THE DEVELOPMENT PROJECT OF

THE PORT OF CALLAO

IN THE REPUBLIC OF PERU

FINAL REPORT

NOVEMBER 1983

JAPAN INTERNATIONAL COOPERATION AGENCY

709 61.7 SDF 13785

THE DEVELOPMENT PROJECT OF

THE PORT OF CALLAO

IN THE REPUBLIC OF PERU

NOVEMBER 1983

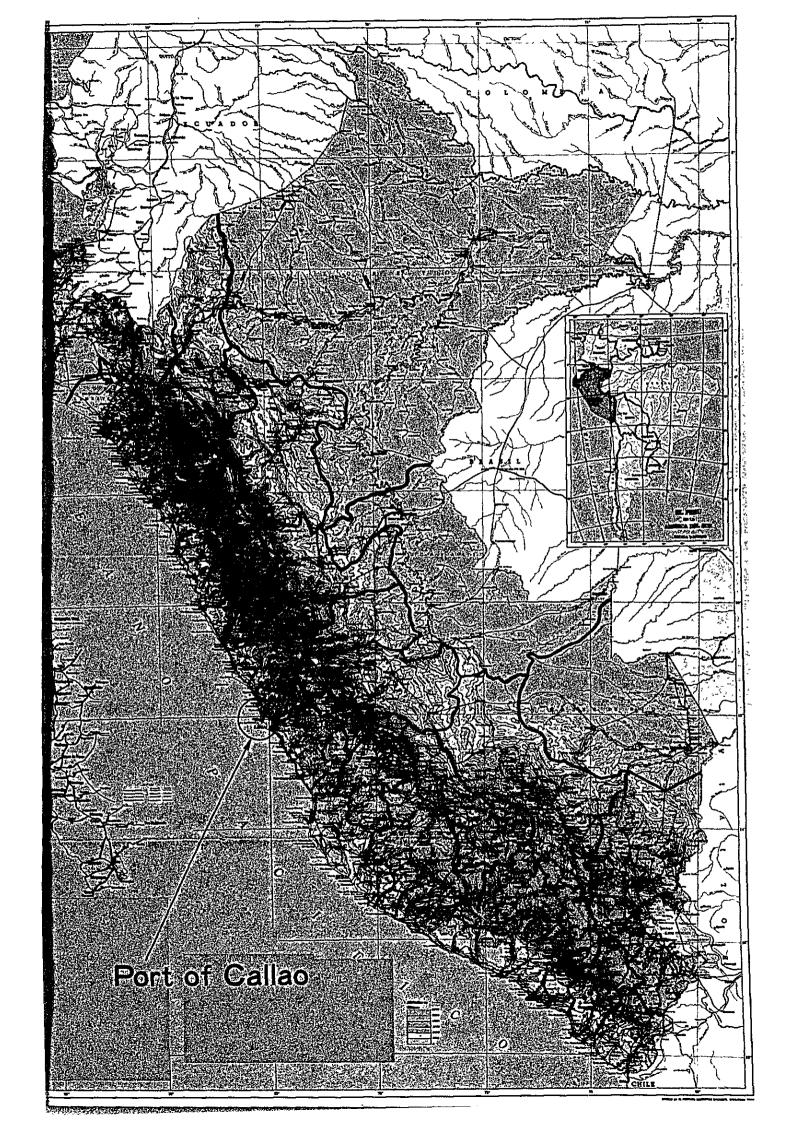
PREFACE

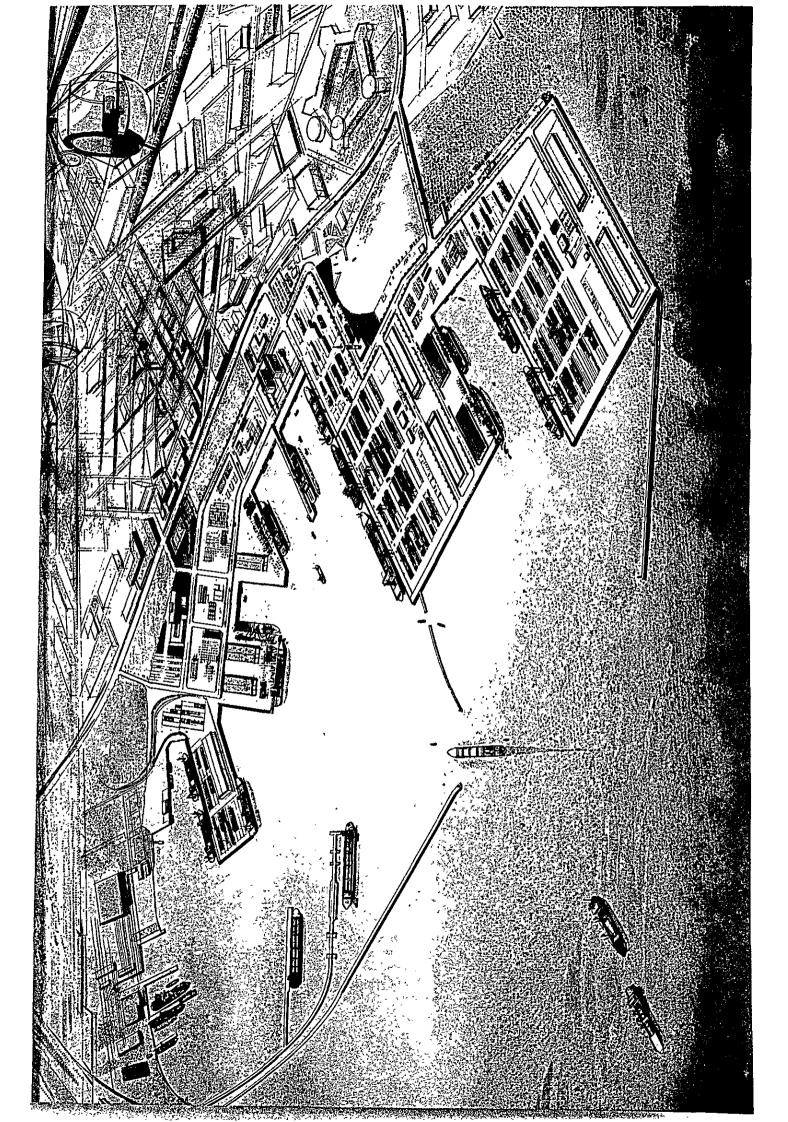
In response to the request of the Government of the Republic of Peru, the Government of Japan decided to conduct a study on the Development Project of the Port of Callao and entrusted it to the Japan International Cooperation Agency (JICA). The JICA sent to Peru a survey team headed by Mr. Shinya Izumi, Director of the Overseas Coastal Area Development Institute of Japan in July 1982.

The team had discussions with the officials concerned of the Government of Peru on the Project, and conducted a field survey. After the team returned to Japan, further studies were made and the present report has been prepared.

I hope that this report will serve for the development of the Project and contribute to the promotion of friendly relations between our two countries.

I wish to express my deep appreciation to all the officials concerned of the Government of the Republic of Peru for their close cooperation extended to the team.


Keisule


November 1983

Keisuke Arita President

Japan International Cooperation Agency

CONTENTS

			Page
PREFACE			
CONCLUSI	ONS A	ND RECOMMENDATIONS	
SUMMARY			
CHAPTER	1	Outline of Survey	. 1
	1-1	Purpose of Survey	. 1
	1-2	Composition of Survey Team	. 2
	1-3	Counterparts	4
CHAPTER	2	Present Conditions of Callao Port	. 5
	2-1	Outline	5
	2-2	Present Condition of Port Facilities	7
	2-3	Port Activities	10
	2-3-	-1 Handling of Port Cargoes	10
	2-3-	-2 Statistics of the Ships Calling at the Port	13
	2-3	-3 Conditions of Utilization at Each Wharf	16
	2-4	System of Port Management and Operation	33
	2-4	-1 Port Administration	33
	2-4	-2 ENAPU S.A	33
	2-4	-3 Port Cargo Handling	38
CHAPTER	3	Natural Condition	39
	3-1	Climate	39
	3-2	Sea Conditions	41
	3-2	-1 Waves	41
	3-2	-2 Current	50
	3-2	-3 Tide	52
	3-2	-4 Coastal Topography and Bottom Sediments	52
	3-3	Soil Conditions	57
	2.2	1 Coil Curron Data	67

	3-3-	2	Outline of Strata	57
	3-3-	3	Parameters of Soils at the Project Site	79
	3-4	Eart	thquakes	85
	3-4-	·1	Earthquakes in Peru	85
	3-4-	2	Seismic Coefficient	87
CHAPTER	4	Basi	c Priorities for Development of Callao Port	91
	4-1	Soc. Met	io-economic Activities in the Area Centered Around ropolitan Lima	91
	4-2	Port	Functions Required of Metropolitan Lima	95
	4-3	Hov	v to Expand Port Functions in Metropolitan Lima	95
	4-4	Basi	c Priorities for Developing Callao Port	98
CHAPTER	5	For	ecast on Future Volume of Cargoes to be Handled	.101
	5-1		ent Situation and Trend of Cargoes Handled at ao Port	101
	5-1-	-1	Port Statistics Used in This Study	101
	5-1-	2	Trend of Volume of Cargoes Handled at Callao Port	101
	5-1-	3	Kinds of Cargoes Handled at Callao Port	101
	5-2		io-Economic Frame Prerequisite to Cargo Volume ecasting	105
	5-2-	1	Population	105
	5-2-	-2	Gross Domestic Product	105
	5-3	Fut	ure Forecast on Volume of Cargoes at Callao Port	108
	5-3-	-1	Forecast of Volume of General Cargoes	108
	5-3-	-2	Forecasting of Volume of Container Cargoes	118
	5-3-	-3	Forecasting of Volume of Imported Grains	129
	5 - 3-	4	Forecasting of Exported Minerals (Concentrates)	136
	5-3-	-5	Forecasting of Volume of Petroleum Products Handled at Callao Port	145
	5-3	-6	Estimates of Cargo Volume at Callao Port	153
CHAPTER	6	Ma	ster Plan for Callao Port Development Project	159
	6-1	Str	ategy of the Master Plan	159
	6-2	Est	timate of the Scale of the Plan	161

	6-2-	Present Facilities (Capacity of Callao Port	***************************************	161
	6-2-2	Methods to Deterr	nine Number of Berths		163
	6-3	roposed Scale in Maste	er Plan	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	172
	6-3-	General Cargo Wha	arf		172
	6-3-	Container Wharf			175
	6-3-	Grain Wharf			178
	6-3-	Mineral Ore Wharf			181
	6-3-	Petroleum Wharf	***************************************		181
	6-3-	Summary of Prope	osed Scale Under-Master-	-Plan	182
	6-3-	Harbor Facilities	***************************************		182
	6-3-	Port Traffic Facili	ties		184
	6-3-	Other Facilities		•••••••••••	186
	6-3-	Port Environment	Improving Plan	•••••••••••••••••••••••••••••••••••••••	186
	6-4	Master Plan and Evalua	tion		189
	6-4-	Preparation of Alt	ernative Plans	***************************************	189
	6-4-	Evaluation of Alte	ernative Plans	•••••••••••••••••••••••••••••••••••••••	196
	6-5	Construction Plan of th	ie Master Plan	***************************************	201
CHAPTER	7	Short-term Developme	nt Plan for Callao Port	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	209
	7-1	Target for Short-term l	Plan		209
	7-2	Site Selection			209
	7-3	Study Concerning Req	uired Berths		210
	7-3-	Container Wharf	***************************************		210
	7 - 3-	Grain Wharf	***************************************	***************************************	210
	7-3-	Mineral Ore Whar	f		210
	7-3-	Petroleum Wharf	***************************************		211
	7-3-	General Cargo Wh	narf	***************************************	211
	7-4	Alternative Options fo	r the Short-term Develor	oment Plan	212
	7-5	Container Terminal Pla	in	***************************************	214
	7-5	Container Termin	al Operation System at	Callao Port	214
	7-5	Container Termin	al Plan A	••••••••	214
	7-5	Container Termin	nal Plan B		216

	7-6	Grain Terminal Plan	220
	7-7	Short-term Development Plan	225
CHAPTER	8	Container Terminal Operation and Organization	229
	8-1	Container Terminal Management	229
	8-1-	Container Terminal Management	229
	8-1-2	Organization and Necessary Number of Workers	229
	8-1-3	3 Desirable Preparation for Container System	233
	8-2	Container Terminal Operation	233
	8-2-1	Export Container Flow (outline)	233
	8-2-2	2 Import Container Flow (outline)	234
	8-2-3	3 Container Terminal Operation	236
	8-3	Container Operation at No.5 Wharf	246
	8-3-1	Ship's Berth and Container Yard Location	246
	8-3-2	Necessary Equipment and Facilities	252
	8-3-3	3 Operation System 2	256
	8-3-4	Management 2	261
CHAPGER	9	Design, Construction and Rough Cost Estimates	265
	9-1	Design of Port Facilities	265
	9-1-1	Port Facilities2	265
	9-1-2	Container Wharf	265
	9-1-3	Grain Whart2	277
	9-1-4	Container Yard Temporary Revetment	280
	9-1-5	Reclamation2	283
	9-1-6	5 Pavement 2	285
	9-1-7	Buildings2	285
	9-1-8		285
	9-1- 9		285
	9-2	Method of Construction	287
	9-2-1		287
	9-2-2	2 Construction of Principal Facilities	287
	9-2-3	3 Construction Schedule	290

	9-2-	4	Problems Involved in Construction	290
	9-3	Estin	nation of Construction Cost	292
	9-3-	1	Construction Materials	292
	9-3-	2	Construction Equipment	292
	9 - 3-	3	Labor Force	292
	9 - 3-	4	Conditions of Construction Cost Estimation	293
	9-3-	5	Construction Cost	293
CHAPTER	10	Eco	nomic Analysis	297
	10-1	Out	line of Analysis	297
	10-2	Ben	efit	297
	10-2	2-1	Benefit Items	297
	10-2	2-2	Reduction in Ships' Staying Cost	298
	10-2	2-3	Reduction in Cargo Handling Cost	313
	10-2	2-4	Reduction in Transportation on Land	321
	10-2	2-5	Summary of benefits	322
	10-3	Cos	t	324
	10-4	Sha	dow Pricing	324
	10-	4-1	Method of Estimating Shadow Prices	324
	10-	4-2	Standard Conversion Factor (SCF)	325
	10-	4-3	Shadow Wage Rate	325
	10-	4-4	Shadow Price of Construction Costs	325
	10-	4-5	Shadow Price of Benefits	325
	10-5	Ecc	onomic Profitability	328
	10-	5-1	Definition of Internal Rate of Return	328
	10-	5-2	Period of Economic Calculation	328
	10-	5-3	Calculation and Assessment of Internal Rate of Return	328
CHAPTER	11	Fin	ancial Analysis	331
	11-1	Me	thod of Financial Analysis	331
	11-2	An	alysis of Financial Statement	332
	11-	2-1	Premises	332
	11-	2-2	Long-term Loans	. 223

		•	
	11-2-3	Fixed Assets	
	11-2-4	Project Life	338
	11-2-5	Calculation of Revenue and Expenditure	338
	11-2-6	Financial Statements	351
	11-3 Disc	count Cash Flow Analysis	364
	11-4 Sens	sitivity Analysis	366
		APPENDIX	
1	Emergency Pla	n	367
1-1	Viewpoint of I	Plan	367
1-2	Project Cost ar	nd Construction Schedule	369
1-3	Economic Ana	lysis	371
1-4	Financial Anal	ysis	381
2	Container Terr	ninal Facilities and Equipment Plan	392
2-1	Terminal Facil	ities	392
2-2	Cargo Handling	g Equipment	397
3	Port Cargo Har	ndling Equipment	402

LIST OF TABLES

Table 2-1	Breakwaters	7
Table 2-2	Mooring Facilities	7
Table 2-3	Open Storage Yards and Transit Sheds	8
Table 2-4	Cargo Handling Equipment	9
Table 2-5	Trend of Volume of Cargoes Handled at Callao Port	11
Table 2-6	Number of Containers Handled	12
Table 2-7	Container Cargo Items (1981)	13
Table 2-8	Performance of Cargo Handling at Callao Port in 1981	18
Table 2-9	Number of Staff at ENAPU S.A. (as of July, 1982)	37
Table 3-1	Maximum and Minimum Temperatures	39
Table 3-2	Monthly Average Humidity	39
Table 3-3	Monthly Total Precipitation	39
Table 3-4	Maximum Wind Velocity and Direction 1944-1974	40
Table 3-5	Number of Days of Minimum Visibility less than 1 Km	40
Table 3-6	Monthly Average Significant Waves and the Maximum Significant Wave Height	41
Table 3-7	Frequency Distribution of Significant Wave Height and Period	46
Table 5-1	Volume of Cargoes Handled at Callao Port by Commodity	104
Table 5-2	Future Target Values of Population	105
Table 5-3	Future Target Values of Gross Domestic Product	105
Table 5-4	Gross Domestic Product in Peru	106
Table 5-5	Setting of Future Values of Gross Domestic Product	108
Table 5-6	Estimated Volume of Import General Cargoes at Callao Port	109
Table 5-7	Export Records of Principal Agricultural Products	112
Table 5-8	Share of Ports of Shipment of Principal Agricultural Products	112
Table 5-9	Past Export of Fishery-Related Goods by Commodity	113
Table 5-10	Estimation of Volume of Export General Cargoes by Commodity	116
Table 5-11	Estimation of Volume of General Cargoes Handled at Callao Port (Including Container Cargoes)	118

Table 5-12	Container Routes on the West Coast of South America	120
Table 5-13	Container Ships Serving the West Coast of South America	120
Table 5-14	Percentage of Containerization of Callao Port	123
Table 5-15	Percentage of Containerization by Commodity (99 items Classification)	123
Table 5-16	Shares and Volumes of General and Container Cargoes by Trading Partner in 1977	124
Table 5-17	Theoretical Limit for the Percentage of Containerization by Export/Import	125
Table 5-18	Theoretical Limit for the Percentage of Containerization by Commodity (24 Items)	125
Table 5-19	Estimation of Percentage of Containerization	129
Table 5-20	Estimation of Volume of Container Cargoes at Callao Port	129
Table 5-21	Volume of Imported Grains at Callao Port	129
Table 5-22	Import Plan of Principal Grains (Ministry at Agriculture)	130
Table 5-23	Estimated Per Capita Calorie Consumption by Region and Income Stratum of Peru, 1979	131
Table 5-24	Increase Rate of Per-Capita Calorie Consumption	131
Table 5-25	Cultivated Areas of Principal Grains	132
Table 5-26	Yields of Principal Grains per Unit Area (National Averages)	132
Table 5-27	Estimation of Imported Wheat	133
Table 5-28	Estimation of Imported Maize	133
Table 5-29	Share in Import Volume of Principal Grains by Port (1980)	136
Table 5-30	Estimation of Volume of Imported Grains Handled at Callao Port	136
Table 5-31	Past Export of Mining Products through Callao Port	138
Table 5-32	Quantities of Mining Products (Concentrates) Exported through Callao Port	138
Table 5-33	Quantities of Concentrates Exported through Callao Port by Mineral	139
Table 5-34	Export of Nation's Mining Products	139
Table 5-35	Export of Principal Mining Products	140
Table 5-36	Concentrate Production Plan	
Table 5-37	Concentrate Production Targets	
Table 5-38	Estimated Volumes of Export of Concentrates through Callao Port	
Table 5-39	Production of Crude Oil by Area (1981)	146

Table 5-40	Volume of Refined Oil by Oil Refinery	148
Table 5-41	Reserves of Crude Oil in 1979	150
Table 5-42	Past Results of Handling of Petroleum Products at Callao Port	152
Table 5-43	Estimated Volume of Petroleum Products Handled at Callao Port	152
Table 5-44	Estimated Volume of Cargoes Handled at Callao Port	154
Table 5-45	Increase in Volume of Cargoes Handled at Callao Port	154
Table 5-46	Comparison between Developed Countries and Peru regarding Economic Growth Rates	155
Table 5-47	Outlook on World Economy	155
Table 5-48	Estimated Volume of Cargoes Handled at Callao Port (Case II)	156
Table 6-1	Input Data	171
Table 6-2	Hours Available for Cargo Handling per a Year	171
Table 6-3	Required Area of a Transit Shed	174
Table 6-4	Required Size of Open Storage Yard	174
Table 6-5	Grain Shipments by Vessel Size 1970/1985	178
Table 6-6	Grain Terminal Facilities	179
Table 6-7	Steel Silo Volume	180
Table 6-8	Wharves Proposed in the Master Plan	183
Table 6-9	Generated Traffic Volume in 2000	184 ·
Table 6-10	Scale of Marina Facility Plan	187
Table 6-11	Evaluations of Alternative Plans	197
Table 6-12	Outline of Construction Plan	208
Table 7-1	Evaluation of Alternative Plans	225
Table 9-1	Specifications of Container Crane Used in Japan	267
Table 9-2	Comparison of Structures	277
Table 9-3	Construction Cost of Master Plan	293
Table 9-4	Construction Cost of Short Term Development Plan	294
Table 9-5	Yearly Investment of Short Term Development Plan	295
Table 10-1	Frame of Handled Cargo Volume (Container and General Cargo)	. 304

Table 10-2	Frame of Handled Grain Volume (With)	
Table 10-3	Frame of Handled Grain Volume (Without)	306
Table 10-4	Frame of Calling Vessels	307
Table 10-5	Frame of Berths	310
Table 10-6	Average Ships' Waiting Time	311
Table 10-7	Share of Peruvian Ships in Cargo Traffic	312
Table 10-8	Ships' Waiting Cost	313
Table 10-9	Unit Direct Variable Cost in 1982	313
Table 10-10	Operation Cost Paid by Shipping Agents (Unloading Cargo)	315
Table 10-11	Operation Cost Paid by Shipping Agents (Loading Cargo)	315
Table 10-12	General Cargo Handling Cost	315
Table 10-13	Allocation of Container Cargo	316
Table 10-14	Unit Container Cargo Handling Cost at 5B Wharf	317
Table 10-15	Fuel, Power & Water Cost at New Container Terminal	318
Table 10-16	Maintenance Cost	318
Table 10-17	Costs at New Container Terminal	318
Table 10-18	Container Cargo Handling Cost at Callao Port	319
Table 10-19	Shipping Service Cost	319
Table 10-20	Storage Service Cost (General Cargo)	320
Table 10-21	Storage Service Cost at No.5B Berth (Container)	321
Table 10-22	Unit Cost of Land Transportation	321
Table 10-23	Transportation Cost (General Cargo & Container, with-without)	322
Table 10-24	Transportation Cost (Grain & Total, with-without)	322
Table 10-25	Total Benefit (-means benefit)	323
Table 10-26	Construction Cost and Equipments Purchase Cost	324
Table 10-27	Import & Export and Custom Statistics and SCF	326
Table 10-28	Minimum Wage (Shadow Wsage Rate) and its Percentage against Market Price	326
Table 10-29	Shadow Price of Construction Costs	326
Table 10-30	Total Benefit	
Table 10-31	Costs/Benefits and IRR (Shadow Price)	
Table 10-32	Costs/Benefits and IRR (Market Price)	

Table 11-1	Project Fund	333
Table 11-2	Methods of Raising Funds	334
Table 11-3	Long-Term Loans (1)	335
Table 11-4	Long-Term Loans (2)	336
Table 11-5	Changes in Fixed Assets	337
Table 11-6	Cargo Forecast for Callao Port Terminal	339
Table 11-7	Tonnage and Number of Containers	341
Table 11-8(1)	Storage Cargo Volume of General Cargo	342
Table 11-8(2)	LCL Container Cargo Volume at Berth No.5B	343
Table 11-9	Number of Ships	344
Table 11-10	Gross GRT and Berthing Days for Ships	345
Table 11-11	Port Fees (1982)	347
Table 11-12	Estimated Operating Expenses for 1982	350
Table 11-13	Estimated Revenue and Expenditure (Summary)	352
Table 11-14	Estimated Source and Application of Funds (Summary)	353
Table 11-15	Estimated Balance Sheet (Summary)	355
Table 11-16	Estimated Revenue and Expenditure (Case-B3)	357
Table 11-17	Estimated Source and Application of Funds (Case-B3)	359
Table 11-18	Estimated Balance Sheet (Case-B3)	361
Table 11-19	Financial Ratio	363
Table 11-20	F.R.R. (Case-B)	365
Table 11-21	F.R.R. by Sensitivity Analsysis	366

LIST OF FIGURES

Fig. 2-1	Port of Callao	6
Fig. 2-2	Composition of Volume of Cargoes Handled at Callao Port by Commodity (1981)	12
Fig. 2-3	Number of Ships by Ship Size	14
Fig. 2-4	Operating Conditions at Berths (1981)	20
Fig. 2-5	Elapsed Time between Ship's Arrival and Berthing (General Cargo Vessel, 1981)	22
Fig. 2-6	Berthing Time at General Cargo Berths (1981)	23
Fig. 2-7	Relation Between Loaded Cargo Volume per Ship and Mooring Time	24
Fig. 2-8	Elapsed Time between Ship's Arrival and Berthing (Grain Ship, 1981)	25
Fig. 2-9	Berthing Time at Grain Berths (1981)	26
Fig. 2-10	Relation Between Unloaded Cargo Volume per Ship and Mooring Time	27
Fig. 2-11	Waiting Time of Grain Ships	28
Fig. 2-12	Organization Structure for Water Transportation Bureau	35
Fig. 2-13	Organization Structure of ENAPU S.A.	36
Fig. 3-1	Probability of Occurrence of Wave Directions Off Supe and Huacho	43
116.01	•	• •
Fig. 3-2	Distribution of Frequency of Significant Wave Height	44
	•	
Fig. 3-2	Distribution of Frequency of Significant Wave Height	44
Fig. 3-2 Fig. 3-3	Distribution of Frequency of Significant Wave Height	44 47
Fig. 3-2 Fig. 3-3 Fig. 3-4	Distribution of Frequency of Significant Wave Height	44 47 48
Fig. 3-2 Fig. 3-3 Fig. 3-4 Fig. 3-5	Distribution of Frequency of Significant Wave Height San Lorenzo Island, Callao Port and Directions of Prevailing Waves Distribution of Diffraction Coefficients Around Callao Port (Wave Direction S, Period 14 Sec.) Distribution of Diffraction Coefficients Around Callao Port (Wave Direction SW, Period 14 Sec.)	44 47 48
Fig. 3-2 Fig. 3-3 Fig. 3-4 Fig. 3-5 Fig. 3-6	Distribution of Frequency of Significant Wave Height San Lorenzo Island, Callao Port and Directions of Prevailing Waves Distribution of Diffraction Coefficients Around Callao Port (Wave Direction S, Period 14 Sec.) Distribution of Diffraction Coefficients Around Callao Port (Wave Direction SW, Period 14 Sec.) Current off The Port of Callao	44 47 48 49
Fig. 3-2 Fig. 3-3 Fig. 3-4 Fig. 3-5 Fig. 3-6 Fig. 3-7	Distribution of Frequency of Significant Wave Height San Lorenzo Island, Callao Port and Directions of Prevailing Waves Distribution of Diffraction Coefficients Around Callao Port (Wave Direction S, Period 14 Sec.) Distribution of Diffraction Coefficients Around Callao Port (Wave Direction SW, Period 14 Sec.) Current off The Port of Callao Current Observed by The Japanese Study Team in 1982	444 477 488 499 500
Fig. 3-2 Fig. 3-3 Fig. 3-4 Fig. 3-5 Fig. 3-6 Fig. 3-7 Fig. 3-8	Distribution of Frequency of Significant Wave Height San Lorenzo Island, Callao Port and Directions of Prevailing Waves Distribution of Diffraction Coefficients Around Callao Port (Wave Direction S, Period 14 Sec.) Distribution of Diffraction Coefficients Around Callao Port (Wave Direction SW, Period 14 Sec.) Current off The Port of Callao Current Observed by The Japanese Study Team in 1982 Distribution of Median Diameter	444 477 488 499 500 511
Fig. 3-2 Fig. 3-3 Fig. 3-4 Fig. 3-5 Fig. 3-6 Fig. 3-7 Fig. 3-8 Fig. 3-9	Distribution of Frequency of Significant Wave Height San Lorenzo Island, Callao Port and Directions of Prevailing Waves Distribution of Diffraction Coefficients Around Callao Port (Wave Direction S, Period 14 Sec.) Distribution of Diffraction Coefficients Around Callao Port (Wave Direction SW, Period 14 Sec.) Current off The Port of Callao Current Observed by The Japanese Study Team in 1982 Distribution of Median Diameter Distribution of Sieve Analysis Coefficient (So)	444 477 488 499 500 511 544 559
Fig. 3-2 Fig. 3-3 Fig. 3-4 Fig. 3-5 Fig. 3-6 Fig. 3-7 Fig. 3-8 Fig. 3-9 Fig. 3-10	Distribution of Frequency of Significant Wave Height San Lorenzo Island, Callao Port and Directions of Prevailing Waves Distribution of Diffraction Coefficients Around Callao Port (Wave Direction S, Period 14 Sec.) Distribution of Diffraction Coefficients Around Callao Port (Wave Direction SW, Period 14 Sec.) Current off The Port of Callao Current Observed by The Japanese Study Team in 1982 Distribution of Median Diameter Distribution of Sieve Analysis Coefficient (So) Distribution of Bottom Sediments	444 477 488 499 500 511 544 556
Fig. 3-2 Fig. 3-3 Fig. 3-4 Fig. 3-5 Fig. 3-6 Fig. 3-7 Fig. 3-8 Fig. 3-9 Fig. 3-10 Fig. 3-11	Distribution of Frequency of Significant Wave Height San Lorenzo Island, Callao Port and Directions of Prevailing Waves Distribution of Diffraction Coefficients Around Callao Port (Wave Direction S, Period 14 Sec.) Distribution of Diffraction Coefficients Around Callao Port (Wave Direction SW, Period 14 Sec.) Current off The Port of Callao Current Observed by The Japanese Study Team in 1982 Distribution of Median Diameter Distribution of Sieve Analysis Coefficient (So) Distribution of Bottom Sediments Location of Boring (By ENAPU in 1956)	444 477 488 499 500 511 544 555 566

Fig. 3-15	Boring Log (By ENAPU in 1956)	63
Fig. 3-16	Boring Log (By ENAPU in 1956)	64
Fig. 3-17	Boring Log (By ENAPU in 1956)	65
Fig. 3-18	Location of Boring (Carried out by ENAPU in 1970)	66
Fig. 3-19	Soil Layer Differentiation Profile A-A for Grain Berth	67
Fig. 3-20	Soil Layer Differentiation Profile B-B for Grain Berth	68
Fig. 3-21	Soil Layer Differentiation Profile C-C for Grain Berth	68
Fig. 3-22	Location Map of Bore Holes (Conducted by JICA in 1982)	69
Fig. 3-23	Layer Differentiation Profile A-A'	70
Fig. 3-24	Layer Differentiation Profile B-B'	71
Fig. 3-25	Layer Differentiation Profile C-C'	73
Fig. 3-26	Layer Differentiation Profile D-D'	74
Fig. 3-27	Layer Differentiation Profile E-E'	75
Fig. 3-28	Layer Differentiation Profile F-F'	76
Fig. 3-29	Contour Line of Bearing Layer Appearance Depth	77
Fig. 3-30	Weight of Unit Volume of Soil	80
Fig. 3-31	Unconfined Compression Strength	80
Fig. 3-32	Pre Consolidation Load	80
Fig. 3-33	Cy (Above – 15 m C.D.L.)	81
Fig. 3-34	Cv (Below – 15 m C.D.L.)	82
Fig. 3-35	Mv (Above – 15 m C.D.L.)	83
Fig. 3-36	Mv (Below – 15 m C.D.L.)	84
Fig. 3-37	Seismic Zone	86
Fig. 3-38	Maximum acceleration Amplitude (gal) fro Return Period 100 Years	89
Fig. 4-1	Population Distribution 1981	92
Fig. 4-2	Distribution of Manufacturing Industrial Output	93
Fig. 4-3	Network of Roads and Railways	94
Fig. 4-4	Assumed Hinterlands of Principal Ports	97
TT:	The August of Course III and Course Day	100
Fig. 5-1	Trend of Volume of Cargoes Handled at Callao Port	103
Fig. 5-2	Trend of Gross Domestic Product	107

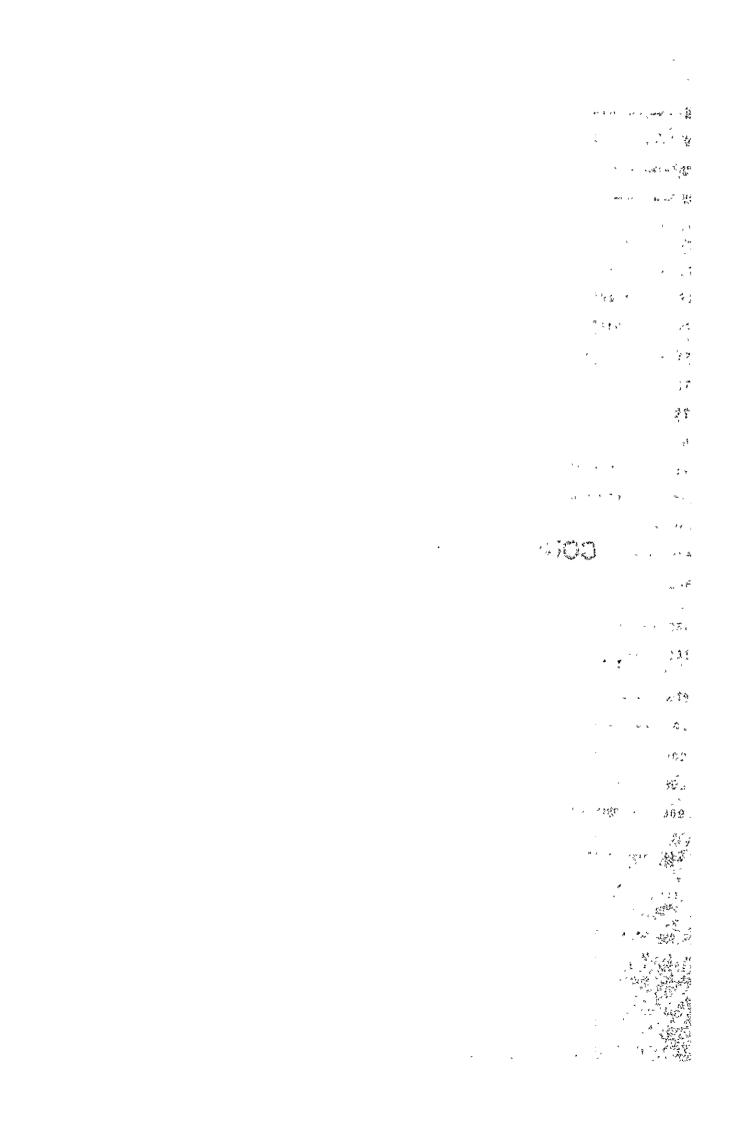

Fig. 5-3	Relation between General Cargoes (Import) and GDI	110
Fig 5-4	Forecasting of Volume of Import General Cargoes at Callao Port	
Fig. 5-5	Trend of Cement Production	
F1g. 5-6	Regional Distribution of Cement Production Capacity	115
Fig. 5-7	Forecasting of Volume of Export General Cargoes at Callao Port	117
Fig. 5-8	Procedure of Forecasting of Volume of Container Cargoes	119
Fig. 5-9	The number of ports serviced by Container Shipping Routes on the South America West Coast	121
Fig. 5-10	Estimation of Future Percentage of Containerization Using Logistic Curve (Import)	127
Fig. 5-11	Estimation of Future Percentage of Containerization Using Logistic Curve (Export)	128
Fig. 5-12	Estimation of Imported Wheat	134
Fig. 5-13	Estimation of Imported Maize	135
Fig. 5-14	Procedure of Forecasting Export Volume of Minerals (Concentrates)	137
Fig. 5-15	Map of Distribution of Peruvian Copper Resources	142
Fig. 5-16	Mines in the hinterland of Callao Port	143
F1g. 5-17	Forecast of Export Volume of Concentrates Through Callao Port	144
Fig. 5-18	Production of Crude Oil	146
Fig. 5-19	Oil Producing Areas	147
Fig. 5-20	Trend of Volume of Refined Oil	148
Fig. 5-21	Domestic Consumption of Refined Petroleum	149
Fig. 5-22	Confirmed Reserves of Crude Oil	149
Fig. 6-I	Flowchart for Determining Number of Berths	165
Fig. 6-2	Erlung Distribution	166
F1g. 6-3	Flowchart of Simulation Model	167
Fig. 6-4	Relation between Mooring Period and Number of Ships (general Cargoes, 1981)	170
Fig. 6-5	Relation between Ship Size (DWT) and Length (L)	
F1g. 6-6	Relation between Ship Size (DWT) and Full-Load Draft(d)	
Fig. 6-7	Size and Loading Capacity of Container Ships	

Fig. 6-8	Length and Loading Capacity of Container Ships	176
Fig. 6-9	Full-load Draft and Loading Capacity of Container-Ships	177
Fig. 6-10	Layout of Silos	180
Fig. 6-11	Standard Section of Trunk Road	185
Fig. 6-12	Standard Section of Principal Road	185
Fig. 6-13	Standard Section of Branch Road	185
Fig. 6-14	Symbolic Green Space	188
Fig. 6-15	Scenery Green Space	188
Fig. 6-16	Model of Container Terminal	191
Fig. 6-17	Model of General Cargo Wharf	191
Fig. 6-18	Alternative Master Plan A	193
Fig. 6-19	Alternative Master Plan B	194
Fig. 6-20	Alternative Master Plan C	195
Fig. 6-21	Master Plan	199
Fig. 6-22	Stage Plan for Constructing Berths of the Master Plan	202
Fig. 6-23	Construction Program (First Stage)	204
Fig. 6-24	Construction Program (Second Stage)	205
Fig. 6-25	Construction Program (Third Stage)	206
Fig. 6-26	Construction Program (Fourth Stage)	207
Fig. 7-1	Alternative Short Term Plans	213
Fig. 7-2	Layout of Container Terminal Plan A	217
Fig. 7-3	Layout of Container Terminal Plan B	218
Fig. 7-4	Layout of Two Consecutive Container Berths (Reference)	219
Fig. 7-5	Grain Terminal Plan	221
Fig. 7-6	33,000 Tons Grain Silo	222
Fig. 7-7	Flow Chart of Grain Silo System	223
Fig. 7-8	Short Term Plan	227
Fig. 8-1	Organization Chart of a Container Terminal	232
Fig. 8-2	Container Handling Plan at No.5 Wharf	248
Fig. 8-3	Gate House Office and Container Top Checking Bridge	253

Fig. 8-4	Mobile Crane	255
Fig. 8-5	Container Flow	258
Fig. 8-6	Container Cargo Ship (Gate in)	260
Fig. 8-7	Organization Chart of Terminal Operation Section	264
Fig. 9-1	Container Berth Quaywall (Concrete Caisson Type)	269
Fig. 9-2	Concrete Caisson Detail	270
Fig. 9-3	Container Berth Quaywall (Steel Sheet Pile Cellular Cofferdom Type)	271
Fig. 9-4	Container Berth Quaywall (Steel Sheet Pile Cellular Cofferdom Type)	272
Fig. 9-5	Container Berth Piled Wharf (Steel Pipe Pile Supported Platform)	273
Fig. 9-6	Container Berth Quay Wall (Walled Steel Pipe Pile Type)	274
Fig. 9-7	Grain Berth Quay Wall	279
Fig. 9-8	Revetment for Container Yard	281
Fig. 9-9	Revetment for Container Yard (Reinforcement of South Breakwater)	282
Fig. 9-10	The Relation Between Mean Degree of Consolidation and Time Factor)	283
Fig. 9-11	Estimation of Settlement of Reclamation	284
Fig. 9-12	Asphalt Concrete Pavement for Container Yard	286
Fig. 9-13	P.C. Pavement for the Course of Transfer Crane	286
Fig. 9-14	Location of Construction Site, Borrow Area, Dump Area & Sand Pocket	288
Fig. 9-15	Construction Schedule of Short Term Development Plan	291
Fig. 10-1	Allocation of Handled Cargo Volume (with)	300
Fig. 10-2	Allocation of Handled Cargo Volume (without)	
Fig. 10-3	Allocation of Handled Grain Volume (with)	302
Fig. 10-4	Allocation of Handled Grain Volume (without)	303
Fig. 10-5	Correlation Between Ships' Dead Weight Tonnage and Fundament	309
Fig. 10-6	Time Charterage of Vessels After Maritime Research Inc. (as of 1982, July)	
		* 1 ''

•

CONCLUSION AND RECOMMENDATION

CONCLUSION

1. Necessity of Port Development

Callao Port has supported the development of the metropolitan sphere of Lima and played a central role in the marine transport system of the Republic of Peru and is expected to perform a vital mission in the future as a facility basic to the growth of the nation, particularly the metropolitan sphere of Lima.

But the port is suffering from long ship waiting times for such reasons as the shortage of port facilities in the light of the growing volume of port cargoes, the aging of port facilities and the inadequacy of the cargo handling system. Further, it is faced with the necessity to renovate its transportation through containerization, to cope with the increase of ship size and to undertake several other steps.

Under these circumstances, it is important to accelerate the development of Callao Port, making basic port plan principles of the needs to respond to the modernization of marine transportation, to strengthen distribution functions, to take a safety measures and to harmonize with the local community.

2. Master Plan

The master plan for Callao Port has the year 2000 as its target and by that time, about 15 million tons of port cargo are expected to be handled by the existing port and the waters to its south. The existing port will be redeveloped and its obsolete facilities modernized in order to rationalize port management, and at the same time a large container wharf will be constructed on the south side of the present port to cope with the beginning of full-scale container transportation. As of the year 2000, there will be a total of 20 berths including eight for the general cargo wharf, five for the container wharf and two for the grain wharf. Besides, necessary roads and storage and other facilities will be constructed and parks and greens will be provided for the purpose of integration with historical facilities, such as Castillo Real Felipe.

The amount of investment necessary to realize this plan is about 550 million U.S. dollars (price as of 1982).

3. Short-Term Port Development Plan

(1) Port Plan

The short-term development plan with 1987 as the target year is an effort to meet the needs of containerization and to make up for shortages in facilities. The volume of cargoes in the target year is about 8,400,000 tons including such foreign trade cargo as general cargoes, grains and ores these representing about 77% of all.

Facilities to be constructed under the short-term development plan include a berth for the container wharf, a berth for the grain wharf and related cargo handling equipment. The construction of these will cost about 100 million U.S. dollars (price as of 1982) including foreign funds representing approximately 70%. A construction period, including the period of detailed

design, of at least 4.5 years is necessary before they can be put to use.

(2) Economic and Financial Analyses

The construction of a container wharf does not merely mean adding a container handling function to the port but it means the increased importance of Callao Port among the ports of countries on the west coast of South America and Callao's assumption of a central role in that region. The construction of a grain wharf will ease the present ship waiting at the port and greatly contribute to the reduction of import cost. In economic analysis, evaluation is made by the internal rate of return (IRR). Benefits included in this are the reductions in ships' waiting cost, in the cargo handling cost, and in the land transportation cost, while expenses included are the facility construction costs. The internal rate of return, using 19 years as the period of economic calculation, is 19.53%. This shows that the short-term development plan is advantageous from the view-point of the national economy.

In financial analysis, the soundness of finances is analyzed by financial statements from the standpoint of management by ENAPU, the project authority in the event the project is executed, and the profitability of the project itself is analyzed by the method of discount cash flow. Analysis by financial statements assumes four cases for fund raising and two cases for operation cost and a total of eight cases come under study. If part of the project funds are raised from own capital, a fund shortage may occur during the construction period but if all the funds are raised by loans, there is no difficulty raising the necessary funds and the revenue/expenditure state and the state of assets are sound. Thus, the results of the analysis show that there are no detriments to the execution of the short-term development plan at Callao Port.

The profitability of the project itself is IRR = 35.31% in terms of internal rate of return. This indicates that this project is viable.

4. Operation of Container Terminal

A container terminal is best operated by a single organization that can carry out everything from receipt of goods to shiploading, or the reverse procedure, in an integrated manner. At Callao Port, it is assumed that ENAPU will have a container terminal office and operate the terminal under an integrated system of cargo handling. A container terminal office must have four divisions comprising 12 sections employing a total of about 110 desk workers (white collar) and about 120 field workers (blue collar).

To be able to smoothly receive marine container transportation, it is necessary to ratify international legal arrangements, such as the Customs Convention on Containers and the Customs Convention on the International Transport of Goods Under Cover of TIR Carnet and, at the same time, improve on related Peruvian laws and regulations.

RECOMMENDATIONS

- 1. Our proposed port plan for Callao Port has been prepared by studying the past development of the cities, industries and transportation in the hinterland, including nearby ports, and by assuming future socio-economic conditions in this country, future trends of world trade and future trends of container transportation. However, the economy always changes and not only the Peruvian economy but also the port activities of Callao itself are under the profound impact of the world economy. It is, therefore, important always to keep track of future economic changes and make necessary revision of the port plan or take other steps so that Callao Port can contribute to the development of the metropolitan sphere of Lima.
- 2. A port cannot efficiently function by the development of mooring, storage and other physical facilities alone. It can smoothly function only by developing various port controlling and operating functions as well as these facilities. To ensure the uninterrupted growth of Callao Port, it is necessary to develop roads between the port and the hinterland and improve the port cargo handling system.
- 3. The short-term development plan for Callao Port consists of construction within the boundaries of the port where work will be restricted in many ways. Thus, difficulties are expected to arise in both port operation and construction. Particularly during the period of construction, port users and constructionists must always coordinate on the details of port operation and the conduct of construction and together seek to prevent the deterioration of port functions.
- 4. The development of Callao Port requires reinforcement of the ENAPU technical staff. The amount of work in the sectors of survey, planning, design, construction and operation is expected to further increase in the future. Some aspects of these sectors can be trusted to outsiders including consultants. But in view of the quality and quantity of future technical work of Callao Port, there are likely to be cases where outside consultants, etc. must be guided in accordance with ENAPU's own technical judgment and evaluation. It is urgently necessary to establish a system that can make this possible.

- Action on the interfer land and the Sandian dilika di kanangan ar my grant me come rendia eta el Centra de and the second section of the second

The district design of the Personal residence de investigation per periodo

de de la come de la companya de la c The state of the s

SUMMARY

e de la companya de l e preside se**ve** les communes de la commune La commune de The same of the sa

SUMMARY

1. Present Conditions of Callao Port

Callao Port adjoins the capital city of Lima and its hinterland includes the metropolitan sphere which is better developed than any other part of Peru. The road and railway transport systems are formed around the metropolitan sphere and the socio-economic activities of the metropolitan sphere are closely linked to its vicinities. Callao Port is the nation's largest foreign trade port handling about 25% (annual cargo volume: seven million tons) of the national total of imports and exports. It not only functions as a commercial port supporting the socio economic activities of the area centered around the metropolitan sphere of Lima but is also partially used as a naval port and a fishing port.

Callao Port is calm as it is protected from southerly swells by San Lorenzo Island on the southwestern front and La Punta Peninsula on the south side. Besides, the tidal current is faint and the port is hardly affected by winds. What is more, securing large water depths is relatively easy.

The cargo volume currently handled at Callao Port almost equals the maximum volume which can be handled using the present port facilities. ENAPU is looking into a way to deal with increasing container traffic at No. 5 wharf. However, a plan for constructing a modern, full-scale container wharf has not yet been introduced. Due to a shortage of berths for general cargo vessels and grain carriers, congestion has become a factor. And, whereas the working lifespan for a wharf may average fifty years, most of Callao's wharfs are older than this. From the viewpoint of efficient management, this port facility deterioration will likely have a negative effect on efforts to meet the various needs of the modern society.

2. Basic Priorities for Development of Callao Port

Approximately 27% of Peru's population and 64% of it's industry are concentrated in the Lima metropolitan sphere. The government is taking a policy of decentralization, but it is reasonable to assume that socio-economic activities in the Lima metropolitan sphere will continue to expand. The area is likely to develop as Peru's largest urban corridor. Callao Port serves to support these activities as import cargoes, mainly daily necessities, and export cargoes, such as minerals, pass through. Unless there are sufficient port facilities for handling these cargoes, both ships and cargoes will be overloaded. This will cause an inflation of imported goods and a decline in competitive power for exporting goods to the international markets. The expansion of the distribution function is the number one priority for the port in the Lima metropolitan sphere.

There are several possible alternatives for expanding distribution at the ports of metropolitan Lima. One is to expand this aspect of the existing Callao Port. Another is to share this function with neighboring ports. The Japanese Study Team, having considered the scale of Callao Port's hinterland, the existing land transportation systems, and natural conditions has judged that the former alternative to expand Callao Port be selected. The top priorities for future development of Callao Port are:

1) To prepare facilities for dealing with modernizations in marine transportation specifically

containerization and larger ships,

- 2) To strengthen distribution by redevelopment and reinforcement of existing wharfs, and improvement of cargo handling systems;
- 3) To insure the safety of harbor workers, and the security of ships and cargoes;
- 4) To create harmony with the port community's inhabitants and regional and historical landmarks.

3. Forecast on Volume of Cargoes to be Handled at Callao Port

The following three cases were assumed as economic models for forecasting the volume of port cargoes:

- Case I Where the gross domestic product (GDP) growth rate is 6.37% from 1981 to 1990 and 6.00% from 1990 to 2000. These growth rates are the aims of the National Development Plan.
- Case II Where the GDP growth rate is set at 2.2% for 1982 in view of recent economic trends. It is set at 4.0% for 1983 in anticipation of a gradual recovery to the level of the average economic growth rate of the past three years and set at 5.0% after 1984.
- Case III Where the GDP growth rate is the same for 1982 and 1983 as in Case II and is set at 4.0% after 1984.

For forecasting volume, cargoes were classified into general cargoes, container cargoes, grains, minerals and petroleum products. An estimation of volume was made for each type of cargo.

The future volume of general cargoes was estimated separately for import cargo and export cargo. The volume of import general cargoes is closely related to the scale of production and consumption in the hinterland. Therefore, this volume was estimated by a correlation analysis with the gross domestic product. The export general cargoes consist mainly of mining and fishery products. First, an assessment of coming trends in the industries that produce these commodities was made. Then, by commodity, future volumes of these cargoes were forecast. The volume of container cargoes was forecast by multiplying the estimated percentages of containerization for import and export cargoes by the volume of general cargoes. The volumes of imported grains and exported minerals were forecast using the relationship between their demand and supply. Table 1 shows estimated volumes of cargoes (by main commodity) handled at Callao Port in each target year. The cargo volume of Case II was used as the base for calculation of necessary port facilities, because the GDP growth rate in Case II was considered the most reasonable.

4. Master Plan for Callao Port

(1) Strategy of Plan

The basic idea behind the development of Callao Port will be materialized by establishing a system for the control and operation of the port and improving the port facilities. Definite measures necessary to accomplish the purpose are as follows.

- 1) Expansion of development space: The present port contains little room for development.

 Hence, the necessity to develop new port space.
- 2) Development of container wharf: Facilities will be developed and the cargo handling

Table 1 Estimated Volume of Cargoes Handled at Callao Port

1,000 tons	,	Total	6,630	8,731	10,468	16,769	8,364	9,604	4,451	8,195	9,265	3,220
		Total		2,552	2,999 10	5,093	2,314	2,623	4,052 1	2,240	2,476	3,496 1
Unit:	SI	Domestic-trade Export	113	113	113							
	Petroleum products	Domestic-trade Import	1,425	2,064	2,483	4,447	1,841	2,131	3,471	1,772	1,993	2.950
		Export	238	238	238	238	238	238	238	238	238	238
		Import	94	137	165	295	122	141	230	117	132	195
		Exported mining products	1,411	1,461	1,782	2,252	1,641	1,782	2,252	1,641	1,782	2,252
		Imported grains	1,101	1,368	1,658	2,562	1,368	1,658	2,562	1,368	1,658	2,562
	er cargoes	Total	170	934	1,766	4.864	854	1.563	3,951	829	1,483	3,469
	ainer ca	Export	73	415			i	9/9	1.192	385		
	Contain	Import	76	519	1,037	3,545	462	887	2,759	444	828	075 6
	goes	Export Total	2.078	2,416	2,263 1,037	1 998	2, 187	1.978	1.634	2,117 444	1.866	1 441
	General cargoes		591	677	572	620	9	531	561	629	514	531
	Gene	Import	1.487	1,739				1,447			1,352	
		Year	1981	1987	1990	2000	1987	1990	2000	1987	1990	2000
	1	Case		ı	6.377 1990	6.002/2000	;	117	(%5)		111	

- system improved to make the port accessible to large full-container ships. In the future, it will be developed into a nucleus container port for the west coast of South America.
- 3) Development of special wharfs by type of cargo: Special wharfs for grains and minerals will be expanded to increase the efficiency of cargo handling and make the quick dispatch of ships possible.
- 4) Securing of sheltered waters: Calm waters will be secured by constructing breakwaters to assure safety and increase the efficiency of cargo handling.
- 5) Conduct of redevelopment: The redevelopment of the sites of old facilities and the relocation of buildings, etc. obstructing the flow of land traffic in the port area will be conducted to develop Callao Port into a modern port.
- 6) Coordination with city plan: The port plan will be coordinated with historical naval facilities, Castillo Real Felipe, etc. which lie in the vicinity. Also, the city plan for Callao City will be fully respected.
- 7) Selection of optimum scale and time of investment: A phased plan will be prepared not only to minimize the total amount of investment but also to achieve maximum effect with minimum investment.

(2) Scale of Master Plan

To be able to smoothly handle the cargo volume anticipated for 2000, it is necessary to rationalize the port cargo handling system and modernize the existing facilities and, at the same time, construct new facilities that can cope with the qualitative change of transportation including container transport and the increase of ship size. As for space for facility development, waters on the north side of the present port involve many restrictions to development because of the presence of the Rimac River and the naval port. Meanwhile, waters on the south side are calm and can be developed in one with the existing port. Thus, the waters on the south side of the present port are proposed as space for new development.

The wharf plan for the year 2000 by the types of major cargo items is as follows: For the general cargo wharf, eight quay berths with a water depth of 10 m will be secured in consideration of possible shift to container cargoes, improvement of the cargo handling system and redevelopment of facilities. For the container wharf, four berths (each length: 300 m) with 12 m depth are proposed in consideration of the trends in container wharf development at the ports of countires on the west coast of South America. For the grain wharf, two berths with 12 m depth are proposed so that they can cope with increasing ship size.

The space necessary in the year 2000 comprises 90 ha of land for the container wharf, open storage yards, roads and others and waters for channels and anchorage.

Table 2 Wharves proposed in the Master Plan

Type	Cargo volume (1,000 tons)	Number of berths	Berth length (m)	Water depth (m)	Ship size (DWT)	Cargo handling equipment
General cargo berths	1,634	8(1)	185 ~ 200	10	15,000	Ship's Gear
Container-berth	3,951	large 4 small 1 (1)	300 185	12	30,000 15,000	Container Crane 2 per berth Mobile Crane 2 per berth
Grain berths	2,567	2	250	12	000,09	Pneumatic unloader 400 t/hr 2 per berth
Mineral berths	2,252	2(2)	200	10	20,000	Ship loader 800 t/hr 1 per berth
Petroleum berths	4,052	3 (2)	250	12	35,000	Ship's pump
Total	14,451	20				

Note: In "number of berths" column, number of each parenthesis represents number of existing In numeral outside parentheses shows total number of berths.

(3) Master Plan

When planning a port, a number of alternatives are prepared and, by comparing from various points of view, the best of them is selected.

Three alternatives are proposed. They are each characterised by room for future expansion, maneuverability, time to supply facilities and phased construction. (Fig. 1)

These three alternatives are evaluated from the view-points of convenience, safety, economy, flexibility of plan and environmental protection. From the results of the evaluation (Table 3), Alternative Plan (C) has the fewest problems of all. Thus, Alternative Plan (C) is selected as the best. The master plan for Callao Port with 2000 as the target year is as indicated in Fig. 2.

(4) Construction Plan

The master construction plan attends to the following:

- 1) Supplying facilities in accordance with the increase of cargo volume.
- 2) Minimizing the impact of port construction on current port activities.
- 3) Levelling construction investments.

A construction plan based on these principles is shown in Fig. 3. Under the master plan, construction will be performed in four stages. The capacity of handling general cargoes may sometimes be temporarily smaller than the cargo volume. This will be coped with by not only increasing the efficiency of cargo handling but also by such methods as using the container wharf.

Fig. 1 Alternative Master Plan

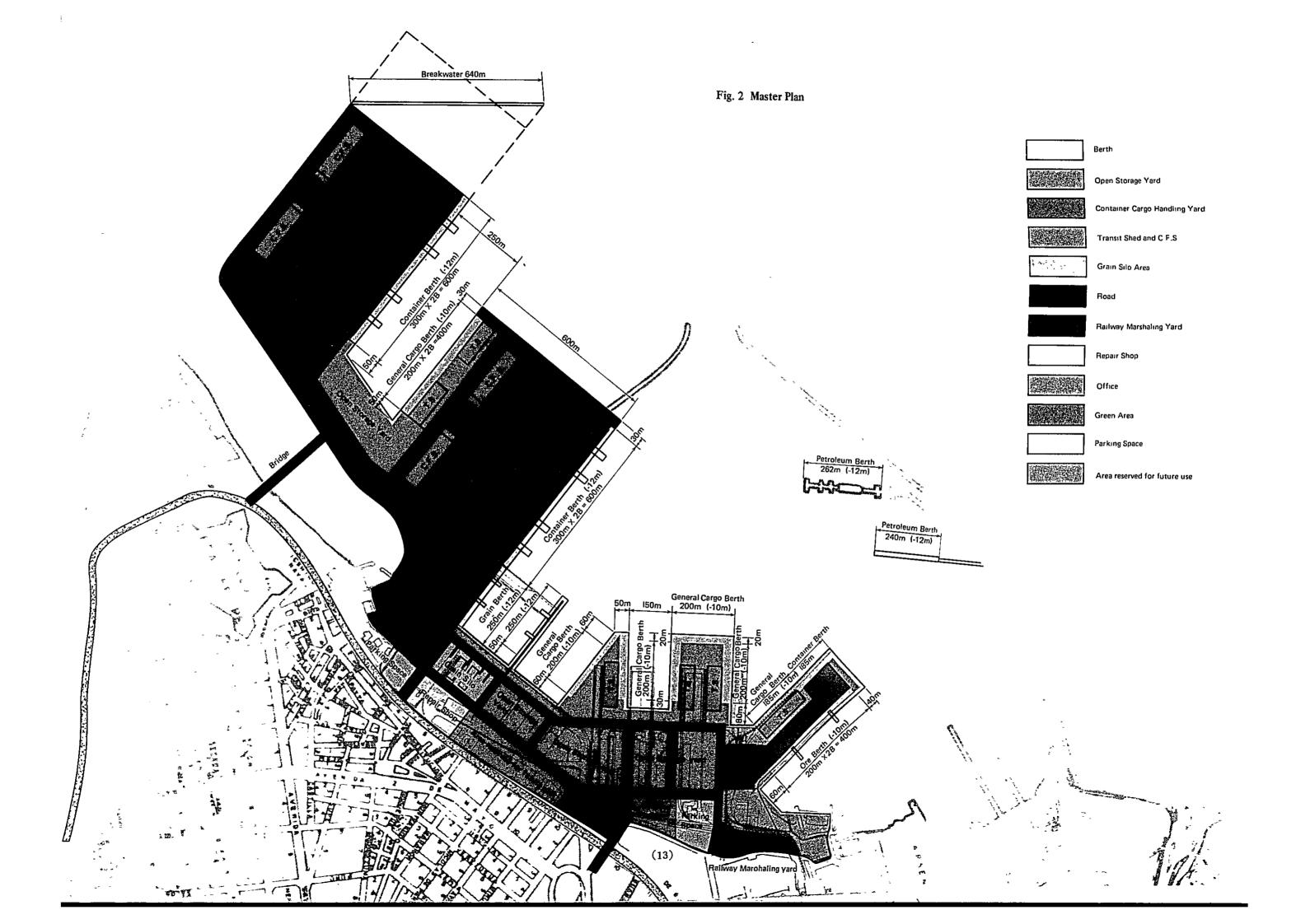


Table 3 Evaluations of Alternative Plans

			Evaluation	
	Items of evaluation	Plan A	Plan B	Plan C
	Maneuvability of ship	0	0	0
Convenience	Land use	0	0	0
 -	Operation of the facilities	0	0	0
	Calmness of waters within the port	0	0	0
Safety	Emergency measures	0	0	0
	Total construction costs	0	0	0
Economy	Investments by stage	0	Δ	0
Flexibility	Measures for anticipated future change	Δ	Δ	0
of planning	Future development	0	0	0
Environment	Effects on social environment	0	0	0
preservation	Effects on natural environment	0	0	0

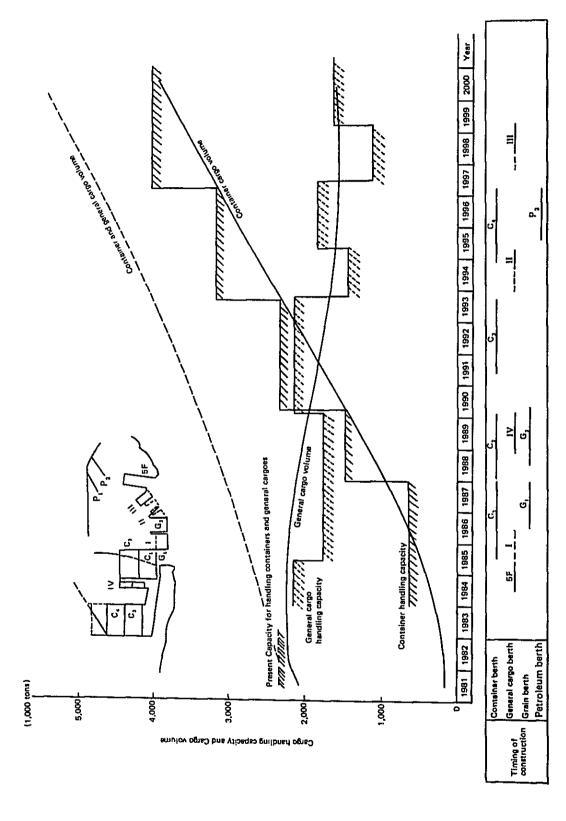


Fig. 3 Stage Plan for Constructing Berths of the Master Plan

5. Short-term Development Plan for Callao Port

(1) Target for Short-term Development Plan

The major goals for Callao Port by 1987 include supplement of facilities and improvement of operations.

With regard to the facilities, notable problems include a shortage of facilities to adequately handle the large volume of cargo as well as obsolescence of the facilities that do exist. Of these two problems, the shortage of facilities is more acute.

In particular, there is a pressing need for further development of container wharves and grain wharves.

The container cargo handling capacity of berth No. 5B will soon be pushed to the limit, while at the same time, large container vessels are unable to gain access to the berth.

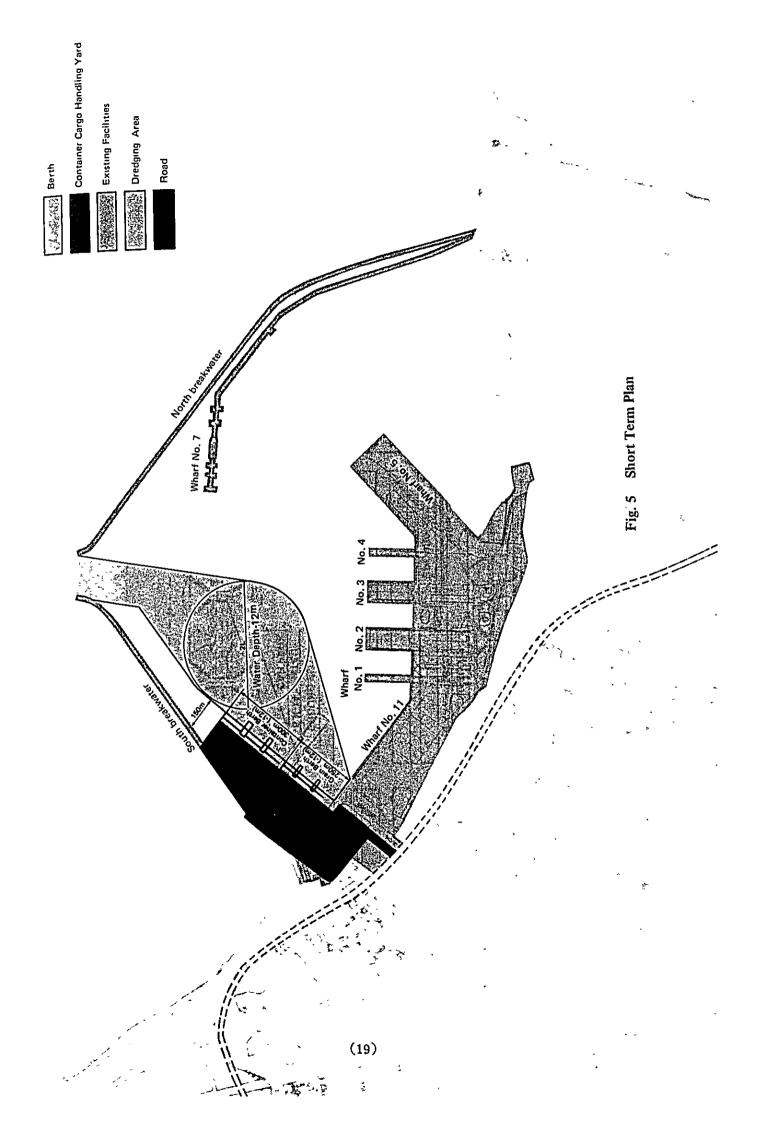
As for grain cargoes, in addition to the problem of ship congestion in the port, there are also obstacles to the entrance for large grain cargo ship.

Fewer general cargo berths are now needed due to continuing progress of containerization. However, the present facilities must be maintained at their same level for the time being.

(2) Short-term Development Plan

In preparing the short-term development plan the factors to be considered include: (a) effective handling of containers, (b) minimizing investment, (c) smooth shifting to the next plan, and (d) quick completion of the project. Of course, consideration must also be given in terms of design and construction to protecting the reclamation from settlement.

Container berths and grain berths that must be constructed under the short-term development plan can, from their configuration in the master plan, be more economically constructed from the base of the southern breakwater and this is more efficient for the use of the port.


The following two alternatives may be conceived for the short-term development plan:

Alternative Plan A stressed the rational control and operation of the container terminal and smooth transition to the next plan while Alternative Plan B is anomalous but stresses the minimizing of construction investment and early readiness for utilization. (Fig. 4)

Both alternatives satisfy their requirements but it is the amount of investment that finally decides which plan to choose. Considering the amount of ENAPU's past construction investments, Alternative Plan B seems to be the more acceptable to ENAPU. Thus, this alternative is proposed as the short-term development plan. (Fig. 5)

(17)

Plan A

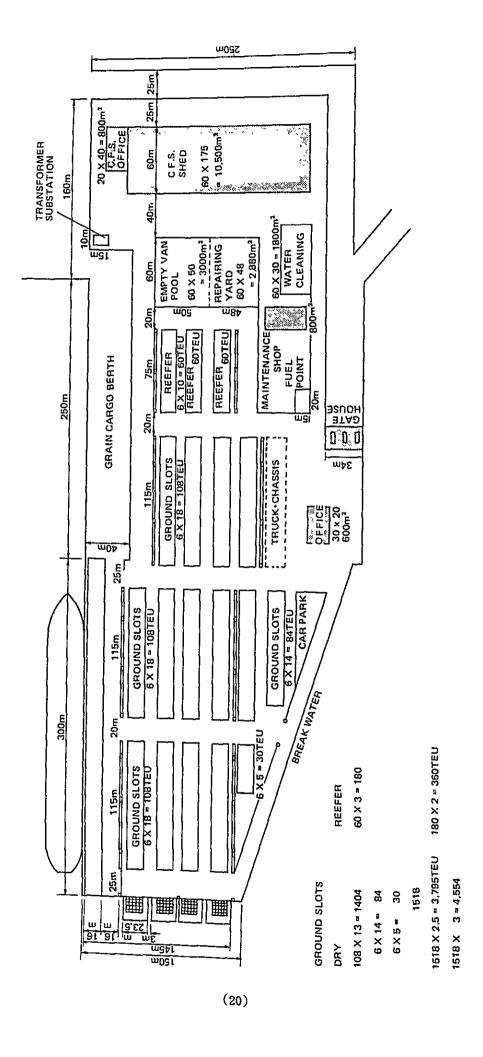


Fig. 6 Layout of Container Terminal Plan (B)

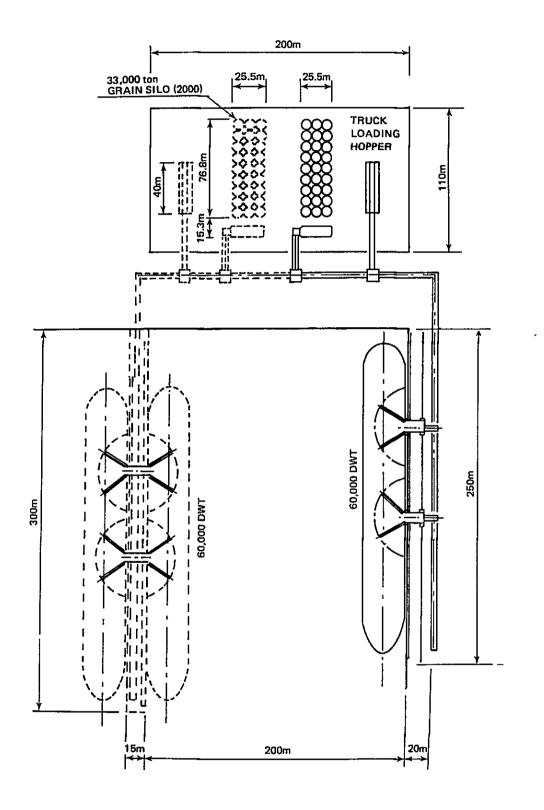


Fig. 7 Grain Terminal Plan

6. Operation of the Container Terminal

(1) Operating Organization

It is desirable for the container terminal to be operated under the integrated responsibility setup of a single organization charged with everything from receipt of goods to ship loading or from ship unloading to delivery of goods. This is absolutely necessary to enable the following characteristics of container terminal operation to be brought into full play:

- 1) Highly efficient work by a small staff as the result of mechanization and work simplification.
- 2) Rational work based on preliminary work planning prior to the entry of ships.
- 3) Cost reduction through the rapid handling of mass cargoes.
- 4) Decrease of short-quantity accidents and damages to cargoes as the result of containeriza-
- 5) Reduction of ship operating cost (through curtailment of port stay).

Judging from the present conditions of Callao Port, it will be appropriate for the container terminal office to be created at this port by ENAPU to operate the container terminal centrally as the port's container terminal organization.

This operation requires the service of a sufficient number of proficient office and field workers and the provision of a complete system for the repair of cargo handling equipment.

The container terminal office must have four divisions comprising 12 sections and be manned by 111 desk workers (white collar) and 124 field workers (blue collar).

(2) Operation of Container Terminal

Work at the container terminal consists of the following:

1) Container ship work : Container loading/unloading of ships.

2) Container yard work : Keeping and sorting of containers at the yard and

their haulage into or out of the yard.

3) Gate work : Receipt or delivery of containers

4) Container CFS work : Van stuffing/unstuffing of small-lot cargoes and their

custody

5) Cargo handling paper work : Relevant documents

6) Maintenance of containers and : Maintenance and repair of containers and equipment

cargo handling equipment

In these duties for example the yard planner, who directs container yard work, must perform the following duties:

He must prepare a yard plan so that containers can be efficiently deposited in the limited space of the container yard and be delivered uninterruptedly. Specifically, his duties include assignment of yard slots for containers, preparation of yard location plans, preparation of sequence check lists for landing cargoes, preparation of check lists for shift reloading, preparation of delivery schedules and preparation of dispatch orders.

(3) Container Handling Plan for Wharf No. 5

The operation of Wharf No. 5 in the event that it is turned into a container wharf is studied

under the condition of using the cargo handling equipment which ENAPU currently possess. If the B berth of Wharf No. 5 is used as a container berth, a marshalling yard of about 9,000 m² can be secured in its immediate rear. It can hold 990 TEU (stacks averaging 2.5) and mainly containers for export cargoes will be kept there. Container storage yards will be secured in A, B, C and D areas indicated in Fig. 8. The operation system will be of the transtainer formula combining the mobility of top lifters and side loaders with the effective use of space by the multi-decker stacking by transtainers. Side loaders will be used in A and D areas, transtainers in B area and top lifters in C area and the marshalling yard. The total container storage capacity of all areas, including the marshalling yard, is 3,772 TEU.

As for container yard working hours, work will be done on a two-shift basis at the beginning, switching to three shifts when work increases. As necessary personnel for this work, the work control division must be manned by 10 at day and five at night while the field work division must be manned by 45 at day and 37 at night.

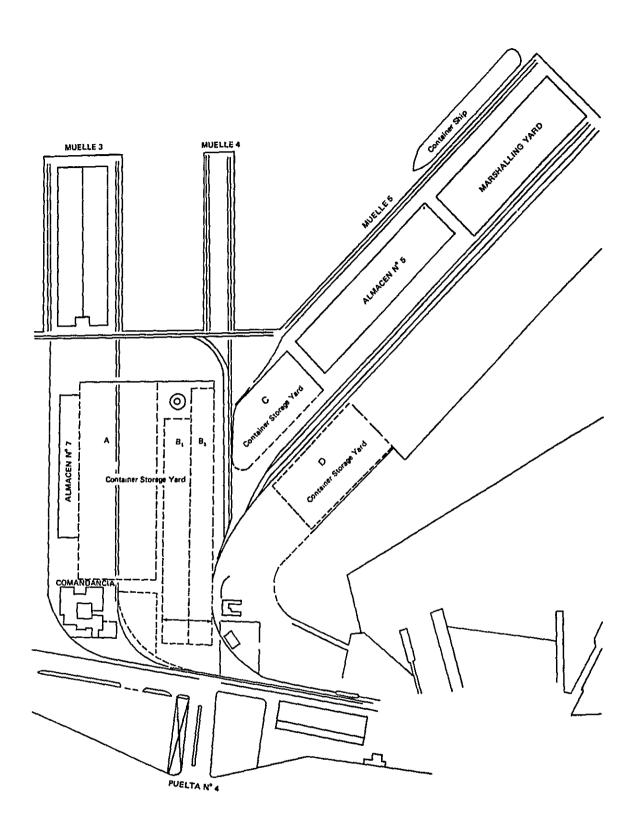


Fig. 8 Container Handling Plan at No. 5 Wharf

7. Design, Construction and Cost Estimate

(1) Design

Construction under the short-term development plan must be executed in the port within a brief period of time while ordinary port activities continue. Since the construction will take place in the port, the effect of waves is hardly considered in planning the construction. Yet, the fact that the foundation ground is soft, the area is in a seismic zone, the securing of a work base is difficult and the domestic procurement of such construction materials as steel pipe piles and steel pipe sheet piles is difficult must be carefully considered in designing and planning construction.

As the structural form of quays, four different types: concrete caisson type, steel sheet pile cellular cofferdom type, steel pipe pile supported platform and walled steel pipe pile type have been comparatively studied. Finally, the walled steel pipe pile quay structure has been chosen over the steel pipe pile supported platform. The sections of the container wharf and the grain wharf are shown in, Fig. 9 and Fig. 10.

Land in the rear of wharves will be secured by reclamation of soft ground. This gives rise to the problem of settlement of reclaimed land after the start of use. The settlement of reclaimed land and its settling speed are estimated on the basis of results of a geological survey. As indicated in Fig. 11, settlement will finally amount to more than 1 m if reclamation is carried out on the present ground. Therefore, we propose a design wherein settlement can be held to about 30 cm by replacing soft ground to a depth of -13 m with superior sand.

(2) Construction and Cost Estimation

Climate in the area of Callao Port is generally mild and work at the construction site will be only slightly affected by weather. Since, however, most construction work takes place in the limited space of the port where ordinary port activities continue, it is necessary to plan construction carefully so that it may not interfere with the port activities.

A drag suction dredger must be used to obtain materials for reclamation use since there is no choice but to collect them from waters exposed directly to off-sea swells. Meanwhile, a cutter suction dredger must be used for the reclamation itself. Thus, it is necessary to use these two dredger types.

The other necessary types of large construction equipment, are the pile driving barge and the grab dredger. The cutter suction dredger to be used will be brought from the west coast of the United States while the drag suction dredger will be brought from Europe. It is further assumed that other construction equipment will be procured from the west coast of the United States.

It is assumed that construction materials that cannot be procured in Peru will be procured from Japan and other foreign countries.

Construction must be performed at a considerable rate because the facilities must be provided for use soon. Yet, since construction must be done as economically as possible, the work schedule is as indicated in Fig. 12.

The period of construction is four years and six months: namely, a year for engineering service, including the bidding time, and three years and six months for construction.

The construction cost is estimated by the price levels of August 1982 and does not include taxes for imported materials and equipment.

The construction cost for the short-term development plan is about 100 million dollars, as indicated in Table 4. The foreign portion represents 70% of this total.

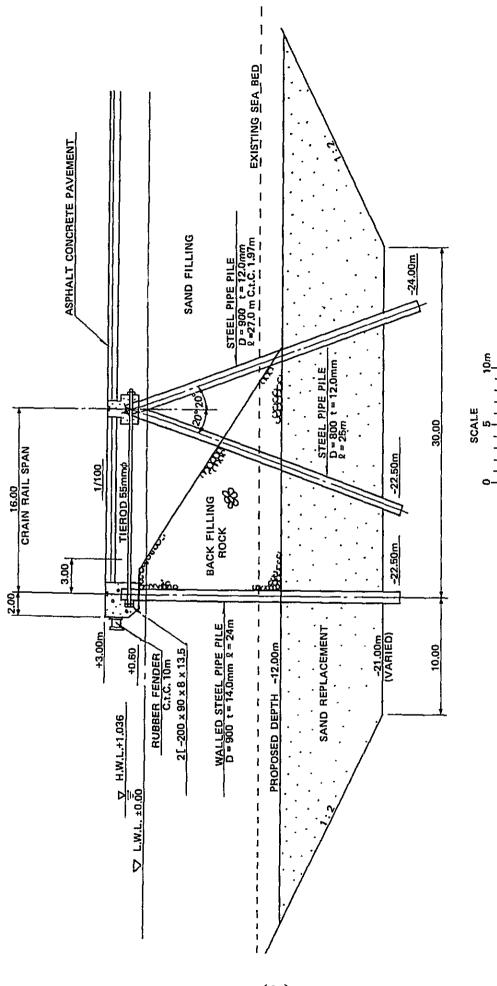


Fig. 9 Container Berth Quay Wall (Walled Steel Pipe Pile Type)

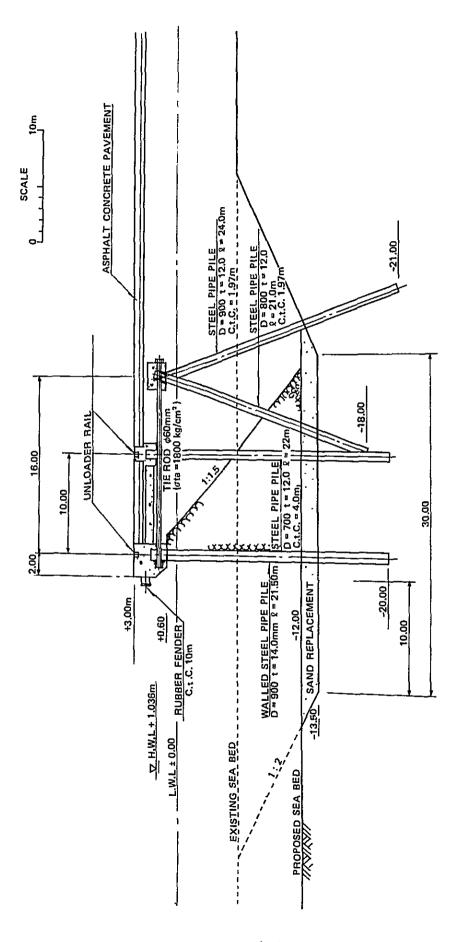


Fig. 10 Grain Berth Quay Wall

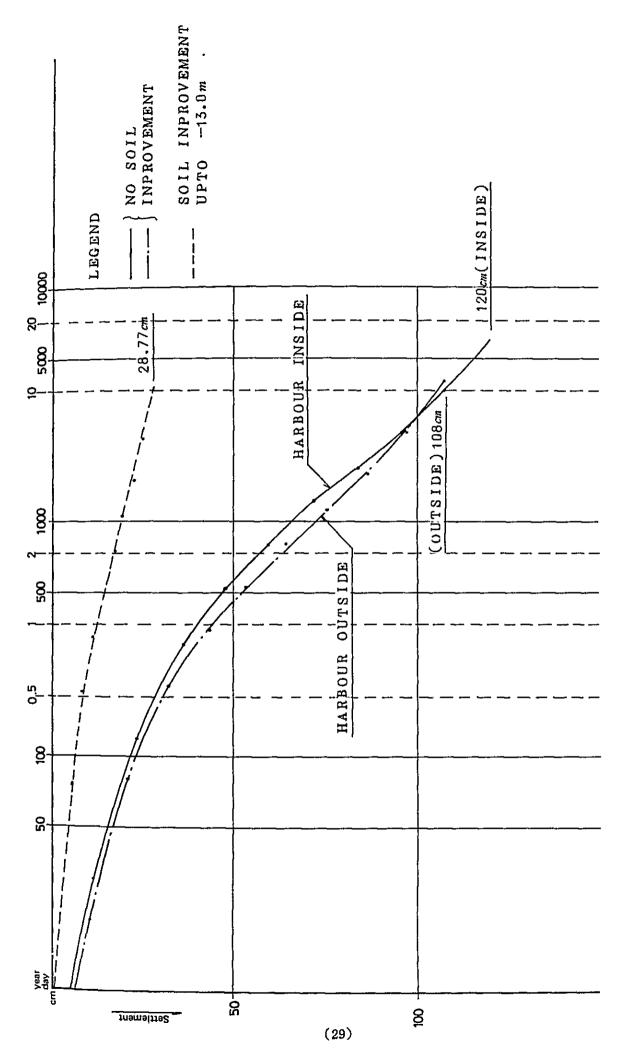


Fig. 11 Estimation of Settlement of Reclamation

Fig. 12 Construction Schedule of Short Term Development Plan

Year	1984	1985	1986	1987	
Item	[4] [6] [8] [10] [12]		2 4 6 8 10 12	2 4 6 8 10 12	
Mobilization & Demobilization					
Preparation & Temporary work					
Demolishment of Existing No. 9 Pier					
Container Berth					
Grain Berth					
Temporary Revetment					
Connection of C/B & R/M					
Dredging of container yard					
Dredging of channel & Basin					
Reclamation of Container Yard					
Soft ground treatment					
Pavement					
Buildings for Container handling					
Silo for Grain					
Utility					
Installation of Handling					
eduipments					

NOTE: Assuming that tendering for construction needs 3 months, engineering services for the Project such as detailed design and preparation of tender documents must start at least 12 months before commencement of construction work.

Table 4 Construction Cost of Short Term Development Plan

		S d S	Short Term Develonment Plan	onment Plan				(U)	(Unit: 1,	(Unit: 1,000 US\$)
Item	Unit	Quantity	F/C	2/1	Total	Unit	Quantity	F/C	r/c	Total
Mobilization & Demobilization	LS		7,637	1	7,637	L.S		7,637	- -	7,637
Preparation & Temporary work	LS		2,831	1,711	4,542	LS		4,680	2,080	6,760
Demolishment of Existing No. 9 Pier	LS		2,386	964	3,350	L.S		2,386	964	3,350
Container Berth Quaywall	E	300	6,203	1,681	7,884	ш	300	960'9	1,681	7,777
Grain Berth Quaywall	E	250	4,526	1,488	6,014	E	250	4,504	1,488	5,992
Revetment	E		,			E	230	1,396	1,624	3,020
Temporary Revetment	E	* 470	1,382	1,547	2,929	E	830	5,037	5,861	10,898
Connection of C/B & R/M	E	50	205	30	235	Ħ	20	205	30	235
Dredging of Container Yard	m ₃	441,720	980	150	1,130	m ₃	579,260	1,126	197	1,323
Dredging of Channel & Basin	m³	636,000	1,145	185	1,330	E	636,000	1,029	185	1,214
Reclamation of Container Yard	m³	1,853,973	5,775	1,341	7,116	m³	3,205,115	9,346	2,356	11,702
Soft Ground Treatment	m ²	009'6	196	69	265	_z w	19,200	392	138	530
Pavement	m	157,650	432	5,234	3,666	m ₂	202,120	402	5,524	5,926
Buildings for Container Handling	L.S		1	3,589	3,589	LS		1	3,701	3,701
Silo for Grain	set	1	5,921	5,834	11,755	set	-	5,921	5,834	11,755
Utility	LS		1,508	642	2,150	I.S		1,508	642	2,150
Handling Equipments	LS		20,062	_	20,062			20,062	1	20,062
(Sub Total)			(61,189)	(24,465)	(85,654)			(71,727)	(32,305)	(104,032)
E/S			2,784	1,499	4,283			3,381	1,820	5,201
Contingency			6,027	3,670	6,697			7,607	4,846	12,453
Total			70,000	29,634	99,634			82,715	38,971	121,686

*Including reinforcement of south breakwater

8. Economic Analysis

In this economic analysis, the relation between project costs and benefits from the execution of the project is evaluated by the internal rate of return (IRR) with respect to, the "with" case, where the short-term development plan for Callao Port is executed, and the "without" case, where it is not. It is assumed that, in the "without" case, the cargo volume which is in excesses of the present cargo handling capacity of Callao Port will be transported via San Martin. The project costs are the cost of developing facilities under the short-term development plan while the benefits consist of, the amount saved by shortening the ship waiting time, the decrease in expenses of cargo handling, the decrease in expenses of shipping services, the decrease in expenses of cargo storage services and the decrease in expenses of land transportation. The period of IRR calculation is 23 years, the period of construction added to the project life.

The IRR obtained from these benefits and costs is 19.53%. It can be concluded that, economically, this project is considered feasible enough in view of the Peruvian social discount rate of 13%.

9. Financial Analysis

9-1 Method of Financial Analysis

The aim of this Financial Analysis is to study the soundness of the financial affairs for Callao Port based on the Financial Statements, the profitability of the Project itself based on the discount cash flow method, and the reasonableness of the project execution from the managerial position of the executing agency, ENAPU S.A..

9-2 Analysis of Financial Statements

Estimated financial statements (revenue and expenditure, source and application of funds and balance sheets) for Callao Port from the year 1981, whoch was established as the initial year of reckoning when the accounts for Callao Port were settled, to the year 2006 when the project life is to terminate, are used to analyse revenues and expenditures, the conditions of fund raising and the financial status.

Four different fund raising scenario's where assumed and for each of these, 2 variations for the operating expenses in the financial statements, producing the following 8 cases, which were studied.

(1) 8 Cases studied:

Case	Foreign/Local Portion	Methods of fund raising	Operating expenses
Case-A1	Foreign Portion	50% self-finance, 50% long term loan from Foreign Bank at an interest of 4.25%/annum. Repayment period 25 yrs including 7-years' grace period.	Present operating expenses for Callao Port (Type A)
	Local Portion	100% self-finance	
Case-A2	Foreign Portion	The same as Case-A1	– ditto –
	Local Portion	50% self-finance, 50% long term loan from domestic bank at an interest of 12%/annum. Repayment period 17 yrs including 4 years' grace period.	
Case-A3	Fareign Portion	100% long term loan from Foreign Bank at an interest of 12%/annum. Repayment period 17 yrs including 4 years' grace period.	– ditto –
	Local Portion	100% long term loan from domestic bank at an interest of 17%/annum. Repayment period 17 yrs including 4 years' grace period.	
Case-A4	Foreign Portion	100% long term loan from Foreign Bank at an interest of 4.25%/annum. Repayment period 25 yrs including 7 years' grace period	– ditto –
	Local Portion	100% long term loan from domestic banks at an interest of 12%/annum. Repayment period 17 yrs including 4 years' grace period	
Case-B1		(Foreign Portion) (Local Portion) The same as Case-A1.	Operating expense is 10% more than that for Type A (Type B)*
Case-B2		(Foreign Portion) (Local Portion) The same as Case A2	– ditto –
Case-B3		(Foreign Portion) (Local Portion) The same as Case-A3	– ditto –
Case-B4		(Foreign Portion) (Local Portion) The same as Case-A4	– ditto –

In view of the fact that Callao Port is a major entity of ENAPU, an additional 10% of the operating expenses assumed under Type A were included under Type B to cover the share of the ENAPU administrative expenses which might be born by Callao Port, including the interest payment on loans, from which the ports are presently exempt.

(2) Financial Statements for 8 Cases

Judging from the results of the study on the summarized statements for revenue and expenditure, source and application of funds and the balance sheets for the above 8 cases, there are no difficulties for any of the cases in relation to revenues and expenditures and financial status. However, in the source and application of funds, Case -1 and 2 for both types A and B will see a shortage of funds during the construction period from 1985 to 1987, as these cases adopted self-financing to cover parts of the fund raising. Particularly for type B, cumulative net current assets (current assets minus current liabilities) will dip well into the red for the period from 1987 to 1988 (Case-B1: -25 and -14 mil. US\$, Case-B2 -13 and -4 mil. US\$). As execution of the project is expected to bring in high operating profits shorting from the year 1988, the red figures for cumulative net current assets for both cases will disappear after the year 1989 to move smoothly into the black. It will be reasonable to rely on loans for fund raising during the construction period.

As discussed above since using long-term loans will achieve a highly profitable financial status, the execution of the project at an early date is awaited.

The factor responsible for the excellent condition of revenues and expenditures is that the project execution will increase the container cargo, which has a high profit margin, and decrease the volume of the general cargoes by 600,000 tons, which incur a high cost.

Construction of the new grain wharf will favorably increase the volume of grains to 1,000,000. That is another factor contributing to the excellent condition mentioned above.

9-3 Discount Cash Flow Analysis

The above mentioned financial analysis covers all business of the executing body, including the project. In the present analysis, the so-called financial rate of return (FRR) is sought, using the discount cash flow method, in order to assess if profitability of the project is reasonable when compared to the construction cost.

The FRR is sought based on Type B operating expenses for the period from 1983, the first year of reckoning, to 2006, when the project life terminates. The FRR is 35.31%.

In this analysis, the above earning rate is that before interest payment and depreciation, and however the FRR, including deductions for loan interests and depreciation, is a reasonable 15 – 20%.

Accordingly, it is clear that the project execution is feasible in this analysis. The results of a sensitivity analysis of the FRR for fluctuations in the revenues, expenditures, and construction costs are shown below.

Case	Project Cost	Revenue	Expenditure	
1	±0.1%	±0%	 	FRR
2	±0%	-10%	±0%	35.31%
3	+10%		±0%	19.48%
4	+10%	±0%	+10%	20.57%
	- 1070	-10%	+10%	11.04%

Table 6 FRR by Sensitivity Analysis (Case B)

AND THE PROPERTY OF THE PROPER . The state of the state of the second of th CONTRACTOR OF THE PROPERTY OF THE PARTY OF T The state of the second mus quintification and the design of the design of the second of the sec on the first the first of the first party of the fi

a contract the state of the sta countries and the state of the White Charles and the Control of the

TOWARD THE PROPERTY OF THE CORE TO THE CORE TO THE CORE THE TENTON OF THE CORE THE T and making the second of the source of the second The state of the s

the management of the property of the second of the second Service Company of the control of th The content of the co

Outline of Survey TO SERVE THE PROPERTY. TO SERVE THE PARTY OF avertification in the control of the

The second of th community to the first the following of the pass of the

College Barrier Barrie dige the spring supering on a large No. 72 Line and the second second second second aspect of the state of the state of the second restricting will place

i ing · newl. 4 ,对量 atth. 5 P X The As · · · 1. 清美 -18 - A , ; · •₆ 4.1.3 Ţ. 1.53

CHAPTER 1. OUTLINE OF SURVEY

1-1 Purpose of Survey

(1) Background of Survey

Callo Port's response to containerization has become urgently necessary with the recent sudden increase of container cargoes and the growing demand for the call of container ships.

Thereupon, the ENAPU S.A. (Empresa Nacional de Puertos S.A.), the port administrator, studied this response from 1979 and has established a plan to modernize and expand the maritime infrastructure of Callao (Plan de Modernización y Ampliación de la Infraestructura del Terminal Maritimo del Callao; to be referred to hereafter as "provisional plan") with 1985 as the target year. The immediate response consists of using Wharf No. 5 for a container berth and reorganizing the existing facilities behind Wharf No. 5 and Wharves Nos. 3 and 4 as container stockyards. Construction is already underway in accordance with this plan.

However, the plan is not the study of the entire Callao Port but a strictly provisional plan designed merely to provide facilities relative to the handling of container cargoes. Since no plan from the long-term, comprehensive point of view is available, it is necessary to prepare a basic plan for the improvement of Callao Port. In this planning, there can be the idea to limit the functions of Callao Port to container and general cargoes only and leave the functions for mineral ores, wheat and petroleum to such nearby ports as Huacho and San Martin. There is also the idea to concentrate as many and as varied functions on Callao Port as possible.

Furthermore, some of the facilities of Callao Port are more than 50 years old and the redevelopment of these facilities is necessary. In this aspect of port management, modernization from the view-point of rationalized cargo handling is in demand.

This survey is aimed at reviewing the present situation of Callao Port both qualitatively and quantitatively and plan for the future of the port so as to meet long-term socio-economic requirements.

(2) Purpose of Survey

Callao Port is the largest port in Peru and forms the sea approach to the metropolitan sphere of Lima. With the increase of port cargoes, notably container cargoes, it must now modernize its facilities and become a port that can match the economic development of the nation. The purpose of this survey is to decide a basic plan to improve Callao Port for the target year of 2000 in view of these present conditions and decide a short-term improvement plan with 1987 as the target year for facilities requiring immediate improvement and make a feasibility study concerning this plan.

1-2 Composition of Survey Term

(1) Method of Survey

The survey team analyzed and assessed information gained in data collection in Peru and field exploration, exchanged views on it with ENAPU officials and drafted a plan. The main contacts used for data collection were as follows:

Empresa Nacional de Puertos S.A.

(ENAPU S.A.)

Ministerio de Transportes y Comunicaciones

Instituto Nacional de Planificacion

Ministerio de Industria, Turismo e Integración

Ministerio de Economía, Finanzas y Comercio

Ministerio de Pesquería

Ministerio de Agricultura

Ministerio de Energía y Minas

Corporación de Desarrollo del Callao

Instituto Nacional de Estadísticas (INE) Empresa Nacional de Comercialización de Insumos (ENCI) Asociación de Exportadores (ADEX)

Aduana

Asociación Marítima

Banco Central de Reserva

Bank of Tokyo

Cámara de Comercio de Lima

Cámara Peruana de la Construcción (CAPECO) Comisión Controladora del Trabajo Marítimo (CCTM) Confederación Nacional de Comerciantes (CONACO) Agencia Marítima COSMOS S.A. (COSMOS) Compania Peruana de Vapores S.A. (CPV)

Custom Agent

Delta Line

Empresa Nacional de Ferrocarriles S.A.

(ENAFER S.A.)

Dirección General de Hidrografía y Navegación - Ministerio de Marina

Ніегго Реги

Organizacion Oficial del Japon Para el Comercio Exterior

(JETRO) Kuroiwa-Kogan-INGS. ASOC.

(KKV-Consultores) Kawasaki Kisen Kaisha, LTD. (K LINE)

Minero Perú S.A.

Minero Perú Comercial

(MINPECO) Nippon Yusen Kaisha, LTD. Servicio Nacional de Meteorología e Hidrología (NYK LINE) Empresa Siderúrgica del Perú (SENAMHI) Consejo Peruano de Usuarios del Transporte Internacional de Carga (SIDERPERU) (COPERUT)

The Overseas Economic Cooperation Fund

(OECF)

The World Bank (IBRD)
Inter-American Development Bank (IDB)

In planning for Callao Port, the team inspected the following other ports:

Salaverry Port

Chimbote Port

Supe Port

Huacho Port

San Martin Port

Matarani Port

(2) Survey Team

The socio-economic field survey took about two months from July 16 to September 11 in 1982 while the field survey on natural conditions took about four months from July 23 to November 15 of the same year. The team was composed as follows:

Mr. Shinya IZUMI (Team Leader)

Director, Planning,

The Overseas Coastal Area Development Institute of Japan (OCDI)

Mr. Hirooki MATSUSAKI (Port Planning)

OCDI

Mr. Hajime EGUCHI (Traffic Forecast)

OCDI

Mr. Satoshi TANAMI (Container Terminal Planning and Terminal Operation)

OCDI

Mr. Makoto NAMATAME (Structural Disign)

OCDI

Mr. Takashi TACHIKAWA (Construction and Cost Estimate)

OCDI

Mr. Hiroaki OZASA (Economic Analysis and Natural Condition)

OCDI

Mr. Noboru TANIGAWA (Financial Analysis)

OCDI

Mr. Hiroshi TAGUCHI (Leader of the Natural Condition Survey Team)

Kokusai Kougyou Company Ltd. (KOKUSAI)

Mr. Kunio SASAKI (Soil Investigation)

KOKUSAI

Mr. Kunio YOSHIOKA (Hydrographic Investigation)

KOKUSAI

Mr. Takao KAIBARA (Coordinator to the Team)

The Japan International Cooperation Agency (JICA)

1-3 Counterparts

The development project of Callao Port was studied under Governor Gustavo Ballon Z.B. and President Carlos Revera A. of ENAPU S.A..

The ENAPU S.A. counterparts were as follows:

Ing. Ricardo Valencia Menegotto

Gerente Tecnico

Ing. Roy Legoas Montejo

Jefe Oficina Estudios Técnicos y Económicos

Ing. Freddy Romero Vásquez

Jefe División de Planeamiento

Ing. Felipe Alvarado Pisa

Jefe División de Obras

ter de la laction de laction de laction de laction de la laction de la laction de laction de laction de la laction de la

The designation of the contract of the contrac

THE THE PARTY OF THE PARTY AND CORNERS.

CHAPTER 2

Present Conditions of Callao Port

Too. 4 Hall Bridge Market Mark

ڏر

CHAPTER 2. PRESENT CONDITIONS OF CALLAO PORT

2-1 Outline

Callao Port is the foreign trade port for the metropolitan Lima area, and it is the foremost foreign trade port in Peru. The cargo volume handled there in 1981 amounted to 6,712,000 tons (foreign trade: 5,092,000 tons, domestic trade: 1,620,000 tons), about 20% of the national total.

In 1981, the leading export commodity was mineral products (61% of export cargoes), followed by petroleum and metal industry products. As for imports, grain accounted for nearly half the total (47.5%), while the remainder included fertilizers, chemicals, metal industry products and machine parts.

The domestic trade carried out at Callao consists mainly of incoming cargoes, 94.6% of which are petroleum products from the northern provinces.

A total of 1,800 ships called at this port in 1981.

Their average size was 10,100 DWT for general cargo ships, 17,600 DWT for grain ships, 10,700 DWT for ore carriers and 18,100 DWT for oil carriers.

As can be seen from Fig. 2-1, Callao Port is sheltered by north and south breakwaters. The south side of the port area is a commercial port, the north side is a naval harbor, and between the two is a fishing port. Thus, Callao Port is a composite port that combines three functions.

Port facilities at Callao include nine wharves: Wharves Nos. $1 \sim 4$ in the center area, wharf No. 5 on the north side, Wharf No. 7 adjoining the north breakwater, Wharf No. 9 extending north from the base of the south breakwater and Wharves Nos. 10 and 11 in the southernmost section.

There is one approach channel.

Fig. 2-1 Port of Callao

2-2 Present Condition of Port Facilities

(1) Outer Facilities

The protective facilities are comprised of a northern breakwater and a southern breakwater, as indicated in Table 2-1. The anchorage is covered by these two breakwaters and its designated water depth is -10.5 m. The port has one approach channel having a width of 180 m, a length of 1,050 m and a designated water depth of -10.5 m.

Table 2-1 Breakwaters

Name	Length	Crown height	Structure type	Year constructed
North breakwater	Approx. 2,100 m	+ 4.5 m	Rubble mound	not clear
South breakwater	Approx. 1,100 m	+ 2.0 m	Rubble mound	not clear

(2) Berthing facilities

Berthing facilities are as indicated in Table 1-2.

Table 2-2 Mooring Facilities

	N	swe		Length	Apron Width	Water depth	Structure type	Year of comple- tion	Cargo handled
A B	quay,	Wharf	No.1	183 m		-10.5 m	Pier of RC concrete pile type	1939	General Cargoes
Ā B	11	13	No.2	"		11	11))))	11
A B	11	11	No.3	11		,,	11	11	n #
Ā B	11	11 11	No. 4	11	}	## #1			11
ĀB	11	93	No.5	185		19	Pier of PS concrete pile type	1968	"
C	11 11	ri H	"	183 185		11	11 10	1971	Gres
E	11	**	n	107	}	19	u	1968	(Partly used by the navy)
Ā	н	т	No.7	262			Dolphin pier of PS concrete	"	Petroleum
В	*1	41	et	"	}	11	u u	} "	<i> "</i>
A B	1)	11	No. 9	180		"	Pier of RC concrete pile type	11	General Cargoes
C	15	11	H	"	į	11	u	ļ #	} ••
D	11	71	11	ı.	ĺ	-7	п) n	For small craft
E	11	#	77	90	1	-6	Stone masonry type	1970	
D D))))	ri u	No.10	145		-5.5	11	11	39 \$1
Ā B	11	61 11	No.11	180 80		-10.5	Pier of RC concrete pile type	1939	Grains
Č	15	41	11	180	ſ	11	11) n	{ «

(3) Freight handling facilities

The freight handling facilities are as indicated in Table 2-3.

Table 2-3 Open Storage Yards and Transit Sheds

As of January 1983

		As of January 1983
Name	Position	Area (m²)
ZONA No. 1	10-D	7,700
ZONA No 2		10,200
ZONA No. 3-A	10-C	14,700
ZONA No. 3	10-D	16,700
ZONA No. 4	11-A	26,400
ZONA No. 34	11-B	6,900
ZONA No. 6	Wharf No. 3	11,600
Sub-total		94,200
ANEXO No. 1	11-C	3,400
ANEXO No. 2	Wharves Nos. 2 and 3	3,000
ANEXO No. 5	" Nos. 4 and 5	4,200
ANEXO No. 6	fishing port	6,900
ANEXO No. 7	Wharves No. 2 and 3	6,800
ANEXO No. 8	Wharf No. 2	5,400
ANEXO No. 9	11-C	6,100
ANEXO No. 9B	0	
ANEXO No 11	,,	2,700
Sub-total	 	7,000
ALMACEN No. 1	Whereal	45,500
ALMACEN No. 2	Wharf No. 2	5,600
ALMACEN No. 3]	5,600
ALMACEN No 4	Wharf No. 3	4,500
ALMACEN No. 5	″ 5-A	, ,
ALMACEN No. 6	i	7,300
ALMACEN No. 7	Wharves Nos. 2 and 3	2,300
ALMACEN No. 8	Wharf No. 3	3,700
ALMACEN No. 9	No. 2	3,600
ALMACEN No. 10	I1-C 11-A	3,800
ALMACEN No. 11		3,900
Sub-total	11-C	3,900
Temporary Container yeard		48,700
Container yeard	11-B, C	10,400
Sub-total	Wharves Nos. 4 and 5	40,000
		50,400
Grain silo	11-A	Storage capacity 26,730 tons

(4) Cargo handling equipment

The main cargo handling equipment used by the port are as follows:

Table 2-4 Cargo Handling Equipment

Machine # 1 Machine # 2 Machine # 3 Length of rails	Nominal capacity 200 t/h do. Nominal capacity 300 t/h 300 m	Used from Jan '75 do. Used from Mar '73
Container side loaders		
Three Two	Rated load 21 t	Used from Jan '83 do.
Container top lifters		
Three	Rated load 33 t	Used from Mar '83
Container transtainers		- <u>-</u>
Two	Rated load 35 t	Used from Jun '83

(5) Water and Oil supply facilities

Water is obtained from four wells at the port. Two hydrants are available to each berth. Oil is piped to Wharf No. 4, from these barges supply it to waiting ships.

(6) Electric Power Supply Facilities

A 60 KW 60 Hz high tension line is connected to the entrance of the port area, and from there electric power is distributed at 10 KV to several port area substations. The substations then supply power throughout the port area, at 220 V or 440 V, via an underground wiring system.

(7) Port Traffic Facilities

There are six road entrances into the port: a central entrance and entrances Nos. $1 \sim 5$ (See Fig. 2-1). The road leading to the central entrance is the main road and is the widest of all. Cargo distribution is handled mainly at entrances Nos. $2 \sim 4$, with the entrance closest to each cargo handling facility used as required. The width of roads in the port is between $9 \sim 18$ m, and the pavement is damaged at many points.

The railway enters the port area via Entrance No. 5. Within the port the railway forms an extensive network. However, the port area railway system is not properly maintained, probably because it has lost much of its economic value, and now accounts for less than 3% of the cargo transportation to and from the port.

2-3 Port Activities

2-3-1 Handling of Port Cargoes

The volume of cargoes handled at Callao Port in 1981 was 6,712,000 tons, as indicated in Table 2-5. This represents an increase by 1.6 times over the 4,232,000 tons of a decade ago (1971). The volume of cargoes has steadily increased during the last three years under the free trade economic policy but has not reached the high of 1975 – 1976. Cargoes at the port can be classified by commodity into four broad types: general cargoes including metal industry products, fertilizers, chemicals and processed fishery products; minieral products such as zinc, lead and copper; grains such as wheat and maize; and domestically produced and consumed petroleum, transported from the northern provinces of Peru. A breakdown of cargo items handled at Callao Port in 1981 is shown in Fig. 2-2. As can be seen, foreign trade import and export represented 3/4 of the total cargo volume handled at Callao, of which imports accounted for 55%, and exports for 45%. As for imports, grains were the most important commodity with a 47.5% share, while mineral products were the leading export with a 61.0% share.

Handling of container cargoes at Callao Port is done mainly by ship derricks. The number handled in 1981 was 24,500, as indicated in Table 2-6, and the container cargoes totaled 170,000 tons. The volume of container cargoes represented about 8% of the volume of general cargoes. As indicated in Table 2-7, 94% of the number of containers were 20' containers.

Table 2-5 Trend of Volume of Cargoes Handled at Callao Port

Tvne						Petroleim	Un Domochio Trans	Unit: 1,000 tons
· ·	General	General Cargoes (Foreign Trade)	ign Trade)	Exported	Imported	(export, import	portation (ex-	Grand Total
Year	Import	Export	Total	minerals	grains	and domestic)	cluding petroleum)	
1960	514	437	951	419	281	1369	ì	
1961	639	631	1270	438	1076	1,560	100	3203
1962	700	1 206	9071	101	l v	ה כר הלילו	773	3692
1963	752	653	1405	7.67	0,00	7777	081	3850
1964	780	749	1,453	7 0	0/0	1400	185	3911
1965	נטנ	מ מ	777	0.50	389	1599	120	4106
1066	1010	0 (0	1/61	179	415	1593	96	4296
1300	9617	529	1725	647	458	1670	57	2747
1967	1053	574	1627	615	75.7	1662	1 4	7,77
1968	893	599	1492	708	7.67	1000	S c	4401
1969	880	541	1,421	370) u	1292	3 7	3984
1 1970	20%	725	7277	7 00 0	200	1141	39	4031
1071	200	7 6	6747	782	220	1134	31	3899
1 50 5	000	503	1480	910	561	1246	29	4232
7/67	1086	658	1744	1113	630	010		0777
1973	988	291	1279	979	621	0001		01,1
1974	1352	283	1635	1106	227	1186	7.0	411/
1975	2473	299	3072	1177	7,0	0011	7	44425
1976	2133	55.0	3068	7001		2204	200	7191
1977	873) C	1979	17071	403	2389	102.	7226
1978	702	200	7,07	9011	678	2398*	1	57.26
070	200	777	7484	ODOT	683	*607	,	3576
12/3	607	TO48	1838	1137	817	1318	E71	5253
1980	1334	140	2074	1378	1156	1611	100	7,77
1981	1585	799	2248	1411	1101	1870	833	4129
4					4			24.70

Note: * The 1977 and 1978 figures for petroleum do not include domestic transportation for lack of necessary data.

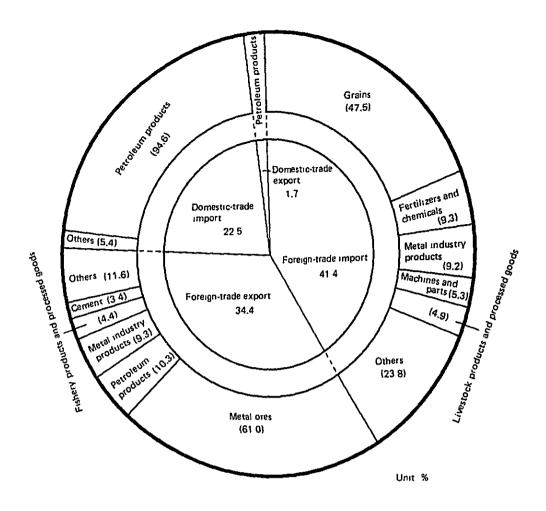


Fig. 2-2 Composition of Volume of Cargoes Handled at Callao Port by Commodity (1981)

Table 2-6 Number of Containers Handled

Year Month	1979	1980	1981	1982
January	569	1,004	1,272	2,287
February	505	978	1,004	2,270
March	500	N.A.	1,436	3,031
Aprıl	553	D	1,189	3,513
May	665	, ,	2,141	2,617
June	579	n n	2,335	2,944
July	188	1,741	2,726	2,679
August	741	1,799	2,348	3,405
September	856	1,637	2,605	2,824
October	1,022	2,015	2,403	2,843
November	835	1,694	2,562	2,013
December	824	1,744	2,562	
Total	8,530		24,547	
Source: ENAPU			-h	<u> </u>

Source: ENAPU

Table 2-7 Container Cargo Items (1981)

Item	Number of containers handled		TEU conversion					
	Loaded	Empty	Total	Loaded	Empty	Total	Volume of cargo handled (tons)	Weight per container (t/TEU)
Import Export Total	14,041 6,046 20,087	91 4,369 4,460	14,708 10,415 24,547*	14,708 6,335 21,043	95 4,577 4,672	14,803 10,912 25,715	96,555 73,383 169,938	6.6 11.6 8.1

Notes: *) Composition of container size: 10' - 1%, 20'-94%, 40'-5%

Source: ENAPU

2-3-2 Statistics of the Ships Calling at the Port

The quays of this port have generally been specialized for use as general cargo, mineral ore, petroleum or grain quays. In this sense, $1A \sim 5B$ and $9A \sim 9E$ are general cargo berths, $5C \sim 5E$ are mineral are berths, $7A \sim 7B$ are petroleum berths and $11A \sim 11C$ are grain berths.

A total of 1,760 ships called at Callao Port during 1981. Of these, 1,120 used general cargo berths, 280 used mineral ore berths, 210 used petroleum berths and 150 used grain berths.

The distribution of ships (that called at Callao) according to their size is shown in Fig. 2-3. The predominant size of general cargo ships calling at the port was in the range of $10.000 \sim 15,000$ DWT. Although both $10,000 \sim 15,000$ DWT as well as $25,000 \sim 30,000$ DWT ships made use of the grain berth, it is assumed that this berth handled mainly the latter category of ships while the 11 B.C. berth handled the smaller $10,000 \sim 15,000$ DWT class ships, mainly carrying general cargo. As for the mineral ore berths, these mainly handle, $10,000 \sim 15,000$ DWT ships. The petroleum berths handle two distinctly different categories of ships: Small size ships of 1,000 DWT or less and large size ships of $25,000 \sim 35,000$ DWT.

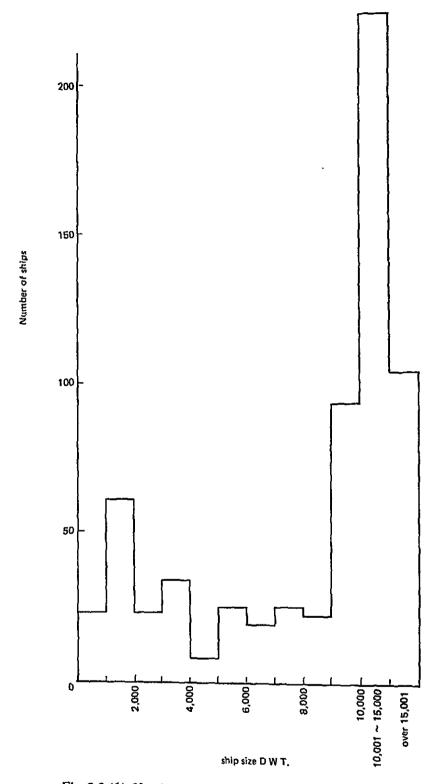


Fig. 2-3 (1) Number of Ships by Ship Size (General Cargo Berth)

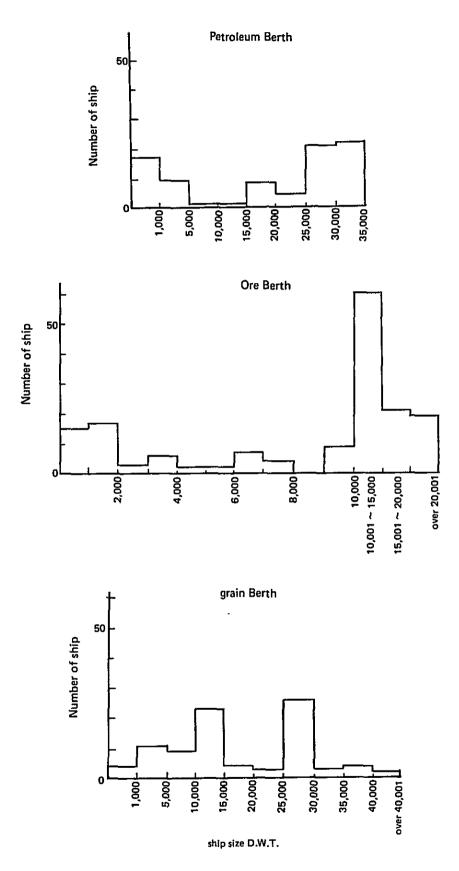


Fig. 2-3 (2) Number of Ships by Ship Size