REPUBLICA DEL PERU

MINISTERIO DE AGRICULTURA
INSTITUTO NACIONAL

DE

AMPLIACION DE LA FRONTERA AGRICOLA
(INAF — PE-REHATIC)

FEASIBILITY STUDY ON CHANCAY-HUARAL VALLEY REHABILITATION PROJECT

ANNEX (VOLUME II)

MARCH 1985

JAPAN INTERNATIONAL COOPERATION AGENCY

JICA LIBRARY

1030392E3]

REPUBLICA DEL PERU

MINISTERIO DE AGRICULTURA
INSTITUTO NACIONAL
DE

AMPLIACION DE LA FRONTERA AGRICOLA (INAF — PE-REHATIC)

FEASIBILITY STUDY ON CHANCAY-HUARAL VALLEY REHABILITATION PROJECT

ANNEX (VOLUME II)

MARCH 1985

JAPAN INTERNATIONAL COOPERATION AGENCY

国際協力事業団		
党入 '85. 8. 30	709	
Z Az.	83.3	
金銀№ 11883	AFT	

INTRODUCTION

The feasibility study on the Chancay - Huaral Valley Rehabilitation Project has been carried out by the study team, dispatched from the Japanese government (JICA), started on February 15, 1984. This report was prepared based on the result of field and home studies.

The report is compiled by the following four volumes.

_	Main report	(English)
-	Annex	(English)
_	Drawings	(English)
_	Summary	(Spanish)

The annex comprising two volumes are attached to the main report.

Volume I

Annex A Meteorology and Hydrology
Annex B Geology and Ground water
Annex C Soil and land classification
Annex D Salinity control
Annex E Agriculture

Agricultural economy

Volume II

Annex F

Annex G Irrigation and drainage

Annex H Infrastracture

Annex I Project Implementation and Cost estimation

Annex J Operation and Maintenance

Annex K Economic evaluation and financial analysis

Annex L Others

CONTENTS

VOLUME II

ANNEX	Н	INFRASTRACTURE		· .
ANNEX	I	PROJECT IMPLEMENTATION AND	COST	ESTIMATION

IRRIGATION AND DRAINAGE

ANNEX J OPERATION AND MAINTENANCE

ANNEX K ECONOMIC EVALUATION AND FINANCIAL ANALYSIS

ANNEX L OTHERS

ANNEX G

IRRIGATION AND DRAINAGE

CONTENTS

ANNEX G Irrigation and Drainage

		Page
1	Project Area	G-1
1-1	Extent of Project Area	G-1
12	Study on Scope of Project Area	G-1
2	Existing Irrigation System and Water Utilization-	G-3
2-1	Existing Irrigatin System	G-3
2-2	Water Use Condition	G-4
2-3	On-farm Irrigation Condition	G-4
3	Water Shortage and Cause	G-4
4	Irrigation without Project	G-5
5	Irrigation Scheme	G6
5–1	Water Requirements	G-6
5-2	Leaching Requirements	G-8
5-3	Requirements for Others	G-13
5-4	Water Resource	G-14
5-5	Water Balance	G-19
5 6	Canal and On-form Irrigation	C 24

Page

List of Tables

•			rage
			0.71
Table		Project Area in Blockwise	G-41
Table	G-1-2	Commonding Area in Canal Wise	G-42
Table	G-1-3	Economic Comparison	G-43
			4
Table	1.1	Existing Irrigation Method	G-44
Table	G-2-2(1)	Present Condition of Irrigation	G-45
Table	G-2-3(2)	Present Condition of Irrigation	G~46
:			
Table	G-3-1	Water Shortage Area	G-47
Table	G-5-1	Evapotranspiration by Penman Method	G-48
Table	G-5-2	Present Planting Area	G-49
Table	G-5-3	Proposed Planting Area	G-50
Table	G-5-4	Irrigation Duration of the Proposed Cropping	
		Pattern	G-51
Table	G-5-5	Crop Coefficiency (Kc)	G-52
Table	G-5-6(1)	Calculated Kc Value	G-53
Table	G-5-6(2)	Calculated Kc Value	G-54
Table	G-5-7	Net Water Requirements	G-55
Table	G-5-8	Total Net Water Requirements (Present)	G-56
Table	G-5-9	Total Net Water Requirements (Proposed)	G-57
Table	G-5-10	Irrigation Efficiency	G-58
Table	G-5-11	Comperhensive Irrigation Efficiency (Present)	G-59
Table	G-5-12	Comperhensive Irrigation Efficiency (Proposed)-	G-60
Table	G-5-13(1)(5) Gross Water Requirements G-61	65
Table	G-5-14	Water Quality	G-66
Table	G-5-15	Leaching Water requirements	G-67
Table	G-5-16(1) Municipal Water Use (1983)	G-68
Table	G-5-16(2) Municipal Water Use (1984)	G-69
Table	G-5-17(1) Probable Dishcarge at Santo Domingo	G-70
Table	G-5-17(2) Probable Dishcarge at Santo Domingo	G-71
Table	G-5-17(3) Probable Dishcarge at Santo Domingo	G72
		Utilization Record of Upstream Lagoons	G-73

Table G-5-19 Intaked Discharge from River
a = city = when and Croundwater-
Donaht Pariad
A D D A O monding Argo
Table G-5-22 Ratio of Recycled of Each Commanding Area in System Wide
Table G-5-23 Existing Pump
Table G-5-24 Present Water Balance
Table G-5-25 River Discharge and Intaked Volume in Present-
Table G-5-26 Present Water Balance in Chancayllo Area
Table G-5-27 Present Water Balance in Laureles Area
Table G-5-28 Present Water Balance in Mira Flores Area
Table G-5-29 Present Water Balance in Pasamayo Alto Area
Table G-5-30 Present Water Balance in Pasamayo-Salinas
Table G-5-31 Monthly Water Requirements
Table G-5-32 Proposed Water Balance
Table G-5-33 River Discharge and Intaked Volume at Palpa
Table G-5-34 38 Proposed Water Balance G-89 -
Table G-5-39 46 River Discharge and Intaked Water at Palpa
G_93
Table G-5-47 Result of Water Balance Study G
Table G-5-48 Available Leaching Requirement G
Table G-5-49 Intake Capacity (1) (4) G-96
Table G-5-50 Canal Capacity (1) (5) G-107
Table G-5-51 Proposed Storage Capacity
of Existing Reservoir (1),(2) G-112
Table G-5-52 Capacity of Proposed Reservoir G
Table G-5-53 Calculation of Basic Intake Rate
Table G-5-54(1) Calculation of Basic Intake Rate
Table G-5-55 Irrigation Water (TRAM) (1) (4) G-117
Table G-5-56 Irrigation Water Amount of the Crops and
Irrigation Interval
Table G-5-57 Irrigation hour
Table G-5-58 Comparison for Water Requirements G

		Page
Table G-6-1	Poor Drainage Area	G-123
Table G-6-2	Present Condition of Poor Drainage Area	G-124
Table G-8-1	Cost Comparison for Drainage Canal	G-125
Table G-8-2	Open Drain (1/2)	G-126
Table G-8-2	Open Drain (2/2)	G-127
		•

List of Figures

			rage
			1.4
Fig.	G-2-1	Diagram of Existing Irrigation System	G-128
Fig.	G-2-2	Annual Water Utilization	G-129
Fig.	G-2-3	Annual Discharge at Santo Domingo	G-130
Fig.	G-2-4	Annual Utilization for Agriculture	G-131
Fig.	G-5-1(1)	Kc Value	G-132
Fig.	G-5-1(2)	Kc Value	G-133
Fig.	G-5-1(3)	Kc Value	G-134
Fig.	G-5-2	Annual Patern of Discharge at Santo Domingo (Present)	G~135
Fig.	G-5-3	Correlation between River Discharg and	
		Ratio of Recycled	
-	G-5-4	Diagram of Proposed Irrigation System	
Fig.	G-5-5	Proposed Irrigation System	
Fig.	G-5-6	Present Water Balance Diagram	
Fig.	G-5-7	Proposed Water Balance (Probability: 10 years)	G-140
Fig.	G-5-8	Modified Irrigation Network	
Fig.	G-5-9	Distribution System (for Example)	G-142
Fig.	G-5-10(1)		
Fig.	G-5-10(2)	Intake Rate (Donoso)	G-144
Fig.	G-5-11	Sprinkler Irrigation System (for example)	G-145
Fig.	G-8-1	Typical Section of Open Drain	G-146
Fig.	G-8-2(1)	Location Map for Proposed Open Drain	
		(Quincha, Donoso)	G-147
Fig.	G-8-2(2)	Location Map for Proposed Open Drain	•
		(along Chancay River)	G-148
Fig.	G-8-3	Typical Section of Drainage System	G-149
Fig.	G-8-4	Typical Plan of Drainage System	G-150

G. Irrigation and Drainage

1 Project Area

1-1 Extent of Project Area

Service area of the project extends from La Esperanza to the edge of coast in the right bank of Chancay river, and from Palpa to that in the left.

Service area is the cultivated land, shown as follows:

Bank	Gross Area	Net Area	Ratio
	ha	ha	%
Right	15,184	14,480	72
Left	6,016	5,720	28
			-
Total	21,200	20,200	100

Table G-1-1 and G-1-2 present the block area and commanding area in system wide respectively.

1-2 Study on Scope of Project Area

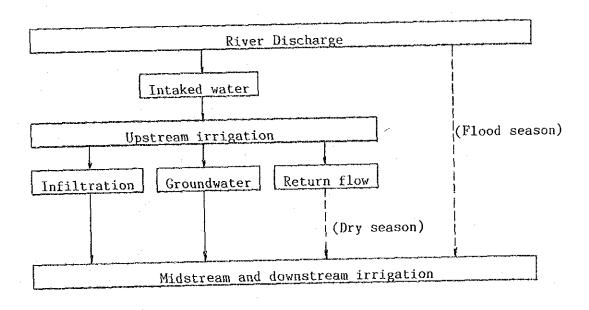
Cultivated land of 22,000 ha in gross has an extension in the Chancay-Huaral Valley. There are non-cultivated areas called "Tierra Eriasas" around the cultivated land.

Assumed that irrigation water would be supplied to this non-cultivated land, the crops would be grown. Then, the following subjects were considered on scope of the project area.

- (1) Problem to be soluted covering non-cultivated land.
- Comprehensive water resource development whole Chancay river basin,

- Contrive of irrigation water by making the canal lining long and improvement of irrigation method (refer to paragraph G-5-6),
- Apportionment of risk caused by water shortage, including vested water right, and
- Construction of new irrigation network.
- (2) The understanding matters between JICA and government of Peru concerning the scope of works on technical cooperation (Dec. 7,6,1983).
- An objective of the project is to be rehabilitated for irrigation and drainage facilities and salt damaged farm land aimed at cultivated land.
- The new development of farm land is not included in this project.
- (3) The ascertained matters from the result of reconnaissance during the field study based on preliminary survey regarding the river basin development of which had been carried out by the government of Peru.
- Some dam sites in the Chancay River basin, which have been studied by ONERN have some problems on technical and economical difficulties.
- The economical measures for improve the agricultural productivity in cultivated land alone is still remained.
- Rehabilitated facilities by the project will prove serviceable to the increase of water demand in future, if it should become possible to economical water resource development in the Chancay River basin by the improvement in engineering.

Acordingly, economic conparison was made as shown in Table G-3-1.


As the result, original of A has an advantage compared with B and C in both Case 1 and Case 2.

2 Existing Irrigation System and Water Utilization

2-1 Existing Irrigation System

Annual rainfall in Chancay-Huaral Valley basin would be recorded 550 mm at Santo Domingo that is located the upstream of Chancay river and elevation from sea level is 3,700 m, while equals to no rain with 10 mm in the project area.

Consequently, water requirements would be dependent on Chancay river. Upstream irrigated area is covered by the river discharge intaked. On the other hand, irrigation system, which irrigated water would be recycled such as infiltration from upstream area, return flow and groundwater, has been provided in the downstream. The following chart presents the flow of irrigation water, commanding area in system wide is shown in Figure G-2-1.

2-2 Water Use Condition

ATDR has the data of river discharge and utilized water for irrigation. According to the data in the past seven years, annual irrigation water is steady with 350 to 400 x 10^6 m³. On the other hand, river discharge has ranged from 260 to 600 x 10^6 m³. (refer to Figure G-2-2)

Annual pattern of river discharge shown in Figure G-2-3 would be constant, viz, flood season from January to April and drought season from May to December with its bottom of September to November.

On the contrary, irrigation water has been utilized corresponding to river discharge, as shown in Figure G-2-4. Water requirements are more than river discharge in drought period and it would be guessed that infiltration, groundwater and return flow are recycled in downstream area.

2-3 On-farm Irrigation Condition

Irrigation water is administrated by ATDR. The system for water distribution has been built up in the project area. In some district, discharge of 50 1/sec per Fenegada (2.7 ha)/hr would be assigned in drought season, 250 1/sec in flood season.

Furrow irrigation method is generally carried out, the result of field investigation in Boza area is shown in Table G-2-1. Existing irrigation method in the project area was investigated, as described in Table G-2-2. Considerable different result was obtained, although, approximate intermittent period ranges from 4 days to 15 days.

3 Water Shortage and Cause

Water shortage has been occurred whole the project area except Chancayllo area, and is concentrated in the area of canal end, especially in drought period from September to November. These areas are shown in Table G-3-1 and would be estimated at 4,900 ha in total.

It would be considered the follows for its cause:

- Imperfection of intake facilities installed along Chancay river,
- Superannuated irrigation facilities such as intake, canal and reservoir.
- Capacity decreasement by sedimentation in the canal and reservoir, and
- Unskilled on-farm irrigation method.

4 Irrigation without Project

It would be the important factor whether steady intake is possible or not, for maintaining the water resource, since irrigation water in the service area is dependent on Chancay river.

Intake facilities of 23 are provided along Chancay river in the project area, however, these require much labor forces and charges for operation and maintenance, since intake facilities have been destroyed and/or sedimented by annual floodings.

The project area would be formed of alluvial soil with coarse textured and permeable layer, nevertheless, canal linning would be imperfect. Therefore, it would be seen water shortage area in the canal end.

Assumed that this project would not be executed, operation and maintenance for agricultural facilities will come into more difficult and rational irrigation system whole the project area would not be expected, because the cropping pattern is obliged to meet the river discharge and this fact makes the crop production trouble.

5 Irrigation Scheme

5-1 Water Requirements

(1) Evapotranspiration

There are many methods for calculating the evapotranspiration, however, it would be considered that Penman method is fit to this area, taking into account the meteological condition.

The evapotranspiration in each month by this method ranges from 1.57 to 3.46 mm/day (average; 2.40 mm/day) as shown in Table G-5-1.

(2) Planting area and irrigation period

The project area is cultivated land and is classified broadly into both fruits in upstream area and one year crops such as cotton, maize and vegetables in midstream and downstream region. Planting area of each block is presented in Table G-5-2 and G-5-3.

Irrigation period is shown in Table G-5-4. The area for fruits and vegetables would be applied to the whole year irrigation, although, the period corresponding to the cropping pattern would be adopted for others.

(3) Crop coefficient (Kc)

Crop coefficient (Kc) can be calculated based on "Irrigation and Drainage Paper No.24" by FAO and is shown in Table G-5-5, G-5-6, and Figures G-5-1 (1) to (3).

Kc of fruits is adopted the value used in the resembled project in Peru, since fruits have many varieties such as orange, mandarina, apple, peach and so on.

(4) Net water requirements

Following equation gives the net water requirements.

ETcrop = Kc . ETo

where, ETcrop: Crop evapotranspiration (mm/day)

Kc : Crop coefficient

ETo : Reference evapotranspiration (mm/day)

Calculated net water requirements are given in Table G-2-7. Total net water requirements whole the project area would be calculated as shown in Table G-2-8 and G-2-9, 80,839 x 10^3 m³ in present planting area and 92,586 x 10^3 m³ in proposed.

(5) Irrigation efficiency

Irrigation efficiency would be changed by the conditions such as soil texture, water management, canal condition and distribution management, etc. Irrigation efficiency was determined as shown in Table G-5-10, based on the field investigation, FAO "Irrigation and Drainage Paper No.24", data of Utah Agr. Exp. Sta. Bul. 311, etc.

Both the efficiency and ratio of canal linning would make possible to calculate the comprehensive irrigation efficiency whole the project area. The result is shown in Table G-5-11 and G-5-12, 29% in present and 46% in proposed.

(6) Gross water requirements

Gross water requirements can be calculated, based on the items there fore. Yearly gross water requirements become $278,747 \times 10^3 \text{ m}^3$ (13.8 x 10^3 m^3 /ha) in present condition, 201,274 x 10^3 m^3 (10.0 x 10^3 m^3 /ha) in proposed.

Tables G-5-13 (1) to (5) present the gross water requirements in each block in proposed condition.

Month	Present	Proposed	Notes
Aug.	6,524	6,217	
Sep.	10,076	12,293	
Oct.	17,990	21,109	
Nov.	24,217	23,248	
Dec.	31,679	27,500	
Jan.	43,048	30,583	
Feb.	41,572	27,004	
Mar.	33,600	18,133	
Apr.	26,221	13,663	
May	20,197	10,976	
Jun.	13,848	5,861	
Jul.	9,055	4,687	
	**************************************		2 2
Total	278,747	201,274	$\times 10^3 \text{ m}^3$

5-2 Leaching Requirements

(1) Improvement plans for salinity soils

The furrow flooding method has been adopted as leaching for salinity soils in the poor drainage area considering topographic conditions and water availability. The plans are proposed as follows:

(a) 1st type: Salinity soils in poor drainage areas

(i) Water requirements

The water requirements for furrow flooding was calculated according to the following conditions:

- Initial leaching method : Furrow flooding

- Time of initial leaching: May - July

- Intensity of furrows : Width of ridge : Width of furrow = 1:1 (50 % of ground

surface to be flooded)

- Rate of water application: One third of total water

requirements for furrow flooding to be applied in

each year

- Proposed cropping plan : Cotton-green manure-maize in

rotation (first crop: cotton)

Water requirements in depth per ha for furrow flooding is tabulated below.

	Salinity	Class
	S2	S3
1. Average ECe (m ^S /cm) of		
surface layer	10	30 - 40
2. Total water requirements in		
depth for furrow flooding (cm)	45	90
3. Rate of application in each year	ar 1/3	1/3
4. Water requirements in depth for	(2 x 3)	(2×3)
furrow flooding/year (cm)	15	30
5. Intensity of furrows		
($% \frac{1}{2}$ of ground surface to be	50	50
flooded) (%)		
6. Water depth in cm to be applied	i (4/5)	(4/5)
in furrows (cm)	30	60

Water requirements in depth and in volume per ha for furrow flooding is tabulated below.

	Salinity	Class
	S2	\$3
Depth/ha.year (cm)	15	30
Volume/ha.year (m3)	1,500	3,000
Depth/ha.3 years (cm)	45	90
Volume/ha.3 years (m3)	4,500	9,000

Water requirements for furrow flooding in the drainage improvement study area is tabulated below:

The second secon	ىدەنىڭ ئەلىنىداردىنى ئەلىنىدىن بىرىنىدىن ئىرىنىدىن ئىرىنىدىن بىرىنىدىن ئىرىنىدىن ئىرىنىدىن ئىرىنىدىن ئىرىنىدىن		Water	Requi	rement	s in V	olume
				for Fu	rrow F	looding	8
	and the same of			<u> x 1</u>	,000 п	13	
				***********	To	tal	
Drainage Improve-	Salinity	Area	Per ha	lst	2nd	3rd	total
ment Study Area	Class	(ha)	(year)	year	year	year	
Donoso/Quincha	S2	273	1.5	410	410	409	1,229
	S3N1	524	3	1,572	1,572	1,572	4,716
Sub-total				1,982	1,982	1,982	5,946
Boza	\$2	15	1.5	23	23	22	68
	S3	61	3	183	183	183	549
	S3N1	69	3	207	207	207	621
Sub-total				413	413	413	1,239
San Luis	S2	168	1.5	252	252	252	756
	S3	82	3	246	246	246	738
Sub-total				498	498	498	1,494
Lunavilca	S2	50	1.5	75	75	75	225
Palpa	S2	30	1.5	45	45	45	135
Total		1,272	**************************************	3,013	3,013	3,011	9,037

Water requirements for furrow flooding in the entire drainage improvement study area:

about 3 million m³/year about 9 million m³/3 years

(b) 2nd type B: Salinity soils in Hattillo

For the desalinization of this soil type, the ponding method has been adopted.

- i) Water requirements for initial ponding
 - i. Conditions

Initial leaching method: Ponding

Time of initial leaching: May - July

Proposed cropping plan : Cotton-green manure-maize in

rotation (first crop: cotton)

ii. Water requirements for initial ponding

Initial ponding water requirements

in depth: 50 cm

Initial ponding water requirements

in volume/ha: 5,000 m³/ha

Area to be leached : 160 ha

Total water requirements

for initial ponding: 800,000 m³

In total, $800,000 \text{ m}^3$ of irrigation water are required for leaching of the area by initial ponding.

(c) 2nd type A: Salinity soils in slightly sloping area

The leaching of sandy to gravelly salinity soils on slightly sloping area (2nd type A) is not included in the present

improvement plan for the following reasons:

- The adverse effects of salt accumulation above the root zone of fruit trees are not considered significant and therefore sufficient benefit can not be expected.
- ii) Low salt-tolerant crops of citrus and apple are prevailing in the area. A large quantity of irrigation water will be required in a short period to prevent salt accumulation in the lower root zone of these crops. However, availability of water is limited in the area.

It is recommended to promote leaching gradually from one place to another by wide-bottom furrow irrigation.

(2) Water quality for leaching

Water quality for leaching has little annual variation with 340 to 400 μ mho/cm of ECw as presented in Table G-5-14. ECw of 450 to 950 μ mho/cm was observed in the area where recycled water has been used for. Salinity of 200 to 480 ppm would be harmless to the growth of crops.

The following equation gives the ratio of leaching requirements against irrigation water.

$$LR = \frac{ECw}{(5 ECe - ECw) Le}$$

where, LR: Ratio of leaching requirements

ECw: Electric conductivity of irrigated water

River : 0.4 mmhos/cm

Recycled; 1.0 mmhos/cm

ECe: Electric conductivity of saturated extract

in the soil of root zone

Le: Leaching efficiency; 80 % (coarse to medium textured soil)

Assumed that the forecasted decreasement ratio of 10 % would be occurred by the salinity in the irrigation water, the principal crops require the leaching requirements, as follows:

Ratio of Leaching Requirements

Crop	ECe	River	Recycled
	mmhos/cm		
Cotton	9.6	0.01	0.03
Maize	2.5	0.04	0.11
Fruit	3.5	0.03	0.08
Tomato	2.3	0.05	0.12

The ratio of leaching requirements against irrigation water would be 5 % and 10 % in river and recycled, respectively. The requirements would be supplied in flood season.

(3) Leaching requirements for salinity soil

The soil, with salinity class S2 (ECe 8-15 mmhos/cm) and S3 (ECe > 15 mmhos/cm), requires the water depth for leaching of 30 cm and 60 cm respectively.

The area of 1,432 ha would be necessary to be leached and total leaching requirements amount 12,297 x 10^3 m³, as shown in Table G-5-15.

5-3 Requirements for Others

There are two cities in the project area, Huaral and Chancay. Municipal water is supplied from river and groundwater, industrial use and water for livestock from groundwater.

These requirements are decided based on the field investigation. Municipal water utilization of Huaral City in 1983 and 1984 is presented in Tables G-5-16 (1) to (2), with tendency to increase.

- Municipal water for the cities of Chancay and Huaral would become two times of present use, corresponding to the long term formation.
- Industrial use equals to the yield of the existing well.
- Water for livestock is the same volume as present.

Monthly requirements are shown as follows:

Month	Municipal	Industrial	Livestock	Total
Aug.	792	11	87	890
Sep.	776	11	87	874
Oct.	792	11	87	890
Nov.	776	12	87	875
Dec.	792	11	87	890
Jan.	792	11	87	890
Feb.	746	11	87	844
Mar.	792	12	87	891
Apr.	776	11	87	874
May	792	11	87	890
Jun.	776	11	87	874
Jul.	792	12	87	891
Total	9,394	135	1,044	10,573

5-4 Water Resource

Water resource in the project area would be all dependent on Chancay river. Upstream area is directly covered by the water from river. Recycled water such as infiltration, return flow and groundwater have been utilized in midstream and downstream. As for water resource, river, upstream lagoons, return flow and groundwater, etc. would be considered.

(1) River

Discharge of Chancay river has been observed by ATDR Chancay-Huaral. Annual pattern of discharge, as shown in Figure G-5-2 and Table G-5-17 (1), would be obtained from the probability calculation by using the data in the past twenty one years (1963-1983).

According to the results, discharge of Chancay river starts to increase between December and January, with the peak in March. After that, discharge decrease little by little and the bottom comes in September to November. Annual discharge of each probable year is presented as follows:

Probable year	year Annual discharg		
	$x 10^3 \text{ m}^3$		
2	463,018		
5	305,467		
10	247,331		
20	208,320		

Since the observed data include drained discharge from upstream lagoons, Tables G-5-17 (2) to (3) present the value excluding the discharge. The discharge by river itself, therefore, would be 287,616 x 10^3 m³/year in probable year of 5 years, 227,777 x 10^3 m³/year in that of 10 years.

(2) Upstream lagoons

There are seven lagoons with reserved capacity of $50,000 \times 10^3 \text{ m}^3$, however, utilization record in the past ten years was $28,300 \times 10^3 \text{ m}^3$, in maximum, shown in Table G-5-18.

Effective reserved capacity of $30,000 \times 10^3 \text{ m}^3$ would be applied to this project, based on the capacity of useful 5 lagoons. Available volume at Santo Domingo would be $24,000 \times 10^3 \text{ m}^3$ ($30,000 \times 10^3 \times 0.8 \text{ m}^3$), since the distance between lagoons and the service area is very long, and so on.

(3) Infiltration and return flow

In the area lower than the intake at Chancay-Huaral, infiltration from upstream and return flow to the river has been utilized for irrigation in drought period. Intaked and its recycled discharge in drought period observed by ATDR is presented in Table G-5-19 and G-5-20.

Correlation between river discharge and ratio of recycled would be obtained as shown in Figure G-5-3 and Table G-5-21, using this data. Ratio of recycled water ranges from 50 % to 90 %.

Ratio of recycled (Re) = 12,804 x $Q^{-0.5447}$ Correlation Coefficient (r) = 0.91

Where, Q: River discharge (x 10³ m³/month)

Ratio of recycled of each commanding area in system wide in drought period, 1979 equivalent to drought year, is presented in Table G-5-22. Ratio of recycled shown in Table G-5-22 would be adopted to infiltration and return flow in proposed condition.

(4) Groundwater

Regarding groundwater development in the project area, though the development should be required carefully handling as described in B-2-6, study of newly use of groundwater is carried out (economical comparison) as follows:

In case of pumping equipment;

- Facility	US\$ 735/ha	(US\$ 25,000/unit)
	(US\$ 588/ha)	(US\$ 20,000/unit)
Depreciation	US\$ 113	(Period25 years,i=15%)
Maintenance cost	US\$ 26	(US\$ 900/34 ha)
Running cost	US\$ 35	$(3.000 \text{ hr } \times 0.4 /34\text{ha})$

- Connecting cannal	US\$ 44	(100 m x 15 \$ /34ha)
Depreciation	US\$ 7	
Maintenance cost	<u>US\$ 2</u>	
Total	US\$ 183	
	(161)	

Furthermore, to supply lift water the capacity of 1,807 m3/year (36,500,000 m3/20,200 ha) per ha as use for leaching besides irrigation water alike cannal system is added at least US\$7.00 (17 hr x 0.4), therefore, the sum of annual cost amounts to US\$190.00 (US\$168.00).

Note:

	Location	Maximum	Annua1
Gross water re	quirement		•
(Maximum)	Right bank (upper)	0.697 1/sec	8,431 m3
	- ditto - (middle)	0.495	9,427
	- ditto - (lower)	0.565	10,695
(Average)		0.586	9.518
Capacity of pu	mping equipment per un	it	30 1/sec
Operation hour	Max.	16 hr/day (1,728 m3/day)
Irrigation are	a of pumping equipment	per unit	34 ha
Operation hour	of pumping equipment	per unit	
	Annual ave	rage 2,996	hr (88 hr/ha)

In case of cannal system;

Total		146			
Administration cost	US\$	13			
Maintenance cost	US\$	16			
Depreciation	US\$	117	(Period	50 years,	i=15%)
- Facility	US\$	//8/ha			

Note:

Temporary facility;	US\$ 784,000
Intake structure;	5,521,000
Cannal:	9,408,000
Total	15,713,000 / 20,200 ha

From comparison of the abovementioned, the cost for secure new irrigation water by pumping up groundwater is higher than cannal system (use of surface water), therefore, it is desirable to give high priority for use of surface water. Further existing pumping equipment would utilize in dry season by no abolition.

As use of groundwater in this case, the followings can be found. Utilization of groundwater is shown as follows, based on the records in the past seven years:

Year	Utilization	Record
and department of	x 10 ³	$\epsilon_{\mathfrak{m}}$
1977	8,523	
1978	12,375	
1979	20,510	
1980	7,220	
1981	5,618	
1982	•	
1983	301	

It would be considered that the utilization is too much in 1979, which was the minimum in river discharge during the past 20 years.

Since the annual available volume, which can be utilized in steady, would be $10,000 \times 10^3$ m 3 to $12,000 \times 10^3$ m 3 , the availability would amount $11,600 \times 10^3$ m 3 every year.

Monthly utilization is decided $2,700 \times 10^3 \text{ m}^3$ in maximum corresponding to the present yield (1.257 m 3 /sec) as shown in Table G-5-23.

5-5 Water Balance

(1) Course for water balance calculation

Based on the existing irrigation system, water resource would be classified into three types as follows:

- River discharge directly from Chancay river throughouot the year,
- River discharge in flood period and return flows in drought period, and
- Infiltration.

Groundwater would be supplied in some parts, however, the course for water balance calculation would be proposed as follows:

(a) Present

- River discharge at Palpa can be obtained from that at Santo Domingo without water requirements in Saume and Cuyo area.
- Water requirements, in flood season from February to August, would be gotten from intake facilities of 17 along Chancay river.
- In drought season from September to January, water requirements would be obtained from the facilities that extend Palpa to Chancay-Huaral in due order. These five intakes irrigate the area of 12,780 ha, the shortage would be supplied by groundwater. Return flow from upstream area would be used for the area of 3,399 ha where are irrigated by the intakes of 12, located between San Jose and Hanglar.
- Chancayllo, Jecuan, Derisias and Laureles area of 3,244 ha in the right bank, and Mira Flores area of 577 ha would be irrigated by infiltration from upstream irrigated area

through the year.

(b) Proposed course

At the improvement of cannal, unification of the intake facilities would be planned as described in H-3. However, as the system of irrigation cannal would have no altered. Condition of proposed cannal system is as shown in Fig.G-5-4, and studies of water balance will be carried out as follows;

- River discharge at Palpa (Q2) can be estimated from that at Santo Domingo (Q1), minus water requirements in Saume and Cuyo area of 900 ha (q1). [Q2 = Q1 q1]
- Irrigation Water for La Esperanza, Plpa, Caqui and San Jose will be intaked at Palpa diversion weir for both banks, Esperanza area of 3,440 ha in right (q2), Palpa, Caqui and San Jose area of 3,037 ha in left (q3).

 [Q3 = Q2 (q2 + q3)]
- Irrigation Water for Huando area of 1,416 ha (q4) and Chancay-Huaral area of 6,803 ha (q5) would be diverged at Huando diversion weir. [Q4 = Q3 (q4 + q5)]
- In case of Q1 < q1 + q2 + q3 + q4 + q5, upstream lagoons with effective capacity of 24,000 x 10 3 m 3 in maximum are operated to drain. Assumed that water requirements are lack even if the treatment mentioned above would be done, the shortage would be supplied by the pumps for groundwater, limited annual utilization of 11,600 x 10^3 m 3 in maximum, in the area irrigated by both Palpa and Huando diversion weir.
- In the wet season from February to August, water can be obtained at the proposed diversion weirs of Boza Alto (A = 779 ha, q6), Boza Bajo (A =676 ha, q7), Salinas Alto (A = 281 ha, q8), Pasamayo Bajo (A = 651 ha, q9) and Salinas Bajo

(A = 281 ha, q10). In case of Q4 > q6 + q7 + q8 + q9 + q10, the remained water flow out to the sea. Recycled utilization using the return flow to downstream block would be calculated in each block corresponding to the diversion weir in drought season.

- Since chancayllo area of 1,799 ha is dependent on infiltration through the year, water balance calculation would be carried out as recycled from Esperanza, Huando and Huaral area (A = 6,870 ha).
- The same method would be applied to the area of Donoso and Laureles (A = 576 ha), and Mira Flores (A = 577 ha).
- Collecting conduit would be provided in midstream area such as Boza Alto for the counterplant of water shortage.

Flow chart of water balance calculation in proposed is shown in Figure G-5-4, the proposed commanding area in system wide in Fig. G-5-5.

(2) Present water balance calculation

The results in probable year of 10 years are presented in Figure G-5-6 and Tables G-5-24 to G-5-30. Annual shortage would amount 17,800 x $10^3 \ \mathrm{m}^3$ with its peak in January. The area where irrigation water is short are distributed in the canal end from directly river, Donoso area and downstream parts of Chancay river.

(3) Proposed water balance calculation

Monthly intaked water in each diversion weir is shown in Table G-5-31, Water balance calculation in the probable year of 10 years, based on the requirements and the water resource mentioned before, gives Figure G-5-7 and Tables G-5-32 to G-5-38. Proposed utilization in each resource would be as follows:

Resource	$\frac{\text{Amount}}{\text{x } 10^3 \text{ m}^3}$
River	131,643
Return flow	46,058
Lagoons	24,000
Groundwater	8,326
Others	1,179
Total	211,206
Total demand	211,847
Shortage	641

Water shortage is occurred in Boza area, therefore, irrigation water would be supplied by the collecting conduit.

The results in the probable year of 5 years and in the past six years $(1978/^{1}79 - ^{1}83/^{1}84)$, using the same method, are presented in Tables G-5-39 to G-5-45.

Table G-5-46 shows the case that on-farm water management is not enough. Summary of the calculation is shown in Table G-5-47, the water shortage would be seen in 1979/80.

(4) Available volume for leaching

The remained water except irrigation water can be used for leaching requirements. Assumed that the utilization is limited to the capacity of irrigation facility, available volume per annum would amount $36,500 \times 10^3 \text{ m}^3$ as shown in Table G-5-48. Leaching requirements can be concentrately supplied to defend the salt accumulation between March and May due to the flood period with much non-effective discharge.

Leaching for salinity soil would be effective before seeding of cotton, from June to August, and the requirements of 12,000 x 10^3 m³ can be utilized in this period.

(5) Water Management considering supply with groundwater
River water should be utilized for the purpose of strengthen

groundwater availability and water for dissalinization of farm land (for leaching) besides irrigation water.

The condition of river water utilization in the probability of 10 years is estimated as follows;

Water balance in consideration of leaching and supply with groundwater; (Probability: 10 years)

- River discharge including the water from lagoons $246,189 \times 10^3 \text{m}^3$ ($(222,189 + 24,000) \times 10^3 \text{m}^3$)
- Intake water from the Chancay river $155,643 \times 10^{3} \text{m}^{3} \text{ ((24,000 + 131,643)} \times 10^{3} \text{m}^{3} \text{)}$
- Reserved water in the lagoons in wet season $30,000 \times 10^3 \text{m}^3$
- Available water for leaching $36,506 \times 10^3 \text{m}^3$
- Run-off discharge to the sea (Period; from Feb. to Apr.) $24,040 \times 10^3 \text{m}^3 \quad \underline{1}/$
- Available intake water for irrigation and leaching $(2,400 + 131,643 + 36,506) \times 10^3 \text{m}^3 = 192,149 \times 10^3 \text{m}^3$ $187,300 \times 10^3 \text{m}^3 \text{ } \underline{2}/$

1/

(Unit: 10^{3}m^{3})

Month	River Discharge	Max.Intake	
	(1)	(2)	(1) - (2)
Feb.	32,420	23,518	8,902
Mar.	59,517	23,518	35,999
Apr.	32,657	23,518	9,139
Total			54,040

Reserved water in the lagoons 30,000
Run-off discharge 24,000
54,000

Refer to Table G-5-32, 48, Fig G-5-6 and 7.

2/

River discharge in 1979/80 ; $265,000 \times 10^3 \text{m}^3$ Intake water from the river ; $199,000 \times 10^3 \text{m}^3$ (1)

Intake water from return flow; $11,700 \times 10^{3} \text{m}^3$ (2)

(Period : from Aug. to Nov.)

Intake water excluding return flow; (1) - (2)

 $= 187,300 \times 10^{3} \text{m}^3$

Refer to Fig.G-2-2.

5-6 Canal and On-Farm Irrigation

(1) Irrigation facility

Irrigation water intaked from each diversion weir are distributed to on-farm by way of main and lateral canals.

Regulated reservoir is provided at the diverged point of canal. It would be expected the rational distribution, viz, reserved in the night and drained in the daytime. The capacity of intakes and pricipal canals to be connected, therefore, would be proposed at 24 hours capacity of maximum water requirements in the service area. But the capacity of the other canals, lower than the reservoir and or main diversion of principal canals required to be enough to deliver the water for irrigation in the daytime, then the water diverted from the river at night will be reserved in the regulating ponds or reservoirs. Moreover, the examination on the capacities of these canals were considered the scale of rotation blocks.

Maximum capacity of principal intakes and canals are shown in Tables G-5-49 (1) to (4) and Tables G-5-50 (1) to (5).

There are 13 existing reservoirs with the capacity of 7,000 to $42,000 \text{ m}^3/\text{place}$ (average; $17,000 \text{ m}^3/\text{place}$) in the service area, however, the managements are not always good and the capacity is short. Consequently, the effective capacity would be changed, as shown in Table G-5-51. Construction of five reservoirs are proposed from the viewpoint of water distribution, as shown in Table G-5-52.

The considered points in the determination of the storage capacity and the construction of new reservoirs are as follows:

- La Esperanza Irrigation System

Though this system has a reservoir with the capacity of 42,000 m³ at the upstream area, the irrigation water from the intake gate since the commanding area is slender in shape. Therefore, the remnant water in canal after finish irrigation works on the farm would be waisted.

As it is easy to come out the water shortage in the down stream area, the new construction of two reservoirs would be proposed, i.e., one with the capacity of $13,900~\text{m}^3$ at the divergent point between Cabyal Bajo and Cayo Murillo and the other one withe the capacity of $18,800~\text{m}^3$ at the divergent point between Virgen Granados and Lat.-3 Granados.

Three reservoirs above mentioned will store the capacity equivalent to approximately six hours' maximum diversion water requirements for the total area of this system, and it will be able to intermit the irrigation works, averaging six hours a day.

- Huando Irrigation system

Huando area is small limited as compared with La Esperanza and Palpa-San Jose, and its farm land is almost owned by the cooperative Huando. Therfore, the area is under facilitated condition for water management.

Further, if the surplus irrigation water should arise, it flows into Chancay-Huaral Irrigation System. From this reson, the construction of new reservoir has no taken consideration. The reservoir with a capacity of $13,600~\text{m}^3$ has been constructed at the upstream area in this system, then it can be stored the capacity for 2.6~hours' diverson water requirements in the total area.

- Huaral Irrigation System

The intake facility of this system would be able to take the stabilized water than actual situation by means of the unification with the intake facility of Huando. Accordingly, the new

construction of a reservoir which is provided at diverged point in the upstream area of the canal system would be no considered in this system.

However, as the existing reeservoirs of two places have been examined, so that the capacity equivalent to twelve hours' diversion water requirements in the commanding area may store up, in the same as Chancay Irrigation System.

As a result, the storage capacity of proposed reservoirs is as follows:

·	Proposed	Present	Commanding Area
Res. Jesus del valle	34,100 m ³	24,600 m ³	801 Ha
Res. Cerrito	17,100 m ³	12,000 m ³	410 Ha

- Chancay Irrigation System

The existing reservoirs of five places are installed in this system as follows:

	Storage Capacity	Commanding Area
Res. Quepepampa	10,800 m ³	426 Ha
Res. Buena Visca	11,300 m ³	400 Ha
Res. Galeano	12,000 m ³	380 Ha
Res. Los Laureles	16,000 m ³	426 Ha
Res. Chancay Bajo	7,300 m ³	
Total	57,700 m ³	

There are situated in the end of Chancay-Huaral Irrigation System, and is easy to occur the water shortage, the surplus irrigation water also flows down into these areas from the upstream area at irregular intervals. Therfore, a large number of reservoir is needed in these areas.

Consequently, as the capacity equivalent to twelve hours' diversion water requirements in the total area has been examined for the capacity of each reservoir.

As a result, the storage capacity of following reservoirs would be enlarged:

	Proposed	Present
Res. Quepepampa	$17,000 \text{ m}^3$	10,800 m ³
Res. Chancay Bajo	9,300 m ³	7,300 m ³

Furthermore, the new construction of the second reservoir with the capacity of $12,000~\text{m}^3$ in the area of Los Laureles would be proposed.

- Chancayllo Area

This area is favored with abundant irrigation water. But the irrigation area mentioned below have some slopes. There are two existing reservoirs in these irrigation systems on San Cayetano and San Juan as follows:

	Storage Capacity	Commanding Area
Res. Chancayllo(1)	$12,000 \text{ m}^3$	190 Ha
Res. San Juan	5,000 m ³	213 Ha

Assuming that the capacity is equivalent to six hours' diversion water requirements, the Res.San Juan would be enlarged the capacity by 7,300 $\mbox{m}^3.$

- Palpa-Caqui-San Jose Irrigation System

There is an existing reservoir with the capacity of $33,800 \text{ m}^3$ at Palpa Alto in this system. The system would be needed to enlargement and/or new construction of reservoir by reason of the same as stated on La Esperanza Irrigation System.

In this system, the capacity which is equivalent to six hours' diversion water requirements by the construction of new reservoir with the capacity of $16,400~\text{m}^3$ at Aucallama and enlargement of Res. Palpa to the storage capacity of $40,200~\text{m}^3$ (limited to enlarge by means of geographical features) would be proposed.

- Boza Bajo-Pasamayo Alto Irrigation System
Assumed that the capacity is equivalent to six hours' diversion
water requirements, the construction of new reservoir with the

capacity of 14,500 m^3 for its commanding area of 676 Ha would be proposed.

The new reservoir's site is desireable to provide at place in the existing canals of Boza Boja and Pasamayo Alto.

- Boza Alto, Salines and Pasamayo Irrigation System

Each commanding area of these systems is comparatively small, and
utilizes underflow, return flow and/or infiltration water.

It is possible to intake the irrigation water constantly in all cases, therefore, construction of reservoir has no consideration in particular.

Collecting conduit with capacity of 0.1 $\rm m^3/sec$ would be provided for the area of Boza Alto to Pasamayo Alto.

The skeleton and distribution system are presented in Figure G-5-8 and G-5-9, respectively.

(2) On-farm

The project area is classified broadly into two zones, viz, fruits cultivation in the upstream and one year crops such as cotton, maize and vegetables in the midstream and downstream. Land slope ranges from 1 to 2 degrees with mild and furrow irrigation has been carried out.

On-farm intake rate was mesured at Quincha and Donoso, shown in Tables G-5-53 and 54 and Figures G-5-10 (1) and (2). Basic intake rate becomes 47.2 mm/hr at Quincha, 146.4 mm/hr at Donoso.

Present furrow irrigation method would be adopted, taking into account the conditions of farming, economic and so on, in future however, sprinkler irrigation and drip irrigation, etc. would be considered to introduce in keeping pace with the improvements such as on-farm application efficiency, labor forces for irrigation and irrigation technology, etc.

Total readily available moisture (TRAM) would be different from the crops and soils, although, TRAM for the principal crops ranges from 30 to 70 mm/time, shown in Tables G-5-55 (1) to (4). Water requirements per ha and intermittent period, presented in Table G-5-56, can be calculated by using TRAM.

Irrigation hours per time would be obtained from on-farm water requirements of each crop and discharge flowed into. Assumed that the discharge of 15 1/sec flowed into, justised from existing on-farm canal condition, and proposed intermittent period would be ten days. Irrigation hours of 8 to 12 hr/ha would be gotten as shown in Table G-5-57.

(3) Irrigation method in future

Rotation irrigation has been carried out in each irrigation block, however, there is no unified rule whole the project area, with difference in each block. (refer to paragraph G-2 (3))

Assumed that, in future, unification of intake facilities, canal linning, improvement and construction of reservoirs, etc. make water distribution rational, it would be necessary to build up the rules of rotation irrigation in each commanding area in system wide. The service area in each lateral canal would be between 100 and 200 ha.

Assumed of ten days intermittent period, one rotation block would be 10 to 20 ha and all blocks can be irrigated for ten days in due order.

As for on-farm irrigation method, furrow irrigation would be adopted, taking into consideration the farming conditions. However in future, it would be desired to introduce more effective irrigation method from the aspects of soil condition and effective water utilization, when water management and economic condition will be advanced, viz, sprinkler irrigation for vegetables and drip irrigation for fruits, it would be considered.

Excess water of 20 % compared with surface irrigation can be contrived, assumed that these methods would be carried out. This excess water equals to the volume that makes called "Tierra Eriasas" of 5,000 ha around the cultivated land possible to plant the crops.

Example of facility constitution for sprinkler irrigation is shown in Figure G-5-11.

6 Existing Drainage System and Poor Drainage Condition

It has been seen the poor drainage area with high groundwater level where infiltration from upper irrigation area is concentrated, caused by topographical and geological conditions.

Drainage network, which mainly aims at the collecting of infiltration, has been provided for downstream irrigation water. Although, these drainage canals can not make the groundwater level low due to comparative shallow depth of 1.0 to 1.5 m from field surface.

Poor drainage can be seen the area where is intercepted the stream of infiltration and/or groundwater in the midstream to downstream parts having hilly land in the downstream at the viewpoint of topography. Quincha, Donoso and Boza area are applied to this pattern.

On the other hand, river terrace is developed along Chancay river and it is also seen the poor drainage in the lower part of this terrace caused by underflow water from the river, and infiltration. The areas applied to this pattern are San Luis, Lunavilca, Salinas and Palpa. (refer to Table G-6-1)

It would be necessary to build the drainage system both to make groundwater level low and to carry out effective leaching, since the salinity soil is distributed in this area.

Conditions of these poor drainage areas are presented in Table G-6--2.

7 Drainage without Project

Seasonal variation of groundwater level is occurred in the poor drainage area, although, it would be considered that natural fall of groundwater level can not be expected assumed absolute volume of infiltration from upstream irrigation water is not changed. Existing drainage canal would not be able to function to fall down the groundwater level because of sparse density with shallow depth.

Salinity soil is distributed in the area of shallow groundwater level and makes the cultivation trouble. The area where is impossible to plant and keep the weed land or waste land can be seen especially in some part of high salinity soil. Removal of salinity would come into possible by falling down the groundwater level, since there has close relationship between salinity and groundwater level.

It is assumed that this project will not be executed, there would be much possibility to make production will of farmers fall back and to make waste land wider.

8 Drainage Improvement

8-1 Course for Drainage Improvement

Drainage improvement would be proposed the poor drainage area of 2,180 ha where groundwater level is less than 1.5 m from the ground surface. These areas are occupied by medium to fine textured soil including salinity in some parts and coefficient of water conductivity varies 1.5 to 5.0×10^{-3} cm/sec.

The poor drainage area is spreaded in 2,180 ha, a part of the project area of 20,200 ha, out of which 350 ha in San Luis, Luavilca and Palpa being along the Chancay River and 1,850 ha in donoso (810 ha), Quincha (870 ha) and Boza (150 ha) which are located apart from the River.

As shown in Fig. B-2-6, Annex B (Section I-I, J-J), sandy soil layer is dominated in Donoso and Quincha where the influence of the groundwater appeares.

In order to improve drainage condition in the area, the following two measures are commonly considered.

- Sucking up the groundwater by pump equipment
- Pipe drainage

(1) Plan of pumping up

Plan of pumping up is surely one of the way to use the groundwater for irrigation in the surrounding field and the plan seems to be reasonable as a general concept to utilize water resources by vertical circulation in some case. One of the particular merits of the drainage by pumping up is to suck up relatively deep groundwater and to draw down sub-surface groundwater level. Taking into consideration such condition of the pumping plan, the following problems might happen when pumping plan is incorporated into this project.

- Relation with the existing irrigation and drainage systems

 The current irrigation and drainage systems in the project area is
 formulated to reutilize infiltrated water and return flow for
 irrigation water based on a long history and experience.
 Accordingly, if pumping plan would be adopted in this project, the
 existing systems must be reorganized. Particularly, the existing
 irrigation systems in Jecuan and Chancayllo area will be severly
 affected by additional pumping systems.
- Systematic operation of pumping systems
 Under the plan of pumping up, it is not so effective that the individual farmers operate each pumping facility separately bacause pumping drainage must be carried out in normally large area and systematic operation of pumping systems is indispensable. However, it is considerably to operate pumping systems systematically and reasonably when pumping plan is taken into this project.

- Influence to outside of the area

 The plan of pumping up will affect adversely to the existing wells
 in the vicinity due to pumping up the groundwater from deep zone of
 underground. There are so many wells for drinking and domestic
 purpose besides wells of irrigation purpose.
- Uneasiness in predicting the change of groundwater flow The movement of groundwater and structure of underground can not be clarified definitely unlike surface water. Therefore, when pumping plan would be adopted, the uneasiness is remained in foreseeing the change of groundwater flow.

- Reliability

The plan of pumping up has a problem in the mechanical reliability such as stop supplying electric power, etc.

- Relation between irrigation and drainage
As mentioned in Annex B, underground water flows actually along the channel of groundwater and location of poor drainage area is not always coincided with that of the groundwater channel. Therefor, it seems almost impossible to take irrigation water without fluctuation from wells of which purpose is drainage.

(2) Plan of pipe drainage

Initial construction cost of pipe drainage might be slightly higher than that of pumping equipment and related structures in some case. However, running cost of pipe drainage is no longer necessary unlike pumping drainage. As results, total cost of pipe drainage including construction and running cost is clearly more economical than that of pumping drainage. Furthermore, pipe drainage has merits as below.

- Influence to the existing irrigation and drainage systems

The existing irrigation and drainage systems remain uchanged and influence to them is not anticipated.

- Influence to the change of groundwater flow in the neighboring area The plan of pipe drainage is more reliable than the plan of pumping up because the water of near ground surfface can be controlled without any sophistcated machinery and equipment.
- Management by individual farmers The farmers are able to manage the system individually which is simple structure without any running cost and skilled technique and not related with neighboring area.
- Re-utilization of drainage water
 Drainage water can be used for irrigation again in the downstream
 area depending upon the topographical and geological conditions.

In view of the foregoings, the pipe drainage is adopted for the project.

8-2 Designed Discharge

Designed unit discharge of pipe drain is described as follows:

Maximum irrigated water per day (7.0 mm/day) - consumptive use (ETc; 3.0 mm/day) = 4.0 mm/day)

On the contrary, open drain system consists of catch drain and ordinary drainage canal (Collector or Sub-collector) and designed unit discharge is adopted the following value.

- Catch drain and intercepting canal

Infiltration from upstream area (catchment area x ratio of recycled)

- Ordinary drainage canal

Discharge from pipe drain (4.0 mm/day) + excess water by wide- area surface irrigation $(2.0 \text{ mm/day}) \approx 6.0 \text{ mm/day}$

8-3 Open Drain Formulation

Open drain is required 2.2 to 2.5 m depth corresponding to designed groundwater level and depth of pipe drain, etc. In this case, both type of unlined and linning would be considered. As a result of cost comparison, unlined type is adopted for the reason of cheaper hereinafter.

Open drains are classified into intercepting canal, main and lateral drainage canals subject to its objection. Interval of drainage canals will be between 300 and 500 m, taking into consideration present condition of existing drainage canals and farm lots, and topography.

Slope would be 1:1.5 caused by geological condition. Assumed that maximum velocity is 0.8 m/sec, longitudinal slope would be 1/100 to 1/400, and drops should be provided in keeping with slope.

Inspection road would be proposed, both sides for catch drain and main drainage canal, one side for lateral drainage canal.

Typical section is shown in Figure G-8-1, length and discharge in Table, G-8-2, location in Figure G-8-2.

8-4 Pipe Drain Formulation

Proposed groundwater level of lower than 1.5 m should be required in accordance with root zone of cultivated crops in the project area. Consequently, depth of pipe as shown below would be installed 1.5 to 2.0 m (average depth; 1.8 m). Pipe connected to open drain is of a parallel or fish skeleton type corresponding to topographical condition. Corrugated PVC pipe with diameter of 100 mm would be utilized.

Interval of pipe will be classified into two types, viz, 40 m and 60 m caused by soil texture. Pipe drain would be constructed by Trencher and filter material to increase the collecting capacity is proposed in the circuit of the pipe.

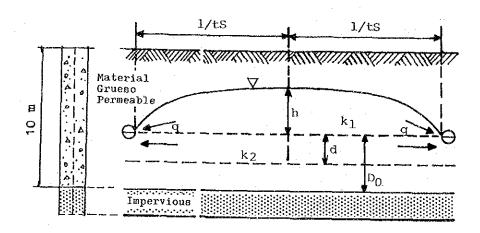
		Pipe Dra	<u>ain</u>		
Туре	Soil Texture	Interval	Density	<u>Area</u>	Length
		m	kıs/ha	ha	km
1	Coarse or	60	170	1,720	292.4
	Medium			•	
2	Fine	40	250	460	115.0
Total				2,180	407.4

(1) Interval of pipe drain

Interval of pipe drain can be determined from designed discharge, seepage coefficient of the related soil and depth of impermeable layer. The equation of Hooghoudt is generally used for design of pipe drain and showing as below:

$$q^2 = \frac{4K_1}{S^2} \times H^2 + \frac{8K_2}{S^2} \times a \times H \dots (1)$$

where, S: Interval of pipe drain (m)


H: Hydrostatic head between drain pipe and under-ground water level (m)

q : Design discharge of pipe drain (0.004m/day)

 K_1 : Seepage coefficient of layer aabove the drain pipe $(4 \times 10^{-3} \text{ cm/sec} = 3.5 \text{ m/day})$

 K_2 : Seepage coefficient of layer below the drain pipe (2.3 x 10^{-3} cm/sec = 2.0 m/day)

a: Thickness of Hooghoudt's equivalent layer can be determined by distance between drain pipe and impermeable layer (Do), interval of drain pipe (L) and wet condition surrounding the drain pipe.

In order to facilitate calculation of interval of pipe drain, equation (1) can be converted as follows:

$$S^2 = -\frac{4K_1}{q} - x H^2 + \frac{8K_2}{q} - x a x H \dots (2)$$

Before estimating "a" (Thickness of Hooghout's equivalent layer), "Do" should be determined by geological profile. According to the geological profile, impermeable layer with thickness of about 3 meters is located in depth of around 10 meters from ground surface in vicinity of Quincha and Donoso where are poor drainage area. Therefore, "a" is

estimated when Do = 10 meters.

When take 10 cm for diameter of pipe and 60 cm meters for interval of pipe derived from similar project such as Mala, Canete and etc., "a" can be estimated by "nomograph for Hooghoudt's d value" as below:

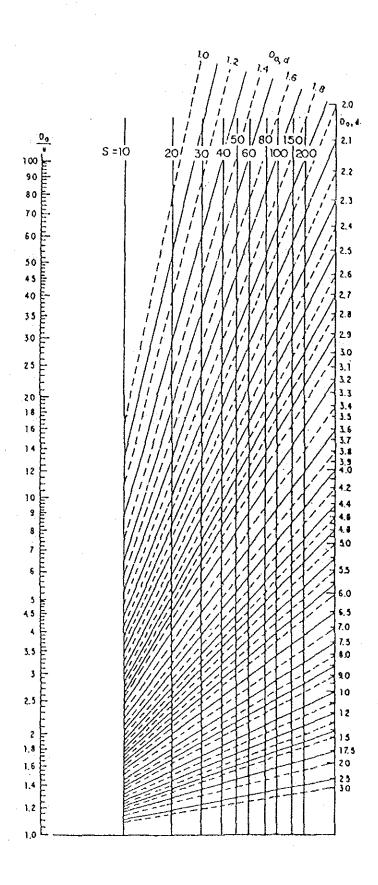
Do = 10. - 1.8 = 8.2 m (1.8 m shows depth of drain pipe)

$$u = \pi x r = 3.14 \times 0.05 = 0.16$$

 $u = 8.20/0.16 = 51$

when,
$$q = 0.004 \text{ m/day}$$

 $H = 0.3 \text{ m}$


Interevals of pipe drain correspond to K_1 and K_2 in the location are calculated by the above formula of (2). The result is shown below :

k_1 & K_2	<u>Interval of pipe drain</u>
2.0 m/day	70 m
1.5 m/day	57 m
1.0 m/day	40 m

The value by Slater C.S. in United States, present below, ranges from 55 to 75 m thereto.

Interval of Pipe Drain (United State)

Coef	ficient of	Dept	th of Pipe I	Orain
water	conductivity	0.9 m	1.2 m	1.5 m
	(cm/sec)			
0	- 3.5 x 10 ⁻⁵	0 - 4.5	0 - 6	0 - 7.5
3.5×10^{-5}	-1.4×10^{-4}	4.5 9	6 - 12	7.5 - 15
1.4×10^{-4}	-5.6×10^{-4}	9 - 18	12 - 24	15 30
5.6×10^{-4}	-1.7×10^{-3}	18 - 33	24 - 43	30 - 54
1.7×10^{-3}	-3.5×10^{-3}	33 - 46	43 - 61	54 - 76
3.5×10^{-3}	-7.0×10^{-3}	46 - 66	61 - 87	76 - 108

Nomograph for Hooghoudt's D Value

Neverthless, acutual topographical and geological condition has little uniformity and it has been seen the some parts including fine texture soil. The interval of 40 to 60 m, consequently, would be proposed in this project, taking into account these conditions mentioned above.

(2) Diameter of pipe

When corrugated PVC pipe (PVC corrugado) is involved, the following formular is used for caluculation of water discharge flowing in the pipe.

$$q = 38d^{2.667} I^{0.5}$$
(3)

where, q : discharge inside the pipe (m 3 /sec) 250 m x 0.004 m/86400sec = 0.00069 m 3 /sec take 0.6 for correction factor 0.00069/0.6 = 0.00115 m 3 /sec

d : inner diameter of pipe (m), assumed as 0.10 $\ensuremath{\text{m}}$

I : average hydrodynamic gradient, assumed as 1/600

In order to caluculate diameter of pipe, the above formular is modified as follows:

$$d^{2.667} = \frac{Q}{38 \cdot 10.5} \qquad(4)$$

Then, d = 0.067 m

However, inner diameter of 100 mm of drain pipe is adopted taking account of consideration sedimentation inside pipe, practically.

Table G-1-1 Project Area in Blockwise

Bank	Block	Area	Percentage	District
	Upstream	2,320	11%	PALPA-CAQUI
Left Bank	Midstream	3,400	17	MIRAFLORES-SANJOSE, PASAMAYO BOZA-AUCALLAMA
	Sub-Total	5,720	28	
	Upstream	4,860	24	LA ESPERANZA HUANDO
Right Bank	Midstream	5,790	29	RETES-NATURALS, CHANCAY ALTO JESUS DEL VALLE-ESQUIVEL
	Downstream	3,830	19	CHANCAYLLO, CHANCAY-BAJO SALINAS
4. 4	Sub-Total	14,480	72	
Total		20,200	100	

Table G-1-2 Commanding Area in Canal wise

		Gross Area	Net Area
		ha	ha
(LEFT BANK)	:	1,656	1,575
PALPA-CAQUI	PALPA	647	615
	CVÕNI		443
MIRA FLORES	MIRA FLORES	466	134
	Dren PUQUIO	141	847
SAN JOSE	SAN JOSE	891	
BOZA	OTLA ANOB	820	779
	BOZA BAJO	408	388
PASAMAYO	PASAMAYO ALTO	303	288
•	PASAMAYO BAJO	609	579
HANGLAR	HANGLAR	75	72
Sub-Total		6,016	5,720
(RIGHT BANK)			
ESPERANZA	LA ESPERANZA	3,558	3,440
HUANDO	HUANDO	1,491	1,416
CHANCAY-HUARAL	HUARAL	4,110	3,905
	CHANCAY	2,136	2,029
SALINAS	SALINAS (A.M.M.B.)	469	446
Filt Retes-Quincha	Dren ESPERANZA	130	124
	Dren Retes	486	462
	Dren QUINCHA	195	185
	Filt QUINCHA	234	222
	CALERA	177	168
	EL PROGRESO	44	42
Filt DONOSO	Filt DONOSO	364	346
	Dren DONOSO	242	230
CHANCAYLLO	SAN SAYETANO	200	190
	SAN JUAN	224	213
	CANDERLARIA	370	352
	CHANCAYLLO Der	152	144
	CHANCAYLLO 1zg	402	382
EL HATILLO	HATILLO	200	184
Sub-Total		15,184	14,480
Total		21,200	20,200

Table G-1-3 Economic Comparison

Case-1. Annual Cost

Alter-		Length of Ground	Groundwater	Irrigated	Construction	Annua.	1 Cost	!	
native	native Probability	Lining	Utilization	Area	Cost	Amoltization	M/0	Total	Notes
	year	조		ha	× 10 ³ \$	s/ha \$/ha \$/ha	\$/ha	\$/ha	
A	10	170	Max	20,200	41,500	308	48	356	Original
щ	10	270	Max	20,900	47,800	343	67	392	
ပ	10	120	Max	18,930	39,500	313	67	362	

Case-2. Annual Benefit

	Notes		Original		
			0r		
£it	per ha	€9-	2,305	2,260	2,197
Bene.	Total	x 10 ⁵ \$ \$	46,551 2,305	46,903	47,445 2,197
Annual	Cost	x 10 ³ \$	26,579	26,846	27,260
Value of	Product	x 10 ⁵ \$	73,130	73,749	74,705
Irrigated	Area	ha	20,200	20,750	21,600
Groundwater	Utilization		Max	Max	Max
Length of Groun	Lining	Z E	170	170	170
	native Probability	year	10	۱۸	2
Alter-	native		Ą	щ	U

Note: Amoltization;

Period : 50 years

Discount Rate : 15 % per annum

Table G-2-1 Existing Irrigation Method

1. Item

- Date : 18 th, July, 1984

- Place : Boza Alto

- Crop : Initial growth stage of Maize

- Field: Presented below (A= 1.0 ha)

2. Condition

- Furrow slope: 1/100

- Irrigated time: 18 minutes per 5 lines

 $18^{\text{min}} \times 50^{\text{lines}}/5^{\text{lines}} = 180^{\text{min}} = 3 \text{ hr/ha}$

- Velocity between furrow: $160^{\rm m}/18^{\rm min} = 15$ cm/sec

- Water requirements: $(0.010 - 0.015^{\text{m3/sec}}) \times 3^{\text{hr}} \times 3,600^{\text{sec}}$

= 108 - 162 m3/ha = 10.8 - 16.2 mm

- Intermittent day: 15 days

Table G-2-2 (1) Present Irrigation Condition (1 of 2)

			I					
		Water Shortage	From Jun. to Aug. Use together with pump	Caused by sedimentation in canals and reservoir	occurs in one third of the irrigation block in wet season	I	l	occurs in end of irrigation block
Present Irrigation Condition (1 of 2)		Water Resource	River, Infiltration in downsttream, Groundwater	Flood season: River Drought season: Infiltration	Flood season: River Drought season: Infiltration	Flood season: River Drought season: Return flow	River	River
sent Irrigatio		Basic Intake Rate	mm/hr -	l	372.0	ſ	: I	er er
Table G-2-2 (1) Pre		Intermittent Day	15 days 0-15 days ctMar.) 5 days	Cotton, Maize: 7-14 days	Maize: 15 days	Maize, Vegetable: 7 days	i	Fruit: 5 days in summer 10 days in winter
		Groundwater Level	> 2 O	> 2.0 (along river) 0.5 - 1.5	(upper) > 2.0 (lower) 0.5 - 1.5	> 2.0	> 2.0	> 2.0
	-	Soil Texture	SL: - : L	S - LS SL - L	SI - IS	7. – TS	ı	S - LS
		Block	Palpa and Caqui	Mira Flores and San Jose	Boza - Aucallama	Pasamayo	Cuyo- Huayan	Esperanza Alta,Bajo
				G -	45			

Table G-2-2 (2) Present Irrigation Condition (2 of 2)

	Block	Soil Texture	Groundwater Level	Intermittent Day	Basic Intake Rate	Water Resource	Water Shortage
			<u> </u>		mm/hr		
	Huando	SI - I	> 2.0	1	ı	River	occurs in partly at the end of irrigation block
	Jesus del Valle - Esquivel	SL - L (10v CL - C	(upper) L > 2.0 (lower) C 0.5 - 2.0	ſ	58.0	Upstream: River Downstream: Infilt- ration, Groundwater	supply with pump when the river discharge is draught
G - 46	Retes and Naturales	SL - L (some parts) CL - C	(upper) > 2.0 (lower) 0 - 1.5	4 days	27.6	Upstream: Tiver Downstream: Infilt- ration, Droundwater	-op-
	Chancay Alto	SL - CL	> 2.0	8 - 10 days	ı	River, Groundwater in some parts	occurs from Aug. to Dec.
	Chancay Bajo	SL - L	> 2.0 (some parts) 0 - 1.5	11 days		Infiltration	Area of 20 - 30 % in block can't caltivate
	Salinas	s - CL	> 2.0 (some parts) 0 - 1.5	I	1	Infiltration	
	Chancay110	S - CL	> 2.0	7 days		Infiltration	1

Table G-3-1 Water Shortage Area

District	Area (ha)	Cause
Esperanza midstream	550	Imperfection of intake facilities, irrational water management
Esperanza downstream	1,100	Unlined canal, irrational water management
Huando downstream	330	- do -
Esquivel	500	Capacity decreasement by sedimentation in the canal and reservoir
Chancay Bajo	950	- do -
La Huaca	120	Irrational water management
Boza-Aucallama	900	Imperfection of intake facilities, irrational water management
Pasamayo Bajo	450	Unlined canal
Total	4,900	

Table G-5-1 Evapotranspiration by Pemman Method

Month	Tmean	RHmean	n	u	Ra	U Ud	Uday/Unight	Rs	ET	O	ETo
	O	5% 2%	km/day			m/sec			mm/day		mm/day
Jan.	21.9	93	74	6.5	16.5	0.86	7	6.22	3.13	1.10	3.44
Feb.	22.8	92	70	6.4	16.3	0.81	7	6.24	3.21	1.10	3.53
Mar.	22.6	93	95	7.8	15.4	1.10	ო	4.74	2.57	96.0	2.47
Apr.	20.8	76	77	7.5	14.1	0.89	7	4.56	2.29	1.02	2.34
May	18.7	76	65	6.8	12.6	0.75	7	4.55	2.07	1.05	2.17
Jun.	17.0	95	99	7.7	11.8	0.76	ო	3.69	1.66	0.98	1.63
Jul.	16,4	76	61	8.0	12.2	0.71	2	3.62	1.67	0.94	1.57
Aug.	15.8	95	89	8.0	13.3	0.79	2	3.95	1.78	76.0	1.67
Sep.	16.0	76	85	8.0	14.7	0.98	ო	4.37	2.04	0.99	2.02
Oct.	17.0	76	108	8.0	15.8	1.25	4	4.69	2.27	1.03	2.34
Nov.	18.4	76	85	7.5	16.3	0.98	က	5.28	2.54	0.99	2.51
Dec.	20.2	93	80	7.1	16.4	0.93	7	5.66	2.82	1.10	3.10

where; $ET^* = (WxR_n + (1-W)xF_{(u)}x(ea-ed))$ $ET_o = Cx ET^*$

Table G-5-2 Present Planting Area

1	ļ					1.			1	1
	Tota1	4,860	5,790	3,830	14,480	2,320	3,400	5,720	20,200	100
Follow	Land	70	20	260	380	30	09	96	7.0	2
	Pasture		40	I	07	l	110	110	150	г
	Bean/Forage		200	550	750	ı	450	450	1,200	9
Double Cropping	Vegetable	I	(310)	(370)	(089)	(150)	(70)	(220)	(006)	
Double	Potato		310	370	089	150	92	220	006	5
	Vegetable	I	420	700	1,120	150	530	680	1,800	6
	Maize	215	1,545	820	2,580	475	795	1,270	3,850	19
	Cotton	215	2,595	820	3,630	875	795	1,670	5,300	26
	Fruit	.4,360	630	310	5,300	079	290	1,230	6,530	32
	Block	Upper	Centrral	Lower	Sub - total	Upper	Lower	Sub - total	Total	(%)
	Bank	Right			Sub	Left		- qnS	\mathbb{T}_{C}	Ratio (%)

Table G-5-3 Proposed Planting Area

					Double	Cropping			
Bank	Block	Fruit	Cotton	Maize	Green/ Manure	Potato, Others	Choclo, Others	Vegetable	Tota1
Right	Upper	4,360	250	250	(125)		ł	ş	7,860
	Centrral	630	2,280	2,280	(1,140)	300	(300)	300	5,790
	Lower	310	1,310	1,310	(1,140) (655)	300	(300)	009	3,830
Sub	Sub - total	5,300	3,840	3,840	(1,920) (1,920) (1,920)	009	(009)	006	14,480
Left	Upper	640	069	069	(097)	150	(150)	150	2,320
	Lower	590	1,130	1,130	(450)	150	(150)	400	3,400
Sub -	Sub - total	1,230	1,820	1,820	(910) (910)	300	(300)	550	5,720
To	Total	6,530	5,660	5,660	(2,830) (2,830)	006	(006)	1,450	20,200
Ratio (%)	(%)	32	28	28		. 5		7	100

Table G-5-4 IRRIGATION DURATION OF THE PROPOSED CROPPING PATTERN

Crop	Area	Aug.	Sep.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul
<u></u>	ha												
Fruits	6,530			**********			~						
Cotton	5,660						~~~~ <u>~</u>	~					
Maiz	5,660											, _, _, _, ₁₀ _, ₁₀ _, ₁₀	
Beans	2,830		es es es es		~ ~ ~ ~ ~ ~								
(Dry)													-
Green Ma	anure												
	2,830					m 10 m m m							
Potato/	others												
	900				~~ ~ ~		** ** ** ** **						~~~
Choclo/c	others												
·	900									w 	شواه وجود جوان ميان	_ 44 04 00 00 0	, ex ex ex e
Vegetabl	les					•							
	1,450					~	~~~~						

0.60 0.74 0.94 0.10 MAY 0.30 0.84 0.25 0.89 0.20 APR. 0.55 0.66 MAR. 0.40 0.57 0.70 0.33 0.32 0.92 0.65 FEB. Crop Coefficiency (Kc) 0.40 0.10 JAN. 0.90 1.02 0.12 0.21 0.27 0.85 0.47 DEC. 1.01 0.25 0.58 0.55 0.85 0.73 NOV. 0.70 0.61 Table G-5-5 0.45 0.65 0.92 0.83 0.70 Scr. 0.91 0.25 0.35 0.82 0.83 0.73 SEP. 0.40 AUG. 0.15 0.15 0,47 0.58 0.45 0.42 (including vegetable) (double cropping) Vegetable (2) Green Manure Cultivos Choclo Fruits Cotton Potato (Maiz) Beans Maize

0.17

0.70

0.25

0.52

0.31

0.13

0.08

0.08

JUL:

JUN.

0.25

0.60

0.17

Table G-5-6 (1) Calculated Kc Value

Cotton

Month	Aug.	Sep.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.
Aug.	0.45	0.60	0.90	1.05	1.07	0.95	0.75		
Sep.		0.45	0.60	0.90	1.05	1.07	0.95	0.75	
Oct.			0.45	0.60	0.90	1.05	1.07	0.95	0.75
(Kc)	0.15	0.35	0.65	0.85	1.01	1.02	0.92	0.57	0.25

Maize

Month	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.
Jan.	0.35	0.60	1.02	1.05	0.75		
Feb.		0.35	0.60	1.02	1.05	0.75	
Mar.			0.35	0.60	1.02	1.05	0.25
							
(Kc)	0.12	0.32	0.66	0.89	0.94	0.60	0.25

Bean

Month	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
Jul.	0.50	0.90	1.07	0.75		•
Aug.		0.50	0.90	1.07	0.75	
Sep.			0.50	0.90	1.07	0.75
(Kc)	0.17	0.47	0.82	0.91	0.61	0.25

Table G-5-6 (2) Calculated Kc Value

Potato

Month	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Jan.
Jun.	0.50	0.75	1.05	1.03	0.85			
Jul.		0.50	0.75	1.05	1.03	0.85		
Aug.		-	0.50	0.75	1.05	1.03	0.85	
Sep.		•		0.50	0.75	1.05	1.03	0.85
(Kc)	0.13	0.31	0.58	0.83	0.92	0.73	0.47	0.21

Choclo

Month	Jan.	Feb.	Mar.	Apr.	<u>May</u>	Jun.	<u>Jul.</u>
Jan.	0.40	0.90	1.07	1.00			
Feb.		0.40	0.90	1.07	1.00		
Mar.			0.40	0.90	1.07	1.00	
Apr.				0.40	0.90	1.07	1.00
(Kc)	0.10	0.33	0.59	0.84	0.74	0.52	0.25

Green Manure

Month	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
Jul.	0.50	0.75	0.95	0.80		
Aug.	-	0.50	0.75	0.95	0.80	
Sep.	•		0.50	0.75	0.95	0.80
	***********				-	
(Kc)	0.17	0.42	0.73	0.83	0.58	0.27

Table G-5-7 Net Water Requirements

Total	(mm/year)	410.0	504.9	259.6	195.7	291.6	226.7	150.4	423.6
Jul.	1.57	0.13							1.10
Jun.	1.63	0.13		1.22					1.14 34.2
May	2,17	0.22	÷	2.28			2.17		1.30
Apr.	2,34	0.47		2.39			2.50		0.70
Mar.	2,47	0.99	1.85	1.48			2.22 68.8		1.36
Feb.	3,53	2,29	3,35 93,8	1.24			1.41		2.47
Jan. ETo (m	3.44	3.10 96.1	3,68 114,1						1.38
Dec.	3.10	2.64	3.26			2.64 66.0			
Nov.	2.51	1.76	2.26 67.8		1.88	2.59		2.01	1.38
Oct.	2,34	1.05	1.40		2.50	2.46		2.22	1.64
Sep.	2.02	0.51	0.91		1.82	1.52		1.52	0.81
Aug.	1.67	0.25			0.84	0.84		0.84	0.75
Pe		ETc ETm	ETc ETm	ETc ETm	ETC	ETC ETm	ETc ETm	ETC	ETE
rrigat	Day	365	210	150	110	145	110	95	365
	Crop	Fruit	Cotton	Maize	Bean	Potato	Choclo	Green Manure	Vegetable (Double Cropping)

Note: ETc; (mm/day), ETm; (mm/month)

Table G-5-8 Total Net Water Requirements (Present)

Crop	Planting Area		Aug.	Sep.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	Мау	Jun.	Jul.	Total
Fruit	6,530	V _m	7.8	15.3	32.6 2,129	52.8	81.8	96.1	64.1 4,186	30.7	14.1	6.8	3.9	4.0	
Cotton	5,300	E W		5.5	14.1	27.7	47.9	3,747	84.0 4,452	86.8	73.3	53.1	30.2	11.5	
Maize	3,850	n V	5.2		5.0 193	11.5	21.8	31.9	37.1	37.1	37.1 1,428	32.1	25.6 986	15.3 589	
Vegetable	1,950	핕 H	23.3	24.3	50.8 991	41.4		42.8 835	69.2	42.2 823	21.0	40.3	34.2	34.1	
Potato	006	E L	45.1	58.3 525	53.1	44.0	28.7 258	13.2				5.2	14.3 129	29.6 266	
Green Manure	(006)	ם 4					6.5 5.9	17.9	35.1	37.6	31.1	19.7	2.5		
Bean	1,200	F N H	323	52.7	56.6	38.4	12.5							8.7	
Choclo	(1,200)	V En	*4					9.9	27.1	45.8	56.7	46.8 562	355	10.9	
Total	19,730		1,892	2,922	5,217	7,023	9,187	12,484	12,056	9,744	7,604	990,9	4,016	2,626	80,839

Note: Em (mm/mgnth)
Vm (x 10³ m³/month)

Table G-5-9 Total Net Water Requirements (Proposed)

								ETo ((mm/day)						
Crop	Planting Area		Aug. 1.67	Sep. 2.02	Oct. 2 2.34	Nov	Dec. 2.51 3.	3.10 3.44	Feb. 44 3.53	Mar. 3 2.47	Apr. 2.34	May 2.17	Jun. 1.63	Jul., 1,57	Total
Fruit	6,530	ma m	7.8	15.2	32.6 2,129	52.7	81.7 5,337	96.0	64.2 4,192	30.6	14.0	6.7 438	3.9.	3.9	
Cotton	5,660	g v	7.8	21.2	47.2	64.0 3,622	97.1 5,496	108.8 6,158	90.9	43.6 2,468	17.6 996				
Maize	5,660	RA E						12.8 724	31.6	50.5	62.5 3,538	63.2	29.3	12.2	
Bean	(2,830)	Em Vm	24.3 688	49.7	66.0 1,868	45.9	24.0							8.3 234	
Potato	006	Em Vm	30.0	50.3	66.7	55.0 495	45.2	22.4					6.4 58	15,1	
Choclo	(006)	Ea Van				٠		10.7	32.6 293	45.2	59.0	49.8 448	25.4 229	12.2	
Green Manure	(2,830)	Em Vm	21.7	44.2	60.2	43.7	25.9						·	8.3 235	
Vegetable 1,450	1,450	E N	23.3	24.2 351	50.8 735	41.4		42.7 619	69.2	42.1 610	306	40.4	34.2 496	34.1	
Total	20,200		2,860	5,655	9,710	10,694	9,710 10,694 12,650 14,068	14,068	12,422	8,341	6,285	5,049	2,696	2,156	92,586

Note : Em (mm/mgnth)
Vm (x 10³ m³/month)

Table G-5-10 Irrigation Efficiency (E)

Present

		Unli	ined Canal	<u> </u>	Lir	ning Canal	1
Efficiency	7	Coarse	Medium	Fine	Coarse	Medium	Fine
	· · · · · · · · · · · · · · · · · · ·						
(1) Conveyance	Ec	70	75	80	80	83	85
(2) Field Canal	Eb	75	80	85	80	85	90
(3)							
Field Application	Ea	45	50	55	45	50	55
(1) x (2) x Irrigation	(3) E	24	30	37	29	35	42

Proposed

, , , , , , , , , , , , , , , , , , , ,		Unl	ined Canal	 L	Lir	ing Canal	
Efficiency	7	Coarse	Medium	Fine	Coarse	Medium	Fine
(1)							
Conveyance	Ec	75	80	85	95	95	95
(2)							
Field Canal	Eb	80	85	90	90	90	90
(3)							
Field Application	Ea	55	60	65	55	60	65
(1) x (2) x	(3)					•	
Irrigation	E	33	41	50	47	51	56

Table G-5-11 Comprehensive Irrigation Efficiency (Present)

	ţ		Coarse	a o	Medium	ш	Fine		i 	
Бапк	BLOCK	Area	Area	ы	Area	ſΞÌ	Area	ы	EI.	Lining
		ha	ha	0/0	ha	o%o	ha	0%0	0%	o%o
	Upper	4,860	3,810	28	1,050	34		I	59	72
Right	Central	5,790	400	24	4,790	30	600	37	30	0
	Lower	3,830	1,400	22	2,430	ж Т	I	I	29	21
	Upper	2,320	30	24	2,290	30	1		30	0
L O H T	Lower	3,400	920	25	2,480	31	1.	ŧ	29	12
	Total	20,200	6,560	25	13,040	31	009	38	29	(27)
					-					

Table G-5-12 Comprehensive Irrigation Efficiency (Proposed)

Hoork Area Area E Area E Area E E Area E E E E E E E E E E E E E E E E E E E	í	r f	•	Coarse	ψ ග	Medium	mr	Fine		ţ	Ratio of
Tower 2,320 3,400 6,560 42 13,040 48 600 54 46 Tower 3,400 6,560 42 13,040 48 600 54 46	Bank	BLOCK	Area	Area	ы	Area	ΙτΊ	Area	ы	il	Canal Lining
Topper 4,860 3,810 46 1,050 50 47 Central 5,790 400 43 4,790 48 600 54 48 Lower 3,830 1,400 38 2,430 45 42 Upper 2,320 30 43 2,290 48 48 Lower 3,400 920 42 2,480 47 46 Lower 3,400 6,560 42 13,040 48 600 54 46			ha	ha	es.	ha	olo .	ha	0/0	9/0	0/9
Central 5,790 400 43 4,790 48 600 54 48 Lower 3,830 1,400 38 2,430 45 - - 42 Upper 2,320 30 43 2,290 48 - - 48 Lower 3,400 920 42 2,480 47 - - 46 all 20,200 6,560 42 13,040 48 600 54 46		Upper	4,860	3,810	9	1,050	50	ł	ļ	47	06
Lower 3,830 1,400 38 2,430 45 - - 42 Upper 2,320 30 43 2,290 48 - - 48 Lower 3,400 920 42 2,480 47 - - 46 all 20,200 6,560 42 13,040 48 600 54 46	Right		5,790	400	43	4,790	48	009	ري 4	48	69
Upper 2,320 30 43 2,290 48 - - 48 Lower 3,400 920 42 2,480 47 - - 46 .a.1 20,200 6,560 42 13,040 48 600 54 46		Lower	3,830	1,400	ဗ္ဗ	2,430	4.5	ţ	1	42	36
Lower 3,400 920 42 2,480 47 46		npper	2,320	30	43	2,290	48	ı	- 1	48	8 9
20,200 6,560 42 13,040 48 600 54 46	reft t	Lower	3,400	920	42	2,480	47	L	I	4	61
	Tota		20,200	6,560	42	13,040	48	009	27	46	(99)

Table G-5-13 (1) Gross Water Requirements (Right Bank, Upper)

Crop	Area(ha)	Month Crop Area(ha) ETo (mm/day)	Aug. 1.67	Sept. 2.02	0ct. 2.34	Nov. 2.51	Dec. 3.10	Jan. 3.44	Feb. 3.53	Mar. 2.47	Apr. 2.34	May 2.17	Jun. 1.63	Jul. 1.57	Total
Fruit	4,360	mm/mgnth x 10 m	7.8	15.2 663	32.6	52.7 2,298	81.7	96.0	64.2	30.6	14.0 610	6.7	3.9	3.9	
Cotton	250	пш/пдпец × 10 m	7.8 20	21.2	47.2 118	64.0	97.1 243	108.8 272	90.9	43.6	17.6 44				
Maize	250	mm/mgnth x 10 m						12.8 32	31.6	50.5	62.5 156	63.2 158	29.3 73	12.2 31	
Bean	(125)	mm/mgnth x 10 m	24.3	49.7	66.0 83	45.9	24.0							8 10 10	
Green Manure	(125)	mm/mgnth x 10 ³ m ³	21.7	44.2	60.2	43.7	25.9					•		8.3	
Total	Total 4,860	Net Water Requirements	417	833	1,697	2,570	3,867	1,697 2,570 3,867 4,490 3,105	3,105	1,569	810	057	243	221	20,272
Gross Water Requirement	Gross Water Requirements	(E = 47 Z)	887	1,772	3,611	5,468		8,228 9,553 6,606	909'9	3,338 1,723	1,723	957	517	470	43,130
Unit G Requir	Unit Gross Water Requirements	10 ³ m3/hа	0.183	0.365	0.743	1,125	1.693	0.743 1.125 1.693 1.966 1.359 0.686	1,359	0.686	0,355	0.355 0.197 0.106 0.097	0,106	0.097	8.875

Table G-5-13 (2) Gross Water Requirements (Right Bank, Central)

Crop	Area(ha)	Month ETo (mm/day)	Aug. 1.67	Sept. 2.02	0ct. 2.34	Nov. 2.51	Dec. 3.10	Jan. 3.44	Feb. 3.53	Mar. 2.47	Apr. 2.34	May 2.17	Jun. 1.63	Jul. 1.57	Total
Fruit	630	mm/mgnth x 10 m	7.8	15.2 96	32.6 205	52.7 332	81.7	96.0	64.2	30.6	14.0	6.7	3.9	3.9	
Cotton	2,280	mm/mgnth x 10 m	7.8	21.2	47,2 1,076	1,459	97.1	108.8	90.9	43.6	17.6				
Maize	2,280	mm/mgnth x 10 m						12.8 292	31.6	50.5	62.5	63.2	29.3 668	12.2	
Bean	(1,140)	mm/mgnth x 10 m	24.3	49.7	66.0	45.9	24.0 274							8.3 95	
Green Manure	(1,140)	mm/mgnth x 10 m	21.7	44.2	60.2 686	43.7	25.9 295							8.3 95	
Potato	300	$\frac{mm}{m}$	30.0	50.3	66.7	55.0	45.2	22.4 67					6.4 19	15.1	
Choclo	(300)	mm/mgnth x 10 m						10.7	32.6 98	45.2	59.0	49.8 149	25.4 76	12.2 37	
Vegetal (Double	Vegetable 300 (Double cropping)	mm/mgnth x 10 m	23.3	24.2	50.8	41,4		42.7	69.2	42.1	21.1	40,4	34.2 103	34.1	
Total	5,790	Net Water Requirements	911	1,874	3,071	3,101	3,434	3,605	3,503	2,600	2,154	1,753	891	677	27,574
Gross Water Requirements	Vater ements	(E = 48 %)	1,898	3,904	6,398	6,460	7,154	7,510	7,298	5,417	4,488	3,652	1,856	1,410	57,445
Unit Gross W Requirements	Unit Gross Water Requirements	10 ³ m3/ha	0.328	0.674	1.105		1.236	1.116 1.236 1.297	1,260	0.936	0.775	0.631 0.321	0.321	0.244	9.923

Table G-5-13 (3) Gross Water Requirements (Right Bank, Lower)

Crop	Area(ha)	Month ETo (mm/day)	Aug. 1.67	Sept. 2.02	Oct. 2.34	Nov. 2.51	Dec. 3.10	Jan. 3.44	Feb. 3.53	Mar. 2.47	Apr. 2.34	May 2.17	Jun. 1.63	Jul. 1.57	Total
Fruit	310	mm/mgnth x 103 m3	7.8	15.2	32.6 101	52.7 163	81.7	96.0	64.2	30.6	14.0	6.7	3.9	3.9	
Cotton 1,310	1,310	mm/mgnth x 10 ³ m ³	7.8	21.2 278	47.2 618	64.0	97.1	108.8	90.9	43.6	17.6				
Maize	1,310	mm/mgnth x 10 ³ m ³						12.8 168	31.6	50.5	62.5 819	63.2 828	29.3 384	12.2	•
Bean	(655)	mm/mgnth x 10 m	24.3 159	49.7	66.0 432	45.9	24.0	÷						8.3 54	
Green Manure	(655)	mm/mgnth x 10 ³ m ³	21.7	44.2	60.2	43.7	170							8.3 54	
Potato	300	$mm/mgnth$ x 10^3 m	30.0	50.3	66.7	55.0	45.2 136	22.4					6.4	15.1 45	
Choclo	(300)	mm/mgnth x 10 m						10.7	32.6 98	45.2 136	59.0	49.8 149	25.4	12.2	
Vegetable 600	ole:600	mm/mgnth x 10 ³ m ³	23.3	24.2	50.8 305	41.4 248		42.7	69.2	42.1 253	21.1	40.4	34.2	34.1	
Total	3,830	Net Water Requirements	657	1,237	2,050	2,001	1,988	2,246	2,317	1,717	1,397	1,240	969	567	18,113
Gross Water Requirements	Water ements	(E=42 %)	1,564	2,945	4,881	4,764	4,733	5,348	5,517	4,088	3,326	2,952	1,657	1,350	43,125
Unit Gross Wa Requirements	Unit Gross Water Requirements	10 ³ m3/hа	0.408	0.769	1.274	1.244	1.236	1.396	1.440	1.067	0.868	0.771 0.433	0.433	0.352	11.258

Table G-5-13 (4) Gross Water Requirements (Left Bank, Upper)

Fruit) · · · · · · · · · · · · · · · · · · ·	ETo (mm/day)	1.67	2.02	2.34	2.51	3.10	3.44	3.53	2.47	Apr. 2.34	2.17	1.63	1.57	Total
Cotton	640	mm/mgnth x 10 m	7.8	15.2	32.6	52.7	81.7	96.0 614	64.2	30.6	14.0	6.7	3.9	3.9	
	069	mm/mgnth x 10 m	7.8	21.2	47.2 326	64.0	97.1 670	108.8	90.9	43.6	17.6				
Maize	069	nm/mgnth x 10 m						12.8 88	31.6	50.5 348	62.5	63.2 436	29.3	12.2 84	
Bean	(097)	mm/mgnth x 10 m	24.3	49.7 229	304	45.9 211	24.0							8 8.8 8.8	
Green Manure	(230)	mm/mgnth x 10 m	21.7	44.2	60.2 138	43.7	25.9							8.3 19	
Potato	150	mm/mgnth x 10 m	30.0 45	50.3	66.7 100	55.0 83	45.2 68	22.4 34					6.4	15.1	
Choclo	(150)	mm/mgnth x 10 m						10.7	32.6	45.2	59.0 89	8.67 75	25.4	12.2 18	
Vegetable 150	150	mm/ngnth x 10 m	23.3 35	24.2 36	50.8 76	41.4		42.7	69.2	42.1 63	21.1	40.4	34.2	34.1 51	
Total 2	2,320	Net Water Requirements	346	685	1,153	1,236	1,431	1,567	1,409	976	763	615	326	258	10,765
Gross Water Requirements	er nts	(E=48 %)	721	1,427	2,402	2,575	2,981	3,265	2,935	2,033	1,590	1,281	629	538	22,427
Unit Gross Water Requirements	s Water nts	10 ³ m3/ћа	0.311	0.615	1.035	1,110	1.285	1.407	1.265	0.876	0.685	0.552	0.293	0.232	999.6

Table G-5-13 (5) Gross Water Requirements (Left Bank, Lower)

		Month	Aug	Sept	000	Nov	Dec	Jan	Peh	X X X X X X	Apr	May	Im	111	
Crop	Area(ha)	Area(ha) ETo (mm/day)	1.67	2.02	2.34	2.51	3,10	3,44	3,53	2.47	2,34	2.17	1.63	1.57	Total
Fruit	290	mm/mgnth x 103 m3	7.8	15.2	32.6	52.7	81.7	96.0 566	64.2 379	30.6	14.0	6.7	3.9	3.9	
Cotton 1,130	1,130	mm/mgnth x 10 ³ m ³	7.8	21.2	47.2 533	64.0	1,097	108.8	90.9	43.6 493	17.6				
Maize	1,130	mm/mgnth × 10³ m³						12.8 145	31.6	50.5	62.5 706	63.2 714	29.3	12.2	
Веап	(450)	mm/mgnth x 10 m	24.3	49.7	66.0 297	45.9	24.0 108							8.3 37	
Green Manure	(680)	mm/mgnth x 10 m3	21.7	44.2	60.2 409	43.7	25.9 176							8.3 56	
Potato	150	mm/mgnth x 10 m	30.0	50.3	100	55.0 83	45.2	22.4 34					6.4 10	15.1 23	
hoclo	Choclo (150)	mm/mgnth x 10 m						10,7	32.6	45.2	59.0	49.8	25.4 38	12.2 18	
'egetab	Vegetable 400	mm/mgnth x 103 m3	23.3	24.2	50.8 203	41.4		42.7	69.2	42.1	21.1	40.4	34.2	34.1	
Total	3,400	Net Water Requirements	529	1,027	1,734	1,787	1,931	2,161	2,089	1,481	1,161	166	539	431	15,861
Gross Water Requirements	ater ments	(E=46 %)	1,150	2,233	3,770	3,885	4,198	4,698	4,541	3,220	2,524	2,154	1,172	937	34,482
Unit Gross W. Requirements	Unit Gross Water Requirements	10 ³ m3/ha	0.338	0,657	1.109	1.143	1,235	1.382	1,336	0.947	0.742	0.634 0.345	0.345	0.275	10.143

Table G-5-14 Water Quality

1-1-1-00	LACOU DOBSOIL (FRD.	ason ((Feb. 28,	. 84)	DIOUGIIC SEASOII (OUI:	110000		0, 04)	
3	Water Temperature	ЪН	О Ei	Salinity	Water Temperature	PH	E C)	Salinity	Notes
	ပ		ms/sn	mdd.	၁့		us/cm	шđđ	
Esperanza	23	7.9	340	175	23	8	400	200	river
G - 66	26	7.6	740	360	22	٠ «	780	390	recycled
Esquivel	25	7.3	800	400	23	7.3	740	360	រ ០ ប
Jecuan	. 52	7.3	820	410	23	ო დ	950	480	- qo-
Mira Flores	56	7.4	450	220	20	8	530	260	-op-

Table G-5-15 Leaching Water Requirements

							:	
Block	Salinity Class		Net Leaching Water	Field Leachi Requirements	ng Water	Conveyance	Gross Leaching Water	
	•	Area (ha)	Requirement (cm)	in Depth (cm)	in Volume (X10 ³ m ³)	efficiency (%)	Requirements $(x10^3 n^3)$	Leaching Method
	8,	273	30	45	1,229			
DONOSO/QUINCHA		524	60	06	4,716			Furrow
	Sub-Total	797			5,945	80	7,431	
	s	15	30	45	68	^		ti 5
BOZA	en Si	130	09	06	1,170		-	8
	Sub-Total	145			1,238	90	1,548	
KO THINKINI T	S	50	30	45	225			2
TONACTOR	Sub-Total	20			225	08	281	
	\$2	168	30	45	756			
(j. r.	m vi	. 82	9	06	738			4.
SHILLOID	Sub-Total	250			1,494	oa	1,868	
t 4	s	30	30	45	135		,	E.
u arrea	Sub-Total	30			135	80	169	
(a a a a a a a a a a a a a a a a a a a	S	160	50	50	800		\$	Plooding
Contract to	Sub-Total	160			800	80	1,000	
	S	536			2,413			
TOTAL	່ນ	968		.!	7,424			
	Total	1,432			9,837	8	12,297	

Table G-5-16 (1) Municipal Water Use (1983)

Month	River	Well No.1	Well No.2	Total
Jan.	96,730	73,731	35,609	206.070
Feb.	66,200	65,042	27,472	158,714
Mar.	79,490	71,735	36,377	187,602
Apr.	92,580	70,237	42,808	205,625
Мау	86,310	71,086	36,245	193,641
Jun.	89,380	71,861	35,161	196,402
Jul.	100,090	70,129	45,781	216,000
Aug.	96,730	68,777	44,442	209,949
Sep.	95,940	58,902	42,703	197,545
Oct.	95,168	61,872	41,856	198,896
Nov.	92,684	69,615	44,115	206,414
Dec.	99,250	66,623	44,230	210,103
Total	1,090,552	819,610	476,799	2,386,961

Table G-5-16 (2) Municipal Water Use (1984)

			(Unit	(Unit: m3)
Month	River	Well No. 1	well No. 2	Total
Jan.	125,890	68,730	45,113	239,733
гер.	104,390	70,564	43,692	218,646
Mar.	109,315	74,062	45,447	228,824
Apr.	119,207	73,654	46,954	239,815
May	133,442	76,143	47,493	257,078
Jun.	129,162	72,631	45,622	247,415
Jul.	131,436	72,534	45,602	249,572
Aug.	128,339	72,672	41,785	242,796
Sep.	125,054	79,098	17,622	221,774
Oct.				
Nov.				
Dec.				
Total	(1,106,235)	(660,088)	(379,330)	(2,145,653)

Table G-5-17 (1) Probable Discharge at Santo Domingo

Probe	Probability	Aug.	Sep.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	Мау	Jun.	Jul.	Total
-	m3/sec/ month	157.3	148.2	167.9	210.1	330.6	573.5	1,036.8	1,442.3	637.3	280.0	206.1	168.9	5,359.0
7,	x 10 ³ m ³ 13,591	13,591	12,804	14,507	18,153	28,564	49,550	89,579	124,615	55,063	24,192	17,807	14,593	463,018
-	m3/sec/ month	132.2	122.2	142.7	157.6	218.1	339.1	572.6	7.778	455.9	210.2	164.8	142.4	3,535.5
.s	x 10 ³ m ³ 11,422	11,422	10,558	12,329	13,617	18,844	29,298	49,473	75,833	39,390	18,161	14,239	12,303	305,467
-	m ³ /sec/ month	120.6	110.1	132.9	135.1	180.0	259.4	383.3	697.6	385.5	182.3	145.4	130.4	2,862.6
7,0	x 10 ³ m ³ 10,420	10,420	9,513	11,483	11,673	15,552	22,412	33,117	60,273	33,307	15,751	12,563	11,267	247,331
-	m ³ /sec/ month	111.7	100.7	126.2	118.7	156.0	208.9	249.3	587.9	337.2	162.7	130.6	121.2	2,411.1
,20	x 10 ³ m ³	9,651	8,700	10,904	10,256	13,478	18,049	21,540	50,795	29,134	14,057	11,284	10,472	208,320
	m3/sec/ month	102.4	91.0	119.9	102.4	135.0	164.8	119.2	495.5	291.6	143.8	115.0	111.7	1,992.3
, ₅₀	x 10 ³ m ³	8,847	7,862	10,359	8,847	11,664	14,239	10,299	42,811	25,194	12,424	9,936	9,651	172,133

Note: Including the drained discharge from upstream lagoons.

Table G-5-17 (2) Probable Discharge at Santo Domingo

dor	Probability	Aug.	Sep.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	Мау	Jun.	Jul	Total
	m ³ /sec/ month	136.9	108.7	144.9	164.5	321.9	573.5	1,036.8	1,442.3	637.3	273.8	196.1	152.0	5,188.7
Ç1	x 10 ³ m ³	11,828	9,392	12,519	14,213	27,812	49,550	89,580	124,615	55,063	23,656	16,943	13,133	448,304
_	m ³ /sec/ month	108.5	80.8	114.0	101.4	7.961	339,1	572.6	877.7	455.9	204.9	153.5	123.8	3,328.9
'n	x 103 m3	9,374	6,981	9,850	8,761	16,995	29,298	49,473	75,833	39,390	17,703	13,262	10,696	287,616
.	m ³ /sec/ month	94.8	68.3	100.5	73.9	151.8	259.4	383.4	9.769	385.5	177.1	133.7	110.4	2,626.3
,10	× 103 m3	8,191	5,901	8,683	6,385	13,116	22,412	33,117	60,273	33,307	15,301	11,552	9,539	ררר, רבב
	m ³ /sec/ month	84.1	59.0	7.06	53.6	122.4	208.9	249.3	587.9	337.2	157.5	118.6	100.0	2,169.2
,20	x 10 ^{3'} m ³	7,266	5,098	7,836	4,631	10,575	18,049	21,539	50,795	29,134	13,608	10,247	8,640	187,418
ت, ا	m ³ /sec/ month	72.7	49.4	80.7	33.0	95.9	164.8	119.2	495.5	291.6	138.5	102.7	88.8	1,732.8
,20	x 10 ³ m ³	6,281	4,268	6,972	2,851	8,286	14,239	10,299	42,811	25,194	11,966	8,873	7,672	149,712

Note: excluding the drained discharge from upstream lagoons.

Table G-5-17 (3) Monthly River Discharge

Year	Aug.	Sep.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Total
1963	148.9	114.0	134.2	256.0	726.4	335.8	1,070,7	2,156.3	1,250.6	399.0	226.8	160.8	6,979.5
64	163.5	123.1	168.3	194.9	198.6	415.5	1,036.1	3,028.2	598.9	262.6	183.9	153.3	6,526.9
ខ្ម	140.8	103.6	123.4	129.6	220.4	514.6	390.1	761.6	321.7	192.3	139.9	107.0	3,145.0
99	86.9	57.2	240.7	239.3	582.7	1,063.9	3,752.0	3,530.7	622.6	333.2	202.0	164.7	10,875.9
67	150,3	121.0	215.0	155.2	221.5	400.3	320.0	690.7	362.2	132.3	114.7	105.9	2,989.1
89	95.7	74.2	133.3	163.0	211.4	214.6	339.2	1,619.9	848.6	181.9	120.1	101.5	4,103.4
69	94.3	63.1	110.5	85.0	1,039.1	2,659.7	754.8	740.4	526.2	380.3	255.1	160.7	6,869.2
1970	124.9	167.4	145.5	164.3	410.2	811.1	1,023.6	1,555.9	772.5	250.0	198.6	165.9	5,789.9
71	151,7	116,9	128.8	131.0	294.4	7.196	1,170.0	6,798.2	1,098.3	464.4	299.6	210.3	11,831.3
72	193,3	144.9	160.3	148.0	493.2	1,390.2	1,334.0	2,235.4	1,311.8	548.1	294.6	208.6	8,462.4
73	190.4	189.9	258.2	226.3	757.4	1,231.7	1,629.4	1,921.7	747.5	371.7	283.5	210.2	8,017.9
74	196.6	90.7	140.8	136.4	125.5	470.2	454.1	1,844.1	551.9	283.2	208.4	164.2	4,666.1
75	163.2	109.2	153.8	161.8	224.0	712.5	1,367.1	1,325.3	650.9	282.5	212.6	183.7	5,516.6
92	174.4	168.8	98.1	16.3	178.3	342.2	1,445.7	1,416.1	580.7	274.0	188.4	149.0	5,032.0
77	133.3	61.0	131.0	258.8	334.8	334.6	881.6	647.8	398.6	198.2	135.7	129.0	3,644.7
78	83.6	92.9	141.4	146.1	253.5	203.7	738.0	1,590.4	392.8	192.0	165.4	140.8	4,140.6
79	93.6	103.8	73.0	68.3	112.0	568,9	285.7	615.1	442.2	203.7	173.9	120.5	2,860.
980	114.2	72.4	184.8	207.8	384.8	557.1	1,823.4	2,137.8	777.8	246.8	205.8	166.6	6,879.3
80	126.8	136.9	156.6	211.4	355.8	474.6	1,330.9	713.7	554.7	270.9	183.5	134.2	4,650.0
82	163.9	148.5	127.7	476.4	485.7	840.2	1,461.5	1,468.1	1,178.4	278.4	151.4	103.5	6,883.7
83	130.6	1.10.3	137.7	118.8	341.5	428.0	1,825.4	1,474.6	677.7	390.3	278.1	203.1	6,116.
Mean	139.1	112.8	150.6	175.9	373.9	711.3	1,163.5	1,822.5	697.0	292.2	201.0	154.5	5,994.3

. G - 72

		Table	.e G-5-18	Utili	zation	Record of	Upstream	am Lagoons	ns Lus	(unit	: X 10 ³ m ³)	÷	
Year	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec. To	Total
DV DV				(37,400)	2,000	40	3,230	3,230	9,600	1,600	3,300	5,300 28,	300
19/4 Ut					1,600	32	2,584	2,584	7,680	1,280	2,640	4,240 22,	640
AQ LES'S				(31,780)	3,380	1,305	763	652	2,900	2,560	2,480	2,410 19,	450
LY/5 Ut					2,704	1,044	610	522	4,720	2,048	1,984	1,928 15,	260
DA				(33,000)	1,500	1,200	006		1,130	6,018	14,152	2,700 27,	009
19/6 Ut					1,200	096	720		904	4,814	11,322	2,160 22,	080
AQ SSS						(28,870)	2,220	1,920	7,430	570	5,694	177	834
19// Ut							1,776	1,536	5,944	456	4,555	14	267
DV				_	27,700)	2,730	770	5,510	5,920	70	5,620	- 20%	620
19/8 Ut						2,184	616	4,408	4,736	56	4,496	16,	496
ΔQ					26,530)	1,450	006	4,425	1,395	4,830	5,660	3,400 22,0	030
19/9 Ut						1,160	720	3,540	1,116	3,840	4,528	2,720 17,6	624
AQ CCC)	24,100)	1,450	006	009	4,750	2,200	350	10,1	250
1980 Ut						1,160	720	480	3,800	1,760	280	8	200
AQ				(34,080)	300	300	1,000	3,300	2,373	3,000	3,527	250 14,0	050
1981 Ut					240	240	800	2,640	1,898	2,400	2,822	200 11,2	240
AQ 333				(32,330)	150	1,650	4,350	1,400	980	5,350	5,350	7,61	230
1982 Ut					120	1,320	3,480	1,120	784	4,280	4,280	15,3	384
AQ CO		•		(30,180)	700	650	5,180	1,070	1,720	1,720	3,350	1,540 15,9	930
1983 Ut					560	520	4,144	856	1,376	1,376	2,680	1,232 12,7	744
AQ .					803	1,078	2,021	2,211	4,120	2,789	4,948	1,560 19,5	530
(Mean) Ut					642	862	1,617	1,769	3,296	2,231	3,958	1,248 15,6	623
						Note:	Parenth Dv; Dra Ut; Uti	entheses show Drained volu Utilization	show the effi volume ion (Drained	fective d volume	volume x 0.8)	of lagoons	

Table G-5-19 Intake Discharge from River

					(Unit: $\times 10^3 \text{ m}^3$)) ^{3 m3})
Year	Aug.	Sep.	Oct.	Nov.	Dec.	Jan.
1977	11,005	9,641	9,871	18,148	20,310	21,700
1978	10,729	11,591	10,945	15,164	15,185	15,045
1979	11,512	8,719	8,051	8,687	10,851	22,128
1980	8,830	8,152	1		ŧ	30,123
1985	11,388	10,710	13,701	17,312	25,137	25,476
1982	14,138	11,823	12,966	20,919	17,793	30,422
1983	086,8	8,640	868,8	9,348	19,332	20,630

Note: The volume is the sum of 5 intakes of Palpa, Caqui, Esperanza, Huando and Chancay-Huaral

Table G-5-20 Utilization of Infiltration and Groundwater

							$(\text{Unit}: \text{x} 10^3 \text{ m})$	10 m 3
Year		Aug.	Sep.	Oct.	Nov.	Dec.	Jan.	Probable Year
1977	Inf.	8,790	8,924	7,596	11,422	11,384	11,133	
•	Grw.	723	517	551	843	764	837	
- (Inf.	8,966	8,866	9,276	9,853	10,816	10,772	(; ;
1978	Grw.	917	066	1,152	1,146	1,056	1,067	ر الم
(Inf.	9,738	8,013	7,995	7,215	8,451	13,429	
6/.6T	Grw.	1,824	2,272	2,789	2,763	2,743	1,893	20 years
•	Inf.	10,085	10,000	l	al .	ı	16,676	
1980	Grw.	1,296	1,375	l	1	ŀ	184	ŀ
	Inf.	10,027	866'6	11,454	10,156	11,977	13,256	
T 8 6 T	Grw.	638	304	324	726	713	771	2 years
•	Inf.	8,470	7,966	7,928	13,758	19,120	13,782	
1982	Grw	ı		ŀ	ı	. 1	1	ţ
1	Inf.	13,257	12,622	12,911	12,821	14,006	12,817	
1983	Grw.	1	ì	ì		ì	i,	Ι.

Note: Inf.; Infiltration Grw.; Groundwater

Table G-5-21 Ratio of Recycled in Drought Period

				, **
Year	Month	Riyer	Recycled	<u>Ratio</u>
		x 10 ⁵ m3	x 10 ³ m3	78
			0.700	
1977	Aug.	11,005	8,790	80
	Sep.	9,641	8,924	93
	Oct.	9,871	7 , 596	77
	Nov.	18,148	11,422	63
	Dec.	20,310	11,384	56
	Jan.	21,700	11,133	51
		•		
1978	Aug.	10,729	6,966	84
	Sep.	11 , 591	8,866	76
•	Oct.	10,945	9,276	85
	Nov.	15,164	9,853	65
	Dec.	15,185	10,816	71
	Jan.	15,045	10,772	72
	Jan.	10,040	10,772	• 4-
1979	Aug.	11,512	9,738	85
	Sep.	8,719	8,013	92
	Oct.	8,051	7 , 995	99
	Nov.	8,687	7,215	83
	Dec.	10,851	8,451	7 8
	Jan.	22,128	13,429	61
	Jan,	22,120	15,425	01
1980	Aug.	8,830	10,085	(114)
	Sep.	8,152	10,000	(123)
	Oct.	·	, -	· ·
	Nov.		_	·
	Dec.	_	_	
•	Jan.	30,123	16 676	- 55
	Jan.	30,123	16,676	<i>)</i> 5
1981	Aug.	11,388	10,027	88
	Sep.	10,710	9,998	93
	Oct.	13,701	11,454	84
	Nov.	17,312	10,156	59
	Dec.	25,137	11,977	48
	Jan.	25 , 476	13,256	52
1982	Aug.	14,138	8,470	60
	Sep.	11,823	7,966	67
	Oct.	12,966	7,928	61
	Nov.	20,919	13,758	
	Dec.	17,793	-	66
			19,120	(107)
	Jan.	30,422	13,782	45
1983	Aug.	8,930	13,257	(148)
	Sep.	8,640	12,622	
	Oct.	8,898	12,911	(146)
	Nov.	9,348		(145)
			12,821	(137)
	Dec.	19,332	14,006	72
	Jan.	20,630	13,817	67

Table G-5-22 Ratio of Recycled of Each Commanding Area in System Wide

(unit: $x 10^3 m^3$)

		Sep.		Oct.		Nov		Dec.		Adopted
Block		0	Re		Re		Re		Re	Re
(Right bank) [Esperanza + Huando + Huaral]	Upstream Downstream	5,339 3,388	۷ (4,819	١	5,089	٠	6,166 3,983	٠. ر	ę į
[Chancayllo] (Left bank)	*		63		7/		65		59	C
[Palpa + Caqui]	Upstream Downstream	1,540		1,484	(1,542	i	1,888	Ç	
[Mira Flores]	ţ	1	79	1 1	70	9)		5	4 V
[Mira Flores, San Jose]	Upstream Downstream	1,519	1	1,556	†	1,392 972		1,352	;	
[Boza Alto, Boza Bajo, Pasamayo Alto]			12		75		0/		69	69
[Mira Flores - Pasamayo Alto,	Upstream Downstream	3,015		3,117		2,752 1,575		2,806		
[Salinas + Pasamayo Bajo]			62		. 62		57		65	57

Note: Q; Recorded utilization data by ATDR in 1979

Table G-5-23 Existing Pump

Bank	Block	Yield	Nos	Location
		1/sec		
Left	Upper	25		CAP: Palpa - Caqui
	- F.F	100		
		27		
	4	33	-	•
•	Sub-total	185	4	
	Lower	40		Boza, Aucallama, Pasamayo
4		41		
		47		•
		31		
		40		
	Sub-total	199	- 5	
			•	
Right	Upper	40		CAP: Huando
		60		
		80		
		40		
	a	40	- .	
	Sub-total	260	5	
	Central	92		CAP: Jesus de Valle
		82		
		44	(3)	-
		80		Esquivel
		40		
		30		•
		20		
		40	•	
		40	(7)	÷
•		25 60	(7)	CADA Candalanda
		60	(2)	CAP: Candelaria
	Sub-total	613	(2) 12	
	Total	1,257	26	

Table G-5-24 Present Water Balance (Probability: 10 years)

	River	Water	Requirements	ıts		W	Water Resource			-	
Month	Discharge at Palpa	Agriculture	Others	Sub- total	River	Return Flow	Groundwater Agriculture Ot	ter Others	Sub- total	Short- age	Remarks
Aug.	10,105	6,524	890	7,414	5,680	1,636		8	7,414		
Sep.	9,227	10,076	874	10,950	8,551	2,301	·	86	10,950		
Oct.	11,160	17,990	890	18,880	11,160	5,629	643	80	17,530	1,350	
Nov.	11,280	24,217	875	25,092	11,280	7,210	2,592	66	21,181	3,911	
Dec.	15,061	31,679	890	32,569	15,061	9,258	2,678	80	27,095	5,474	
Jan	21,828	43,048	890	43,938	21,828	12,481	2,678	80 80	37,085	6,853	
년 (0 (1)	32,420	41,572	844	42,416	32,420	868,6		9 8	42,416		
Mar.	59,517	33,600	891	34,491	27,612	6,780		66	34,491		
Apr.	32,657	26,221	874	27,095	21,629	5,368		86	27,095		
May	15,349	20,917	890	21,807	15,349	6,360		80	21,807		
Jun.	12,177	13,848	874	14,722	11,606	3,018		8	14,722		
Jul.	10,962	9,055	168	9,946	7,731	2,116		66	9,946		
Total	241.743	278,747	10,573 2	289,320	189,907	72,055	8,591	1,179	271.732	17,588	

Table G-5-25 River Discharge and Intaked Volume in Present (Probability; 10 years)

Month	River Discharge at Palpa Vl Ol	ge at Palpa Ol	F1.	Flood Season 02 Av	son Available	V3	Drought Season	Available	Shortage	Ground	Shortage	River to be Dependent
					m3/sec			m3/sec	m3/sec	m3/sec	m3/sec	
Aug.	10,105	3,77	5,680	2.12	< 3.77							5,680
Sep.	9,227	3,56	8,551	3.30	< 3.56				٠			8,551
Oct.	11,160	4.17	14,968	5.59		11,808	4.41	> 4.17	0.24	0.24		11,160
Nov.	11,280	4.35	20,005	7.72		15,782	60*9	> 4.35	1.74	1.00	0.74	11,280
Dec.	15,061	5.62	26,056	9.73		20,555	7.67	> 5.62	2.05	1.00	1.05	15,061
Jan.	21,828	8,15	35,265	13.17		27,820	10.39	> 8.15	2.24	1.00	1.25	21,828
Feb	32,420	13.40	34,051	14.08		26,862	11,10	<13,40		(5,0/6)	(0,040)	32,420
Mar	59,517	22.22	27,612	10.31	< 22.22							27,612
Apr.	32,657	12,60	21,629	8.34	< 12.60							21,629
May	15,349	5.73	17,339	6.47		13,678	5.11	< 5.73				15,349
Jun.	12,177	4.70	11,606	4.48	< 4.70							11,606
Jul.	10,962	4.09	7,731	2.89	60.4 >							7,731
Total	241,743									(8,591)	(8,078)	189,907

Note: VI; m3, V2; Intaked volume at all intakes (m3) V3; Intaked volume at intakes of Palpa, Esperanza, Huando, Caqui and Chancay-Huaral (m3) Q1,Q2,Q3; m3/sec

Table G-5-26 Present Water Balance in Chancayllo Area (Probability: 10 years)

(unit: $\times 10^3 \text{m}^3$)

Return Flow Water Requirements 2,298									
Aug. A=3,240	Month	Water R Esperanza	equiremen Huando	D R	m	Retio of Return Flow		Water Requirements	Remained
Sep. 1,710 747 1,078 3,535 65 2,298 1,468 8,188 65 4,022 2,465 1,55 Nov. 2,722 1,786 6,188 65 4,545 3,295 1,25 Dec. 3,327 2,277 3,284 8,888 65 4,545 1,48 Jan. 4,810 3,082 4,445 12,337 65 8,019 5,808 2,21 Feb. 6,810 2,976 4,292 14,078 65 9,151 5,608 3,54 Mar. 5,522 2,414 3,480 11,416 65 9,151 5,608 3,552 Apr. 4,326 1,891 2,726 8,943 65 5,813 3,562 2,253 Jun. 2,321 1,014 1,463 4,798 65 3,119 1,211 1,201 Jul. 1,546 9,052 89,891 2,077 1,273 80 Jul. 1,546 <td>Aug.</td> <td>A=3,240 1,136</td> <td>A=1,416 497</td> <td>A=2,042</td> <td>,34</td> <td>യ വ</td> <td>,52</td> <td>=2,66</td> <td>Q)</td>	Aug.	A=3,240 1,136	A=1,416 497	A=2,042	,34	യ വ	,52	=2,66	Q)
Oct. 2,994 1,308 1,886 6,188 65 4,022 2,465 1,255 Nov. 2,722 1,749 2,522 6,993 65 4,545 3,295 1,28 Dec. 3,327 2,277 3,284 8,888 65 5,777 4,291 1,48 Jan. 4,810 3,082 4,445 12,337 65 8,019 5,808 2,21 Feb. 6,810 2,916 4,292 14,078 65 9,151 5,608 3,54 Mar. 5,522 2,414 3,480 11,416 65 9,151 5,608 3,562 2,257 Apr. 4,326 1,81 65 5,813 3,562 2,255 Jun. 2,321 1,014 1,463 4,798 65 5,813 3,129 1,201 Jul. 1,546 7,170 65 3,119 1,911 1,201 1,201 Jul. 1,546 7,16 3,196<	Sep.	1,710	747	1,078	, 53		, 29	40	Ø.
Nov. 2,722 1,749 2,522 6,993 65 4,545 3,295 1,48 Jan. 3,327 2,277 3,284 8,888 65 5,777 4,291 1,48 Jan. 4,810 3,082 4,445 12,337 65 9,151 5,808 2,21 Feb. 6,810 2,976 4,292 14,078 65 9,151 5,608 3,54 Mar. 5,522 2,414 3,480 11,416 65 7,420 4,547 2,87 Apr. 4,326 1,891 2,186 7,170 65 5,813 3,562 2,25 Jun. 2,321 1,014 1,463 4,798 65 3,119 1,911 1,20 Jul. 1,546 3,196 65 2,077 1,273 80 Total 40,692 20,147 29,052 89,891 37,960 37,960 20,446	Oct.	2,994	1,308	1,886	,18		,02	46	, 55
Dec. 3,327 2,277 3,284 8,888 65 5,777 4,291 1,488 Jan. 4,810 3,082 4,445 12,337 65 8,019 5,808 2,21 Feb. 6,810 2,976 4,292 14,078 65 9,151 5,608 3,54 Mar. 5,522 2,414 3,480 11,416 65 5,813 3,562 2,25 Apr. 4,326 1,516 2,186 7,170 65 4,661 2,856 1,80 Jun. 2,321 1,014 1,463 4,798 65 3,119 1,911 1,273 80 Jul. 1,546 974 3,196 65 2,077 1,273 80	Nov.	2,722	1,749	2,522	66,		, 54	,29	,25
Jan. 4,810 3,082 4,445 12,337 65 8,019 5,808 2,21 Feb. 6,810 2,976 4,292 14,078 65 9,151 5,608 3,54 Apr. 5,522 2,414 3,480 11,416 65 7,420 4,547 2,87 Apr. 4,326 1,891 2,726 8,943 65 5,813 3,562 2,25 May 3,468 1,516 2,186 7,170 65 4,661 2,856 1,80 Jun. 2,321 1,014 1,463 4,798 65 3,119 1,911 1,213 80 Jul. 1,546 974 3,196 65 2,077 1,273 80 Total 40,692 20,147 29,052 89,891 37,960 20,466		3,327	2,277	3,284	ω		5,777	,29	48
6,810 2,976 4,292 14,078 65 9,151 5,608 3,547 2,877 5,522 2,414 3,480 11,416 65 7,420 4,547 2,87 4,326 1,891 2,726 8,943 65 5,813 3,562 2,25 3,468 1,516 2,186 7,170 65 4,661 2,856 1,80 2,321 1,014 1,463 4,798 65 3,119 1,911 1,213 80 1,546 676 974 3,196 65 2,077 1,273 80 40,692 20,147 29,052 89,891 58,429 37,960 20,46		4,810	3,082	4,445	2,33	65	Ô	ω	, 21
5,522 2,414 3,480 11,416 65 7,420 4,547 2,87 4,326 1,891 2,726 8,943 65 5,813 3,562 2,25 3,468 1,516 2,186 7,170 65 4,661 2,856 1,80 2,321 1,014 1,463 4,798 65 3,119 1,911 1,20 1,546 676 974 3,196 65 2,077 1,273 80 40,692 20,147 29,052 89,891 58,429 37,960 20,46	чер.	6,810	2,976	4,292	び		, 15	09,	,54
4,326 1,891 2,726 8,943 65 5,813 3,562 2,25 3,468 1,516 2,186 7,170 65 4,661 2,856 1,80 2,321 1,014 1,463 4,798 65 3,119 1,911 1,213 80 1,546 676 974 3,196 65 2,077 1,273 80 40,692 20,147 29,052 89,891 58,429 37,960 20,46	Mar.	52	,41	3,480	1,41		~	,54	,87
3,468 1,516 2,186 7,170 65 4,661 2,856 1,80 2,321 1,014 1,463 4,798 65 3,119 1,911 1,20 1,546 676 974 3,196 65 2,077 1,273 80 40,692 20,147 29,052 89,891 58,429 37,960 20,46	Apr.	4,326	1,891	2,726	,94		181	, 56	, 25
2,321 1,463 4,798 65 3,119 1,911 1,20 1,546 676 974 3,196 65 2,077 1,273 80 40,692 20,147 29,052 89,891 58,429 37,960 20,46	Мау	3,468	1,516	2,186	7,170		Õ	∞	80
1,546 676 974 3,196 65 2,077 1,273 80 40,692 20,147 29,052 89,891 58,429 37,960 20,46	Jun.	2,321	1,014	1,463	, 79		3,1	16°	,20
40,692 20,147 29,052 89,891 58,429 37,960 20,46	Jul.	1,546	676	974	-	6.51	2,077	,27	0
	Total	40,692	20,147	9,05	9,89		8,4	7,9	,46

 $(unit : x 10^3 m^3)$ Present Water Balance in Donoso and Laureles Area (Probability: 10 years) Table G-5-27

65 266 65 400 65 701 65 612 65 612 65 612 65 1,596 65 1,013 65 1,013 65 813 65 813 65 863	Month	Water Requirements in Huaral Area	Ratio of Return Flow	Return Flow	Water Requirements	Remained
1,079 65 400 304 803 65 701 532 803 65 522 711 942 65 612 926 1,427 65 928 1,254 2,455 65 1,594 982 1,991 65 1,013 769 1,250 65 813 616 837 65 813 616 837 65 544 412 13,925 9,051 8,194	Aug.	A=1,168 409	6 5 6	266	A=576 202	
1,079 65 701 532 803 65 711 942 65 926 1,427 65 1,254 2,455 65 1,294 982 1,991 65 1,013 769 1,250 65 813 616 837 65 813 616 837 65 544 412 13,925 65 362 275	Sep.	616	65	400	304	
942 65 612 926 1,427 65 928 1,254 2,455 65 1,596 1,211 1,991 65 1,294 982 1,559 65 1,013 769 1,250 65 813 616 837 65 544 412 557 65 362 275 13,925 8,194 8,194	Oct.	1,079	65	701	532	
1,427 65 612 926 2,455 65 1,596 1,211 1,991 65 1,294 982 1,559 65 1,013 769 1,250 65 813 616 837 65 544 412 557 65 362 275 13,925 9,051 8,194	Nov.	803	65	522	711	189
1,427 65 1,254 2,455 65 1,294 982 1,991 65 1,013 769 1,250 65 813 616 837 65 544 412 557 65 362 275 13,925 9,051 8,194	Dec.	942	65	612	926	314
2,455 65 1,596 1,211 1,991 65 1,294 982 1,559 65 1,013 769 1,250 65 813 616 837 65 544 412 557 65 362 275 13,925 9,051 8,194	Jan.	1,427	65	928	, 25	326
1,991 65 1,013 769 1,559 65 1,013 769 1,250 65 813 616 837 65 544 412 557 65 362 275 13,925 9,051 8,194	щер.	•	65	~	, 21	
1,559 65 1,013 769 1,250 65 813 616 837 65 544 412 557 65 362 275 13,925 9,051 8,194	Mar.	1,991	65	2	∞	
1,250 65 813 616 837 65 544 412 557 65 362 275 13,925 9,051 8,194	Apr.	1,559	65	1,013	Q	
837 65 544 412 557 65 362 275 13,925 9,051 8,194	May	1,250	ស	813	919	
557 65 362 275 13,925 9,051 8,194	Jun.	837	65	544	412	
13,925 8,194	Jul	557	65	362	275	
	Tota1	13,925			8,194	829

Table G-5-28 Present Water Balance in Mira Flores Area (Probability : 10 years)

(unit : $x = 10^{3} \text{m}^3$)

Month	Water Requirements in Palpa, Caqui	Ratio of Return Flow	Return Flow	Water Requirements	Remained
Aug.	A=2,190 768	* 4	376	A=577 202	174
ა მ ნ	1,156	9,	. 566	305	261
Oct.	2,023	64	166	533	458
Nov.	2,704	49	1,325	713	612
o Dec.	3,522	49	1,726	928	798
© Jan.	4,767	49	2,336	1,256	1,080
де Б	4,603	49	2,255	1,213	1,042
Mar.	3,733	49	1,829	983	846
Apr.	2,924	49	1,433	770	663
May	2,344	49	1,149	219	532
dun.	1,569	49	769	413	356
Jul.	1,045	94	512	275	237
Total	31,158		15,267	8,208	7,059

Table G-5-29 Present Water Balance in San Jose - Pasamayo Alto Area (Oct. - Feb.)

		7/11 - 7/11			·	:		un)	(unit : x	10 ³ m ³)
Month			Volume Return Flow			Water R	Requirements			
	River	Remained in Mira Flores	from Mira Flores	Total	San Jose	Boza Alto	Boza Bajo	Pasamayo Alto	Total	Shortage
			(869)		A=847	A=779	A=388	A=288		
Aug.	4,425	174	139	4,738						
Sep	676	261	210	1,147						
Oct.		458	368	826	783	720	358	266	2,127	1,301
Nov.	0	612	492	1,104	1,046	962	479	356	2,843	1,739
e Dec.		798	640	1,438	1,362	1,253	624	463	3,702	2,264
ug 2 84	0	1,080	867	1,947	1,844	1,696	845	627	5,012	3,065
Feb.	5,558	1,042	837	7,437	1,780	1,637	816	605	4,838	2,599
Mar.	31,905	846	678	33,429						
Apr.	11,028	663	531	12,222						
May	1,671	532	426	2,629						
Jun.	571	356	285	1,212						
Jul.	3,231	237	587	3,657				•		
Total										8,369

Present Water Balance in Pasamayo - Salinas (Oct. - Feb.) Table G-5-30

(unit: $\times 10^3 \text{m}^3$)

			77.			Water Requirements	rements		
Month	River	Available volume	e vorume V2	Total	Pasamayo Bajo	Manglar	Salinas	Total	Shortage
Aug.	4,425		A=759		A=579	A=72	A=446		
Sep.	919								
Oct.		565	400	965	535	67	412	1,014	49
Nov.	0	755	534	1,289	715	68	550	1,354	65
Dec.	0	984	969	1,680	186	116	717	1,764	84
Jan.	0	1,332	942	2,274	1,260	157	116	2,388	4 4 4
Feb.	2,599	1,285	606	4,793	1,217	151	937	2,305	2,488
Mar.	31,905								
Apr.	11,028								
May	1,671						•		
Jun.	571								
Jul.	3,231								
Total	_ 1								312

V1: (Remained and Water Requirements in Mira Flores Area) $\times~0.57$ V2: Water requirements in Santo Rosa area $\times~0.57$ Note:

Table G-5-31 Monthly Water Requirements

 $(unit : x 10^3 m^3)$

1										. > -:::::::::::::::::::::::::::::::::::	/ W > = 4		
Z	Month	Intaked Esperanza	d at Pall Palpa	lpa Sub- Total	Huando Chancay- Huaral	- Total	Boza Alto	Boza Bajo	Downstream Fasamayo- Bajo	Intakes Salinas Alto	Salinas Bajo	H Otal	Grand- total
İ	Aug.	A=3,440 F	A=3,037 1,278	1,908	A=8,219A= 3,390	=14,696 5,298	A=779 263	A=676 228	A=651 220	A=281 115	A=165 A	=2,552A 893	=17,248
	Sep.	1,256	1,903	3,159	900'9	9,165	515	444	428	216	127	1,727	10,892
	Oct.	2,556	3,206	5,762	9,588	15,350	864	750	722	358	210	2,904	18,254
G	Nov.	3,870	3,399	7,269	10,133	17,402	890	773	744	350	205	2,962	20,364
- 86	Dec.	5,824	3,860	9,684	11,598	21,282	962	835	804	347	204	3,152	24,434
5	Jan.	6,763	4,252	11,015	12,532	23,547	1,077	934	006	392	230	3,533	27,080
	reb.	4,675	3,902	8,577	11,484	20,061	1,04I	903	870	405	238	3,457	23,518
	Mar.	2,360	2,721	5,081	8,307	13,388	738	640	919	300	176	2,470	15,858
·	Apr.	1,221	2,129	3,350	6,676	10,026	578	502	483	244	143	1,950	11,976
-	May	678	1,746	2,424	5,552	7,976	494	429	413	217	127	1,680	9,656
•	Jun.	365	934	1,299	3,260	4,559	269	233	225	122	71	920	5,479
	Jul.	334	741	1,075	2,734	3,809	214	186	179	9	8 8	736	4,545
ΙĔ	Total	30,532	30,071	60,603	91,260	151,863	7,902	6,857	6,604	3,165	1,856	26,384	178,247
			-										

Note: Huando includes the municipal utilization.

Table G-5-32 Proposed Water Balance (Probability; 10 years)

(unit : $\times 10^3 \text{ m}^3$)

	Discharge	Water Requirements	Requirem	ents			Water Resources	sources			
Month	at Palpa	at Palpa Agriculture	Others	Others Sub-total	River R	River Return Flow	Lagoons	Groundwater Agriculture Ot	water e Others	Sub-total	Shortage
Aug.	7,876	6,217	890	7,107	6,191	818			86	7,107	
Sep.	5,615	12,293	874	13,167	5,615	3,787	3,550		86	13,050	117
Oct.	8,360	21,109	890	21,999	8,360	6,488	5,635	1,353	86	21,934	65
Nov.	5,992	23,248	875	24,123	5,992	977.9	8,815	2,597	66	53,949	174
Dec.	12,625	27,500	890	28,390	12,625	6,886	6,000	2,657	86	28,266	124
Jan.	21,828	30,583	890	31,473	21,828	7,667		1,719	86	31,312	161
Feb.	32,420	27,004	844	27,848	23,518	4,232			86	27,848	
Mar.	59,517	18,133	891	19,024	15,858	3,067			66	19,024	
Apr.	32,657	13,663	874	14,537	11,976	2,463			98	14,537	
May	14,899	10,976	890	11,866	9,656	2,112			98	11,866	
Jun.	11,166	5,861	874	6,735	5,479	1,158			86	6,735	
Jul.	9,234	4,687	891	5,578	4,545	934			66	5,578	
Total	222,189	201,274	10,573		211,847 131,643	46,058	24,000	8,326	1,179	1,179 211,206	641

Table G-5-33 River Discharge and Intaked Volume at Palpa (Probability; 10 years)

Drained	Discharge	m3/sec		1.71	2.63	4.25	2.80								
	Lagoons Groundwater	m3/sec			0.51	1.00	1.00	0.64	(21,11)					:	(8,326)
	Lagoons G	m3/sec		1.37	2.10	3,40	2.24	(0,000)						:	(24,000) (8,326)
	Shortage	m3/sec		1.37	2.61	07.7	3.24	79.0		-					
son	Available	m3/sec		> 2.17	> 3.12	> 2.31	> 4.71	> 8.15							
ea	63			3.54	5.73	6.71	7.95	8.79							
Dro	٧3			9,165	15,350	17,402	21,282	23,547							
Season	Available	m3/sec	< 2.94		15				< 13.40	< 22.22	< 12.60	< 5.56	< 4.31	< 3.45	
ag	Q2		2.31	(4.20)	(6.82)	(7.86)	(9.12)	(10.11)	9.72	5.92	4.62	3,61	2,11	1.70	-
1 1	72		6,191	(10,892) (4.20)	(18,254) (6.82)	(20,364) (7.86)	(24,434) (9.12)	(27,080) (10.11)	23,518	15,858	11,976	9,656	5,479	4,545	
at Palpa	ψ		2.94	2.17	3.12	2.31	4.71	8.15	13.40	22.22	12.60	5.56	4.31	3,45	
River Discharge at Palpa	۸ı		7,876	5,615	8,360	5,992	12,625	21,828	32,420	59,517	32,657	14,899	11,166	9,234	222,189
	Month		Aug.	Sep.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar	Apr.	May	Jun.	Jul.	Total

Note: V1; m3, V2; Water requirements at 7 intakes (m3), V3; Water requirements at 2 upstream intakes (m3) Q1,Q2,Q3; m3/sec

Table G-5-34 Proposed Water Balance in Chancayllo Area (Probability; 10 years)

(unit; $\times 10^3 \text{ m}^3$)

Remained 1,546 292 4,678 692 2,773 5,306 3,335 1,504 628 117 #**-**20,885 Requirements Water 734 1,383 2,292 1,919 2,238 1,387 20,253 2,224 1,562 779 633 2,511 2,591 Return Flow 1,026 2,075 3,838 6,902 3,423 5,926 944 5,011 7,817 2,190 1,504 782 41,138 Return Ratio 65 65 65 65 65 65 65 65 65 65 65 65 5,266 1,578 7,709 10,619 12,026 3,192 5,905 9,117 3,369 2,314 1,203 991 63,289 Total Huaral 726 1,716 710 540 2,446 2,872 2,790 2,072 1,397 Water Requirements 1,492 21,969 2,737 2,471 A=1,416 Huando 279 12,566 259 1,593 1,924 503 150 137 517 1,052 2,397 2,784 971 Esperanza A=3,2401,150 3,645 5,485 6,370 2,223 638 343 314 593 1,183 4,403 2,407 28,754 Mar. Apr. Jul. Month Aug. Oct. Nov. Dec. Jan. Feb. Jun. Total Sep. May

Table G-5-35 Proposed Water Balance in Donoso,
Laureles Area (Probability: 10 years)

(unit; $x 10^3 m^3$)

	 The state of the s	T	D	Water	
Month	Requirements Huaral	Ratio_	Return Flow	Requirements	Remained
HOHEH	 A=2,232	7 7	1.100	A=576	
Aug.	732	65	476	235	241
Sep.	1,504	65	978	443	535
Oct.	2,466	65	1,603	734	869
Nov.	2,491	65	1,619	717	902
Dec.	2,759	65	1,793	712	1,081
Jan.	2,895	65	1,882	804	1,078
Feb.	2,812	65	1,828	829	999
Mar.	2,089	65	1,358	614	744
Apr.	1,730	65	1,125	500	625
May	 1,408	65	915	444	471
Jun.	716	65	465	249	216
Jul.	545	65	354	203	151
Total	 22,147		14,396	6,484	7,912

Table G-5-36 Proposed Water Balance in Mira Flores Area (Probability: 10 years)

(unit; $x 10^3 m^3$)

Manth		Requirements		Return	Water	
Month		Palpa, Caqui	Ratio	F1ow	Requirements	Remained
		A=2,190	%		A=577	
						
Aug.		681	49	334	195	139
Sep.	٠	1,347	49	660	379	281
Oct.		2,667	49	1,307	640	667
Nov.	٠.	2,431	49	1,191	660	531
Dec.		2,814	49	1,379	713	666
Jan.		3,081	49	1,510	797	713
Feb.		2,770	49	1,357	771	586
Mar.		1,918	49	940	546	394
Apr.		1,500	49	735	428	307
May		1,209	49	592	366	226
Jun.		642	49	315	199	116
Jul.	•	508	49	249	159	90
Total		21,568		10,569	5,853	4,716

Table G-5-37 Proposed Water Balance in Midstream Area of Chancay River

ο _E	
103	
X	
(unit;	

	Water Regi	equirements	10.	Return	Return	Water		Collecting
Month	Mira Flores	San Jose	Total	Ratio	Flow	Requirements Shortage Conduit	Shortage	Conduit
	A=577	A=847		8-8		A=1,455		
Sep.	099	556	1,216	69	839	926	117	117
Oct.	1,307	626	2,246	69	1,549	1,614	65	65
Nov.	1,191	896	2,159	69	1,489	1,663	174	174
Dec.	1,379	1,046	2,425	69	1,673	1,797	124	124
Jan.	1,510	1,171	2,681	69	1,850	2,011	161	161

Table G-5-38 Proposed Water Balance in Downstream Area of Chancay River

_
$\overline{}$
E E
(c)
ြ
\cup
×
u
•
E
3
\sim

		3	Water Requirements	ements			Return Return	eturn	Water	
Month	Mira Flores	San Jose	es San Jose Boza Alto	Boza Bajo	Boza Bajo Santa Rosa Total	Total	Ratio	Flow	ွပ	Remained
	A=577	A=847	A=779	A=676	A=759		.%		A=1,097	
Sep.	379	556	512	777	512	2,403	57	1,370	771	599
Oct.	970	626	864	750	839	3,832	57	2,184	1,290	768
Nov.	099	968	890	773	847	4,138	57	2,359	1,299	1,060
Dec.	713	1,046	962	835	626	4,495	57	2,562	1,355	1,207
Jan.	797	1,171	1,077	934	984	4,963	57	2,829	1,522	1,307

Table G-5-39 River Discharge and Intaked Volume at Palpa (Probability; 5 years)

		:						-	-		(unit; x 10' m')	10' = ')
Month	River Discharge	e at Palpa 01	V2	02	Available	V3	03	03 Available	Shortage	Lagoons	Lazoons Groundwater	River
Aug.	650,6	3.38	6,191	2.31	m3/sec < 3.38			m3/sec	m3/sec	m3/sec	m3/sec	m3/sec 6,191
Sep.	6,695	2.58	10,892	4.20		9,165	3.54	> 2.58	96*0	96.0	l	6,695
Oct.	9,527	3.56	18,254	6.82		15,350	5.73	> 3.56	2.17	2.17	t	9,527
Nov.	8,368	3.23	20,364	7.86		17,402	6.71	> 3.23	3.48	3.48	i	8,368
Dec.	16,504	6.16	24,434	9.12		21,282	7.95	> 6.16	1.79	1.79	1	16,504
Jan.	28,714	10.72	27,080	10.11	< 10.72					(46/4)		27,080
Feb.	48,776	20.16	23,518	9.72	< 20.16							23,518
Mar.	75,077	28.03	15,858	5.92	< 28.03							15,858
Apr.	38,740	14,95	916,11	4.62	< 14.95							11,976
May	17,301	97.9	959,6	3.61	94.9 >							9,656
Jun.	12,876	76.4	5,479	2,11	< 4.97							5,479
Jul.	10,391	3.88	4,545	1.70	3.88							4,545
Total	282,028									(22,114)		145,397

Note: V1; excluding lagoons (m3), V2; Water requirements at 7 intakes (m3) V3; Water requirements at 2 upstream intakes (m3) Q1,Q2,Q3; m3/sec

Table G-5-40 River Discharge and Intaked Volume at Palpa (1978 - 1979)

(unit : $\times 10^3 \text{ m}^3$)

Month	River Discharge	large Ol	٧2	.02	Available	V3	03	O3 Available	Shortage	Lagoons G	Lagoons Groundwater	River
					m3/sec			m3/sec	m3/sec	m3/sec	m3/sec	m3/sec
Aug.	7,223	2.70	6,191	2.31	< 2.70					٠	ı	6,191
Sep.	8,027	3.10	10,892	4.20		9,165	3.54	> 3,10	0.44	0.44	J	8,027
Oct.	12,217	4.56	18,254	6.82		15,350	5,73	> 4.56	1.17	1,140)	ı	12,217
Nov.	12,623	4.87	20,364	7.86		17,402	6.71	> 4.87	1.84	1.84	ı	12,623
Dec.	21,902	8.18	24,434	9.12		21,282	7.95	< 8.18	ı	(4,709)	ı	21,902
Jan.	17,600	6.57	27,080	10.11		23,547	8.79	> 6.57	2.22	2.22	1	17,600
Feb.	63,763	26.36	23,518	9.72	> 26.36					(0,340)		23,518
Mar.	137,411	51.30	15,858	5.92	> 51.30							15,858
Apr.	33,938	13.09	11,976	4.62	> 13.09							11,976
May	16,589	6.19	9,656	3.61	> 6.19							9,656
Jun.	14,291	5.51	5,479	2.11	> 5.51		-					5,479
Jul.	12,165	4.54	4,545	1.70	> 4.54							4,545
Total	357,749		178,247							(14,989)	1	149,592

Note: VI; excluding lagoons (m3), V2; Water requirements at 7 intakes (m3) V3; Water requirements at 2 upstream intakes (m3) - Q1,Q2,Q3; m3/sec

Table G-5-41 River Discharge and Intaked Volume at Palpa (1979 - 1980)

(unit : \times 10³ m³)

	Piver Discharge	arrae										
Month	V1	01	V2	05	Available	٧3	63	Available	Shortage	Lagoons (Lagoons Groundwater	River
					m3/sec			m3/sec	m3/sec	m3/sec	m3/sec	m3/sec
Aug.	8,087	3.02	6,191	2.31	< 3.02						ı	6,191
Sep.	8,968	3.46	10,892	4.20		9,165	3,54	> 3,46	0.08	0.08	ı	8,968
Oct.	6,307	2,35	18,254	6.82		15,350	5.73	> 2.35	3.38	2.38	1.00	6,307
Nov.	5,901	2.28	20,364	7.86		17,402	6.71	> 2.28	4.43	3.43	1.00	5,901
Dec.	9,677	3.61	24,434	9.12		21,282	7.95	> 3.61	4.34	3.18	1,00	6,677
Jan.	49,153	18.35	27,080	10.11	< 18.35					(0,367)	(9/0,7)	27,080
Heb.	24,684	10.20	23,518	9.72	< 10.20							23,518
Mar.	53,145	19.84	15,858	5.92	< 19.84							15,858
Apr.	38,206	14.74	11,976	4.62	< 14.74							11,976
May	17,600	6.57	9,656	3.61	< 6.57							9,656
Jun.	15,025	5.80	5,479	2.11	< 5.80							5,479
Jul.	10,411	3.89	4,545	1.70	< 3.89							4,545
Total	247,164		178,247			i.				(24,000) (7,948)	(1,948)	135,156

Note: V1; excluding lagoons (m3), V2; Water requirements at 7 intakes (m3) V3; Water requirements at 2 upstream intakes (m3) Q1,Q2,Q3; m3/sec

Table G-5-42 River Discharge and Intaked Volume at Palpa (1980 - 1981)

(unit : $\times 10^3 \text{ m}^3$)

Month	River Discharge	harge 01	V2	02	Available	V3	03	Available Shortage	Shortage	Lagoons G	roundwater	River
				ł	m3/sec		;	m3/sec	m3/sec	m3/sec	m3/sec m3/sec	m3/sec
Aug.	9,867	3.68	6,191	2.31	< 3.68						i	6,191
Sep.	6,255	2.41	10,892	4.20		9,165	3.54	> 2.41	1,13	1.13	ŧ	6,255
Oct.	15,967	5.96	18,254	6.82		15,350	5,73	> 5.96		(5,359)	ı	15,967
Nov.	17,954	6.93	20,364	7.86		17,402	6.71	< 6.93			ł	17,954
Dec.	33,247	12.41	24,434	9.12	< 12.41						ı	24,434
Jan.	48,133	17.97	27,080	10.11	< 17.97							27,080
Feb.	157,542	65.12	23,518	9.72	< 65.12							23,518
Mar.	184,706	68.96	15,858	5.92	> 68,96							15,858
Apr.	67,202	25.93	11,976	4.62	< 25.93							11,976
Мау	21,324	7.96	9,656	3.61	> 7,96							9,656
Jun.	17,781	98.9	5,479	2.11	< 6.86							5,479
Jul.	14,394	5.37	4,545	1.70	< 5.37							4,545
Total	594,372		178,247							(2,929)		168,913

Note: V1; excluding lagoons (m3), V2; Water requirements at 7 intakes (m3) V3; Water requirements at 2 upstream intakes (m3) Q1,Q2,Q3; m3/sec

Table G-5-43 River Discharge and Intaked Volume at Palpa (1981 - 1982)

				178,247		401,760	Total
		< 4,33	1.70	4,545	4.33	11,595	Jul.
		< 6.12	2,11	5,479	6.12	15,854	Jun.
		< 8.74	3.61	9,656	8.74	23,406	May
		< 18,49	4.62	11,976	18.49	47,926	Apr.
		< 23.02	5.92	15,858	23.02	61,664	Mar
		< 47.53	9.72	23,518	47.53	114,990	Feb.
		< 15,31	10.11	27,080	15.31	41,005	Jan.
		< 11,48	9.12	24,434	11.48	30,741	Dec.
6.71	17,402		7.86	20,364	7.05	18,265	Nov.
5.73	15,350		6.82	18,254	5.05	13,530	Oct.
		< 4.56	4.20	10,892	4.56	11,828	Sep.
		60.4 >	2.31	6,191	60.4	10,956	Aug.
Q3 Available m3/sec	V3	Available m3/sec	05	V2	arge 01	Kiver Disco	Month
	,	5.73	V3 03 15,350 5.73 17,402 6.71	Available V3 Q3 m3/sec < 4.09 < 4.56 < 4.56	02 Available V3 03 2.31 < 4.09 4.20 < 4.56 6.82	T V2 Q2 Available V3 Q3 m3/sec 09 6,191 2.31 < 4.09 56 10,892 4.20 < 4.56 05 18,254 6.82 15,350 5.73 05 20,364 7.86 17,408 31 27,080 10.11 < 15.31 53 23,518 9.72 < 47.53 02 15,858 5.92 < 23.02 49 11,976 4.62 < 18.49 74 9,656 3.61 < 8.74 12 5,479 2.11 < 6.12 33 4,545 1.70 < 4.33	harge V2 Q2 Available V3 Q3 4.09 6,191 2.31 < 4.09

G - 97

Note: V1; excluding lagoons (m3), V2; Water requirements at 7 intakes (m3) V3; Water requirements at 2 upstream intakes (m3) Q1,Q2,Q3; m3/sec

Table G-5-44 River Discharge and Intaked Volume at Palpa (1982 - 1983)

 $(unit : x 10^3 m^3)$

			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									
Month	Kiver Discharge	narge Ol	V2	02	Available	٧3	63	Available	Shortage		Lagoons Groundwater	River
					m3/sec			m3/sec	m3/sec	m3/sec	m3/sec	m3/sec
Aug.	14,161	5.29	6,191	2,31	< 5.29						1	6,191
Sep.	12,830	4,95	10,892	4.20	< 4.95						1	10,892
Oct.	11,033	4.12	18,254	6.82	-	15,350	5.73	> 4.12	19.1	1.61	t	11,033
Nov.	41,161	15,88	20,364	7.86	< 15.88					(4,012)	I	20,364
Dec.	41,964	15.67	24,434	9.12	< 15.67						ı	24,434
Jan.	72,593	27.10	27,080	10.11	< 27.10							27,080
Feb.	126,274	52.20	23,518	9.72	< 52.20							23,518
Mar.	126,844	47.36	15,858	5.92	< 47.36							15,858
Apr.	101,814	39,28	11,976	4.62	< 39.28							11,976
May	24,054	86.8	9,656	3,61	86.8 >							929*6
Jun.	13,081	5.05	5,479	2.11	< 5.05							5,479
Jul.	8,942	3,34	4,545	1.70	< 3.34							4,545
Total	594,751		178,247							(4,312)		171,026

Note: VI; excluding lagoons (m3), V2; Water requirements at 7 intakes (m3) V3; Water requirements at 2 upstream intakes (m3) Q1,Q2,Q3; m3/sec

Table G-5-45 River Discharge and Intaked Volume at Palpa (1983 - 1984)

 $(unit : x 10^3 m^3)$

Month	River Discharge	large Ol	V2	05	Available	V3	03	Available	Shortage	Lagoons	Lapoons Groundwater	River
				1	m3/sec		1	1	m3/sec	m3/sec	m3/sec	m3/sec
Aug.	11,284	4.21	6,191	2.31	< 4.21		÷		٠.		ì	6,191
Sep.	9,530	3,68	10,892	4.20		9,165	3,54	< 3.68			ì	9,530
Oct.	11,897	47.44	18,254	6.82		15,350	5.73	> 4.44	1.29	1.29	1	11,897
Nov.	10,264	3,96	20,364	7.86		17,402	6.71	> 3.96	2.75	2,75	1	10,264
Dec.	29,506	11,02	24,434	9.12	< 11.02					(0,1,0)	ì	24,434
Jan.	36,979	13.81	27,080	10,11	< 13.81							27,080
Feb.	157,715	65,19	23,518	9.72	< 65.19							23,518
Mar.	127,405	47.57	15,858	5.92	< 47.57							15,858
Apr.	58,553	22,59	11,976	4.62	< 22.59							11,976
May	33,722	12.59	9,656	3,61	< 12.59					ţ		959'6
Jun.	24,028	9.27	5,479	2.11	< 9.27							5,479
Jul:	17,548	6.55	4,545	1.70	< 6.55						÷	4,545
Total	528,431		178,247							(10,583)		160,428

Note: VI; excluding lagoons (m3), V2; Water requirements at 7 intakes (m3) V3; Water requirements at 2 upstream intakes (m3) Q1,Q2,Q3; m3/sec

Table G-5-46 River Discharge and Intaked Volume at Palpa (Probability; 5 years) (Comparison; In case of unsufficient on-farm management: E = 42 %)

28,714 6,695 17,393 8,368 16,504 25,794 6,790 9,527 (unit : x 103 m³) m3/sec Lagoons Groundwater 1,00 (2,592) 0,61 (1,640) (8,113) 1,94 (5,205) m3/sec (7.312)Shortage m3/sec 2.73 4.13 2,55 Available > 6.16 > 2.58 > 3.56 > 3.23 m3/sec <10.72 3.88 6,29 7.36 9.64 8.71 ္မ 10,052 16,835 19,086 23,342 25,826 ٧3 Available < 20.16 < 28.03 < 3.38 m3/sec 10.66 6,49 2.54 11.09 7.47 8.62 10.01 4.61 02 26,799 6,790 11,946 22,335 29,701 25,794 17,393 20,021 72 3,56 3,23 6,16 10,72 20,16 3,38 2.58 28.02 River Discharge

Note: V1; excluding lagoons (m3), V2; Water requirements at 7 intakes (m3) V3; Water requirements at 2 upstream intakes (m3) Q1,Q2,Q3; m3/sec

4,985 600,9

13,135 10,594 154,508

(4,232)

(24,000)

3.88 76.97

195,502

3.88

10,391

76.4

12,876

Jun. Jul. Total

< 14.95 97.9 >

5.07 3.96 2.32 1.86

13,135

14.95 97.9

38,740

Apr.

17,301

Мау

75,077

48,776

Feb. Mar.

28,714

8,368

16,504

Dec. Jan.

6,059 6,695 9,527

Aug. Sep. Oct. Nov.

Month

10,594 600.9 4,985

Table G-5-47 Results of Water Balance Study

Unit: 10 m 3

			;		-	•			Utilizing	
	ά. 100-100-100-100-100-100-100-100-100-100		Water	usage	in water sourcewise Release Grou	Groundwater	er	Collect	ratio of River Dischange	
X ee n	Discharge at PALPA	Total	River Discharge	Return	from	For Agriculture	Others	ing conduit	(including of lake water)	Remarks
Probable year 1/5	282,028	211,847	211,847 145,397	43,157	22,114		1,179	1	w w	
Probable year 1/10	222,189	211,847	131,643	46,058	24,000	8,326	1,179	641	70	
.97' - 87'	357,749	211,847	149,592	46,087	14,989	ı	1,179		46	
08 64.	247,164	211,847	135,156	43,135	24,000	7,948	1,179	429	4.	. •
*80 84	594,372	211,847	168,913	38,826	2,929		1,179	1	. 58	
181 - 182	401,760	211,847	211,847 171,424	37,423	1,821	ì	1,179	ı	4	
*82 - 183	594,751	211,847	171,026	35,330	4,312	l	1,179	ı	29	
.8384	528,431	211,847	160,428	39,657	10,583	, 1 .	1,179	ı	32	į
Comparative study	.udy							·		
Incase that water manage- ment is insufficient (provable year 1/5)	282,028	231,016	154,508	47,097	24,000	4,232	1,179	1	· ဧ ဖ	

* Details are shown in Annex.

Table G-5-48 Available Water for Leaching

tion Aug. Sep. Oct. Nov. Dec. Jan. Feb 7,876 5,615 8,360 5,992 12,625 21,828 32,42 6,191 5,615 8,360 5,992 12,625 21,828 23,51 V2 1,685 0 0 0 0 0 8,90				TOPT	rable G-5-40	o 7	4 7 0 7 4.	다 다 마	ָ ט ד	Available water ror beaching	F11113	n)	nit; x	(unit; x 103 m ³)
7,876 5,615 8,360 5,992 12,625 21,828 32,42 6,191 5,615 8,360 5,992 12,625 21,828 23,51 1,685 0 0 0 0 0 0 8,90)escription	Auge	Sep.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Total
6,191 5,615 8,360 5,992 12,625 21,828 23,51 1,685 0 0 0 0 0 0 8,90	IA	7,876	5,615	8,360	5,992	12,625	21,828	32,420	59,517	32,657	14,899	11,166	9,234	222,189
1,685 0 0 0 0 0 8,90	V2	6,191	5,615	8,360	5,992	12,625	21,828	23,518	15,858	11,976	9,656	5,479	4,545	131,643
	V1 - V2	1,685	0	0	0	0	0	8,902	43,659	20,681	5,243	5,687	4,687	90,546
0 0 0 0 0	٧3	1,685	0	0	0	0	0	0	7,660	11,542	5,243	5,687	4,687	36,506

Note: V1; River discharge V2; Water requirements to be dependent on river V3; Available leaching requirements Leaching water requirement: 12,297 x 10 3 m 3

Table G-5-49 (1) Intake Capacity

1. Esperanza (A = 3,440 ha)

Crop	Area	Consumptive Use	Net Water Requirements	
	ha	mm/day	m3/day	
Fruit	3,086	3.10	95,666	
Cotton	177	3.68	6,514	
Maize	177	2.39	4,230	
Total	3,440		106,410 = 1.23	m ³ /sec

- Irrigation efficiency (E = 34.7 %)

- Gross water requirements

$$Q = 1.23/0.347 = 3.51 \text{ m}^3/\text{sec}$$

(Vested water right: 4.00 m³/sec)

2. Huando (A = 1,416 ha)

		Consumptive	Net Water	•
Crop	Area	Use	Requirements	
	ha	mm/day	m3/day	
Fruit	1,270	3.10	39,370	
Cotton	73	3.68	2,686	
Maize	73	2.39	1,745	
Total	1,416		43,801 = ().51 m ³ /sec

- Irrigation efficiency (E = 34.7 %)

- Gross water requirements

$$Q = 0.51/0.347 = 1.46 \text{ m}^3/\text{sec}$$

(Vested water right: 3.50 m³/sec)

Table G-5-49 (2) Intake Capacity

3. Chancay-Huaral (A = 6,803 ha)

		Consumptive	Net Water	
Crop	Area	Use	Requirements	
	ha	mm/day	m3/day	
Fruit	740	3.10	22,940	
Cotton	2,679	3,68	98,587	
Maize	2,679	2.39	64,028	
Vegetable	705	2.64	18,612	
Total	6.803		204,167 = 2	.36 m ³ /sec

- Irrigation efficiency (E = 41.2 %)

- Gross water requirements

$$Q = 2.36/0.412 = 5.76 \text{ m}^3/\text{sec}$$

(Vested water right: 7.00 m³/sec)

4. Salinas (Alto, M1, M2) (A = 281 ha)

Crop	Area	Consumptive Use	Net Water Requirements	
	ha	mm/day	m3/day	
Fruit	23	3.10	713	
Cotton	96	3.68	3,533	
Maize	96	2.39	2,294	
Vegetable	66	2.64	1,742	
Total	281		8,282 = 0	.10

- Irrigation efficiency (E = 38.1 %)

- Gross water requirements

$$Q = 0.10/0.381 = 0.26 \text{ m}^3/\text{sec}$$

(Vested water right: 0.368 m³/sec)

Table G-5-49 (3) Intake Capacity

5. Palpa (A = 3.037 ha)

CLOD	Area	Use	Requirements
	ha	mm/day	m3/day
Fruit	838	3.10	25,978
Cotton	902	3.68	33,194
Maize	902	2.39	21,558
Vegetable	395	2.64	10,428

Total 3,037

 $91,158 = 1.05 \text{ m}^3/\text{sec}$

- Irrigation efficiency (E = 40.9 %)

Soil texture Coarse

Coarse 39 ha - 33 % Medium 2,998 ha - 41 %

Consumptive Net Water

- Gross water requirements

$$Q = 1.05/0.409 = 2.56 \text{ m}^3/\text{sec}$$

(Vested water right: 2.50 m³/sec)

6. Boza Alto (A = 779 ha)

•		Consumpti.ve	Net Water	
Crop	Area	Use	Requirements	
	ha	mm/day	m3/day	
Fruit	135	3.10	4,185	
Cotton	260	3.68	9,568	·
Maize	260	2.39	6,214	
Vegetable	124	2.64	3,274	
Total	779		23,241 = 0	.27 m ³ /sec

- Irrigation efficiency (E = 49.9 %)

Soil texture Coarse 210 ha - 47 % Medium 569 ha - 51 %

- Gross water requirements

$$Q = 0.27/0.499 = 0.54 \text{ m}^3/\text{sec}$$

(Vested water right: 0.60 m³/sec)

Table G-5-49 (4) Intake Capacity

7. Boza Bajo (A = 676 ha)

Crop	Area	Consumptive Use	Net Water Requirements m3/day	
•	ha	mm/day	m3/day	
Fruit	117	3.10	3,627	
Cotton	225	3.68	8,280	£ .
Maize	225	2.39	5,378	·
Vegetable	109	2.64	2,878	.*
	<u> </u>			3.
Tota1	676		20,163 = 0	.23 m /sec

- Irrigation efficiency (E = 49.9%)

- Gross water requirements

$$Q = 0.23/0.499 = 0.46 \text{ m}^3/\text{sec}$$

(Vested water right: 0.50 m³/sec)

8. Pasamayo Bajo (A = 651 ha)

•	ű.	Consumptive	Net Water	
Crop	Area	Use	Requirements	
	ha	mm/day	m3/day	
Fruit	113	3.10	3,503	
Cotton	217	3.68	7,986	
Maize	217	2.39	5,186	
Vegetable	104	2.64	2,746	·
Total	651		19,421 = 0.2	22 m ³ /sec

- Irrigation efficiency (E = 49.9 %)

- Gross water requirements

$$Q = 0.22/0.499 = 0.44 \text{ m}^3/\text{sec}$$

(Vested water right: 0.60 m³/sec)

Table G-5-50 (1) Canal Capacity

Irrigation Block		Twee		X7 + 17		7.	1
	Canal	iligacion Area	water Requirements	Net water Requirements	Irrigation Efficiency	Diversion Water	rroposed Capacity for Canal
			•	4	•	Requirements	
:		ha	1/sec/ha	m3/sec	%	m3/sec	m3/sec
Esperanza	Esperanza	3,440	0.358	1.23	35		3,51
	Cabuval Alto	1,192	0.358	0,43	7 7 7	06.0	080
	2nd Lat	*		i			
	Cabuyal Alto	264	0.358	60.0	48	0.19	*
	Cabuyal Bajo	776	0.358	0.28	87	0.58	1.16
	Villa Garcia	112	0.358	0.04	48	0.08	*
	Cayo Murillo	308	0.358	0.11	48	0.23	*
	Granados	1,818	0.358	0.65	87	1.35	2.70
	La Virgen	84	0.358	0.03	48	90.0	0.13
	Descansa Muerto		0.358	0.08	48	0.17	*
	1st Lateral						
	Granados	336	0.358	0.12	87	0.25	0.50
	Lateral 1.1						
	Granados	110	0.358	0.04	87	0.08	*
	Lateral 1.2						
	Granados	78	0.358	0.03	78	90.0	*
	2nd Lateral						
	Granados	168	0.358	90.0	87	0.13	*
	3rd Lateral						
	Granados	573	0.358	0.21	87	0.44	0.88
	Lateral 3.1		-				
	Granados	327	0.358	0.12	87	0.25	0.50
	4th Lateral						
	Granados	103	0.358	0.04	48	0.08	0.16
	5th Lateral		-				
	Granados	55	0.358	0.02	87	0.04	0.16

Table G-5-50 (2) Canal Capacity

		÷																				
Proposed Capacity for Canal	m3/sec	7.22	*	*	0.62	水	0.26		5./6	3,25	0.66	1.36	*	*	*	1.10	*	*	*	*	0,30	0.78
Diversion Water Possitements	m3/sec	7.22	0.08	0.14	0.31	0.17	0.13	1	5.76	3.25	0,33	0.68	0.61	0.59	0.10	0.55	0.12	0.07	0.34	0.07	0,15	0.39
Irrigation Efficiency	%	35	84	35	φ 9	35	48		[†	Z	51	4 3	41	41	41	51	41	41	41	77	77	77
Net Water Requirements	m3/sec	0.51	0.04	0.05	0.15	90.0	90.0		2.36	1.66	0.17	0.28	0.25	0.24	0.04	0.28	0.05	0.03	0.14	0.03	90.0	0.16
Water Requirements	1/sec/ha	0.358	0.358	0.358	0.358	0.358	0.358	1	0.347	0.347	0.347	0.347	0.347	0.347	0.347	0.347	0.347	0.347	0.347	0.347	0.347	0.347
Irrigation Area	ha	8,219	101	130	421	153	160	1	1 6,803	4,774	7.27		734	269	113	817	158	92	412	90	185	462
Cana1		Huando (1)** Huando (2)	ist bareral Huando	La Victoria	Huando (3) 2nd Lateral	Huando	Huando (4)		Chancay-Huaral	Huaral (1)	Garcia Alonso	Jesus de Valle	Lat. Canal 1	Lat. Canal 2	Los Naturales	Huaral (2)	El Cerrito	Caporal	Cantellan	Quincha	Dren Quincha	Dren Retes
Irrigation Block		Huando							Chancay-	Huaral						•						

Table G-5-50 (3) Canal Capacity

Irrigation Block	Canal	Irrigation Area	Water Requirements	Net Water Requirements	Irrigation Diversion Efficiency Water Requirements	Diversion Water quirements	Proposed Capacity for Canal
		ha	1/sec/ha	m3/sec	2	m3/sec	m3/sec
Chancay-	Chancay	2,029	0.347	0.70	42	1.67	1.67
Huaral	Quepepampa	426	0.347	0.15	50	0.30	0,60
	Los Laureles	346	0.347	0.12	50	0.24	0.48
	Galeano(Filt.Donoso)		0.347	0.13	50	0.26	0.52
	Sta Rosa	431	0.347	0.15	20	0.30	09*0
	Lat Chancay	274	0.347	0.10	38	0.26	**
	Torre Blanca	255	0.347	60.0	88	0.24	0,48
Jecuan	Calera	168	0.341	0.06	38	0.16	*
Chancayllo	El Progreso	77	0.341	0.02	38	0.05	*
	Hatillo	184	0.341	90.0	20	0.12	*
	San Cayetano	190	0.341	90.0	88	0.16	*
	San Juan	213	0.341	0.07	38	0.18	ж
	Chancay110						
	Derecho	144	0.341	0.05	38	0.13	*
•	Chancayllo			:			
	Izquierda	382	0.341	0.13	38	0.34	*
	Candelaria Baja		0.341	0.12	38	0.32	*
Salinas	Salinas Alto	281	0,341	0.10	89	0.26	0.26
	Salinas Medio	1 79	0.341	0.03	38	0.08	*
	Salinas Medio	2 19	0.341	900.0	38	0.02	*
	Salinas Bajo	165	0.341	90.0	38	0.16	*

Table G-5-50 (4) Canal Capacity

1.05 41 2.56 0.27 51 0.53 0.12 51 0.24 0.04 41 0.10 0.05 41 0.12 0.08 51 0.55 0.30 0.09 41 0.22 0.09 41 0.22 0.09 50 0.30 0.15 50 0.30 0.06 50 0.12 0.08 39 0.21 0.01 39 0.21 0.01 50 0.65 0.01 50 0.30 0.02 0.03 0.03	Irrigation Block	Canal	Irrigation Area	Water Requirements	Net Water Requirements	Irrigation Efficiency	Diversion Water equirements	Proposed Capacity for Canal	l ,
a-Caqui Palpa 3,037 0.347 1.05 41 2.56 Palpa Alto 767 0.347 0.27 51 0.53 Teresa **** 338 0.347 0.027 51 0.24 Castilla 123 0.347 0.05 41 0.10 Sta Hermelinda 149 0.347 0.05 41 0.10 Palpa Bajo (1) 2,270 0.347 0.79 51 1.55 Palpa Bajo (2) 808 0.347 0.28 51 0.55 Caqui (2) 1,045 0.347 0.36 51 1.00 Caqui (2) 255 0.347 0.36 51 0.07 Caqui (2) 255 0.347 0.36 51 0.07 Maria Bajo (2) 255 0.347 0.09 41 0.05 Maria Flores Mira Flores Alto 172 0.345 0.06 50 0.12 Mira Flores Bajo 245 0.345 0.06 50 0.03 Boza Alto 779 0.345 0.01 39 0.03 Boza Bajo (1) 676 0.345 0.023 50 0.46 Boza Bajo (2) 388 0.345 0.13 50 0.26 Boza Bajo (2) 388 0.345 0.13 50 0.26			ha	1/sec/ha	m3/sec	8	m3/sec	m3/sec	,
Palpa Alto 767 0.347 0.27 51 0.53 Teresa *** 338 0.347 0.12 51 0.24 Castillada 123 0.347 0.05 41 0.10 Sta Hermelinda 149 0.347 0.05 41 0.12 Palpa Bajo (1) 2,270 0.347 0.28 51 1.55 Palpa Bajo (2) 808 0.347 0.28 51 1.55 Caqui (2) 1.462 0.347 0.36 51 1.00 Caqui (2) 1.045 0.347 0.09 41 0.22 Maria 50 0.347 0.09 41 0.22 Maria 69 0.347 0.029 50 0.37 Jose San Jose 847 0.345 0.15 50 0.30 Flores Mira Flores Alto 172 0.345 0.06 50 0.12 Mira Flores Alto 172 0.345 0.06 50 0.12 Mira Flores Alto 0.345 0.06 50 0.01 Boza Alto 779 0.345 0.23 50 0.24 Boza Bajo (2) 388 0.345 0.23 50 0.26 Boza Bajo (2) 388 0.345 0.13 50 0.26	Palpa-Caqui	Palpa	3,037	0.347	1,05	41	2.56	2,56	
Teresa *** 338 0.347 0.12 51 0.24 Castilla 123 0.347 0.04 41 0.10 Sta Hermelinda 149 0.347 0.05 41 0.12 Palpa Bajo (1) 2,270 0.347 0.79 51 1.55 Palpa Bajo (2) 808 0.347 0.28 51 0.55 Caqui (1) 1,462 0.347 0.36 51 1.00 Caqui (2) 1.045 0.347 0.36 51 0.71 Caqui (2) 1.045 0.347 0.09 41 0.71 Jose San Jose 847 0.345 0.02 50 0.36 Flores Mira Flores Alto 172 0.345 0.06 50 0.12 Mira Flores Bajo 245 0.345 0.06 50 0.21 Mira Flores Bajo 245 0.345 0.06 39 0.01 Boza Alto 779 0.345 0.01 39 0.01 Boza Alto 779 0.345 0.01 39 0.01 Boza Bajo (1) 676 0.345 0.02 50 0.46 Boza Bajo (2) 388 0.345 0.13 50 0.26		Palpa Alto	767	۰	0.27	51	0.53	1.06	
Castilla 123 0.347 0.04 41 0.10 Sta Hermelinda 149 0.347 0.05 41 0.12 Palpa Bajo (1) 2,270 0.347 0.079 51 1.55 Palpa Bajo (2) 808 0.347 0.28 51 0.15 Caqui (1) 1,462 0.347 0.36 51 1.00 Caqui (2) 1.045 0.347 0.09 41 0.22 Caqui (2) 1.045 0.347 0.09 41 0.02 Maria 69 0.347 0.09 41 0.05 Maria 847 0.345 0.02 41 0.05 Mira Flores 847 0.345 0.06 50 0.58 Flores Mira Flores 172 0.345 0.06 50 0.21 Mira Flores Bajo (245 0.345 0.01 39 0.03 Boza Bajo (1) 676 0.345 0.01 39 0.26 B			338		0.12	51	0.24	0.86	
Sta Hermelinda 149 0.347 0.05 41 0.12 Palpa Bajo (1) 2,270 0.347 0.79 51 1.55 Palpa Bajo (2) 808 0.347 0.28 51 1.55 Caqui (1) 1,462 0.347 0.51 51 1.00 Caqui (2) 1.045 0.347 0.09 41 0.22 Maria San Jose 847 0.345 0.02 50 0.05 Flores Mira Flores Alto 172 0.345 0.06 50 0.12 Mira Flores Bajo 245 0.345 0.01 39 0.01 Boza Alto 779 0.345 0.01 39 0.03 Boza Bajo (1) 676 0.345 0.01 50 0.54 Boza Bajo (2) 388 0.345 0.13 50 0.26 Control of the control of		Castilla	123		0.04	41	0.10	*	
Palpa Bajo (1) 2,270 0.347 0.79 51 1.55 Palpa Bajo (2) 808 0.347 0.28 51 0.55 Caqui (1) 1,462 0.347 0.36 51 1.00 Caqui (2) 1.045 0.347 0.36 51 1.00 Caqui (2) 1.045 0.347 0.09 41 0.71 Caqui Bajo 25 0.347 0.009 41 0.22 Maria 69 0.347 0.345 0.05 Flores Mira Flores Alto 172 0.345 0.06 50 0.12 Mira Flores Bajo 245 0.345 0.01 39 0.03 Boza Alto 779 0.345 0.01 39 0.03 Boza Bajo (1) 676 0.345 0.01 50 0.05 Boza Bajo (2) 388 0.345 0.13 50 0.26		Sta Hermelinda	149		0,05	17	0.12	零	
Palpa Bajo (2) 808 0.347 0.28 51 0.55 Caqui (1) 1,462 0.347 0.51 51 1.00 Caqui (2) 1.045 0.347 0.36 51 1.00 Caqui (2) 1.045 0.347 0.09 41 0.22 Maria Caqui Bajo 0.347 0.00 41 0.02 Maria San Jose 847 0.345 0.29 50 0.58 Flores Mira Flores Alto 172 0.345 0.06 50 0.12 Mira Flores Bajo 245 0.345 0.06 50 0.01 Boza Alto 779 0.345 0.01 39 0.01 Boza Alto 779 0.345 0.01 39 0.05 Boza Bajo (1) 676 0.345 0.13 50 0.46 Boza Bajo (2) 388 0.345 0.13 50 0.46		Bajo	2,270		0,79	51	1.55	1.55	
Caqui (1) 1,462 0.347 0.51 51 1.00 Caqui (2) 1.045 0.347 0.05 51 0.71 Caqui Bajo 255 0.347 0.09 41 0.22 Maria 69 0.347 0.09 41 0.05 Jose San Jose 847 0.345 0.29 50 0.58 Flores Mira Flores Alto 172 0.345 0.06 50 0.12 Mira Flores Bajo 245 0.345 0.06 50 0.12 Mira Flores Bajo 245 0.345 0.01 39 0.03 Boza Alto 779 0.345 0.01 39 0.05 Boza Bajo (1) 676 0.345 0.23 0.24 Boza Bajo (2) 388 0.345 0.13 50 0.26		Bajo (808	•	0.28	51	0.55	1.10	
Caqui (2) 1.045 0.347 0.36 51 0.71 Caqui Bajo 255 0.347 0.09 41 0.22 Maria San Jose 847 0.345 0.29 50 0.58 Flores Mira Flores Alto 172 0.345 0.15 50 0.30 Mira Flores Bajo 245 0.345 0.06 50 0.12 Mira Flores Bajo 245 0.345 0.06 50 0.12 Mira Flores Bajo 245 0.345 0.01 39 0.21 Boza Alto 779 0.345 0.01 39 0.03 Boza Bajo (1) 676 0.345 0.27 50 0.46 Boza Bajo (2) 388 0.345 0.13 50 0.26 Boza Bajo (2) 379 0.345 0.13 50 0.46		Caqui (1)	1,462		0,51	51	1.00	2.00	
Caqui Bajo 255 0.347 0.09 41 0.22 Maria 69 0.347 0.02 41 0.05 Jose San Jose 847 0.345 0.29 50 0.58 Flores Mira Flores Alto 172 0.345 0.06 50 0.12 Mira Flores Bajo 245 0.345 0.06 50 0.12 Mira Flores Bajo 245 0.345 0.08 39 0.21 Lat Mira Flores Bajo 245 0.345 0.01 39 0.03 Boza Alto 779 0.345 0.01 39 0.03 Boza Bajo (1) 676 0.345 0.27 50 0.46 Boza Bajo (2) 388 0.345 0.13 50 0.46 Boza Bajo (2) 388 0.345 0.13 50 0.26		•	1.045	0.347	0.36	21	0.71	1.42	
Maria 69 0.347 0.02 41 0.05 Jose San Jose 847 0.345 0.29 50 0.58 Flores Mira Flores Alto 172 0.345 0.06 50 0.30 Mira Flores Bajo 245 0.345 0.08 39 0.21 Iat Mira Flores 23 0.345 0.01 39 0.03 Boza Alto 779 0.345 0.01 39 0.03 Boza Bajo (1) 676 0.345 0.27 50 0.54 Boza Bajo (2) 388 0.345 0.13 50 0.46		Ba	255	0.347	60.0	41	0.22	*	
Jose San Jose 847 0.345 0.29 50 0.58 Flores Mira Flores Alto 443 0.345 0.15 50 0.30 Mira Flores Bajo 245 0.345 0.06 50 0.12 Mira Flores Bajo 245 0.345 0.08 39 0.21 Lat Mira Flores 23 0.345 0.01 39 0.03 Boza Alto 779 0.345 0.27 50 0.46 Boza Bajo (1) 676 0.345 0.23 50 0.46 Boza Bajo (2) 388 0.345 0.13 50 0.26			69	0.347	0.02	77	0.05	*	
Flores Mira Flores 443 0.345 0.15 50 0.30 Mira Flores Bajo 245 0.345 0.08 50 0.12 Mira Flores Bajo 245 0.345 0.08 39 0.21 Boza Alto 779 0.345 0.27 50 0.46 Boza Bajo (1) 676 0.345 0.13 50 0.46	San Jose	San Jose	847	0.345	0.29	20	0.58	1.16	1
Mira Flores Alto 172 0.345 0.06 50 0.12 Mira Flores Bajo 245 0.345 0.08 39 0.21 Lat Mira Flores 23 0.345 0.01 39 0.03 Boza Alto 779 0.345 0.27 50 0.54 Boza Bajo (1) 676 0.345 0.23 50 0.46 Boza Bajo (2) 388 0.345 0.13 50 0.26	MIra Flores	Mira	443	0.345	0.15	50	0.30	*	
Mira Flores Bajo 245 0.345 0.08 39 0.21 Lat Mira Flores 23 0.345 0.01 39 0.03 Boza Alto 779 0.345 0.27 50 0.54 Boza Bajo (1) 676 0.345 0.23 50 0.46 Boza Bajo (2) 388 0.345 0.13 50 0.26		Flores		0.345	90.0	SS	0.12	*	
Lat Mira Flores 23 0.345 0.01 39 0.03 Boza Alto 779 0.345 0.27 50 0.54 Boza Bajo (1) 676 0.345 0.23 50 0.46 Boza Bajo (2) 388 0.345 0.13 50 0.26		Flores		0.345	90.0	39	0.21	**	
Boza Alto 779 0.345 0.27 50 0.54 Boza Bajo (1) 676 0.345 0.23 50 0.46 Boza Bajo (2) 388 0.345 0.13 50 0.26		F10		0.345	0.01	36	0.03	*	
(1) 676 0.345 0.23 50 0.46 (2) 388 0.345 0.13 50 0.26	Boza	Boza Alto	779	0.345	0.27	50	0.54	0.54	
(2) 388 0.345 0.13 50 0.26			929	0.345	0.23	20	0.46	0.46	-
			388	0.345	0.13	20	0.26	97.0	

Table G-5-50 (5) Canal Capacity

irrigation Block	Canal	Area	Requirements	Requirements	Efficiency	Water	for Canal
		ha	1/sec/ha	m3/sec	8	equirements m3/sec	m3/sec
Pasamayo	Pasamayo Alto	288	0.345	0,10	36	0.26	*
	Pasamayo Bajo (1)	651	0.345	0.22	20	0.44	0.44
	Pasamayo 1st Orden	190	0.345	0.07	39	0.18	*
	Pasamayo Bajo (2)	461	0.345	0.16	20	0.32	*
	Hanglar	72	0.345	0.02	36	0.05	*

Note: 1) The canal marked * will be Irft as it is (Refer to Table H-2-13 and 14)

2) The canal marked ** is newly constructed (Refer to Annex H-3-1-1)

3) The canal marked *** will be used for connecting canal

4) The study has been made based on the proposed irrigation system

Table G-5-51 Proposed Storage Capacity of Existing Reservoir

		Existing	Existing Condition			As	Asamption	
		0 0 0 0 0 0 0	בייר : אַסאַסאַ בייר : בייר	5 0 1 1 1 1	Proposed			Trrigation
Name of Reservoir	Location	Capacity (m3)	Area (ha)	Beneficial Area (hal)	Capacity (m3)	Crop	ETC (mm/day)	Efficiency (%)
Esperanza	La Esperanza	42,000*	1,270	1	I	Fruits	3.7	47
Huando	Huando	13,600*	400	ı	ı	Fruits	3.1	47
Jesus Del Valle	Huaral	24,600	570	800	34,100*	Cotton Maize	ນາ ຕ	4.1
Cerrito	Huaral	12,000	270	410	17,700*	Cotton Maize	რ	41
Quepepampa .	Chancay (Quepepampa)	10,000	300	420	13,800*	Cotton Maize	ω	20
Buena Vista	Chancay (Torre Blanca)	11,300*	430	1 1	1 :	Maize Vegetable	2.6	20
Galeano	Chancay (Torre Blanca)	12,000*	460	ì	. 1	Maize Vegetable	5.6	
Laureles	Chancay (Laureles)	16,300*	620	- 1	1 .	Maize Vegetable	9.	20
Chancay Bajo	Chancay	7,300	210	270	*008'6	Maize Vegetable	5.6	ω ო

Table G-5-51(2) Proposed Storage Capacity of Existing Reservoir

Chancayllo	Chancayllo (San Cayetano)	12,000*	350	1 ₂	I .	Maize Vetable	2.6	38
San Juan	Chancayllo (San Juan)	2,000	140	210	7,300*	Maize Vegetable	2.6	38
Palpa	Palpa	33,800	920	1,100	40,200*	Cotton Maize		8
Niraflores	Niraflores	20,700*	500	ł	1	Cotton Maize	3°.5	Ø .
Total		221,400						

Note: - The storage capacity has been estimated assuming that the volume correspond to the diversion water requirement for 12 hours.

- Proposed storage capacity (marked *) is $250,300~\mathrm{m}^3$ in total.

Table G-5-52 Capacity of Proposed Reservoir

Assamption

Name of Reservoir	Location	Beneficial Area ha	Required Strage Volume m3	Crop	ETC mm/day	Irrigation Efficiency	Diversion Requirement m ³ /S
Res. GRANADOS 1	Divergent point between CABYAL BAJO and CAYO MURILLO	420 13,85 (Villa García 112Ha Cayo murillo 308Ha)	13,850 a 112Ha Lo 308Ha)	Fruits	ri m	47	0.321
Res. GRANADOS 2	Divergent point between VIRGEN GRANADOS and LAT-3 GRANADOS	570 (Granados)	18,800	Fruits	3. F	7.47	0.435
Res. AUCALLAMA	Midstream in SAN JOSE	450	16,420	Cotton, Maize	ເດ	8	0.380
Res. LOS LAURELES (BAJO)	Midstream in LOS LAURELES	400	12,700	Maize, Vegetable	9.0	41	0.294
Res. BOZA BAJO	Divergent point between BOZA BAJO and PASAMAYO ALTO	089	14,510	Cotton, Maize	່ທ ຕ	4 1	0.346
Total			76,280				

Note:

Table G-5-53 Calculation of Basic Intake Rate

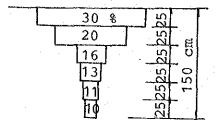
Location : Quincha

Date : Nov. 7, 1984

Depth	Pa: Inter	ssing Time val Cumula	Infil te Value	tration		ake Rate Cumulate
cm		min.	min. cm	Oundit	cm cm/	
23.7	0	0	0.0	0.0	0.0	0.0
21.8	1	1	1.9	1.9	114.0	114.0
21.2	1	2	0.6	2.5	36.0	75.0
20.6	1	3	0.6	3.1	36.0	62.0
20.2	1	4	0.4	.3.5	24.0	52.5
19.8	1	5	0.4	3.9	24.0	46.8
18.1	5	10	1.7	5.6	20.4	33.6
16.6	5	15	1.5	7.1	18.0	28.4
2.9	15	30	3.7	10.8	14.8	21.6
0.3	15	45	2.6	13.4	10.4	17.9
8.1	15	60	2.2	15.6	8.8	15.6
9.4	-	60	2.2	15.6		15.6
6.5	15	75	2,9	18.5	11.6	14.8
3.6	15	90	2.9	21.4	11.6	14.3
1,1	15	105	2.5	23.9	10.0	13.7
9.0	15	120	2.1	26.0	8.4	13.0

G-5-54 Caluculation of Basic Intake Rate

Location : Donoso


Date : Dec. 7, 1984

	Pass	ing Time	Infil	tration		ke Rate
Depth cm	Interva.	l Cumulat in. r	ce Value	Cumulat	m cm/	hr cm/h
Cut	. 111.	L11 •)	arns cm			
27.7	0	0	0.0	0.0	0.0	0.0
24.8	1	1	2.9	2.9	174.0	174.0
23.1	1.	2	1.7	4.6	102.0	138.0
21.8	1:	3	1.3	5.9	78.0	118.0
20.8	1	4	1.0	6.9	60.0	103.5
19.7	1	. 5	1.1	8.0	66.0	96.0
15.5	5	10	4.2	12.2	50.4	73.2
12.2	5	15	3.3	15.5	39.6	62.0
21.2		15	3.3	15.5		62,0
12.0	15	30	9.2	24.7	36.8	49.4
3.2	15	45	8.8	33.5	35.2	44.7
13.2		45	8.8	33.5	-	44.7
6.5	15	60	6.7	40.2	26.8	40.2
16.5	***	60	6.7	40.2	_	40.2
9.5	15	75	7.0	47.2	28.0	37.8

Table G-5-55 (1) Irrigation Water (TRAM) for Fruit

* Condition

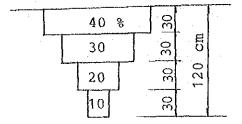
- Root zone depth : D = 1.50 m
- Soil Moisture Extraction Pattern (SMEP): Right Figure
- Max ETc = $3.1 \, mm/day$

* Course Textured Soil

Layer	Depth	Em	Sa	AM	Ra	Cu	TRAM
<u></u>	CIN	%		mm	** **	<u> </u>	mm
l st	0 - 25	3.5	1.44	12.60	30	42,00	42.00
2 nd	25 - 50	2,3	1.54	8.86	20	44.30	
3 rd	50 – 75	2.0	1.57	7.85	16	49.06	
4 th	75 - 100	2.0	1.57	7.85	13	60.38	
5 th	100 - 125	2.0	1.57	7.85	11	71.36	
6 th	125 - 150	2.0	1.57	7.85	10	78.50	
Total		·	·	52.86	·	·	

Note: Em; Effective moisture = (C.C - P.M.P) x 100

Sa; Apparent-specific gravity of soil


AM; Available moisture

Ra; Absorption ratio of moisture

Table G-5-55 (2) Irrigation Water (TRAM) for Cotton

* Condition

- Root zone depth : D = 1.20 m
- Soil Moisture Extraction Pattern (SMEP): Right Figure
- Max ETc = 3.8 mm/day

* Medium Textured Soil

Layer	Depth	Em	Sa	AM	Ra	Cu	TRAM
1 st	cm 0 - 30	7.0	1.45	mm 30.45	% 40	76.13	mm 76.13
2 nd	30 - 60	5.0	1.50	22.50	30	75.00	
3 rd	60 - 90	5.0	1.50	22.50	20	112.50	
4 th	90 - 120	5.0	1.50	22.50	10	225.00	
Total				97.95			

* Course Textured Soil

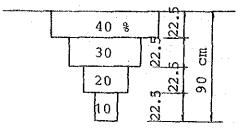
Layer	Depth	Em	Sa	AM	Ra	Cu	TRAM
	Cm	%		min	%		mm
1 st	0 - 30	6.0	1.34	24.12	40	60.30	60.30
2 nd	30 - 60	5.0	1.63	24.45	30	81,50	
3 rd	60 - 90	5.0	1.63	24.45	20	122.25	
4 th	90 - 120	5.0	1.63	24.45	10	244.50	
Tota1	·	<u></u>		97.47		and the state of t	······································

Note: Em; Effective moisture = $(C.C - P.M.P) \times 100$

Sa; Apparent-specific gravity of soil

AM; Available moisture

Ra; Absorption ratio of moisture


Table G-5-55 (3) Irrigation Water (TRAM) for Maize, Frijol, Papa

* Condition

- Root zone depth : D = 0.90 m

- Soil Moisture Extraction Pattern (SMEP): Right Figure

- Max ETc = 3.3 mm/day

* Medium Textured Soil

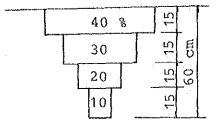
Layer	Depth	Em	Sa	AM	Ra	Cu	TRAM
	cm	%	:	mm	%		mm
l st	0 - 22.5	7.0	1.45	22.80	40	57.00	57.00
2 nd 22	2.5 - 45.0	5.7	1.48	19.00	30	63,33	
3 rd 45	5.0 - 67.5	5.0	1.50	16.90	20	84.50	
4 th 6	7.5 - 90.0	5.0	1.50	16.90	10	169.00	
Total				75,60			

* Course Textured Soil

Laver	Depth	Em	Sa	AM	Ra	Cu	TRAM
	cm	%		mm	%		mm
l st	0 - 22.5	6.0	1.34	18.09	40	45.23	45.23
2 nd 22.	5 - 45.0	5.3	1.53	18.25	30	60.83	
3 rd 45.	0 - 67.5	5.0	1.63	18.34	20	91.70	
4 th 67.	5 - 90.0	5.0	1.63	18.34	10	183,40	
Total				73.02	±		

Note: Em; Effective moisture = (C.C - P.M.P) x 100

Sa; Apparent-specific gravity of soil


AM; Available moisture

Ra; Absorption ratio of moisture

Table G-5-55 (4) Irrigation Water (TRAM) for Vegetable

* Condition

- Root zone depth : D = 0.60 m
- Soil Moisture Extraction Pattern (SMEP): Right Figure
- Max ETc = 2.5 mm/day

* Medium Textured Soil

Laver	Depth	Em	Sa	MA	Ra	Сы	TRAM
	cm	73		mm	%		mm
l st	0 - 15	7.0	1.45	15.23	40	38.08	38.08
2 nd	15 - 30	7.0	1.45	15.23	30	50.77	
3 rd	30 - 45	5.0	1.50	11.25	20	56.25	
4 th	45 ~ 60	5.0	1.50	11.25	10	112.50	
Total	<u> </u>		30. 	52.96	, , , , , , , , , , , , , , , , , , ,		

* Course Textured Soil

Layer	Depth	Em	Sa	AM	Ra	Cu	TRAM
	cm	%		mm	%		mm
1 st	0 - 15	6.0	1.34	12.06	40	30.15	30.15
2 nd	15 - 30	6.0	1.34	12.06	30	40.20	
3 rd	30 - 45	5.0	1.63	12.23	20	61.15	
4 th	45 ~ 60	5.0	1.63	12.23	10	122.30	
Total	-			48.58	and the state of t		

Note: Em; Effective moisture = (C.C - P.M.P) x 100

Sa; Apparent-specific gravity of soil

AM; Available moisture

Ra; Absorption ratio of moisture

Table G-5-56 Irrigation Water Amount of the Crops and Irrigation Interval

Crops	Soil Texture	Trem	Field Application (E) %	Water Requirement mm	Water Demand per ha m ³ /ha	Max etc mm/day	Irrigation Interval day
Fruits	Coarse	42.00	55	76	760	3.1	13
	Medium	76.13	60	127	1,270	3.8	20
Cotton	Coarse	60.30	55	110	1,100	3.8	18
Maiz (Frijol Papa)	Medium	57.00	60	95	950	3.3	17
	Coarse	45.23	55	82	820	3.3	13
Vegetable	Medium	38.08	60	63	630	2,5	15
	Coarse	30.15	55	55	550	2,5	12

Table G-5-57 Irrigation Hour

Crops	Water Requirement at Peak mm/day	Irrigation Interval (day)	Total Demand mm/ha	Water per ha m ³ /ha	Inflor Water Amount	Irrigation Hour (hr)
Fruits	3.1	10	56	560	15	10.4
Cotton	3.8	**	63	630	11	11.7
Maiz	3.3	6	55	550	ŧŧ	10.2
Vegetable	2.5	11	42	420	#	7.8

Table G-5-58 Comparison for Water Requirements

Descr	iption	Furrow %	Sprinkler, Dri	p Notes
Efficiency	Application	55 - 65	70 - 80	
·	Irrigation	47 - 56	60 - 68	
Water Re	quirements	100	80	Assumed 100 % of Furrow Irrigation

Table G-6-1 Poor Drainage Area

				(מוודים יוזמ)	110/
Block	D0(>2.0m)	$D1(1.5\sim2.0^{m})$	D2(1.0~1.5 ^m)	D3 (0~1.0 ^m)	Total
Quincha	200	410	390	420	1,420
Donoso	09	370	510	360	1,300
Boza	160	80	06	09	390
San Luis	180	09	130	120	490
Lunavilea	30	20	20	30	100
Palpa	20	3.0	20	i	100
Total	650	970 (26)	1,190	990 (26)	3,800

Table G-6-2 Present Condition of Poor Drainage Area

Block	Area (<1.5m)	Soil Texture	Salinity*	Pipe Drain	Leaching	Irrigation	Crops and Its Productivity
	ha		ជា				
Quincha	810	C I \sim I	\$2 = 273 \$3 = 524	Some parts with shallow	After the harvest of cotton, if water remained	Some parts	Cotton only in high salinity soil
Donoso	870	C~CL		Some parts	Little	Little	Cotton $70^{\rm QQ}/{\rm ha} \sim 10^{\rm QQ}/{\rm ha}$ Tomato $6.5^{\rm t} \sim 1.5^{\rm t}/{\rm ha}$
Boza	150	r ~ Ls	\$2 = 15 \$3 = 130	Non	If water remained	Little in high groundwater level	lgh
San Luis	52	I ~ SI	\$2 83 82 82	Non	If water remained	 ල 	
Lunavilca (Salinas)	50	TS ~ T	\$2 ≈ 50	Non	Non	ا ص ا	Maize $5^{ extsf{t}} \sim 10^{ extsf{t}}/ ext{ha}$

* salinity class \$2 : ECe 8 ~ 15 ms/cm \$3 : ECe > 15 ms/cm

Table G-8-1 Cost Comparison for Drainage Canal

Amount	13,338	36,871	9,144	1,190	60,543		Amount s/.	10,389	27,653	728	5,994	80,200	918		125,882
Unit Rate	1,404	15,363	1,016	140			Unit Rate	1,404	15,363	1,820	1,016	80,200	140		
Q'ty	9.5 m ³	2.4 m ³	9.0 m	8.5 m ²			O'ty	7.4 m ³	1.8 m ³	0.4 m ³	5.9 m ²	1.0 m	6.56 m ²		
Description	Excavation (Machine)	Excavation (Man-power)	Slope Treatment	Land Acquisition	Total		Description	Excavation (Machine)	Excavation (Man-power)	Backfile	Slope Treatment	Concrete Product	Land Acquisition		Total
1. Unlined	m v.o	NX/III	\$.	2.5			2. Linning	6.6 m		2.4	-	9.0	1.6	Concrete Product	

Table G-8-2 Open Drain (1/2)

Drain	Length km	Catchment Area ha	Designed Discharge m3/sec	Notes
(Intercepting	Canal)			
CA - 1	3.8	450	0.135	Return Ratio = 65%
CA - 2	2.2	400	0.120	и .
CA - 3	1.0	130	0.039	er .
Sub-total	7.0			
(Main draina	ge canal)			
PR - 1	2.2	390	0.271	
PD - 1	2.4	500	0.506	
PC - 1	1.8	250	0.174	
PS - 1	2.7	200	0.139	
Sub-total	9.1			
(Lateral dra	inage cana			
				÷
E - 1	0.6	30	0.021	
Ė - 2	1.7	80	0.056	
E - 3	2.2	70	0.049	
R - 1	1.4	70	0.049	
R - 2	0.9	30	0.021	
R - 3	1.2	50	0.035	
R - 4	2.1	80	0.056	
Q - 1 Q - 2	1.5	90	0.062	
	1.3	80	0.056	
Q - 3 D - 1	0.8	40	0.028	•
•	3.2	170	0.118	
D - 2	0.9	70	0.049	4 . **
D - 3	1.5	60	0.042	•
D - 4 D - 5	1.7 0.7	100	0.069	
D - 6	0.7	30 20	0.021	
•			0.014	
D - 7	1.2	100	0.069	