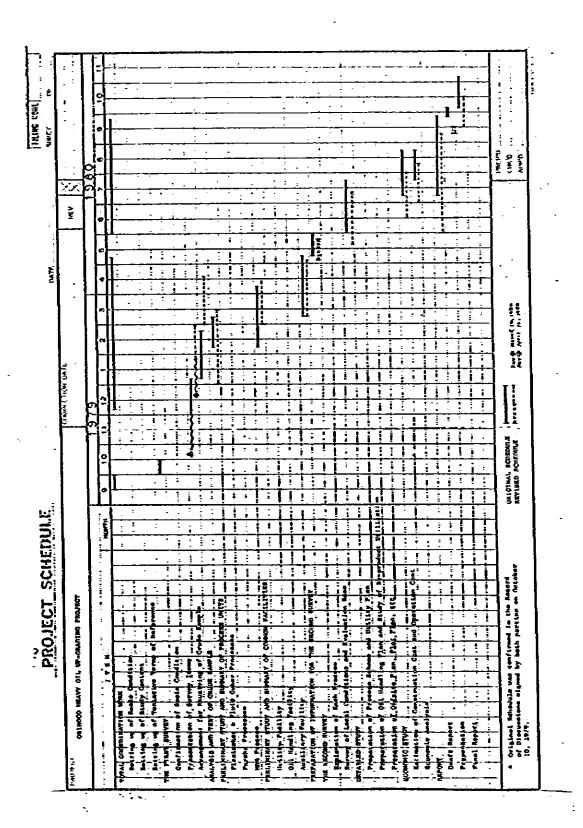
- (3) Procedures for Execution
  - (a) Conduct a preliminary study based on basic prerequisites and crude samples.
  - (b) After determining the terms of reference for the feasibility study, send a F/S survey team to Venezuela to hold discussions and to do a field survey.
  - (c) Perform work in Japan and prepare a report.
- (4) Dispatch of First Survey Team

With regard to the confirmation of the basic prerequistites and the requested supply of the crude samples, it had been determined that the execution schedule was to be somewhat modified to accelerate the progress of the study. That is, the First Survey Team was dispatched to Venezuela on October, 1979 to do the following work:

- (1) To confirm the basic prerequisites
- (2) To obtain the crude samples
- (3) To discuss the preliminary T/R which is prepared as a result of the preliminary survey
- (5) Record of Discussions

As a result of the First Survey, the Record of Discussions as per attached was signed by both parties on October 10, 1979.

(- 3 - A-93


## 3. Project Execution Shedule and Execution Manner

Based on the above Record of Discussions, the preliminary study was conducted in Japan. The project execution schedule and execution manner, however, have been revised as per Fig. 1.

And the Second Survey Team was dispatched to Venezuela to accomplish the following objectives.

- (1) To report the results of the preliminary study.
- (2) To confirm the additional basic conditions for the feasibility study.
- (3) To confirm the basic conditions for the economic study on the feasibility study.
- (4) To collect information and data on construction planning for the feasibility study.

#### (- 4 -) A-94



JICA-2

#### THE SECOND SURVEY TEAM

THE UPGRADING PROJECT

#### OF ORINOCO HEAVY OIL IN THE REPUBLIC OF VENEZUELA

#### 1. Objectives

The Japanese Second Survey Team sent by the Japan International Cooperation Agency (hereinafter referred to as "JICA") is expected to accomplish the following scope of work by exchanging views with the authorities concerned in the Republic of Venezuela, so as to meet the real needs of Venezuela:

- (1) To report the results of the preliminary study
- (2) To confirm the additional basic conditions for the feasibility study
- (3) To confirm the basic conditions for the economic study on the feasibility study.
- (4) To collect information and data on construction planning for the feasibility study.

#### 2. Method of Approach by the Second Survey Team

The survey team will visit the government organization and other authorities concerned. The survey team will be organized by two groups as Group-A and Group-B. Group-A will accomplish (1), (2) and (3) on the scope of work in the above Section 1. Upon completion of the survey, the survey team will prepare minutes of meetings, which are to be signed and exchanged with the Venezuelan side. Group-B will accomplish (4) on the scope of work in the above Section 1.

#### 3. Members of the Second Survey Team

The members of the Second Survey Team are organized as the attached "MEMBERS LIST".

Group A

Leader: Mr. Sen'ichi BIROSE Mr. Kei'ichi GOTOH Dr. Koji UKEGAWA Mr. Hideo YASUKI Mr. Yasuhisa HOSOYA Mr. Terutada TSUKAGOSHI

#### Group B

Leader :	Mr. Senichi HIROSE
	Mr. Yasuhisa HOSOYA
	Mr. Isao USVI
	Mr. Akimasa IIMURA

Messrs. BIROSE and HOSOYA will join Group B after completion of Group A's work.

## 4. Schedule of the Second Survey

Schedule for the second survey is planned tentatively as indicated in the attached Fig. 2.

This tentative schedule is to be further developed and adjusted through discussions with you so as to accomplish the objectives of the survey most efficiently. Your cooperation in this regard will be much appreciated.

# 5. Survey Items

(1) Result of Preliminary Study

Please refer to the attached "<u>The Report of</u> <u>Preliminary Study</u>". (1)

(- 2 -) A-97

- (2) Additional Basic Conditions for Peasibility Study Please refer to the attached "<u>Confirmation Items of</u> <u>Basis of Peasibility Study</u>". (2)
- (3) Basic Conditions for Economic Study on Feasibility Study

Please refer to the attached "<u>Confirmation Items of</u> <u>Basis of Economic Study</u>".

(4) Information and Data on Construction Planning Please refer to the attached "Information and Data on Construction Planning". (4)

Date	Group A	Group B
Apr. 3 (Sat.)	Tokyo PA 800	New York
4 (Suc.)	New York	Caracas
5 (Mon.)		sy of Japan
6 (Tue.)	Meeting with MEM	
7 (¥ed.)		Interview and Hearing at Instituto Nacional de Puertos (INP) Formiconi, SADE REVACO etc.
8 (Thu.)	> Meeting with PETROVEN/ INTEVEP/LAGOVEN	Caracas Pto. Ordaz
9 (Fri.)	J	General Survey of Orinoco Area
10 (Sat.)	Preparation of R/D	Visit to Pt. Ordaz Port Authority
11 (Sun.)	α	General Survey by Helicopter
12 (Kon.)	• <b>B</b> • •	Visit to Vandam Guayana Factory
13 (Toe.)	Submission of R/D	Pto. Ordaz —— Pto. Guanta
14 (Wed.)	Caracas New York PA 218	Visit to Pto. Guanta Port Authority
15 (Thu.)	1	Pto. Guanta-+Caracas-+Maracaibo
16 (Fri.)	PA 801 Tokyo	Visit to AFCA Factory
17 (Sat.)		Karacaibo —— Caracas
18 (Sun.		Preparation of Sruvey Report
19 (Mon.		Collection of Data and Information at Caracas
20 (Tue.	>	Preparation of Survey Report
_ 21 (Ved.	>	Caracas New York PA 218
22 (Thu.	.)	Nev York PA 801
23 (Fri.		tokyo

# ATTACH MENT TO JICA-2

# (1)

#### THE REPORT OF PRELIMINARY STUDY

#### FOR

#### THE UPGRADING PROJECT

#### OF

#### ORINOCO HEAVY OIL

#### R

#### THE REPUBLIC OF VENEZUELA

APRIL 1980

#### JAPAN INTERNATIONAL COOPERATION AGENCY

#### CONTENTS

- 1. INTRODUCTION
- 2. STUDY BASES
- 3. PROCESS FLOW SCHEME
- 4. BY-PRODUCT UTILIZATION SCHEME
- 5. UTILITY AND OFFSITE FLOW SCHEME
- 6. SUMMARY

#### ATTACEMENT

ł

ANALYSIS OF SAMPLE CRUDE OIL

-

#### 1. INTRODUCTION

Based on the basic conditions for preparing the scheme of the Orinoco Beavy Crude Oil Upgrading Refinery as determined in October 1979 between MEM and the JICA survey team, JICA promptly consulted three licensors and started studying flow schemes on the identical bases.

This is an interim report on the present development of the study on the Japanese side.

This report consists of the following iteas:

- 1) Study Bases
- 2) Process Flow Scheme
- 3) By-product Utilization Scheme
- 4) Utility and Offsite Flow Scheme
- 5) Summary

JICA sincerely hopes that the results of our study will prove useful to Venezuela, and for this purpose we wish to obtain various advice and further information from the Venezuelan side.

We will prepare a final report by adding further studies on construction cost, operating expenses, and general economic evaluations.

#### 2. STUDY BASES

The basic conditions of the preliminary study has been established as a survey result of the first survey team which was sent to Venezuela in October 1979. The main items are summarized on the "Record of Discussions" attached to the JICA-1.

#### 3. PROCESS FLOW SCHEME

(1) Cases of process scheme

The following three (3) cases of process scheme are described in the preliminary study.

CASE	MAIN UPGRADING PROCESS	PROPOSER
Bureka Case	Eureka Process	Kureha Chemical Industry Co., Ltd. and the group
Fluid Coker Case	Pluid Coker Process	Toa Oll Co., Ltd. and the group
SDA Case	M-DS Process	Maruzen Oil Co., Étd. and the group

Flexicoking is a residuum conversion process which integrates coke gasification with conventional fluid coking.

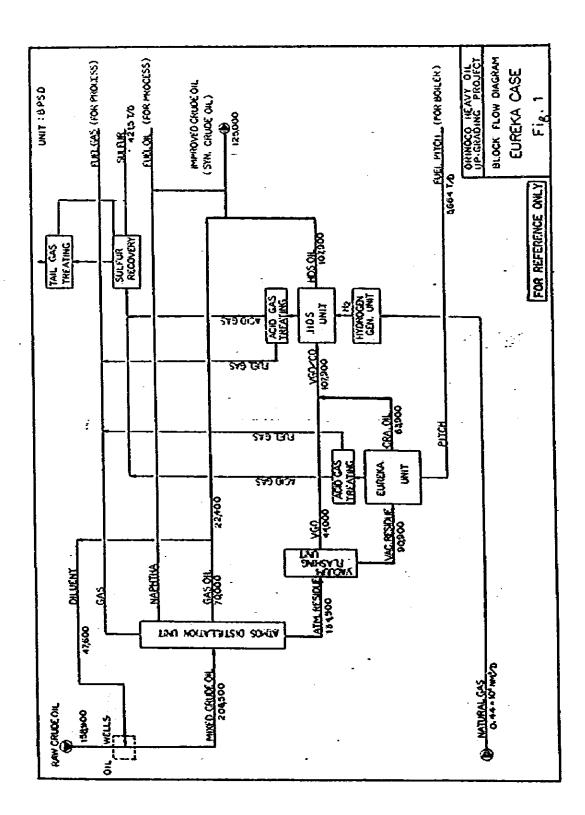
Energy loss is borne in course of the coke gasification and coke firing boiler is available, therefore, the fluid coker process is applied in the study.

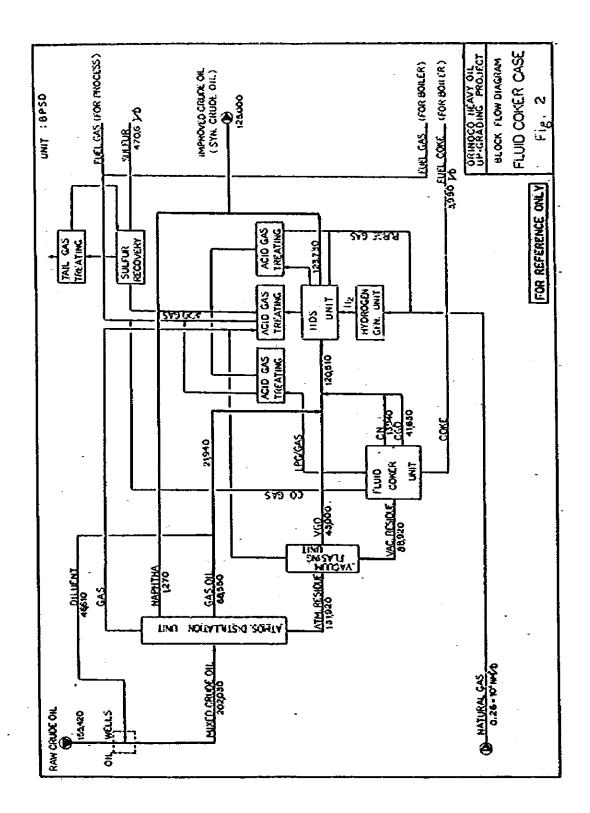
(2) Refinery Scheme

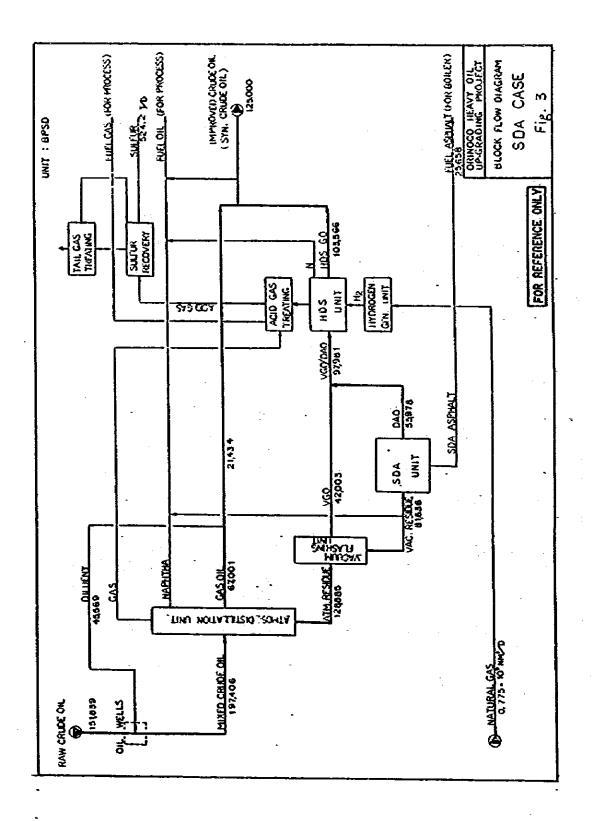
The block flow diagrams of refinery scheme for each case are shown in Fig. 1, Fig. 2 and Fig. 3. (Slide 1, 2 and 3)

# ATTACHMENT TO JICA-2

Ø.


# COMPARISON OF FLUIDCORER VS FLEXICORER


ITEN	FLUEDCOKER	FLEXICORER
1. Sy-produce	Coke	Low calorie gas
	<ul> <li>a) Earding is complicated compared with gas.</li> </ul>	a) Eardling is easy.
	<ol> <li>Storage is possible.</li> <li>(easy and practical)</li> </ol>	<ul> <li>b) Storage is impossible. (not practical)</li> </ul>
2. Investment cost	<ul> <li>a) Reactor has 2 trains due to limitation of aechanical design. (as 90,000 BPSD capacity</li> <li>b) Main equipment</li> </ul>	<ul> <li>a) Gasifier has 3 trains due to limitation of mechanical design.</li> <li>(as 90,000 BPSD capacity)</li> <li>b) Main equipment</li> </ul>
	Reactor .	Reactor
	Burter	Eeater
5	Air blever	Gasifier
		Eester overhead system
		Air blover
	<ul> <li>c) Sequired amount of equipment is small.</li> </ul>	c) Required ancunt of equipment is large.
	d) investment cost is low.	<li>d) Investment cost far bigher.</li>
3. Coke Bandling	a) Main equipment	a) Main equipment
	Coke silo for start-up and shutdown	Coke silo for star-up and sbutdown
	Coke silo for fuel	Treating facility for
	Coke grinder for fuel	entrained coke from heater overhead system
	b) Required items of equip ment are many.	-
	c) lovestment cost is higher.	


	a) Flue gas desulfurization	a) Wet system desulfurization
4. Cesulfurization facility for	at boiler	of low calorie gas
by-product combustion	b) Electric precipitator	<li>b) No flue gas desulfurization at boiler</li>
		c) No electric precipitator
S, Operation	a) Time for start-up and shutdown is short.	a) fine for start-up and sbutdown is twice that required for fluid coker. (operators are twice too)
	b) Operation is easy	b) Operation is complicated.
	c) Boiler is not directly affected by fluctuation of coker operation	c) Boiler is directly affected by fluctuation of coher operation as the coher gas is burned in the boiler.
6. Maintenance	-	a) Much cost and time for maintenance are required compared with floidcoker
7. Plot	a) Coke Eardling area is required.	a) Gasifier area is required.
	. (Total	ly same area)
8. Feel efficiency of by-product	a) Total fuel efficiency of the Fluidcoke is higher than that of the Flexicoker gas.	a) Fuel loss for gasification of coke is such.
	-	

Ø

<u>A</u>-105







# The material balance of each refinery scheme is summarized in Table 1. (Slide 4)

-	CASE	Eureka	Fluid Coker	SDA
		BPSD	BPSD	BPSD
1.	Peed		0100	5105
	Raw Crude Oil	158,900	155,420	151,839
	Diluent Gas Oil	47,600	46,610	45,567
	Mixed Crude Oil	206,500	202,030	197,406
	Natural Gas	0.44 x 10 ⁶ Nm ³ /SD	0.26 x 10 ⁶ Na ³ /SD	0.755 x 10 ⁶ Nm ³ /SD
3.	Product			
	Improved Crude Oil (Synthetic Crude Oil)	125,000	125,000	125,000
	Sulfur	421.5 T/SD	470.6 T/SD	524.2 T/SD
	Diluent Gas Oil	47,600	46,610	45,567
	Excess By-product Fuel (for Boiler)		3,990 T/SD (coke) 11,220 FOB (Fuel Gas)	(4,772 T/SD) 25,658 (SDA Asphalt)
	Fuel for process Furnace	as required	as required	as required

# Table 1 Material Balance of Process Scheme

(- 3 -) A-109

.

•

The properties of the improved crude oil are shown in Table 2. (Slide 5)

CASE	Eureka	Pluid Coker	SDA
1. Feed (Raw Crude Oil)			
'API	8.5	8.5	8.5
Sulfur, wt%	3.67	3.67	3.67
2. Product (Improved Crude Oil)			-
°API	25.8	25.4	25.0
Sulfur, wt%	1.0	0.91	0.4
Component, volt			
Ś.R. Naphtha	-	1.0	1 -
S.R. LGO	17.2	-	17.1
HDS (VGO/CO)	82.8	-	-
HDS (LGO/VGO/ CN/CGO)		99.0	-
EDS (VGO/DAO)	-	-	82.9

# Table 2. Properties of Improved Crude Oil

The installed capacity of the process units is summarized in Table 3 for each refinery scheme. (Slide 6)

Table 3. Installed Capacities of Process Unit

Unit	Bureka	Fluid Coker	SDA
	BPSD	BPSD	BPSD
Atmospheric Distillation	206,500	202,000	197,400
Vacuum Plashing (2 trains)	134,900	132,900	128,900
Eureka	90,900	-	-
Fluid Coker (2 trains)	-	89,000	-
SDA	. –	-	81,600
HDS	107,900	120,500	98,000
Bydrögen Generation (2 trains)	1.93 x 10 ⁶	1.77 x 10 ⁶	3.1 x 10 ⁶
<b>1</b>	на ³ /SD	H ₂ Nm ³ /SD	Nm ³ /SD
Acid Gas Treating (2 trains)	H ₂ S 447.8 T/SD	828 500 T/SD	H ₂ S 557 T/SD
Sulfur Recovery (2 trains)	421.5 T/D ^S	470.6 T/SD S	524.2 T/SD ^S
Tail Gas Treating (2 trains)	16.5 T/SD ^S	18.7 <b>T</b> /SD ^S	21.0 T/SD ^S

#### 4. BY-PRODUCT UTILIZATION SCHEME

The by-product utilization scheme is the facilities which utilize the by-products as fuel oil for boiler. The following facilities are included in this scheme:

- storage of by-products
- transportation of by-products
- preparation of by-products fed to boilers
- boilers
- flue gas desulfurization
- hydrogen generation
- sulfur recovery
- (1) Basic conditions
  - (a) 100 kg/cm²G, 500°C steam of 1,000 T/H is produced for electric generation.

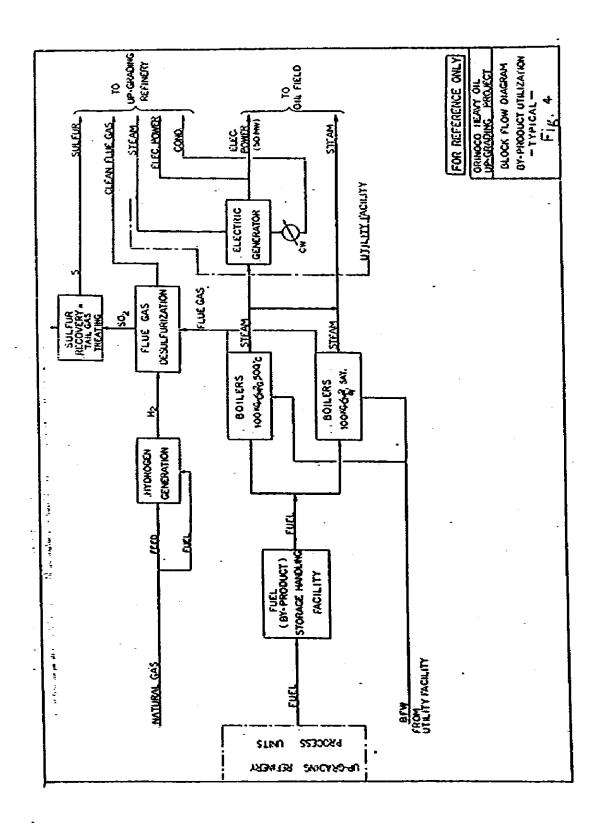
100 kg/ $ca^2G$ , saturate steam is also produced by the remaining fuel.

- (b) The boilers are operated 330 days/year, the same as the upgrading refinery.
- (c) The total boiler capacities are determined by the fuel quantities which are produced as by-product in the upgrading refinery.

The produced steam from the boilers and the required steam for production of raw crude oil to be charged in the upgrading refinery are not balanced.

(d) 50 MW electric power is supplied from the upgrading refinery for the production of raw crude oil.

(- 6 -) A-112


- (e) It is assumed that natural gases are used for feed and fuel of hydrogen generation unit in the flue gas desulfurization facility.
- (f) Boiler feed waters for the above boilers are supplied from the utility facility of the upgrading refinery.
   Bowever, condensates are not recovered from the injection steam in the oil field.
- (2) Boiler scheme

The boiler scheme for by-product utilization is shown in Fig. 4. <u>(Slide 7)</u> The material balance is shown in Tablel 4. <u>(Slide 8)</u>

CASE	EIREKA	FLUID COKER	SDA
1. Feed			
(1) By-product Fuel	5,664 T/SD (pitch)	3,990 T/SD (coke) 11,220 POE BPSD (Fuel Gas)	25,658 BPSD (SDA Asphalt)
(2) Boiler Feed Water	2,550 T/H	2,450 T/H	2,210 T/H
(3) Natural Gas	0.34 x 10 ⁶ Nm ³ /SD	0.22 x 10 ⁶ Nm ³ /SD	0.27 x 10 ⁶ Nm ³ /SD
2. Product			
(1) 100 kg/cm ² G, 500°C Steam	1,000 T/H	1,000 T/H	1,000 T/H
100 kg/cm ² G, Sat, Steam	1,800 T/H	1,880 T/H	1,750 T/H
(2) Sulfur	351 T/SD	230 <b>T/</b> SD	277 <b>t</b> /SD

#### Table 4. Boiler Balance

(- 7 -) A-113



A -114

# The installed capacity of the boiler facilities is summarized in Table 5. (Slide 9)

CASE	EUREKA	FLUID COKER	SDA
By-product Fuel Storage & Handling Facility	5,664 T/SD (pitch)	3,990 T/SD (coke)	25,658 BPSD (SDA Asphalt)
Boiler			
100 kg/cm ² G, 500°C.	500 T/H x 2	500 T/H x 2	500 T/H x 2
100 kg/cm ² G, SAT	530 т/н х 4	540 т/н х 4	440 T/H x 4
Bydrogen Generation	0.80 x 10 ⁶ (H ₂ ) Nma ³ /D	0.52 x 10 ⁶ (8 ₂ ) Nm ³ /D	0.63 x 10 ⁶ (H ₂ ) Nm ³ /D
Plue Gas Desul- furization	351 <b>T/</b> SD (S)	230 T/SD (S)	277 <b>T/</b> SD {S}
Sulfur Recovery	351 <b>T/</b> SD (S)	230 <b>T/</b> SD (S)	277 T/SD (S)

#### Table 5. Installed Capacities of Boiler Facilities

#### 5. UTILITY AND OFFSITE FLOW SCHEME

The study of utility and offsite flow scheme is now proceeding.

The facilities of the scheme are organized by utility facilities, storage facilities and general auxiliary facilities which are required for smooth operation of the process units and boiler facilities.

The utility and offsite scheme of each process scheme is different each other. However, a typical scheme for common to each case is described in this part.

(- 8 -) A-115

#### (1) Utility Pacilities

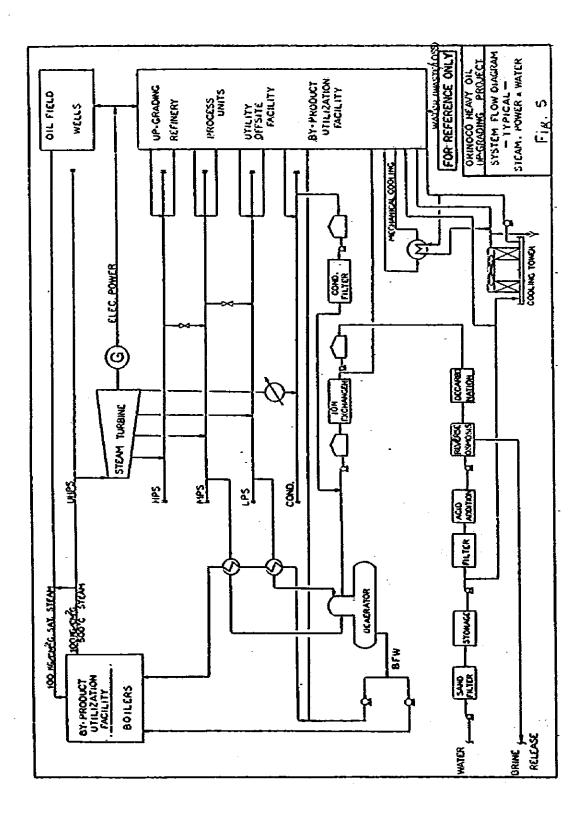
The following facilities are studied, besides the steam generation facility (boilers) included in the by-product utilization scheme:

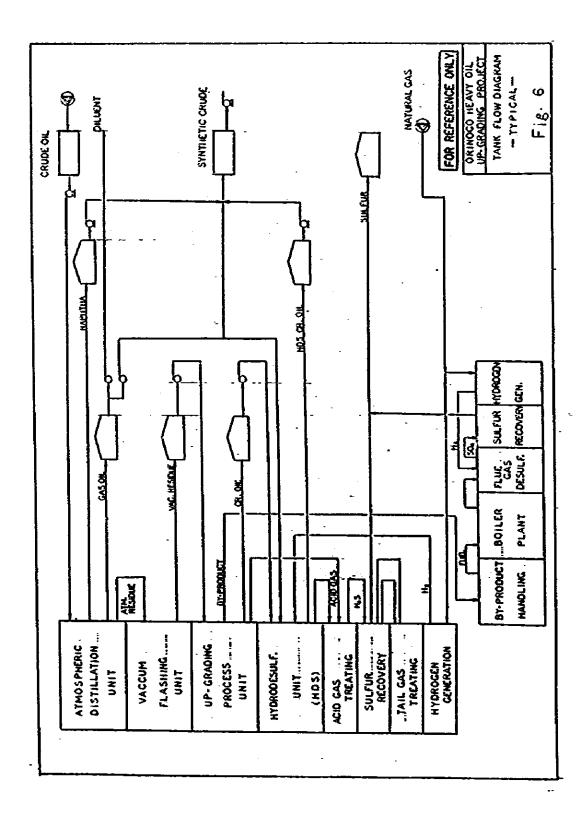
Steam distribution facility in the refinery Electric power generation and distribution facilities Industrial water intake and desalination facilities Water treatment facilities Condensate recovery facility Sanitary water facility Cooling water facility

Fuel facility

Air facility

Inert gas facility


The system flow of steam, power and water is shown in Fig. 5. (Slide 10)


The capacity of each facility is not fixed now, but the following intake and output of utilities are assumed in the upgrading refinery:

Industrial Water	5,000 T/H
Brine	1,000 T/H
Steam for well injection	2,000 T/H
Power for Oil production	50 MW

#### (2) Offsite facility

The tank flow diagram of the upgrading refinery is shown in Fig. 6. (Slide 11)





The storage capacity of the upgrading refinery is smaller than a conventional refinery for the following reasons:

- (a) The mixed crude oil before upgrading will be supplied anytime from the outside of the upgrading refinery.
- (b) The improved crude oil will be transported by pipeline to storage tanks which will be installed at the port for export tanker.

The following facilities are studied besides the tank facility:

Waste water treating facility

Waste material treating facility

Control room

Communication facility

Lighting facility

Roads and fences

Flare stack and blow down facility

Stack for flue gases

Natural gas intake facility

Products loading facility

Buildings

Administration office

Maintenance shop

Warehouse

Laboratory

Main station and sub-stations

Fire station

Dressing room and resting room

Guardhouse

Clinic

Dining room

Other facilities

6. SUMMARY

The main flow of the upgrading refinery organized by the above process units, by-product utilization facilities and utility and offsite facilities is summarized in Fig. 7 (Slide 12)

Main input flow

- (a) Mixed crude oil
- (b) Natural gas
- (c) Industrial Water

Main output flow

- (d) Improved crude oil
- (e) Sulfur
- (f) Steam
- (g) Blectric power
- (h) Waste Water and brine
- (i) Diluent oil

The flows are different on each case. The approximate average flow rates are as follows:

(a)	Mixed crude oil	200,000 BPSD
(b)	Natural gas	$0.5 - 1 \times 10^6 \text{ Nm}^3/\text{D}$
<b>(c)</b>	Industrial Water	4,000 - 5,000 T/H
(d)	Improved crude oil	125,000 BPSD
(e)	Sulfur	700 - 800 T/D
(f)	Steam	2,000 T/H

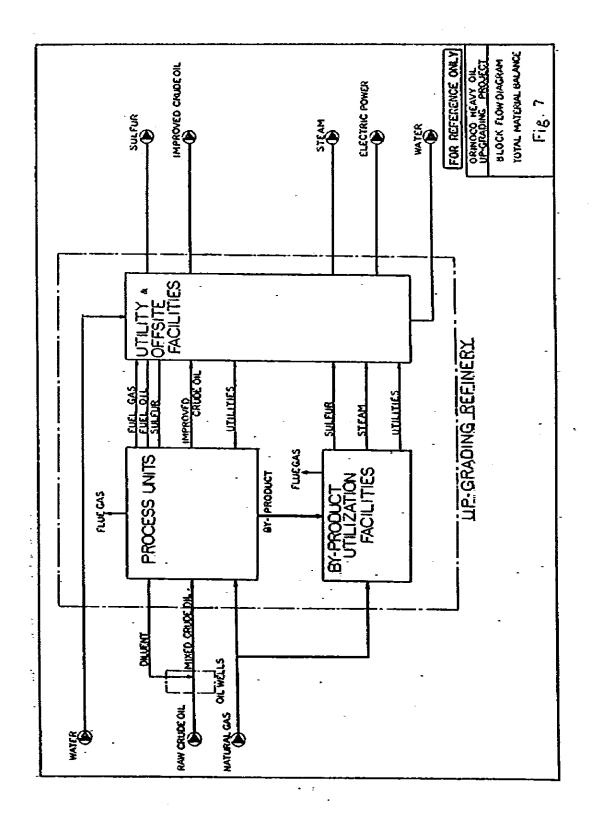
Dressing room and resting room Guardhouse Clinic Dining room Other facilities

# 6. SUMMARY

The main flow of the upgrading refinery organized by the above process units, by-product utilization facilities and utility and offsite facilities is summarized in Fig. 7 (Slide 12)

Kain input flow

- (a) Mixed crude oil
- (b) Natural gas
- (c) Industrial Water


#### Main output flow

. .

- (d) Improved crude oil
- (e) Sulfur
- (f) Steam
- (g) Blectric power
- (h) Waste Water and brine
- (i) Diluent oil

The flows are different on each case. The approximate average flow rates are as follows:

(a)	Nixed crude oil	200,000 BPSD
(b)	Natural gas	$0.5 - 1 \times 10^6 \text{ Nm}^3/D$
(c)	Industrial Water	4,000 - 5,000 T/D
(ð)	Improved crude oil	125,000 BPSD
(e)	Sulfur	700 - 800 T/D
(£)	Steam	2,000 T/H



(g)	Blectric power	50 MW .
(h) *	Waste water and brine	2,000 - 3,000 T/H
(i)	Diluent Oil	45,000 BPSD

* Loss of water is included.

These figures are big values, so that basis of study should be discussed and reconfirmed before the detailed study.

The following few points shall be specially discussed to develop a realistic scheme:

.

Well water supply Brine release Sulfur loading

## ATTACHMENT

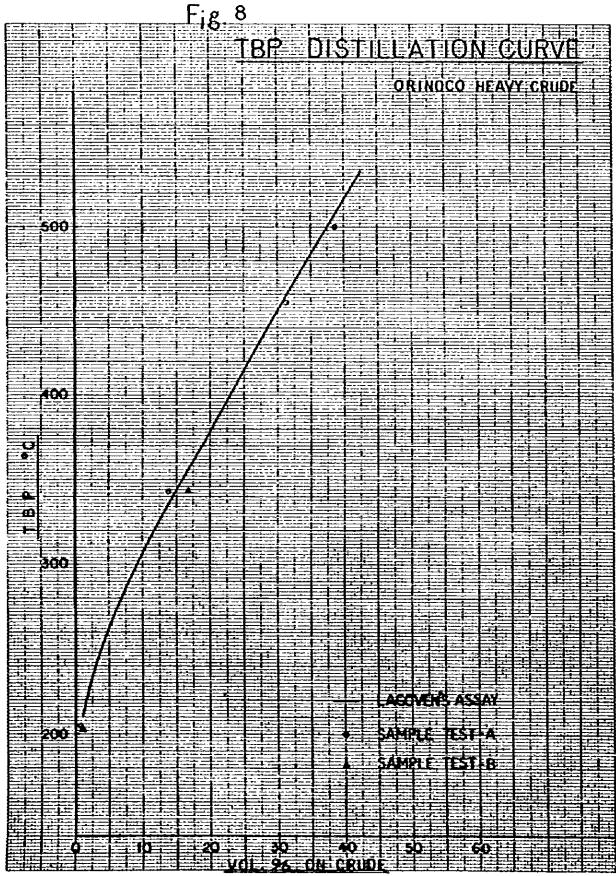

ANALYSIS OF SAMPLE CRUDE OIL

Fig. 8	TBP Distillation Curve	(Stide 13)

Table-6 Comparison of Main Analysis Data (Slide 14)

-

.



JIS A4 180×250%

7

SECTED NO. 401 C

TABLE-6 COMPARISON OF MAIN ANALYSIS DATA

•

ANALYSIS

_

-

٠

						:					
<b>ـ</b> ـــ	CANDER	11.0 11.1	TPCT	Sp. Cr	Sulfur	a CC CC	2	TN	Ash	Na	Asphalten
	SALIT LE	AU1+ 54+	1027	(15/4°C)	wt.Z	WC.X	w.ppm	w.ppm	WC.2	w.ppm	WE.4
<b>.</b>		I	V	i.019	3.75	18.1	420	110	0.451	840	i
	Crude Oil	6	A	1.0199	3.87	17.0	OTE	120	0.246	1,100	8
		1	ASSAY	110.1	.3.67	13.3	392	84	8	3	1
 ^		650°F+	×	1.038	3.96	20.60	480	110	0.46	850	I
- 126	Long Residue	650°F+	A	1.0353	4.12	20.40	410	130	0.264	1,002	13.3
<b></b>		650°F+	ASSAY	1.034	4.04	17.6	484	120	1	1	1
- <b>L</b>		930°F+	V	1.062	4.21	29.50	660	160	0.609	1,190	I
		950°F+	R	1.0514	4.26		I	170	0.357	1,500	I
	Shore Realdue	830°F+	U	1.045	4.14	22.79	559	148	0.3	1,190	ł
		43°266	ASSAY	1.062	4.32	25.7	654	162	1	F	1
<del></del>		950°F ⁺	ASSAY	1.058	4.26	23.6	616	153	ŀ	ł	3
		851°Ft	ASSAY	1.049	4-17	20.5	546	135	-	1	1

.

A-126

.

. .

# AT TACH MENT TO JICA-2

CONFIRMATION ITEMS OF BASIS

OP

FEASIBILITY STUDY

FOR

### THE UPGRADING PROJECT

OF

ORINOCO HEAVY OIL

IN

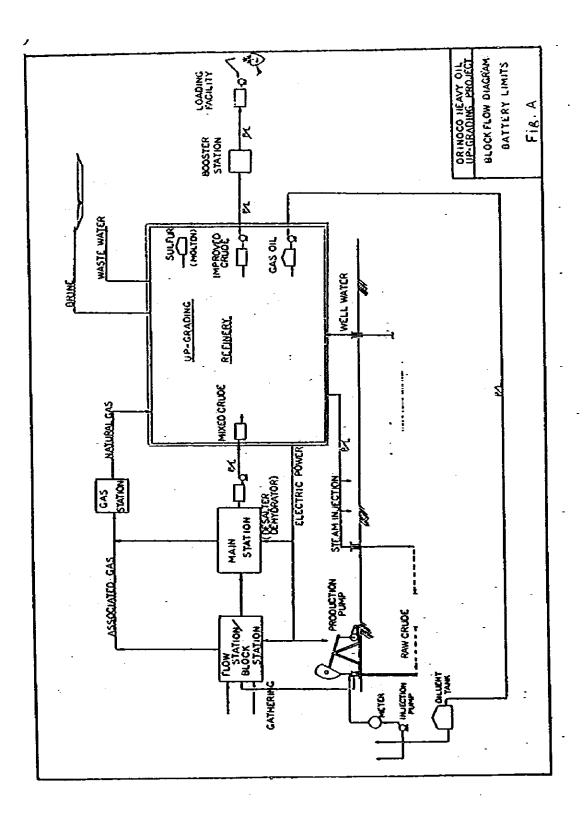
THE REPUBLIC OF VENEZUELA

### **APRIL 1980**

### JAPAN INTERNATIONAL COOPERATION AGENCY

 Battery limits of the upgrading refinery on the feasibility study (Please refer to the attached Fig. A)

As the feasibility study bases, the upgrading refinery fence is assumed as the battery limits of the following imput and output flows:


- (1) Feed oil: mixture of raw crude oil and diluent The feed oil is dehydrated and desalted in a main station after handling at oil production, gathering and block stations which are excluded from the scope of study. Storage of one week is considered.
- (2) Natural gas for feedstock of hydrogen generation.
- (3) Diluent (gas oil)
- (4) Industrial water
- (5) Product sulfur (molten type) Storage of one week production is considered in the fence.
- (6) Synthetic crude oil (Improved crude oil)
   Storage of one week production and loading pumps of
   40 kg/cm²G discharge pressure are considered in the fence.

Transmission pipeline, booster stations, storage tanks at the port and loading facilities are outside the scope of the study.

### (7) Steam

Surplus by-products are used as boiler fuel to produce ultra-high pressure steam.

(- 1 -) A-128



A-129

Surplus ultra-high pressure steam is exported for well injection.

(8) Blectric power

50 MW electric power is exported for well users.

(9) Waste water

Waste water and brine are discharged.

- 2. Data required
  - Properties, availability and supply conditions of natural gas.
  - (2) Properties, availability and supply conditions of industrial water.
- 3. Information required (Discussion iteas)
  - Difference of the data on the crude assay and sample oil

(Please refer to Table 6 and Fig. 8 in the report of preliminary study)

- (a) The preliminary study was conducted based on the crude assay.
- (2) Specification of improved oil
  - (a) Specifications of improved oil suggested by MEM are "API gravity and total sulfur content only. Bowever, in a certain case, it is difficut to keep sulfur content at 1.0 wt. percent when gravity is kept at 25 - 28 "API due to the features of the hydrodesulfurization process.

(- 2 -) A-130

- (b) May we understand the high sulfur light gas oil is mixed with the improved oil?
- (3) Sulfur
  - (a) More than 700 Ton/SD sulfur is produced in the refinery.
    Bow to transport the molten sulfur from the refinery to a port, and from a port to market?
    Maximum capacity of tanker for molten sulfur will be 2000 ton.
  - (b) Please kindly give us information on the prevailing restrictions on air pollution. Is it necessary to recover sulfur from the flue gas?
- (4) Desulfurization of boiler flue gas
  - (a) Molten sulfur production is applied on the preliminary study.
     Therefore, hydrogen generation and sulfur recovery units are included in the flue gas desulfurization facilities.
  - (b) Please kindly give us the following information:
    - (b-1) demand for sulfur compounds sulfur, sulfuric acid, sulfite, gypsum, .....
    - (b-2) availability and price of limestone, magnesium hydrooxide, silica, sand
    - (b-3) price of gypsum
- (5) Boiler feed water
  - (a) Since the oil well injection steam is not recovered as condensate, a large quantity of fresh water must be produced from underground water, which is assumed to be high in salt content.

. . . . . ...

- (b) For the production of fresh water, a reverse osmosis process is applied, because it is simple and is less expensive compared with other processes such as evaporation process.
- (c) Is there a possibility to recover water from the oil well?
- (d) Please kindly give us information on the fresh water production system presently used at the oil production field.
- (6) Waste water and brine
  - (a) Discharge point of waste water and brine
  - (b) Restrictions on water pollution
- (7) Operation of boiler and refinery
  - (a) Operation days of the refinery and boiler facilities are 330 days/year.
  - (b) Concerning the storage of boiler fuel, the following should be taken into consideration:
    - (b-1) storage facility of gas fuel for one month consumption is very large and is not practical
    - (b-2) solid fuel can be stored. However, storage for one month consumption is large. And coke has to be stored indoor.
    - (b-3) Liquid fuel can be stored. However, since high temperature heating is required, storage of large quantity is undesirable.
  - (c) Please kindly give us an idea on heating system of the tank presently used for the crude storage.

.

# AT TACH MENT TO JICA-2

3

CONFIRMATION ITEMS OF BASIS

OF

ECONOMIC STUDY

FOR

THE UPGRADING PROJECT

OP

### ORINOCO HEAVY OIL

RI

THE REPUBLIC OF VENEZUELA

APRIL 1980

JAPAN INTERNATIONAL COOPERATION AGENCY

(1) What is the time schedule for the Orinoco heavy crude development and production? Expected starting time of 150,000 - 160,000 BPSD crude production (a) 1989 (b) Other ( } (2) What is the time schedule for the plans for the upgrading plant installation? Expected operating start-up of the upgrading plant (a) Early of 1989 (b) Other ( ) (3) How many years should be taken for the project life after start-up operation? (a) 20 years (b) Other years (4) What should be the stream factor for plant operation?

(a)	lst year	8
(b)	2nd year	1
(c)	after 3 year	8

### · · · ·

### 2. Raw material cost and product price

(1) What do you suppose is the cost of Orinoco heavy crude (mixture of raw crude oil and diluent) at the upgrading plant fence?

US\$	/BBL
on	/(Year)

(2) Waht do you suppose is the cost of the diluent at the upgrading plant fence?

US\$	/BBL
on	(year)

(- 1 -) A-134

- (3) What do you suppose is the price of Natural gas at the upgrading plant fence?
- (4) What do you suppose is the price of synthetic crude at the upgrading plant fence?

API

22

25

26

28

30

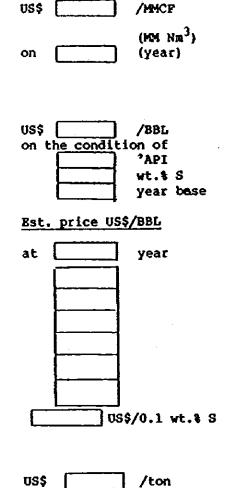
. : 24

2.2

Syn. crude

Sulfur (wtł)

1.0

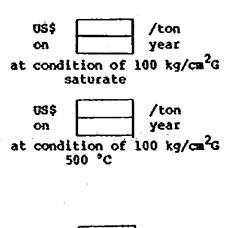

1.0

1.0

1.0

1.0

1.0 .




c) which is the pairs of charm

Sulfur premium

(5) What is the price of sulfur product at plant fence?

(6) What is the price of steam at the plant fence?



(7) What do you suppose is the supply cost of water of the plant fence?

US\$		/ton
on		year
	la ser e se se se se se se se se se se se se s	

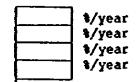
(8) What is the supply price of electric power at the plant fence?

US\$	[	/kw
ÔŇ		(year)

- 3. Conditions of Cost
  - (1) What are the inflation factors in Venezuela?
    - Construction material
    - Construction labor
    - Raw material, products,
    - Operating labor
  - (2) What is the local factor of construction cost compared to US Gulf cost?
    - Equipment & materials cost - Installation cost
  - (3) What are the import duties for import materials & equipment and the income tax of foreign engineers & labor?
  - (4) What should be considered for working capital?
    - (a) Land cost

Feed storage Product storage Production cost Product sales

(b) Land


What is the land cost of plant site?

(c) Oil inventory

What percent full of tank is considered at the end of startup period?

(d) Chemical inventory

How many months of supply or how much quantity is required?

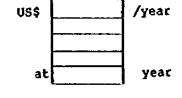




ſ	· -		*
Ē		 	*








(e) Spare parts

What percent of construction cost is estimated for spare parts?



- (5) What are the salaries including all allowances of operators in the plant?
  - Administrative staff
  - Technical staff
  - Foreman & operator
  - Worker



(6) Can you give us a typical organization chart of the existing refinery?

(a) Yes (b) No

(7) What are the average wages of skilled labor and other?

> Supervisor Welder Driver (car) Driver (crane) Driver (truck) Mechanic Pipe fitter Piping worker Painter Duct worker Blectrician Insulation worker Common Labor Offie clerk Typist Accountant Engineer Draftsman

US\$/Day
· · · · · ·
<b>}</b>
IJ

(8) What are the costs of construction materials?

> Cement Steel bar Gravel Concrete

		-	
L			
	•	_	

**US\$/Ton** 

	(9)	How many years should be taken for the depreciation period of plant after start-up operation?	
			(a) 10 year
		What kind of depresciation method shall be taken?	(b) Other years
			(a) straight run (b) Other
	(10)	How much is taken for salvage value?	
4.	Debt	& Equity	
	(1)	What is the ratio of Debt/Equity for investment?	_
	(2)	What is the interest ratio of loan?	
		for long-tern loan for short-tern loan	
			(a) 8 <b>%</b>
			(b) 10% (c) Other 3
	(3)	How should the interest be handled during construction?	
	-	-	(a) Capitalized (b) Other
	(4)	What kind of method for refund of loan should be assumed?	
		or roan shourd be assured	(a) Constant refund
		-	(b) Other
	(5)	How many years should be assumed for payment of loan?	
		-	(a) 10 years (b) Other years
	(6)	How many years are taken as grace period?	
	• •	And when to a counting notes of	year year
	;	And when is a counting point of the period?	
	(7)	What is accounting method?	(a) Base account

(b) Mid-year account

.

.

5. Taxes

(1) What percent is the corporate tax and what kind of method is selected?

C	
(a)	Uniform
(b)	Progressive
(c)	Other

(2) What percent is the fixed property tax to fixed assets of plants and what kind of method is selected?

Ľ	
(a)	Uniform
<b>(b)</b>	Progressive
(c)	Other

\$

year

- (3) What percent is the insurance for fixed assets of plants?
- (4) Bow much is the royalty for oil production?
- (5) How many years are considered as tax holiday?

### 6. Economic Analysis

- (1) What kind of analysis method is recommendable?
- (2) What is the definition of cash flow?
- (3) What is the base year?
- (a) Start of construction(b) Completion of

(b) Paid out time method

construction (c) Start of operation

(a) DCP method

(c) Other

(a) IRR (b) NPV

- (4) Which is a recommendable method of IRR?
- (a) ROI
- (b) ROB

(- 6 -) A-139

(5)	What sensitivity analysis item shall be calculated?			• • •	
			IRR	158	
				20%	
				25%	
		(b)	Inve	stment Cost	
				Base	
				+20%	
				-20%	
		(c)	Othe	er	-

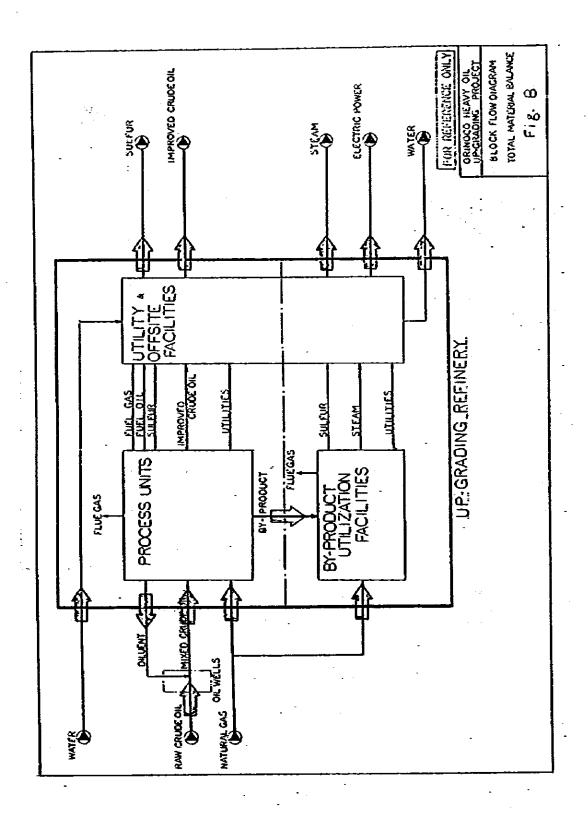
(5)	What Sensitivity analysis item shall be calculated?	
		(a) IRR 15%
		20%
		258
		(b) Investment Cost
		Base
		+20%
		-20%
		(c) Other

.

-

### 7. Calculation method of Economic analysis

Please refer to the attached Fig. B.


Pri	ce/Cost	IN/OUT	Initial Pixed Value	Objective Value (Fixed)	Calculated Value
(a)	Mixed crude oil	IN	0		
(b)	Raw crude oil	18	(o) ±		
(c)	Natural gas	IN	o		
(a)	Water	IN .			
(e)	Diluent	OUT	o	-	
{£}	Improved crude oil	OUT	-		o
(g)	Sulfur	OUT	0		
(h)	Steam (UHP)	our	o		
(i)	Blectric power	<b>T</b> 00	o		
6)	Water	. TVO	o		
(k)	By-product fuel	OŬT/IN	· –		
a	Utilities	OUT/IN	-		
(m)	IRR	-	-	o	

* (b) instead of (a) + (e); in this case outlet diluent is the same value as inlet diluent. .

•

(- 8 -) A-142

•



A-143

# ATTACHMENT TO JICA-2

INFORMATION AND DATA

0Ni

### CONSTRUCTION PLANNING

FOR

THE UPGRADING PROJECT

٥F

ORINOCO HEAVY OIL

R

THE REPUBLIC OF VENEAUELA

APRIL 1980

JAPAN INTERNATIONAL COOPERTION AGENCY

PORT CONDITION

- 1. Brief description of dock facilities (Port drawings and harbor charts)
- 2. Size of ship that can be berthed
- 3. Maximum size and weight of cargo unloaded at port to date
- 4. Can vessels be offloaded into sea at port and towed to shore for loading
- 5. Type and capacities of unloading facilities

Floating crane

Crane

Forklift

- 6. Information on unloading extraordinarily large and heavy cargo
  - (1) Limitation due to wind, if any
  - (2) Bffect of tide and height of waves
- 7. Capacities, available numbers of lighters and any other carriers for cargo
- 8. Storage capacities

Shed

Warehouse

Bonded warehouse

Outdoor storage space

9. Port congestion and required period for unloading

(- 1 -) A-145

### 10. Harbor permits and regulations

## 11. Charges, duties and other levies

-

# (+ 2 -) A-146

### DATA AND INFORMATION ON SITE

1. Map

(1) Map of country or state showing roads and railroads

•

- (2) Large scale map of site
- (3) Contour map of site
- 2. Geology
  - (1) Nature of surface soil

Gradation Color Acidity Salt content Sulfur content Permeability Stability under watery condition

- (2) Subsoil condition
- (3) Soil data

Boring logs Soil analysis Laboratory test reports

- (4) Blevation above sea level
- (5) Flood and tidal data
- (6) Blevation of ground water level
- (7) Drainage of site

### 3. Climate

(1) Meteorological records Clear, cloudy and rainy days Temperature and humidity Rainfall Wind velocity Barthquake Record of floods, droughts

(- 3 -) A-147

4. Obstructions on site

Buildings Transmission lines Underground obstructions Others

## 5. Utilities required during construction work

Water Blectric power

-

# (- 4 -) A-148

· .

### LOCAL TRANSPORTATION

- 1. Organization concerned. The country, state, city?
- 2. Roads
  - (1) Distance between site and port
  - (2) Buried items
  - (3) Width
  - (4) Curve radius
  - (5) Slope
  - (6) Condition and size of side ditches
- 3. Width and type of bridge
- 4. Width, height and type of tunnel
- 5. Limitations relating to above 2, 3 and 4
  - (1) Weight
  - (2) Length

### LABOR CONDITION

- 1. General
  - (1) Governmental authority in charge
  - (2) Labor laws and regulations
  - (3) Estimated level of local skilled labor compared with that of Japanese
  - (4) Working hours and holidays
  - (5) Conditions on labor unions
- 2. Expatriate labors

Possibility of hiring foreign labors (Engineer, technician, skilled and unskilled worker)

- 3. Contracators for the following works
  - (1) Building work
  - (2) Civil work
  - (3) Steel structure work
  - (4) Airconditioning work
  - (5) Drainage work

### SUBCONTRACTOR

1. Name

Address

Telephone No.

Representative

### 2. Speciality

3. Experience

Project, owner Site Time

4. Equipment owned

-

## 5. Number of regular personnel and workers

6. Observation of rubcontractor's jobsites, workshops, construction equipment, office, material yards, etc.

· ·

# (- 7 -) A-151

# ATTACHMENT-5

Caracas, May 12, 1980

### RECORD OF DISCUSSIONS

The Venezuelan authorities concerning with Orinoco Oil development, which are Ministerio de Energía y Minas (hereinafter referred to as "MEM"), Petróleos de Venezuela S.A. (hereinafter referred to as "PDVSA"), LAGOVEN, S.A. (hereinafter referred to as "LAGOVEN") and Instituto Technologico del Petróleo (hereinafter referred to as "INTEVEP"), and the Japanese Second Survey Team for the Upgrading project of Orinoco Heavy Oil in the Republic of Venezuela (hereinafter referred to as "The Team"), sent by Japan International Corporation Agency (hereinafter referred to as "JICA") had meetings.

The schedule of meetings and persons who participated in the discussions are listed in Annex - A and Annex - B, respectively.

Both parties exchanged views and discussed.

The following is a summary of the meetings.

- 1.- Reporting of the Result of the Preliminary Study The Team reported the result of the preliminary study based on "Attachment to JICA - 2 ()," included in Annex - D.
- 2.- Revision of Basic Conditions for the Study in "Record of Discussions" signed by both parties on October 10, 1979.

Both parties agreed to the following items:

- (1) Feed Oil of the Upgrading Refinery
  - (a) Name of the raw Orinoco Heavy Oil
     50/50% Cogollar IX and Cerro Negro Crude Oil
  - (b) Diluent for the oil production Distillate of 380 - 510°F, mainly light gas Oil of the upgrading refinery is recycled.

../..

A-152

(c) Analysis Data of Raw Orinoco Heavy Oil for futher study use. "Crude assay of 50/50% COGOLLAR IX and Cerro Negro (Report No. LV.5C - PC.79)" prepared by LACOVEN and "Characterization de los residuos (700°F +) y de sus crudos de origen" in the Annex - C are used. (d) Capacity of the upgrading refinery To produce 125,000 BPSD minimum of product oil. (2) Product of the Upgrading Refinery (a) Properties of product "Target Yields of synthetic crude" and. "Target key qualities of components" in the Annex - C is to be referred. (3) By products of the Upgrading Refinery (a) Use of by - product Fuel for the generation of electric power for the oil production and the upgrading refinery and the generation of steam for the upgrading refinery. Excess fuel is piled in the upgrading refinery. (b) Boiler plant site One centralized boiler plant for use of by-product is installed in the upgrading refinery. Field portable boilers for steam injection are installed separately in the field which are excluded from the feasibility study. (c) Fuel supply for the field portable boiler Excess fuel gas from the upgrading refinery is supplied. Main fuel for the boiler is natural gas. (4) Sulfur Recovery (a) Recovery Sources Sulfur in the sour gas of hydrodesulfurization units is recovered as elemental sulfur. Sulfur of 90 % in the flue gas of boilers is recovered as gypsum or others.

-2--

../..

-3--

(b) Type of Sulfur

Blemental sulfur is solid.

(5) Steam and Electrical Power Requirements

for oil production.

(a) Steam

Steam is not supplied from the upgrading refinery.

(b) Electric Power

150 MW on the basis of the raw crude production of 170,000 BPCD is required for the raw crude oil production.

3.- Items Confirmed

Both parties confirmed the following items:

- 3.1 Items relating to the "Attachment to JICA 2  $\bigcirc$ 
  - (1) The further study on the Flexicober case is excluded from the feasibility study.
  - (2) Fuel for furnace of the upgrading refinery Shortage of fuel is balanced by vacuum residue.
  - (3) Feed for hydrogen generation unit Natural gas is supplied.
  - (4) Industry waterRiver water is supplied.
- 3.2 Items relating to the "Attachment to JICA 2 (2)"
  - (1) Properties, availability and supply conditions of natural gas

C1	93.1	#Icm
C2	1.9	#ol%
002	3.7	nol%
<u></u> C3+	1.3	molt
Total	100.0	mo1%
H2S	60	ppm
Mercapt	an 10	ppm
& COS		

Supply pressure 500 psig

Required quantity is available.

(2) Properties, availability and supply conditions of industrial water

"REPORTE DE ANALISIS DE AGUA" in the attachment - C is to be referred.

Required quantity is available.

·----

:

. . .

A-154

../..

(3) Waste Water

(a)	Discharge point of waste water is (	the
	fence of the upgrading refinery.	

- (b) Restriction of water pollution are not specially considered.
- (4) Operation of Boiler and Refinery
  - (a) Stream days of the refinery units are 330 days/year.
     And minimum half train of process units during shutdown maintenance is to be opereted continuously.
  - (b) Boiler and power generating facilities are to be operated continuously for 365 days operation of oil production.

3.3 Items relating to the "Attachment to JICA - 2 3"

(1) Schedule

(2)

(a) Hachand and in a	
(a) Mechanical completion of the refinery	= end of 1987
Start-up of the refinery	= early of 1988
Full production of crude oil	= early of 1989
(b) Project life	= 20 years
(c) Operating rate of the refinery	=
1988 330 stream day	ys/year X 50%
1989 330 stream day	
Raw Material Cost and Product Price	-
(a) Raw crude oil	= US \$ 10/BBL
e de de la companya de la companya de la companya de la companya de la companya de la companya de la companya d	on 1980
(b) Diluent gas oil	= No value
(c) Natural gas & fuel gas	= US \$ 3/MMBTU
	on 1980
(d) Synthetic crude	
"Upgraded Crude Values" in the Annex -	- c
is to be referred.	

(e) Sulfur = No value
 (f) Industrial water = No value
 (g) Electric power = US \$ 0.023/KW on 1980
 (h) Limestone & gypsum = No value

(i) Escalation of price is not considered for the study.

../..

⁻⁴⁻

-5-

-

### (3) Condition of Cost

<ul> <li>(a) Corporation tax</li> <li>(b) Method of corporation tax</li> <li>(c) Fixed property tax to fixed assets</li> <li>(d) Insurance for fixed assets</li> <li>Economic Analysis</li> <li>(a) Analysis method</li> <li>(b) Definition of cash flow</li> <li>(c) Base year</li> <li>(d) Method of IRR</li> <li>(f) Sensitivity analysis</li> </ul>	<pre>= 50% * 67 % = Uniform = No = No = No = DCF Method = IRR = Start of operation         (1988) = ROE = Investment cost         - 20% &amp; + 20%</pre>
<ul> <li>(a) Corporation tax</li> <li>(b) Method of corporation tax</li> <li>(c) Fixed property tax to fixed assets</li> <li>(d) Insurance for fixed assets</li> <li>Economic Analysis</li> <li>(a) Analysis method</li> <li>(b) Definition of cash flow</li> <li>(c) Base year</li> <li>(d) Method of IRR</li> </ul>	<ul> <li>= Uniform</li> <li>= No</li> <li>= No</li> <li>= DCF Method</li> <li>= IRR</li> <li>= Start of operation (1988)</li> <li>= ROE</li> </ul>
<ul> <li>(a) Corporation tax</li> <li>(b) Method of corporation tax</li> <li>(c) Fixed property tax to fixed assets</li> <li>(d) Insurance for fixed assets</li> <li>Economic Analysis</li> <li>(a) Analysis method</li> <li>(b) Definition of cash flow</li> <li>(c) Base year</li> </ul>	<ul> <li>= Uniform</li> <li>= No</li> <li>= No</li> <li>= DCF Method</li> <li>= IRR</li> <li>= Start of operation (1988)</li> </ul>
<ul> <li>(a) Corporation tax</li> <li>(b) Method of corporation tax</li> <li>(c) Fixed property tax to fixed assets</li> <li>(d) Insurance for fixed assets</li> <li>Economic Analysis</li> <li>(a) Analysis method</li> <li>(b) Definition of cash flow</li> </ul>	<ul> <li>Uniform</li> <li>No</li> <li>No</li> <li>DCF Method</li> <li>IRR</li> </ul>
<ul> <li>(a) Corporation tax</li> <li>(b) Method of corporation tax</li> <li>(c) Fixed property tax to fixed assets</li> <li>(d) Insurance for fixed assets</li> <li>Economic Analysis</li> <li>(a) Analysis method</li> </ul>	<ul> <li>Uniform</li> <li>No</li> <li>No</li> <li>DCF Method</li> </ul>
<ul> <li>(a) Corporation tax</li> <li>(b) Method of corporation tax</li> <li>(c) Fixed property tax to fixed assets</li> <li>(d) Insurance for fixed assets</li> <li>Economic Analysis</li> </ul>	= Uniform = No = No
<ul> <li>(a) Corporation tax</li> <li>(b) Method of corporation tax</li> <li>(c) Fixed property tax to fixed assets</li> <li>(d) Insurance for fixed assets</li> </ul>	= Uniform = No
<ul> <li>(a) Corporation tax</li> <li>(b) Method of corporation tax</li> <li>(c) Fixed property tax to fixed assets</li> </ul>	= Uniform = No
<ul><li>(a) Corporation tax</li><li>(b) Method of corporation tax</li><li>(c) Fixed property tax</li></ul>	= Uniform
<ul><li>(a) Corporation tax</li><li>(b) Wethod of corporation tax</li></ul>	
(a) Corporation tax	
10,00	· · · · · · · · · · · · · · · · · · ·
Taxes	4/64
All equity	4/4
Debt & Equity	$\backslash$
(j) Land cost = No value	• 🔨
(i) Salvage value = No	
(h) Depreciation method = straight line	e
= 16.6 years (To	
(g) Depreciation period after start-up	
Other departments are outside of the	
of operation, maintenance and tech	
(f) Typical organization chart of refin	
	on 1980
•	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	f operation porcone
_	
	orage capacity
•	·
(b) Oil inventry	· ·
And escalation is not considered fo	or the study.
Venezuela site, 1980 base.	
(a) Investment and operating cost are e	stimated on
	<pre>Venezuela site, 1980 base. And escalation is not considered for (b) Oil inventry Feed crude oil_= 50% of 30 days st Product = 50% of 7 days st (c) Chemical inventry = 2 Months (d) Spare parts = Standard (e) Salaries including all allowances of = Total average (f) Typical organization chart of refin The refinery is organized by three of operation, maintenance and tech Other departments are outside of th (g) Depreciation period after start-up = 16.6 years (The (h) Depreciation method = straight lin (i) Salvage value = No (j) Land cost = No value Debt &amp; Equity</pre>

- -6-
- (7) Calculation Method
  - (a) Fixed value

Raw crude oil, diluent, natural gas, water, sulfur, limestone, gypsum, steam, electric power, waste water, by-product fuel, fuel gas,

- (b) Objective fixed value Improved crude oil
- (c) Calculated value . IRR (ROE)

4.- Submission of the Report

The explanation of the report will be made in the middle of September, 1980 as per attached schedule in "JICA - 1" of the Annex - D.

Dr. Arévalo Quznán Reyes Director General Sectorial Ministerio de Energía y Minas

Senichi Hirose

Chief of the Japanese Second Survey Team for the Upgrading Project of Orinoco Feavy oil in the Republic of Venezuela

c.c.: Petróleos de Venezuela S.A. c.c.: Lagoven S.A. c.c.: Instituto Tecnológico Venezolano de Petróleo. SCHEDULE OF VISIT

•

DATE		TIME	PLACE
May	6, 1980	14:30 - 17:00	Ministerio de Energía y Minas
May	7, 1980	09:00 - 15:00	Petróleos de Venezuela, S.A.
May	8, 1980	11:45 - 16:00	Lagoven, S.A.
May	9, 1980	15:00 - 16:00	Petróleos de Venezuela, S.A.
Мау	12, 1980	10:00	Ministerio de Energía y Minas

-

.

Annex - B

(B - 1)

#### MEMBERS OF MEETING

DATE: May 6, 1980 PLACE: MEM

#### Venezuelan side

MEM

Dr. Arévalo Guzmán Reyes Dr. Alfredo Essis Dr. Ricardo Nuñez Dr. José Méndez Zadato Ing^oLuis Rivas Rodríguez Dr. Manuel Alayeto General Director for Hydrocarbons Production Planning Advisor Refining Division Head Exploration Advisor Chemical Engineer Director Adjusto

#### Japanese side

#### The second survey team - Group A

Mr. Senichi Hirose	Chief of the Team (Consultant to JICA)
Mr. Keiichi Goto	Deputy Director, Petroleum Development
	Division, MITI
Dr. Koji Ukegawa	Senior Scientific Officer, Natural
	Research Institute, MITI
Mr. Hideo Yasuki	Deputy Director, Industrial Survey
	Division, JICA
Mr. Yasuhisa Hosoya	Mechanical Engineer
	(Consultant to JICA)
Mr. Terutada Tsukagoshi	Chemical Engineer
	(Consultant to JICA)
Enbassy of Japan	
Mr. Katsuhiko Tsunoda	Minister
Mr. Hiroshi Yoshida	First Secretary

#### MEMBERS OF MEETING

## DATE: May 7, 1980 PLACE: Petróleos de Venezuela, S.A.

#### Venezuelan side

MEM

Dr. Alfred Essis Dr. Ricardo Nuñez IngºLuis Rivas Rodríguez <u>PDVSA</u> Dr. Carlos Borregales Dr. Angel Behrends Dr. José Prats Dr. Edison Perozo <u>LAGOVEN</u> Dr. Humberto Vidal Dr. Orlando Castillo

Orinoco Oil Belt Coordinator Coordinator Refinacion Planning Manager, Refinery Coordination Pet. Engineer, Manager Orinoco Belt

Coordinator of Cooporate Planning DSMA Project Deputy Upgrading Coordination

Economic Technical analysis Evaluation of Project

Japanese side

INTEVEP

The second survey team - Group A Embassy of Japan

Mr. Katsuhiko Tsunoda

Mr. Hiroshi Yoshida

Dr. Jerry J. Toman

Dr. Franzo Marruffo

Annex - B (B - 3)

· . . ·

MEMBERS OF MEETING

DATE: May 8, 1980 PLACE: LAGOVEN

Venezuelan side

MEM

Dr. Alfred Essis

Dr. Ricardo Nuñez

Ingº Luis Rivas Rodríguez

PDVSA

Dr. Angel Behrends

LAGOVEN

Dr. Humberto Vidal

Dr. Orlando Castillo

INIEVEP

Dr. Franzo Marruffo

Dr. Jerry J. Joman

Japanese side

٤.

The second survey team - Group A

Embassy of Japan

Mr. Hiroshi Yoshida

Annex - B(B - 4)

#### MEMBERS OF MEETING

DATE: may 9, 1980 PLACE: PDVSA

Venezuelan side

PDVSA

Dr. Carlos Borregales

Japanese side

The second survey team

Mr. Senichi Hirose

Mr. Keiichi Goto

Mr. Hideo Yasuki

Mr. Yasuhisa Hosoya

Annex - B (B - 5)

#### MEMBERS OF MEETING

DATE: May 12, 1980 PLACE: MEM

### Venezuelan side

MEM, PDVSA, LAGOVEN and INTEVEP members

### Japanese side

The second survey team - A Group Embassy of Japan Mr. Katsuhiko Tsunoda Mr. Hiroshi Yoshida

**.**..

-

ANNEX -C.

1

----

CRUDO	CERR	) NEGRO	0000	OLLAR	j08	5 C
TIPO DE LIVESTRA	CRUDO	RESIDUO	CRUDO	RESIDUO	CRUDO	RESIDUO
Gravedad específica	1.0129	1.0306	1.0078	1.0343	1.0113	1.0279
Gravedad, ^o API	8.2	5.8	8.9	5.3	5.4	6.2
Contenido Sal (PTB)	220.0	210	72.0	65	680	225
huire (1 peso)	3.28	3.74	3.58	3.80	3.67	4.07
Vinadio (PPM)	418	476	412	475	390	490
Niguel (PPM)	92	115	81	109	¹ 106	101
Bierro (PFM)		13.7				
Carbono Conradson (1P)	14.3	15.7	12.9	16.9	11.3	16.4
Asfaltenos (1 PESO)	12.55	13.50	15.51	16.57	8.64	10.28
Pour Point (°f)	+ 65	+ 95	+_55	+ 90	1 + 65	+ \$5
Viscosidad a 140°F (C.S.)	6252	49342	3726	43286	\$537	27681
Viscosidad a 210°F (C.S.)	376.0	1256.	0 177.9	1020.0	262.0	6 941.0
Rendimiento sobre cr <u>u</u> do (\$Peso)	100	90.7	4 100	89.3	7 10	92.27

#### TABLA 1 CARACTERIZACION DE LOS RESIDUOS (700°F+) Y DE SUS CRUDOS DE ORIGEN.

:

-.

.

	-	TARGET YI	TARGET YIRLOS OF SYNTHETYC CRUDES	21	ANNEXI-C.
	-	· _		110VO+C	NG/SHC
4	375 °F	-	<b>n</b>	10-25	10-25
•	650 %		10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	25 n.lu.	25 mIn.
1	1000 °F	-	47	40 max.	JO MAK.
1000 + °F		-	×c .	25 MAX.	0
			•		
	•	-			
	i iliydrocreated deamphalted oll.	aakphaltad of		•	×
-	: NDAO Plus conversion. ( Mydnecracking )	arnton. (Myda	ecrecking )	-	
ъс. ж	; liydrocreated (	tor scabilicy	Nydrocreated (for scability) cokur synchatic truda.		-
	: Soveraly hydro	crouted coker	Savaraly hydrocrautad coker synchatic crude.		

•

.

A-165

- 373 °F 5, $\chi$ vc. 0.03 max. 0.03 max. 0.03 max. - 550 °F 5, $\chi$ vc. 0.2 max. 0.2 max. 2 max. - 650 °F 5, $\chi$ vc. 0.2 max. 0.2 max. 0.2 max. - 1000 °F 5, $\chi$ vc. 0.3 max. 0.3 max. 0.2 max. - 1000 °F 5, $\chi$ vc. 0.3 max. 0.5 max. 0.7 max. $\chi_2$ , $\chi$ vc. 0.10 max. 0.10 max. 0.10 max. $\chi_2$ , $\chi$ vc. 0.10 max. 0.10 max. 0.10 max. ( ) ( ) ( ) $\chi$ $\chi$ vc. 1.0 max. 0.10 max. 0.10 max. $\chi$ $\chi$ vc. 1.0 max. 0.7 max. 1.0 max. $\chi$ $\chi$ vc. 1.0 max. 0.7 max. 0.10 max. $\chi$ $\chi$ vc. 1.0 max. 0.10 max. 0.10 max. $\chi$ $\chi$ vc. 1.0 max. 0.10 max. 0.10 max. $\chi$ $\chi$ vc. 1.0 max. 0.10 max. 0.10 max.	- 375 °F S, X vc. - 375 °F S, X vc. - 650 °F S, X vc. - 650 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F S, X vc. - 1000 °F		
0.03 mix.       0.03 mix.         2       mox.         2       mox.         0.2       mox.         0.2       mox.         0.2       mox.         0.3       mox.         0.4       min.         0.5       mox.         0.5       mox.         0.5       mox.         0.10       mox.         1.0       mox.         1.1.2       mox.         1.1.2       mox.	<ul> <li>- 375 °F S, X we.</li> <li>- 375 °F S, X we.</li> <li>- 650 °P S, X we.</li> <li>- 650 °P S, X we.</li> <li>- 1000 °P S, X we.</li> <li>- 1000 °P S, X we.</li> <li>- 0.3 mak.</li> <li>0.40</li> <li>- 1000 °P S, X we.</li> <li>- 0.10 min.</li> <li>- 0.2</li> <li>- 0.3</li> <li>- 0.3</li> <li>- 0.40</li> <li>- 0.10 min.</li> <li>- 0.10</li> <li>- 0.10</li> <li>- 0.10</li> <li>- 0.10</li> <li>- 0.10</li> <li>- 0.10</li> <li>- 1000</li> <li>- 10</li></ul>		SIIC
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	- 650 °F 5. X vt. 0.2 max. 0.2 - 650 °F 5. X vt. 0.2 max. 0.2 Cocanu $R$ 40 mkn. 40 - 1000 °F 5. X vt. $40$ max. 0.5 N ₂ , X vt. $40$ max. 0.10 Nnk. 0.10 Ankina Point $($ ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (	0.05 mnx.	.Xem [0.0
<ul> <li>650 °F S. X wt. 0.2 max. 0.2 mix.</li> <li>Cocanu V 40 min. 40 min. 35 min. 35 min.</li> <li>1000 °F S. X wt. **</li> <li>0.10 max. 0.3 max. 0.7 max. 0.7 max.</li> <li>0.10 max. 0.10 max. 0.10 max.</li> <li>0.10 max. 0.10 max. 0.10 max.</li> <li>0.10 max. 0.10 max. 0.10 max.</li> <li>0.10 max. 0.10 max. 0.10 max.</li> <li>1.0 max.</li> <li>1.0 max.</li> <li>1.0 max.</li> <li>1.0 max.</li> <li>1.0 max.</li> <li>1.0 max.</li> <li>1.10 max.</li> <li>1.10 max.</li> <li>1.10 max.</li> <li>1.10 max.</li> <li>1.10 max.</li> <li>1.10 max.</li> <li>1.10 max.</li> <li>1.10 max.</li> <li>1.10 max.</li> <li>1.10 max.</li> <li>1.10 max.</li> <li>1.10 max.</li> </ul>	- 650 °F 5, X чс. 0.2 мэх. 0.2 0.2 Сосали И 40 міл. 40 - 1000 °F 3, X чс. 44 0.10 млх. 0.5 N ₂ , X чс. 44 0.10 млх. 0.10 ССК, X чс. 0.7 млх. 0.10 0.7 Аліліла Роілс. ( ) ( 3. X чс. 1.0 млх. 1.25 Ул. Nuc Applicable		2 max.
- 1000 °Y 5. $\chi$ uc. 0.5 max. 0.5 min. 35 min. 3 - 1000 °Y 5. $\chi$ uc. 0.5 max. 0.5 max. 0.7 max. 0.7 max. 0.7 max. 0.10 max. 0.10 max. 0.10 max. 0.10 max. 0.10 max. 0.10 max. 0.10 max. 1.0 max. 1.0 max. 1.0 max. 1.0 max. N/A %/A %/A %/A %/A %/A %/A %/A %/A %/A %	- 1000 °Y 5. $X = 40$ min. 40 - 1000 °Y 5. $X = 0.5$ max. 0.5 $N_2 + X = 0.10$ max. 0.10 Mallaa Poinc = 0.7 max. 0.7 Antlina Poinc = 0.7 max. 0.7 Antlina Poinc = 0.7 max. 0.7 Antlina Poinc = 0.7 max. 0.7 Antlina Poinc = 0.7 max. 0.7 Antlina Poinc = 0.7 max. 0.7 Antlina Poinc = 0.7 max. 0.10 Antice = 0.10 min. 0.10 Antice = 0.10 min. 0.10 Antice = 0.10 min. 0.10 Antice = 0.10 min. 0.10 Antice = 0.10 min. 0.10 Antice = 0.10 min. 0.10 Antice = 0.10 min. 0.10 Antice = 0.10 min. 0.10 Antice = 0.10 min. 0.10 Antice = 0.10 min. 0.10 Antice = 0.10 min. 0.10 Antice = 0.10 min. 0.10 Antice = 0.10 min. 0.10 Antice = 0.10 min. 0.10 Antice = 0.10 min. 0.10 Antice = 0.10 min. 0.10 Antice = 0.10 min. 0.10 Antice = 0.10 min. 0.10 Antice = 0.10 min. 0.10 Antice = 0.10 min. 0.10 Antice = 0.10 min. 0.10 Antice = 0.10 min. 0.10 Antice = 0.10 min. 0.10 Antice = 0.10 min. 0.10 Antice = 0.10 min. 0.10 Antice = 0.10 min. 0.10 Antice = 0.10 min. 0.10 Antice = 0.10 min. 0.10 Antice = 0.10 min. 0.10 Antice = 0.10 min. 0.10 Antice = 0.10 min. 0.10 Antice = 0.10 min. 0.10 Antice = 0.10 min. 0.10 Antice = 0.10 min. 0.10 Antice = 0.10 min. 0.10 Antice = 0.10 min. 0.10 Antice = 0.10 min. 0.10 Antice = 0.10 min. 0.10 Antice = 0.10 min. 0.10 Antice = 0.10 min. 0.10 Antice = 0.10 min. 0.10 Antice = 0.10 min. 0.10 Antice = 0.10 min. 0.10 Antice = 0.10 min. 0.10 Antice = 0.10 min. 0.10 Antice = 0.10 min. 0.10 Antice = 0.10 min. 0.10 Antice = 0.10 min. 0.10 Antice = 0.10 min. 0.10 Antice = 0.10 min. 0.10 Antice = 0.10 min. 0.10 Antice = 0.10 min. 0.10 Antice = 0.10 min. 0.10 Antice = 0.10 min. 0.10 Antice = 0.10 min. 0.10 Antice = 0.10 min. 0.10 Antice = 0.10 min. 0.10 Antice = 0.10 min. 0.10 Antice = 0.10 min. 0.10 Antice = 0.10 min. 0.10 Antice = 0.10 min. 0.10 Antice = 0.10 min. 0.10 Antice = 0.10 min. 0.10 Antice = 0.10 min. 0.10 Antice = 0.10 min. 0.10 Antice = 0.10 min. 0.10 Antice = 0.10 min. 0.10 Antice = 0.10 min. 0.10 Antice = 0.10 min. 0.10 Antice = 0.10 mi		0.2 max.
<ul> <li>1000 °Y 5, X uc.</li> <li>1000 °Y 5, X uc.</li> <li>N2, X uc.</li> <li>0.10 max.</li> <li>1.0 max.</li> <li>1.0 max.</li> <li>1.0 max.</li> <li>1.0 max.</li> <li>1.125 max.</li> <li>NA</li> </ul>	- 1000 °r 5, $\chi$ uc. 0.5 mak. $N_2$ , $\chi$ uc. $10$ max. CCR, $\chi$ uc. 0.7 max. Antlina Poince () 0.7 max. 0.7 max. Antlina Poince () 0.7 max. 0.7 m		45 mln.
N ₂ , X we. ** 0.10 mnx. 0.10 mnx. 0.10 mnx. CCR, X we. 0.7 max. 0.7 mnx. 1.0 mnx. Antilna Point ( ) ( ) ( ) D+ ⁰ F S. X we. 1.0 mnx. 1.25 mnx. N/A VMbor tu be natimated by contructor	N ₂ , X we. ** 0.10 max. CCR, X we. 0.7 max. Anklinu Puine ( ) D+ 0 r S. X we. 1.0 min. S. X we. 1.0 min.	0.7 Max.	0.5 MAN.
CCR, X we. 0.7 max. 0.7 max. 1.0 max. 0. Antiling Fuince ( ) ( ) ( ) ( ) Ot Or Number cu be astimated by contractor Ala: Nut Applicable	CCR, X we. 0.7 max. Andling Point A ( ) D+ OF 5. X we. 1.0 mins. Sumber to be natimated by contructor V/A: Nut Applicable	0.10 max.	0,10 mux.
Antiing Point ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (	Andling Point ( ) Dr ⁰ r S. X wt. J.O mux. Sumbor to be macimated by contructor V/N: Nut Applicable	· 1.0 max.	0.7 max.
D+ ^O F S, X WE. J.O MIN. J.25 MDX. N/A Vumber cu be nacimated by contructor V/A: NUC Applicable	D+ ^O F S, X WC. J.O MIN. Vumbor cu bo nacimated by contructor V/N: Not Applicable		· · · · ·
Number to be natimated by contructor N/A: Not Applicable	Number cu be nacimated by contructor N/A: Kut Applicable	V/N	~/2
N/A: NUT Applicable	N/A: NUT Applicable		-
the formation with the provide success builded and better	A Assessment of 1 had at her annual budgessession assetted as	-	
AUGUSTICICUL ALLA TOTA OF ATTA BOOLD STATION AND AND AND AND AND AND AND AND AND AN	- CONTROLOCION XIAA BOOK OF ASTR BOVOLO NYAKON CONTRATE, CONTACTORS AND ALL VILLE VALUE 18 0.25 MAXAMAN.		•

-

Mars 1882 - 260 8 Mrd - Casa	REP	ORTE PE		: 1783 - 1783 1993 Istellegiji
CALANCE	ANAI 11100	>	OGTERMINACIONES VAN	FAS
Calcio	92m 6	7. .12.34	Partiduz coma JYU Potal súlidas Disucitas pom	<u>14</u> 9.6
Magnecia Dotio más	<u> </u>	_4 <u>.11</u>	Goreza Total	225 
Potasia	16.3	<u>_33.53</u>	Maalinidad Toial Hierro Toial pom Fo Nanganeso pom Ma	6 2.4
Grarbonalos	6	12.34	_	<u> </u>
Bullates Claruras	<u> </u>	10.90	Nitrices ppm NO ₂ -	N1L 13.7
Citates .	3	6.17	Dioxido de Corbone pom CO, Oxígeno Disectios pom O; Aceite Mafát	-7 -6.7 -1.5
- Ha	6.6	<u> </u>	Nuestra: Agua del Orinoco	
Dondueüridad	. 13	•	Tomeda en: Cesa Boabas	
Yemperatura +C	26		Fecha: 27-2-75	
pH Saturación	9.3		Competin: Sidor.	i •

COMENTARIOS:

Valores expressados en pois como CaCO, el no está indicada otra equivalencia. Conduciónidad espreseda en: MS³⁰⁻¹ ofí de Naturalida estavalada a 1975

piñ da Saturación coloulado a 50°F Sodio não Potacio coloulado por diferencia.

а-

-

.

A-167

ANNEX-C (54

9.11 Uperaded Crude Values

:

The values established for the possible synthetic crudes are listed in Table I below along with Tia Judna Medium, the "marker" crude oil. Tia-Juan Medium was selected as the "marker" crude because its gravity is very similar to the delayed coker synthetic crude.

#### TABLE I

#### 1990 Crude Values

	Tia Juana	Fluidcoker	Deasphalter	Detayed	Coter
	Nodius	BFC	HDAO	<u> </u>	125
Gravity, AP	26.3	28.2	19.4	24.0	30
Salfor , vc.2	1.3	0.3	0.4	- 2.3	0.3
Setals, ppm.	- :	3	2	20	2
1973 S/83L	23.96	24.86	24.86	23.56	25.01
1975 \$/25L	25.53	26.60	26.60	25.53	1 26.7c

These values for the synthetic crudes allow for differences in product qualities; i. e. sulfur level and gravity. Since the qualities in Table 1 were estimates the following procedure was used to allow for changes in the sulfur levels or gravities of the synthetic crudes as the process selection study progressed. A value of \$0.05/API vas used for gravity differences. Sulfur levels are more complex therefore the following schedule vas used for sulfur differences:

for each 0.17 S in the 650° 7+ fraction,

Aange -		Value
Z S less than 0.5 Z S between 0.5 and 1.0		\$0.25/8 \$0.15/8
2 S between 1.0 and 1.5 2 S between 1.5 and 2.5	•••	\$0.05/8
-7.5 greater than 2.5	-	\$0.04/8 \$0.02/8

The above method allows calculations of relative values of synthetic crudes based on their API gravity and sulfar level. All calculated values are then escalated to a mid-1919 basis by a seven (1) percent factor.

# ATTACHMENT-6

#### **Minutes of Heetings**

Caracas, October 16, 1980

The Japanese study team for the Up-grading Project of Orinoco Heavy Oil in the Republic of Venezuela (Hereinafter referred to as "The Team"), sent by the Japan International Cooperation Agency (Hereinafter referred to as "JICA"), presented to the Venezuelan authorities a report entitled "DRAFT FINAL REPORT, THE STUDY ON THE ORINOCO HEAVY OIL UP-GRADING PROJECT FOR THE REPUBLIC OF VENE-ZUELA".

The following is a summary of the meetings and discussions:

- Schedule of Meetings and Participants
   The schedule of meetings and participants are listed in Annex-A and Annex-B, respectively.
- 2. Presentation of the Draft Final Report
  - 2.1 The Team presented the Draft Final Report which has been prepared based on the objectives, the scope of work, and information described in the following record of discussions:
    - Record of discussions dated October 10, 1979
    - Record of discussions dated May 12, 1980

The presentation was made by highlighting the features of the study and results.

2.2 The Venezuelan authorities and the Team exchanged views on the Draft Final Report.

 The Venezuelan authorities expressed satisfaction regarding the dedication and efforts made to complete the study.

- (2) A preliminary review of the Draft Final Report indicates that the contents of the Report are objective.
- (3) The Venezuelan authorities requested the following additions to the Draft Final Report.

A-169

- to indicate the properties of fractions of the 'improved crude 'oil, as much as possible
- to make clear the bases of informations and data on main up-grading processes and hydrotreating/hydrodesulfurization processes.
- (4) The Venezuelan authorities expressed the intention of making ques tions in order to clarify the contents of the Draft Final Report.
  - The Team replied to the Venezuelan authorities that such questions should be made to the Embassy of Japan in Caracas by November 17, 1980. The answers will be made in written form outside the final report.

3. Final Report

The Draft Final Report will be considered as final after completion of the additions mentioned above 2.2 (3).

The Final Report will be submitted to the Venezuelan authorities by the end of November 1980.

Both parties accepted the above.

Dr. Arévalo Guação Reyes Director General Sectorial de Hidrocarburos Ministerio de Erergía y Ninas República de Venezuela

Senichi Hirose Chief of the Japanese Team for the Up-Grading Project of Orinoco Heavy Oil in the Republic of Venezuela

c.c: Petróleos de Venezuela, S. A. Lagoven, S. A. INTEVEP, S. A.

# SCHEDULE OF HEETINGS

DATE	TIME	PLACE
October 13, 1980 October 14, 1980	15:30-16:30 8:30-12:00	Ministerio de Energía y Minas Petróleos de Venezuela, S. A. Petróleos de Venezuela, S. A.
October 16, 1980 October 16, 1980	9:00-10:00 15:00-16:00	Ministerio de Energía y Minas

Annex-8 (8-1)

#### MEMBERS OF HEETINGS

carbons

DATE: October 13, 1980 PLACE: MEM

General Director Sectorial for Hydro-

Deputy General Director Sectorial

Head of Project Evaluation Department

Director of Hydrocarbons

**Refining Division Head** 

for Hydrocarbons

Dr. Arévalo Guzmán Reyes Dr. Enrique Daboin Vera Dr. Manuel Alayeto

Dr. Ricardo Núñez Ing^e Luis Rivas Rodríguez

#### PDYSA

HEH

Dr. Carlos J. Borregales	Orinoco Oil Belt Coordinator	
Dr. Angel Behrends	<b>Refinery Coordinator</b>	
Dr. José Prats	Manager, Refinery Coordination	

#### Japanese side

Kr. Hideo Yasuki

Kr. Yasuhisa Kosoya

Hr. Terutada Tsukagoshi

#### The Team

Kr. Senichi HiroseChief of the Team (Consultant to<br/>JICA).Kr. Toshio IbiDeputy Director, Development

Deputy Director, Development Division Petroleum Department Agency of Natural Resources and Energy,NHT1.

Deputy Director, Industrial Survey Division JICA.

Petroleum Refinery Engineer (Consultant to JICA).

Petroleum Refinery Engineer (Consultant to JICA)

Embassy of Japan

.

Mr. Katsuhiko Tsunoda

Mr. Hiroshi Yoshida

-

• • •

Hinister First Secretary

-

.

•

.

:

#### MEMBERS OF MEETING

DATE : October 14, 1980 PLACE: POVSA

Orinoco Oil Selt Coordination

Hanager of Corporate Planning

## Venezuelan Side.

HEX

Dr. Ricardo Nuñez Ing. Luis Rivas Rodríguez

## PDVSA

Or. Angel Behrends

Dr. José Prats

Ing. Armando Herrera

#### LAGOVEN

Dr. Humberto Vidal

#### INTEVEP

Dr. Jerry J. ThomanEconomic Technical AnalysisDra. Carmen Elvira AlvarezProcess Engineer

### Japanese Side

The Team

Embassy of Japan

Mr. Hiroshi Yoshida

Annex-8 (8-3)

# MEMBERS OF HEETING

- - -

DATE : October 16, 1980 PLACE: PDVSA

. . .

## Venezuelan Side:

- - -

MEH

Dr. Ricardo Núñez Ing. Luis Rivas Rodríguez

. . . .

### POVSA

Dr. Angel Behrends

-

Dr. Carlos J. Borregales

Dr. José Prats

Japanese Side

The Team

Embassy of Japan

Mr. Hiroshi Yoshida

Annex-8 (8-4)

-----

#### MEMBERS OF MEETING

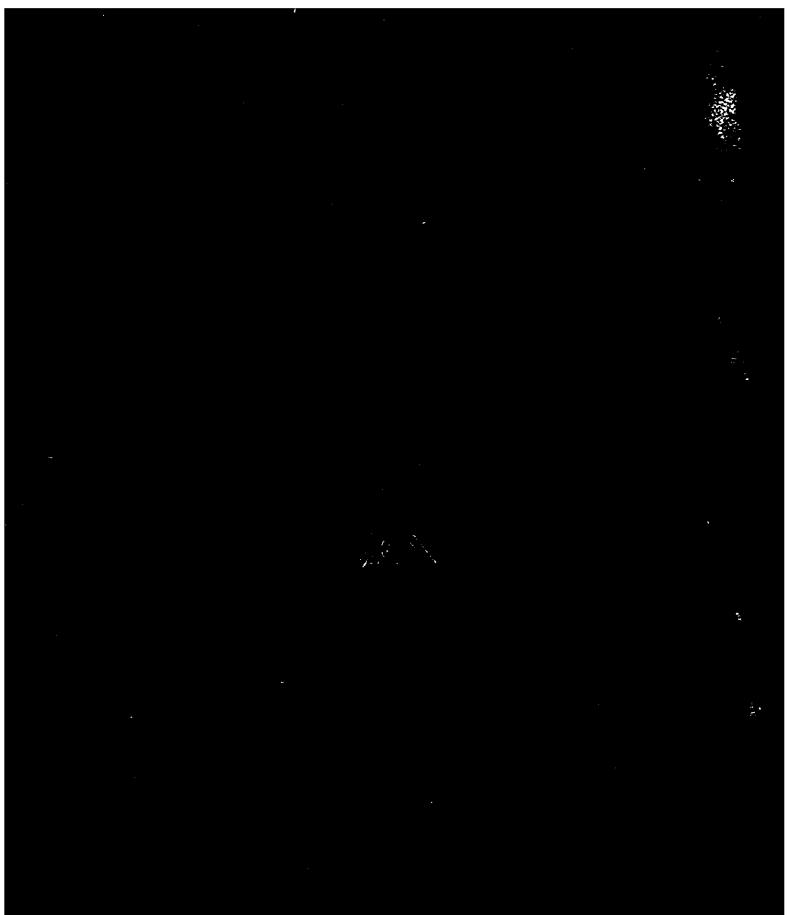
DATE : October 16, 1980 PLACE: HEM

1

Venezuelan Side

**NEX and POVSA members** 

Japanese Side


The Team

Embassy of Japan

Mr. Katsuhiko Tsunoda

Mr. Hiroshi Yoshida

.

