noticed. In highly salt accumulated soils, a high content of $CaCO_3$ is evident.

3) Phases

The soils are mainly distributed in poorly drained areas and the majority are salt accumulated soils. The same are classified into following phases:

- a) Moderately deep phase (code QC); the soil has considerably high potential for agriculture and no major limitations. However, countermeasures to improve physical conditions of compacted subsurface soil and to prevent wet injury due to excessive water supply are recommended. The soil occupies 158ha or about 0.8% of arable land.
- b) Poorly-drained salt accumulated, moderately deep phase (QCSII); the degree of salt accumulation varies from slight to high. Moderate to high salt accumulation is found in areas with a high subsurface water table. Agricultural productivity is considerably dependent on farming management practices and drainage improvement and desalinigation are prerequstites for diversified crop production. The soil occupies 437ha or about 2.2% of arable land.

Descriptions of the typical soil profiles of the soil series and the results of chemical and physical soil analysis are shown in Table C-3-2 and C-3-3.

4. Distribution of Problem Soils

(1) Salt Accumulated Soils

Salt accumulated soils in the Project area are grouped into two types according to the formation processes of salt accumulation. The first type (1st type, poorly-drained salt accumulated phase) is found in poorly drained areas with high groundwater tables. Salt accumulation was brought about by the upward movement of groundwater. The distribution of the second

type (2nd type, well-drained salt accumulated phase) is generally found in slightly sloping areas with good drainage conditions which are located adjacent to deserts or hills outside of the Project The sources of accumulated salts are considered to be the residues of salts accumulated in the process of land formation and salts disolved in irrigation water. In both characteristic of salt accumulation is maximum concentration in the proposed less). The or depth (10-15cm laver surface countermeasures to improve these soils are alluded to in 3-2.

The classification and surface coverages of salt accumulated soils in the Project area are shown in Table C-4-1 while distribution is shown in Fig. C-4-1, C-4-2, C-4-3 and in the soil map (presented in Annex L). Salt accumulated soils occupy about 4,370ha or 22% of the total arable land in the Project area. The results of soil analysis on salt accumulated soils are presented in Table C-4-2.

Table C-4-1 DISTRIBUTION OF SALT ACCUMULATED SOILS-1/

Туре	Salin S1		kalinity C S3	lasses 2/ S3N1	Total
1st Type (ha)	1,243	562	80	675	2,560
% of Total	48.6	22.0	3.1	26.4	100.0
2nd Type (ha)	482	1,020	304		1,806
% of Total	26.7	56.5	16.8	•	100.0
1st & 2nd (ha)	1,725	1,582	384	675	4,366
% of Total	39.5	36.2	8.8	15.5	100.0

^{1/} Percentage of total arable land (20,200ha)

Salinity: ECe of surface layer (0-15cm)

S1: ECe 4-8ms/cm at 25°C

\$2: " 8-15 " " "

\$3: " >15 " " "

¹st type: 12.7%, 2nd type 8.9%, 1st & 2nd type 21.6%

^{2/} Classifications are based on the following criteria:

Alkalinity: Exchageable sodium content or exchangeable sodium percentage (ESP) of surface layer (0-15cm)

coarse-tex	tured soil	medium-textured so	il fine-textured soil
exchangeab content in	le sodium meq/100g soi	ESP 1	ESP
N1: 2-3 1	•	15-30%	8-15%
N2: >3		>30	>15

(2) Gravelly Surface Soils

Gravelly surface soils cover about 2,690ha or 13% of total arable land area as shown in Table C-4-3. In the Esquivel-Trujillo series, gravelly surface soils occupy about 40% (about 2,100ha) of the surface soils of the series.

Table C-4-3 DISTRIBUTION OF GRAVELLY SURFACE SOILS

Gravelly Surface	Classes	C5	с3	C4	Total
Area (ha)		1,776 (66.0)	690 (25 . 6)	225 (8,4)	2,691 (100.0)

Note: -() % of total gravelly surface soils
-classifications are based on the following criteria:

	C2	<u> </u>	<u>C4</u>
coarse fragment content (%)	5-15	15-30	30
in surface layer (0-30cm)			

-coarse fragment defined are less than 10cm in size

A coarse fragment content of 5-15% is not considered to present significant limitations to crop productivity or to restrict workability to a significant extent. Soils of the gravelly surface class C3 present moderate limitations, to annual crop production both in crop growth and workability and occasional extraction of stones as presently practiced is recommended. However, the limitations of class C3 are comparatively less for fruit cultivation. Soils of class C4 have severe limitations and are generally not suitable for annual crop cultivation. The latter soils are utilized for fruit cultivation is the Project area.

(3) Shallow Soils (effective soil depth)

Effective soil depth of soils in the Project area is generally deep and distribution of soils with shallow effective soil depth is restricted to the Esperanza series and Esquivel-Trujillo series. The effective soil depth of the Esperanza series is considered to be restricted by coarse sandy gravelly subsoil and is generally about 30cm. In the Esquivel-Trujillo series, soils with gravelly (cobbly) layers found within 30 to 40cm depth from the ground surface occupy about 53% of the surface coverages of the These soils have significant limitations for crop series. production in root penetration, and in moisture and nutrient Accordingly, improved farming practices such holding capacities. as irrigation water supply based on soil moisture conditions of root zones and fertilizer application methods to reduce leaching losses of applied nutrients are recommended.

(4) Soils with Compacted Subsurface Layer

Soils in the Project area generally have a compacted subsurface layer restricting downward root distribution. The layer is usually found at 15 to 20cm depth from the ground surface and varies in thickness. The layer not only limits root penetration but also restricts available moisture holding capacity. Subsoiling once every one or two years, a rotation system using crops with different rooting habits, and dressing of organic materials should be practiced to improve physical conditions of subsurface soils.

5. Land Classification

(1) Procedures for Land Classification

1) Land classification system

For land classification, land qualities and characteristics selected in compliance with the conditions of the Project area has been taken into consideration and land irrigability has been subsequently classified into the following classes and subclasses based on the U.S.B.R system.

- Class I arable: high suitability for irrigation farming
- Class II arable: moderate suitability for irrigation farming (s, t, d, st, sd, td, std)
- Class III arable: low suitability or marginally suitable for irrigation farming (s, t, d, st, sd, td, std)
- Class IV limited arable or special use:
 limited arable for irrigation
 farming, or arable for special
 use (s, t, d, Fs, Rs, Is, Pd,
 etc.)
- Class VI nonarable for the use defined
- Sub-class
 - s: deficiency or limitation in soil factor which determines irrigabiltiy class
 - t: deficiency or limitation in topography factor which determines irrigabiltiy class
 - d: deficiency or limitation in drainage factor which determines irrigabiltiy class
 - F: special use for fruit
 - R: special use for salt tolerant crops
 - I: limited arability under intensive irrigation methods
 - P: limited arability due to possibility of flooding

Present nonarable land such as hilly, stony land and residential area are excluded from the above classification. In the present study, present and potential land irrigability classes for both annual crop production (upland crops) and fruit production are examined on the assumption that present and surface irrigation will be continued the proposed It is also rehabilitation project will/be implemented. presumed that desalinigation of salt accumated soils outside of the drainage improvement study areas (predominantly salt accumulated soils 2nd type), would be undertaken irrigation practices.

Factors, land qualities and land characteristics

The factors, land qualities and characteristics for the assessment of land irrigability has been selected and are tabulated on the following page.

FACTORS, LAND QUALITIES AND LAND CHARACTERISTICS

Factors	Land Qualities (code)	Land Characteristics
Soil (s)	effective soil depth (p)	depth of penetrable layer
	workability (k)	stoniness of surface coverages
		coarse fragments in the surface layer
		texture of surface layer
	moisture availability (m)	potential moisture holding capacity
	soil fertility (n)	cation exchange capacity
	salinity (e)	ECe of surface soil
	Alkalinity (a)	exchageable sodium percentage (ESP)
		exchageable sodium content
	permeability (b)	permeability
Topography (t)	slope & microrelief (g)	slope, microrelief
Drainage (d)	drainability (w)	soil drainability
-		depth to impermeable layer/ subsurface water table
	flood hazard (f)	flooding problem

3) Criteria for rating of land qualities

The criteria for the rating of land qualities and land characteristics are in set below.

a) Soil factor (s)

effective soil depth (code: P)

rating	depth of penetrable layer (cm)*
P1	> 120
P2	80 ~ 120
Р3	30 - 80
P4	< 30

soil depth to gravel, strongly compacted layer or other root restricting materials

moisture availability (code: m)

rating	potential moisture hold surface soil (0-30cm)	ding capacity in cm subsoil (30-120cm)*
m1	> 4	> 12
m2	3 - 4	8 - 12
m3	2 - 3	6 - 8
m4	<.2	< 6

from 30cm to 120cm or to impermeable layer

workability (code: k)

rating	stoniness of surface coverages (%)	coarse fragments in the surface layer (0-30cm)	texture of surface layer (0-30cm)
K1	< 0.01	< 5 (C1)	coarse to medium (S-L)
K2	0.01 - 0.1	5 - 15 (C2)	fine (CL-C)
K3 K4	0.1 - 3 $3 - 15$	15 - 30 (C3) > 30 (C4)	very fine (HC)

Note: stone herein defined are more than 10cm in size
Note: coarse fragments are less than 10cm in size

* ratings of this characteristic correspond to
surface gravelly classes C2-C4 of Table C-4-3

soil fertility (code: n)

	cation exchange capacity
	of surface layer (0-30cm)
rating	meq/100g soil
n ¹	> 20
n ²	10 - 20
_n 3	5 — 10
n ⁴	∠ 5

Note: available nutrient contents are not considered because considerable amount of fertilization is common and nutrient contents seems to be affected by fertilization history

Salinity (code: e)

rating	ECe of surface soil (0-15cm)
	< 4
e ²	4 - 8
e3	8 - 15
e ⁴	> 15

* electrical conductivity of saturated soil extract at 25°C

$-e^2$, e^3 , e^4 correspond to S^1 , S^2 , S^3 of Table C-4-1

alkalinity (code: a)

	coorse-textured soil	medium-textured	fine-textured
rating	exchangeable sodium content in meq/100g soil	soil ESP	soil ESP
a1 a2 a3	< 2 2 - 3 > 3	< 15 15 - 30 > 30	< 8 8 - 15 >15

* a², a³ correspond to N¹, N² of Table C-4-1

permeadility (code: b)

rating	permeability	
b1 b2 b3 b4	moderate moderately rapid, moderately slo rapid, slow very rapid, very slow	W

b) Topography factor (t)

slope and microrelief (code: g)

rating	slope (%)	landform
g_0^1	0 - 2	flat
g2 g3	2 - 5	slightly undulating
g _h	5 - 10	undulating
g ⁴	> 10	rolling/hilly

c) Drainage factor (d)

drainability (code: w)

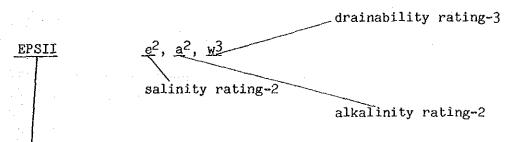
rating	soil drainability	depth to impermeable layer
w1	good to excessive	> 200 cm
w^2	moderate	150 – 200
w3	imperfect	100 - 150
w ⁴	poor	< 100

flood hazard (code: f)

rating	flood problem
f ¹ f ²	no flood occured in 1984 flood occured in 1984

Note: lands which are subject to flooding are classified as IV Pd

The ratings of land qualities and characteristic specific to soil series or phase are shown in Table C-5-1.


(2) Soil Units

In land classification, soil phases are further subclassified into soil mapping units for land classification (soil units) and land irrigability classes are assessed based on present land qualities and characteristics specific to each soil unit. Land qualities and land characteristics having practical importance to irrigation farming listed bewlow and are assessed in accordance with the criteria in the previous section (1) and soil phases are classified into soil units (Table C-3-1).

Land Qualities/Characteristics

Salinity (e), alkalinity (a), coarse fragments content in surface layer (correspond to gravelly surface classes, code c), drainability (d), slope and microrelief (g), flood hazard (f).

Soil units are expressed by soil phase code suffixed with rated code of land quality and characteristic, individually or collectively, as diagramed below.

soil phase code (Esperanza series, poorly-drained salt accumulated phase)

Land qualities or characteristic rated 1 are omitted from suffixing.

(3) Land Irrigability Classes

Irrigability classes are determined on the basis of land quality ratings and the maximum land irrigability class. The maximum land irrigability class corresponding to ratings of each land quality is shown in Table C-5-2. Maximum land irrigability class herein defined is the land class with the highest permissible level into which a specified rating of land quality may possibly be classified. Therefore, land can not be classified into a class

higher than the maximum permissible irrigability class corresponding to the ratings of land qualities of the same. The maximum land irrigability class has been set on the basis of the following:

- a) fertilization can compensate for deficiency in soil fertility to a significant extent;
- b) irrigation can mitigate limitation in moisture availability; and,
- c) workability is less significant for fruit production.

Irrigability of land in the Project area is graded into five classes. The classes, especially potential irrigability classes, are generally determined by land qualities related to or restricting availability of moisture and/or nutrients for crops which can be controlled by irrigation and farming practices to a significant degree. Therefore, agricultural potential of the land in the Project area is largely depend on both irrigation water availability and farm management level.

The agricultural potential of each irrigability class of land in the Project area is set in below.

- Class I High productivily is expected in general for defined use. There are no major limitations that will adversely affect crop yields.
- Class II Moderately high productivity is expected in general for defined use. There are moderate limitations which are likely to reduce crop yields and can generally be compensated by farming practices of a moderately high level.
- Class III Low to moderate productively is generally expected.

 There are strong limitations for crop growth which can only be compensated by high level farming practices.
- Class IV The land is limited arable or arable for a defined special use. The land would be expected to be highly to moderately productive dependent on specific conditions of farm management.

Class VI Nonarable. The land is not arable for defined special use.

In the study, present and potential land irrigabilities for both annual crop production and fruit production were first assessed separately. Based on the potential irrigabilities for both uses, the land of the Project area has been comprehensively evaluated and the land irrigability class for irrigation farming determined.

The results of land classification are shown in Table C-5-3, C-5-5, Fig. C-5-1 and summarized in Table C-5-4.

TABLE C-2-1 GROUPING OF SOIL SERIES

			Soil Classification	ion
rezoure classes	rarent materials	series Troc	Soil Taxonomy	FAO/UNESCO
Fine-textured	alluvial deposit	Quepecaliche	Ustifluvents	Fluvisol
		Tucume, Cle		
		mencia, Mochu		
		mi, Ocuaje		
Medium-textured	alluvial deposits	Lambayeque,	Ustifluvents	Fluvisol
		Huaral, Esqui		
		vel-Trujillo		
	alluvial & collu -			
	vial deposits	Esperanza	Ustipsaments	Arenosol
Coarse-Textured	alluvial & eolían			
	deposits	Aucallama	Ustipsaments	Arenosol

Based on soil classification system of Soil Taxonomy and FAO/UNESCO

Table C-3-1(1) Soil Classification And Soil Units For Land Classification

oil series	· · · · · · · · · · · · · · · · · · ·	Soil Phases(code)	Soil units	Area(ha)	Percentage /
ıcallama				2,542	12.6
	1.	deep (AU)		1,832	9.1
			UA	436	
			" -g ²	776	
			" -g ³	620	·
	2.	well-drained salt accumulated, deep(AUSI)		212	1.0
			AUSI $-e^2g^3$	52	
			" ~e ⁴	160	
	3.	well-drained salt accumulated, gravelly surface, deep (AUSIC)	AUSIC-e c g	97	0.5
	4.	poorly-drained salt accumulated, deep (AUSII)		401	2.0
	·	(MOSIT)	AUS II-e ² w	20	
* 4. ·	. •		# -e w	30	
				46	
			$-e^{3}w^{3}$	33	
		Huji	" -e w		
			" -e ² g w		
			"-e ²² w	3 46	
			" -e ⁴ 2	4 48	
			" -e ⁴ a ²	2 4 w 102	
speranza				4,020	19.9
	1.	Shallow (EP)	EP	2,422	12.0
			2		
			" -g " -g ³	1,184	
	2.	gravelly surface, shallow (EPC)	EPC-c ² g ³	198	1.0

Table C-3-1(2) Soil Classification and soil units for land classification

Soil series	Soil Phases (code)	Soil unit	Area (ha)	Percentage /
Esperanza				
	 well-drained salt accumulated, shallow(EPSI) 		1,138	5.6
		EPSI - e	301	
		" - e ² g	213	
	·	" - e g	259	
		33 " e g 43 " e g	344	
	4. well-drained salt accumulated, gravelly		174	0.9
·	surface, shallow(EPSIC)	EPSIC -e 2 2 2	32	
		" -e ³ 2 2	116	
		" -e c g	26	
	poorly-drained salt accumulated, shallow		88	0.4
(EPSII)		EPSII -e w	19	
		" -e w	21	
		$-e^4a^2w^4$	48	
Tucume		1	,962	9.7
	1. shallow (TCI)	mat.	877	4.3
		TCI " g ²	589 210	
		2 2 " - g w	78	
	2. poorly-drained salt	· .		
	accumulated, shallow (TCISII)		147	0.7
		TCISII -e ² w	58	
		" -e w	14	
		" -e w 4 2 4	33	
		" -e s w	42	

/ % of total arable land

Table C-3-1 (3) Soil calssification and soil units for land classification

Soil series	Soil Phase (code)	Soil units	Area (ha)	Percentage /
Tucume		:		
Tucume	3. moderately deep (TCII)		845	4.2
	,	TCII	520	ચ • અ
		9		
		" - g	283	
C)		" -w ²	42	
	4. poorly-drained salt accumulated, moderately		93	0.5
Los versos de la companya de la comp	deep (TCIISII)	TCIISII -e W	57	
		" -e ³ w ³	16	
		" -e a	4 w 20	
Esquivel			5,262	26.0
-Trujillo		·		
	1. shallow (ESI)		1,304	6.5
		ESI	688	
		" - g ²	422	
		$-g^3$	82	
		" - w ³	29	
THE STATE OF THE S		" - f ²	20	
		$-g^2f^2$	36	
The Control of the Co		$- w^4 f^2$	27	
	2. gravelly surface,		1,176	5.8
	shallow (ESIC)	ESIC - c ²	483	
		" $-c^2g^2$	101	
		" - c ³	234	
· · · · · · · · · · · · · · · · · · ·		$-c^3g^2$	341	
		$-c^3w^3f^2$	17	
1981 7 A 1981 1 A 198	3. well-drained salt accumulated, gravelly		153	0.8
	surface, shallow(ESISIC)	ESISIC-e 2 2 3	25	
· ·		" $-e^2c^4g^3$	128	
		· ·		

% of total arable land 20,200 ha

Table C-3-1(4) Soil classification and soil units for land classification

Soil series	Soil Phases	(code) Soil units	Area (ha)	Percentage /
Esquivel -Trujillo	4. poorly drained salt accumulated, shallow (ESI SII)	ESISII-e w	47	0.2
		" -e 4 2 4	14	
	5. poorly-drained salt accumulated, gravelly surface, shallow (ESISIIC)	ESISIIC-e c w	109 35	0.5
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
	6. moderately deep (ESII)	1,677	8.3
:		ESII	1,182	
		ESII - g ²	416	
		" - w ²	44	
		" - w ³	35	
	7. gravelly surface, moderately deep(ESIIC)	ESIIC - c ²	634 526	3.1
		$-c^2g^2w^3$	2 34	*
		" - c ³	25	!
		$-c^3g^2$	49	1
	8. well-drained salt accumulated, gravelly surface, moderately deep (ESIISIC)	ESIISIC-e ² c ² g	32	0.2
	9. poorly-drained salt accumulated (ESIISII)		130	0.6
		ESIISII -e ² 2	22	
		" $-e^3w^3$	50	
		" -e ³ 4	30	
		" ~e a w	28	

/ % of total arable land

Table C-3-1(5) Soil classification and soil units for land classification

Soil series	Soil Phases (code)	Soil units	Area (ha)	Percentage/
Clemencia	1. deep (CL)		695 603	3.4
		CL	475	
		" - g ²	44	
1 1		$-w^3f^2$	53	
		$u = w^4 f^2$	31	
	2. gravelly surface, deep (CLC)	CLC - e ²	24	0.1
	3. poorly-drained salt accumulated, deep(CLSII)		68	0.3
		CLSII - $e^3 w^3$	50	
		" -e a w	18	
Huaral			309	1.5
<u>2</u> .	1. moderately deep (HU)	$HU - w^2$	90	0.4
	2. gravelly surface, moderately deep (HUC)	HUC - c ² ²	54	0.3
	3. poorly-drained salt accumulated, moderately		165	0.8
	deep (HUSII)	HUSII - e w	144	the state of the s
		" -e g w	21	
Mochumi			3,850	19.1
	1. deep (MCH)		3,158	15.6
		MCH - w ²	1,817	
A Company		" - w ³	47	
		" $-g^2w^2$	1,218	
		$-v^2f^2$	19	
		" - g w f	32	
		" - g w f	25	

/ % of total arable land 20,200 ha

Table C-3-1 (6) SOIL CLASSIFICATION AND SOIL UNITS FOR LAND CLASSIFICATION

soil series	soil phases (code)	soil units	area (ha)	percentage 1/
Mochumi	2. poorly-drained salt accumulated, deep (MCHSII)		652	3.2
		MCHSII-e ² w ²	145	
		$-e^{2}w^{3}$ $-e^{2}w^{4}$	160 42	
		" -e ² g ² w ³	21	
	·	$_{\text{n}}$ $_{\text{-e}}^{3}$ $_{\text{W}}^{3}$	66	
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30 47	
		" -e g w " -e a 2 4	141	
	3. gravelly surface, deep (MCHC)	MCHC-e ² w ²	40	0.2
Ocuaje			360	1.8
Couds	1. deep (OC)		306	1.5
		$\begin{array}{c} \text{OC - w}^2 \\ \text{" - g}^2 \text{w}^2 \end{array}$	87 219	
	2. poorly-drained salt accumulated,	-		
	deep (OCSII)	ocsii-e ² w ³	54	0.3
Lambayeque			605	3.0
	1. deep (LB)	LB - w ²	416 190	2.1
		" ~ w ³	44	
		$" - w^3 f^2$ $" - g^2 w^2$	22	
		$-gw$ $-g^3w^2$	136 24	
	2. poorly-drained salt accumulated,	·	189	0.9
	deep (LBSII)	LBSII-e ² w ²	25	
		$-e^2w^3$	104	
		" $-e^3w^3$ " -4^2v^4	26	
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15 19	

1∠ % of tatal arable land

Table C-3-1 (7) SOIL CLASSIFICATION AND SOIL UNITS FOR LAND CLASSIFICATION

soil series	soil phases (code)	soil units	area (ha)	percentage 1/
Quepecalic	he		595	2.9
	1. moderatly deep (QC)	QC - w ³	158	0.8
	2. poorly-drained salt accumulated, moderately deep (QCSII)		437	2.2
	(QCBII)	QCSII-e ² w ³	114	
		" $-e^2w^4$ " $-e^3w^4$	25	
		-e w -e 4 2 4	99	
		" -e a w	199	
	total		20,200 ha	100.0

 $1\underline{/}$ % of total arable land

Table C-3-2 (1) SOIL PROFILE DESCRIPTION

,1.	Profile No.	:	R-6
2.	Date of Examination	:	9 March, 1984
3.	Soil Classification	:	Aucallama series, Deep phase
4.	Location	:	Chancayllo, plot No. R-6
5.	Physiography	:	Slightly sloping land
6.	Drainage	:	good to excessive, groundwater table > 1.5m
7.	Parent Material	:	alluvial & eolian deposits
8,	Land Utilization Pattern	:	annual crop production (kidney bean)

Horizon	Depth (cm)	Discription
A _P	0 - 15	Dull yellowish brown (10YR 5/4) moist, fine
		sand to loamy fine sand, weak platy, non-sticky
		and non-plastic, common fine roots, clear smooth
		boundary, soil hardness < 15, pH 8.3 - 8.8
		EC $0.3 - 0.5 \text{ m}^{S}$ (soil: water = 1:2)
AC	15 - 25	Dull yellowish brown (10YR 5/4) moist, finesand,
		single grain, few fine roots, non-sticky and
		non-plastic diffuse wavy boundary, soil hardness
		25 - 30, pH 8.8, EC 0.3 m ^S
Cl	25 - 65	Dull yellowish brown (10YR 5/4) moist, fine sand,
		single grain, non-sticky and non-plastic, diffuse
		wavy boundary, soil hardness < 20, pH 8.9, EC 0.2 m
C2	65 - 150	Dull yellowish brown (10YR 5/4) moist, fine sand,
•		single grain, non-sticky and non-plastic, soil
		hardness $\langle 15$, pH 9.0, EC 0.1 m ^S

	Table C-3-2 (2)	so	OIL PROFILE DESCRIPTION
1.	Profile No.	•	R-2
2,	Date of Examination	•	2 March, 1984
3.	Soil Classification	:	Esperanza series, Shallow phase
4.	Location	:	Esperanza Granada, plot No. R-2
5.	Physiography	.	nearly flat land
6.	Drainage	:	excessive, groundwater table > 1.5 m
7.	Parent Material		alluvial & colluvial deposits
8.	Land Utilization Pattern	. :	fruit production (apple and peach)

Horizon Depth (cm)	Discription
A 0 - 30	Brown (7.5YR 4/3) moist, loamy sand, content of
	subangular gravel (0.5 - 1 cm) 3%, weak subangular
	blocky, mon-sticky and non-plastic, common modium
	roots, abrupt wavy boundary, pH 8.7, EC 0.2 ms
	(soil : water = 1 : 2)
Cl 30 - 65	Orange (7.5YR 6/6) moist, gravelly coarse sand,
and the second second second	single grain, content of sub-angular gravel
	(0.5 - 2 cm) 10%, clear wavy boundary, pH 8.0,
	EC 0.1 ms
C2 65 - 150	Bright reddish brown (5YR 5/6) moist, coarse sand,
	content of subangular gravel (0.5 - 2 cm) 5%,
	EC 0.1 m ^S

Table C-3-2 (3) SOIL PROFILE DESCRIPTION

1.	Profile No.	:	R-8
2.	Date of Examination	1.	7 March, 1984
3.	Soil Classification	:	Tucume series, Moderately deep phase
4.	Location	• •	Retes, plot No. R-8
5.	Physiography	:	flat land
6.	Drainage	:	good, groundwater table > 2 m
7.	Parent Material	:	alluvial deposits
8.	Land Utilization Pattern	:	annual crop production (red pepper)

			4			
			•			
•						
			100	 48	- 4	
		1.0		 1		

Horizon	Depth (cm)	Discription
Ap	0 - 15	Brown (7.5YR 4/3) moist, sandy loam, weak
P		subangular blocky, slightly sticky to slightly
		plastic, common fine roots, clear smooth
		boundary, soil hardness 20, pH 7.8
		EC 0.8 m^S (soil : water = 1 : 2)
AC	15 - 35	Brown (7.5YR 4/3) moist, sandy loam, weak
		subangular blocky, slightly sticky to slightly
		plastic, few fine roots, diffuse smooth boundary,
		soil hardness 25, pH 8.2, EC 0.2 m ²
Cl	35 - 95	Dull reddish brown (5YR 4/3), sandy loam, massive,
		slightly sticky and slightly plastic, abrupt
		smooth boundary, soil hardness 20 - 28, pH 7.8,
		EC 0.2 m ^S
C2	95 - 145	Dull yellow orange (10YR 6/3), fine to medium
		sand, single grain, non-sticky and non-plastic,
		soil hardness 15, pH 7.3, EC 0.2 mS

Table C-3-2 (4) SOIL PROFILE DESCRIPTION

8. Land Utilization Pattern: fruit production (mandarin)

1. Profile No.	: R-20
2. Date of Examination	: 7 March, 1984
3. Soil Classification	: Esquivel-Trujillo series, Moderately deep phase
4. Location	: Huand, plot No. R-20
5. Physiography	: flat land
6. Drainage	: good, groundwater table > 2 m
7. Parent Material	: alluvial deposits

Horizon Depth (cm)	Discription
Ap 0 - 15	Brownish black (7.5YR 3/2) moist, loam, moderate
	granular, sticky and plastic, few medium roots,
	clear wavy boundary, soil hardness < 15 (wet),
	pH 5.9, EC 0.3 m^{S} (soil : water = 1 : 2)
AC 15 - 30	Dark brown (7.5 YR 3/3) moist, loam, weak
	subangular blocky, sticky and plastic, few
	medium roots, diffuse wavy boundary, soil hardness
	28 - 30, pH 6.1, EC 0.3 m ^S
Cl 30 - 70	Dark brown (7.5YR 3/3) moist, loam, weak blocky,
	sticky and plastic, few to common medium roots,
	abrupt wavy boundary, soil hardness 24, pH 6.4,
	EC 0.4 m ^S
C2 70 - 85	Brown (7.5YR 4/4) moist, fine sand, many coarse
	prominent mottles (5YR 5/8), single grain, non-stick
	and non-plastic, few to common medium roots, abrupt
	wavy boundary, pH 6.7, EC 0.1 m ^S
the second second	A section of the section of the state of the section of the sectio

85 - 105

Bright brown (7.5YR 5/8) moist, gravelly sand,

many coarse prominent mottles, pH 7.0, EC 0.1 m^{S}

Table C-3-2 (5) SOIL PROFILE DESCRIPTION

1.	Profile No.	:	R-29
2.	Date of Examination	:	29 June, 1984
3.	Soil Classification	:	Clemencia series, Deep phase
4.	Location	:	Torre Blanca, plot No. R-29
5.	Physiography	:	nearly flat land
6.	Drainage	:	good, groundwater table > 2 m
7.	Parent Material	:	alluvial deposit

8. Land Utilization Pattern: annual crop production (maize)

Horizon	Depth (cm)	Discription
A _P	0 - 20	Dark brown (10YR 3/3) moist, sandy loam, weak subangular blocky, slightly sticky and slightly
		plastic, common fine roots, diffuse wavy boundary, soil hardness 15, EC 0.3 $\rm m^S$
AC	20 - 40	Dark brown (10YR 3/3) moist, sandy loam, massive, slightly sticky and slightly plastic, few fine
		roots, diffuse wavy boundary, soil hardness 25, EC 0.3 $\ensuremath{\text{m}}^{\text{S}}$
Cl	40 - 90	Dark brown (10YR 3/4) moist, fine sand to loamy sand, single grain non-sticky and non-plastic, very
		few fine roots, clear wavy boundary, soil hardness 20, EC 0.2 m ^S
C2	90 - 125	Dark brown (10YR 3/3) moist, sandy loam, content of subangular gravel (1 - 2 cm) 3%, massive, slightly
·		sticky and slightly plastic, clear smooth boundary, soil hardness 21, EC $0.3~\mathrm{m}^\mathrm{S}$
C3	125 - 150	Grayish yellow brown (10YR 5/2) moist, loam, massive, sticky and plastic, soil hardness 21

Table C-3-2 (6) SOIL PROFILE DESCRIPTION

1.	Profile No.	•	R-35
2.	Date of Examination	:	2 July, 1984
3.	Soil Classification	. :	Huaral series, Moderately deep phase
4.	Location		Naturares, plot No. R-35
5.	Physiography	:	flat land
6.	Drainage	2	moderate, groundwater table > 1.5 m
7.	Parent Material		alluvial deposits

8. Land Utilization Pattern: annual crop production (maize)

Horizon Depth (cm)	Discription
A 0 - 30	Dark brown (7.5YR 3/3) moist, loam, content of subangular gravel (0.5 - 1 cm) 2%, moderate subangular blocky, sticky and plastic, frequent fine roots, diffuse wavy boundary, soil hardness 17, pH 7.4, ECe 0.8 m ^S
c1 30 - 55	Dark brown (7.5YR 3/4) moist, clay loam, content of subangular gravel (0.5 - 1 cm) 5%, weak blocky sticky and plastic, few to common fine roots, diffuse wavy boundary, soil hardness 23, pH 7.2, ECe 0.6 m ^S
c2 55 - 65	Dark brown (7.5YR 3/4) moist, sandy loam, content of subangular gravel (1 - 2 cm) 10%, moderate subangular blocky, slightly sticky and slightly plastic, few fine roots, abrupt smooth boundary, soil hardness 20, pH 7.2, ECe 0.5 m ^S
C3 65 - 100	Brown (10YR 4/4) moist, gravelly coarse sand, content of platy and angular gravel (0.2 - 5 cm) 30 - 40%, single grain, non-sticky and non-plastic few fine roots

Table C-3-2 (7) SOIL PROFILE DESCRIPTION

1.	Profile No.	1	R-21
2.	Date of Examination	:	8 March, 1984
3.	Soil Classification	:	Mochumi series, Deep phase
4.	Location		Baza Alto, plot No. R-21
5.	Physiography	:	flat land
6.	Drainage	:	good, groundwater table >1.5m
7.	Parent Material	:	alluvial deposits
8.	Land Utilization Pattern		annual crop production

Horizon	Depth (cm)	Discription
${f A_p}$	0 ~ 15	Dark brown (10YR 3/3) moist, sandy loam, moderate subangular blocky, slightly sticky and slightly plastic, very frequent fine roots, clear smooth
		boundary, soil hardness < 10 , pH 8.3, EC 0.3 m ^S (soil : water = 1 : 2)
Cl	15 - 80	Dark brown (10YR 3/3) moist, sandy loam, weak
		blocky, slightly sticky and slightly plastic,
		very few fineroots, clear wavy boundary, soil
		hardness 30 (semi-dry), pH 8.3, EC 0.3 m ^S
C2	90 300	
(2	80 - 100	Dull yellowish brown (10YR 5/4) moist, sandy loam,
		common medium distinct mottles massive slightly
		sticky and slightly plastic, clear smooth boundary,
		soil hardness 28 (semi-dry), pH 8.0, EC 0.2 m ^S
С3	100 - 150	Bull brown (7.5YR 5/3) moist, sandy clay loam,
		common medium distinct mottles, sticky and plastic,
		common meeting distinct mottles, sticky and plastic,

soil hardness 24

Table C-3-2 (8) SOIL PROFILE DESCRIPTION

1.	Profile No.		R-32
.2.	Date of Examination	:	30 June, 1984
3.	soil Classification	•	Ocuaje series, Deep phase
4.	Location		Palpa, plot No. R-32
5.	Physiography	:	slightly undulating land
6.	Drainage	•	moderate, groundwater table > 1.5 m
7.	Parent Material		alluvial deposit

7.	Parent Material	•	alluvial deposit	
8.	Land Utilization Pattern		annual crop production	(cotton)

Horizon Depth (cm)		Discription
A 1 O - 30	Brown (7.5YR	4/3) moist, loam, moderate subangular
and the second second	blocky, stick	ky and plastic, common fine roots,
	diffuse wavy	boundary, soil hardness 15, Ph 7.3,
	ECe 0.6 m ^S	
BC 30 - 50	Brown (7.5YR	4/3) moist, clay loam, content of
	subangular g	cavel (0.5 cm) 1%, weak blocky, sticky
	and plastic,	few fine roots, gradual wavy boundary
	soil hardness	s 19, pH 7.4, ECe 0.8 m ^S
	• :	
C1 50 - 75	Brown (10YR	4/4) moist, sandy loam, content of
	subangular g	cavel (0.5 - 1 cm) 2%, massive, slight
	sticky and s	lightly plastic, very few fine roots,
	gradual wavy	boundary, soil hardness 24 (semi-dry)
$\label{eq:constraint} \left(\frac{1}{2} \left(\frac{1}{2$	pH 7.1, ECe	
C2 75 - 150	Dull vellowis	sh brown (10YR 5/4) moist, sandy loam
	-	ubangular gravel (0.5 - 1 cm) 10%,
		ntly sticky and slightly plastic,

SOIL PROFILE DESCRIPTION Table C-3-2 (9)

1.	Profile No.	:	R-17
2.	Date of Examination	:	5 March, 1984
3.	Soil Classification	;	Lambayeque series, Deep phase
4.	Location	•,	San Francisco, plot No. R-17
5.	Physiography	:	flat:land
6.	Drainage	:	imperfect, groundwater table >1.5 m
7.	Parent Material	:	alluvial deposits
8.	Land Utilization Pattern	:	annual crop production

Horizon	Depth (cm)	Discription
Ap	0 - 15	Brownish black (2.5Y 3/2) moist, loam, weak subangular
E		blocky, sticky and plastic, common fine roots, clear
		smooth boundary, soil hardness 18, pH 7.9, EC 0.4 mS
		(soil : water = 1 : 2)
A2	15 - 30	Brownish black (2.5Y 3/2) moist, loam, weak subangular
		blocky, sticky and plastic, common fine roots, clear
		smooth boundary, soil hardness 22, pH 7.8, EC 0.3 m ^S
В1	30 - 55	Dark grayish yellow (2.5Y 4/2), loam, common fine
		distinct mottles (bright reddish brown), weak blocky,
•		sticky and plastic, few fine roots, diffuse wavy
		boundary, soil hardness 22, pH 7.7, EC 0.7 m ^S
		그 그는 그는 그 이 그를 살아왔다고 하면만 화살과 그 생생님은
В2	55 – 75	Yellowish gray (2.5Y 4/1), clay, many fine prominent
		mottles (bright reddish brown), weak blocky, sticky
		to very sticky and plastic to very plastic, few fine
		roots, clear wavy boundary, soil hardness 22, pH 7.7,
		EC 0.6 m ^S
Cl	75 - 100	Grayish yellow (2.5Y 6/2), clay, many fine prominent
		mottles (bright reddish brown), weak blocky, abandant

small hard ca-concretions (caliche), pH 7.8, EC $0.6~\text{m}^\text{S}$

Table C-3-2 (10) SOIL PROFILE DESCRIPTION

1,			
1.	Profile No.	:	R-10
2.	Date of Examination	•	6 March, 1984
3.	Soil Classification	:	Quepecaliche series, Moderately deep phase
4.	Location	:	San Francisco Bajo, plot No. R-10
5.	Physiography	•	flat land
6.	Drainage	:	moderate to imperfect, groundwater take > 1.5 m
7.	Parent Material	•	alluvial deposits
8	Land Utilization Pattern		annual crop production (cotton)

Horizon Depth (cm)	Discription
A 0 - 35	Brownish black (10YP 3/2) moist, clay loam, moderate
	granular, sticky and plastic, frequent fine roots,
	diffuse wavy boundary, soil hardness 25 - 30 (dry)
	pH 7.9, EC 0.2 m ^S (soil : water = 1 : 2)
C1 35 - 75	Grayish yellow brown (10YR 4/2) moist, clay, many
	medium prominent mettles, moderate subangular
	blocky, very sticky and very plastic, very frequent
	small to large hard ca-concretions, very few fine ro
	clear irregular boundary, soil hardness 25, pH 8.2,
	EC 0.3 m ^S
75 110	D 11 4411
C2 75 - 110	Dully yellow orange (10YR 6/3) moist, clay, many
	medium to coarse prominent mottles, moderate
	subangular blocky, abandant small to large hard
	ca-concretions, clear wavy boundary, pH 7.9, EC 0.3

110 - 125 Dull yellow orange (10YR 6/3) moist, light gray

(10YR 8/1) dry, continuous vesicular ca-pans (caliche)

Table C-3-3(1) Result of Soil Analysis Chemical Characteristics of Soil Profiles

Aucallama (Au) R-6	0-15 8.1 15-25 8.3 25-100 8.4 0-15 7.8 15-30 8.1 15-30 8.1 15-35 7.5 15-35 7.5 15-30 6.6 30-70 7.0 0-30 7.4 30-55 7.2 55-85 7.2	25.3 25.3 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0		9.64 0.045 5.82 0.034 6.82 0.034 0.85 tr. 1.00 tr. 0.37 tr. 0.05 0.103 0.00 0.005	1	ļ	0.16	- 1		meg/ 100g	/baw //	d widd	Wdd			Sample
(Fs) R-2 III IV III IIII III II		25.22 25.22 25.23 25.23 25.23 25.24 25.25 25.25					0.16				1					Š
(Es) R-2 I (Tc) R-8 I III (Es) R-20 I III (Hu) R-35 I III (Hu) R-35 I III (Hu) R-35 I		25.0 2.4.2 2.4.2 2.4.2 2.4.3 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3				0,50	0.13	3.28 1.72 0.6 1.04 1.84 1.1 0.92 1.24 1.0	5,28 0 0,35 0	3.2 5.2 3.0 4.0 2.0 2.8	2 0.82 0 0.36 8 0.20	12 19.7 1 9 13.0 1 7 7.5 1	135 5.2 166 2.2 137 1.2	8.0 86.8 9.0 88.8 2.0 96.8	ું જ	2 2 2
(Tc) R-8 I III (Es) R-20 I III (Hu) R-35 I III (Hu) R-35 I III (Hu) R-35 I III (Hu) R-31 I III (Hu) R-31 I		24.7 25.7.7 26.7.7 26.8 36.8 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2			0.65	0.34	0.14	2.52 0.43 2.0 2.20 2.32 1.2	0.56 0	4.0 5.8 3.4 5.6	.6 0.10 8 0.16	2 8.1 1	102 7.2 66 7.0	16.0 76.8 12.6 80.4	<u>ब्य</u> ू रा	7 Z
(Es) R-20 I III III: (Hu) R-35 I III:		36.8 32.1 32.1 30.2 25.0			2.41	0,35	0.48	10.0 7.10 2.4 3.58 1.52 2.2 5.40 2.52 1.8	23,32 0 4,23 0 10,05 0	2.5 8.8 3.0 9.0 2.0 14.0	6 0.11 0 0.14 0.10	3 18.2 1 2 12.7 1 1 4.0	141 9.2 104 9.0 96 13.2	18.0 71.8 15.2 75.8 19.0 67.8	ಡ ದ ದ	C-13 C-14 C-15
(Hu) R-35 I II III III		32.4		. 6	.03 3.80 859 1.32 176 0.91	14,4 1,60 1,35	2.55	20.5 16.5 2,5 6.60 2.42 1.6 3.60 2.92 1.3	58,45 0 8,16 0 5,14 0	2.0 19.2 2.0 21.2 2.0 15.4	2 0.10 2 0.08 4 0.06	1 54.3 - 32.7 1 19.1	364 21.2 252 22.2 223 17.2	30.0 48.8 29.0 38.8 30.0 52.8	א ב כ	7 3 3
(M-h) P-21 T		Č	0.30	1.19	0.55			* · · · ·		11.8	80.0 0.08 0.08	еее	22.0 23.0 19.0	78.0 50.0 71.0 56.0	<u> </u>	4 5 9
- H	0-15 7.9 15-80 7.9	23.9	1.14 1	1.28 0.052 2.34 0.065	152 0.83 165 0.58	2,40	0.29	3.76 1.68 1.0 2.20 1.52 1.4	5,73 0	2.4 8.	8.8 0.10 7.8 0.15	1 11,6	240 8.2 166 9.0	2 15.0 76.8 1 12.2 78.8	ದ ದ	9 9 9
Ocuaje (Oc) R-32 I II 3	0-30 7.3 30-50 7.4 50-75 7.1	38.2 37.6 35.4	1.57 G	0.46 0.46 0.03	0.58 0.79 0.96	in de Arrela				18.8	18.8 0.18 15.8 0.10 10.2 0.08	ਜ਼ਿਜ਼ਜ਼	28.0 26.0 12.4	3 38.4 33.6 3 38.0 36.0 4 32.8 55.0	ರ ಎಹ	1 4 1
Lambayeque(LB) R-17 I II I III I III I III I III I III I III I	0-15 7.6 15-30 7.7 30-55 7.8 55-75 7.8 75-100 7.8	49.0 47.5 46.2 62.5 72.9	3.85 34 3.82 33 1.00 20 1.81 38 1.44 80	34.25 0.038 33.39 0.048 20.62 0.038 38.51 0.038 80.94 tr.	138 1.49 148 1.42 138 1.49 138 1.49	2.05 2.25 2.25 2.25 2.65	0.12	6.40 4.92 2.6 6.40 4.36 2.6 8.00 4.00 3.2 7.60 5.76 4.0 9.52 6.04 8.0	9.21 9.48 0 7.49 12 0	2.2 14.2 2.0 17.6 2.0 21.8 2.0 25.2 2.2 17.4	2 0 12 8 0 38 8 0 32 7 0 60 10 0 20	1 23.4 2 23.4 2 2.9 0 1	270 23.0 199 23.0 96 22.0 78 53.2	354.5 42.5 35.0 47.0 35.0 48.0 2 39.8 7.0	ာ ၁ ၁၀ (ရွှ	8 8 9 4 K
		38°0	2.48 22.07					1.52	3.7 0				194 22.0	26.0	ಭ	C-19
III	35-55 8.0 35-55 8.0 55-75 8.0 80-110 8.1	41.7	2.51 1.74 1.67 86 0.00	22.75 0.048 44.89 0.076 38.01 0.069 20.11 0.031	0.048 0.43 0.076 0.65 0.089 0.85 0.031 0.86	21.0 24.0 5.0 5.0 6.0	0.16	2.64 1.16 1.1 3.00 1.88 1.0 2.48 1.68 1.0 3.60 1.20 2.0	2.09 0 3.53 0 5.30 0	3.6 23.4 3.0 32.4 2.6 21.8 2.2 13.4	4 0.18 4 0.28 8 0.18	13.0 1 6.4 2 4.3	164 25.3 186 58.0 141 43.0 221 15.3	3 21.7 52.0 3 35.0 7.0 3 45.0 12.0 3 32.7 52.0	ᅜᇸᅩᇸᅩ	8 4 4 6

Soil Series Plot No. Aucallama R-40		Soil Depth		,	·	٤			,	:		3/	!
Aucallama R-40			AV	Mr	2.2	r	O O	Q	FC	W.P	P.W.P-	A.M.	A.M.
Aucallama R-40	-	cin	υp	ď	oko	% D	/cm ³ g	1/cm 3	ф	40	&•	æ	%
	Н	0-20	37.1	12.8		49.0	(1)		10.0	3.0	•	. თ	~
	H	20-35	24.6	14.9		39.5	1.61	2.66	10.2	3.1	5.0	H H	œ
	III	35-60	28.3	& 6	٠	38.1	o.	2.63		4		œ	7
Esperanza R-38	н	0-10	39.2	8	7	48.0	4		4 W		1.3	⁷ : 4,	4
	Н	10-40	30.4	13.4	56.3	43.8	1.56	2.77	4.8	1.3	1.6	φ , .	ທ
	III		38.0	4.1	1	42.1	1.57	2.71	2.2		11	ന്	m
Tucume R-30	H	0-15	25.8	14.7				•		-	ტ ტ	Q	۲
	H	15-30	7.3	20.9	71.8	28.2	1.87	2.60	8.7	5.6		Ħ.	o,
	III	30-70	27.3	13.6	•	40.9	1.59		4 -	1.1	러. Ħ.	ιΛ	in
Esquivel-Trujillo R-28	н	0-15	28.7	17.4	42	46.1	₫.		11.8	3.6	0.9	12	Φ
	H	15-30	18.3	25.4	56.3	43.7	1.52	2.69	8 0				
	III	30-50	19.5	21.9	ώ	41.4	'n			2,6	4.1	9	<u>, , , , , , , , , , , , , , , , , , , </u>
	ΔI	50-80	28.9	•	9	44.0	1.47		6.4	۲. 8	2.6	7	ω
Esquivel-Trujillo R-37	ы	0-30	29.0		•		٠ س	Ġ	•	4.5		13	ંથ
	Ħ	30-60	23.4	12.1	64.5	35.5	1.59	2.46	12.2	3.7	6.3	14	თ
	III	001-09	29.0	5			υ,	Ŋ		•		임	1

AM: available moisture (volume percentage) do: bulk density P.W.P^{2/} = (FC/0.862-2.62)/1.84 (from soil study report by Direccion General de Agua) Sr: solid phase P: porosity P.W.P: permanent wilting point $P.W.P^{1/} = 0.238 \times FC^{1.102}$ (empirical formula obtained in Japan) Mr: liquid phase FC: field capacity Av: gass phase d: real density

 $A.M^{3/} = (FC_8 - P.W.P^{1/}) \times do$

= $(FC_8 - P.W.P^2) \times do$ A.M 4/

	ല
	n n n d
	KOE
	ด ฐา
	stur
•	morsture
,	9
•	available
	•••
•	and d
:	or soil and
ŧ	Ö
i	Phases or soll
ï	ם
1	Three
4	งกล Lys
	SOLL
	H O
	LS T
. 1	Results
	$\bar{\epsilon}$
•	J J
(3
, , , , , , , , , , , , , , , , , , ,	7
ξ	Η.

Soil Series	Plot No.	Soil Depth	Av	Mr	Sr	Ωį	ရ	ਾਹ	A DA	P.W.P1/	P.W.P ² /	A.M.3/	A.M.4/
		mo	₩.	*	æ	*	g/cm ³	g/CM ³	₩	≫	υko	æ	40
Clemencia	ጸ 9 2	I 0-20 II 20-40 III 40-90	22.8 17.5	19.6 18.5	57.6 64.1 59.7	42.4	1.61 1.61	2.52	12.0	2.57	ი ი ა ი ი . 4	12 12 8	σωσ
Mochumi	R-31	1 0-50 11 15-30 111 30-60	14.9 12.2 16.1	တွေ့တွင်္	66.8 70.9 68.7		0.7.	2.41 2.57		4 m m	86.7 8.0 1.0	16 44 13	440
Mochumi	R-41	I 0-20 II 20-45 III 45-85 IV 85-150	19.9	22.2 20.2 20.2	58.0 67.7 62.0 65.4	42.1 32.3 38.0 34.6	1.43 1.67 1.59	2.46 2.46 2.57 5.77	13.6 13.6 13.6	N 4 4 4 W W W H	0.7.0	91 91 12 13	11111 11111
Ocucaje	R-32	I, II 0-30 III 30-50 IV 50-	22.8 19.3	15.0	62.2 62.2 58.4	37.8 37.9 41.6	1.54	2.47 2.40 2.53	24. 24. 24. 24.	4 4 W	8 6 6	13	11 2 8
Quepacalich	8-39	I 0-15 II 15-25 III 25-75	38.1 22.5 21.5	16.9 26.0 19.0	45.1 51.6 59.6	55.0 4.0 5.0	1.07	2.36 2.36 2.31	21.9 22.3 19.6	7. r. o.	12.4	16 18 18	222
Av: gass phase FC: field capacity	ZW.	liguid phase Sr. solid phase	Sr: soli	ld phase	AM: PD	porosity available	moist	100	bulk density (volume percen	nsity percentage	i o	real densi	₽

 $P.W.P^{1/} = 0.238 \times FC^{1.102}$ (empirical formula obtained in Japan)

P.W.P^{2/} = (FC/0.862-2.62)/1.84 (from soil study report by Direction general de Agua) A.M.^{3/} = (FC% - P.W.P^{-1/}) x do

A.M $^{4/} = (FC^{*} - P.W.P^{2/}) \times do$

Table C-4-2 (1) Results of soil analysis - Characteristics of accumulated salts - 1st phase survey

15. 1. 1. 1. 1. 1. 1. 1.	Horz	zon/	depth	Ho	ECe	CaCo3	CaSo4	Soluble	cation	Soluble cations (meg//)		Soluble anions (meg//)	nions (n	(<u>//</u> 6ət		Remark	Sample
10.0 0.06 0.03 19.0 6.4 54.6 33.6 25.0 85.4 0 3.2 2nd type A E - 0.8 0.60 tr. 2.4 0.8 3.2 2.4 2.0 4.3 0 2.5 E - 0.5 co. 0 tr. 2.4 0.8 3.2 2.4 2.0 4.3 0 2.5 Co. 0 2.5 E - 0.5 co. 0 tr. 2.4 0.8 3.2 2.4 2.0 1.0 2.6 0 1.6 2.6 0 1.6 E - 0.4 2.0 0.17 1,260 54.0 276 228 1,800 16.4 0 1.6 2nd type A E - 0.4 0.14 1.24 510 42.5 520 200 1,220 50.5 0 2.0 0utside E - 0.4 0.15 1.02 0.05 243 18.4 220 86.0 500 65.8 0 1.6 2.8 1.6 2.4 0.1	CIN		İ		n / cm	de	æ	Na	×	Ca	MB	·ᡦ	504	83 H	503		No.
0.6 tr. 2.4 0.8 3.2 2.4 2.0 4.3 0 2.5 0 1.6 2.6 4.3 0 2.5 0 1.6	I 0-15 7		7	7.0	10.0	90.0	0.03	19.0	4.4	54.6	33.6	25.0	85.4	0	3.2	type	
0.5 0.60 tr. 1.2 0.3 1.9 1.8 1.0 2.6 0.16 0.16 2.0 1.5 0 1.5 0 1.5 0 1.5 0 1.5 0 1.5 0 1.5 0 1.5 0 1.5 0 1.6	II 15-30 7.7			~	9.0	09.0	tr.	2.4	9.0	3.2	2.4	2.0	4.3	0	2.5		E - 2
128 1.19 0.17 1,260 54.0 276 228 1,800 16.4 0 1.6 2nd typea A E 94.6 0.74 1.24 510 42.5 520 200 1,220 50.5 0 2.0 Outside E -41.5 1.02 0.65 243 18.4 220 86.0 500 65.8 0 1.6 0.16 E -59.8 0.38 378 18.4 220 60.0 600 52.4 0 0 1.6 E -199 1.02 0.72 1,450 13.0 320 240 1,980 40.2 0 2.8 E -29.9 0.33 1.38 130 10.9 10.2 87.2 300 29.1 0 1.0 E -20.8 5.4 0.18 130 10.9 10.2 87.2 300 29.1 0 1.0 E -20.8 5.4 0.18 168 5.1 78.8 26.8 230 45.2 0 3.0 Battillo E -20.8 5.4 0.10 27.9 0 1.2 E -14.4 7.53 0.05 60.0 2.6 45.6 20.9 100 27.9 0 1.2 E -20.8 1.18 0.96 1,280 53.2 288 244 1,850 12.7 0 2.5 2nd type A E -49.8 0.37 0.41 385 12.2 130 80.0 600 4.7 0 2.5 2nd type A E -49.8 0.37 0.41 385 12.2 130 80.0 600 4.7 0 2.5 2nd type A E -49.8 0.37 0.58 230 5.3 5.3 44.0 58.6 340 46.1 0 1.8 E -	III 35-75 7.8		۲.	ω	0.5		H	1.2	0.3	1.9	8	o-H	5.6	0	1.6		ы П
94.6 0.74 1.24 510 42.5 520 200 1,220 50.5 0.2 0.04side E - 41.5 1.02 0.65 243 18.4 220 86.0 50.0 65.8 0 1.6 E - 59.8 0.38 378 18.0 193 60.0 600 52.4 0 1.6 E - 29.9 1.02 0.72 1,450 130 320 240 1,980 40.2 0 1.6 E - 29.9 0.33 1.38 130 10.9 10.2 300 29.1 0 1.6 E - 29.9 0.33 1.38 124 50.0 50.0 29.1 0 1.0 E - 26.6 2.44 0.18 320 11.8 124 50.0 50.0 5.0 3.0 14.2 8.1 8.1 20.8 5.42 0.07 1.8 2.6 4.5 20.4 <	I 0-3 7.		7	7.3	128	1.19	0.17	1,260	54.0	276	228	1,800	16.4	0	1.6	2nd typa A	
41.5 1.02 0.65 243 18.4 220 86.0 50.4 0.16 0.16 86.0 52.4 0 1.6 1.6 86.0 52.4 0 1.6 1.6 87.2 90.0 1.6 1.6 1.6 87.2 40.2 1.980 40.2 0 1.6 87.2 87.2 300 29.1 0 1.6 87.2 87.2 300 29.1 0 1.6 87.2 87.2 300 29.1 0 1.0 1.0 87.2 87.2 87.2 87.2 90.1 1.0 <td>II 3-6 7.2</td> <td></td> <td>7.</td> <td>7</td> <td>94.6</td> <td>0.74</td> <td>1.24</td> <td>510</td> <td>42.5</td> <td>520</td> <td>200</td> <td>1,220</td> <td>50.5</td> <td>0</td> <td>2.0</td> <td>Outside</td> <td>'n</td>	II 3-6 7.2		7.	7	94.6	0.74	1.24	510	42.5	520	200	1,220	50.5	0	2.0	Outside	'n
59.8 0.38 378 18.0 193 60.0 60.0 52.4 0 0 1.6 B 199 1.02 0.72 1,450 13.0 320 240 1,980 40.2 0 2.8 8 2 8 2 40.2 0 2.8 8 2 8 2 40.2 0 2.8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 <td>III 6-10 7.6</td> <td></td> <td>7.</td> <td>10</td> <td>41.5</td> <td>1.02</td> <td>0.65</td> <td>243</td> <td>18.4</td> <td>220</td> <td>86.0</td> <td>200</td> <td>65.8</td> <td>0</td> <td>1.6</td> <td></td> <td>1</td>	III 6-10 7.6		7.	10	41.5	1.02	0.65	243	18.4	220	86.0	200	65.8	0	1.6		1
199 1.02 0.72 1.450 13.0 320 240 1,980 40.2 0 2.8 E - 29.9 0.33 1.38 130 10.9 102 87.2 300 29.1 0 1.0 E - 48.1 5.03 1.38 124 50.0 500 0.8 0 5.0 2nd type B E - 26.6 2.44 0.18 168 5.1 78.8 26.8 230 45.2 0 3.0 Battillo E - 20.8 5.42 0.07 130 3.0 63.6 26.4 180 41.8 0 1.2 Battillo E - 20.8 5.42 180 25.4 180 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 2.4 1.850 1.5 1.5 1.2 1.2 1.3 80.0 600 4.7 0 2.5 2nd type A 1.2 1.2 1.2	IV 10-30 7.5		7.5		59.8		78		193	0.09	009	52.4	0	0	1.6		i 回
9 0.33 1.38 130 10.9 10.2 87.2 300 29.1 0 1.0 1.0 E - 1 5.03 0.18 320 11.8 124 50.0 500 0.8 0 5.0 2nd type B E - 8 2.44 0.18 168 5.1 78.8 26.8 230 45.2 0 3.0 3nd type B E - 4 7.53 0.05 60.0 2.6 45.6 20.9 100 27.9 0 1.2 E - 2 7.75 0.10 97.5 4.2 84.0 45.2 204 25.4 0 1.5 E - 3 0.36 1,280 53.2 288 244 1,850 12.7 0 2.5 2nd type A E - 8 0.37 0.41 385 12.2 130 80.0 600 4.7 0 1.8 E - 8 0.23	v 30-50 7.0		7.0		199	1.02	0.72	1,450	13.0	320	240	1,980	40.2	0	2.8		1
1 5.03 0.18 320 11.8 124 50.0 500 0.8 0 5.0 2nd type B E - 6 2.44 0.18 168 5.1 78.8 26.8 230 45.2 0 3.0 Hattillo E - 8 5.42 0.07 130 3.0 63.6 26.4 180 41.8 0 1.2 E - 4 7.53 0.05 60.0 2.6 45.6 20.9 100 27.9 0 1.2 E - 2 7.75 0.10 97.5 4.2 84.0 45.2 204 25.4 0 1.5 E - 1.18 0.96 1,280 53.2 288 244 1,850 12.7 0 2.5 2nd type A E - 8 0.37 0.41 385 12.2 130 80.0 600 4.7 0 2.5 Znd type A E - 2 0.23 0.58 230 5.3 44.0 58.6 340 46.1 0 1.8 E - 2 - 3 - 3 - 3 - 3 - 3 - 3 - 3	VI 50-65 7:9		7.9		29.9	0.33	1.38	130	10.9	102	87.2	300	29.1	0	1.0		'l
6 2.44 0.18 168 5.1 78.8 26.8 230 45.2 0 3.0 Battillo E - 1	I 0-15 7.8		7.8		48.1	5.03	0.18	320	8 7	124	50.0	200	8		5.0		` I
8 5.42 0.07 130 3.0 63.6 26.4 180 41.8 0 1.2 B E 4 7.53 0.05 60.0 2.6 45.6 20.9 100 27.9 0 1.2 E 2 2 7.75 0.10 97.5 4.2 84.0 45.2 204 25.4 0 1.5 E E 8 0.37 0.41 385 12.2 130 80.0 600 4.7 0 2.5 2nd type A E 2 8 0.37 0.41 385 12.2 130 80.0 600 4.7 0 2.5 2 2 2 2 9 0.23 0.58 2.30 5.3 44.0 58.6 340 46.1 0 1.8 E 2	II 15-30 7.9		7.9		26.6	2.44	0.18	168	5.1	78.8	26.8	230	45.2	0	0.5	Hattillo	T.
4 7.53 0.05 60.0 2.6 45.6 20.9 100 27.9 0 1.2 E 2 7.75 0.10 97.5 4.2 84.0 45.2 204 25.4 0 1.5 E 1.18 0.96 1,280 53.2 288 244 1,850 12.7 0 2.5 2nd type A E 8 0.37 0.41 385 12.2 130 80.0 600 4.7 0 2.5 2nd type A E 2 0.23 0.58 230 5.3 44.0 58.6 340 46.1 0 1.8 E	IV 32-57 7.7		7.7		20.8	5.42	0.07	130	3.0	63.6	26.4	180	41.8	0	1.2		ł
2 7.75 0.10 97.5 4.2 84.0 45.2 204 25.4 0 1.5 E = E = E = E = E = E = E = E = E = E	V 57-77 7.9		7.9		14.4	7,53	0.05	0.09	2.6	45.6	20.9	100	27.9	0	1.2		1
1.18 0.96 1,280 53.2 288 244 1,850 12.7 0 2.5 2nd type A E = 8 0.37 0.41 385 12.2 130 80.0 600 4.7 0 2.5	VI 77-83 7.8		7.8		22.2	7,75	0.10	97.5	4.2	84.0	45.2	204	25.4	0	1.5	-	1
8 0.37 0.41 385 12.2 130 80.0 600 4.7 0 2.5 E = 2 0.23 0.58 230 5.3 44.0 58.6 340 46.1 0 1.8 E =	X 0-15 7.3		7.3		149	1.18	96.0	1,280	53.2	288	244	1,850	12.7	0	2.5	type	1
0.23 0.58 230 5.3 44.0 58.6 340 46.1 0 1.8 E-			7.7		49.8	0.37	0.41	385	12.2	130	80.0	909	4.7	0	2.5		ı
	III 25-50 7.8		7.8		33.2	0.23	0.58	230	5.3	44.0	58.6	340	46.1	0	1.8		ł

pH, ECe: pH & EC of Saturation extract 1st type, 2nd type A, 2nd type B: types of salt accumulated soils (see 3.2.1) Outside: outisde of the Project area

Results of soil analysis - Characteristics of accumulated salts - 1st phase survey Table C-4-2 (2)

Plot No.		Horizo	Horizon/depth		ECe	CaCo3	CaSo4	Solu	Soluble cations (meg//)	/bam) suo	(Y	Solu	Soluble anions (meg/!)	Y/bam) su	1	i de de	of carried
(soil series code)	s code)	0	8	Hď	m se	50	#2	Na	×	S. Ca	W8	ដ	S04 C	CO3 HC	нсоз		No.
s28	(AC)	H	0-10	8.5	3,2	1.87	0.05	25.2	0.7	9.5	3.5	15.0	19-4 0	0.2 3.3	m		18 1
		Ħ	10-25	8.2	1.3	1.73	0.03	8.2	0.3	4.0	1.8	5.2	7.2 0		1.8		6T - 33
		III	25-40	8.4	1.2	0.62	tr.	3.1	0.1	3.6	1.7	4.0	2.5 0		2.0		E - 20
S-29	(AU)	н	0-15	7.9	7.6	7.44	0.04	45.0	1.7	30.0	4.3	30.0	48.5		2.5 2m	2nd type A	E ~ 21
		II	15-45	8.6	2.0	4.74	0.03	2.0	9.0	4.2	2.6	60	1.2 0	0.2 2.	2.0		E ~ 22
s-30	(5 (5 (5)	Ħ	0-20	0.8	e.	37.3	96.0	88	9.0	36.3	10.5	3.0	49.8		. 8		E ~ 23
		Ħ	20-50	7.9	 	36.5	0.45	2.2	0.5	30.0	11.0	4.0	37.1 0		2.5	:	E - 24
		H	50-70	7.9	3.0	22.3	1.82	11.5	0.4	30.0	4.0	2.5	46.6	0	2.2		E - 25
8-31	(od)	н	0-15	0.0	4.3	24.1	0.26	18.0	05.0	29.7	12.6	10.5	47.8	0	2.5 Is	lst type	E - 26
		Ħ	15-30	8.1	2.3	25.3	.0.07	5.7	0.40	14-1	5.5	ς, 80	17.4	0	2.6		E - 27
		III	30-55	0.8	8	20.0	0.03	7.4	0.4	7.9	гі •	4.0	14.3	0	2.4		1 28 1 28
8-32	and	н	0-15	9	5.1	9.0	90.0	37.2	1.1	16.3	8.5	12.5	47.1	0.2	9.6 Is	lst type	ह - 3
		Ħ	15-25	8.4	ω 	8.7	0.05	24.0	9.0	6.6	4.5	12.5	20.2	ю 	3.0		E - 30
		IXI	25-50	7.9	0.0	10.0	0.03	33.5	6.0	10.5	3.4	21.5	24.0 (0	2.8		E - 31
S-34	(MCH)	н	0-20	7.7	e. 9	40.1	0.20	ທ ິ	9	43.5	20.4	10.0	62.6	0	2.4 Js	1st type	ы і 4.
		H	20-45	7.9	3.2	34.6	0.18	6.0	0.7	24.8	12.7	0 %	1 1	0			35 1 35

pH, ECe: pH & EC of saturation extract Outside: outside of the Project area

1st type, 2nd type A, 2nd type B: types of salt accumulated soils (see 3.2.1)

Plot No.	•	14006/ 2007	10000	Hå	ECe CaCo3	3 CaSo4	Soluk	le cati	Soluble cations (meg/K)	Ω,	Solub	Soluble anions (meg//)	us (meg	0/		1
(soil series code)	code)	noz 1 zon em	ו/ מפוט /ו		m /cm &	dė	Na	K	Ca	M8	CJ	S04	CO3 HCO	НСО	Remark	,
I-3	(MCH)	Ŧ	0-30	7.4	37.6		270	1.8	82.4	57.2	410	30.3	0	2.8	lst type	
		H	30-50	7.3	14.6		97.5	0.5	38.1	22.3	118	38.2	0	2.2		
										 		t -				
77	(EP)	Ĥ	0-15	8.0	13.9		185	2.2	27.2	12.3	52	171	0	4.3	1st type	
		II	15-25	8	1.9		12.0	0.3	3.6	2.8	8.0	5.7	0	5.0		
		III	25-40	7.7	8.0		4.8	0.3	3.2	10.4	2.0	4.1	0	3.2	:	
		ΣŢ	40-60	8.0	1.2		10.6	0.3	3.0	1.8	5.0	149	0	3.6		
.6-1	(MCH)	н	0-15	7.7	30.2		210	3,5	45.6	53.2	200	101	0	5.0	lst type	
		II	15~30	7.6	1.6		10.8	0.2	10.9	5.0	10.0	14.9	0	2.0		
r-10	(5¢)	H	0-15	7.4	37.0		270	2.5	50.8	20.0	242	103	0	0.4	lst type	
٠		Ħ	15-25	7.6	3.8		16.8	0.1	20.9	4.9	5.0	35.1	0	2.6		
			30~75	7.5	2.9		13.0	0.1	11.3	6.8	5,5	23.2	0	2.5		
			75-100	7.7	o, H		5.7	0.3	14.1	5.3	5.5	17.7	0	2.0		
1-11	(AU)	н	0-15	7.9	24.8		110	4.4	26.0	140	158	117	. 0	5.2	lst type	
		Ħ	15~30	7.5	2.0		5.0	0.2	11.0	5.5	5.0	13.6	0	3.0		
		III	I 30-45	7.7	24.		16.0	6.0	17.9	6.4	12.5	25.9	٥.	2.8		
L-14	(EL)	н	0-15	7.6	43.2		460	19.8	47.0	49.0	400	171	. 0	5.0 1	lst type	
		II	15-45	7.8	1.7		7.7	0.1	10.2	2.3	ο. Ο.	12.8	Ö	2.5		
		III	I 45-100	7.5	3.8		17.0	0.5	16.9	10.5	5.0	36.9	0	ວຸຕ	•	
1-25	(141)	i-	,	f	;		•	:	1							
) !				X	5		250	-	2	1200	400	7	0	0.0	ist type	

Table C-4-2 (4) Results of soil analysis - Charactoristics of accumulated salts - 2nd phase survey

		Horiz	Horizon/depth	Нď	BCe	CaCO3	CaSc 4	S	oluble c	Soluble cation (meg/%)	(%/59)	S	Soluble anions (meg/2	n) suoju	s/Səv	£	Sample
(soil se	(soil series code)		5		m / cm	æ	æ	Na	х	Ca	ж	C1	504	003.	HC03	Kemark	No.
r-28	(HCH)	H	I 0-15 7.4 32.0	7.4	32.0			178	1.6	59.0	75.8	298	13.1	0	2.8	ist type	c - 19
		Ħ	11 15-30	7.5	7.5 4.9			19.5	0.2	27.7	17.9	12.5	50.2	0	2.5		C - 20
I 31	(MCM)	н	0-15		75.2			200	5.3	92.0	362	200	251	0	°.	lst type	et - 4
		II	15-45	7.4	7.4 5.8			24.0	0.2	33.7	10.6	25.0	40.7	0	2.8		A - 20
		HHH		7.4	4.7			13.8	0.2	35.5	6.0	18.0	37.3	0	3.5		A - 21
L-32	(LES)	н	I 0-15	7.3	7.3 27.3			154	1.2	56.0	44.0	140	110	0	2.0	1st type	ਦੀ ਸ
	-	II	15-30	7.5	7.5 3.8			80	0.2	19.3	10.2	20.0	14.3	0	F.8		(5) De
														:			

pH, ECe: pH & EC of saturation extract ist type, and type A, and type B: Types of salt accumulated soils (see 3.2.1) Outside: Outside of the Project area

Table C-5-1 Ratings of land qualities / characteristic specific to soil series or phases

Soil series/phases		Moisture availability	silability 1/						
	Effective soil depth	potential m< (0-30cm)	potential moisture holding capacity (0-30cm) (30-150cm)	capacity rating	Soil ferlitily 1/CEC rating	tily 1/	Permeability		Soil drainability
Aucallama	Į.	2.4 cm	6.3 cm	m3	8.8	n3	rapid	. .	b3 good-excessive
Esperanza	Б.	1.5	2.7	m4	5.0	£ 113	rapid-very rapid	b4	4 excessive
Tucume (TC I)	PI	m m	5.4	E#	10.0	n2	moderately rapid	52	2 good
" (TC II)	T d	. m . m	69.1	m2	10.0	n2		25	poop 2
Esquivel-Trujillo (ES I)	r) p3	3.3	5.4	m3	11.0	n2	moderately rapid	P2	2 good
(II SE)	II) P2	e .e.	8.1	m2	11.0	n2	=	b 2	boop 3
Clemencia	I di	e, e	8.1	m2	10.0	n2	moderately rapid	Þ2	good
Huaral	ъ 5 8	4.2	12.6	Em.	16.0	n2	mo-erate-moderately rapid	rapid b2	2 moderate
Mochumi	ርፈ	3.6	10.8	m2	17.0	n2	moderate	19	l moderate
Ocuaje	I di	4.2	12.6	ml	20.0	п	moderate-moderately rapid	rapid b2	2 moderate
lambayeque	P1	4.2	12.6	m,	15.0	n2	moderate-moderately slow	slow b2	2 moderate
Quepecaliche	ta.	2.4	14.4	m]	20.0	ľu	moderately slow	P2	imperfect too poor

.... Estimated on the basis of laboratory analysis and existing data shown in "Estudio Agrologico Detallado Y Zonificacion Climatica De Cultivos Del Valle Chancay-Huaral". 싎

TC I, ES I Shallow phase of the series

TC II, ES II Moderately deep phase of the series

The Maximum Land Irrigability Class Table C-5-2

factor land qualities annual crop fruit annual			Class	1	Class	2	Class	3	Class	4	Class 6
effective soil depth(P) P1 P1 P2 P2 P3 P3 P4 P4 moisture availability(m) m1,2 m1,2 (m2) (m2) (m2) (m2) m3 m3 m4 p4 p4 workability(k) k1 k1,2 k2 k3 k4 k4 k4 k4 soil fertility(n) n1,2 n1,2 n3 n3 n4 n4 (n4) (n4) salinity(e) e1 e1 e2 e2,3 e3 e4 e4 (e4) alkalinity(e) b1,2 b1,2 b3 b3 b4 .b4 (b4) (b4) slope & microrelief(g) g1 g1 g2 g2 g3 g4 g4 drainability(w) w1,2 w1,2 w3 w4 (w4) w4	factor	land qualities	annual crop	fruit	annual crop		,			fruit	:
moisture availability(m) m1,2 m1,2 m1,2 m2, (m2) (m2) (m2) (m2) m3 m4 m4 m4 workability(k) k1 k1,2 k2 k3 k3 k4 k4 (k4) soil fertility(k) n1,2 n1,2 n3 n3 n4 n4 (n4) (n4) salinity(e) e1 e1 e1 e2 e2,3 e3 e4 e4 (e4) alkalinity(e) al al al al al e2 e2,3 e3 e4 e4 (e4) permability(e) bl,2 bl,2 b3 b4 b4 b4 (b4) (b4) slope & microrelief(g) g1 g1 g2 g2 g3 g4 g4 drainability(w) w1,2 w3 w3 w4 (w4) w4 flooding hazard(f) f1 f1 (f1) (f1) (f1) (f1) (f1)		effective soil depth(P)	T dd	FI Gu	.p2	. P2	£ 4	E E	5.4	<u>ቀ</u>	P4
workability(k) kl kl,2 k2 k3 k4		moisture availability(m)	m1,2	m1.,2	(m2)	-(m2)	m3	ш3	m4	н 4	m4
soil fertility(n) n1,2 n1,2 n3 n3 n4 n4 (n4) (n4) salinity(e) e1 e1 e2 e2,3 e3 e4 e4 (e4) alkalinity(e) a1 a2 a2 a3 a3 (a3) (ä3) permability(b) b1,2 b1,2 b3 b4 .b4 (b4) (b4) slope & microrelief(g) g1 g1 g2 g2 g3 g4 g4 drainability(w) w1,2 w3 w3 w4 (w4) w4 flooding hazard(f) f1 f1 (f1) (f1) (f1) (f1) f2 f2	soil(s)	workability(k)	kl	k1,2	, 72	K W	ж3	7.4	k4	(k4)	አ4
salinity(e) el el el e2,3 e3 e4 e4 (e4) alkalinity(a) al al al al al al (a3) (a3) permability(b) bl,2 bl,2 bl,2 bl,2 bl,2 bl,4 (b4) (b4) slope & microrelief(g) gl gl gl gl gl gl gl g4 g4 drainability(w) wl,2 wl,2 w3 w4 (w3) (w4) w4 flooding hazard(f) fl		soil fertility (n)	n1,2	n1,2	n3	ង3	n4	n 4	(n4)	(n4)	n4
alkalinity(a) al (al) (al) (al) (bl) bl,2 bl,2 bl,2 bl,2 bl,2 bl,2 bl,4 (b4) (b4) (b4) (b4) slope & microrelief(g) gl gl gl gl gl gl g4 g4 drainability(w) wl,2 wl,2 w3 w4 (w3) (w4) w4 flooding hazard(f) fl fl fl (fl) (fl) (fl) (fl) fl		salinity(e)	4	e L	62	e2,3	ക	0 4,	e4	(e4)	e4
permability(b) bl,2 bl,2 b1,2 b3 b3 b4 .b4 (b4) (b4) slope & microrelief(g) g1 g1 g2 g2 g3 g4 g4 drainability(w) w1,2 w3 w3 w4 (w3) (w4) w4 flooding hazard(f) f1 f1 f1 (f1) (f1) (f1) f2 f2		alkalinity(a)	면	a Te	a2.	a2	ಕ	a3	(a3)	(a3)	සි
slope & microrelief(g) g1 g1 g2 g2 g3 g4 g4 drainability(w) w1,2 w1,2 w3 w4 (w3) (w4) w4 flooding hazard(f) f1 f1 (f1) (f1) (f1) f2 f2		permability(b)	b1,2	51,2	£ q	ದ್ದ	P 4	.b4	(b4)	(54)	5 4
drainability(w) w1,2 w1,2 w3 w4 (w4) w4 flooding hazard(f) f1 (f1) (f1) f2 f2	topogra- phy(t)	slope & microrelief(g)	g	gl	92	92	g 20	93	45	94	94
flooding hazard(f) (f1) (f1) (f1) (f1) f2	drainage	drainability(w)	1	w1,2	w 3	80	w4	(w3)	(w4)	w4	w4
	ਰੇ	flooding hazard(f)	£T	f.	(£1)	(£1)	(£1)	(£1)	£2	£2	£2

** annual crop --- land class for annual crop production, fruit --- land class for fruit production.

	b
	Š
	É
٠.	ô
	_
	ģ
	ភ្ជ
	ě
	7
	4
	w
	å
	w
-	43
	겁
	5.
	ij
	-
	ã
	ě
	ដ
	끅
	ъ
	Ĕ
	<u>-</u> -
	classification land irrigability class for irrigation forming
	è
	ö
	ij
	ŏ
	u.
	ú
	ď
	귱
	73
	Ē
	-
	Potential land cl
	ã
	Ē
	ន្ត
	ç
	_
	تہ
•	m
	1c C-5-3 (1)
٠	ï
	,
	4

							3							1	Teminahi li H	ì	١	2,300					
	Soil Series		Class			1 .	ss II						٥	Class III	IXI				Class	27 25			Class Total
				II	7. 14	Sub	Subclass				III			Subclass	ass			IV	S	Subclass			1
					s	٦	t	sd st	t dt	sdt		3	٥	t sd	st	d.	sdt	, "	IVES IVES	S IVRLS	IVR IVRS	ts Ived	
	Aucallama (AU)	a d	1	•							2445	2445 1773			673	61		7.6	97			! 	. 1
٠.		(%)						-		•	(96)				:			3				:	
	Esperanza (EP)	, ac	. !	. !		•		-			88	88					:	3932 3932	932	*			ŧ
		(2)		•			٠				(5)	:	. :	· .				(86)					
٠.	Tucume (TC)	, e	ı	938	655		٠	~	283		1024	1024						. 1					
		0		(48)		÷					(52)				:	-							
	Esquivel-	ha		2399	2399 1882		. 1	35 44	448	34	2709	2602			701			154	128		. 26		ı
	Trujillo(Es)			(46)					٠		(51)							(3)					
	Clemencia (CL)	r.	F	695	651			•	44		1							1					١.
		•		(700)										٠				-8				٠	
٠	Huaral (HC)	r,	ŧ	309	309						•							ì					١
		do		(700)																			
	Mochumi (MCH)	ş	2420	1430	4	47 3	1318		25		1							ı					1
		•	(63)	(37)																			
	Ocuaje (OC)	ha	141	219			219				•							1					1
			(38)	(61)										-									
	Lambayeque (LB)	'n.	426	136			136				24		••	24				61			19		1.
		øs	(20)	(22)							3							(3)					
	Quepecaliche (QC) ha	£	1	595			595	ň			ł												ı
		940		(100)																			
	Total	ha	2987	6721 3537	35.37	47]	1673 630		775 25	34	6290	5487		24	779			4202 4157	157		4		1

Subclass: s deficiency or limitation in soil factor which determine irrigability class in the level t deficiency or limitation in topography factor which determine irrigability class in the level d deficiency or limitation in drainade factor which determine irrigability class in the level IVF special use for fruit cultivation

IVF special use for fruit cultivation

forming
irrigation
tor
class
land irrigability
ì
land classification
class

				1.A CKI							1	rriga	1 rrigability		C1255				
SOLL Seeron	Class	15.5		Class	11						Class	III				Class IV		Class	Class Total
		11		Subclass	365				111		Sub S	Subclass			17	Subclass			area
				7	, ,	3% pu	ט ט ג	sdt	s	σ	t	sd	st dt	r sdt		IVS IVIS IVRUS	s IVR IVRS IVPd	11	
Aucallama (AU)	,	1							2445 1773				672		1			9.7	2542
٥	?								(96)									3	(1001)
Esperanta (RP)	1 22	1							38 88						3932	3932		١	4020
•	2								(2)						(86)				(100)
Tucume (TC) h	1 24	938	655			Ň	233		1024 1024						ı			1	1962
٤	(e)	(48)							(52)										(100)
Esquivel-	ha -	2399 1882	2881		•	35 44	448	7	2709 2602				107		26		26	128	5262
* (sa)orrtinar		(46)							(51)						<u>:</u>			(5)	(1001)
Clemencia (CL) h	ا. ا	695	651			*.	44								,	÷		•	695
		(100)							•								·	-	(1001)
Huaral (HU) h	ha.	309 309	309												•			١	308
		(001)							1										1001
Mochumi (MCH) h	ha 2420 1430	1430	40	47 131	.00		25								1			٠. ا	0585
	(63) (37)	(75)							1										
Octubie (OC) h	ha 141	219		22	6										1			٠	92
	(33)	((9)	<i>1</i> ,				٠.		ı				7						9
Lambayeque (LB) ha 426	a 426	136		136	ý				24		24				19		13		605
	(70) (22)	(22)							· (4)	:					(3)		:		(100)
Quepecaliche (QC) ha	। बु	595	. :		595	. 5		٠				:		٠		:		ŧ	595
		(100)																	(100)
Total	a 2987	ha 2987 6721 3537		47,1673, 630	3.63	277 00	5 25	: K	6290 5487		24		67.1		3977	3932	45	225	225 20200
	(15)	* (15) (33) (18) (-) (8)	-) (81	(B)	_	(3) (4)		(-) (-)	(31) (27)		(-)		(4)		(20)	(20)	Ĵ	3	(100)

s deficiency or limitation in soil factor which determine irrigability class in the level Subclass:

t deficioncy or limitation in topography factor which determine irrigability class in the level

d deficiency of limitation in drainade factor which determine irrigability class in the level

IVI limited arable under intensive irrigation methods

IVR special use for salt tolexant crops

IVMI special use for salt tolerant crops under intensive irrigation methods

IVP limited arable due to flooding possibility

	'n	
	0	
	Д,	
	E	
	0	
	_	
	ō	
	ũ	
	Ď	
	ŭ	
	겆	
	Ņ	•
٠	S	
	v,	
	12	-
٠.	ಕ	
	Ĭ	
	ú	١
	4	
	á	
	8	
	7	
	共	
	land irr	
	Ě	
	Ť	
	1	
	ö	
	ü	
	ŝ	
	ISSITIOSE	
	7	
	ÿ	
٠	Ť	
	_	
	ğ	
	~	
	٠.,	
	6	
:	ټ	
	ĕ	
	ó	
	(4	
	-	
	~	
	~	
	Ą	
	ŵ	
•	Ć	
	÷	
	~	
	-3	
	Tabl	

			-		Land	Į.	• .			-	:			IXX	Irrigability	1.50	Class				2	Ç.		
Soil Series		Class	S		Class		77						CLS	Class	III		7	U	Class	22			Class	Class Total
			II		Sub	Subclass				Ĥ	III	1.00		Subclass	ass		VI		Subclass	ass				area
				្រ	δ	L.	ာ စ	st	dt sdt	رد		· ss	ā,	t sd	st	dr. s	sdt	IVS	IVIS IVRUS	ł I	IVR IVRS IVPG	s IVPd		
Aucallama (AU)	53	1	1		1 %	٠.	· .		42 :	244	2445 1745	10		28	672		97	76	: :		*.			25.42
	Ê				-					(96)	œ	٠.					(4)							(100)
Esperanza (EP)	r P	•	1.	•			: -		:	•		-					4020	4020						4020
	Ē		d.									:					(100)						_	(100)
Tucume (TC)	č	ji.	938	520		-	135 2	283		102	1024 1024						1						Ţ	1962
	3	. '	(48)							(55)	2 2													(100)
Esquivel-	r R	1	2404 1733	1733			174 4	497		275	2704 2449	69 (_	94	101		128	128					56	5262
/s=\0'114('51'	-	٠.	(46)							(151)							(2)					:	. T	(100)
Clemencia (CL)	'n	4	695	499		~1	152	4		ŧ	_	-					1						ı	695
•	,	_	(100)								1												~	(001)
Huaral (HU)	r C	1	309	144		. ~	165			1							1.1						1	608
-	•	_	(100)																					(160)
Mochumi (MCH)	рa	ha 1876 1902	1902		584 1250	250			89	72		72					ı						, (c.)	3850
	ø	(49) (49)	(48)		-					(2)														(001)
Ocuaje (OC)	h.	48	273		54	219				•							1			٠			, I) ge
	y)	(24) (76)	(26)																					(001)
Lambayeque (LB)	r e	190	372		236	136				24			24				1						19	605
	ø	(31) (81)	(61)							(4)														(100)
Quepecaliche (QC) ha	ha	ı	\$95		595					•							i							595
	-	٦	(100)										į										7	1001
Total	K,	2153	7488	ha 2153 7468 2896 1469 1605	469 16	!	929	824	68	6269	6269 5218	141	24	107	779		4245	4245 4245						20200
		(11)	(37)	(1) (37) (14) (7)	3		(3)	(4)	ĵ	(31)	(31) (26)	ਹ	(1) (-)	9	(4)		(21)		٠				I	(1001)
		-			ı	ı	1																	

s deficiency or limitation in soil factor which determine irrigability class in the level t deficiency or limitation in topography factor which determine irrigability class in the level d deficiency or limitation in drainade factor which determine irrigability class in the level IVI limited arable under intensive irrigation methods
IVR special use for salt tolerant crops under intensive irrigation methods
IVR special use for salt tolerant crops under intensive irrigation methods Subclass:

forming
irrigation
for
class
irrigability
land
}
lassitication
and c
Potential L
Table C-5-3 (4)
ž

		,	İ		ריים	ļ				į	i	1	Irrigability		Class						
	,	Class			Class	11					V	Class III	III			Class IV			U	Lass	Class Total
sorres ros	,		Ħ		Subclass	ķ			III			oqn S	Subclass		ΣV	Subc],ass					area
				55	υ 10	S.d.	ا الا	dt sdt		s	P	1	sds	st dt sdt	175	IVIS IVRLS	l i	IVR IVRS IVPd	P. P. P. P. P. P. P. P. P. P. P. P. P. P		
Aucallama (AU)	ğ	t	1						2041 1369	1369			9	672	244			244		257	2542
	3				٠				(80)						(30)				Ť	(10)	(100)
Esperanza (EP)	ed e	ı	1						19	61		-			39.75	2865 1041		69		36	4020
	(%)								<u>(</u>						(66)					3	(001)
Tucume (TC)	ğ	Ŋ	902	562		v)	57 283	κ.	935	935					125		63	62		4	1962
	3		(46)						(48)						(9)						(700)
Esquivel-	ž,	1	2225 1774	1774	٠	m	35 416	ø	2627 2520	2520			-	107	282		8	68	134	128	5262
Trujillo(Es)	7		(42)						(50)						(5)					(5)	(100)
Clemencia (CL)	r C	,	543	499			4	44	1						152	-	δ	18	\$	ι	695
			(18)												(22)						(100)
Huaral (HU)	ha	1	288	144		144	4								21		23			ı	309
		•	(83)												(2)	4,			•		(200)
Sochumi (MCH)	r eq	1817 1631		185	47 1218	18 160	ō		21 . 42	:	47				360		223	141	106	1	3850
		(47)	(42)	:					(3)						(6)						(100)
Octuate (OC)	전	23	273		74	219 5	54		I,											ı "	980
	•	(24)	(92)			٠.				٠									*		(00T)
Lambayeque (LB) ha		190	309	25	44 3	136 104	Ä		24			24			82		56	34	22	ı	605
	-	(33) (12)	(\$3)		٠.	· ·	. :		₹						(14)						(100)
Quepecalache (QC) ha	2	•	272			272	. 7		25		25				298		\$	199		1	595
			(46)			:			(4)						(20)						(100)
Total	a c	2094	ha 2094 6443 3189	189	91 1573		826 743		21 5713 4843	4843	67	24	7	977	5539	2865 1041	452	835	346	411	411 20200
		9	(10) (32) (16)	ં !	(-)	8) (4)	1	(4)	(-) (28) (24)	(24)	3	ĵ	3	(4)	(22)	(14) (5)	(2)	(4)	(2)	(3)	(100)

s deficiency or limitation in soil factor which determine irrigability class in the level t deficiency or limitation in topography factor which determine irrigability class in the level d deficiency or limitation in drainade factor which determine irrigability class in the level IVI limited arable under intensive irrigation methods IVR special use for sait tolerant crops under intensive irrigation methods Subclass:

Table C-5-4(1) Land irrigability class of soil units for land classification-1

~ 1 1 1 1 1 1 1 1 1 1	35565	77			(SIII-SIII) SIII			(SIII-SIII)SIII		IIISt(IIISt-IIISt)		IIIst(IIIst-IIIst)		(SIII-SIII)'SIII		IVES (VI-IVS)	D.P.	IIIs(IIIs-IIIs)		IIIs(IIIs-IIIsd)	A. O	IIIs(IIIs-IIIs)	- A- O	IIIs(IIIs-IIIs)	D.P.	IIIs(IIIs-IIIs)	D.P.	IIIs(IIIs-IIIs)	D.P.	IIIs(IIIs-IIIs)	. e o	
classes ty Potential irri-		for irrigation			IIIS			IIIs		IIIst		IIIst		SIII		IVES		IIIS		SIII		IIIS		IIIs		IIIS		TIES		IIIS		
Land irrigability category		fruit	IIIs		IIIS		IIIS	IIIs	IIISt	IIIst	IIISt	IIIst	ĬΛ	IIIs	IVS	IVS	SIII	IIIS	IIIsd	IIIsd	IIIsd	IIIS	IIIsd	IIIs	TIISG	IIIS	SIII	IIIs	IIISG	IIIS	IA	
\$ Irrigability		of annualcrop	pu	on (Pr)	land		SIII	lits	IIIst	IIIst	IIIst	IIIst	Ĭ	SIII	IA	VI	TIIS	SIII	SIII	IIIs	SIII	IIIS	IVRS	IIIs	IVRS	IIIS	SIII	IIIS	SIII	SIII	IVRS	
		area classificat	436 1. Present land	classification (Pr)	2. Potential	classification(Po)	776 1. Pr	2. Po	620 1. Pr	2. Po	52 l. Pr	2.	160 1. Pr	2. Po	97 1. Pr	2. Po	30 1. Pr	7	28 1. Pr	2. Po	18 1. Pr	5	33 1. Pr	2. Po	61 1. Pr	2. Po	35 1. Pr	2. Po	46 1. Pr	2. Po	48 1. Pr	
		s) Soil units	AU				AU-g-	The second secon	AU-94		AUSI-e4g3		AUSI-e4		AUSIC-e4c4g3		AUSII-e4w4		AUSII-e4w3		AUSII-e-w3	Y 6	AUSIIe->wo	**************************************	AUSII-e-w3		AUSII-e2g2w2	X	AUSII-e-gzw3		AUSIII-e4a44	
	Soil	Soil series (code)	Aucallama AU								AUSI	•			AUSIC		HOSIL	•											•			

IVI --- limited arable under intensive irrigation methods IVP --- limited arable due to flooding possibility Subclases --- s: deficiency or limitation in soil factor which determine irrigability class in the level t: " in topography factor " " in drainage factor " " ... Phases ---- I: shallow phase, II: moderately deep phase, SI: well-drained salt accumulated phase IVR --- special use for salt tolerant crop cultivation

IVR --- limited arabl

IVRI -- special use for salt tolerant crop cultivation under intensive irrigation methods C: gravelly surface phase SII: poorly-drained salt accumulated phase, IVF --- special use for fruit cultivation

D.P. --- drainage improvement study area

1/ soil mapping code of land classification

Table C-5-4(2) Land irrigability class of soil units for land classification-2

					ri bard	irrigability classes	20		
						*	Dotential irri-		
	Soi 1				classes for	classes for	qability classes		
	phases			Conditions of	annualcrop	fruit	for irrigation	77	
Soil series	(code)	Soil units	area	classification	production	production	forming	mapping code	Remarks
Aucallama	AUSII	AUSII-e4a2g2w4	102	1. Present land	IVRS	ΛI			D.P.
				classification(Pr)					
				2. Potential land	iirs	IIIs	IIIs	(SIII-SIII)SIII	
				classification(Po)					
		Total area	2,542				,		
Esperanza	EP	五五	872	1. Pr	sivi	IVs			
				2. Po	IVIS	IVS	IVES	IVFs(IVIs-IVS)	
		EP-92	1,184	l. Pr	ivis	IVs			
				2. Po	IVIS	IVs	IVFS	IVES(IVIS-IVS)	
		£5-d3	366	J. Px	IVIS	IVS		. *	
	- :			2. Po	IVIS	IVS	IVES	IVES(IVIS-IVS)	٠
	ವಿತ	EPC-c ² g ³	198	l. Pr	IVIS	IVs			
	j			2. Po	IVIS	IVS	IVES	IVEs (IVIS-IVS)	
	EPSI	EPSI-e3	301	7° 5'	IVRIS	IVS			
				2. Po	IVIS	IVs	IVES	IVES (IVIS-IVS)	
		EPSI-e ² g ²	213		ivis	IVS			
				2. Po	ivis	IVS	IVES	IVFS (IVIS-IVS)	
		EPSI-e3g2	259		IVRIS	IVS			
	÷			2. Po	IVIS	IVs	IVES	IVFs(IVIS-IVS)	
		EPSI-e3g3	344		IVRIS	IVS			
				2. Po	IVIS	IVs	IVFs	IVES (IVIS-IVS)	٧.
		EFSI-e4g3	77		IVRIS	IVS			
				2. Po	IVIS	IVS	IVES	IVFS(IVIS-IVS)	
	EPSIC	EPSIC-e-c-g-	35		IVIS	IVS			
				2. Po	IVIS	IVS	IVFs	IVFs(IVIS-IVS)	
	:·	EPSIC-e3c2g2	116		IVRIS	IVS			
e.				2. Po	IVIS	IVS	IVES	IVFS (IVIS-IVS)	
		EPSIC-e4c4g3	56	J. Pr	, VI	IVS			
				2. Po	IVIS	IVS	IVFS	IVFs(IVIS-IVS)	
	EPSII	ESPII-e-w3	ମ	I. Pr	SIII	IVS			D.P.
		the state of the s		2. Po	IIIs	IVS	IIIs	IIIs(IIIs-IVs)	

IVI --- limited arable under intensive irrigation methods IVP --- limited arable due to flooding possibility --- s: deficiency or limitation in soil factor which determine irrigability class in the level SI: well-drained salt accumulated phase IVRI -- special use for salt tolerant crop cultivation under intensive irrigation methods C: gravelly surface phase in topography factor in drainage factor II: moderately deep phase, SII: poorly-drained salt accumulated phase, special use for salt tolerant crop cultivation IVF --- special use for fruit cultivation = I: shallow phase, Subclases IVR ---Phases

1/ soil mapping code of land classification

D.P. --- drainage improvement study area

٦ ... 6

Land irrigability class of soil units for land classification-3 C-5-4(3)Table

				Remarks	D.P.			•	D.P.				. :					D.P.		D.P.		D.P.		D.P.								D.P.		D.P.	
			7	mapping code			IIIS(IIIS-IVS)			IIIs(IIIs-IVs)			(SIII-SIII)SIII		IIIs(IIIs-IIIs)		(SIII-SIII) SIII		(SIII-SIII)SIII		(SIII-SIII) SIII		IIIs(IIIs-IIIs)		IIIs(IIIs-IIIs)		IIs(IIs-IIs)		IIst(IIst-IIst)	-	IIs(IIs-IIsd)	-	IIs(IIs-IIsd)		TTS(TTS-TIEG)
S Dotontial irri-	2.17.1.1.40.1.41.1.1.1.1.1.1.1.1.1.1.1.1.1.1	gability classes	tor irrigation	forming			IIIs	-		IIIs			IIIs		IIIs		IIIS		IIIs		IIIS		IIIs		IIIs		IIs		IIst		IIS		IIS		TTS
irrigability classes	11111111111111111111111111111111111111	CTASSES LOT	truit	production	Ľ,		IVS		VI	IVS		IIIS	IIIs	IIIs	IIIs	IIIs	IIIs	IIIsd	IIIs	IIIsd	IIIS	IA	IIIs	ŢΛ	IIIs	IIs	IIS	IIst	IIst	IIsd	IIsd	rird	IIsā	IIIsd	TISG
Land lr.	11119con 601	CIGSSES TOL	annualcrop	production	IVES		IIIs		IVRS	IIIS		IIIs	IIIs	sili	IIIs	IIIS	IIIs	IIIs	IIIs	IVR	IIIs	IVR	IIIs	IVRS	riis	IIS	IIS	IIst	IIst	IIS	IIS	IIsd	IIs	IVR	5 L
			Conditions of	classification	Present land	н,	Potential land	classification(Po)	1. Pr	2. Po		rg.	2. Po	za -	2. Po	. Pr	2. Po	7d -	. Po	1. Pr	. Po	l. Pr	. Po	i	2. Po	l. Pr	2. Po	7. Pr	2. Po	J. Pr		1. Pr	2. Po	1. Pr	Co
				area c	21 1. 1		2		48		4,020	589		210		78	,	58	2	14	2	33	2	42		520		283		42 1	2	57	2	16 1	2
				Soll units	EPSII-e 3w4		12 -		ESPII-e4a2w4		Total area	rci		TCI-92		TCI-g2w2		TCISII-e-w3		rcisii-e3w3		TCISII-e3w4		TCISII-e4a2w4		TCII		TCII-92		TCII-w2		TCIISII-e2w3		TCIISII-e 3w3	
	Soil	4 4 4	The state of	(code)	EPSII							TCI						TCSII								TCII						TCIISII			
				Soil series	Esperanza							Tucume																							

IVI --- limited arable under intensive irrigation methods IVP --- limited arable due to flooding possibility IVR --- special use for salt tolerant crop cultivation IVRI -- special use for salt tolerant crop cultivation under intensive irrigation methods IVF --- special use for fruit cultivation

Phases ---- I: shallow phase, II: moderately deep phase, SI: well-drained salt accumulated phase

SII: poorly-drained salt accumulated phase, C: gravelly surface phase

Subclases --- s: deficiency or limitation in soil factor which determine irrigability class in the level

t: in topography factor "

d: in drainage factor "

D.P. --- drainage improvement study area

1/ soil mapping code of land classification

Table C-5-4(4) Land irrigability class of soil units for land classification-4

					* * * * * * * * * * * * * * * * * * * *	1			
					rand	rrrdability classes	ሃሮያ		
	•				Irrigability	Irrigability	Potential irri-		
	Soil				classes for	classes for	gability classes		
	phases			Conditions of	annualcrop	fruit	for irrigation	넊	
Soil series	(code)	Soil units	area	classification	production	production	forming	mapping code	Remarks
Tucume	TCIISII	TCIISII-e4a2w4	30	1. Present land	IVRS	VI			D.F.
				classific	1	יי ! ! !	} # #	(P) + + + + + + + + + + + + + + + + + + +	
				 Potential land classification(Po) 	S T T	DSTT.	STT	(DSTT-STT) STT	
	÷	Total area 1	1,962						
Esquirel	ESI	ESI	689	1. Pr	IIIs	SIII			
-Trujillo				2. Po	IIIs	IIIS	IIIs	IIIs(IIIs-IIIs)	
1		ESI-92	422	거 . 다	IIIs	SIII			
		,			IIIs	IIIS	IIIs	IIIs(IIIs-IIIs)	
		ESI-g-3	82	l, Pr	IIIst	IIIst			
				2. Po	IIIst	IIIst	Ilist	IIIst(IIIst-IIIst)	
		ESI-w3	29		SIII	IIIsd		:	
-				2. Po	IIIs	IIIsd	IIIs	IIIs(IIIs-IIIsd)	
		ESI~£2	20	L	IVPd	IVPd			D.P.
				2. Po	IIIs	IIIS	IIIs	IIIs(IIIs-IIIs)	
		ESI-g2f2	36.	l. Pr	IVPd	IVPd			9 G
				2. Po	IIIs	SILI	IIIS	IIIs(IIIs-IIIs)	
		ESI-w4f2	27	l. Pr	IVPd	ΙΛ			
				2. Po	IIIs	IIIsd	IIIS	(PsIII-SIII) SIII	
	ESIC	ESIC-c2	483		IIIs	SIII			
-			İ	2. Po	iiis	IIIs	IIIs	IIIs(IIIs-IIIs)	
		ESIC-c ² g ²	101	1. Pr	IIIs	SIII			
	-			2. Po	IIIs	IIIS	IIIS	IIIs(IIIs-IIIs)	
		ESIC-c3	234	1. Pr	IIIs	SIII			
				2. Po	IIIS	SILI	SILI	IIIs(IIIs-IIIs)	
	٠	ESIC-c3g2	341	I. Pr	IIIs	IIIS			
				2. Po	IIIs	IIIs	IIIS	IIIs(IIIs-IIIs)	
·		ESIC-c3w3f2	17	1. Pr	IVPd	IVPd			
				2. Po	IIIs	IIIsd	SIII	IIIs(IIIs-IIIsd)	
	ESISIC	ESISIC-e2c2g3	25	1. Pr	IIIst	IIIst			
				2. Po	IIIst	IIIst	IIIst	IIIst(IIIst-IIIst)	
			:						

IVI --- limited arable under intensive irrigation methods IVP --- limited arable due to flooding possibility Subclases --- s: deficiency or limitation in soil factor which determine irrigability class in the level Phases ---- I: shallow phase, II: moderately deep phase, SI: well-drained salt accumulated phase IVRI -- special use for salt tolerant crop cultivation under intensive irrigation methods C: gravelly surface phase in topography factor in drainage factor SII: poorly-drained salt accumulated phase, IVR -- special use for salt tolerant crop cultivation IVF --- special use for fruit cultivation ij

D.P. --- drainage improvement study area

1/ soil mapping code of land classification

Land irrigability class of soil units for land classification-5 Table C-5-4(5)

 -				Remarks				D.P.		D.P.						D.P.	:	D.P.		!															-
			71	mapping code			IVFs (VI-IVS)		IIIs(IIIs-IIIs)		IIIs(IIIs-IIIs)		IIIs(IIIs-IIIsd)		IVRS(IVRS-VI)		IIIs(IIIs-IIIs)		IIIs(IIIs-IIIs)		IIs(IIs-IIs)		IIst(IIst-IIst)		IIs(IIs-IIsd)		IIsd(IIsd-IIId)		IIs(IIs-IIs)		IIsdt(IIsdt-IIId)		IIIs(IIIs-IIs)		IIIs(IIIs-IIst)
sə	Potential irri-	gability classes	for irrigation	forming			IVES		HIIS		IIIS		SIII		IVRS		IIIS		IIIS		IIS	,	IIst		IIS		IIsd		IIS		IIsdt		IIIs		IIIS
irrigability classes	Irrigability	classes for	fruit	production	IVS		IVS	rirs	IIIs	IA	IIIs	LIIsd	IIIsd	ıv	ΔĪΛ	IIIs	IIIs	SIII	rirs	SII	IIS	IISt	IIst	IIsd	IIsd	LIIG	IIId	IIs	IIS	IVPd	IIIG	IIs	IIS	IIst	IIst
ซ	Irrigability	classes for	annualcrop	production	ĭ		τv	IIIs	IIIs	IVRS	IIIs	SIII	IIIS	IVRS	IVRS	SIII	IIIs	IIIs	IIIS	SII	IIS	IIst	IIst	IIS	IIS	IIsd	IIsd	SII	IIS	IVPd	IIsdt	SIII	IIIs	SIII	IIIs
			Conditions of	classification	Present land	classification(Pr)	Potential land	1. Pr	2. Po		2. Po	1. Pr	2. Po	I. Pr		1. Pr	2. Po		2. Po		2. Po	1. Pr	- 1		2. Po	1. Pr	2. Po	7. Br	2. Po	l. Pr	2. Po	l. Pr	2. Po	1. Pr	2. Po
				area	128 1.		2	33		14		32		56	٠	24		24		1,182		416		44		35		526		34		25		1 თ	
				Soil units	ESISIC-e ² c4g ³			ESISII-e2w2		ESISII-e422w4		ESISIIC-e2c2w3		ESISIIC-e3c2w4		ESISIIC-e2c2g2w2		ESISIIC-e2c3g2w2		ESII		ESII-67		ESII-w ²		ESII-#3		ESIIC-c2		ESII-c2g2w3f2		ESIIC-c3		ESIIC-c3g2	
		Soil		(code)	ESISIC			ESISII	· :			ESISIIC				ш		Ω ·		ESII		٠						ESIIC							
				Soil series	Esquivel	-Trujillo																					-								

IVI --- limited arable under intensive irrigation methods IVP --- limited arable due to flooding possibility IVF --- special use for salt tolerant crop cultivation

IVR --- special use for salt tolerant crop cultivation under intensive irrigation methods

IVRI -- special use for salt tolerant crop cultivation under intensive irrigation methods

Phases ---- I: shallow phase, II: moderately deep phase, C: gravelly surface phase

SII: poorly-drained salt accumulated phase, C: gravelly surface phase

Subclases --- s: deficiency or limitation in soil factor which determine irrigability class in the level

d: in topography factor "

in drainage factor "

in drainage factor "

in drainage factor " IVF --- special use for fruit cultivation D.P. --- drainage improvement study area

1/2 soil mapping code of land classification

Table C-5-4(6) Land irrigability class of soil units for land classification-6

					Land	irrigability classes	ses		
	Soil				Irrigability classes for	Irrigability classes for	Potential irri- gability classes		
	phases			Conditions of	annualcrop	fruit	for irrigation	1/2	10 S
Series	(code)	SOLL UNITS	area	Classification	production	production	eogia, ng	mapping cone	Carring
Esquivel	ESIISIC	ESIISIC-e2c2g2	32	l. Present land	IIIs	IISt			
-Trujillo		-		classification(Pr)					
	!			2. Potential land	IIst	IIst	IISt	IIst(IIst-IIst)	
	ESIISII	SSIISII-e2w2	22	1. Pr	iis	IIsd	`		, a, O
				2. Po	IIS	IISG	IIS	IIs(IIs-IIsa)	
		ESIISII-e3w3	20	7. Pr	IVR	rirg			D.P.
				2. Po	IIS	IIsd	IIS	IIs(IIs-IIsd)	
		ESIISII-e344	30	J. Pr	IVR	VI			D.P.
				2. Po	IIS	IIsd	IIS	IIS(IIS-IISG)	
		ESIISII-e4a2w4	28	1. Pr	IVRS	ΛI			D.P.
				2. Po	IIS	IISđ	IIS	IIs(IIs-IIsd)	
	·	Total area 5	5,262						:
Clemencia	병	J.	475	I. Pr	IIS	IIS			
				2. Po	IIs	IIS	IIS	IIs(IIs-IIs)	
		CL-92	44	1. Pr	IIst	IISt			,
=			: .	2. Po	IIst	IIst	IISt	<pre>IIst(IIst-IIst)</pre>	
		CL-w3£2	55	1. Pr	IVPd	IVEd			D.P.
				2. Po	IIs	IIsd	IIs	IIs(IIs-IIsd)	
		CL-w4£2	31	1. Pr	IVPd	TΛ			D.P.
-				2. Fo	IIS	IIsd	IIS	IIs(IIs-IIsd)	
	ពួ	CLC-02	24	1. Pr	IIS	SII			
				2. Po	IIS	IIS	IIS	IIS(IIS-IIS)	
	CISII	CLSII-e3w3	- 20	l. Pr	IVR	PILI			a c
				2. Po	IIS	IIsd	IIS	IIs(IIs-IIsd)	
		CLSII-e4a2w4	8	l. Pr	IVRS	W			D P
				2. Po	IIs	IIsd	IIS	IIs(IIs-IIsd)	
		Total area	695						

IVI --- limited arable under intensive irrigation methods limited arable due to flooding possibility Subclases --- s: deficiency or limitation in soil factor which determine irrigability class in the level SI: well-drained salt accumulated phase IVRI -- special use for salt tolerant crop cultivation under intensive irrigation methods SII: poorly-drained salt accumulated phase, C: gravelly surface phase IVP --in topography factor in drainage factor II: moderately deep phase, - special use for salt tolerant crop cultivation IVF --- special use for fruit cultivation = -- I: shallow phase, Phases IVR -

1/2 soil mapping code of land classification

D.P. --- drainage improvement study area

Table C-5-4(7) Land irrigability class of soil units for land classification-7

				יסי	irrigability classes	Se		
				Irrigability	Irrigability	Potential irri-		
				classes for	classes for	gability classes		
			Conditions of	annualcrop	fruit	for irrigation	7	
207	SOLL UNIES	area	classification	production	production	forming	mapping code Re	Remarks
HU	27	8	1. Present land	IIs	IIS			
			classification(Pr)					:
-			2. Potential land	IIS	IIS	SII	is(ils-ils)	
			classification(Po)					
HOC	HUC-c2∞2	τυ 4.	1. Pr	IIs	IIS			
			2. Po	IIS	IIS	IIs	IIs(IIs-IIs)	:
HOS	HUSII-e2w3	144	l. Pr	IIsd	IIId			D. P.
.			2. Po	IIS	IIsd	IIS	IIs(IIs-IIsd)	
H	HUSII-e3g2w4	21	l. Pr	IVR	VI			D P
			2. Po	IIS	IIsa	IIs	IIs(IIs-IIsd)	
H	Total area	309						
Σ	MCH-w2	1,817	1. Pr	¥	I			
1			2. Po		H		I(I-I)I	
ĮΣ	MCH-w3	47	1	IId	IIId			
ı			2. Po	IIG	IIIG	IId	IId(IId-IIId)	
£	MCH-g2w2	1,218	1. Pr	IIt	IIt			
- 1			2. Po	IIt	IIt	IIt	IIt(IIt-IIt)	
ž	MCH-w2£2	13		IVPa	IVPd			D.P.
.			2. Po	I	I	Ħ	I(I-I)	
Ž	MCH-g2w2f2	32	ਸਰ - ਵ	IVPd	IVPd			D.P.
İ			2. Po	IIt	IIt	IIt	IIt(IIt-IIt)	
ž	MCH-g2w3f2	22	l. Pr	IVPd	IVPd			J P
			2. Po	LIGE	IIIG	IIdt	IIdt(IIdt-IIId)	
ž	MCHSII-e2w2	34	l. Pr	IIS	IIsd			
ı				I	ırd	H	r(r-rrd)	
Σ	MCHSII-e2w2	111	l. Pr	IIS	HISG			D.P.
į			. 2. Po	Ξ	ııd	⊢ 4	I(I-IIG)	
ž	MCHSII-e2w3	160	1. Pr	IIsd	IIIG			D.P.
1	X		2. Po	H	IIG	Н	I(I-IId)	
Ž	MCHSII-e2w4	42	I. Pr	IIIG	Z,			Д
			2. Po	н	IHG	H	I(I-IIG)	
١								

IVI --- limited arable under intensive irrigation methods IVP --- limited arable due to flooding possibility SII: poorly-drained salt accumulated phase, C: gravelly surface phase
Subclases --- s: deficiency or limitation in soil factor which determine irrigability class in the level
t: in topography factor "
d: in drainage factor " SI: well-drained salt accumulated phase IVR --- special use for salt tolerant crop cultivation

IVR --- special use for salt tolerant crop cultivation under intensive irrigation methods Phases ---- I: shallow phase, II: moderately deep phase, IVF --- special use for fruit cultivation

D.P. --- drainage improvement study area

1/ soil mapping code of land classification

Table C-5-4(8) Land irrigability class of soil units for land classification-8

					, Cre. 7	irrinability olacees	30		
	Soil				Irrigability	lit	Potential irri-	• .	
	phases			Conditions of	annualcrop	fruit	for irrigation	7	
Soil series	(code)	Soil units	area	classification	production	production	forming	mapping code	Remarks
Mochumi	MCHSII	MCHSII-e2g2w3	21	1. Present land	IIsdt	DIII			e D
				classification(Pr)					
				2. Potential land	IIst	IIdt	HHT	IIt(IIt-IIdt)	
				classification(Po)					
		MCHSII-e3w3	99	ገታ	IVR	IIIG	-		D.P.
				2. Po	I	rre	н	I(I-IIG)	
		MCHSII-e3w3f2	30	J. Pr	IVPå	IVPd			D.P.
				2. Po	н	IIG	I	r(r-rrg)	
		MCHSII-e3g2w3	47	l. Pr	IVR	LIIG			D.P.
				2. Po	IIt	IIGt	IIt	IIt (IIt-IIdt)	
		MCHSII-e4a2w4	141	1. Pr	IVRS	IA			D.P.
				2. Po	н	IIG	н	r(r-rrg)	
	MCHC	MCHC-c2w2	40	1. Pr	IIS	н			
		***		2. Po	IIs	H	IIS	IIs(IIs-I)	
		Total area	3,850				-		
Ocuarie	8	OC=w2	78	70 -	}-				
)	; }	5	2. Po	- I I	-))- -l	1(1-1)	
		0C-92w2	219		IIt	TIC			
			-	2. Po	IIt	TIE	IIt	IIt(IIt-IIt)	
	OCSII	OCSII-e2w3	54	1. Pr	IIsā	PILI			D.P.
-				2. Po	H	IId	H	I(I-IId)	
	1:	Total area	360			# 1			
a monacour	n.	7.2-2.7	901	ł	1				
	}		T	3	-1	4			
					⊢ 1	5 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		エ(エーエ)	
		LB-wc	44		IId	IIId			D.P.
		XX		2. Po	H	IIG	+	I(I-IId)	
		LB-woff 4	22		IVPd	IVPd			д
		W		2. Po	H	IId	Ħ	I(I-IId)	

IVI --- limited arable under intensive irrigation methods IVP --- limited arable due to flooding possibility SI: well-drained salt accumulated phase IVRI -- special use for salt tolerant crop cultivation under intensive irrigation methods C: gravelly surface phase II: moderately deep phase, SII: poorly-drained salt accumulated phase, IVR --- special use for salt tolerant crop cultivation IVF --- special use for fruit cultivation -- I: shallow phase, Phases ---

Subclases --- s: deficiency or limitation in soil factor which determine irrigability class in the level
t: " in topography factor "
d: " in drainage factor "

D.P. --- drainage improvement study area

1/2 soil mapping code of land classification

2.	-
40	0.40
5	- 1
5	
	•
95	- (
Ą.	
6-	4
	ţ
	4,0
3	•
A.	
3.	ú
ž.	- 4
4	
3	- 3
ş	- 4
\$	- ti
	ň
Α.	*
ş	-
	•
5.	•
3	
37	tr
9	- 2
2	- 1
Ξ.	4
3	- 1
100	-
ė.	
6	
3	•
÷	C
3	1
9	•
ź	
40	- 61
7	- 7
á	+
4	
ŝ	-
÷	-
ŧ	-
3	-
ε.	
4	
3	
3	·C
ā.	11
1,2	u,
.:	
£	Q.
- 0	- 1
3	
7	
	٠
3.	
ě	v,
Section 2	88
Population Park	888
ede de Londo	200
eden i et bereiet in	lass o
ede introductions	class o
edig in toward in sect	class o
eden in Louville Brownie Age	class o
edge in tour Action and Associated and	Class o
eden in Louise libraries and designation	V Class o
eden in tour Automorphism (all methods	tv class o
ede is considerate la production es	ity class o
eden ist om det finder hij omderheit ein de Alle	lity class o
ede is to want to be high establishment with the	lity class o
经有分子的分子的 不是我的我的人 我们不是我	ility class o
distribution and security and security	bility class o
distribution and security and security	bility class o
distribution and security and security	ability class o
distribution and security and security	rability class
distribution and security and security	gability class
distribution and security and security	igability class o
distribution and security and security	rigability class o
distribution and security and security	rigability class o
distribution and security and security	rrigability class o
distribution and security and security	irrigability class o
distribution and security and security	irrigability class o
ede anto-renta in el del commente della religiona dell	irrigability class o
distribution and security and security	d irrigability class o
distribution and security and security	nd irrigability class o
distribution and security and security	nd irrigability class
distribution and security and security	and irrigability class
distribution and security and security	and irrigability class
distribution and security and security	Land irrigability class o
distribution and security and security	ability cla
distribution and security and security	Land irrigability class of
distribution and security and security	Land irrigability class
distribution and security and security	Land irrigability class
distribution and security and security	Land irrigability class
distribution and security and security	Land irrigability class
distribution and security and security	Land irrigability class
distribution and security and security	Land irrigability class
distribution and security and security	
distribution and security and security	4(9)
distribution and security and security	4(9)
A. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19	5-4(9)
A. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19	5-4(9)
A. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19	5-4(9)
A. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19	5-4(9)
A. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19	4(9)
A. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19	5-4(9)
というと言語を作るできます。	C-5-4(9)
というと言葉を作るできます。	C-5-4(9)
というと言葉を作るできます。	C-5-4(9)
というと言葉を作るできます。	5-4(9)

Social marks Conditions of annual crop Classes for gability classes Language L	Soil units a IB-92w2 IB-93w2 IBSII-e2w2 IBSII-e2w3 IBSII-e3w3 IBSII-e4a2w4 IBSII-e4q2w4 Total area 6 QC-w3 1	Conditions of classification 1. Present land classification(Pr) 2. Potential land classification(Po) 1. Pr 2. Po 1. Pr 3. Po 1. Pr 5. Po 1. Pr 5. Po 1. Pr 5. Po 1. Pr 5. Po 1. Pr 5. Po 1. Pr 5. Po 1. Pr 5. Po 1. Pr 5. Po 1. Pr 5. Po 1. Pr 5. Po 1. Pr 5. Po 1. Pr 5. Po 1. Pr 5. Po 1. Pr 5. Po 1. Pr 5. Po 5. Po 7. Po			apility classes for irrigation forming IIIt IIIt I	1 <u>/</u> mapping code IIt(IIt-IIt) IIIt(IIIt-IIIt) I(I-IId) I(I-IId) I(I-IId)
1.8 1. Present land IIt	-e2w2 -e2w2 -e2w3 -e3w3 -e4a2w4 -e4g2w4 area 6	1. Present land classification(Pr) 2. Potential land classification(Po) 1. Pr 2. Po 1. Pr 2. Po 1. Pr 2. Po 1. Pr 2. Po 1. Pr 2. Po 1. Pr 2. Po 1. Pr 2. Po 2. Po 1. Pr 2. Po 2. Po 1. Pr 2. Po 2. Po 3. Po 1. Pr 2. Po 2. Po 3. Po 3. Po 5. Po 7. Pr 5. Po 7. Pr			III I I I I I I I I I I I I I I I I I	urt)
Care Care	-e2w2 -e2w2 -e3w3 -e4a2w4 -e4g2w4	2. Potentia classifi 2. Po 1. Pr 2. Po 1. Pr 2. Po 1. Pr 2. Po 1. Pr 2. Po 1. Pr 2. Po 1. Pr 2. Po 2. Po 3. Po 3. Po 3. Po 3. Po 4. Po 5. Po 5. Po 5. Po 5. Po 6. Po 5. Po 6. Po 7. Po 7. Po 7. Po 8.	IIIt IIIt IIS IISd IIVR	IIIT IIIT IIIG IIIG IIIG IIIG IIIG	I I I I I I I I I I I I I I I I I I I	IIt) IIIt)
1. 2. Potential land IIT I	-62w2 -62w3 -63w3 -64g2w4 -e4g2w4	2. Potentia classifi 1. Pr 2. Po 2. Po 1. Pr 1. Pr 2. Po 1. Pr 2. Po 1. Pr 2. Po 1. Pr 2. Po 2. Po 2. Po 2. Po 2. Po 2. Po 2. Po 3.	IIIt IIIt IIS I Isd I IVR	III IIII IIIS IIIG IIIG IIIG VI	IIIt IIIt I I	TITC)
IB-g ² h ²	-e2w2 -e2w3 -e3w3 -e4a2w4 e4g2w4		IIIC IIIC IISG IISG IVR	IIIt IIIt IIId IIId IIId IIId IIId	IIIt I	t-IIIt)
IESII-e ² 42 25 2 Po	-e2w2 -e3w3 -e3w3 -e4g2w4 -e4g2w4	2 1 2 1 2 1 2 1 2 1 2	IIIt IIsd I IVR	IIIt IISA IIIA IIIA IIIA IIIA	I I I I	t-iirt)
IBSII - e 2	-e 2w 2 -e 2w 3 -e 3w 3 -e 4g 2w 4 e 4g 2w 4	6 1 2 1 2 1 2 1 2	IIS IISd IVR	11586 1116 1116 1116 1116 117.	н н н	
IBSII-e ² 4 ³	-e ² w ³ -e ⁴ a ² w ⁴ -e ⁴ g ² w ⁴	2	I IISd IVR IVR	11d 111d 111d 111d 112	н н н	
LBSII - e ⁴ / ₂ 104 1. Pr 11sd 11id 1 1 1 1 1 1 1 1 1	-e-w.3 -e-4a2w4 -e-4g2w4 area	4 4 4 4 4 4 4 4 4	IISd I IVR I	IIId IIId IIId VI	I	
IBSII-e4a2w4 15 1. Pr IVR IIId I I I I I I I I	-e3w3 -e4a2w4 -e4g2w4 area 6	2 1 2 1 2 1 2	I IVR I	IId IXId IXIG VI	н	
LBSII-e4a2w4 15 1. Pr IVR IIId I I I I I I I I	-6-3w3 -6-4g2w4 -e-4g2w4 	1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	IVR I	IIId IIG VI	H	
LBSII-e4a2w4 15 1. Pr IVRs VI IId I I I I I I I I	-e4g2w4 -e4g2w4 area 6	2 1 2 1 2	Н	IIG VI 172	Н	
LBSII-e4acw4 15 1. Pr IVRS VI	-e4g2w4 -e4g2w4 -rea 6			VI ተተተ		
Total area 2. Po 1 1 1 1 1 1 1 1 1	-e4g2w4 area	2: 1: 2	IVRs	7++		
Total area 605 1. Pr 19Rs VI 19Rs 19R	-e4g~w4 area		H	3 4	H	
Total area 605 IVRS IVRS (IVRS-VI) QC-w³ 158 1. Pr IIsd IIsd IIsd IIsd IIsd(IIsd-IIsd) QCsII-e²w³ 14 2. Po IIsd IIsd IIsd IIsd(IIsd-IIsd) QCsII-e²w⁴ 25 1. Pr IIsd IIsd IIsd(IIsd-IIsd) QCsII-e³w⁴ 99 1. Pr IVR VI IIsd IIsd(IIsd-IIsd) QCsII-e⁴a²w⁴ 199 1. Pr IVRS VI IIsd IIsd IIsd(IIsd-IIsd) QCsII-e⁴a²w⁴ 199 1. Pr IVRS VI IIsd	area	2. Po	IVRs	IA		
Total area 605 QC-w³ 15 B 1. Pr IIsd IIsd IIsd IIsd IIsd IIsd(IIsd-IIsd) QCSII-e²w³ 1. Pr IIsd IIsd IIsd IIsd IIsd IIsd(IIsd-IIsd) QCSII-e²w³ 25 1. Pr IIsd VI IIsd IIsd(IIsd-IIsd) QCSII-e³w³ 99 1. Pr IVR VI IIsd IIsd IIsd(IIsd-IIsd) QCSII-e⁴a²w⁴ 199 1. Pr IVRs VI IIsd IIsd IIsd IIsd IIsd(IIsd-IIsd) QCSII-e⁴a²w⁴ 199 1. Pr IVRs VI IIsd IIsd IIsd IIsd IIsd(IIsd-IIsd)	area		IVRS	VI	IVRS	IVRs (IVRs-VI)
QC-w³ 158 1. Pr IIsd IIsd IIsd IIsd(IIsd-IIsd) QCSII-e2w³ 114 1. Pr IIsd IIsd IIsd IIsd(IIsd-IIsd) QCSII-e2w⁴ 25 1. Pr IIIsd VI IIsd IIsd(IIsd-IIsd) QCSII-e3w⁴ 99 1. Pr IVR VI IIsd IIsd(IIsd-IIsd) QCSII-e4a2w⁴ 199 1. Pr IVRs VI IIsd IIsd(IIsd-IIsd) QCSII-e4a2w⁴ 199 1. Pr IVRs VI IIsd IIsd IIsd(IIsd-IIsd) QCSII-e4a2w⁴ 199 1. Pr IVRs VI IIsd IIsd <td></td> <td>605</td> <td></td> <td></td> <td></td> <td></td>		605				
QCSII-e2w3 114 1. Pr IIsd IIsd IIsd IIsd(IIsd-IIsd) QCSII-e2w4 2. Po IIsd IIsd IIsd IIsd(IIsd-IIsd) QCSII-e2w4 25 1. Pr IIsd IIsd IIsd(IIsd-IIsd) QCSII-e3w4 99 1. Pr IVR VI IIsd IIsd(IIsd-IIsd) QCSII-e4a2w4 199 1. Pr IVRs VI IIsd IIsd(IIsd-IIsd) QCSII-e4a2w4 199 1. Pr IVRs VI IIsd IIsd(IIsd-IIsd) IIsd 11sd IIsd IIsd(IIsd-IIsd) IIsd(IIsd-IIsd) IIsd(IIsd-IIsd)		7.	IIsd	IISG		
QCSII-e4w3 114 1. Pr IIsd IIsd(IIsd-IIsd) QCSII-e3w4 99 1. Pr IVR VI IIsd IIsd IIsd(IIsd-IIsd) QCSII-e4a2w4 199 1. Pr IVRs VI IIsd IIsd IIsd IIsd IIsd(IIsd-IIsd) QCSII-e4a2w4 199 1. Pr IVRs VI IIsd IIsd IIsd(IIsd-IIsd)		2.	IIsd	IISd	IIsd	IIsd(IIsd-IIsd)
2. Po IIsd IIIsd IIIsd IIIsd IIIsd IIIsd IIIsd IIIIIISD IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		۲.	IIsd	IIId		•
25 1. Pr IIIsd VI 2. Po IIsd IIsd IIsd(IIsd-IIsd) 99 1. Pr IVR VI IIsd(IIsd-IIsd) 199 1. Pr IVRs VI IIsd(IIsd-IIsd) 2. Po IIsd IIsd IIsd(IIsd-IIsd)		2.	IIsd	IIsd	IIsd	21 =
2. Po IIsd IIsd IIsd IIsd-IIsd) 99 1. Pr IVR VI IIsd IIsd IIsd(IIsd-IIsd) 199 1. Pr IVRs VI IIsd IIsd(IIsd-IIsd) 2. Po IIsd IIsd IIsd(IIsd-IIsd)		-i	IIId	IV		
99 1. Pr IVR VI 2. Po IISd IISd IISd(IISd-IISd) 199 1. Pr IVRS VI 2. Ro IISd IISd IISd		2.	IISd	IIsd	IIsd	
2. Po IIsd IIsd IIsd IIsd IIsd IIsd-IIsd) 1. Pr IVRs VI IIsd IIsd IIsd IIsd IIsd IIsd		, 1,	IVR	ΛΙ		
199 l. Pr IVRS VI 2. Ro IISd IISd IISd IISd(IISd-IISd)		2.	IIsd	IIsd	IIsd	IIsd(IIsd-IIsd)
IIsd		ij	IVRS	ΛI		ū
		2. Po	IIsd	IIsd	IISd	IIsd(IIsd-IIsd)

IVI --- limited arable under intensive irrigation methods IVP --- limited arable due to flooding possibility IVF --- special use for fruit cultivation

IVP --- special use for salt tolerant crop cultivation under intensive irrigation methods

IVR --- special use for salt tolerant crop cultivation under intensive irrigation methods

Phases ---- I: shallow phase, II: moderately deep phase, SI: well-drained salt accumulated phase,

SII: poorly-drained salt accumulated phase, C: gravelly surface phase

Subclases --- s: deficiency or limitation in soil factor which determine irrigability class in the level

in topography factor

in drainage factor

' and mapping code of land classification

			***************************************				١		
Soil series	Class	88 H	Class II	Class III		ļ	an I	- Class VI	Total area
				1	۸۳	S = > T	LV RS		
Aucallama	ក់ឧ (%)	ı	I	2,445 (96)	97 (4)	76		1	2,542 (100)
Esperanza	ដំឧ (%)	1	i	80 80	3,932	3,932	1	1:	4,020 (100)
Tucume	ಗಿತ (ಕಿ)	ı	938 (48)	1,024 (52)	ı	1	ŧ	: 1	1,962 (100)
Esquivel } -Trujillo	ಗಿತ (%)	3	2,399	2,709	154	128	26	ı	5,262 (100)
Clemencia ř	na (%)	í	695	1	1	i	I	t	695 (100)
Huaral h	ћа (%)	1	309	1		11	ı	l	309 (100)
Mochuml h	ha 2,420 (%)	420 (63)	1,430		1	I :	1	1	3,850 (100)
Ocuaje h	ha 1 (%)	141	219	i i		1		1	360
Lamba yegue h	ha 4 (%) (426 (70)	136 (22)	24 (4)	19 (£)	1	0 1		605 (100)
Quepecaliche h (វាឧ (୫)	: 1	595 (100)	1	1	1			595 (100)
Total h	ha 2,987 (%) (15)	987	6,721 (33)	6,290	4,202 (21)	4,157	45		20,200 (100)

		Marin Marin San San San San San San San San San Sa	Land) Jq	irrigabi	lity	Class		
Soil series	Ø	Class I	Class II	Class III	Adu	C TV TC	Class IV	Class VI	Total
Aucallama	ha	1		2.445	· · · · · · · · · ·	ı		76	2.542
	(%)							(4)	
Esperanza	Ъа	.	1	88	3,932	3,932		į	4,020
	(%)			(2)	(86)				
Tucume	ра (%)	ì	938 (48)	1,024 (52)	1.	1		1	1,962
Esquivel -Trujillo	na (%)	ŧ	2,399	2,709 (51)	26	1	26	128 (2)	5,262 (100)
Clemencia	က် (%)	F ·	695 (100)	. 1) 1	ŀ	ı	1	
Huaral	na (%)	I	309 (100)	1	1	1	ŧ	l .	
Mochun1	ъе (%)	2,420 (63)	1,430	8	I	ı	1		3,850 (100)
Ocuaje	ha (%)	141 (39)	219 (61)	1	I	· •	ŧ .		•
Lamba yegue	ර් (%)	426 (70)	136 (22)	24 (4)	on ⊕ ⊕	ı	19	I .	
Quepecaliche	ьа (%)	1	595 (100)	ı	ì	t .			
Total	ha (%)	2,987 (15)	6,721	6,290 (31)	3,977 (20)	3,932	45	225 (1)	20,200

potential land irrigability class for fruit production Summary of land classification --Table C-5-5(3)

Note Series Class I Class II Class III Try I Try T				2180	14			3			
ha 2,445 97 97]		14	TV	ъ Б	ß			- 1
ha 4,020 4,020 ha - 2,404 2,704 128 128 (%) (48) (52) (100) ha - 2,404 2,704 128 128 (%) (100) (100) ha - 309 (100) (%) (49) (49) (2) (49) (%) (49) (49) (2) (49) ha - 1,876 1,902 72 (49) (%) (49) (49) (2) (49) (%) (31) (61) (4) (40) (%) (31) (61) (43) (45) ha - 2,153 7,488 6,269 4,245 4,245 4,245 (%) (11) (37) (31) (31) (21) (41) (%) (11) (37) (31) (31) (21) (40) (%) (11) (37) (31) (31) (21)	Aucallama	ha (%)	ı	ı	2,445 (96)	97 (4)	97		-	I	2,542 (100)
ha - 938 1,024 62 (%) (48) (52) ha - 2,404 2,704 128 128 (%) (46) (51) (2) ha - 695	Esperanza	ha (*)	i	1	ı	4,020 (100)	4,020			i	4,020 (100)
ha - 2,404 2,704 128 128 2 (6) (%) (46) (51) (2) (2) (6) (6) (%) (100)	Tucume	ha (%)	1	938 (48)	1,024 (52)	:	i			ŧ	1,962 (100)
ha - 695	Esquivel -Trujíllo	ha (%)	· I	2,404.	2,704 (51)	128	128			26 (+)	5,262 (100)
ha 1,876 1,902 72 (100) ha 1,876 1,902 72 (49) (49) (2) ha 87 273 (24) (76) ha 190 372 24 (100) ha 2,153 7,488 6,269 4,245 4,245 (*) (11) (37) (31) (21) ha 2,153 7,488 6,269 4,245 (*) (11) (37) (31) (21) ha 18e for fruit cultivation ial use for salt tolerant crop cultivation under intensive irrigation methods	Clemencia	ha (%)	1	695 (100)	i	I	l			.	(100)
ha 1,876 1,902 72 ha 87 273 ha 190 372 24 - (*) (31) (61) (4) ha 2,153 7,488 6,269 4,245 4,245 (*) (11) (37) (21) ha 2,153 7,488 6,269 4,245 (*) (11) (37) (21) ha 1,876 arable under intensive initial arable due to flooding ial use for salt tolerant crop cultivation under intensive irrigation methods	Huaral	ර්ෂ (%)	ı	309	!	4	!			1	309 (100)
ha 87 273 - - - - - 1 <td>Mochuml</td> <td>ha (%)</td> <td>1,876 (49)</td> <td>1,902 (49).</td> <td>72 (2)</td> <td>1</td> <td>I</td> <td></td> <td></td> <td>1</td> <td>3,850 (100)</td>	Mochuml	ha (%)	1,876 (49)	1,902 (49).	72 (2)	1	I			1	3,850 (100)
ha 190 372 24 () ha - () (61) (4) (4) (61) ha - () (62) (4) (7) (100) ha 2,153 7,488 6,269 4,245 4,245 (8) (11) (21) (21) ha 2,153 7,488 6,269 4,245 4,245 (11) (21) (21) ha 2,153 7,488 6,269 4,245 4,245 ha 100 (11) (11) (11) (11) (11) (11) (11)	Ocuaje	ha (%)	87 (24)	273 (76)	1	I	l			T	360
ha 2,153 7,488 6,269 4,245 4,245 (11) (37) (21) (21) (21) (22) (31) (21) (21) (22) (31) (31) (31) (31) (31) (31) (31) (31	Lamba yegue	ha (%)	190 (31)	372 (61)	24 (4)	I	ı			19 (3)	605 (100)
ha 2,153 7,488 6,269 4,245 4,245 (21) (21) (21) (22) (31) (22) (31) (22) (32) (32) (32) (32) (32) (32) (32	Quepecaliche	ha (%)	1	595 (100)	1	•	i i				595 (100)
special use for fruit cultivation special use for salt tolerant crop cultivation special use for salt tolerant crop cultivation under intensive irrigation methods			7	7,488	6,269 (31)	4,245 (21)	4,245			45 (-)	20,200
		use use	for for for	cultivation olerant crop			IVI IVP intensiv		납유	intensive	ation meth bility

Table C-5-5(4) Summary of land classification present land irrigability class for annual crop production

			Land	nd	irridabili	lity		Class				
Soil series	ග ග	Class I	Class II	Class III	λĒ	IV FS	Class IV Rs	IV	IVRs	IVPd	Class VI	Total area
Aucallama	ha (%)		1 · · · · · · · · · · · · · · · · · · ·	2,041	244 (10)	1	1	1	244	1	257	2,542 (100)
Esperanza	हत (%)	1	i	ol ()	3,975 (99)	2,865	1,041	I	69	1	26 (1)	4,020 (100)
Tucume	ha (%)	1	902 (46)	935 (48)	125 (6)	. ₁	1	63	62	•	1	1,962 (100)
Esquivel -Trujillo	ha (&)	1	2,225 (42)	2,627 (50)	282 (5)	1	l	8	89	134	128 (2)	5,262 (100)
Clemencia	ha (%)	i	543 (78)	1	152 (22)	1	1	S O	18	84	ı.	(100)
Huaral	ಕ್ಕ (%)	ı	288 (93)	ŧ	21 (7)	1	. · · · · · · · · · · · · · · · · · · ·	21	1	i.	1	309
Moch um 1.	ha (%)	1,817	1,631 (42)	42 (1)	360 (9)		I	113	141	106	ì	3,850 (100)
Ocuaje	na (%)	87 (24)	273 (76)	1	1	1	ľ	ì		ł	ì	360 (100)
Lamba yegue	na (%)	190 (31).	309 (51)	24 (4)	82 (14)	1	. I	56	34	22	ì	605 (100)
Quepecaliche	e ha (%)	i .	272 (46)	25 (4)	298 (50)	ı	i .	ტ ტ	199	ì	1	595 (100)
Total	ha (%)	2,094	6,443	5,713 (28)	5,539	2,865	1,041	452	835	346	411 (2)	20,200
IVF spec IVR spec IVRI spec	special use special use special use	for fruit for salt for salt	cultivation tolerant crop tolerant crop	p cultivation p cultivation	nnder	IVI IVP intensiv	IVI limited arable unde IVP limited arable due intensive irrigation methods	d arable d arable ation met	e under e due t ethods	ir intensive to flooding		irrigation methods possibility
									,			

- present land irrigability class for fruit production Summary of land classification --Table C-5-5(5)

	,		3	501					4 C + C + C + C + C + C + C + C + C + C
sorr serres		Class I	Class II	Class III	ΔŢ	IV FS	IV RS	Class VI	וסרמן מונים
Aucallama	ha (%)	t	3	2,135	97 (4)	97	ı	310 (12)	2,542 (100)
Esperanza	ha (%)	ı	ì	1	3,951	3,951	ı	69 (2)	4,020 (100)
Tucume }	ћа (%)	1	845 (43)	1,022 (52)	ì	1	ì	95	1,962 (100)
Esquivel -Trujillo	ក់ (%)	ı	2,296 (44)	2,606 (50)	235 (4)	128	107	125 (2)	5,262 (100)
Clemencia h	ha (&)	ı	543 (78)	50 (7)	53	i	დ ზ	49 (7)	695 (100)
Huaral	ha (*)	i	144 (47)	144 (47)	•	1	1 .	21 (7)	309
Mochuml H	ha (*)	1,857 (48)	1,363	341 (9)	106	i	106	183 (5)	3,850 (100)
Ocuaje h	ha (%)	87 (24)	219 (61)	54 (15)	i	1	ì	1	360 (100)
Lamba yegue k	ha (*)	190	161 (27)	198 (33)	22 (4)	1	22	34 (6)	(100)
Quepecaliche h	ha (&)	ı	158 (27)	114 (19)		ı ·	. 57 - 1 - 1	323 (54)	595 (100)
Total	ha (*)	2,134	5,729 (28)	6,664	4,464 (22)	4.176	288 288	1,209	20,200

	1	
	1	-
9	ner oreo (ha) had tendere	129
5.5.3.3	Closses	
	satistry & clkalaity	2.5
	118	
	1	?

ey m boi	satisfity & classes	ner area (ha) had tentuer man	to of tapid safe existential and
	, Z e 40	129	7.0
	×*2	967	10.5
	, N & S	861	10.8
-	S ^B N torot	\$24	28.3
ジン・インシン	*67	er	2.1
	35	921	7.3
	St	66.	5,4
	S* total	273	14.8
	ţ.	102	5.5
	189	139	7.5
	***	215	20.00
Î	St total	926	51,7
1	#ub-10f0	253	94.8
	648	97	5.2
	sait accumulated soils toral	1850	100.0
	drainege improvement at	study ored bo	boundary
eymbo!	soil Texture closses		
	course - textured soil		
	medium-fextured soil		
	fine - textured soil		
	nonocable land (hilly area,	POWRENID.	yard)
Y. soll A.	His 2nd type . OB	sloping land	

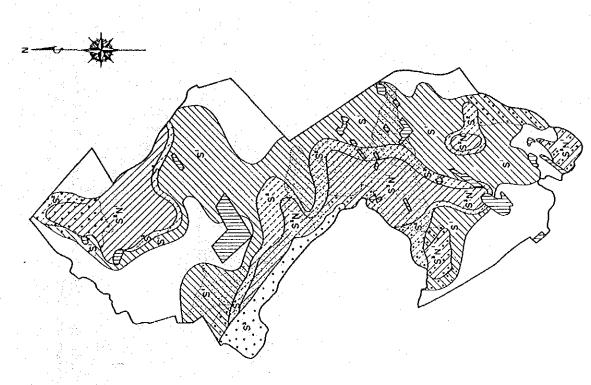
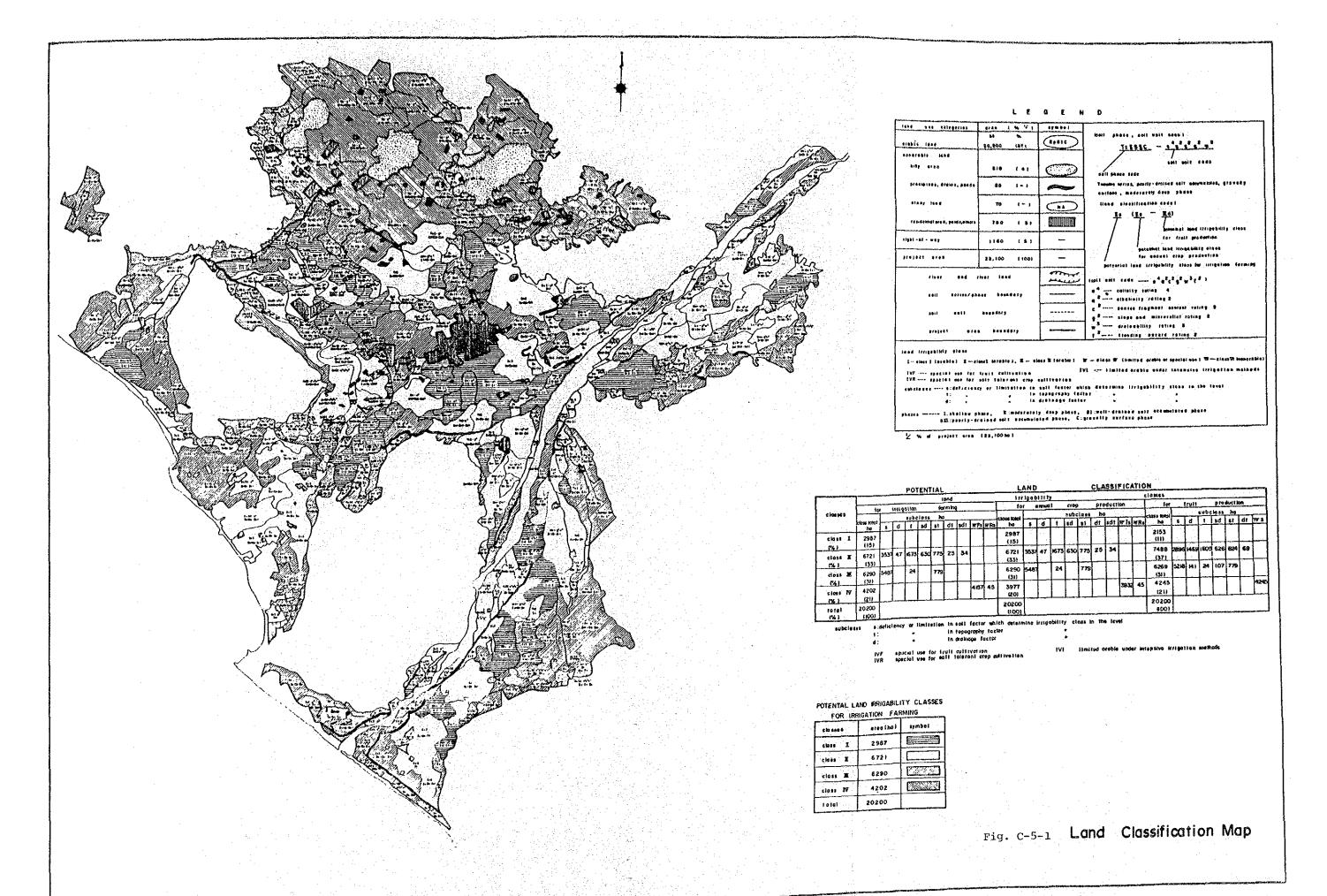
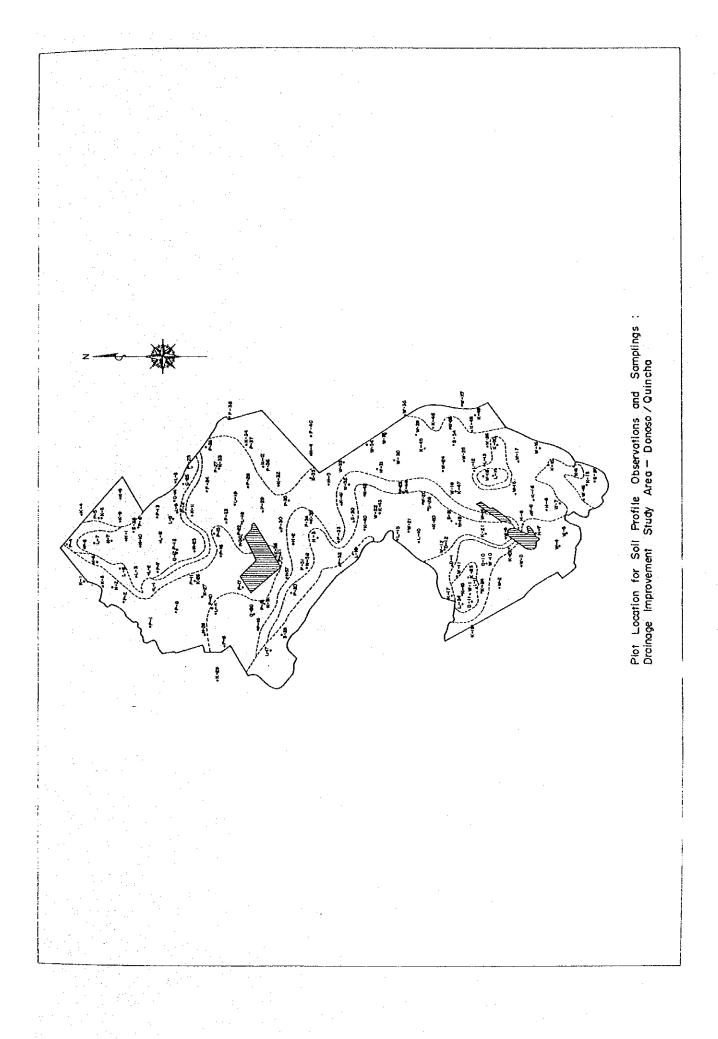




Fig. C-4-1 Distribution of Salt Acammulated Soils in The Drainage Improvement Study Area-Quinato/Donoso

; plot location for soil profile observations and samplings netarea (ha) 1/4.01 total salt acc 101 246 2 nonarable tand (hilly area, Township, yard) erainage improvement study area boundary Legend salt accumulated solls total soil ferfure/adinity & attainity Decatates - Margage Coorse lexfured Codres-textured Distribution of Salt Accumulated Soils in The Drainage Improvement Study Area - Boza ₹ 1 2 ķ, ř. Fig. C-4-2

Legnd 168 \$ I 14.4 41 salt accumulated solls total 291 100.0 total 494hc Lunavitca s* 10 0.0 50 sals accumulated solls 100.0 drainage improvement study area boundary river land iplot location for soil profile observations and samplings Son Luis Lunavilça Fig. C-4-3 Distribution of Salt Accumulated Soils in The Drainage Improvement Study Area - San Luis / Lunavilca

ANNEX D

SALINITY CONTROL

CONTENTS

ANNEX D Salinity Control

		Page
1	Distribution and Characteristics of Salt	
	Accumulated Soils	D-1
2	Present Conditions of the Salt Accumulated Area	D-3
3	Future Conditions of the Poorly Drained	
	Salt Accumulated Area	D-4
4	General Salinity Control Measures	D-5
5	Proposed Plan for Improvement of Salt Accumulated Soils	- D-6
6	Recommendations	D-24

List of Tables

			Page
Table	D-1-1	Distribution of Salt Accumulated Soils	
		in the Study Area	D- 2
Table	D-1-2	Result of Indoor Leaching Test	D-26
Table	D-5-1	EC of Leachate and Corresponding ECe of Soil	D-27
	D-5-2	EC of Leachate and Corresponding ECe of Soil	D-28
	D-5-3	ECe after Leaching-Field Leaching Test (1)	D-29
	D-5-4	ECe after Leaching-Field Leaching Test (2)	D-30
	D-5-5	ECe after Leaching-Field Leachign Test (3)	D-31
	D-5-6	Comparison of Desalization Efficiency	D-10
		- 10 Comparison of Actual ECe and	
		Caluculated ECe D-3	2 35
Table	D-5-11	Ponding Water Depth Required in CM to	
		Achive ECe about 4MS of Surface Layer	D-15
Table	D-5-12	Estimated ECe of Lower Layer after Leaching (1)	•
Table	D-5-13	Estimated ECe of Lower Layer after Leaching (2)	D-37
Table	D-5-14	Estimated ECe of Lower Layer after Leaching (3)	
Table	D-5-15	Estimated EC of Percolation Water from	
		Surface Layer	D-39
Table	D-5-16	Estimated ECe after Leaching by Ponding	D-17
Table	D-5-17	Water Requirement and Estimated ECe	D-18

ANNEX D

<u>List of Figures</u>

	Page
Fig. D-5-1 Results of Leaching Test (Indoor Test 1)	D-40
Fig. D-5-2 Results of Leaching Test (Indoor Test 2)	D-41
Fig. D-5-3 Results of Leaching Test (Indoor Test 3)	D-42
Fig. D-5-4 5 Desalinization Processes of Readily	
Soluble Salts (1)	D-43,44
Fig. D-5-6 Desalinization Curves of Soils with	
Different Texture	D-45
Fig. D-5-7 Changes in ECe after Leaching	D-46

ANNEX D SALINITY CONTROL

1. Distribution and Characteristics of Salt Accumulated Soils

In the Project area, the following two types (1st and 2nd) of salt accumulated soils are distributed as previously described (ANNEX C 4(1)).

1st Type salt accumulated soils in poorly drained areas (poorly-drained salt accumulated phase)

2nd Type salt accumulated soils in well-drained areas, generally found in slightly sloping areas (well-drained salt accumulated phase)

The 2nd Type is futher subdivided into two subtypes:

Type A salt accumulated soils in slightly sloping areas; salt accumulation is only recongnized in the surface layer

Type B salt accumualted soils in level area of isolated Project area, Hatillo; High salt concentration is found is an entire soil profile; distribution limited to 160ha

The distribution of two types of salt accumulated soils are summarized in Table C-4-1. The following table shows the distribution and degree of salt accumulation in the drainage improvement study areas delineated by PLANREHATIC. The soil salinity maps of the areas are presented in FIG. C-4-1, C-4-2, C-4-3. The distribution and degrees of salinity are generally related to the depth of subsurface water.

Table D-1-1 DISTRIBUTION OF SALT ACCUMULATED SOILS IN THE DRAINAGE IMPROVEMENT STUDY AREAS

Salinity	S1		# 1 1	32	S	3	\$3	N1	Tot	al	Study Area2
Class Study Area	ha	(%)1/	ha	(%)1/	ha	(%) <u>1</u> /	ha	(\$)1/	ha	(%)1	ha
Quincha/ Donoso	956	(55)	273	(16)	end :		524	(30)	1,753	(100)	2,714
Boza	101	(41)	15	(6)	61	(25)	69	(28)	246	(100)	390
San Luis	41	(14)	168	(58)	_		82	(28)	291	(100)	494
Lunavilca	٠.	,	50	(100)			_		50	(100)	103
Palpa				(100)			•••		30	(100)	498
Total	1,098	(46)	536	(23)	61	(3)	675	(28)	2,370	(100)	4,199

- 1/ % of Total
- 2/ drainage improvement study area
- in Quncha/Donoso, salt accumulated soils on sloping land (2nd type, 97ha) are not included.
- ** ECe of surface 0-15cm was adopted for the delineation of salt accumulated soils. Salinity class criteria are the same as shown in Table C-4-1.
- *** average ECe of salinity class S3/S3N1: 30-40mS/cm

The apparent characteristic of salt accumulated soils in the Project area is the fact that a high concentration of salt accumulation is generally recognized only in the surface layer (10-15cm depth or less) and concentration of salts in the lower layer is considerably low compared with the surface layer, usually less than 10-20% of the surface. In general, the tendency is more prominent during the fallow period and less prominent during cultivation. In the course of field survey, a higher concentration of salts up to about 50cm in depth has been detected at a few plots under cultivation. This fact shows higher possibility of salt accumulation in the subsoil if the leaching water depth is not enough to wash surface salts out of the root zones.

In the desalinization process, a rapid decrease of soil salinity (ECe) is generally recognized at an early stage of leaching. However, at a later stage, a slow decrease in ECe (sometimes nearly constant) is usually a result after soil salinity reaches a certain level. These phenomena in the process of desalinization explain the existence of two types of salts in soil; readily soluble salts and slightly soluble salts.

The difficulty in achieving desalinization beyond a certain level could be due to the existance of slightly soluble salts like CaCO3, and CaSO4.2H2O, whose sulubilities correspond to EC of 0.8ms/cm and respectiviely. This is the case with poorly drained highly salt accumulated soils in the Project area which may contain considerable amounts of CaCO3 and CaCO4.2H2O and the corresponding EC value is estimated at about 2.0ms/cm (Table D-1-2). The contents of these kinds of salts in slightly to moderately salt accumulated soils in the Project area are estimated to be less than 1.0ms/cm.

2. Present Conditions of the Salt Accumulated Area

The highly salt accumulated areas in the poorly drained area was deserted grassland with high salt concentration until the land reclamation which was carried out about bitween 20 to 50 years ago. The reclamations required drain excavations and leaching with quantities of water demanding a great effort from the farmers. Since then, the land has produced considerable returns.

At present, salt accumulated areas in the poorly drained area are generally utilized for the cultivation of cotton and maize except for small patches of grassland (in total, estimated to be about 150ha including scattering grasslands). Crop yields are higher than expected from the ECe level in the fallow period and largely dependent on farming practices. Under good managment, higher yields than the average of the Project area are obtained. Countermeasures listed below may be successful to some extent in overcoming the adverse effects of accumulated salts. In addition, the water supply from subsurface water to root zones is considered to be mitigating and/or compensating the adverse effects of salts.

The following represent the main present countermeasures:

- a) leaching of accumulated salts by flooding or furrow irrigation after harvest or before sowing;
- b) presowing wetting of soils by furrow irrigation;
 - c) cultivation of salt-tolerant crops or salt resistance varieties; and,

d) cultural practices such as seed placement, utilization of salt-free subsoil as major root zones, planting without plowing so as not to mix salt accumulated surface soil with subsoil.

In the 2nd type salt accumulated area, fruit production is carried out. Therefore, it is presumed that accumulated salts in the surface layer above the root zones of existing fruits have no significant effect on production. The most detrimental factor for fruit production in the area is limited availability of irrigation water.

3. Future Conditions of the Poorly Drained Salt Accumulated Area

It is impractical to predict, by any theory, the future conditions of the salt accumulated area if the present Project is not implemented as the same would involve numerous assumptions of unknown factors which affect future conditions in the area. In this study, the following information was taken into consideration of future projections:

- a) Flooding (machaco) or irrigation for leaching is a common practice.
- b) Farmers are well aware of the salinity conditions of their fields and know how to solve the problem.
- c) Not only planting of salt tolerant crops but also physical countermeasures like excavation of farm drains by each farmer or groups of farmers are practiced.
- d) In the past 20 years, no significant expansion of deserted grass land has occured.
- e) Results of groundwater study estimating the tendency of groundwater level to remain at present level or to decrease. As for the poorly drained areas in Quincha and Donoso, the results of present survey shows a considerable decrease in salt accumulated area (especially salinity class S3) compared with the results obtained by Direccion General De Aguas in 1977.

From the above, it may be safe to conclude that there will be no significant change in crop yields in the future, although yield increases are not anticipated.

4. General Salinity Control Measures

(1) Management Practices for Salt Accumulated Soils

The major objective of management practices for salt accumulated soils is to improve soil moisture availability for crops. General management practices include:

- a) increased irrigation frequency to maintain a more adequate soil moisture supply to crops;
- b) routine use of extra water to satisfy leaching requirements;
- c) selection of irrigation methods which provide better salt control;
- d) cultivation of salt tolerant crops;
- e) implementation of cultural practices such as presowing irrigation and adequate seed placement to ensure good germination;
- f) improvement of soil drainability;
 - g) reduceding concentration of accumulated salts by leaching;
 - h) improvement of drainage conditions; and,
 - i) application of chemical amendments.

Of the above, d) and e) are commonly practiced in the Project area. However, g), h) and i) are drastic practices to improve salt accumulated soils.

(2) Countermeasures to Control Salt Accumulation

Salt accumulation is generally directly dependent on water management; irrigation, leaching and drainage as salts move with water. Therefore, primary measures to control future salt

accumulation consist of the following irrigation and drainage practices:

- a) satisfaction of leaching requirement;
- b) irrigation before-sowing or after-harvesting to leach accumulated salts during cropping season;
- o) improvement of drainage conditions; and
- d) control of excess seepage loss by water management.

In the present fesibility study, these aspects are considered as part of the irrigation and drainage study.

5. Proposed Plan for Improvement of Salt Accumulated Soils

(1) Basic Counter Measures

In the formulatin of the improvement plan, not only the types of salt accumulatin but also land utilization patterns should be taken into consideration. Basic countermeasures are proposed for the improvement of each type of salt accumulated soils as discassed below.

1) 1st type: salt accumulated soils in poorly drained areas

The land utilization pattern is annual crop production mainly with cotton-maize rotation. Improvement measures to be taken include lowering of subsurfce water level by drainage improvement, desalinization by leaching, and application of chemical amendments, if necessary.

As the area is presently utilized for annual crop production any interruption of cropping for a considerable period should be avoided in desalinization.

Approaches to be taken in desalinization include leaching of the surface layer (0-15cm, seed bed and root zones of young seedlings) by the application of leaching water, presow wetting by furrow irrigation, and continuation of leaching by irrigation practices.

2) 2nd type A: salt accumulated soils in slightly sloping areas

Measures to be taken for improvement consist of desalinization by leaching.

As the subject area is utilized for fruit production at present, accumulatin of salts in the lower layer, where the main root zones of fruits occur, should be prevented. Complete desalinization in a short period should accordingly be planned.

Approaches to be taken in desalinization include leaching down accumulated salts from the surface layer to the lower layer, and application of fresh leaching water when water from the first leaching has drained out of the root zone.

3) 2nd type B: salt accumulated soils in Hattillo

Desalinization by leaching is the proposed countermeasure. The area is presently fallow because of high salt concentration in the entire soil profile. In the first leaching, the surface layer of soil should be leached to obtain a certain ECe which permits planting of salt tolerant crops.

Steps to be taken in desalinization include leaching surface layer by application of leaching water, presow wetting by furrow irrigation and continious leaching by irrigation practices.

(2) Results of Leaching Tests

Both indoor and field leaching tests were carried out with three texture classes of soils; i) coarse-textured soils, ii) medium-textured soils, and iii) fine-textured soils. In the field test, the method used for determination of cylinder intake ratio was adopted. In the indoor test, undisturbed core samples of 10cm in depth were collected for leaching operations and each 50ml of leachate was sampled for EC measurement.

The purpose of leaching test is primarily to study ponding water depth required for achieving ECe of around 4ms in the 0-15cm surface layer having varying initial ECe values. For this purpose, the following steps were taken:

- a) clarifying water depth required for achieving ECe of around 4ms of surface 10cm core samples by indoor tests;
- b) field tests to obtain water depth required for achieving ECe of around 4ms of surface 15cm in field test conditions;
- c) comparison of results of both tests and calculated the conversion ratio for estimating water requirement in field test conditions from results obtained in indoor test conditions; and,
- d) estimation of water requirement in depth in field conditions for achieving ECe of around 4m^S of surface layer (0 -15cm) from results obtained by indoor tests.

The actual procedures are shown in Table D-5-11 while the results of leaching test are shown in Table D-5-1 - D-5-5 and Fig. D-5-1 - D-5-7 and summarized below.

1) Indoor tests: leaching of 10cm surface soil layer (Table D-5-1, D-5-2, Fig. D-5-1 - D-5-5)

Removal of the majority of salts is achieved in the early stages of leaching process as speed of desalinization is faster in the early rather than in the later stage. For the estimation of ECe value, the following equations were adopted respectively.

from EC of 1:2 soil-water suspension and from ECsw ECe = $(d - s) \times 200\%/sp\% + s$, when $d \le s$, ECe = d

d : EC of 1:2 soil-water suspension

s: estimated EC for slightly soluble salts in soil samples (from Table D-1-2)

 $ECe^{1/2} = a \times Fc^2/Sp^2$

a : EC of leachate
Fc : field capacity

1/ Not applicable to coarse-sandy Esperanza Series soils

The higher the concentration of salts, the faster desalinization occurs. Therefore, the quantity of water required for desalinization is not proportional to concentration of salts in soil. This is clearly expressed when the adjusted leaching rate is calculated by the following equation:

adjusted leaching rate ka mS/cm

decrease in ECe (initial ECe - 4m^S)

The rate express decrease in salt concentration of soil per unit depth of leaching water. In general, the same is dependent on the initial salt concentration of soil and is independent from soil texture classes. In the test, the following adjusted leaching rates corresponding to initial ECe of soil were obtained.

Initial	ECe	30m ^S /em	adjusted	leaching rate	1-2m ^S /	'cm
11	30 -	70 "		tt	2-3	Ħ
11	>	70 "		11	>3	11

For practical purposes, the water depth required for achieving ECe of 4m^S of surface 10cm soil under indoor test conditions is estimated based on the results of indoor tests on major soils in the poorly drained area as follows:

initial ECe of soil	estimatd water depth required
< 20m ³	10 - 15cm
20 - 60m ^S	15 - 20cm

2) Field tests (Table D-5-3 - D-5-5. Fig D-5-6. D-5-7)

The same patterns of the desalinization process found in the indoor tests were observed. About 50% of readily soluble salts were washed out of the surface layer with 10cm of water in two plots, while in a fine textured soil 20cm of

water depth in cm required to achieve ECe 4ms

water were consumed. As a result of rapid desalinization of the surface layers, apparent salt accumulation in the 2nd layer was recognized in the initial stage of leaching. The phenomenon may explain crop failures in some fields after leaching operations. This also shows that the difficulty in desalinization exists in estimating how much water is required to prevent salt accumulation in lower layers.

With increase in water depth, ECe values of all layers are gradually approaching the ECe of the surface layer as theoretically predicted.

ECe values after leaching showed considerable differences between replicates. The differences tend to become less with increased water depth. This may show that uniform desalinization under field conditions requires more water than the quantity obtained in desalinization tests.

3) Comparison of desalinization efficiency and convertion ratio

The following table shows the differences in efficiency of the desalinization process between two tests carried out on the same plots.

Table D-5-6 COMPARISON OF DESALINIZATION EFFICIENCY

	Depth of Wat	'			
Plot No.	Field test A	Indoor test B 5/	Depth adjustment C 3/	A/C	Conversion ratio 4/
L - 17 coarse-textured	30cm	10 _{cm}	15cm/10cm = 1.5		
soil	soil depth= 15cm	soil depth= 10cm	10cm x 1.5=15cm	2	2 x 1.5 = 3
L - 10 fine-textured soil	60 - 80cm soil depth= 15cm	22.5cm soil depth=	15cm/10cm = 1.5 22.5cmx1.5= 34cm	\$	1.8-2.4x1.5 =
L - 9'	li A		JTCH	2.4	2.7 - 3.6
medium-textured	40cm 1/ (ECe 5.1-7.5)	15cm <u>6</u> /	15cm/10cm = 1.5		1.8 x 1.5 =
soil	soil depth=	soil depth=	15cmx1.5 = 22.5cm	1.8	2.7

con't

And the second s	Depth of Wat	er to Achieve	ECe of about 4ms		Comment
Plot No.	Field test	Indoor test B 5/	Depth adjustment C 3/	A/C	Conversion 4/
L - 9'	80cm <u>2</u> / (ECe 4.4)	25-27.5cm	15cm/10cm = 1.5	1.9	1.9-2.1x1.5 =
	soil depth= 15cm		$25-27.5 \text{cm} \times 1.5 = 37.5 - 41.3 \text{cm}$	2.1	2.9 - 3.2

- 1/ actual figures obtained from field tests: with 40cm depth ECe 5.1,
 7.5 in replicates
- 2/ calculated ECe & water depth by numerical method
- 3/ estimated water depth required to desalinize surface 15cm/assume that salts up to 15cm distributed uniformly
- 4/ conversion ratio to estimate water depth required in field test conditions from water depth obtained in indoor tests; estimated water depth to achieve about 4m^S in field test conditions = conversion ratio x water depth to achieve 4m^S in indoor test
- 5/ results obtained by indoor tests carried out in triplicate
- 6/ water depth required to achieve ECe 6.5

From the table, it is estimated that under field test conditions about three times of water depth is required to achieve ECe of around 4m^S, of surface 15cm soil compared with water depth required to achieve the same level of ECe of surface 10cm soil in indoor test conditions.

4) Examination of numerical method

For the purpose of examining the applicability of numerical method expressed in the following equations, calculated ECe values and actual and estimated ECe values obtained with both tests were compared as shown in Table D-5-7-D-5-10.

$$ECswI = \frac{a \cdot EC1 + b1 \cdot ECe1}{a + C1}$$

$$ECswII = \frac{(a - d1) \cdot ECswI + b2 \cdot ECe2}{a - d1 + C2}$$

ECSWIII =
$$\frac{(a - d1 - d2) \cdot ECSWII + b3 ECe3}{a - d1 - d2 + C3}$$

 $= \frac{(a - d1 - d2 \cdots dn-1) \cdot ECsw (N-1) + bn \cdot ECen}{(a - d1 - d2, \dots, dn-1) + Cn}$

= ECswI $\cdot \frac{\text{Fe}\%}{\text{Fe}} + S$

ECswI - N : EC of percolation water in to the next layer

ECsw of soil water at field capacity

where:

: depth of water irrigated in cm

: saturation % in cm

C1 - Cn : initial moisture content in cm

: moisture volume in om retained in the upper d1 - dn-1

layer after leaching

: EC of slightly soluble salts

Under field tests conditions, the differences between actual and calculated ECe are more significant with shallow water depth. With increases in water depth, the differences tend to decrease.

Under indoor tests conditions, estimated ECe tended to show higher values than calculated ECe in the initial stage of leaching. On the contrary, estimated ECe are lower than calculated ECe in the later stage.

In the case of coarse-textured soils, L-11, L-26, L-34 (Aucallama Series), both values are fairly consistent with each other.

Except for coarse-textured Aucallama Series. numerical method not considered applicable calculated leaching processes of surface layers, as shown in FIG. D-5-1, are different from actual patterns.

However, if salt concentration of percolation water from an upper layer is known, the numerical method is considered applicable at least for rough estimation of ECe of lower layers after leaching because salt content of a lower layer is less significant compared with salt concentration of percolation water which is the principal source of salts at the time of the leaching process in the lower layer.

this condition, situations more or less similar to the basic assumption of the numerical method that all salts existing in a soil layer mix before commencement of percolation can be expected.

(3) Proposed Measures for Desalinization and Water Requirement

For the formulation of desalinization measures, the following issues should be taken into account.

- a) Any interruption in cropping for a considerable period should not be involved in desalinization measures.
- b) Irrigation practices such as pre-sowing wetting and application of more water than crop requirement should be practiced to supplement leaching operation and to ensure desalinization.
- c) Surface layer (0-15cm) should be desalinized to a permissible level as soon as possible so as to make annual crop planting possible.
- d) Major root zones should be desalinized to a permissible level by the time growing roots reach the same.
- e) Target ECe should be achieved in three years in the case of 1st type and 2nd type B. As for 2nd type A, target ECe should be achieved in approximately one week.

Desalinization measures corresponding to types and degrees of salt accumulation and topographic conditions are proposed as set in below.

1) 1st type: salt accumulated soils in poorly drained areas

In the poorly drained area, the ponding method or furrow flooding method is proposed depending on topographical conditions. In the ponding method, achievement of an ECe around 4ms in the surface layer (0-15cm) is planned by the initial ponding in the first year. In the furrow flooding

method, initial furrow flooding for three years is planned in order to ensure desalinization of the surface layer.

The Target ECe in the final year is:

soil depth $0 - 50 \text{cm} < 4 \text{m}^{\text{S}}/\text{cm}$

" 50 - 100cm < 8m⁸/cm

a) Desalinization measures

1st year - 1st step: initial ponding/initial furrow flooding

removal of accumulated salts in surface layer by ponding or furrow flooding

2nd step: pre-sow wetting

pre-sow furrow irrigation, to ensure good
germination of crops

3rd step: irrigation
continuous leaching by irrigation water
(applications loss fraction of irrigation
water or more if possible)

2nd, 3rd year: initial furrow flooding (in case of furrow flooding method adopted)

pre-sow wetting

continous leaching by irrigation* The 2nd and 3rd step should be performed by ordinary irrigation practices.

The above measures are applicable for soils of salinity class S^2 and S^3 . As for soils of salinity class S^3 , the 2nd and 3rd step measures are considered adequate to wash out accumulated salts.

b) Ponding water depth requirements

Ponding water depth requirements to achieve an ECe of about $4\,\mathrm{m}^{\mathrm{S}}$ of the surface layer (0-15cm) are estimated based on the results of leaching tests and are shown in Table D-5-11.

Table D-5-11 PONDING WATER DEPTH REQUIRED IN CM TO ACHIEVE

ECE ABOUT HMS OF SURFACE LAYER (0-15CM)

-			Initi	al ECe			_
	Conditions	10m ^S	30m ^s	40ms	50m ^S	70m ^s	90m ^s
Α.	Water depth1/ required in indoor test	10m ^S /Ka = 10/1	· ·			70m ^S /Ka = 70/3	90m ^S /Ka = 90/3
	conditions: soil depth = 10cm	= 10em	20em	20cm	20cm	= 23cm	= 30cm
в.	Conversion2/ ratio	3	3	3	3	3	3
c.	Water depth required in	A x B	A x B	A x B	A x B	A x B	A x B
	field test conditions: soil depth = 15cm	30cm	60cm	60cm	60cm	70cm	90cm
D.	Conversion3/ ratio	1.0	1.0	1.0	1.0	1.0	1.0
E.	Water depth required in	C x D	СхД	C x D	C x D	C x D	C x D
	field con- ditions: soil depth = 15cm	30cm	60cm	60cm	60cm	70cm	90em

^{1/} from results of indoor test, Ka = ajusted leaching rate

In the above estimation, leaching efficiencies for both field test conditions and field conditions are assumed to be equal. Lower leaching efficiency of surface layer in field conditions may occur depending on ground surface conditions. Therefore, supplemental leachings by pre-sow wetting and

^{2/} Conversion rate to obtain water depth required in field test conditions from water depth required in indoor test conditions (Table D-1-6).

^{3/} Conversion rate to obtain water depth required in field conditions from water depth required in field test conditions. Same leaching efficiency assumed in both conditions.

irrigation are also proposed. In the lower layers (15cm below the surface), on the other hand, a higher leaching officiency is expected because the lateral percolation loss is less in field conditions.

From the table, average ponding water depth requirements for desalinization of salt accumulated soils in the poorly drained areas in the Project area are estimated as follows:

Salinity Class	Average ECe 1/	Ponding Water Requirement
s ²	10ms/cm	30cm
s3	30-40ms/cm	60 cm

1/ Average ECe to each salinity class in the Project area.

c) Water requirement in furrow flooding method

The leaching efficiency of furrow flooding method is estimated to be 60 - 70% compared to that of the ponding method. Water requirement in a total of three years to achieve a final ECe level similar to that for the ponding method is estimated to be 1.5 times greater as follows:

Salinity Class	Average ECe	Water Requirement
S 2	10ms/cm	45cm
S 3	30-40ms/cm	90cm

d) Estimated ECe value of lower layers

ECe values of lower layers after leaching with ponding water depths shown in Table D-5-11 were estimated by the numerical method and are shown in Table D-5-12 - D-5-14. In the estimation, the EC of percolation water corresponding to initial Ece of surface layer were calculated (Table D-5-15) and

adopted as proposed in 4). In the calculation, the following ECe values of lower layers were assumed:

15 - 30cm: 10% of surface layer

30 - 100cm: 10% of surface layer when ECe of surface is 10ms

5% of surface layer when ECe of surface is $30 - 90m^{S}$

2) 2nd type B: salt accumulated soils in Hattillo

The land is flat and the ponding method is applicable.

The Target ECe in the final year is:

Soil depth 0 - 30cm $< 4m^{S}/cm$ " 30 - 100cm $< 8m^{S}/cm$

a) Desalinization measures (2nd and 3rd step should be performed by ordina irrigation practices)

1st year - 1st step : initial ponding

2nd step: pre-sow wetting

3rd step: irrigation

2nd, 3rd year - pre-sow wetting irrigation

b) Ponding water requirement and estimated ECe

Ponding water depth required to achieve ECe 4ms of surface layer (0-30cm) and corresponding ECe of lower layers can be estimated by the numerical method as shown in Table D-5-16.

Table D-5-16 ESTIMATED ECe AFTER LEACHING BY PONDING

	0-30 cm	30-50 cm	50-100 em	ECw = 1 C1=0 Sp = 30% C2=0
Initial ECe (m ^S /cm)1	/ 30	20	20	FC = 10% C3=0 d1 = 30m/mS =2 d2 = 30m/m
ECe after leaching	3.9	4.7	6.7	FC/Sp= 0.3

Note: see following page

ECe 4.0ms = ECI · FC/Sp + 2 ECI = 5.7

$$a \cdot ECI + b1 \cdot ECe1 \quad a = 500 \text{m/m}$$

$$ECI = \frac{a \cdot ECI + b1 \cdot ECe1}{a + c}$$

- 1/ ECe of typical soil profile
- * Ponding water depth required is estimated to be 50cm.
- 3) 2nd type A: salt accumulated soils in slightly sloping area

The land is sloping and the wide-bottom furrow irrigation method for leaching is proposed.

The target ECe at the end of the 2nd step is: soil dept 0 - 1.5m or deeper $< 2m^{\rm S}/cm$

a) Desalinization measures

1st step: furrow irrigation (wide-bottom furrows), for removal of surface salts
2nd step: furrow irrigation within a few days after 1st step

removal of salts in lower layers

b) Water requirement and estimated ECe
Water depth required to achieve the target ECe
was estimated by the numerical method as shown in
Table D-5-17.

Table D-5-17 WATER REQUIREMENT AND ESTIMATED ECE

	0-15 cm	15-50 cm	50-150 cm		
Salinity class S ₁ 1/ initial ECe (m ^S /cm) ECe after leaching	6	2	1	ECw=1 SPv=35% FCv=14%	C ₁ =0 C ₂ =0 C ₃ =0
water depth 20cm	1.0	1.4	2.4	FC/SP=0.4	S≖0
17 30cm	0.8	1.1	1.6	d ₁ =50m/m d ₂ =100m/m	
Salinity class S ₂ 1/ initial ECe (m ^S /cm) ECe after leaching	10	2	1		
water depth 20cm 30cm	1.4	1.8	2.8 1.8		

^{1/} ECe of typical soil profile

^{*} Water depth required is estimated to be 20-30cm for both salinity classes.

(4) Chemical Amendment Requirement

Amounts of chemical amendment (gypsum, CaSO4·2H2O) needed to reduce the exchangeable - sodium content or percentage of surface layer (0-15cm) of saline-alkali soils in the poorly drained area were estimated based on procedures by the U.S.D.A. (Diagnosis and Improvement of Saline and Alkali Soils).

1) Exchangeable-Na content to be reduced

		coarse-textured soils	medium-textured soils	fine-textured soils
1.	alkalinity class	N ¹	N1	N1
2.	average ESP/ exchangeable- Na content of surface 15cm	2.5meq/100g soil	23%	12%
3.	to be lowered to	1.5meq/100g soil	15%	8%
4.	CEC (meq/100g soil)	-	15	20
5.	exchangeable- Na content to be removed		(2-3)x ¹ 4	(2-3)x4
•	(meq/100g soil)	1.0	1.2	0.8

^{*} average exchangeable-Na content to be reduced 1.0 meq/100g soil

2) Amount of gypsum required per ha

Amount of gypsum required per ha to replace 1.0 meq/100g soil of exchangeable-Na in the surface layer (0-15cm) is as follows:

2.25t/ha.15cm - 0.8 (application efficiency) = 2.8t/ha·15cm

3) Total amount of gypsum required

 $2.8t/ha \times 675ha$ (surface coverage of saline-alkali soils in the Project area) = 1890t

In conclusion, about 1,900t of gypsum are required to improve sodicity of surface layer (0-15cm) of saline-alkali soils in the Project area.

(5) Improvement Plans for Salt Acumulated Soils

Improvement plans were formulated on the basis of the study results of preceding sections. The furrow flooding method has been adopted as desalization measures for salt accumulated soils in the poorly drained area considering topographic conditions and water availability. The plans are proposed as follows:

1) 1st type: salt accumulated soils in poorly drained areas

- a) Water requirement
 - The water requirement for furrow flooding was calculated according to the following conditions:
 - initial leaching method: furrow flooding
 - time of initial leaching: May - July
 - intensity of furrows:
 width of ridge:
 width of furrow = 1:1 (50% of ground surface
 to be flooded)
 - rate of water application:

 one third of total water requirement for
 furrow flooding to be applied in each year
 - proposed cropping plan:
 cotton-green manure-maize in rotation (first
 crop ... cotton)

Water requirement in depth per ha for furrow flooding is tabulated on the following page.

		Salinity	Class
		S _S	s3
1.	Average ECe (m ^S /cm) of surface layer	10	30-40
2.	Total water requirement in depth for furrow flooding (cm)	45	90
3.	Rate of application in each year	1/3	1/3
4.	Water requirement in depth for furrow flooding/year (cm)	2x3 15	2x3 30
5.	Intensity of furrows (% of ground surface to be flooded)(%)	50	50
6.	Water depth in cm to be applied in furrows (cm)	4+5 30	4+5 60

Water requirement in depth and in volume per ha for furrow flooding is tabulated below.

	Salinity	Class
	s ²	s3
depth/ha·year (cm)	15	30
volume/ha·year (m³)	1500	3000
depth/ha·3 years (cm)	45	90
volume/ha·3 years (m³)	4500	9000

Water requirement for furrow flooding in the drainage improvement study area is tabulated on the following page.

eranglusymmetry many girt it i i i i i i i i i i i i i i i i i	Area for Floor					ent in V Floodi	
					1000	m3	
					Tota	1	
Drainage Improve- ment Study Area	Salinity Class	Area ha	Per ha• year	1st year	2nd year	3rd year	total
Donoso/Quincha Sub-total	S ² S ³ N1	273 524	1.5 3	410 1,572 1,982	410 1,572 1,982	410 1,572 1,982	1,230 4,716 5,946
Boza Sub-total	s2 s3 s3n1	15 61 69	1.5 3 3	23 183 207 413	23 183 207 413	23 183 207 413	69 549 621 1239
San Luis Sub-total	s ² s ³	168 82	1.5	252 246 498	252 246 498	252 246 498	756 738 1,494
Lunavilca	S ²	50	1.5	75	75	75	225
Palpa	S ²	30	1.5	45	45	45	135
Total		1,272		3,013	3,013	3,013	9,039

Water requirement for furrow flooding in the entire drainage improvement study area:

about 3 million m³/year about 9 million m³/3 years

b) Chemical amendment requirement (gypsum)

The amounts of gypsum required for improving sodicity of saline-alkali soils in poorly drained areas are estimated in the table presented on the following page.

Drainage Improve- ment Study Area	Alkalinity Class	Affected Area ha	• •	Requirement(t) Total
Donoso/Quincha	N ₁	524	2.8	1467
Boza	N ₁	69	2.8	193
San Luis	N ₁	82	2.8	230
Total	(#доржада мескиот сур каланда да бил отприя и силонору "пр _{От} ради" (чисточно	675	2.8	1890

In total, about 1900t of gypsum are required.

2) 2nd type B: salt accumulated soils in Hattillo

For the desalinization of this type of soil, the ponding method has been adopted.

- a) Water requirement for initial ponding
 - i. conditions initial leaching method ... ponding time of initial laching ... May - July proposed cropping plan ... cottongreen manure-maize in rotation (first crop...cotton)
 - ii. water requirement for initial ponding initial ponding water requirement in depth 50cm initial ponding water requirement in volume/ha ... 5000m³/ha area to be desalinized 160 ha total water requirement for initial ponding 800,000m³

In total, 800,000m³ of irrigation water are required for the desalinization of the area by initial ponding.

3) 2nd type A: salt accumulated soils in slightly sloping area

The desalinization of sandy to gravelly salt accumulated soils on slightly sloping areas (2nd type A) is not included in the present improvement plan for the following reasons:

a) The adverse effects of salt accumulation above the root zone of fruit trees are not considered significant and therefore sufficient benefit can not be expected. b) Low salt-tolerant crops of citrus and apple are prevailing in the area. A large quantity of irrigation water will be required in a short period to prevent salt accumulation in the lower root zone of these crops. However, availability of water is limited in the area.

It is recommended to promote desalinization gradulally from one place to another by wide-bottom furrow irrigation.

6. Recommendations

The desalinization plan proposed in the present study has been formulated based on the results of a limited number leaching tests. As field leaching tests are fundamental to desalinization plans, it is recommended that leaching tests be performed in the field and that desalinization measures and water requirement be studied in detail, similar field tests are required for estimation of the gypsum requirement.

TABLE AND FIGURE

D-1-2 Results of Indoor Leaching Test

Relation between soil: water ratio and EC of suspension on various soils after leaching operation - indoor test

			Soil:	water r	atio		Estimated 1 EC of	7
	Sample No.	1:05	1:1	1:2	1:3	1:4	s.s.s. *	
1.	Coarse textured soils		m ^S	ra	s m	s m		
	L-26, No.3		1.9	2.1	1.9	1.8	2.0	
	L-21, No.1		1.4	1.0	660 MS	520 MS	0.5	
	L-20, No.3		2,2	1.7	1.2	1.1	1.0	
	L-11, No.3		1.9	1.5	1.4	1.2	1.5	
·	L-7, No.3	1.5	400	200	200	·	0.2	
	L-34, No.1		1.6	1.9	1.9		2.0	
	No.2		1.5	2.0	1.9		2.0	
	No. 3		1.7	2.0	2.0		2.0	
2.	Medium textured soils				4			
	L-9', No.1	2.0	2.1	2.1	1.8	1.9	2.0	
	L-9, No.1		1.1	740 MS	580	460	0.5	
	L-9", No.1		1.7	1.8	1.5	· -	2.0	
	" No.2		1.8	1.8	1.6		2.0	
	" No.3		1.8	1.8	1.7		2.0	
3.	Fine textured soils					•		
	L-10", No.1		1.4	1.6	1.8		2.0	
	" No.2		1.4	1.7	1.9	-	1.0	
	" No.3		1.4	1.7	1.9		2.0	

^{*} Slightly soluble salts.

^{1/} It is assumed that EC of suspension when the same is nearly constant indepent from soil: water ratio is attributable to EC of slightly soluble salts in soil.

2
Ü
70
į
) L
ξ
toot
Š
i D
i,
Ň
ö
E C
ing ECe
onding ECe
responding ECe
corresponding ECe
and corresponding ECe
te and corresponding ECe
achate and corresponding ECe
leachate and corresponding ECe
of leachate and corresponding ECe
EC of leachate and corresponding ECe
-1 EC of leachate and corresponding ECe
0-5-1
0-5-1
-5-1

Batch accumulated depth		Esperanza serie	ies	A	Aucallama series	v		
	L - 7	21.		L - 11		L - 34		1
leachate in m/m	1 2	1 2	1 2	1 2	ľ		1 2 1 2 1	,
Some	114 45.6	18.8 7.5		17.	17.6 7.3	4		
	8.3 3.3	7.2 2.9		37.2 13.7		22.0 8.6		
	*2.2 0.9L	*3.4 1.4	٠.	2	16.1 6.8	; ;		
* * * * * * * * * * * * * * * * * * * *	1.4 0.7	4.0 1.5		ø	က်	וח		
•	0.9 0.4	2.7 1.1		4	m H	-		
· · · · · · · · · · · · · · · · · · ·		1.8 0.7		~	m	t		;
=		1.6 0.6		3.0 2.4	3.1 2.9	4		
• 1					7 2.	7 3.		
•						3.7 3.1		
						1 2.		
12±th : 2/5 ::						2.8 3.8		
						2.		
=						w		
£								
Volume of last leachate in m2/EC		34 1.4			36 2.7	40 2.6		
ECw ms S ms	840	440		480	Caa	Car		
3 Total volume of water	15.0	20.0		22.5	22,5	35,0		
added in cm								
4 Total volume of	13.0	16.0		20.0	22.0	34.5		
leachate in								
5 Initial ECe of soil	58.3	37.6		56.4	18.8	86.5		
6 ECe of soil after leaching	2.3	4. 5.		بر د	2.7	2.0		
ğ	56.0	33.1		54.9	16.1	94.5		
1 9	è					•		
8 EC of 1:2 soil-water	1.0(1:0.5)	0.5		5.5	2.1	6.1	٠	
					! !	ì		
9 Leaching rate 7 ÷ 3	3.7	1.7		2.4	0.7	2.4		
ms/cm								
10 Adjusted leaching rate ms/cm	ស	3.6		ະ ເກ	1.0	3.7		
11 FC%/SP% SP%	0.4 22	0.4 22		0.3 20	0.3 30	0.3 30		

6 : ECe of soil after leaching, calculate by: 2 : ECe corresponding to EC of leachate in mS, calculated by ECe = a \times FC%/Sp% + S 1: EC of leachate,

ECe = S + $(d-S) \times \frac{200}{SP^{3}}$ m^S

 sP^* a - 1 = EC of leachate in m^S , S = EC of slightly soluble salts in soil, d = EC of 1:2 soil-water suspension 10 : Adjusted leaching rate: accumulated volume of water added by the time when drorease in EC of successive leachate become low, marked * in the lable, was taken, in stead of 3

(corresponding ECe 2 is generally about 4 ms/cm) 1/: Estimated ECe from final ECe 2.3 ms - 3.4 2/: EC of 1:0.5 soil water suspension after leaching

- indoor test medium-textured soils/fine-textured soils EC of leachate and corresponding ECe of soil --Table D-5-2

of leachate	Mochumi series		Quepecaliche series		Lambaye	Lambayeque series	
st 50ml 25 m/m 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	6 - T 6	6 -	10. T - 10.	T - 10"	T - 14		
st 50mL	1	2 1	2 1 2	1 2	1 2 1	2 1	2
rd " 50 " 6.2 3.6 28.8 16.4 31.6 17.6 22.0 rd " 100 " 3.9 2.5 16.8 10.4 39.6 21.8 27.8 th " 125 " 2.1 1.6 6.8 5.4 5.5 1.2 17.6 84.5 th " 150 " 2.1 1.6 6.8 5.4 5.5 4.8 27.2 th " 150 " 2.1 1.6 6.8 5.4 5.5 4.8 27.2 th " 250 " 4.5 4.3 3.1 3.6 2.8 th " 250 " 3.1 3.6 2.8 th " 350 " 355 " 3.1 3.6 2.8 th " 350 " 2.5 3.3 th " 350 " 2.5 3.3 th " 375 " 2.5 3.3 th " 375 " 2.5 3.3 th " 375 " 2.9 3.5 5.0 th " 375 " 2.5 3.3 th " 375 " 2.5 2.4 th " 375 " 2.5 2.4 th " 375 " 2.5 2.4 th " 375 " 2.5 2.4 th " 375 " 2.5 2.4 th " 375 " 2.5 2.4 th " 375 " 2.5 2.4 th " 375 " 2.5 2.4 th " 375 " 2.5 2.4 th " 375 " 2.5 2.4 th " 375 " 2.5 2.4 th " 375 " 2.5 2.4 th " 375 " 2.5 2.4 th " 375 " 2.0 440 2.0 710 Total volume of water 15.0 36.0 2.0 440 2.0 710 leachate in cm	7.3 21.9 13.0	16.8 17.2	2.9	6.1			
rd "	3.6 28.8 16.4	17.6 22.0	3.4 3.9 3.2	24.4	98.0 51.0		
th " 100 " 3.0 2.0 12.4 8.2 31.2 17.6 34.5 th " 155 " 2.5 1.8 8.9 6.5 11.2 7.6 68.4 th " 150 " 2.1 1.6 6.8 5.4 11.2 7.6 68.4 th " 150 " 2.1 1.6 6.8 5.3 11.2 7.6 68.4 th " 200 " 6.6 5.3 3.1 3.6 4.0 12.8 th " 250 " 4.3 4.0 3.1 3.6 2.6 th " 350 " 2.5 3.3 3.7 2.9 3.5 2.4 th " 350 " 2.5 3.3 th " 350 " 2.5 3.3 th " 350 " 2.5 3.3 th " 350 " 2.5 3.3 th " 350 " 2.5 3.3 th " 350 " 2.5 3.3 th " 350 " 2.5 3.3 th " 350 " 2.5 3.3 th " 350 " 2.5 2.4 th " 350 " 2.5 2.4 th " 350 " 2.5 2.4 th " 350 " 2.5 2.4 th " 350 " 2.5 2.4 th " 37.5 " 2.5 2.4 th " 37.5 " 2.5 2.4 th " 37.5 " 2.5 2.4 th " 3.0 th "	2.5 16.8 10.4	21,8 27,8	8.6	72.0			
th " 125 " 2.5 1.8 8.9 6.5 11.2 7.6 68.4 th " 150 " 2.1 1.6 6.8 5.4 5.5 4.8 27.2 th " 200 " 6.6 5.3 3.1 3.6 *4.0 th " 250 " 3.1 3.6 *4.0 th " 275 " 3.1 3.6 *4.0 th " 350 " 3.1 3.6 *4.0 th " 350 " 3.1 3.6 *4.0 th " 350 " 3.1 3.6 *4.0 th " 350 " 4.0 3.1 3.6 *4.0 th " 350 " 4.0 3.1 3.6 *4.0 th " 350 " 2.5 3.3 th " 350 " 2.5 3.3 th " 355 " 2.4 th " 350 " 2.5 3.3 th " 355 " 2.5 3.3 th " 355 " 2.5 3.3 th " 355 " 2.5 3.3 th " 355 " 2.5 3.3 th " 350 " 2.5 3.3 th " 350 " 2.5 2.4 lume of last leachate in w./.cc	2.0 12.4 8.2	17.6 34.5	40.0	33.6			
th " 150 " 2.1 1.6 6.8 5.4 5.5 4.8 27.2 th " 220 " 6.6 5.3 3.1 3.6 *4.0 th " 225 " 3.1 3.6 *4.0 th " 225 " 3.3 3.7 2.9 3.5 2.4 th " 300 " 2.5 3.3 th " 300 " 2.5 3.3 th " 350 " 2.5 3.3 th " 350 " 2.5 3.3 th " 355 " 2.5 3.3 th " 375 " 2.5 3.3 th " 375 " 2.5 3.3 th " 375 " 2.5 3.3 th " 375 " 2.5 3.3 th " 375 " 2.5 3.3 th " 375 " 2.5 3.3 th " 375 " 2.5 3.3 th " 350 " 2.5 2.4 th " 375 " 2.5 2.4 th " 350 " 2.5 2.4 th " 350 " 2.5 2.4 th " 350 " 2.5 2.4 th " 355 " 2.5 2.4 th " 355 " 2.5 2.4 th " 355 " 2.5 2.4 th " 355 " 2.5 2.4 th " 355 " 2.5 2.4 th " 355 " 2.5 2.4 th " 35.5 " 2.5 2.4 th " 35.5 " 2.5 2.4 th " 35.5 " 2.5 2.4 th " 3.1 2.7 th " 3.2 2.5 th " 3.2 2.5 th " 3.2 2.5 th " 3.2 2.5 th " 3.2 2.5 th " 3.2 2.5 th " 3.3 3.7 th " 3.3 3.7 th " 3.3 3.7 th " 3.4 2.7 th " 3.5 " 3.5 th "	1.8 8.9 6.5	7.6 68.4	30.4	24.4			
th " 175 " 4.5 4.3 *3.9 4.0 12.8 th " 200 " *4.0 th " 225 " *4.0 th " 250 " *4.3 4.0 3.1 3.6 *4.0 th " 250 " 3.3 3.7 2.9 3.5 2.4 th " 350 " 25 3.3 th " 355 " 2.5 3.3 th " 375 " 2.5 3.3 th " 375 " 2.5 3.3 th " 375 " 2.5 3.3 th " 375 " 2.5 3.3 th " 375 " 2.0 440 2.0 710 lowe of last leachate in ww./EC w ms Total volume of water Total volume of water Initial ECe of soil Ece of soil after leaching 3.1 2.7 1.8 1. Ece of soil after leading Ece of soil after leading Ece of soil after leading Ece of soil after leading Ece of soil after leading Ece of soil after leading Ece of soil after leading Ece of soil after leading Ece of soil after leading Ece of soil after leading Ece of soil after leading Ecaching rate 7 * 3 ms/cm ms/cm ms/cm ms/cm ms/cm	1.6 6.8 5.4	4.8 27.2	14.2	* .0 *			
th " 200 " *4.0 th 2.0	5 4.3	4.0 12.8	· 9.9*	n, 3	2.7 3.4		
th " 225 " *4.3 4.0 3.1 3.6 2.8 th " 250 " 3.3 3.7 2.9 3.5 2.4 th " 275 " 250 " 2.8 3.4 2.9 3.5 2.4 th " 300 " 2.5 3.3 th " 325 " 2.5 3.3 th " 350 " 2.5 3.3 th " 350 " 2.5 3.3 th " 375 " 2.5 3.3 th " 375 " 2.5 3.3 th " 375 " 2.5 3.3 th " 375 " 2.5 3.3 th " 375 " 2.5 3.3 th " 375 " 2.5 3.3 th " 375 " 2.5 3.3 th " 375 " 2.5 2.4 th " 375 " 2.5 2.4 th " 375 " 2.5 2.4 th " 375 " 2.5 2.4 th " 375 " 2.5 2.4 th " 375 " 2.5 2.4 th " 375 " 2.5 2.4 th " 3.2 2.5 2.4 th " 3	6 5.3	3.6 *4.0		2.7			
th " 250 " 2.8 3.4 2.9 3.5 2.4 th " 325 " 2.8 3.4 2.8 3.4 2.5 3.3 th " 325 " 2.5 3.3 th " 325 " 2.5 3.3 th " 350 " 2.5 3.3 th " 350 " 2.5 3.3 th " 350 " 2.5 3.3 th " 350 " 2.5 3.4 th " 350 " 2.5 2.4 th " 375 " 2.5 2.4 th " 375 " 2.5 2.4 th " 375 " 2.5 2.4 th " 375 " 2.5 2.4 th " 3.5 th " 2.5 2.4 th " 3.5 th	3 4.0	3.6 2.8	2.9	2.6			
th " 375 " 2.5 3.3 th " 325 " 2.5 3.3 th " 350 " 2.5 3.3 th " 350 " 2.5 3.3 th " 350 " 2.5 3.3 th " 350 " 2.5 3.3 th " 350 " 2.5 3.3 th " 350 " 2.5 2.4 lume of last leachate in wl/EC S ms 590 0.5 590 2.0 440 2.0 710 Total volume of water 17.5 37.5 27.5 Added in cm	3 3.7	3.5 2.4	2.8	2.3			
th " 300 " 2.5 3.3 th " 325 " 2.5 3.3 th " 350 " 2.5 3.3 th " 350 " 2.5 3.3 th " 350 " 2.5 2.4 lume of last leachate w ms			2.5	2.3 2.7			
th " 325 " th " 350 " th " 350 " 1							
th " 350" th " 375" lume of last leachate in mW.PC w ms							
th " 375 " lume of last leachate in m0/EC w ms Total volume of water Total volume of w		-					
lume of last leachate in mL/EC w ms Total volume of water Total volume of volume Total volume of volu							
in wW/EC w ms Total volume of water 17.5 37.5 27.5 3 added in cm added in cm Initial EC of soil 13.5 63.0 65.8 5 EC of soil after leaching 3.1 2.7 1.8 Be crease in EC value 10.4 60.3 64.0 5 EC of 1:2 soil-water 0.9 2.1 1.8 suspension after leading 1.6 2.3 Adjusted leaching rate 1.1 2.4 3.1 Adjusted leaching rate 1.1 2.4 3.1 Adjusted leaching rate 1.1 2.4 3.1				30 2.1			
Total volume of water 17.5 590 2.0 440 2.0 710 added in cm added in cm 15.0 36.0 25.0 25.0 10 added in cm 15.0 36.0 25.0 25.0 2 leachate in cm 13.5 63.0 65.8 5 cor soil after leaching 3.1 2.7 1.8 5 cor lec of soil after leaching 10.4 60.3 64.0 5 cor lec of li2 soil-water 0.9 2.1 1.8 suspension after leading cate 7 3 ms/cm 0.6 1.6 2.3 Adjusted leaching rate 1.1 2.4 3.1 ms/cm			-			. 1	
Total volume of water 17.5 37.5 27.5 added in cm Total volume of water 15.0 36.0 25.0 2 leachate in cm initial ECe of soil 13.5 63.0 65.8 ECe of soil after leaching 3.1 2.7 1.8 Ece of soil after leaching 10.4 60.3 64.0 5 C - 6) EC of 1.2 soil-water 0.9 2.1 1.8 suspension after leading at 0.9 2.1 1.8 adjusted leaching rate 7 3 ms/cm 0.6 1.6 2.3 Adjusted leaching rate 1.1 2.4 3.1 ms/cm	0.5 590 2.0		1.8 440 2.0	440 2.0	440 2.0		
added in cm Total volume of water 15.0 36.0 25.0 2 leachate in cm initial ECe of soil ECe of soil after leaching 3.1 2.7 1.8 Decrease in EC value 10.4 60.3 64.0 5 (5 - 6) EC of 1.2 soil-water 0.9 2.1 1.8 suspension after leading 1.1 2.4 3.1 Adjusted leaching rate 1.1 2.4 3.1	37.5	7.5 30.0	27.5	35.0	22.5		
Total volume of water 15.0 36.0 25.0 2 leachate in cm initial ECe of soil 13.5 63.0 65.8 5 ECe of soil after leaching 3.1 2.7 1.8 Decrease in EC value 10.4 60.3 64.0 5 (5 - 6)							
leachate in cm initial ECe of soil ECe of soil after leaching 3.1 2.7 1.8 Decrease in EC value 10.4 60.3 64.0 5 (5 - 6) EC of 1.2 soil-water 0.9 2.1 1.8 suspension after leading 0.6 1.6 2.3 Adjusted leaching rate 1.1 2.4 3.1 ms/cm	36.0	5.0 27.5	5 25.0	34.0	20.0		
initial ECe of soil ECe of soil after leaching 3.1 2.7 1.8 Decrease in EC value 10.4 60.3 64.0 5 (5 - 6) EC of 1:2 soil-water 0.9 2.1 1.8 Suspension after leading 1.1 2.4 3.1 Adjusted leaching rate 1.1 2.4 3.1 ms/cm							
Ece of soil after leaching 3.1 2.7 1.8 Decrease in EC value 10.4 60.3 64.0 5 (5 - 6) EC of 1.2 soil-water 0.9 2.1 1.8 Suspension after leading 1.6 2.3 Adjusted leaching rate 1.1 2.4 3.1 ms/cm 0.6 1.6 2.3	63.0		37.0	45.0	101.8		
Decrease in EC value 10.4 60.3 64.0 5 (5 - 6) EC of 1:2 soil-water 0.9 2.1 1.8 suspension after leading Leaching rate 7 ÷ 3 ms/cm 0.6 1.6 2.3 Adjusted leaching rate 1.1 2.4 3.1 ms/cm	2.7			1.6	3.2		
(5-6) EC of 1:2 soil-water suspension after leading Leaching rate 7 : 3 ms/cm 0.6 1.6 2.3 Adjusted leaching rate 1.1 2.4 3.1	60.3			43.4	98.6		
EC of 1:2 soil-water 0.9 2.1 1.8 suspension after leading Leaching rate 7 3 ms/cm 0.6 1.6 2.3 Adjusted leaching rate 1.1 2.4 3.1 ms/cm							
suspension after leading Leaching rate 7 ÷ 3 ms/cm 0.6 1.6 2.3 Adjusted leaching rate 1.1 2.4 3.1 ms/cm		1.8 1.8	3.7	1.6	2.3		
Leaching rate 7 ÷ 3 ms/cm 0.6 1.6 2.3 Adjusted leaching rate 1.1 2.4 3.1 ms/cm							
Adjusted leaching rate 1.1 2.4 3.1 ms/cm			1.3	1.2	4.4		
TIS/CII		-		2.4	5.6		
30 0.5 30	0.5 30 0.5 30 0.3	30	65 0 3 65	0.3 65	0.5 50		

6 : ECe of soil after leaching, calculated by: 2 : ECe corresponding to EC of leachate in m^S , calculated by ECe = a x FC*/SP* + S 1 : EC of leachate,

ECe = S + (d - S) $\times \frac{200}{SP^{6}}$ m^S

a = 1 = EC of leachate in ms, S = EC of slightly soluble salts in soil, d = EC of 1:2 soil-water suspension 10 : Adjusted leaching rate: accumulated volume of water added by the time when decrease in EC of successive leachate become low, marked * in the lable, was taken in stead of 3 (corresponding ECe 2 is generally about 4 ms/cm)

Charges in ECe after leaching ———— field leaching test Plot No. L-7, coarse-textured soil, Experanza series Table D-5-3

			Leac	Leaching water d	depth in			
			10	20		30		40
Depth of Soil layer/initial ECe	yer/ınıtıal E	Ce Item	No.1 No.2	No.1 No.2	No. 1	No. 2	No.1	No.2
		ECe after leaching m ^S	8.6	2.6 3.7	4.0	7.3	2.4	2.4
0 - 15cm	48.2 ms	SE	-39.6 -40.1	-45.6 -44.5	-44.2	-40.9	-45.8	-45.8
		charges in Ece	82 83	95 92	92	35	95	95.
		ECE after leaching m ^S	15.4	9.4	10.0		4.9	5.8
15 - 30cm	1.9 ms	Sm	+13.5	+7.5	+8.1		+3.0	+3.9
		Changes in ECe	711	395	426		158	205
		ECe after leaching ms						
30 - 50cm	Sm	SE						
		Changes in ECe %						*
		ECe after leaching ms						
50 r 80cm	s _m	SW.						:
		Changes in ECe						
ECe : Chang	EC m ^S /cm ates in ECe :	1 25°C of saturation extract Difference in ECe before and	. after leaching	ECw : 840 m ^S Groundwater level	s Level: 65cm	i Fi		

* Water depth required to achieve ECe of about 4 ms/cm : 30cm

quality: 1.2 m^S

^{**} Leaching rate to achieve ECe of about 4 m5/cm : 1.5 m5/cm water

Changes in ECe after leaching ----- field leaching test Plot No. L-9', medium-textured soil, Mochumi series Table D-5-4

					Leaching water	cer depth	ri u	E S		
Depth of Soil 18	tayer/initial ECe	e Item	- ON	10 MC 2	1	20 No. 2	L 0M	30 NO 2	- 011	45 C (N
			NO. T	INO. 2	EC. 1	200.0	INC. 1	NC. C	14-04T	NO. 2
		ECe after leaching m ^S	25.8	18.6	22.4	20.7	12-4	8	7.5	다. 9 ·
0 - 15cm	57.0 ms	ម្តី	-31.2	~38.4	-34.6	-36.3	-44.6	-48.9	-49.5	-51.9
		æ	် က်	67	61	64	78	98	87	16
		ECe after leaching m ^S	3.7		5.7		2.8		3.9	
15 - 30cm	1.6 m ^s	SE	+2.1		+4.1		+1.2		+2.3	
		changes in boe	131		256		75		144	
		ECe after leaching ms								
30 - 50cm	SE	SE.								
		Changes in ECe								
		ECe after leaching m ^S								
50 - 80cm	SEE	SIE	· .				٠.			
		changes in ace								
щ Э Э	3C m ^S /cm at 25°	ECe : EC m5/cm at 25°C of saturation extract				 S Si	59 m ^S			

ECe : EC m^{5}/cm at 25°C of saturation extract Changes in ECe : Difference in ECe before and after leaching

ECw: 59 m^S
Groundwater level: 40cm
" quality: 3.4

** leaching rate to achieve ECe of about 4 ms/cm : 0.7 ms/cm

* by numerical method, ECe of surface 15cm is estimated at

about 4 ms/cm with water depth 80cm

ges in ECe after leaching ——— field leaching test Plot No. L-10, fine-textured soil, Quepecallche series Table D-5-5 Charges in ECe after leaching --

No.1 No.2 No.1 No.2 No.1 No.2 No.1 Ecc after leaching mS 17.8 11.7 4.3 5.3 4.3 5.4 Changes in Ecc after leaching mS 18.5 9.7 16.1 10.4 9.5 5.5 Ecc after leaching mS 18.5 9.7 16.1 10.4 9.5 5.5 Ecc after leaching mS 11.9 6.0 9.5 4.4 Ecc after leaching mS 49.0 +3.1 +6.6 +1.5 Ecc after leaching mS 43.6 -0.1 +1.9 Changes Ecc 8 12.4 3 Ecw : 710 mS Ecc after leaching mS 43.6 -0.1 +1.9 Changes Ecc 8 12.4 3 Ecw : 710 mS Ecc after leaching mS 6.5 2.8 Ecw : 710 mS Ecc after leaching mS 6.5 Ecw : 710 mS Ecc after leaching mS 12.4 3 Ecw : 710 mS Ecc after leaching mS 12.4 12.4 12.4 Ecc after leaching mS 12.4 12.4	Depth of soil layer/initial	ver/initial ECe	ltem Item		20	Leaching	water 40	depth i	in cm	000	88
- 15cm 50.7 m\$ the contract leaching m\$ 17.8					l No.		No. 2		No.2	1 1	No.2
- 15cm 50.7 ms Changes in ECe after leaching ms 13.8 ms changes in ECe after leaching ms 2.9 ms Changes in ECe after leaching ms 13.8 ms changes in ECe after leaching ms 13.8 ms changes in ECe after leaching ms 13.8 ms changes in ECe after leaching ms 13.8 ms 14.7 ms 15.9 ms changes in ECe after leaching ms 13.8 ms 13.9 ms 13.8 ms 13.9 ms 13.8 ms 13.9 ms 13.8 ms 13.9 ms 13.8 ms 13.9 ms 13.9 ms 13.8 ms 13.9 ms 13.9 ms 13.8 ms 13.9 ms 13.0 ms 1			after	mS.	17.8	11.7	4.3	ນ. ພ	4. w	5.4	
- 30cm 3.8 m ⁵ ECe after leaching ms 18.5 9.7 16.1 10.4 9.5 5.5 ECe after leaching ms 18.5 9.7 16.1 10.4 9.5 5.5 ECE after leaching ms 11.9 6.0 45 12.7 4.1.7 15.0 m ⁵ Changes in ECe after leaching ms 49.0 43.1 6.0 9.5 4.4 ECE after leaching ms 49.0 43.1 6.0 9.5 4.4 ECE after leaching ms 49.0 43.1 6.0 9.5 4.4 ECE after leaching ms 6.5 2.8 6.5 2.8 6.5 2.8 6.5 ECE ms/cm at 25°C of saturation extract Changes in ECe affer leaching extract Changes in ECe affer leaching ms 6.5 2.8 ECW: 710 ms Changes in ECe: EC ms/cm at 25°C of saturation extract Echanges in ECe: EC ms/cm at 25°C of saturation extract Echanges in ECe: EC ms/cm at 25°C of saturation extract Echanges in ECe: EC ms/cm at 25°C of saturation extract Echanges in ECe: EC ms/cm at 25°C of saturation extract Echanges in ECe: EC ms/cm at 25°C of saturation extract Echanges in ECe: EC ms/cm at 25°C of saturation extract Echanges in ECe: EC ms/cm at 25°C of saturation extract Echanges in ECe: EC ms/cm at 25°C of saturation extract Echanges in ECe: EC ms/cm at 25°C of saturation extract Echanges in ECe: EC ms/cm at 25°C of saturation extract Echanges in ECe: EC ms/cm at 25°C of saturation extract Echanges in ECe: EC ms/cm at 25°C of saturation extract Echanges in ECe: EC ms/cm at 25°C of saturation extract Echanges in ECe: EChanges in ECe: Echanges in ECe: EChanges in ECe: EChanges in ECe: Echanges in ECe: Echanges in ECe: Echanges in ECe: Echanges in ECe: Echan	1 .	50.7 ms		sm	-32.9	-39.0	-46.4	-45.4	-46.4	-45.3	
ECe after leaching ms 18.5 9.7 16.1 10.4 9.5 5.5 5.5 changes in ECe after leaching ms 11.9 6.0 15.9 12.3 14.6 15.7 11.7 11.7 15.9 18.5 17.4 12.7 15.9 18.5 18.6 18.5 18.6 18.5 18.6 18.5 18.6 18.6 18.6 18.6 18.6 18.6 18.6 18.6			cnanges in ace	æ	65	77	92	06	92	68	
- 30cm				щS	18.5	9.7	16.1	10.4	ა <u>.</u> დ	5.5	
- 50cm 2.9 mS Changes in ECe after leaching mS 11.9 6.0 9.5 4.4 - 50cm 2.9 mS Changes in ECe after leaching mS 6.5 2,8 6.5 2,8 6.5 ECe after leaching mS 43.6 -0.1 +1.9 - 80cm 2.9 mS Changes ECe 8 124 3 ECw: 710 mS 6.6 Ecw Changes in ECe after leaching mS 6.5 2.8 ECw: 710 mS 6.6 Ecw Changes in ECe after leaching mS 6.5 2.8 Ecw Ecw Ecw Reference in ECe before and after leaching mS 6.5 Ecw in Ece in ECe before and after leaching mS 6.5 Ecw in Evel: 1.0 Ecw in Ece in ECe before and after leaching mS 6.0 Ecw in Ecw in Ece in Ece before and after leaching mS 6.0 Ecw in Ecw	· J	3.8 ms		Sm	+14.7	+5.9	+12.3	9.9+	+5.7	+1.7	
ECe after leaching ms 11.9 6.0 9.5 4.4 - 50cm	.		cnanges in ace	œ	387	155	324	174	150	45	
- 50cm 2.9 m ⁵ Changes in ECe after leaching m ⁵ 6.5 2,8 4.15 - 80cm 2.9 m ⁵ Changes ECe after leaching m ⁵ 6.5 2,8 4.18 - 80cm 2.9 m ⁵ Changes ECe a sturation extract Changes in ECe is EC m ⁵ /cm at 25°C of saturation extract Changes in ECe is difference in ECe before and after leaching in ECe is difference in ECe before and after leaching in ECe is difference in ECe before and after leaching in ECe is difference in ECe before and after leaching in ECe is difference in ECe before and after leaching in ECe is difference in ECe before and after leaching in ECe is difference in ECe before and after leaching in ECe is difference in ECe before and after leaching in ECe is difference in ECe before and after leaching in ECe is difference in ECe before and after leaching in ECe is difference in ECe before and after leaching in ECe is difference in ECe before and after leaching in ECe is difference in ECe before and after leaching in ECe is difference in ECe and after leaching in ECe is difference in ECe and after leaching in ECe is difference in ECe and after leaching in ECe is difference in ECe and after leaching in ECe is difference in ECe and after leaching in ECE and after leaching in ECE and after leaching in ECE and after leaching in ECE and after leaching in ECE and after leaching in ECE and after leaching in ECE and after leaching in ECE and after leaching in ECE and after leaching in ECE and after leaching in ECE and after leaching in ECE and after leaching in ECE and after leaching in ECE and after leaching in ECE an			ECe after leaching	S _m	11.9	6.0			9.5	4.4	
ECe after leaching ms	i	2.9 ms		s _m	0.6+	+3.1			+6.6	+1.5	
ECe after leaching ms 6.5 2,8 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.			Cnanges in ECe	æ	310	107			228	52	
- 80cm 2.9 ms changes ECe			ECe after leaching	m.S	6.5	2,8				4.8	
Changes ECe % 124 3 66 : EC m ^S /cm at 25°C of saturation extract iges in ECe : difference in ECe before and after leaching	1	2.9 ms	i	Sm	+3.6	-0.1	_			+1.9	
: EC mS/cm at 25°C of saturation extract Groundwater leaching Groundwater level : Grou			Changes ECe	ℴ℀	124	e				99	
	Jose	C m ^S /cm at in ECe :		and				ECw: Ground	710 m ^s vater lev quaj		il sin

* water depth required to achieve ECe of about 4 m^S/cm : 60 - 80cm ** leaching rate to achieve ECe of about 4 m^S/cm : 0.6 - 0.8 m^S/cm water

field tests Comparison of actual ECe and calculated ECe Coarse-textured soil, plot L-7 Table D-5-7

					Leaching water depth	er depth			
	(10	10 cm	2(20 cm	30 cm	cm	4	40 cm
מסים הוסים	רבוווא	ECSW	BCe	ECsw	ECe	ECSW	ECe	ECSW	ECe
	-	sm	SEE	Sm	Sm	mS	SIII	S ^{II}	SEI
0 - 15 cm	A		8.6 8.1		2.6 3.7		4.0		2.4 2.4
0 ≈ S	щ	22.6	0.6	12.2	6.2	8.5	3.4	6.7	2.7
15 - 30 cm	А		15.4 -	-	9.6		10.0		4.9 5.8
0 ≈ s	ф	21.3	8.5	12.1	4.8	8.5	3.4	8.9	2.7
, c	A						:		
	Д								
Co	A								. :
)	æ								

Initial ECe: 0-15 cm ----- 48.2 m^S, 15-30 cm ----- 1.9 m^S, ECw: 0.8 m^S, SPV%: 35%, FCV%: 14%, FC%/SP% = 0.4

A: Actual ECe after leaching

B: Calculated ECe by numerical method

ECe = ECsw x FC%/Sp% + S (EC of slightly soluble salts)

Table D-5-8

								* 47-10-1-10-1-10-1-10-1-10-1-10-1-10-1-10
				ī	Leaching water depth	r depth		
() () () ()	() () () () () () () () () ()							
מסדי מפלימו	ר ביוווי	ECSW	⊕O∃	MSDE	ECe	ECSW	ECe ECsw)a
		ខុដ	Sm	sw	SIII	mS	Sm Sm	Sm
0 - 15 cm	ď		25.8 18.6		22.4 20.7		12.4 8.1	7.5 5.1
s=2.0	ф	30.3	17.2	16.5	10.3	11.4	7.7 8.8	6.4
15 - 30 cm	¥.		3.7 -		5.7 -		2.8 –	3.9
0=s	ф	26.7	13.4	15.7	7.9	11.2	5.6 8.7	7.7
- Oc.	А							
	μa _.							
	Æ							
30 - 80 CIII	æ							

0-15 cm _____ 15-30 cm ____ 1.6 m⁵, 0.5 m³, SPV%: 30%, FCV%: 14%, FC%/SP% = 0.5 ECe:: Initial

Actual ECe after leaching

.. ..

Calculated ECe by numerical method ECe = ECsw x FC%/SP% + S (EC of slightly soluble salts)

field tests Comparison of actual ECe and calculated ECe Fine-textured soil, plot L-10 Table D-5-9

					Leaching water depth	ter depth			
5 5 6 1 1	ŀ								
Soil depth	Ltems	ECSW	2Ce	ECSW	Ece	ECSW	ECe	ECSW	ECe
		Sm	s _m	SIII	Su	SE	Sm	SEE	ខ្លួ
0 - 15 cm	ď.		17.8		11.7 4.3	:	5.3 4.3		5,4
s=2.0	щ	29.3	10.8	16.0	6.8	11.1	5.3	9.8	4.6
15 - 30 cm	A		18.5		9.7 16.1		10.4 9.5		ហ្វ
0=s	M	27.3	10.9	15.9	₹•9	11.3	4.5	8.8	3.5
30 - 50 cm	Ħ		11.9		6.0		- 9.5		4.4
0=s	μ	22.9	9.2	14.9	6.0	10.9	4.4	8.7	3.5
50 - 80 cm	A		6.5		2.8				4.8
0=s	en.	31.6	12.6	14.0	5.6	10.6	4.2	8.6	3.4

0-15 cm ---- 50.7 m^S, 15-30 cm --- 3.8 m^S, 30-80 cm -- 0.7 m^S, SPV*: 90%, FCV*: 30%, FC%/SP% = 0.3 - 50.7 m^S, 15-30 cm -Initial

Actual ECe after leaching .. .,

ECe = ECsw x FC%/SP% + s (EC of slightly soluble salts) Calculated ECe by numerical method

- indoor tests Comparison of results of leaching tests and calculated ECe ---Table D-5-10

					Water	. 1	denth in m/m					日 / 日
Plot/soil series	50	0	[100	150		200	ç	250		00%	Ş
	A	മ	Ą	m	Æ	æ	Į K	m	S A	n n	ň	2 u
Coarse-textured soils												1
L-11, Aucallama series	17.4	15.7	10.7	6.	4.1	6.9	2.4	5.7				
L-26,	7.3	6.9	9.9	4.8	3.2	4.0	2.9	3.6	2.7	3.4		
五-34少	4.8	23.8	11.0	13.9	10.6	10.3	4.9	8.3	3.1	7.1	2.8	6.3
L-21, Esperanza series	7.5	7.6	1.4	5.2	7.7	3.6	9.0	2.7				
Medium-textured soils												
L-9, Mochumi series	7.3	5.3	2.5	3.3	1.8	2.5						
I91, "	13.0	23.3	10.4	13.8	6.5	10.2	4.3	8.5	4.0	7.2	3.4	4.9
L-9", " 65.8	16.8	29.6	21.8	17.2	7.6	12.5	4.0	10.0	3.6	8.5		
L-14, Lambayeque series	28.5	49.7	31.0	30.7	4.6	22.6	3.4	18.0		6.6		
Fine-textured soils												
L-10, Quepecaliche series	7.0		10.7	14.9	22.3	11.2	5.6	9.1	2.6	7.8	2.5	7.0
I-10',	2.9	ì	4.9	10.4	11.1	8.0	4.0	6.7	2.9	5.8		
L-10", "	3.8	3	23.6	12.2	9.3	9.3	3.0	7.6	2.8	6.6	2.7	5.9
A : ECe estimated by the i	follwoing	equation:	on:		ν. 	EC of s	slightly	soluble	salts			

L-9', L-9", L-10, L-10', L-10", L-14, L-26, L-34
....s = 2.0 ms/cm
L-11...s = 1.5 m⁵, L-9...s = 0.5 m⁵,
L-21...s = 0 m⁵

S : EC of slightly soluble salts

ECe = ECsw (EC of leachate) x FC%/SP% + S Calculated ECe by numerical method ECe = calculated ECsw \times FC%/SP% + S

35

Coarse-textured soil
Estimated ECe of lower layers after leaching: C
Table D-5-12

							ms/cm
	Water depth	20 cm	60 cm		60 cm	70 cm	90 cm
Soil depth	ECsw/ECe Calculation method	ECsw ECe	ECsw ECe		ECsw ECe	ECsw Ece	ECsw ECe
0 - 15 cm	Initial ECe	10	30		50	70	06
C ₁ = 0 m/m d ₁ = 15 m/m	Numerical method	3.5 1.8	3.5 3.8(1.8)	1.8) 5	.2 4.6(2.6)	6.0 5.0(3.0)	6.0 5.0(3.0)
- 1	Proposed method	3.1ª 4.0	3.54 4.0	L W)	5.2ª 4.0	6.0ª 4.0	6.0 ^a 4.0
ć	Initial ECe	1.0	3.0		5.0	7.0	0.6
ا ا ک تک د	Numerical method	3.7 1.9	3,7 1.9	ш)	5.6 2.8	6.5 3.8	6.5 3.8
שיי חוי של של של של של של של של של של של של של	Proposed method	3.3 I.7	3.7 1.9	и).	5.6 2.8	6.5 3.8	6.5 3.8
	Initial ECe	1.0	1.5		2.5	3.5	4.5
C3 = 5 m/m	Numerical method	3.9 2.0	3.8 1.9		5.8 2.9	6.7 3.9	6.7 3.9
מא בדם זוול זוו	Proposed method	3.5 1.8	3.8 1.9	<u>.</u>	5.8 2.9	6.7 3.9	6.7 3.9
	Initial ECe	1.0	1.5		2.5	3.5	4.5
50 - 100 cm C4 = 15 m/m	Numerical method	3.9 2.0	3.8 1.9		5.9 3.0	6.8 3.9	6.8 3.9
	Proposed method	3.5 1.8	3,8 1.9		5.9 3.0	6.8	6.8 3.9
	Remarks	0-100cm: s=0	0-15cm: s=2.0 15-100cm: 2=0		0-15cm: s=2.0 15-100cm: s=0	0-15cm: 2=2.0 15-100cm: s=0	0-15cm: s=2.0 15-100cm: s=0

Proposed method: Proposed method for estimation of ECe of lower layers in 3.2.5 (2) 4). ECe = ECsw \times FC%/SP% + S (EC of slightly soluble salts): ECw = 1 m^S, FC%/SP% = 0.3 ECSw: EC of soil water at FC%, equal to ECof percolation water into a lower layer. a: Estimated EC of percolation water into the second layer (from Table A-3-30) C1 - C4: Assumed initial moisture content (m/m) in each layer d. d. d. a. Assumed moisture volume in m/m retained in each layer after leaching. Ece in pharensis is if s=0 m5.