(1) Permeability Tests Applied to Ene River Project.

Appendix A-2[7] Permeability Tests Applied to Ene River Project

The permeability tests described below were performed at all drillholes in the project area.

"Le Franc" type permeability tests were adopted for parts where there were riverbed deposits and "Lugeon" type for bedrock parts.

(1) Permeability Tests of "Le Franc" Type

The "Constant Load Method" was applied to the parts of riverbed deposits with comparatively high permeability and the "Variable Load Method" to the parts of comparatively low permeability.

Coefficients of permeability (K_1) and (K_2) were calculated by Eqs. (1) and (2) using values obtained by the "Constant Load Method."

$$(K_{1}) = \frac{q_{1}}{C_{1} \times h_{1}} \dots (1)$$

$$(K_2) = \frac{qi}{C_2 \times hi} \dots (2)$$

Where,

$$c_1 = \frac{2 \pi L}{Ln(2L/D)} \dots (3)$$

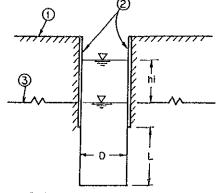


DIAGRAM: Permeability
Test in Drillhole

- Ground surface
- Casing pipe of hole
- ③ Ground water table

At,
$$L/D = 0$$
 $C_2 = 2D$ (4)

$$0 < L/D < 1$$
, $C_2 = 2 \pi D \sqrt{L/D + 1/4}$ (5)

$$1 < L/D < 4$$
, $C_2 = \frac{2\pi L}{Ln(LD + L2/D2 + 1)1/2}$ (6)

$$L/D < 4$$
, $C_2 = \frac{2\pi L}{Ln(2L/D)}$ (7)

L: Length of section tested

D; Diameter of drillhole

hi; Hydraulic head of injection

qi; Injected water volume per unit time

Coefficient of permeability (K_3) was calculated by Eq. (8) using values obtained by the "Variable Load Method".

$$(K_3) = \frac{\pi D^2}{4C_2(t^2 - t^1)} - \log_e \frac{h^2}{h^1}$$
 (8)

Where,

hl; hydraulic head at tl

h2; hydraulic head at t2

tl; time of starting injection

t2; time of finishing injection

D ; diameter of drillhole

 C_2 ; coefficient given by Eq. (4) or (5) or (6) or (7)

(2) Permeability Tests of "Lugeon" Type

"Lugeon" type permeability tests were applied to the parts of bedock in drillholes. Coefficient of permeability (K_3) was calculated by Eq. (9) using values obtained by "Lugeon" tests. \triangle t 2L/D >> 1,

$$(K_3) = \frac{qi}{2\pi Lhi}$$
, Ln (2L/D) (9)

Where,

L; length of section tested

D; diameter of drillhole

hl; hydraulic head of injection

qi; injected water volume per unit time

(8) List of Permeability Tests

		(Sheet No.)
(1)	List of Permeability (Le Franc) Tests in Drillhole DT-1	(1-4)
(2)	List of Permeability (Le Franc) Tests in Drillhole DT-2	(1-4)
(3)	List of Permeability (Lugeon) Tests in Drillhole DT-3	(2–4)
(4)	List of Permeability (Le Franc) Tests	(34) (44)

DRILLHOLE DILL

378

IE FRANC PERMEABILITY TESTS

	Depth	*	Cons	Constant Load		
Test N°	mts.	L mts.	Hi an	K1 am/sec.	K ₂ απ/sec.	
1	5.00	00	115	3.64×10^{-2}		
-			65	3.25×10^{-2}	1.90×10^{-2}	
			00	2.26 x 10 ⁻²		
2	15.00	00	70	3.28 x 10 ⁻²		
]			35	3.50×10^{-2}	3.78×10^{-2}	
			00	3.58 x 10 ⁻²		
3	25.00	00	75	3.51 x 10 ⁻²		
			45	3.79×10^{-2}	4.53 x 10 ⁻²	
			00	4.10 x 10 ⁻²		

DRILLHOLE DT-2

LE FRANC PERMEABILITY TESTS

			Сог	nstant Load		
Test N°	Depth mts.	L mts.	Hi cm	Kį cm∕sec.	Ķ2 an√sec.	
1	12.50-15.00	2.50	00	4.27 x 10 ⁻³		
2	20.85-25.00	4.15	150 100 00	4.33 x 10 ⁻³ 5.18 x 10 ⁻³ 3.95 x 10 ⁻³	3.81 x 10 ⁻³	
3	25.15-30.00	4.85	00 75 160	4.12 x 10 ⁻³ 4.42 x 10 ⁻³ 6.15 x 10 ⁻³	4.09 x 10 ⁻³	

Sheet(2 - 4)

LISTS OF PERMEABILITY TESTS

DRILLHOLE DT-2

LUCEON PERMEABILITY TESTS

Test N°	Depth mts.	Po kg/cm ²	p kg/cm²	Lugean	Ka cm /sec.
1	25.00 - 30.00	o	0.230	1,165	1.321 x 10 ⁻²
2	32.00 - 35.00	1 2 1	1.23 2.23 1.23	238.482 171.151 227,100	2.788×10^{-3} 2.001×10^{-3} 2.655×10^{-3}
3	36.70 - 40.00	1	1.222 1.822	217.478 183.448	2.597 x 10 ⁻³ 2.191 x 10 ⁻³
4	42.50 - 45.00	1	1.222	228.389 388.553	2.728 x 10 ⁻³ 4.354 x 10 ⁻³
5	46.50 - 50.00	1.6	1.205 1.805 1.205	265.797 220.024 264.375	3.216×10^{-3} 2.662×10^{-3} 3.199×10^{-3}

DRILLHOLE DY-3

LE FRANC PERMEABILITY TESTS

			C	onstant Load		Variable Load
Test N°	Depth mts.	L mts.	Hứ cm	Ki am/sec.	K ₂ cm√sec.	Káan√sec.
1	8.86 - 9.45	0.59			<u>-</u>	4.13 - 10 ⁻⁵
2	12.80	00	00	1.44 x 10 ⁻²	-	-
]		100	1.45 × 10 ⁻²	1.23 x 10 ⁻²	
			200	2.43×10^{-2}	 ,	
3	14.20 -15.05	0.85	_	-		1.04 x 10 ⁻⁵
4	.25.00	00	_	_	-	2.40×10^{-5}
5	35.00	00	-	_	-	6.72×10^{-6}
6	39.00 -40.00	1.00	_	-		7.74×10^{-6}
•	}					
		}			<u> </u>	

DRILL HOLE DE-1

LUCEON PERMEABILITY TESTS

Test N°	Depth mts.	Po kg/am²	p kg/cm ²	Lugeon	K ₃ am /sec.
1	1.95 - 5.10	1	1.362	30.068	3.365×10^{-4}
.		2	2,362	84.002	9.401 x 10 ⁻⁴
et i		3	3.362	121.432	1.359×10^{-3}
		2	2.362	140.720	1.575×10^{-3}
		1	1.362	171.317	1.917×10^{-3}
2-a	5.00 - 10.00	0.5	1.21	183.471	2.278×10^{-3}
2-b	6.85 - 10.00	0.5	1.21	275.482	3.083 x 10 ⁻³
2-c	7.75 - 10.00	1	1.71	00	00
2 9.		3	3.71	00	00
·		5	5.71	00	00 .
	1	3	3.71	00	00
1		1	1.71	00	00
3	11.55 - 15.00	1	1.665	35.340	4.040×10^{-4}
		5	5.665	26.146	2.989×10^{-4}
		10	10.665	22.150	2.532 x 10 ⁻⁴
	}	5	5.665	30.955	3.538×10^{-4}
		1	1.665	56.752	6.488 x 10 ⁻⁴
4	15.00 - 20.00	1	1.674	12.784	1.587×10^{-4}
	·	5	5.674	11.667	1.449×10^{-4}
		10	10.674	14.521	1.803×10^{-4}
		5	5.674	19.281	2.394×10^{-4}
		1	1.674	31.183	3.872 x 10 ⁻⁴
5	20.00 - 25.00	1	1.675	00	00
		5	5.675	4.053	5.032 x 10 ⁻⁵
		10	10.675	3.934	4.885 × 10 ⁻⁵
		5	5.675	5.075	6.301×10^{-5}
		1	1.675	8.478	1.053 x 10 ⁻⁴
	1				
<u> </u>	<u></u>	<u> </u>		<u> </u>	<u> </u>

DRILL HOLE DE-1

LUCEON PERMEABILITY TESTS

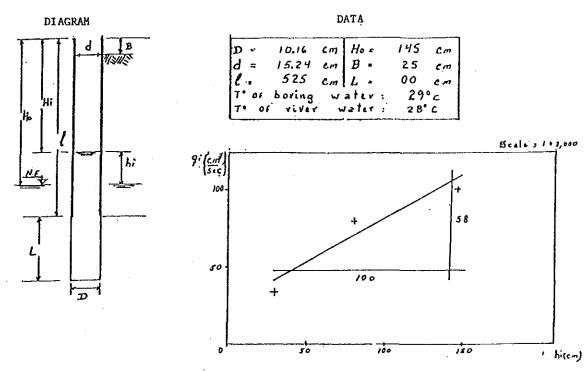
Test	Depth	Po	P		Кз
No	mts.	kg/cm ²	kg/cm ²	Lugeon	om /sec.
		-			
6	25.00 - 30.00	1	1.726	37.428	4.882×10^{-4}
		5	5.726	24.135	3.148 × 10 ⁻⁴
		9.5	10.226	20.595	2.686 x 10 ⁻⁴
		5	5.726	26.580	3.467×10^{-4}
		1	1.726	40.093	5.230×10^{-4}
7	30.00 - 35.00	ı	1.696	8.019	1.046 x 10 ⁻⁴
		5	5.696	6.285	8.199 x 10 ⁻⁵
		10	10.696	7,423	9.684 x 10 ⁻⁵
		5	5.696	7.760	1.012 x 10 ⁻⁴
		1	1.696	11.439	1.492×10^{-4}
8	35.00 - 40.00	1	1.712	00	00
		5	5.712	1.646	2.147×10^{-5}
		10	10.712	1.643	2.143 x 10 ⁻⁵
		5	5.712	1.961	2.558 x 10 ⁻⁵
		1	1.712	2.336	3.048 x 10 ⁻⁵
9	40.00 - 45.00	ı	1.712	00	00
•		5	5.712	0.175	2.284×10^{-6}
		10	10.712	0.131	1.705 x 10 ⁻⁶
		 5	5.712	00	00
		1	1.712	00	00
10	45.00 - 50.00	1	1.726	4.751	6.197 x 10 ⁻⁵
10		5	5.726	3,493	4.556 x 10 ⁻⁵
		10	10.726	2.927	3.819 x 10 ⁻⁵
		5	5.726	3.388	4.420 × 10 ⁻⁵
		1	1.726	5,562	7.256 x 10 ⁻⁵
		*	11,720		
·····		1			

(9) Records of Permeability Tests

(Sheet No.) (1) Records of Permeability Tests $(1-34) \sim (6-34)$ in Drillhole DT-1 (2) Records of Permeability Tests in Drillhole DT-2 $(7-34) \sim (17-34)$ Records of Permeability Tests (3) $(18-34) \sim (24-34)$ in Drillhole DT-3(4) Records of Permeability Tests $(25-34) \sim (34-34)$ in Drillhole DE-1

(1) Drillhole DT-1 Records of Permeability Tests

GEOTEL 5.A.


PROJECT : TAMBO 10

Sheet (1 .-34)

SURVEY :

TEST OF LE FRANC PERMEABILITY N°01 (CONSTANT LOAD)

'Date : 06-10-84	Driller	: J. Cornelio
Boring : 01-: Depth of Test : 500 m.	Performed by Revised by	G. Lazo
Phreatic level: 1,20 m	Zone	: PUERTO PRADO

Hour	He (cm)	Hi (cm)	hi (em)	V; ((m')	t! (sec)	gi (tablec)	Ki (Cm/sec)
11 ^k 30	145	115	30	2,000	60	33.33	3.64x 10
12400	145	65	80	4,750	60	1	3.25 110
12 ^h 30'	145	00	145	6,000	60	100.00	2,76 x 10

OBSERVATIONS

hi = Ho = Hi gi = Vi / ti K= 9:/chi

K1: m/c 3ind: C: Form coefficient

m: Straight line gradient

u A: K'= Net Permeability coefficient

LE FRANC PERMEASILITY RATE

$$\frac{L}{D} = 0$$

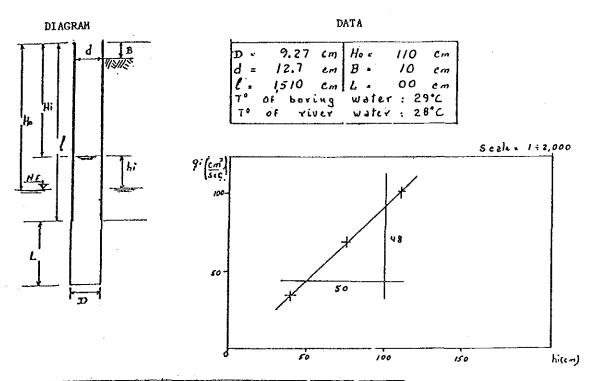
c: 30. 48

$$K_1 = \frac{33.33}{30.48 \times 30} = 0.03645 = 3.64 \times 10^2 \text{ cm/sec.}$$

$$K_1 = \frac{100.00}{30.48 \times 145} = 0.02263 = 2.26 \times 10^{2} \text{ cm/sec.}$$

$$m = \frac{9i}{hi} = \frac{58}{100} = 0.58$$

$$K_2 = \frac{w}{c} = \frac{0.58}{30.48} = 0.01902$$


GEOTEC S.A.

Sheet (3 - 34)

SURVEY :

TEST OF LE FRANC PERMEABILITY Nº02 (CONSTANT LOAD)

	· · · · · · · · · · · · · · · · · · ·	
Date : 16-10-84	Driller	: J. Cornelio
Boring : 0 T-1 Depth of Test : 15.00 m.	Performed by Revised by	G. Laro
Phreatic level: 1.00 m	Zone	: PUERTO PRADO

	Hour	H+ (6m)	Hi (cm)	hi (em)	Vi (em3)	iti (sec)	9; ((m²kec)	K. (CH/sec)
	16420	110	70	40	2,000	60		3.28 110
	16 60'	110	35	75	4,000	60		3.50110
	17 ^k 15	110	00	110	6,000	60	100.00	3.58 x10
1								

OBSERVATIONS

Kz = 3.78 x 10-2 cm/sec

hi = H. - Hi gi = Vi / ti K. = 9:/chi

Kz= m/c

Form coefficient

Straight line gradient

K'= Net Permeability coefficient 33 A 1

LE FRANC PERMEABILITY RATE

$$\frac{L}{3} = 0$$

c: 2 d : 2 × /2.7

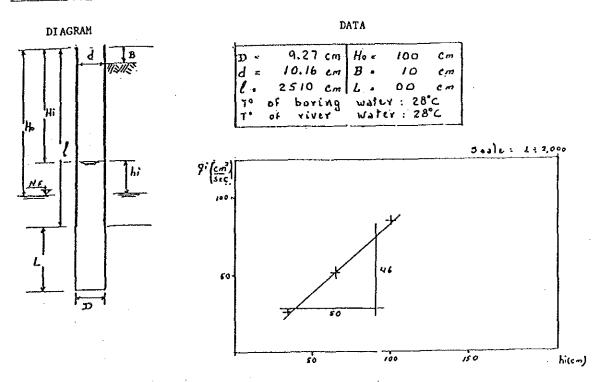
C: 25,4

$$K_{12} = \frac{33.33}{25.4 \times 40} = 0.03280 = 3.28 \times 10^{-2} \text{ cm/sec.}$$

$$K_{12} = \frac{66.67}{25.4 \times 75} = 0.03499 = 3.50 \times 10^{2} \text{ cm/sec}$$

$$m = \frac{qi}{hi} = \frac{48}{50}$$
 $m = 0.96$

$$K_2 = \frac{m}{C} = \frac{0.96}{25.4} = 0.03779$$


$$K_2 = 3.78 \times 10^{-2} \text{ cm/sec.}$$

Sheet (5 - 34)

SURVEY

TEST OF LE FRANC PERMEABILITY N°03 (CONSTANT LOAD)

Date : 19-10-84	Driller	: J. Cornelio
Boring : 0 T-1 Depth of Test : 25.00 m	Performed by Revised by	: G.lazo :
Phreatic level: 0.90 m	Zone	: PUERTO PRADO

H. (cm)	Hi (cm)	hi (tm)	Vi (em³)	(sec)	((~2kic)	Ki (cii/sec)
100	75	3 <i>5</i>	1,500	60		3,51 (10
100	45	65	3,000	60		3.79×10
100	00	100	5,000	60	83.3	4.10×10
	-					
	100 100	100 75 100 45	100 75 35 100 45 65	100 75 35 1,500 100 45 65 3,000	100 75 35 1,500 60 100 45 65 3,000 60	100 75 35 1,500 60 25.0 100 45 65 3,000 60 50.0

OBSERVATIONS

K2 = 4.53 × 10 cm/sec.

hi = Ho - Hi 9: Vi/ti K= 9:/chi K= m/c

Form coefficient

Straight line gradient

K'≥ Net Permeability coefficient

LE FRANC PERMEABILITY RATE

C = 20.32

$$K_i = \frac{9i}{chi}$$

$$K_1 = \frac{25}{20.32 \times 35} = 0.03515 = 3.51 \times 10^{-2} \text{ cm/sec.}$$

$$K_1 = \frac{50}{20.32 \times 65} = 0.03786 = 3.79 \times 10^{-2} \text{ cm/sec}$$

$$K_1 = \frac{83.3}{20.32 \times 100} = 0.04099 = 4.10 \times 10^2 \text{ cm/sec}$$

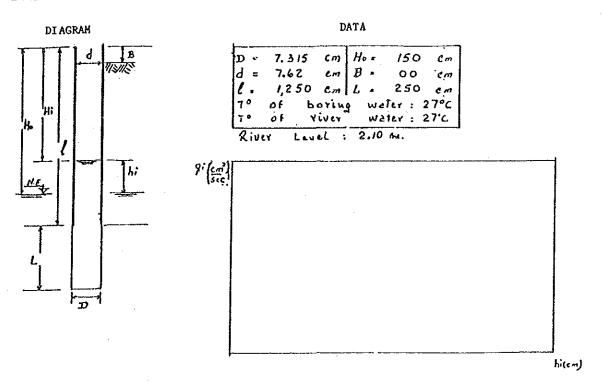
$$u = \frac{9i}{hi} = \frac{46}{50}$$
 m: 0.92

GEDTEC 5.A.

PROJECT : TAMBO 10

Sheet (7 - 34)

SURVEY


TEST OF LE FRANC PERMEABILITY Nº 1
(CONSTANT LOAD)

Date : 22-09-29 Driller : F. VILCA

Boring : DT-2 Performed by : G. LAZO

Revised by :

Phreatic level: 1.50 m. Zone : PUER TO PRADO

Hour	. Ho (cm)	Hi (cm)	hi: (em)	V; (cm²)	ti (sec)	91 ((~2/4ec)	Ki (cm/sec)
17 ^L 10'	150	00	150	14,300		238,33	• -

OBSERVATIONS

hi = H. - Hi gi = Vi / ti K.= 9i/chi

Kz= m/c

Jind: C = Form coefficient

m: Straight line gradient

11 A1 K's' Net Permeability coefficient

(2) Drillhole DT-2

Records of Permeability Tests

Sheet (8 - 34)

LE FRANC PERMEABILITY RATE

$$\frac{L}{D} = \frac{250}{7.315} = 34.17$$

$$c = \frac{2 \tilde{n} L}{L w \left(\frac{2L}{3}\right)}$$

$$C = \frac{2 \widetilde{11} \cdot 250}{L_w \left(\frac{2 \times 250}{7.315}\right)}$$

C = 371.81

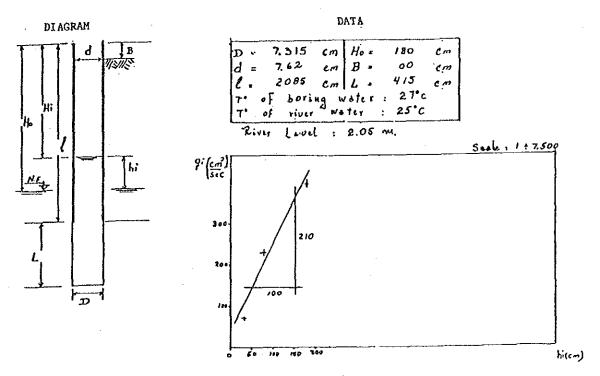
$$K_i = \frac{9i}{C ki}$$

GEDTEC S.A.

PROJECT : 1 A M B O 10

Sheet (9 - 34)

SURVEY :


TEST OF LE FRANC PERMEABILITY N°2 (CONSTANT LOAD)

Date : 25-09-86 Driller : F. VIL CA

Boring : D1-2 Performed by : G. Lazo

Revised by :

Phreatic level: 1.80 m. Zone : PUERTO PRADO

Hour	H• (cm)	Hi (cm)	hi (em)	V; (em²)	ti (sec)	9i ((***	Ki (cm/sec)
16 50	180	150	30	4,300	60	71.67	4.33 210
17 L 20'	110	100	80	13,700	60	228.33	5.18 x10 3
17450'	180	00	180	23,500	60	391.67	3.95×10 ³
ļ							
ļ							<u> </u>

OBSERVATIONS.

K2 = 3.81 × 10 3 cm/sec.

hi . H. - Hi gi . Vi /ti

K = 9:/chi

K2: m/c

Sind: C: Form coefficient

m: Straight line gradient

w A: K'w Net Permeability coefficient

$$\frac{L}{D} = \frac{415}{7.315} = 56.73$$

$$C = \frac{2 \widetilde{II} L}{L_{l_{1}} \left(\frac{2L}{3}\right)}$$

$$C = \frac{2 ii \ 415}{\ln \left(\frac{2 \times 415}{7.315}\right)} \quad C = \frac{551.098}{1}$$

$$m = \frac{9i}{hi} = \frac{210}{100} = 2.10$$

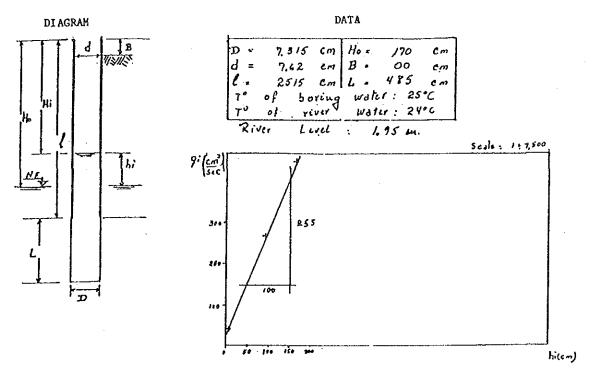
$$K_2 = \frac{w}{c} = \frac{z.10}{551.098}$$

GEOTEC 5.A.

PROJECT : TAMBO 10

Sheet (11 - 34)

SURVEY :


TEST OF LE FRANC PERMEABILITY N°3 (CONSTANT LOAD)

Date : 27-09-84 Driller : F. Vilca

Boring : 01-2 Performed by : G. Lazo

Depth of Test : 25-15 - 30 00m Revised by :

Phreatic level: 1,20 m. Zone : PUER 10 PRADO

(m)	Hi (cm)	hi (em)	Vi (cm²)	(sec)	(cmikec)	K, (c=/sec)
170	00	170	26,200	60	436.67	4.12 2103
170	75	95	15,700	60	261.67	4.421103
170	160	10	2,300	60	38.33	6.15 210
	170	170 00 170 75	170 00 <i>J70</i> 170 75 95	170 00 170 26,200 170 75 95 15,700	170 00 170 26,200 60 170 75 95 15,700 60	170 00 170 26,200 60 436.67 170 75 95 15,700 60 261.67

OBSERVATIONS

K2 = 4.09 x 10 2 em/sec.

hi = H. - Hi gi : Vi / Ei

K = 9: /chi

 $K_{L}: m/c$

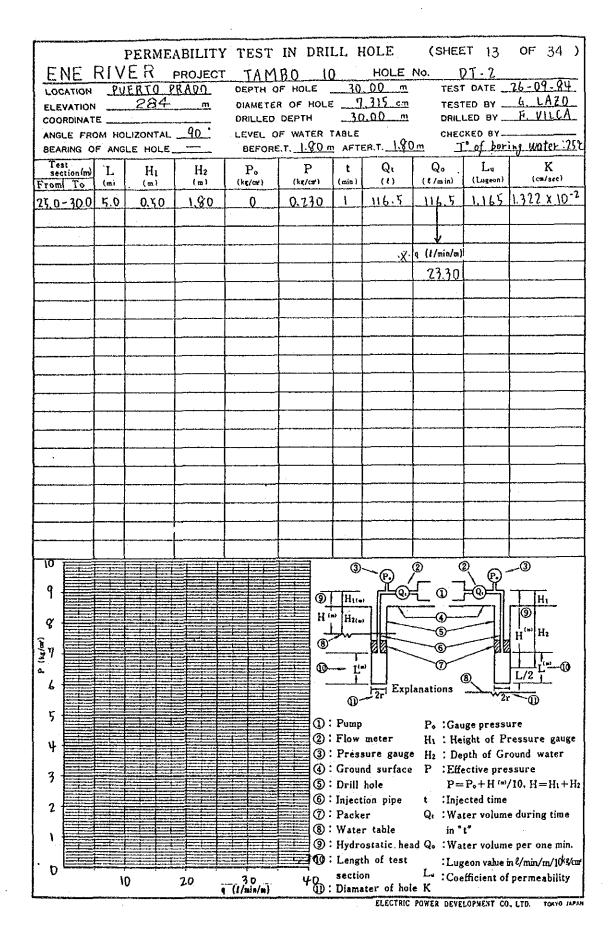
Jind: C: Form coefficient

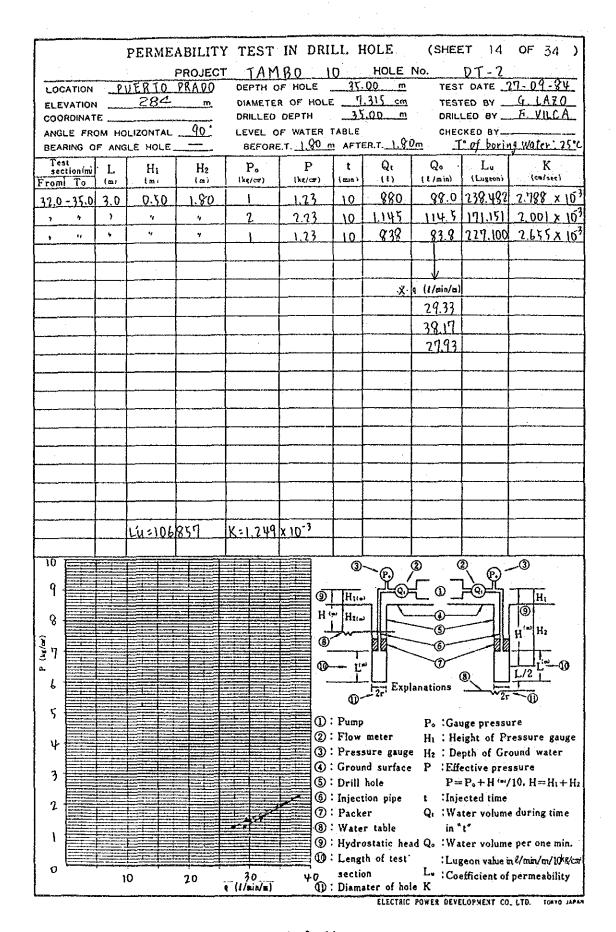
m: Straight line gradient

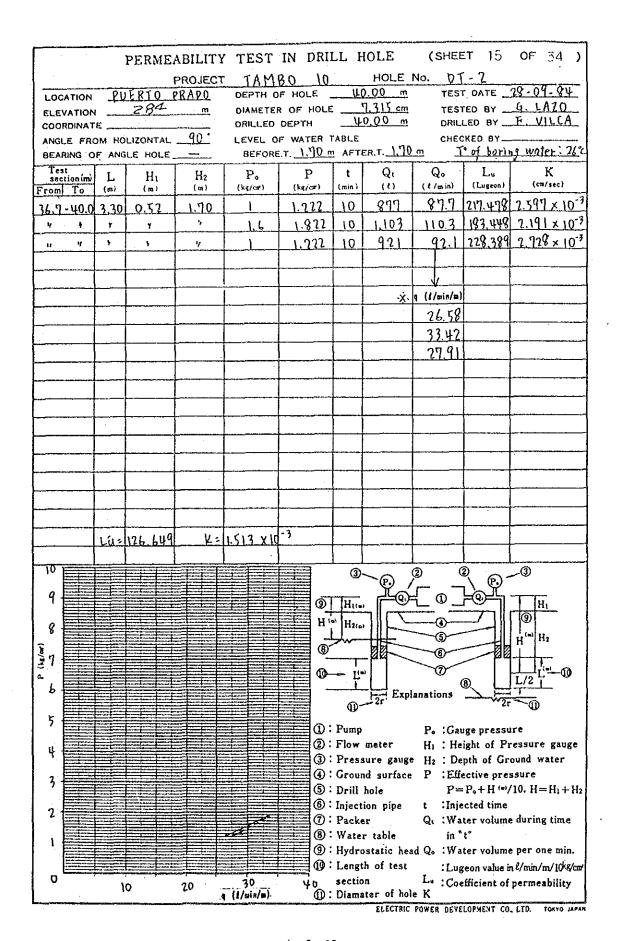
1) A) K'= Net Permeability coefficient

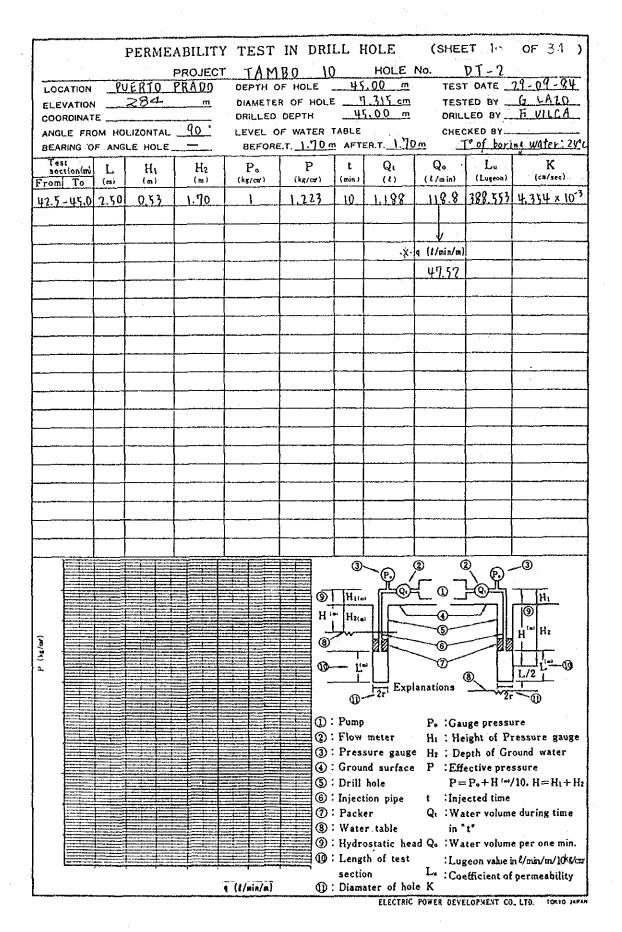
LE FRANC PERMEABILITY RATE

$$C = \frac{2 \pi L}{L_{m} \left(\frac{2 L}{3}\right)}$$


$$C = \frac{2 \pi 485}{\left\{ u \left(\frac{2 \times 485}{7.315} \right) \right\}}$$


$$K_1 = \frac{q i}{c \lambda i}$$


$$K_1 = \frac{38.33}{623.51 \times 10} = 6.15 \times 10^{-3} \text{ cm/scc.}$$

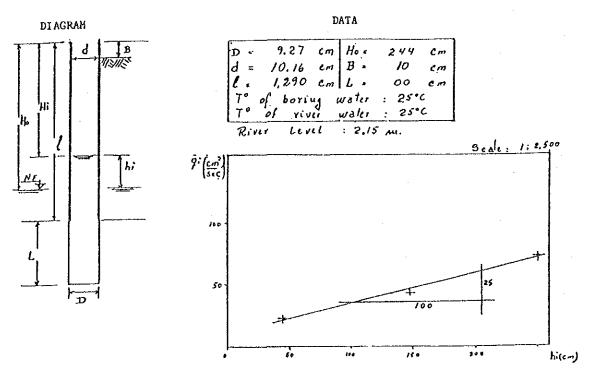

$$W = \frac{9i}{hi} = \frac{255}{100} = 2.55$$

$$K_2 = \frac{u}{c} = \frac{2.55}{623.51}$$

			والمراجعة								
]	PERME	ABILITY	TEST	IN DRI					OF 34)
				PROJECT	TAM	BO 10		HOLE			30-09-84
LOCA	MOIT	_ <u></u>	ER10 1 284	<u>M</u>	DEPTH O	F HOLE	· — — — —	7.315 cm	TES		G. LAZO
COOR	ATION DINAT	E	201		DRILLED	DEPTH	·	0.00 m	DRIL.	LED BY	FI. VILCA
			LIZONTAL	90.		F WATER				KED BY-	
BEAR	NG O	F ANG	LE HOLE		BEFORE	.т. <u>].50 п</u>	AFT	ER.T1.50	<u>lm</u> I	of barin	• water: 28°C
Test sect	ion(nv	L	Ηı	H ₂	P.	P	t	Qι	Q.	Lu	K
From	То	(m)	· (m)	(m)	(kg/car)	(kg/cort)	(min)	(1)		(Lugeon)	
465	<u> 50,0</u>	3.50	0.55	1.50	1	1,205	10	1.12			3.216 x 10 ⁻³
"	•	"	1	'1	1.6	1.8ät	10	1.390			Z.662 Y 10"
	+	•	۲ 	1,	1	1.205	10	1,115	111.5	264.375	3.199 x 10-3
<u> </u>					ļ	ļ <u> </u>	<u> </u>		-		
									<u> </u>		· · · · · · · · · · · · · · · · · · ·
			,				ļ	<u>-×</u> .	q ([/min/m		
<u></u>									32.03		
							.		39.71		
<u> </u>									31.86	ļ	
<u> </u>							<u> </u>				
							ļ				
									ļ		
								<u> </u>			
					1						
					<u> </u>						
			_			`					
					<u> </u>						
		Lus	144 606	K:	1.750 x 10	3			<u> </u>		
									<u> </u>		
10 [3	(P.)	@ (2) (P)	_3
q								T.O.	<u></u>	بكرفيظ	
' 🖁						9	H ₁ (.	r		<u>, </u>	H ₁
8						Н (") H2(#	" []] 	(4) (5)		H (=) H2
9						®					H '''
P (kg/cg)							- I.		~		1, -2, -10
6)	3	L/2 1
							0)	2r EXD	anations		- 0
5						1 0.	Pump		D :C		
								meter		ige pressuight of Pr	essure gauge
4								sure gauge			ound water
3								nd surface	P :Eff	ective pres	ssur <i>e</i>
'							Drill				10, $H = H_1 + H_2$
2								tion pipe	-	cted time	duning time
							Pack Wate	er r table	Qt ≀Wa in "		during time
1											per one min.
								th of test			n ℓ/min/m/10/kk/cm/
0		١	0	20	30 q (1/min/m)	40	section		Lu : Coe		permeability
					q (f/min/m)	w :	Diam	ster of hol	e K Power deve	LODUENT CA	LTD. TORYO JAPAN
								eleli kil	TOMEN DEAD	LUPMENT CO.	LID. LORTO JAPAN

(3) Drillhole DT-3 Records of Permeability Tests

GEDTEC S.A.


PROJECT : TAMBO 10

Shee' (18 - 34)

SURVEY :

TEST OF LE FRANC PERMEABILITY Nº 1 (CONSTANT LOAD)

Date :/6 - 09-86	Driller	: C. Huayta
Boring : DI- 3 Depth of Test : 17.80 m	Performed by Revised by	: G. Laro :
Phreatic level:244m	Zone	: PUERTO PRADO

Hour	H. (cm)	Hi (cm)	hi (tm)	V; (cm²)	ti (sec)	91 ((*** kec)	Ki (cii/sec)
10430	244	00	244	5,000	70		1.44 x 10
	244	100	144	5,000	108	42.30	1.45,10
	244	200	44	500	23	21.74	2.43:10
			:				
			•				<u> </u>

OBSERVATIONS

K1 : 423 x 10 1 4 m/200.

hi . H. - Hi gi . Vi / ti K. = 9: /chi

Kz: m/c

Jinde: C = Form coefficient

m: Straight line gradient

u At K'm Net Permeability coefficient

LE FRANC PERMEADILITY RATE

$$\frac{L}{D} = 0$$

$$C = 2 d = 2 \times 10.16$$

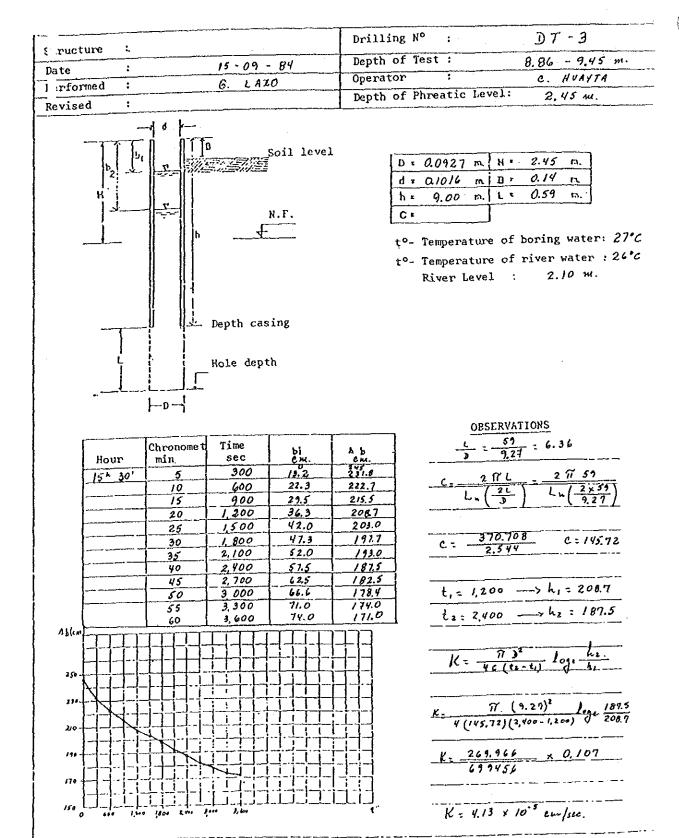
$$C = 20.32$$

6

477

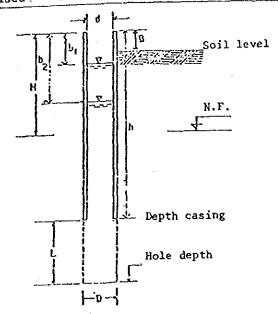
$$K_1 = \frac{71.43}{20.52 \times 244} = 0.01441 = 1.44 \times 10^{-2} \text{ cm/sec.}$$

$$K_1 = \frac{21.74}{20.32 \times 44} = 0.02431 = 2.43 \times 10^{-2} \text{ cm/sec.}$$


$$lm = \frac{9i}{hi} = \frac{26}{100} = 0.25$$

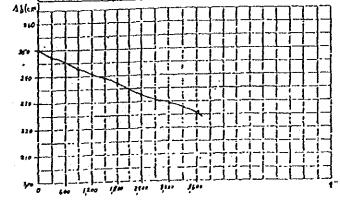
$$K_2 = \frac{\Delta u}{c} = \frac{0.25}{20.32} = 0.01230$$

$$K_2 = 1.23 \times 10^{-2} \text{ em/sec.}$$


LE FRANC TEST Nº 1 VARIABLE LOAD

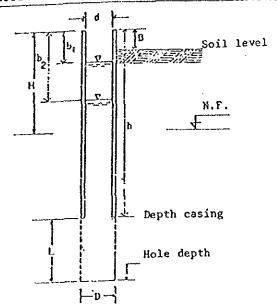
Sheet (20 - 34)

LE FRANC TEST Nº 3 VARIABLE LOAD


•	
	Drilling No : D T - 3
	Depth of Test: 14.20 - 15.05 m.
erformed: G. LAZO	Operator : J. CORNELIO
Povised :	Depth of Phreatic Level: 2,50 m.

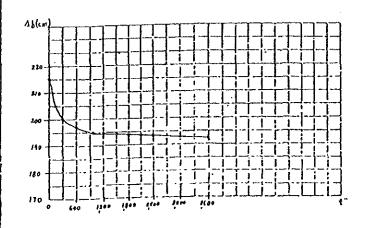
D =	0.0927	m,	H * .	2.50	ന,
d *	0.1016	m	Br	0.12	rs.
h =	14.32	m.	L×	0.85	n.
C ×					

- to- Temperature of boring water: 27°C
- to- Temperature of river water : 27°C River Level :


Hour	Chronome t	Time sec	bi em.	A b
15 h 00'	5	300	2.6	247.4
70 00	10	600	4.9	245.1
	15	900	7.2	242.8
	20	1.200	7.5	240.7
	25	1,500	11.0	239.0
	30	1,800	12,3	236.7
	35	2.100	15.4	234.6
	40	2,400	17.4	232.6
	45	2,700	/7.5	290.7
	50	3,000	21.3	228.
	55	3,300	22.5	227.5
	60	3,600	24,5	225.5

OBSERVATIONS
$\frac{L}{b} = \frac{\theta 5}{9.27} = 9.17$
271 6 277 85
$\frac{2 i l}{l l} = \frac{2 l l}{l l} = \frac{2 l l}{l l} = \frac{2 l l}{l l}$
C: 534.071 C: 183.59
$t_1 = 1,200 \longrightarrow h_1 = 240.7$ $t_2 = 2,400 \longrightarrow h_2 = 232.6$
K = \frac{\gamma \delta^2}{4c \left(12-5c)} \left\(\dagge
K= \frac{17 (9.27)^2}{4 (183.59) (1,200)} \langle 0 \frac{1}{240.7}
K 269.946 x 0.034 88/232
K= 1.04 × 10-5 cm/sec.

LE FRANC TEST Nº 4 VARIABLE LOAD


		Drilling No	:	DT-3	
Structure :					
)ate :	23 - 09 - 84	Depth of Test	;	25.00 m.	
Performed :	G. LAZO	Operator	:	J. CORNELIO	
- FLIOIMEG .		Depth of Phre	atic Leve.	l: 2.15 m.	
Revised :					

D : 0.0927 m	H = 2.75 m.
d = 0.1016 m	B . 0.05 m
h = 25.05 m.	L = 00 m.
C =	

- to- Temperature of boring water: 27°C
- to- Temperature of river water :27°C River Level : 2.10 mm.

Hour	Chronomet min/	Time sec	bi cm.	A b
07 30'	2' 30"	150	9.08	205.2
01 -	5'	300	14.8	200.2
	10'	600	18.1	196.9
	16'	960	19.7	145.3
	20'	1,200	20.3	194.7
	25'	1,500	20.8	194.2
	30'	1,800	21.3	/99.7
	40'	2,400	21.7	193.3
	50'	3,000	22.0	143.0
	60'	3,600	22.2	192.8

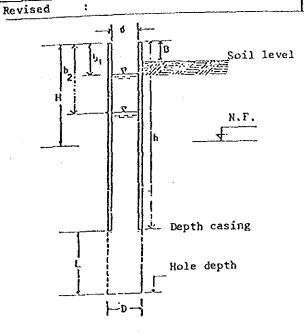
OBSERVATIONS

L/D=0 c=2d c=2x10.16

ti=1,200 -> hi= 194.7
ti: 2,400 -- hi= 193.3

C = 20.32

K: " de loge he


K: 11 (10.16)2 Pog 193.3
4(20.52)(2,400-1,200) \$ 194.7

K. 321.293 × 7.216 × 10.3

K = 2.40 x 10-5 cm/11c.

LE FRANC TEST Nº 5 : Shee: (23 - 34) VARIABLE LOAD

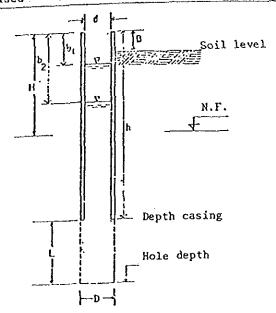
	Drilling No :	DT-3
	Depth of Test :	35.00 m.
Performed : G. LAZO	F	J. CORNELIO
	Depth of Phreatic Level:	3.00 m.

D . 0.07315 m	Н т -	3.00	IJ,
d = 0.0762 m	n r	0.20	n.
h = 35,20 m.	į, r	00	n.
C:			

to- Temperature of boring water: 25°C to- Temperature of river water : 24°C River Level : 2./0 ML.

Hour	Chronomet min/	Time sec	Ы Си.	A b
06h 10'	2' 30"	150	0.6	219.6
09 ,0	5'	300	1.1	298.9
	10.	600	2.1	297.9
	14'	840	2.5	297.5
	20'	1,200	2.9	297.1
	25'	1,500	3.1	216.9
	30'	1,800	3, 3	294.7
	40'	2, 400	3, 7	296.3
	50'	3.000	4. j	295.9
	60'	9 600	4.5	295.5

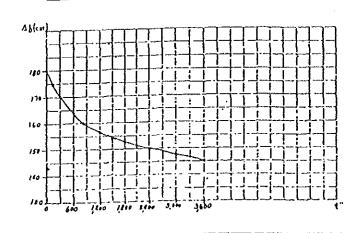
Ab(cm) 240 280


APETRVATIONS

c:2 d c: 2 x 7.62 e: 15.24 t: 1.200 -> h: : 297.1
e: 15.24
t,: 1,200 -> h,: 297.1
t, = 1,200 -> h, = 297.1
t2:2,400 -> h2:296.3
K- " d2 log h2
4 c (12-t.) h,

K - 1 & 2.4 15 x 2.696 x/0-3
K = 6.72 × 10 cm/sec.

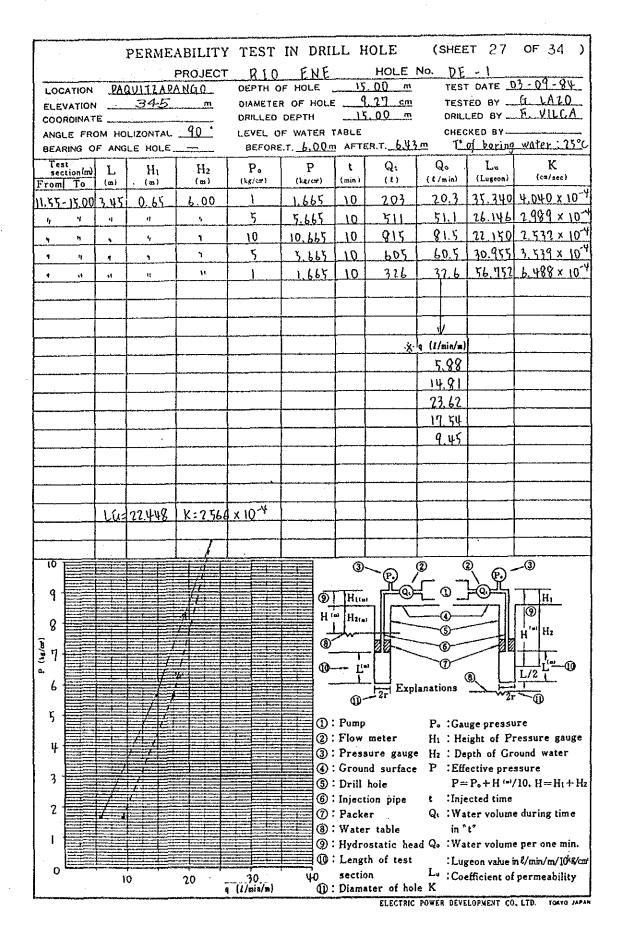
LE FRANC TEST Nº 6 Sheet (24 - 34) VARIABLE LOAD

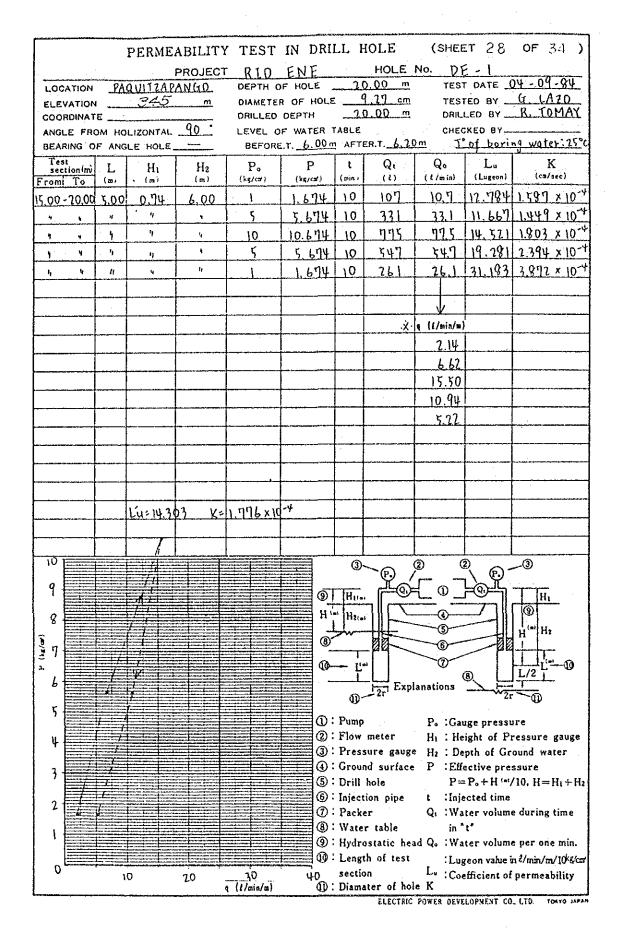

0	Drilling N° : D7-3
Structure : 29.09-84	Depth of Test: 39.00 - 40.00 w.
Performed : G. LAZO	Operator : J. Co2NELIO
Pavised	Depth of Phreatic Level: 1.80 m.

D = 0,07315 m	. H ∗	1.80	ta,
d = 0.07 62 m	В	0.40	'n
h = 39.40 m.	Lŧ	1.00	n.

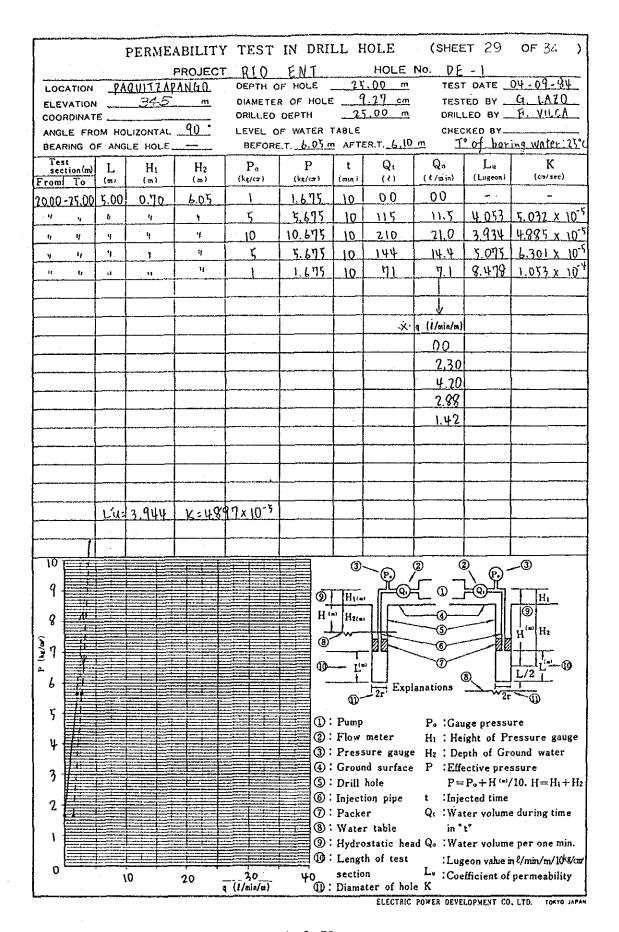
to- Temperature of boring water: 24°C to- Temperature of river water : 23°C River Level : 2.30 m.

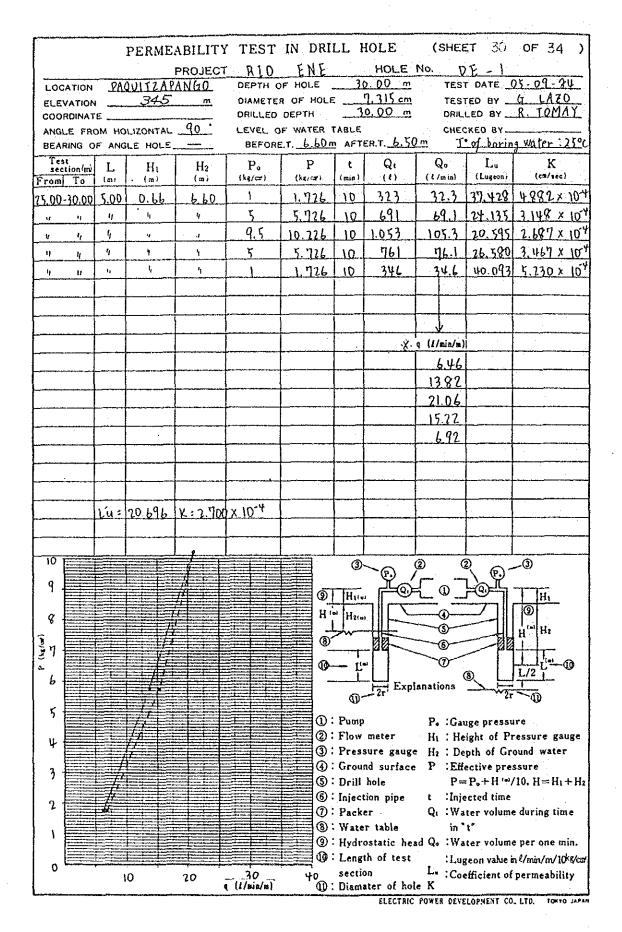
Hour	Chronomet	Time sec	bi cm.	A b
05 L 20'	2'30"	150	5.04	174.6
	5'	300	10.0	170.0
	10'	600	16.4	163,6
	14'	840	/9.9	160.1
	20'	1,200	23.7	154.3
	25'	1.500	25.7	154.3
	30'	1, 800	27.5	152.5
	40'	2, 400	30.1	149.9
	50'	3. 000	32.6	147.4
	60'	3.600	35.0	145.0

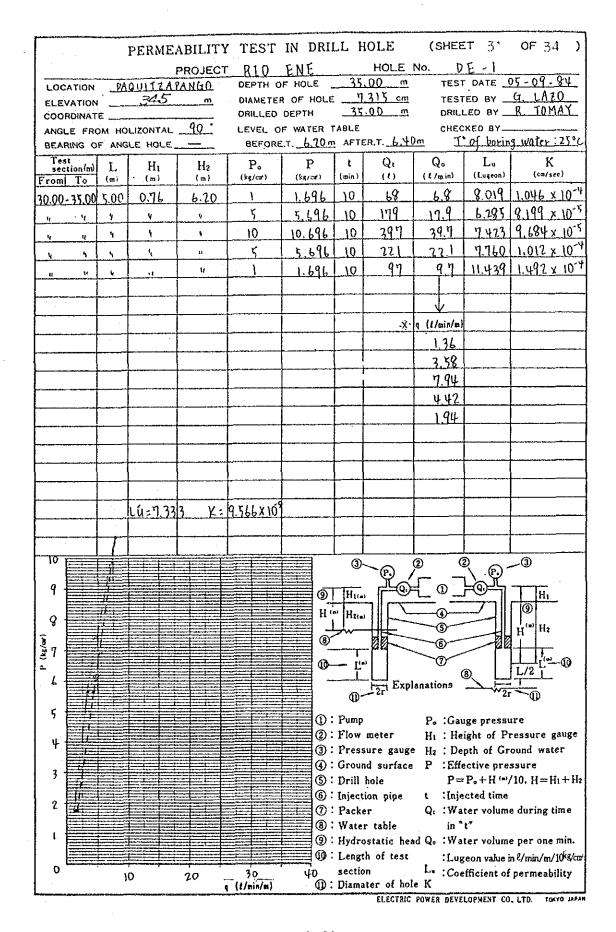


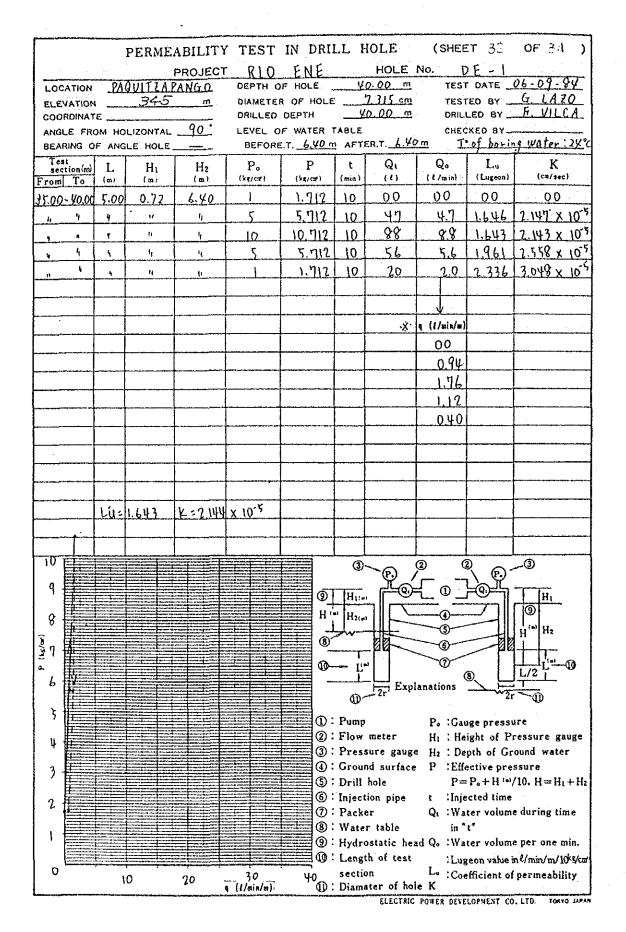


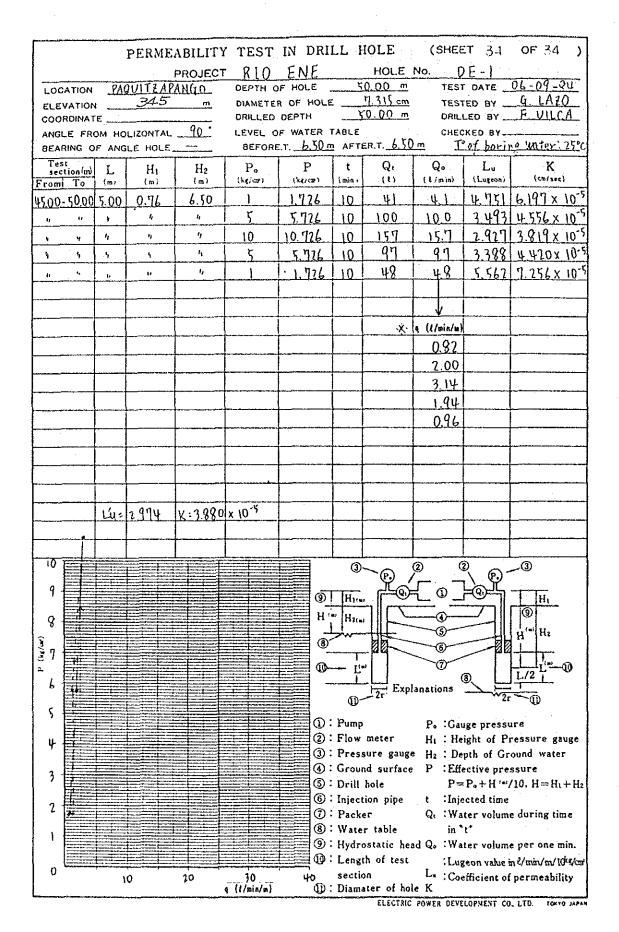
$\frac{OBSERVATIONS}{L} = \frac{100}{7.315} = 13.67$
$\frac{c-\frac{2\tilde{n}L}{Lu(\frac{2L}{3})} \frac{2\tilde{n}/00}{Lu(\frac{2\times100}{7.315})}$
C: 628.318 C: 189.94
$t_1 = 1,200 \implies h_1 = 156.3$ $t_2 = 2,400 \implies h_2 = 149.9$
K- "32 loge hi
V- 11 (7.315)2 leg 149.9 4 (189:74)(2.400-1,200) 0 156.3
K = 168.104 x 0.042 911712 K = 7.74 x 10 cm/sec.

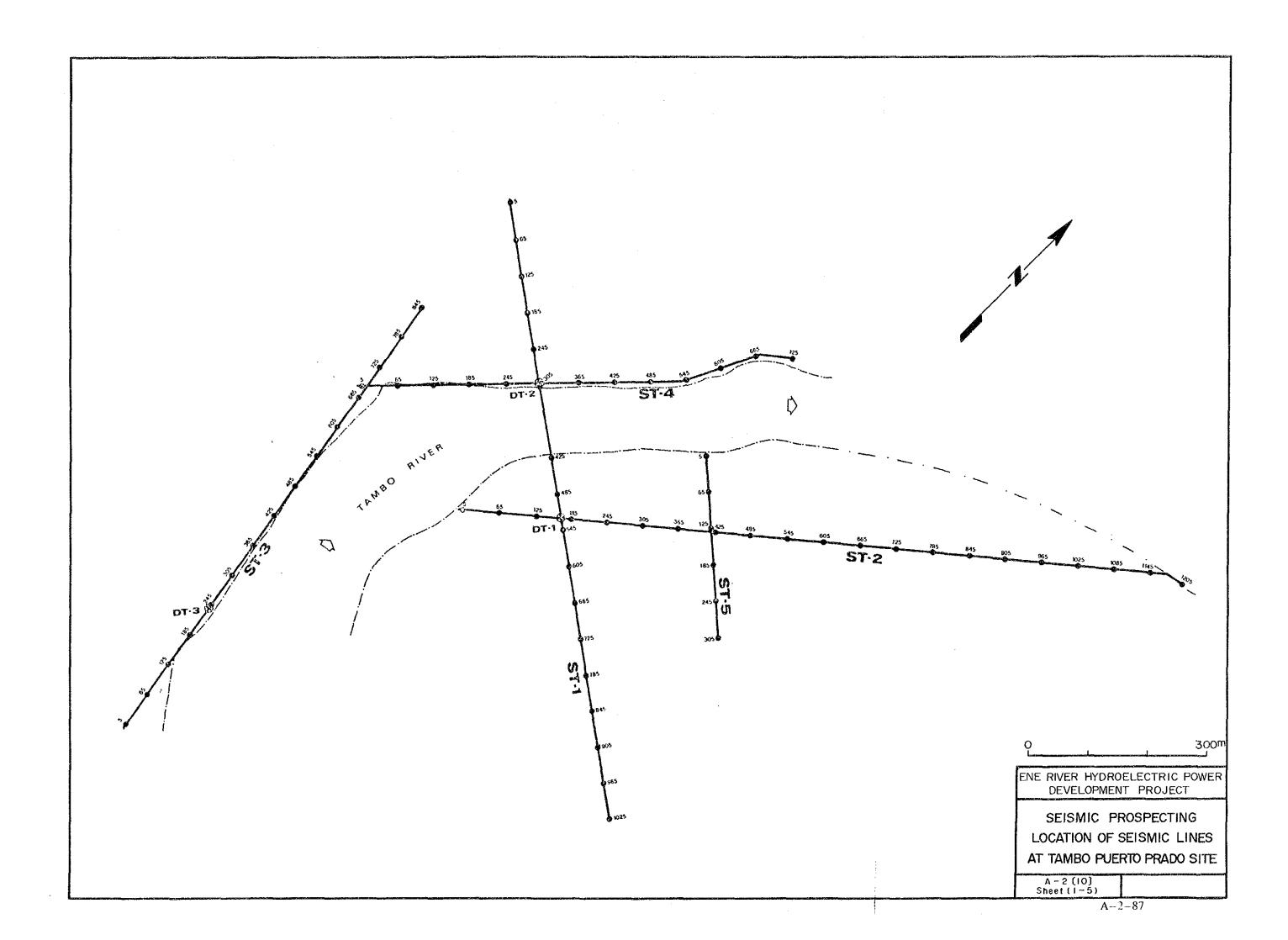

(4) Drillhole DE-1 Records of Permeability Tests

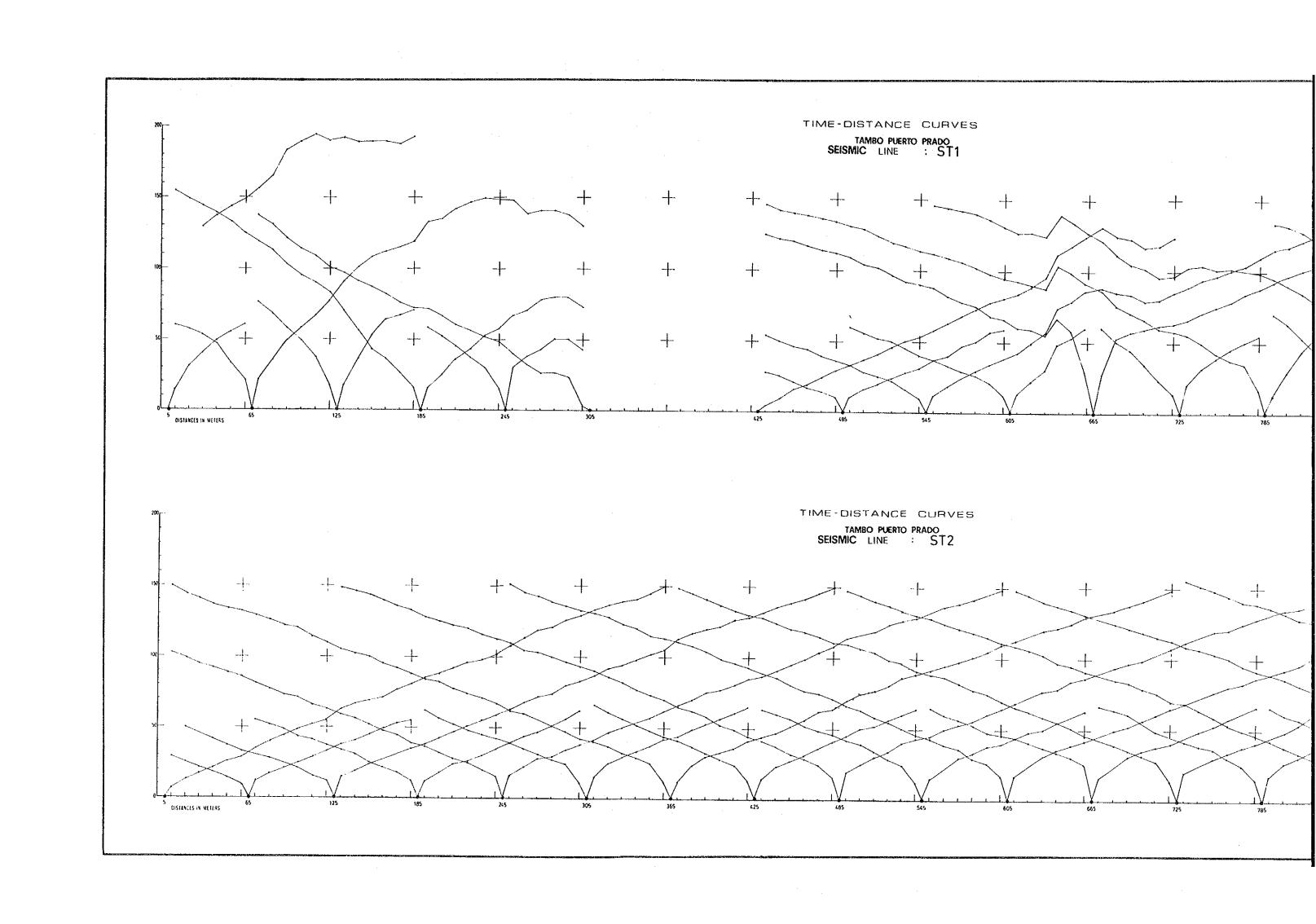

		DEDME	voii irv	7 7557	IN DRII	1 1	IOLE	(SHEE	T 25	OF 34	١
CNE				R10				No. DE		01 ()21	,
LOCATION							 _			07 - 09 - 81	- -
ELEVATION	ı rai	345	<u>m</u>		R OF HOLE			TEST	TED BY	G. LAZO	
COORDINAT	E			DRILLED	DEPTH	1	5.10 m	DRIL	LED BY	R TOMA	Y
ANGLE FR	он мо	LIZONTAL		LEVEL O	F WATER 1	ABLE			KED 8Y_		
BEARING O	F ANG	LE HOLE.		BEFORE	т. <u>3.00 л</u>	AFT	ER.T. <u> </u>	w			_
Test section inv	L	H ₁	H ₂	P.	P	t	Q.	Q.	Lu	K (cm/sec)	
From To	(m)	(m)	(m)	(kg/c s/)	(kg/car)	(min)	(1)	(t/min)	(Lugeon)		~~¥
1,95 - 5.10	3.15	0, 62	3,00	<u> </u>	1.367	10	179	12.9	30.013	3.365 X I	• • • • • • • • • • • • • • • • • • • •
, ,	7	<u> </u>	1	2	2 362	10.	675	62.5	94.002	9.401x	
1 1	ų .	*	ч	3	3 362	10	1.286	128.6	121.432	1,359 x	-7
7 9	н	,	7	2	7.367	10	1.047	104.7	140.720	1.575 x	
y 11	-11	17	.,		1.362	10	135	73.5	171.317	1.917x1	10_
							<u> </u>				
		<u> </u>						<u></u>			
							-×.	q (t/min/m)	-		
								4.10			
<u></u>								19.84			
								40.83		~~~~~~ ~~	
								33.24			
								23.33			·
		Lu = 180	162	K = 2.017	x 10 ⁻³						
10						3		②	® (P.)	_3	
9 =								<u></u>			
'					9	H ₁₀	—, <i>┌</i> ~~~~	<u> </u>		(H ₁	
8						H21#	" 			[,]	
3					8			6		H'= H2	
37					<u></u>	- 16	_ "	~		, (a)	.
							1 1	(3), L	L/2	
6						m -	2r Expl	anations	<u> </u>	_	
5					.	_		5 .0			
						Pump Flow	meter		ige pressu	re essure gau	ge
4										ound water	_
,							nd surface				
3						Drill				10, $H = H_1 +$	H2
2						-	ion pipe	•	cted time		
						Packe	er r table	Qt ;Wa in *		during time	•
										per one mir	۱. ا
						•	th of test			ıe/min/m/10ka	•
0	١	0	20	30	40	section	on.	L. : Coe		permeability	
				(t/min/m)	<u>(1)</u> :	Diama	ster of hol	e K]
							FLECTRIC	POWER DEVE	LUPMENT CO.	. LTD. TOKYO	JAPAN

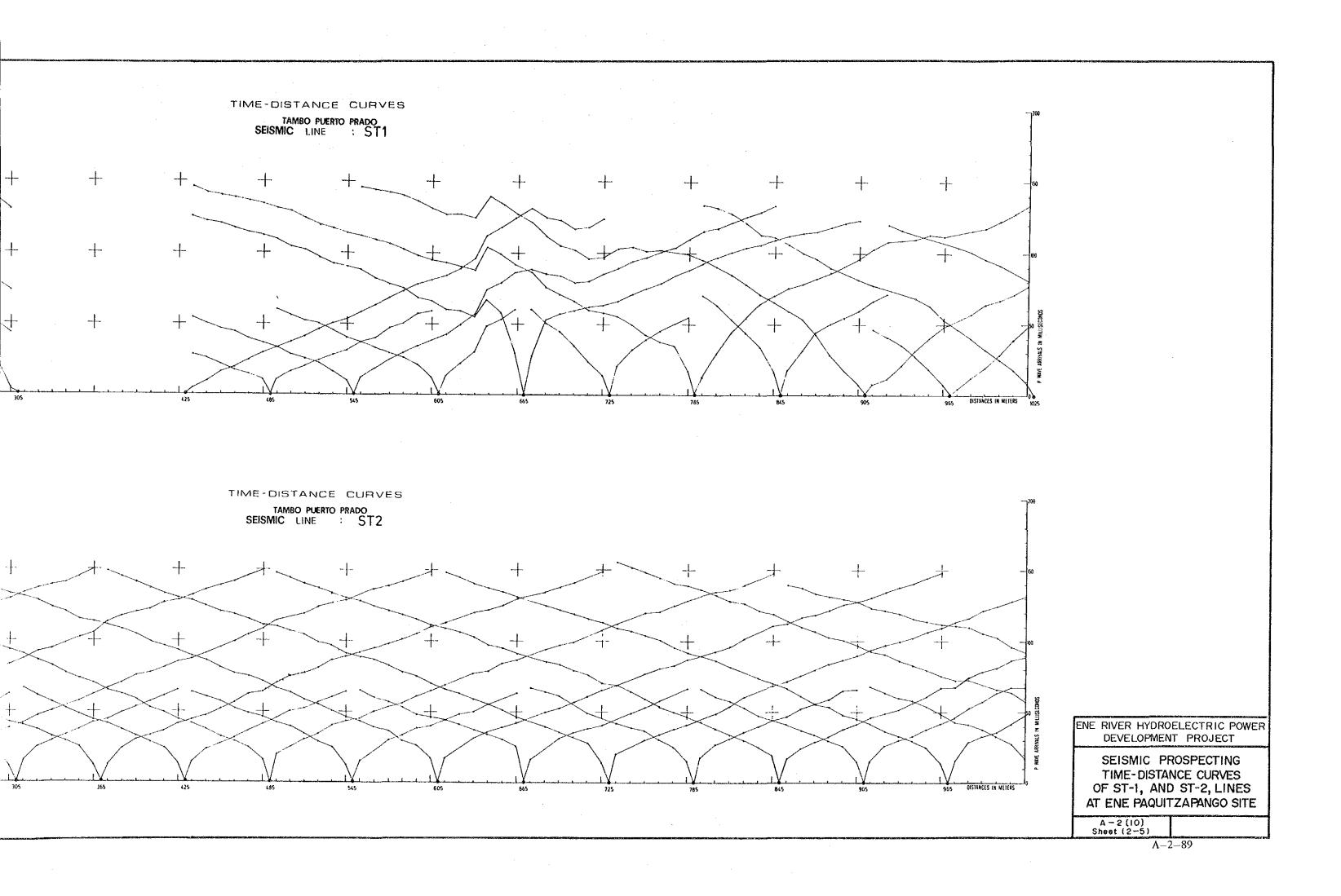

PERMEABILITY TEST IN DRILL HOLE					hrom	YN DOI	7 7 Y	IOLE	/03100		oc 24)
DEPTH OF HOLE 10.00 m TEST-OATE 07.04.94 TESTEO AVE 07.04.				•						1	OF 34)
DIAMETER OF HOLE 4,74 Control on the coordinate 10,00 m DRILLED DEPTH DRILLED DEPTH 10,00 m DRILLED DEPTH DRIL	·										13.09 QU
DRILLED DEPTH 10.00 m DRILLED BY R 10.10 m	LOCATIO	ON PA	345 345	ANGO							
ANGLE FROM HOLZONTAL 19. SEPORET 6.50m AFFERT. 6.12 m Tof being wafter 129'C Tof b), 00 m	ORIL		
SEPART SIGN AFTERT SIGN AFTERT SIGN Tof being Male: 27'C Seriosing L H1 H1 H1 H1 H1 H1 H1				90 .							
Control Cont					BEFORE	Ξ.Т. <u>6.50 г</u>	n AFT	ER.T. <u>6.12</u>	<u>m</u> <u>I</u>	of borin	water: 29°C
Trans To (as) (Test	(mì L	H ₁	H ₂	\mathbf{P}_{\bullet}	P	t		{ ·		
1.71	From To	o (mi	(m)	(m)	(kg/cz/)	(kg/c#)	(mia)	(1)	((/m in)		
1.13-10.0 2.73 0.60 6.50 1 1.71 10 00 00 00 00 00 00 00 00 00 00 00 00	5.0-10	0 5.0	0.60	6,50	0.5	1.21			111)	183.471	2.278×10
1.13-10.0 2.73 0.60 6.50 1 1.71 10 00 00 00 00 00 00 00 00 00 00 00 00			<u> </u>						ļ		
1.13-10.0 2.73 0.60 6.50 1 1.71 10 00 00 00 00 00 00 00 00 00 00 00 00			<u> </u>								
7.73-10.0 2.73 0.60 6.50 1 1.771 10 00 00 00 00 00 00 00 00 00 00 00 00	6.85-10	.0 3.15	0.60	6.50	0.5	1.21	1	105	105	275 482	3,083 x 10
3 3.71 10 00 00 00 00 00 5 5 5.71 10 00 00 00 00 00 1 1.71 10 00 00 00 00 00 00 1 1.71 10 00											
3 3.71 10 00 00 00 00 00 5 5 5.71 10 00 00 00 00 00 1 1.71 10 00 00 00 00 00 00 1 1.71 10 00											
3 3.71 10 00 00 00 00 00 5 5.71 10 00 00 00 00 00 1 1.71 10 00 00 00 00 00 1 1.71 10 00 00 00 00 00 1 1.71 10 00 00 00 00 00 22.70 33.33 33.33 10 10 00 00 00 00 00 10 1 1.71 10 00 00 00 00 00 11 1.71 10 00 00 00 00 00 12 1.71 10 00 00 00 00 00 13 3.71 10 00 00 00 00 00 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7.75 - 10	0 2.25	0.60	6.50	1	1.71	1.0	0.0	00	0.0	00
1	<u></u>				3		Ĭ i	00	00	0.0	00
3 3.11 10 00 00 00 00 00 1 1,71 10 00 00 00 00 00 4 (It/sis/s) 22.70 33.33 33.33 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						 			00		0.0
1 1,71 10 00 00 00 00 00 00									T .		
### A Constitution of the property of the prop					1		1				
72.70 33.33 Hitch Hitch			 			 	1 2	×			
72.70 33.33 Hitch Hitch		_	 						o (f/ais/a)		
3 33,33 The state of the state								···	 		<u> </u>
① : Pump ② : Gauge pressure ② : Flow meter ③ : Pressure gauge ③ : Pressure gauge ③ : Ground surface ③ : Drill hole ⑤ : Injection pipe ⑤ : Injected time ② : Packer ⑥ : Water volume during time ⑥ : Water table ⑤ : Hydrostatic head Qo ⑤ : Lugeon value in 2/min/m/10k3/cr section ② : Lugeon value in 2/min/m/10k3/cr 1 (1/ain/a) ② : Diamater of hole K			 				-		1		
The section of test section section for the section se			 						77,77		
The section of test section section for the section se	·		<u> </u>			<u> </u>		<u></u>	 		
The section of test section section for the section se			 			 			 		
The section of test section section for the section se			ļ			ļ			-		
The section of test section section for the section se			ļ		 						
The section of test section section for the section se			<u> </u>						<u></u>		<u> </u>
The section of test section section for the section se							(3)	<u>`</u> ∙® ,		~\ ® ^	_(3)
The section Lage of the lage o							l Hu	਼ <u>ૄ</u> ਿ®	= <u>_</u>	 	
(1/min/n) (D) (Explanations (D) (Explanations								$\neg \parallel \vdash \!$			
(1/min/m) (1) (2) (3) (4/min/m) (4) (4/min/m) (1) (1) (1) (1) (2) (2) (3) (4/min/m) (1) (1) (1) (2) (2) (3) (4/min/m) (1) (2) (3) (4/min/m) (1) (2) (3) (4/min/m) (1) (2) (4/min/m) (1) (3) (4/min/m) (1) (4) (4/min/m) (1) (4) (5) (6) (7) (8) (8) (9) (1) (1) (1) (1) (1) (1) (1							H2(0	,]][(5)		
1 : Pump Po : Gauge pressure 2 : Flow meter H1 : Height of Pressure gauge 3 : Pressure gauge H2 : Depth of Ground water 4 : Ground surface F : Effective pressure F : Injected time F : Injected time F : Injected time F : Injected time F : Water volume during time in "t" F : Hydrostatic head Qo : Water volume per one min. F : Lugeon value in 2/min/m/10/8/ca section	§ 🗏					(8)			<u> </u>		H '''
1 : Pump Po : Gauge pressure 2 : Flow meter H1 : Height of Pressure gauge 3 : Pressure gauge H2 : Depth of Ground water 4 : Ground surface F : Effective pressure F : Injected time F : Injected time F : Injected time F : Injected time F : Water volume during time in "t" F : Hydrostatic head Qo : Water volume per one min. F : Lugeon value in 2/min/m/10/8/ca section	き						71	_[77]			
①: Pump ②: Flow meter ③: Flow meter ④: Ground surface ④: Ground surface ⑤: Drill hole ⑤: Injection pipe ⑤: Injected time ⑦: Packer ③: Water volume during time in "t" ③: Hydrostatic head Qo: Water volume per one min. ⑥: Length of test section [] Length of test section [] Length of hole K								11.	(3). L	L/2
(2): Flow meter (3): Pressure gauge (3): Pressure gauge (4): Ground surface (5): Drill hole (6): Injection pipe (7): Packer (8): Water volume during time (8): Water table (9): Hydrostatic head (9): Water volume per one min. (10): Length of test (10): Diamater of hole (11): Diamater of hole (12): Height of Pressure gauge (13): Pressure gauge (13): Height of Pressure gauge (14): Length of Ground water (15): Linjected time (16): Injected time (17): Water volume per one min. (18): Length of test (18): Length of test (18): Coefficient of permeability							w.	2r Exp	lanations		
(2): Flow meter (3): Pressure gauge (3): Pressure gauge (4): Ground surface (5): Drill hole (6): Injection pipe (7): Packer (8): Water volume during time (8): Water table (9): Hydrostatic head (9): Water volume per one min. (10): Length of test (10): Diamater of hole (11): Diamater of hole (12): Height of Pressure gauge (13): Pressure gauge (13): Height of Pressure gauge (14): Length of Ground water (15): Linjected time (16): Injected time (17): Water volume per one min. (18): Length of test (18): Length of test (18): Coefficient of permeability							W.				v
(a): Pressure gauge H2: Depth of Ground water (a): Ground surface P: Effective pressure (b): Drill hole P=Po+H(**/10, H=H1+H) (c): Injection pipe t: Injected time (d): Packer Q1: Water volume during time (e): Water table in "t" (f): Hydrostatic head Q2: Water volume per one min. (h): Length of test : Lugeon value in 2/min/m/10/k/cr section L= : Coefficient of permeability (g): Diamater of hole K											
(i): Ground surface P: Effective pressure (ii): Drill hole P=Po+H (**/10, H=Hi+H) (iii): Injection pipe t: Injected time (iii): Packer Qi: Water volume during time (iii): Mydrostatic head Qo: Water volume per one min. (iii): Length of test : Lugeon value in 2/min/m/10/8/cr section Lugeon value in 2/min/m/10/8/cr (iiii): Diamater of hole K											
(5): Drill hole P=Po+H (an/10, H=H1+H (6): Injection pipe t: Injected time (7): Packer Qt: Water volume during time in "t" (9): Hydrostatic head Qo: Water volume per one min. (10): Length of test section Lan: Coefficient of permeability (1/min/m) (1): Diamater of hole K											
(6): Injection pipe t: Injected time (7): Packer Q: Water volume during time (8): Water table in "t" (9): Hydrostatic head Qo: Water volume per one min. (10): Length of test : Lugeon value in l/min/m/10/k/cr section Lu: Coefficient of permeability (1): Diamater of hole K											
(1/min/m) (7): Packer Q.: Water volume during time (8): Water table in "t" (9): Hydrostatic head Q.: Water volume per one min. (10): Length of test : Lugeon value in 1/min/m/10*10*10*10*10*10*10*10*10*10*10*10*10*1											
(I/min/m) (B): Water table in "t" (B): Hydrostatic head Qo: Water volume per one min. (C): Length of test : Lugeon value in l/min/m/10 logo section Lu : Coefficient of permeability (D): Diamater of hole K									•		e during time
(I/min/m) (D: Length of test :Lugeon value in l/min/m/10/k/cr section L :Coefficient of permeability (I/min/m) (D: Diamater of hole K											•
section L. : Coefficient of permeability (1): Diamater of hole K										ter volum	per one min.
q (I/mis/m) (j): Diamater of hole K											
				•		W			- Lu ∶Coe Ie K	ifficient of	permeability
ELECTRIC POWER DEVELOPMENT CO., LTD. TOWYO LAP		-		((1/min/b)	w	. កានេយ			LOPMENT CO	LTD. TORYO JAP

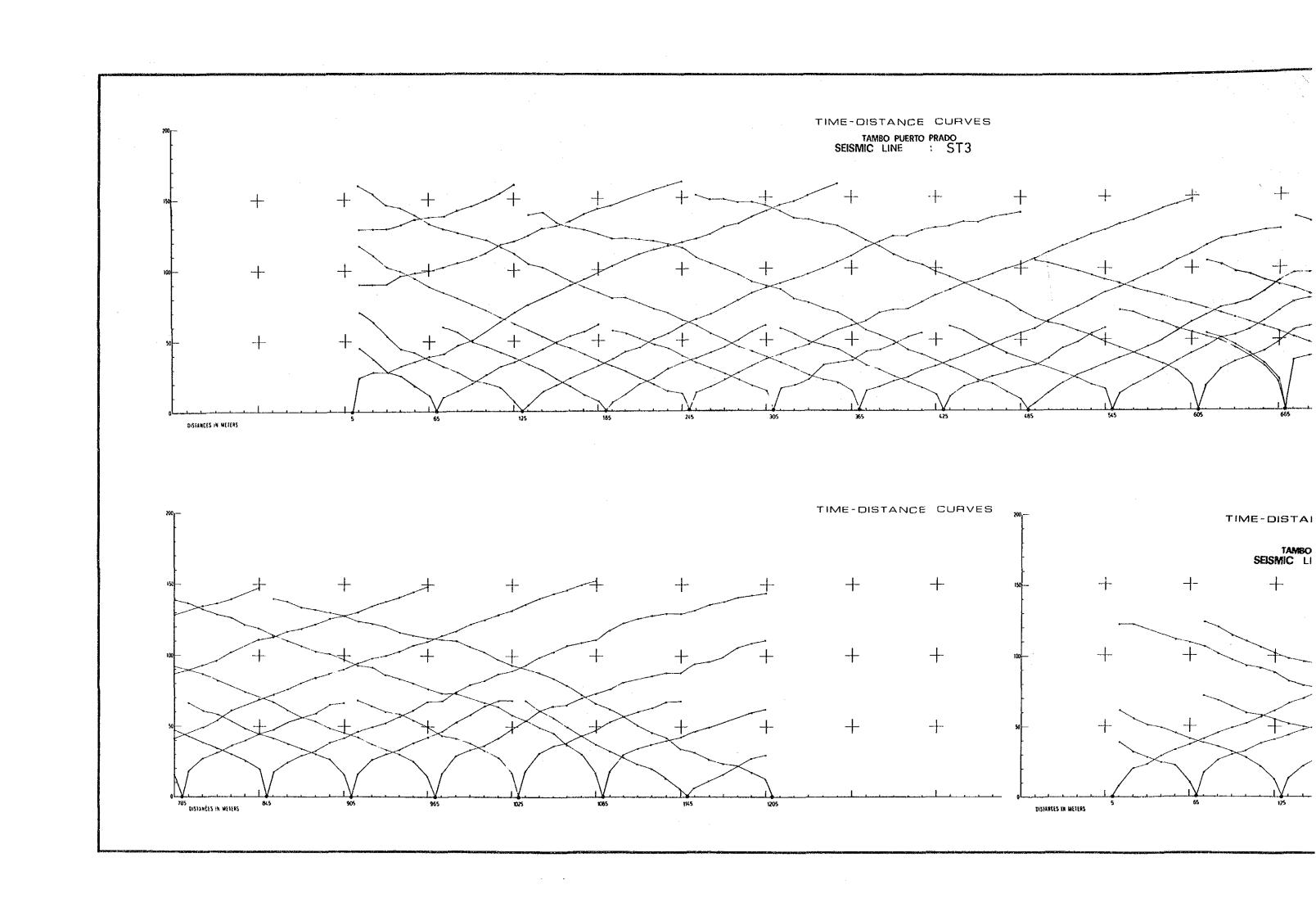


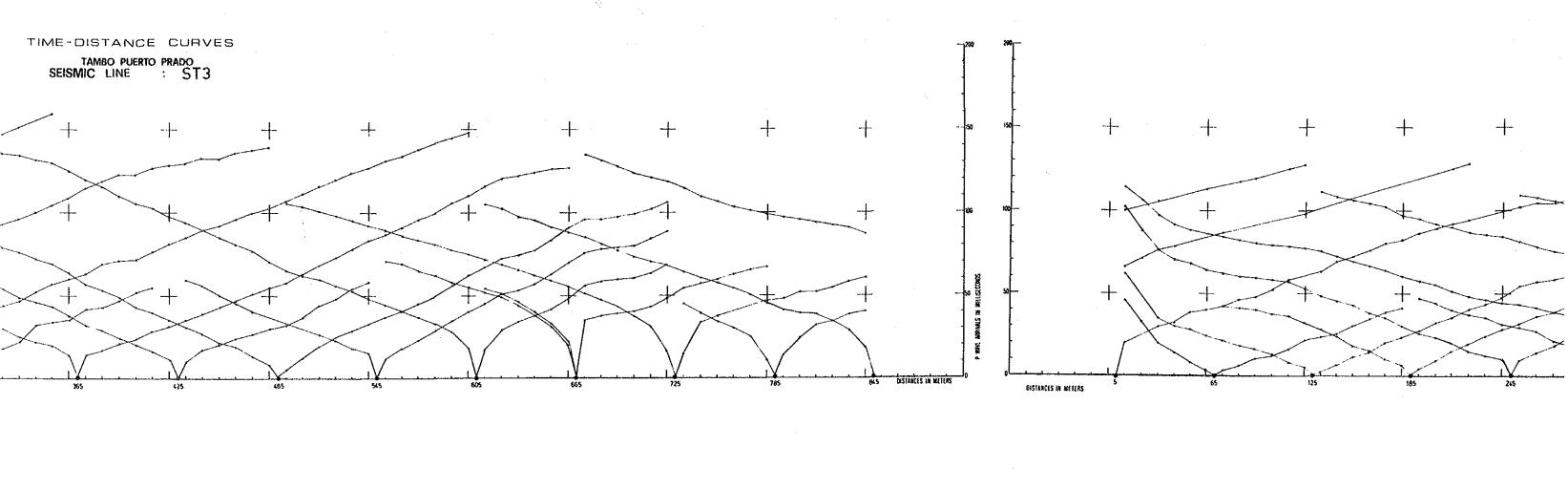


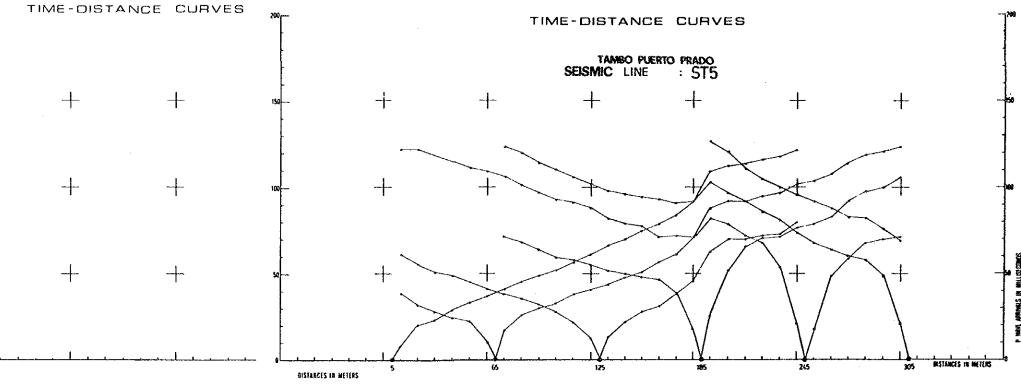

		PERME	ABILITY	TEST	IN DRII	LL I	IOLE	(SHEE	T 33	OF 34)
			PROJECT	R10						
LOCATION	-ŶA							YEST	DATE _	06-09-84
ELEVATION			m	DRILLED	OF HOLE		1.315 cm 5.00 m	TEST	ED BY	G. LAZO R. TOMAY
COORDINAT			90:	LEVEL O	F WATER T	ABLE		CHEC	KED BY-	
BEARING C				BEFORE	.T. <u>6.40 m</u>	AFT	ER.T. 6.5	<u>0m 1</u>	of bori	19 Water: 25°C
Test section(m) From To	L	H ₁	H ₂	Po (kg/car)	P (kg/c z)	t (min)	Qı (1)	Qo (t/min)	Lugeon)	K (cn/sec)
40.00 - 45.00		0.72	6.40	١	1.712	10	_00	00	00	00
1 "	ti	1	1,	ኣ	5,712	10	5	0,5	0.175	2.284 × 106
y n	7	4	4,	10	10,712	10	1	0.7	0.131	1.705 × 10-6
त प	l,	',	1,	5	5.712	10.	00_	00	00	0.0
9 11	11	1,	l _t	11	1.712	10_	00	00	00	00
								 		
							ν.	g (t/min/m)		
					<u> </u>		, <u>y</u> ,	00		
						<u> </u>	l	0.10		
 								0.14		
						-		00		
								00		
										<u></u>
								ļ		
					<u> </u> 			<u> </u>	 	
·	LÚ:	0.134	K=1.752	x 10 p		<u></u> -			<u> </u>	<u> </u>
								<u> </u>		
10						(3)	<u> </u>	(2) (2) _	
,						•	`_@	/	$\tilde{\mathbf{P}}$	
9					1	H1:		<u>-</u>		Hı
8					H '	" H2:,	•	<u> </u>		9
3								<u> </u>		H Hs
7					(A)	- Ľ		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
6					_			lanations	3 <u> </u>	L/2]
						(II)	2ri LAP	Idilaciona		0
5					(D:	Pump	•	P. :Gai	ige pressi	ıre
4							meter	H ₁ : He	ight of P	ressure gauge
							sure gaug nd surface		pth of Gr ective pre	ound water
3					-	Drill				/10, H=H1+H2
, =					6 :	Inject	tion pipe	t :Inje	cted time	
2						Pack				e during time
1							r table ostatic he	in a w : Wa		e per one min.
							th of test			n e/min/m/10kg/co/
0	1	0	20	30_	40	section		L Coe		permeability
	population and the state of the		((f/min/m)	QD:	Diami	ater of ho	IC K POWER DEVE	LOPMENT CO	. LTD. FORYO JAPAN

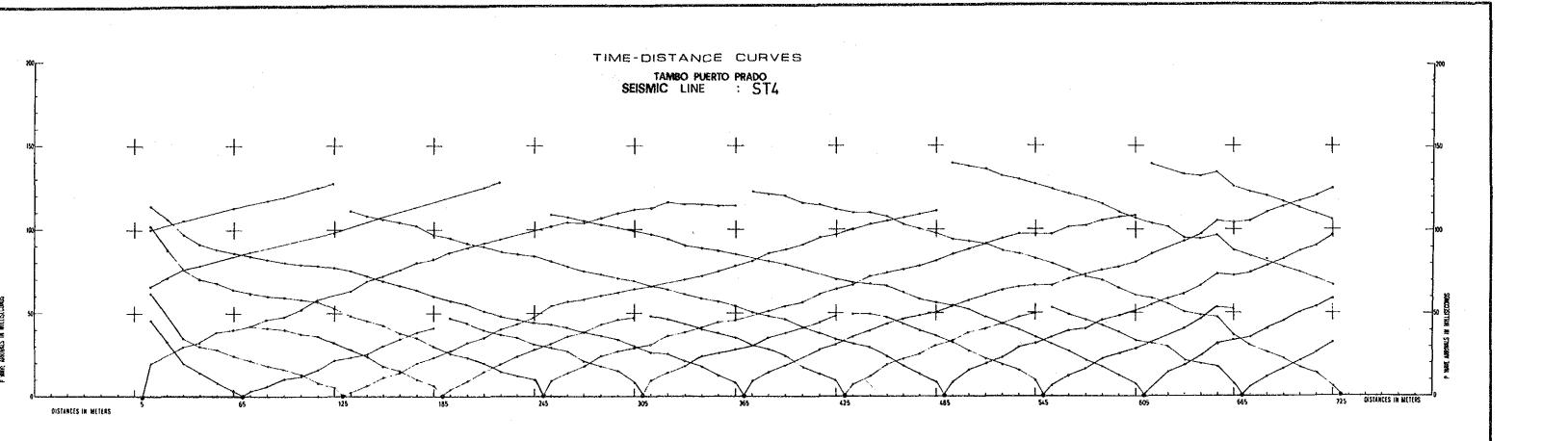

1428

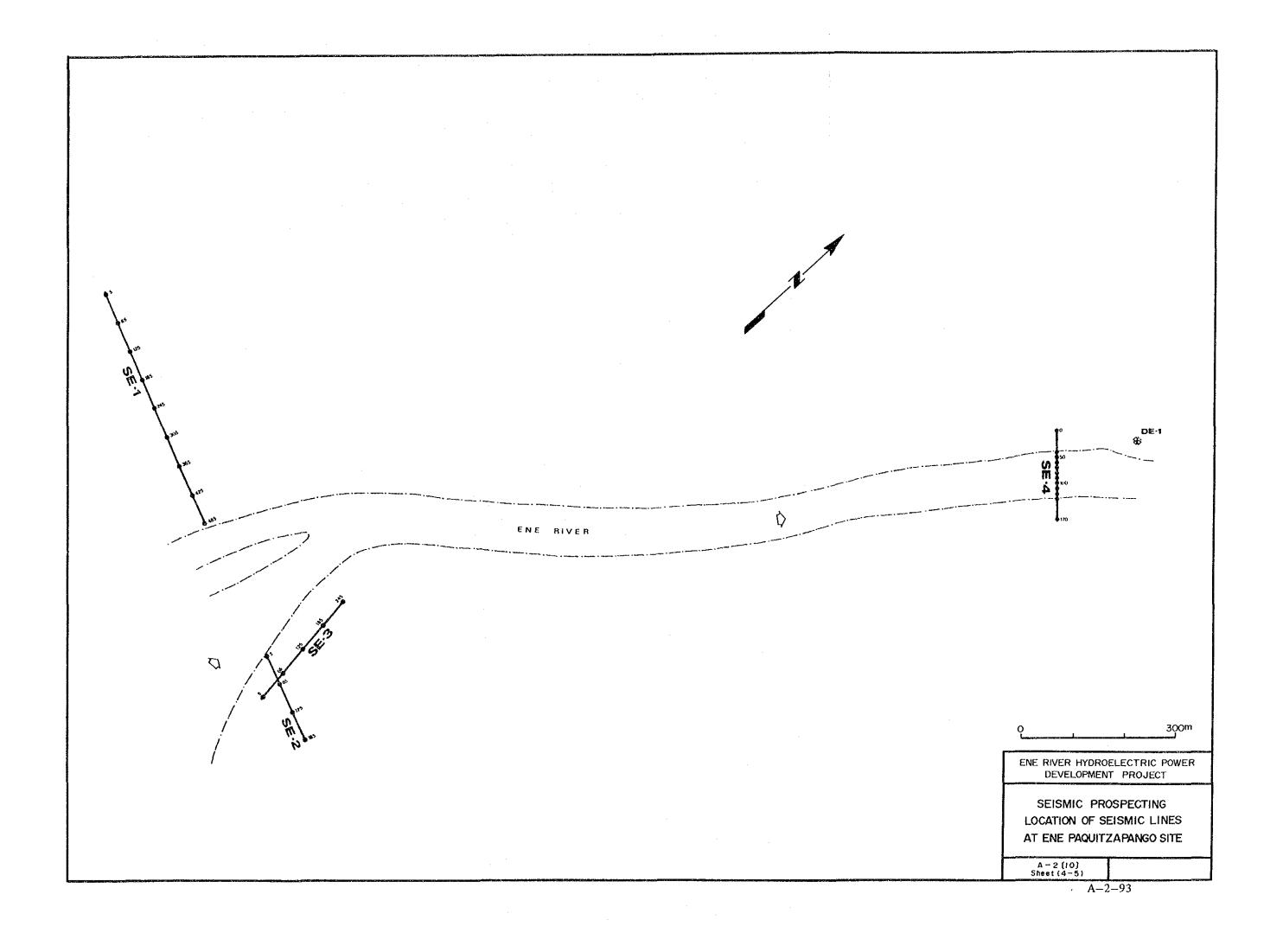


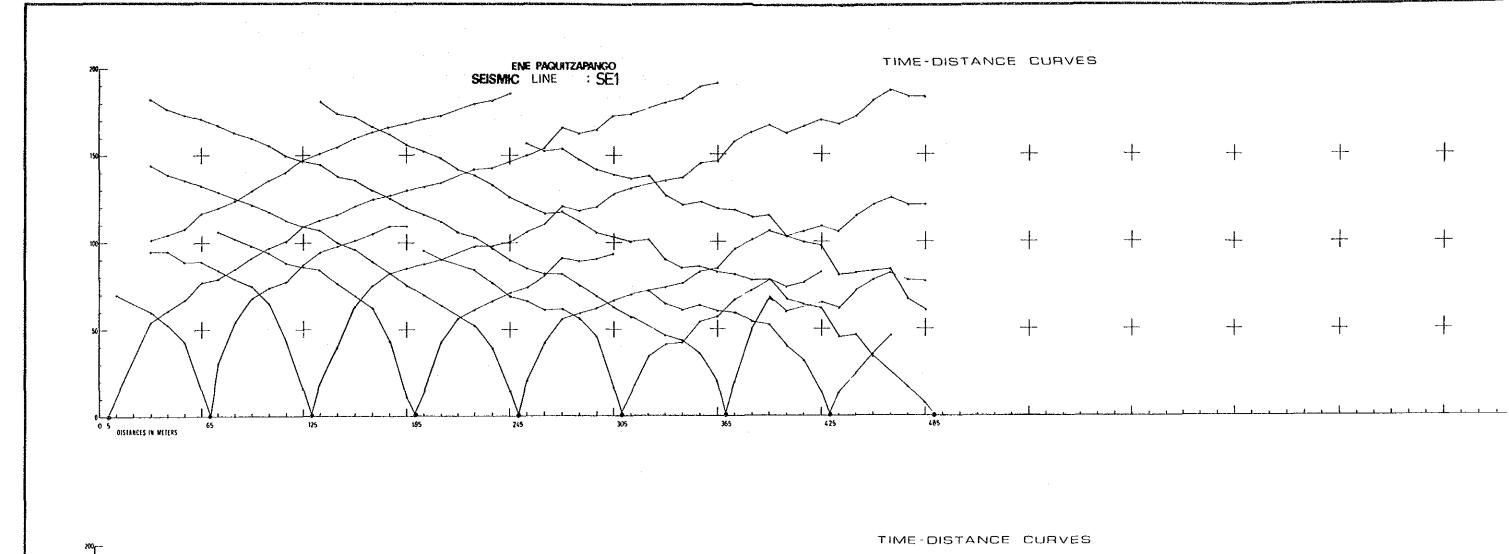

(10) Seismic Prospecting; Locations and Time-Distance Curves of seismic Lines.

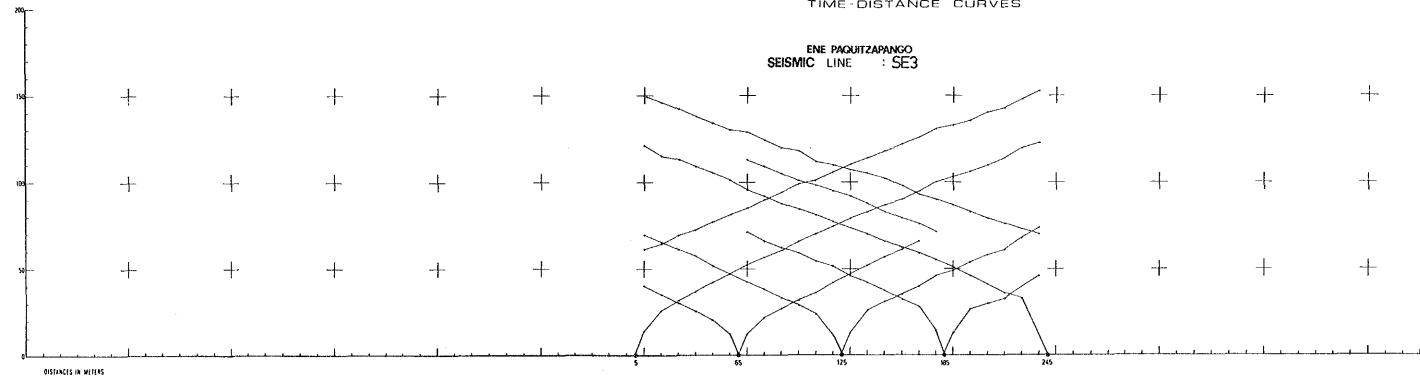

•		(Sheet No.)
(1)	Location of Seismic Lines	
	at Tambo Puerto Prado Site	(1-5)
(2)	Time-Distance Curves of	
	ST-1 and ST-2 Lines	
	at Tambo Puerto Prado Site	(2–5)
(3)	Time-Distance Curves of	
	ST-3, ST-4, and ST-5 Lines	
	at Tambo Puerto Prado Site	(3-5)
(4)	Location of Seismic Lines	
	at Ene Paquitzapango Site	(4–5)
(5)	Time-Distance Curves of	
	SE-1, SE-2, SE-3, and SE-4 Lines	
	at Ene Paquitzapango Site	(5-5)

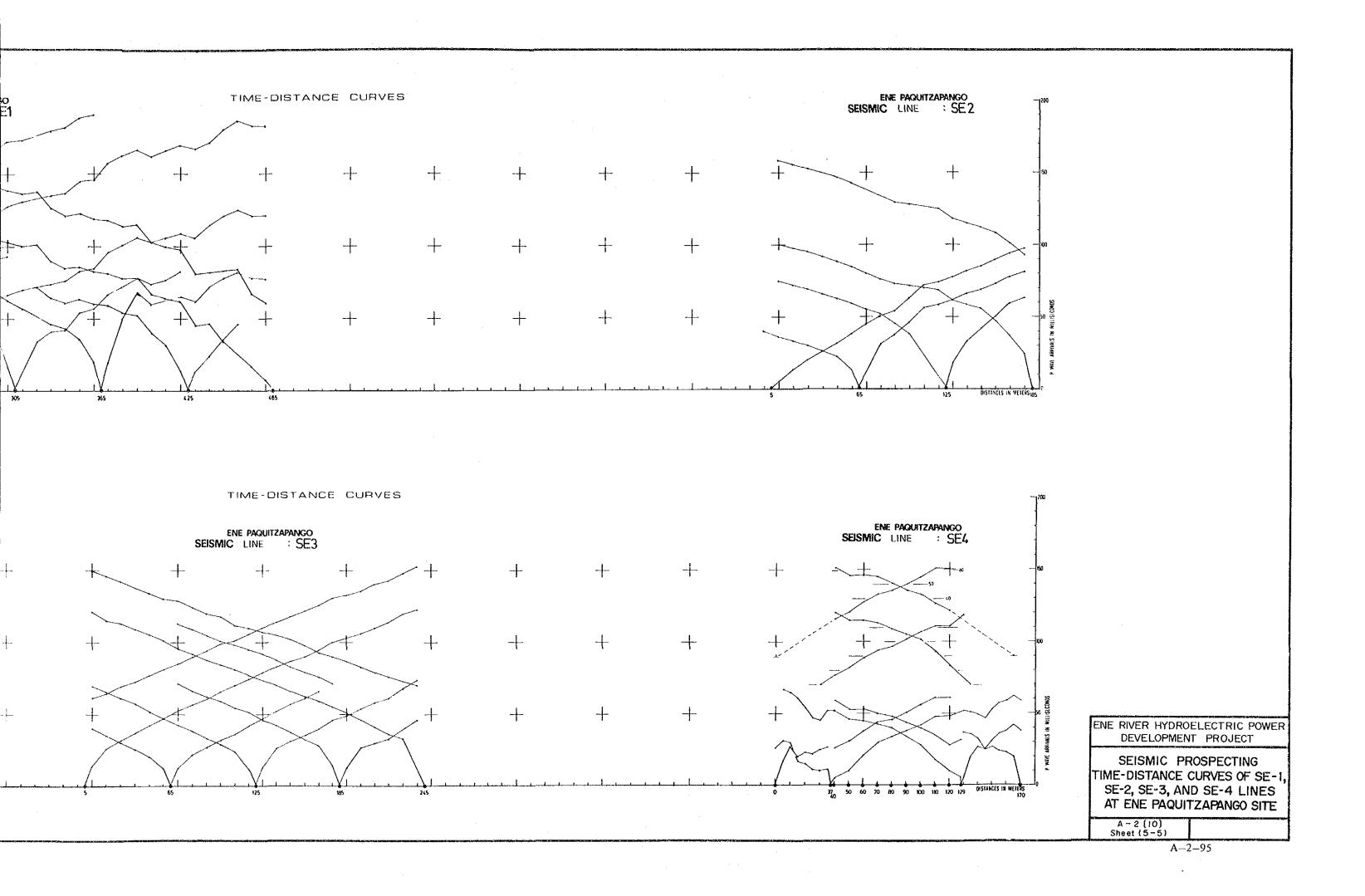









ENE RIVER HYDROELECTRIC POWER DEVELOPMENT PROJECT


SEISMIC PROSPECTING TIME-DISTANCE CURVES OF ST-3, ST-4, AND ST-5 LINES AT TAMBO PUERTO PRADO SITE

A - 2 (10) Sheet (3-5)

(11) Outline of Landsat Image Analysis for Ene River Hydroelectric Power Development Project.

1. Objective of the Geological Survey

The objective of this survey is the investigation of geological structure of Ene River Hydro-electric Power Development Project area in the Republic of Peru. Within the project area, only area around the damsite and river is covered by aerial photographs. As for this area geological survey had been done by interpreting these photos and by using field survey results. Remaining area is large and not covered by aerial photographs. Therefore, for the geological survey of this remaining area, LANDSAT images were used. In interpreting Landsat images, results of geological survey of the area around damsite and river were used as keys. Final product of this geological survey using LANDSAT images is a geological map on a scale of 1:4000000.

2. The survey area

Subject area of this geological survey using LANDSAT images is shown in Fig.-1.

3. Image Analysis

3.1 LANDSAT data used in the survey

LANDSAT scenes covering the subject area are Path:005/Row:068 and Path: 005/Row:069. Images of minimum cloud coverage and high quality were searched for these scenes. As for scene Path:005/Row:069 cloud free images was obtained from Brazil. However, as for Path:005/Row:068 the best images we could get were of 40 percent cloud coverage. In order to get a single cloud free image of scene Path:005/Row:068 by combining two images, which are partially covered by clouds, we purchased two images as shown on Table-1.

	Path - Row No.	date	cloud(%)	sun el., az.	note	
	005 - 068	JUL 03, 1977	40	33°, 52°		
	005 - 068	AUG 12, 1978	40	42°, 57°	for interporation	
	005 - 069	JUL 03, 1977	0	32°, 51°		

Table-1. LANDSAT data used in geological survey

3.2 LANDSAT color composite image

LANDSAT color composite image was produced in the following manner. Flow-chart of this process is as shown in Fig.-2.

(1) Pre-processing

As pre-processing of LANDSAT images, CCT conversion, reduction of noise in images, and geometric correction were done.

(2) Digital mosaic production

As for the scene Path:005/Row:068 two images were purchased from Brazil.

- (i) The level of tone of 1978 image was adjusted to the level of tone of 1977 image. This process is called "normalization".
- (ii) Parts of two images to be assembled to make a single cloud free image by mosaicing were determined as shown in Fig.-3.

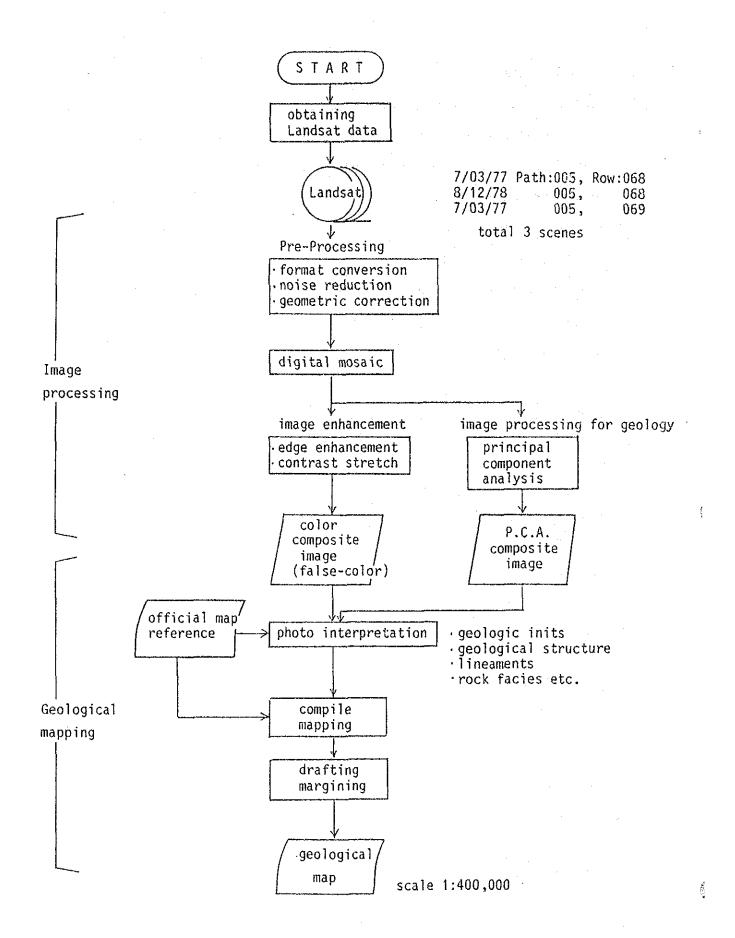
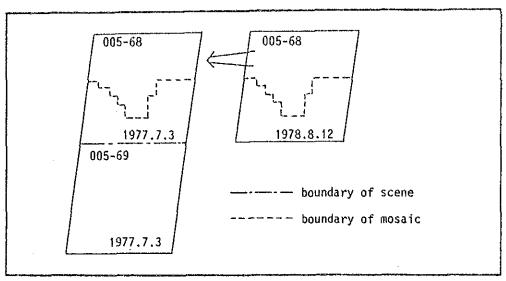
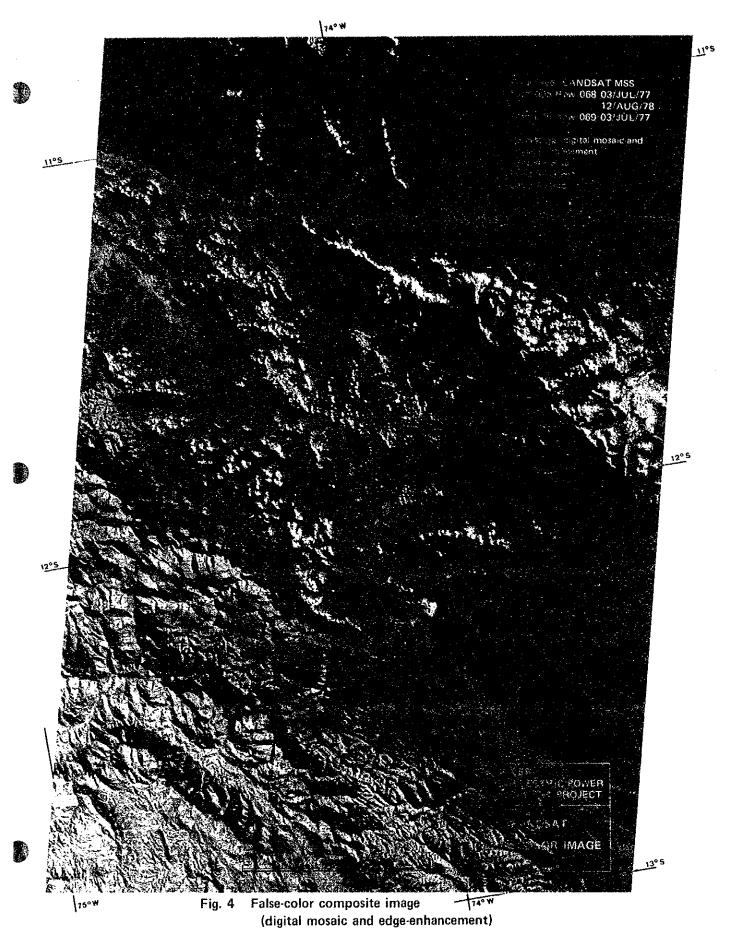
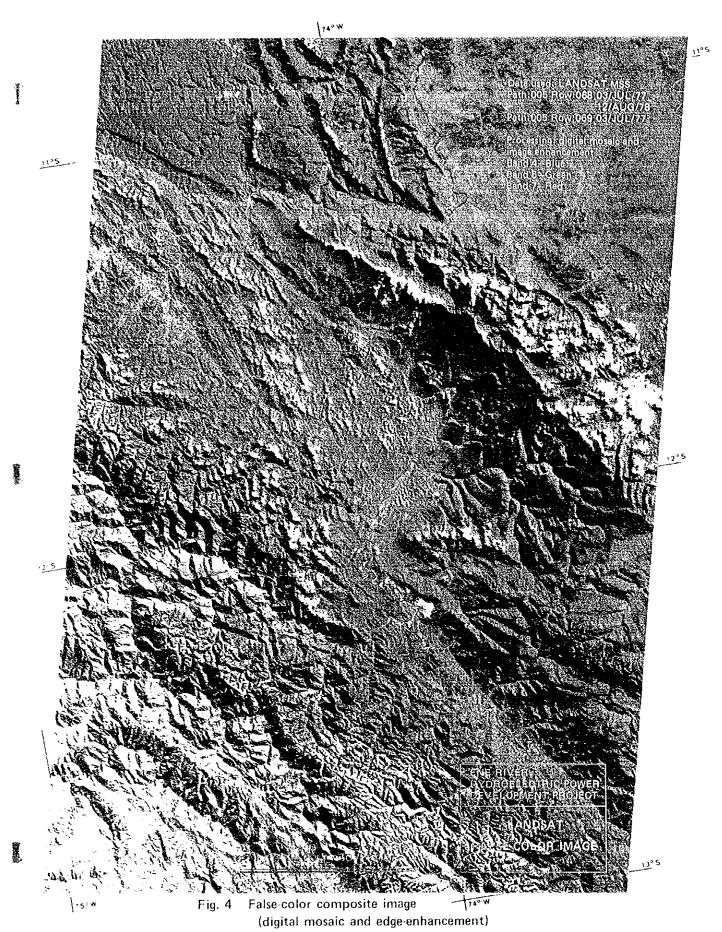


Fig.2 Flow-chart of geological interpretation from Landsat image

- (iii) Geometric correction of 1978 image was done by using 1977 image as basic data.
- (iv) Mosaicing of two images more precisely, parts of two images was done digitally.


Fig.-3. The illustration of digital mosaic processing

(3) Image enhancement

To make geological interpretation easy, edge-enhancement and contrast stretching were done. After image enhancement, color composite image was produced by using photo-printer. This color composite image was enlarged to a scale of 1:250,000 and used in geological interpretation of LANDSAT image Fig.-4 is the LANDSAT color composite image used in this survey at original scale of 1:1,000,000.

Scale 1:1,000,000

Scale 1:1,000,000

3.3 Image processing for geological and geographical surveys Image processing is often effective, when large amount of information on

geological features need to be supplied to interpreter. In this survey, _ principal component analysis (P.C.A.) was used as a image processing method.

The principal component analysis is a method that uses four spectral bands of LANDSAT data. Eigenvalue of from first component to third component is computed, and then, using these eigenvalue, each component score is computed. The output is composite using Munsell color solid system shown in Fig.-5. Fig.-6 is a composite image in which the first component is assinged to intensity, the second to hue, and the third to saturation.

From this composite image, the following thing is understood:

Reflectance on the ground is expressed as the first component (difference of intensity). Vegetation density is expressed as the second component (difference of hue).

In this way, amount if information to be supplied to interpreters is greater than the case that information source is only color composite image.

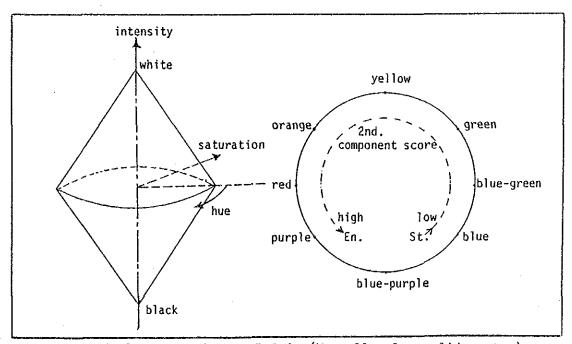


Fig.-5 Color composite of P.C.A. (Munsell color solid system)

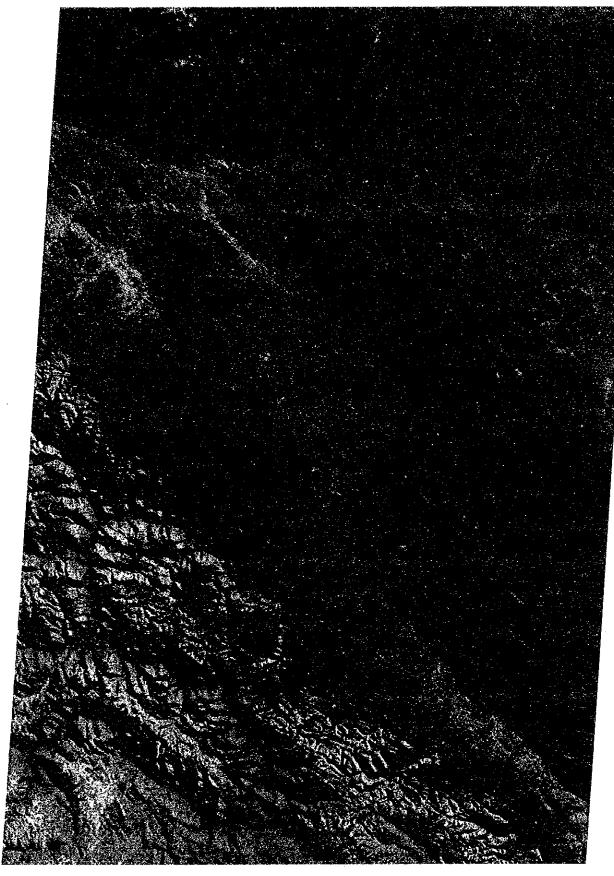


Fig. 6 Principal Component Analysis; P.C.A. composite image

1st component --- Intensity
2nd component --- Hue
3rd component --- Saturation

Scale 1:1,000,000

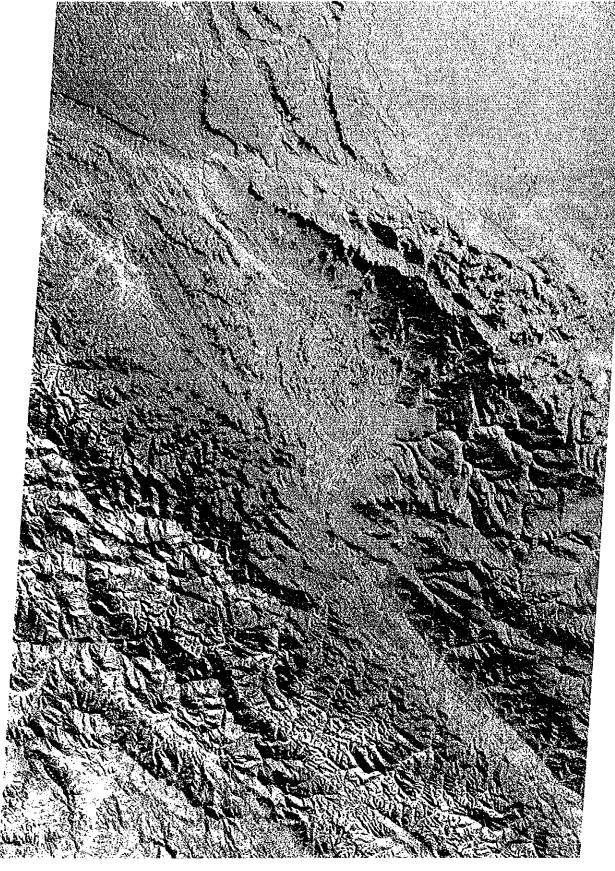


Fig. 6 Principal Component Analysis; P.C.A. composite image

1st component --- Intensity
2nd component --- Hue
3rd component --- Saturation

Scale 1:1,000,000