

Fig. 5-108 Curves of the Water Level

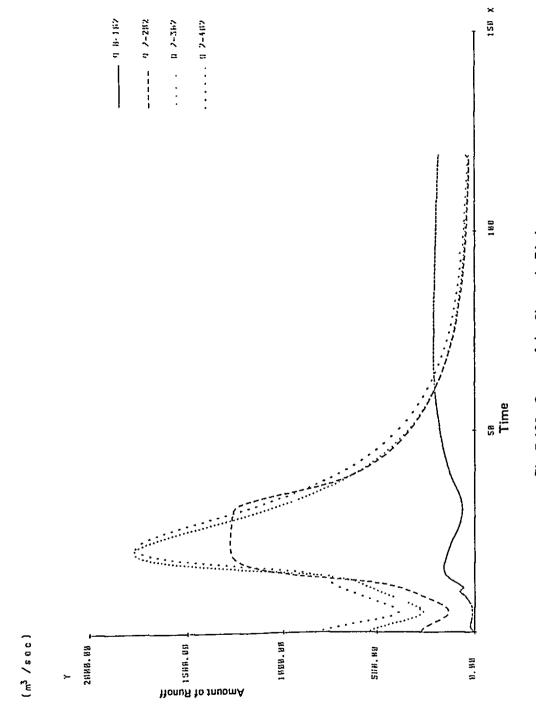


Fig. 5-109 Curves of the Change in Discharge

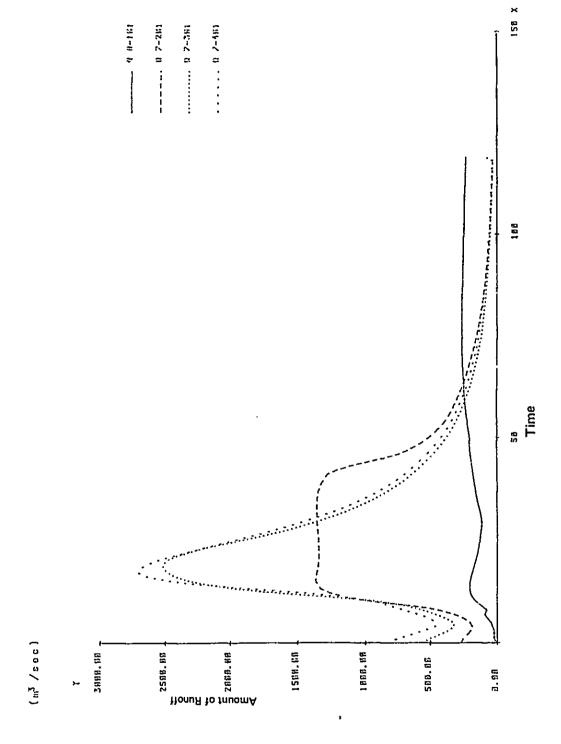


Fig. 5-110 Curves of the Change in Discharge

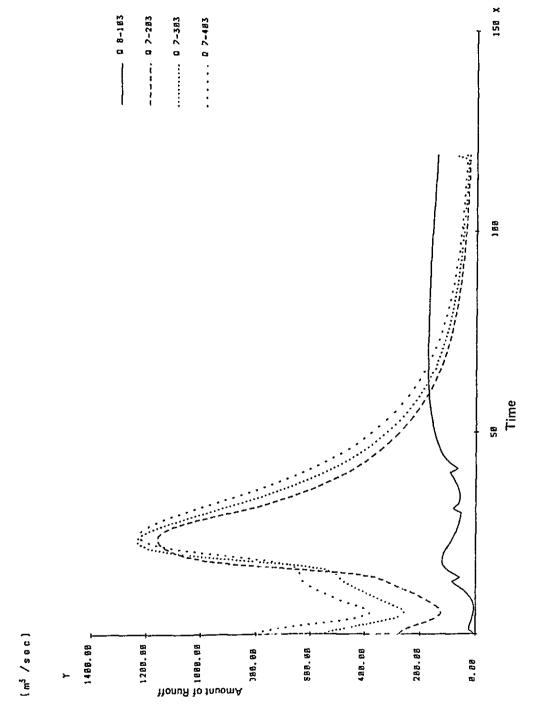


Fig. 5-111 Curves of the Change in Discharge

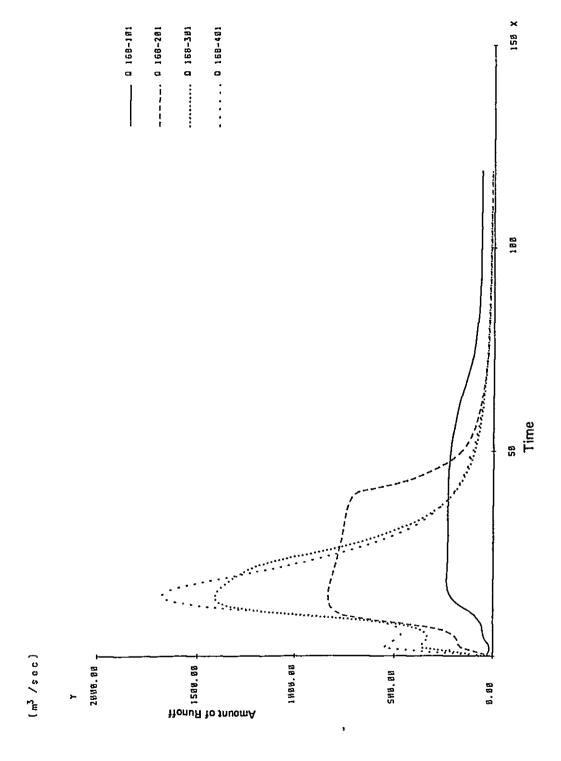


Fig. 5-112 Curves of the Change in Discharge

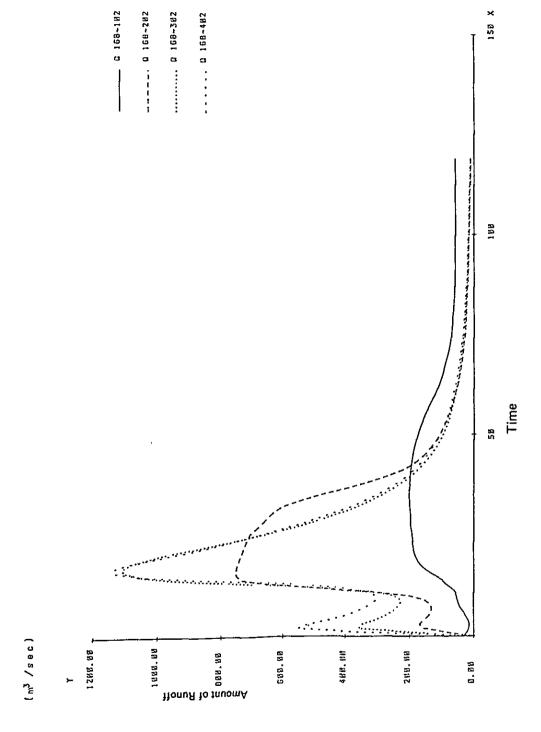


Fig. 5-113 Curves of the Change in Discharge

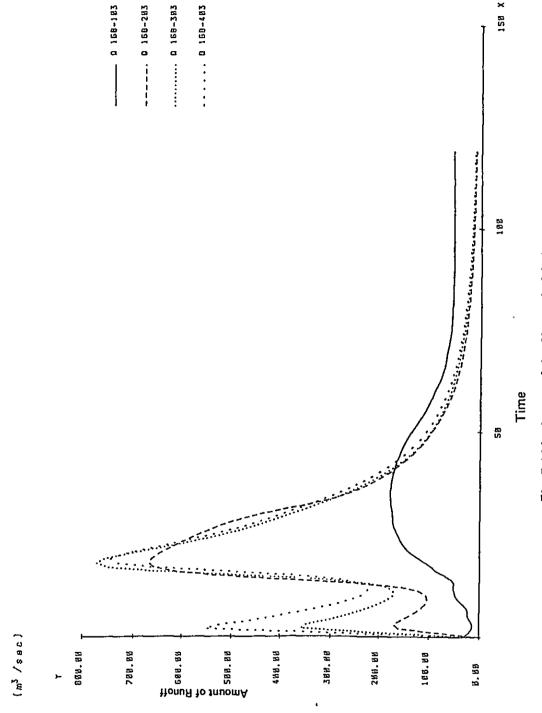


Fig. 5-114 Curves of the Change in Discharge

Table 5-5 List of Peak Discharge (I)

														System	em I
		,		Case 1			Case 2	_		Case	3	į	Case	•	
Nesh	rainfall	Area or runoff	Amount	Run-	Amount	Amount	Run-	Amount	Anount	Run-	Amount	Amount	Run-	Anount	
	1038	region	of peak	time	of run-	of peak	t e	of ratio	or peak		of run-	or peak	t g	of ratio	Notes
	(m/m)	(Sg. ²)	(m)/sec)		(m³/sec/m³)	(m3/sec)	(hour)	(m3/sec//cm2)	(m3/sec)	(hour)	(m3/sec/m2)	(m)/sec)	(hour)	(n³/sec/m³)	
	0.0		257,0	15	0.324	527.2	17	0.665	963.9	18	1.216	1,659.9	35	2.095	
(%0.7)	20.0	792.4	186.0	20	0.235	468.3	18	0.591	861.6	19	1.087	1,318.0	91	1.663	
	0.08		165.7	72	0.209	414.2	19	0.523	776.9	21	0,980	876.3	20	1.106	
	0.0		203.8	ä	0.297	449.2	52	0.654	966.9	91	1.262	1,507.4	15	2.194	
(No. 19)	20.0	687.1	173.7	8	0.253	404.5	43	0.589	2.277	18	1.124	1,248.4	16	1.817	
	80.0		158.9	89	0.231	376.3	37	0.548	708.2	13	1.031	835.8	7.1	1.216	
	0.0		175.3	2	0.329	405.1	3	0.761	722.9	2	1.358	1,222,1	17	2.296	
(%0, 25)	20.0	532.3	160.0	06	0.301	359.3	46	0.675	638.8	35	1.200	1,012.3	14	1.902	-
	80.0		138.1	14	0.259	328.5	38	0.617	579.1	8	1.088	671.0	16	1.261	
	0.0		60.1	22	0.742	6*521	ET	3,166	182.7	13	1.692	260.5	77	2.412	
(No. 61)	20.0	108.0	67.8	115	0.628	109.1	14	1.010	158.3	13	1.466	224.0	ដ	2.074	
	60.0		58.9	16	0.545	94.5	15	0.875	135.4	14	1,254	176.8	£	1.637	
	0.0		275.3	25	0.404	442.8	34	0.650	540.0	23	0.793	717.6	2	1.054	
(INO. 71)	50.0	681.1	227.2	4	0.334	358.5	32	0.526	336.2	2	0.494	435.1	28	0.639	
	80.0		190.5	#	0.280	292.8	32	0.430	227.8	36	0.334	289.4	33	0.425	
	0.0		134.4	14	0.562	0.90z	02	0.862	325.7	7.	1.363	367.5	ដ	1.538	
(No. 81)	50.0	239.0	119.2	19	0.499	182.2	20	0.762	245.7	52	1.028	237.8	16	0.995	
	90.0		108.3	7	0.453	159.3	8	0.667	164.9	11	0.690	154.7	18	0.647	
	0.0		236.6	R	0.682	330.9	20	0.954	576.4	20	1,663	519.6	18	1.499	
(No. 99)	50.0	346.7	204.9	22	0.591	290.8	29	0.639	391.2	33	1.128	328.0	2	0.946	
	80.0		182.5	24	0.526	254.0	25	0.733	264.5	23	0.763	227.8	%	0.657	
	0.0		115.4	82	1.143	178.0	15	1,762	359.5	11	3.559	451.B	77	4.473	
(No. 107)	20.0	101.0	91.7	77	0.908	159.1	11	1.575	300.2	13	2.972	333.1	14	3,298	
	80.0		89.9	11	0.830	144.7	13	1.433	- 220.2	15	2,180	218.9	16	2,167	7

Table 5-5 List of Peak Discharge (I)

(cont')

I II		Notes																			
System		Amount of run- off ratio	(m)/sec/(m)	2.845	2,489	1.743	1.964	1.465	0.981	2.098	1.571	1.066	2.266	1.646	1.135	2.103	1.644	1.144	1.836	1.370	0.988
ļ	Case 4	Run- off time	(hour)	ន	21	74	11	38	20	316	11	18	21	15	16	2	21	17	21	18	2
	;	Amount of peak rumoff	(B. /sec)	184.9	161.8	113.3	1,266.8	945.0	632.7	1,030.4	772.3	523.4	1,008.5	732.6	505.0	149.3	116.7	81.2	416.8	310.9	224.3
		Amount of run- off ratio	(hour) (m,/sec/km) (m,/sec)	1.782	1.649	1.423	1.239	1.087	0.936	1,341	1.135	0.922	1.627	1.265	0.964	1.385	1.223	1.048	1.174	1.015	0.857
	Case 3	Pun- off time	(hour)	ព	3	14	25	21	8	36	22	22	W	97	17	14	315	91	18	et	2
		Amount of peak runoff	(m3/eec)	115.8	107.2	92.5	798.9	700.9	603.7	9.859	557.4	452.7	724.1	563.0	429.2	6.86	8.98	74.4	266.4	230.4	194.6
ļ		Amount of run- off ratio	(m3/sec//m2)	1.128	1.029	0.826	0.807	0.715	0.637	0.930	0.811	0.691	1.126	0.945	0.739	158.0	977.0	0.708	961.0	002.0	0.626
	Case 2	Run- off time	(hour)	15	21	23	41	33	36	30	56	23	13	7	17	81	18	38	18	20	12
		Amount of peak runoff	(m3/sec)	73.3	6.99	53.7	520.5	460.9	410.6	456.5	398.4	339.5	501.1	420.5	328.8	₹09	55.1	50.3	180.6	158.9	142.2
(cont')		Amount of run- off ratio	(m ³ /sec/km ²)	0.822	0.725	0.500	0.497	0.426	0.379	0.495	0.437	0.368	0.661	0.560	0.461	0.518	0.455	0.327	0.534	0.465	0.412
	Case 1	Run- off time	(hour)	14	15	21	15	17	2	55	44	6	22	15	17	87	18	7	2	14	17
		Amount of peak runoff	(m3/sec)	53.4	47.1	32.5	320.3	275.0	244.7	243.1	214.4	190.5	294.1	249.3	205.4	36.8	32.3	23.2	121.3	105.6	93.6
		rwoff region	(km ²)		65.0			645.0			491.1			445.1			71.0			227.0	
	•	Amount of rainfall loss	(m/m)	0.0	20.0	80.0	0.0	20.0	90.0	0.0	50.0	80.0	0.0	20.0	80.0	0.0	50.0	80.0	0.0	20.0	90.0
		Mesh No.			(No.112)			(No.139)			(No.148)			(Ño. 156)			(No.193)			(No.207)	

Table 5-6 List of Peak Discharge (II)

System II

				"	Case 1			Case 2			Case 3			Case 4		
River name	Mesh of ra	in-	Area of runoff region	Amount of peak runoff	Run- off time	Run- Amount Amount of peak time off ratio runoff	Amount of peak runoff	Run- off time	Run- Amount off of run- time off ratio	Amount of peak runoff	Run- off time	Amount of run- off ratio	Amount of peak runoff	Run- off time	Amount of run- off ratio	Notes
		(m/m)	(km²)	(m3/sec)	(hour)	(hour) (m/104/m ²) (m ³ /SeC) (hour) (m ³ /seC) (m ³ /SeC) (hour) (m ³ /sec) (m ³ /sec) (m ³ /sec)	(m3/sec)	(hour)	(m,/enc/)m,	(m³/sec)	(hour)	(m1/200/cm)	(m3/sec)	(hour)	(n ³ /sec/la ⁴)	
		0.0		238.0	61	0.358	835.0	15	1.257	1,413.0	14	2,128	1,675.0	15	2.522	
Atinguy	168	50.0	664	201.0	35	0.302	750.0	91	1.129	1,105.0	11	1.664	1,132.0	17	1.704	
wiver.	-	80.0		177.0	34	0.266	0.768	18	1.004	771.0	18	17161	743.0	67	1.118	
		0.0		83.0	9	0.184	508.0	91	1.126	865.0	27	1.918	1,069.0	14	2.370	
Atinguy	177	•	451	74.0	53	0.164	471.0	23	1.044	0.769	16	1.545	705.0	36	1.563	
	1	80.0		67.0	46	0.148	416.0	17	0.922	459.0	17	1.017	450.0	18	0.997	
		0.0		265.0	35	0.199	1,372.0	15	1.033	2,518.0	13	1.841	2,709.0	11	2.041	
Yabebyry	æ (٠,	1,327	209.0	69	0.157	1,282.0	22	996.0	1,787.0	20	1.346	1,778.0	77	1.339	
Tantu	•		-	175.0	67	0.131	1,156.0	23	0.871	1,233.0	23	0.929	1,226.0	24	0.923	
		0.0		465.0	â	0.398	1,401.0	25	1.200	2,520.0	1.5	2,159	2,801.0	14	2.400	
Yabebyry	26		1,167	396.0	38	0.339	1,307.0	51	1.119	1,853.0	91	1.587	1,868.0	91	1.600	
TAATU	}	0.08		345.0	38	0.295	1,157.0	19	0.991	1,285.0	18	1.101	1,284.0	61	1.100	
1.6		0.0		279.0	20	966'0	331.0	16	1.182	391.0	16	1.396	406.0	35	1.450	
secondary	227	50.0	280	226.0	20	0.807	248.0	13	0.885	282.0	18	1.007	281.0	18	1.003	
channels		60.0		175.0	24	0.625	190.0	77	829-0	201.0	20	0.717	201.0	2	0.717	
100		0.0		261.0	17	1.052	295.0	16	1,189	354.0	15	1.427	366.0	14	1.475	
secondary	233	50.0	248	215.0	23	0.866	225.0	17	0.307	258.0	36	1.040	256.0		1.032	
channels		80.0		175.0	21	0.705	177.0	18	6.713	187.0	17	0.754	185.0	17	0.745	

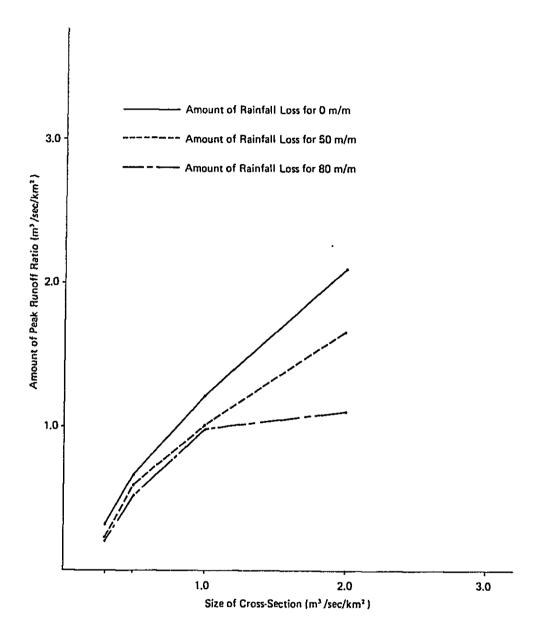


Fig. 5-115 Relationship between the Size of the Cross-Section and the Specific Peak Discharge (Yabebyry River No. 7 System I)

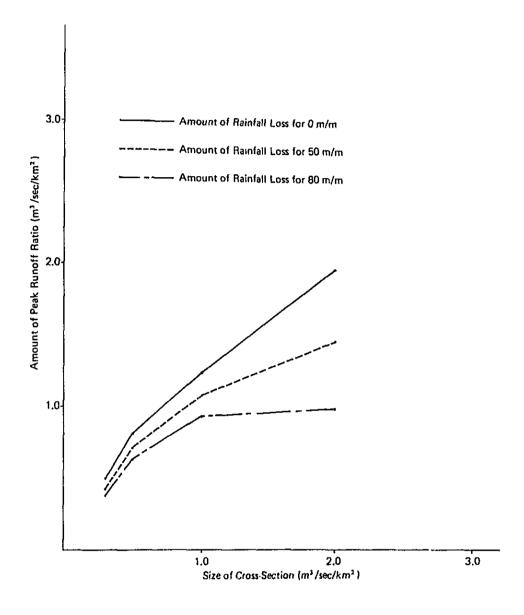


Fig. 5-116 Relationship between the Size of the Cross-Section and the Specific Peak Discharge (Atinguy River No. 139 System I)

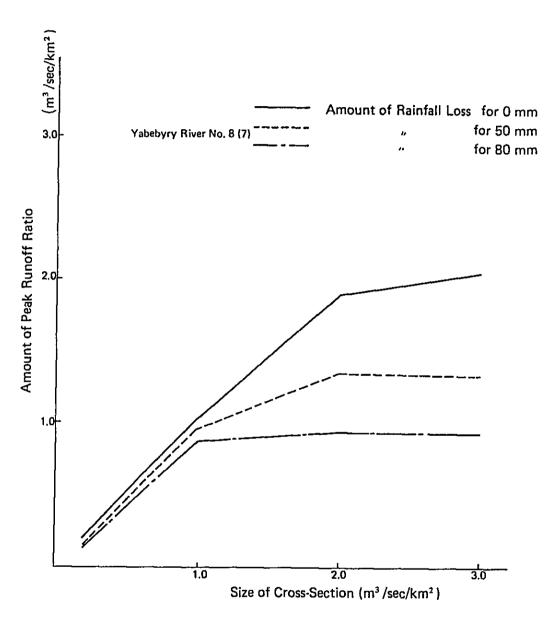


Fig. 5-117 Relationship between the Size of the Cross-Section and the Specific Peak Discharge (Yabebyry River No. 7 (8) System II)

- 310 -

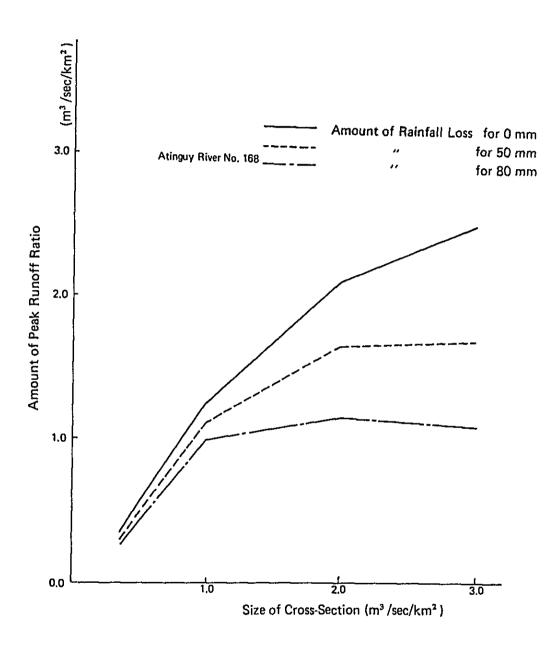


Fig. 5-118 Relationship between the Size of the Cross-Section and the Specific Peak Discharge (Atinguy River No. 168 System II)

Table 5-7 Distribution of the Maximum Depth of Inundation

Fig. No.	Symbol Symbol	,	Content	Fig. No.	Symbol		c	ontent
Fig. 5-119	I-1-1-MAX.	Case I-1-1	Maximum depth inundation	Fig. 5-15	2 II-1-1-MAX.	Case	11-1-1	Maximum depth inundation
" 120	I-2-1-MAX.	" I-2-1		" 15	3 II-2-1-MAX.	, ,,	II-2-1	•
" 121	I-3-1-MAX.	" I-3-1	н	n 15	4 II-3-1-MAX.	۱.	11-3-1	**
" 122	1-4-1-MAX.	" 1-4-1	•	" 15	5 II-4-1-MAX.		11-4-1	**
" 123	I-1-2-MAX.	" I-1-2	•	* 15	6 II-1-2-MAX.	"	11-1-2	•
" 124	I-2-2-MAX.	" I-2-2	N	" 15	7 II-2-2-MAX.	-	II-2-2	*
# 125	I-3-2-MAX.	" 1-3-2	*	" 15	8 II-3-2-MAX.	"	II-3-2	o
" 126	I-4-2-MAX.	" I-4-2	н	" 15	9 II-4-2-MAX.	۱,	11-4-2	н
" 127	I-1-3-MAX.	" 1-1-3	*	" 16	0 II-1-3-MAX.	"	11-1-3	
" 129	I-2-3-MAX.	* I-2-3	H	" 16	1 II-1-3-MAX.	-	II-2-3	*
* 129	1-3-3-MAX.	* I-3-3	•	" 16	2 II-3-3-MAX.	"	11-3-3	n
" 130	I-4-3-MAX.	" 1-4-3	•	" 16	3 II-4-3-MAX.		II-4-3	M
" 131	I-1-2-10H	Case 1-1-2	10 Hours after	" 16	4 II-1-2-10H	Case	11-1-2	10 Hours after
" 132	I-1-2-20H	н	20 "	" 16	5 II-1-2-20H	*		20 "
" 133	I-1-2-30н	4+	30 *	" 16	6 II-1-2-30H	h		30 ."
" 134	I-1-2-40H	**	40 "	" 16	7 II-1-2-40H	"		40 *
* 135	I-1-2-60H	нн	60 *	" 16	В 11-1-2-60Н	-		60 "
" 136	I-1-2-80H	н	80 "	" 16	9 II-1-2-80H	"		80 "
" 137	1-1-2-100H	" 1	.00 "	" 17	0 II-1-2-100H	•	1	l00 ⁿ
" 138	1-2-2-10н	Case I-2-2	10 "	" 17	1 II-2-2-10H	Case	11-2-2	10 "
" 139	I-2-2-20H	н	20 *	" 17	2 II-2-2-20H	"		20 "
" 140	I-2-2-30H	H	30 "	" 17	3 11-2-2-30н	•		30 *
" 141	1-2-2-40H	**	40 "	" 17	4 II-2-2-40H	"		40 *
" 142	I-2-2-50H		50	" 17	5 11-3-2-10н	Case	II-3-2	10 "
" 143	1-2-2-60н	11	60 *	" 17	5 II-3-2-20H	"		20 *
144	I-2-2-70H	11	70 "	" 17	7 II-3-2-30н	"		30 "
" 145	1-3-2-109	Case I-3-2	10 "					
" 146	1-3-2-20н		20 *					
" 147	I-3-2-30H	*	30 "					
" 148	I-3-2-40H		40 #					•
" 149	I-4-2-10H	Case I-4-2	10 "					}
" 150	I-4-2-20H		20 "	'	` [
" 151	I-4-2-30H	æ	30 "					

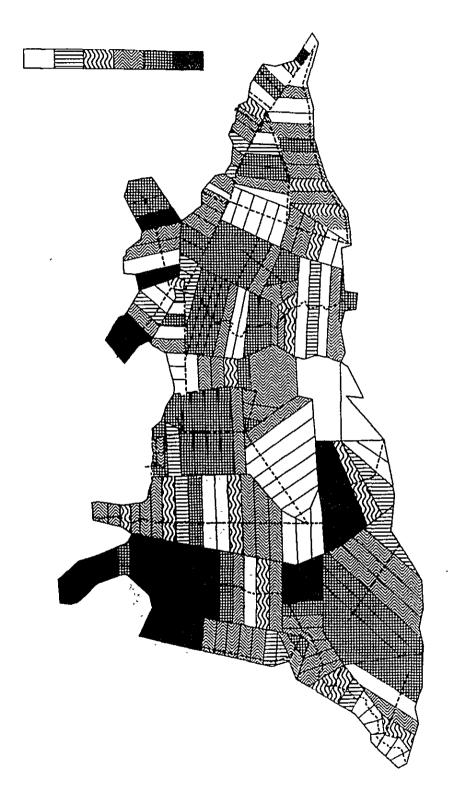


Fig. 5-119 Inundation Condition Case I-1-1-MAX.

- 313 -

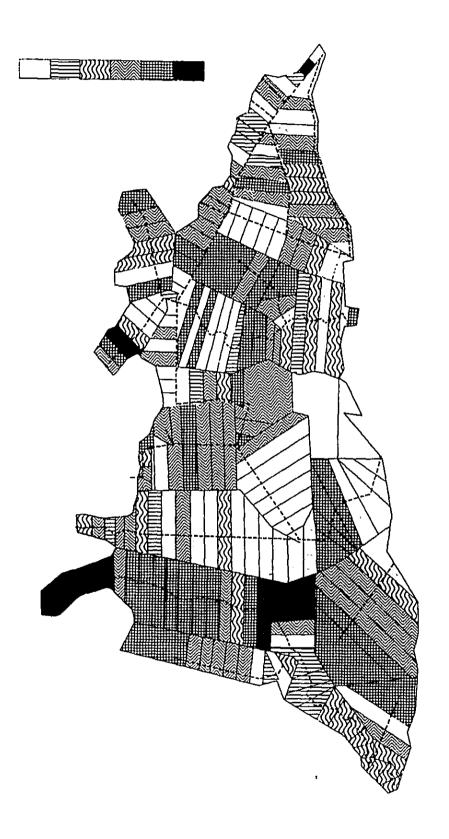


Fig. 5-120 Inundation Condition Case I-2-1-MAX,

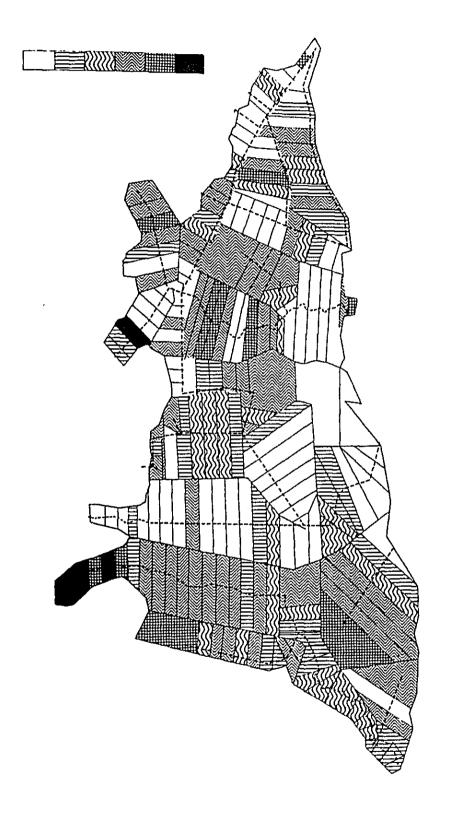


Fig. 5-121 Inundation Condition Case I-3-1-MAX,

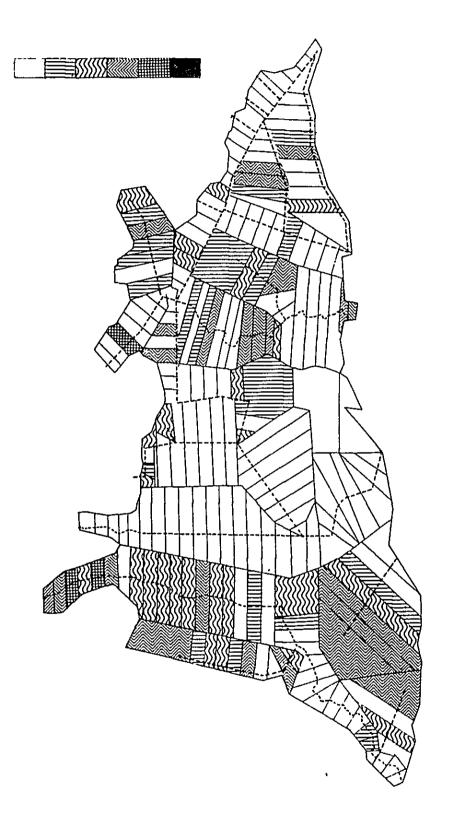


Fig. 5-122 Inundation Condition Case I-4-1-IMAX,

- 316 -

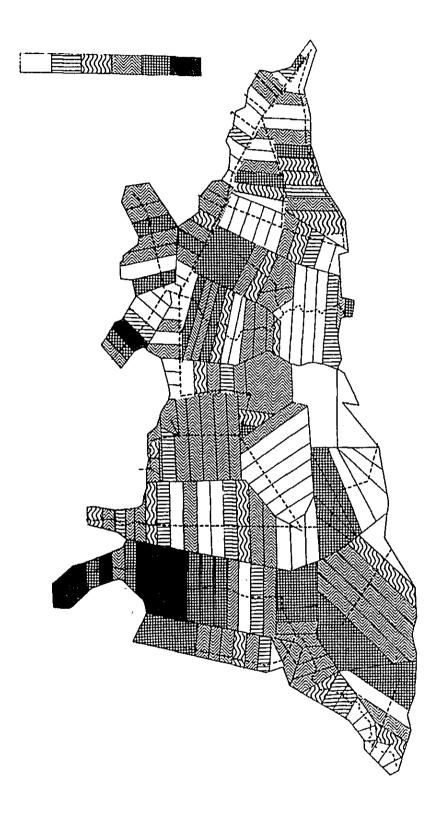


Fig. 5-123 Inundation Condition Case I-1-2-MAX.

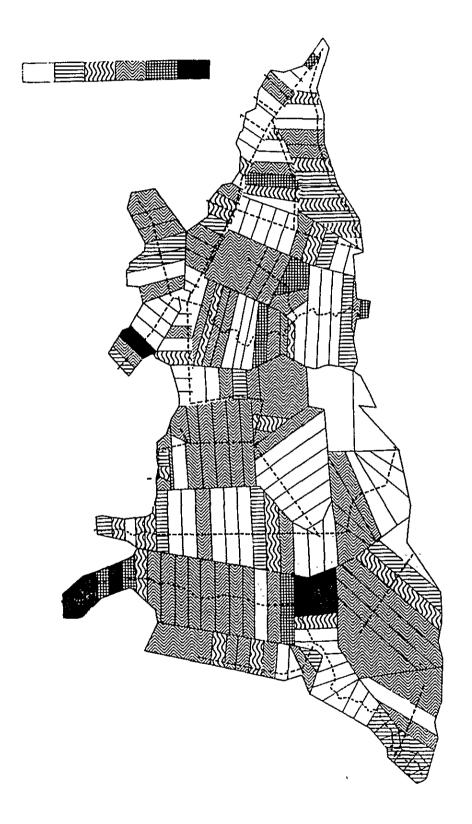


Fig. 5-124 Inundation Condition Case I-2-2-MAX.

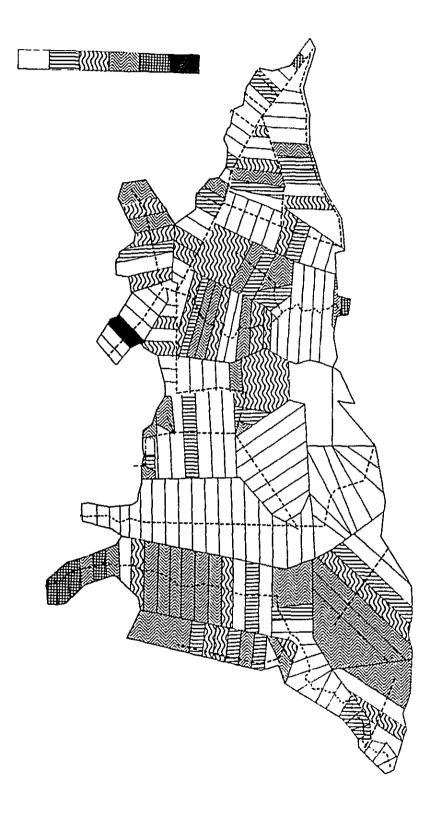


Fig. 5-125 Inundation Condition Case I-3-2-MAX.

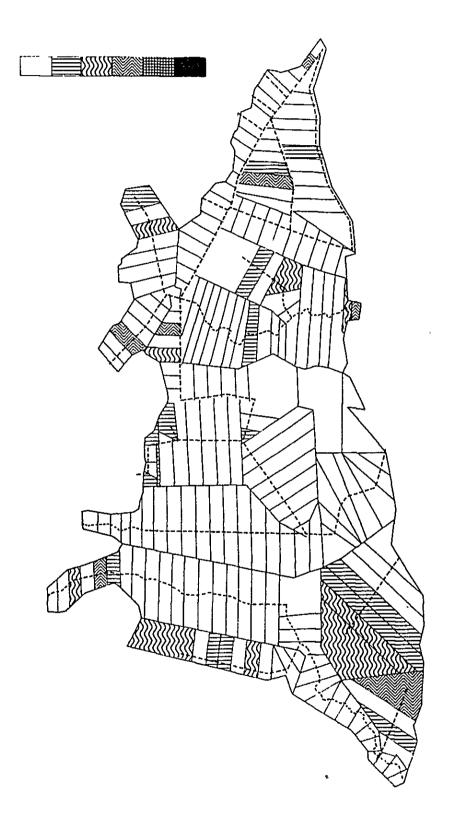


Fig. 5-126 Inundation Condition Case 1-4-2-MAX.

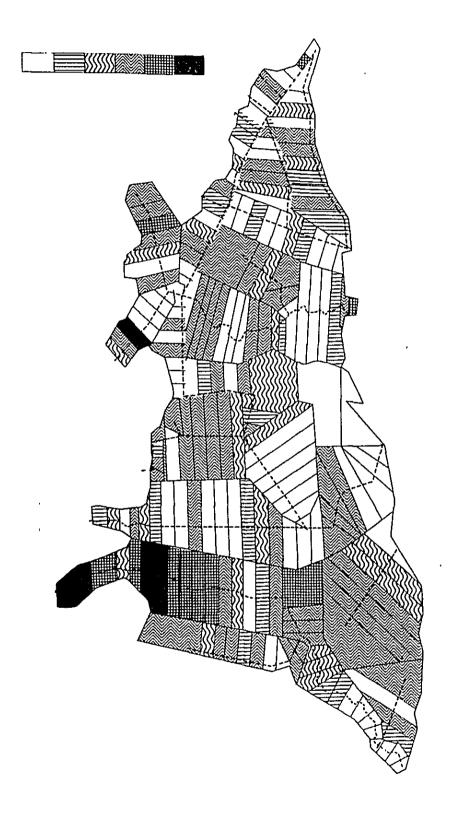


Fig. 5-127 Inundation Condition Case I-1-3-MAX.

Fig. 5-128 Inundation Condition Case I-2-3-MAX.

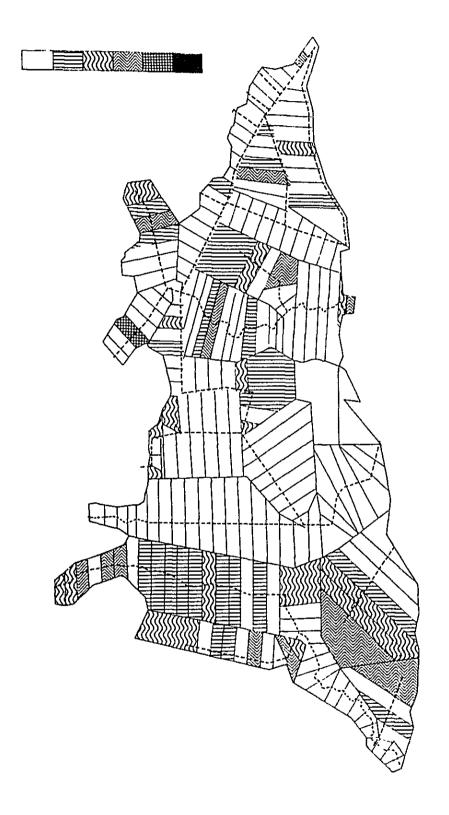


Fig. 5-129 Inundation Condition Case I-3-3-MAX,

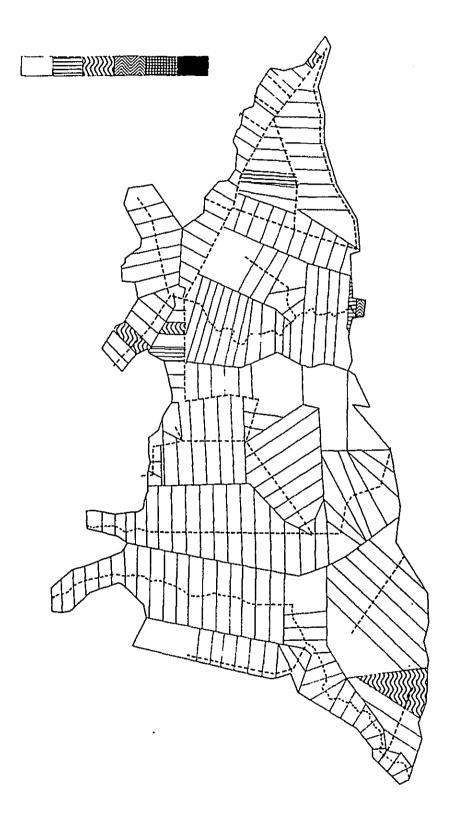


Fig. 5-130 Inundation Condition Case I-4-3-MAX.

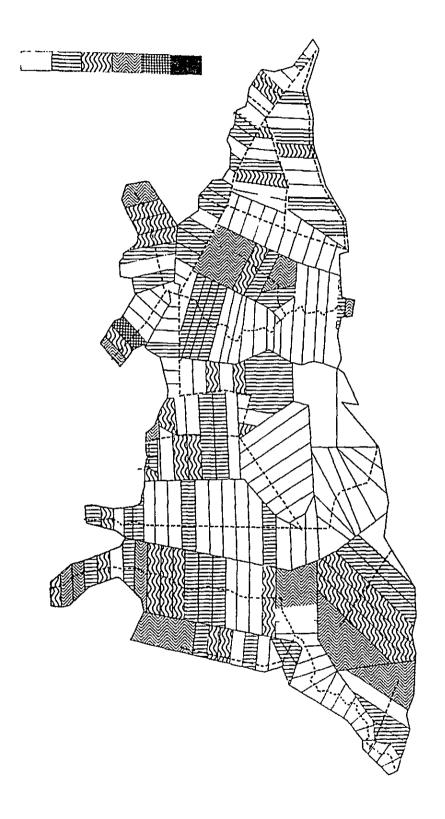


Fig. 5-131 Inundation Condition Case I-1-2-10H

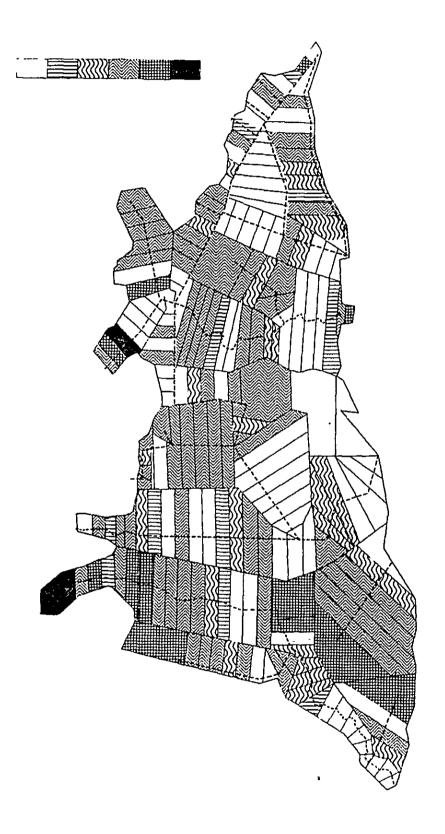


Fig. 5-132 Inundation Condition Case I-1-2-20H

Fig. 5-133 Inundation Condition Case I-1-2-30H

Fig. 5-134 Inundation Condition Case I-1-2-40H

Fig. 5-135 Inundation Condition Case 1-1-2-60H

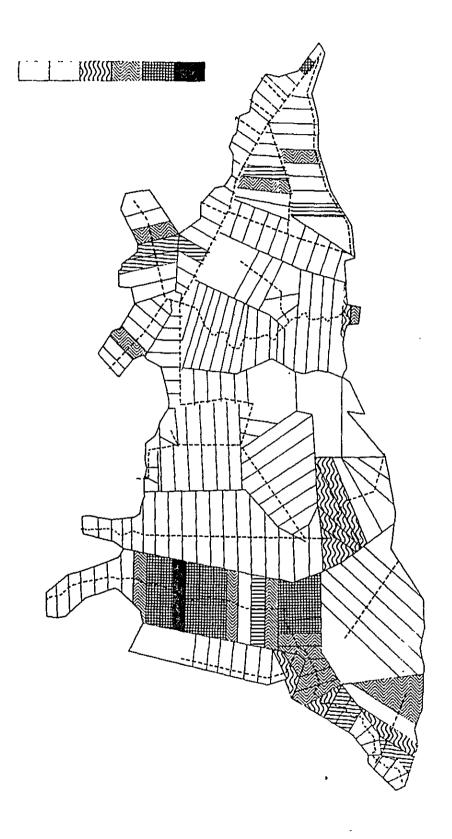


Fig. 5-136 Inundation Condition Case I-1-2-80H

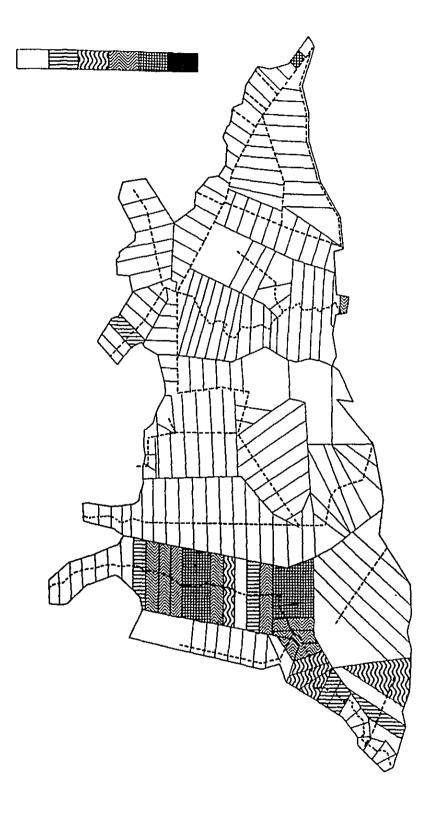


Fig. 5-137 Inundation Condition Case I-1-2-100H

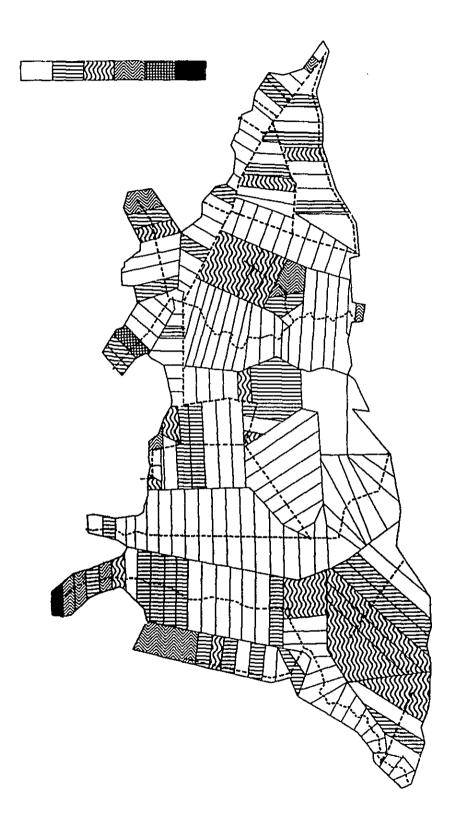


Fig. 5-138 Inundation Condition Case I-2-2-10H

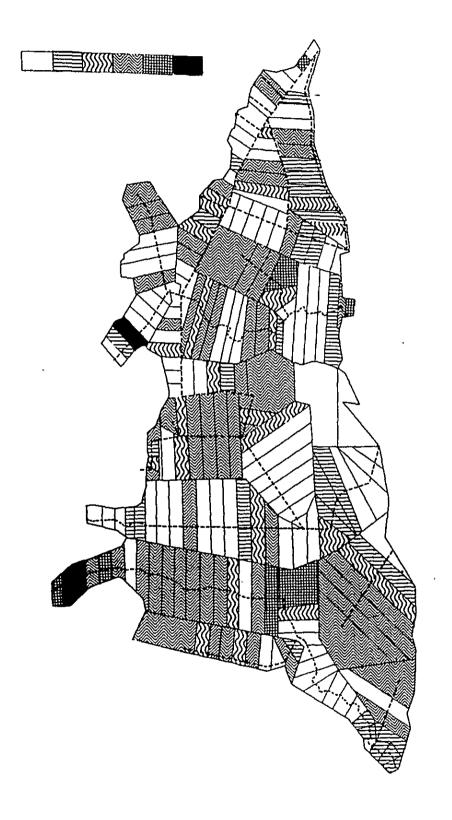


Fig. 5-139 Inundation Condition Case 1-2-2-20H

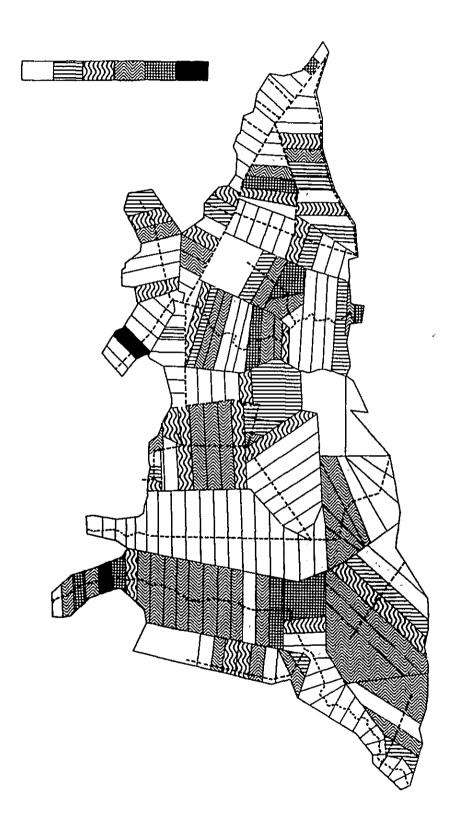


Fig. 5-140 Inundation Condition Case I-2-2-30H

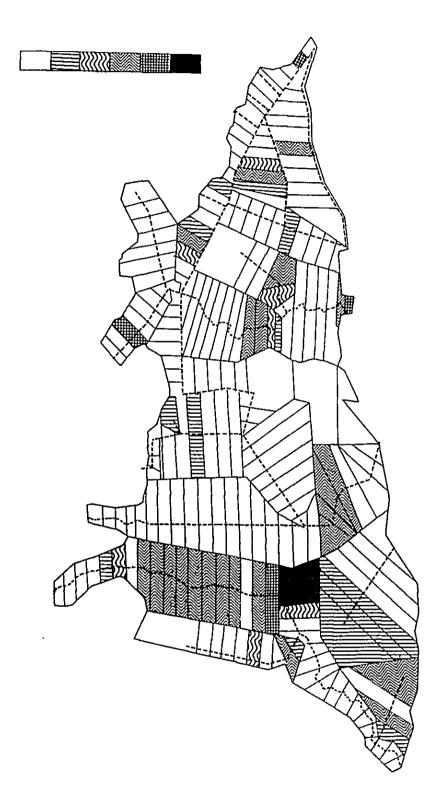


Fig. 5-141 Inundation Condition Case I-2-2-40H

Fig. 5-142 Inundation Condition Case I-2-2-50H

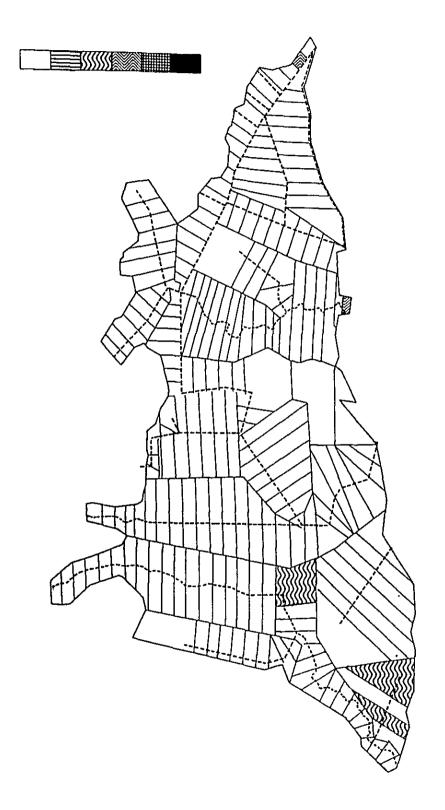


Fig. 5-143 Inundation Condition Case 1-2-2-60H

Fig. 5-144 Inundation Condition Case I-2-2-70H

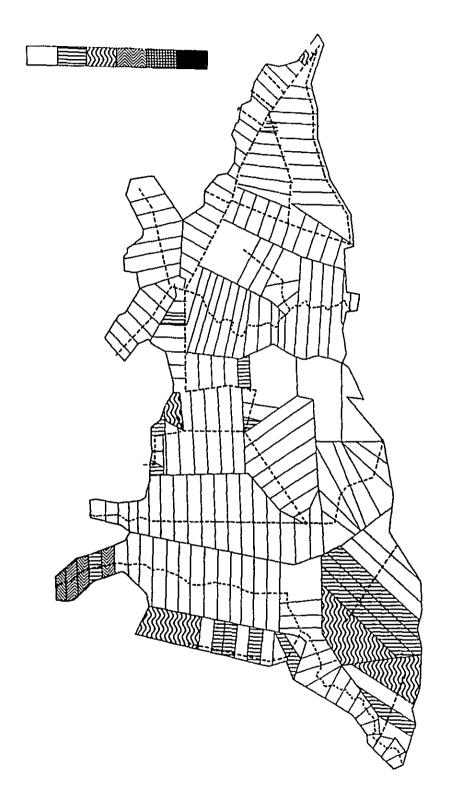


Fig. 5-145 Inundation Condition Case I-3-2-10H

Fig. 5-146 Inundation Condition Case I-3-2-20H

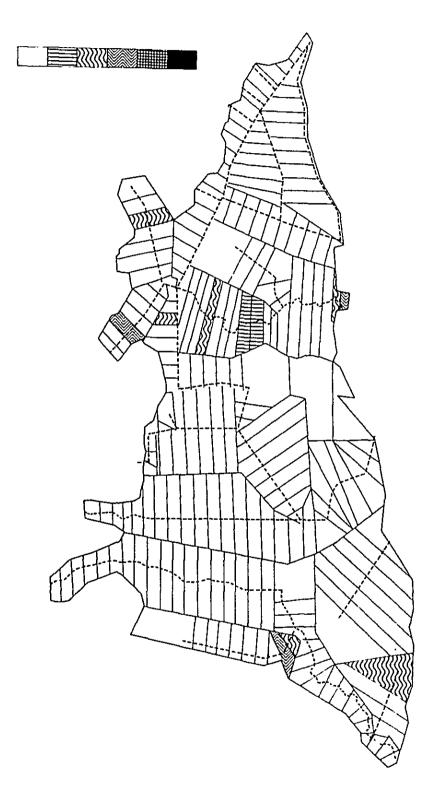


Fig. 5-147 Inundation Condition Case I-3-2-30H

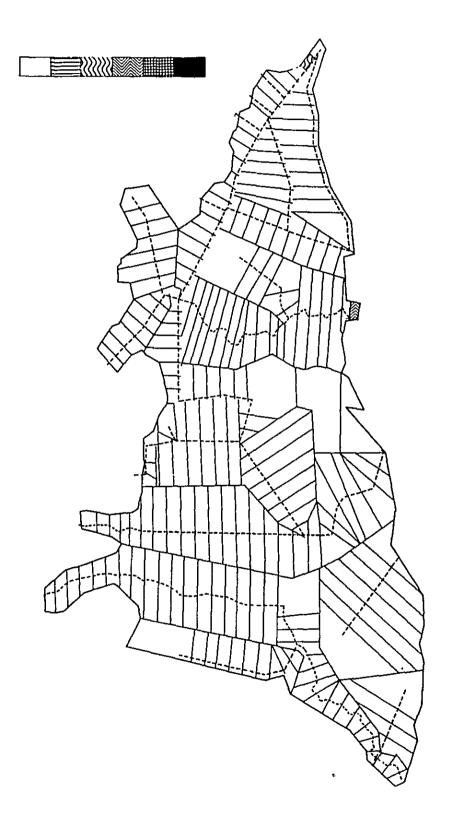


Fig. 5-148 Inundation Condition Case I-3-2-40H

Fig. 5-149 Inundation Condition Case I-4-2-10H



Fig. 5-150 Inundation Condition Case I-4-2-20H

Fig. 5-151 Inundation Condition Case I-4-2-30H

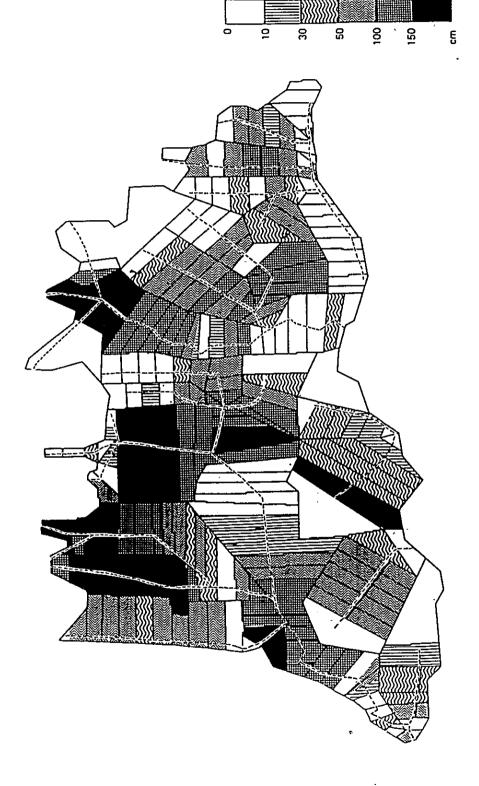


Fig. 5-152 Inundation Condition Case II-1-1-MAX.

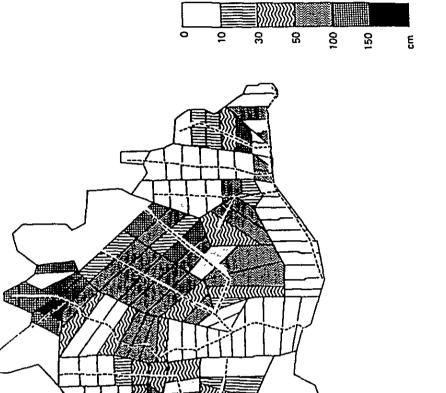


Fig. 5-153 Inundation Condition Case II-2-1-MAX.

- 347 -

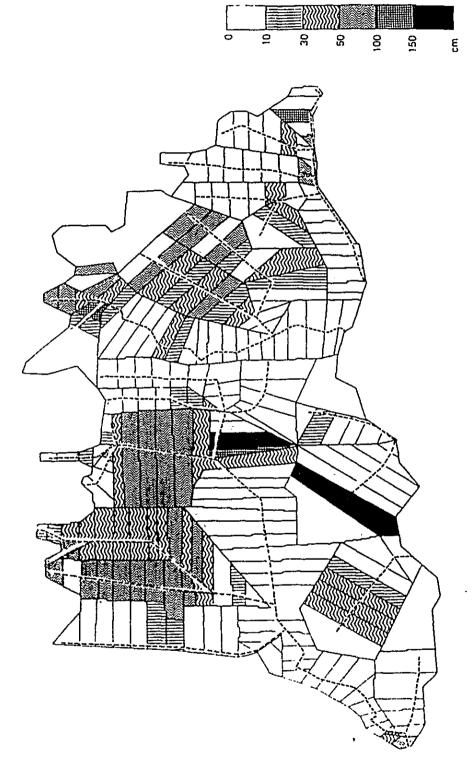


Fig. 5-154 Inundation Condition Case II-3-1-MAX.

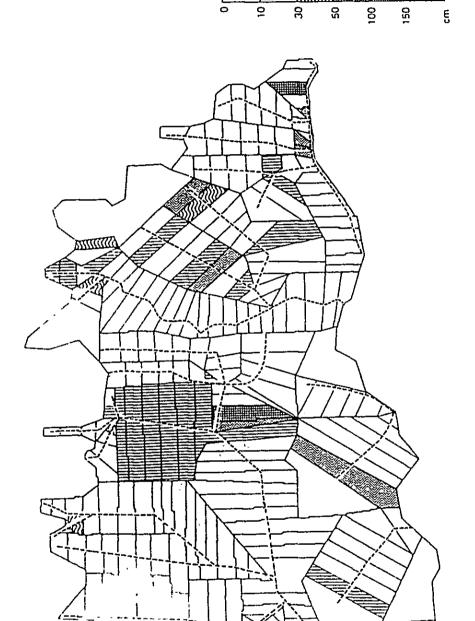


Fig. 5-155 Inundation Condition Case II-4-1-MAX.

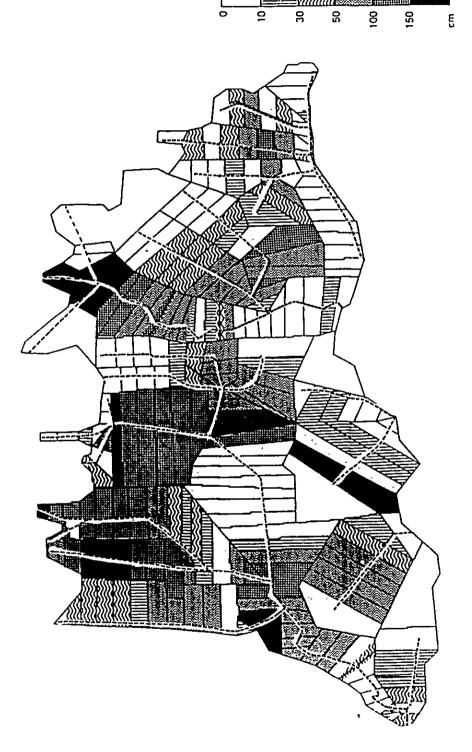
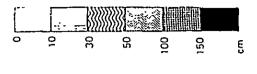



Fig. 5-156 Inundation Condition Case II-1-2-MAX.

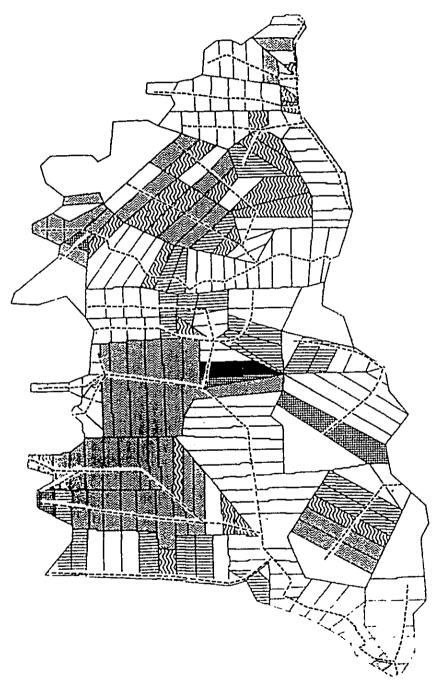


Fig. 5-157 Inundation Condition Case II-2-2-MAX.

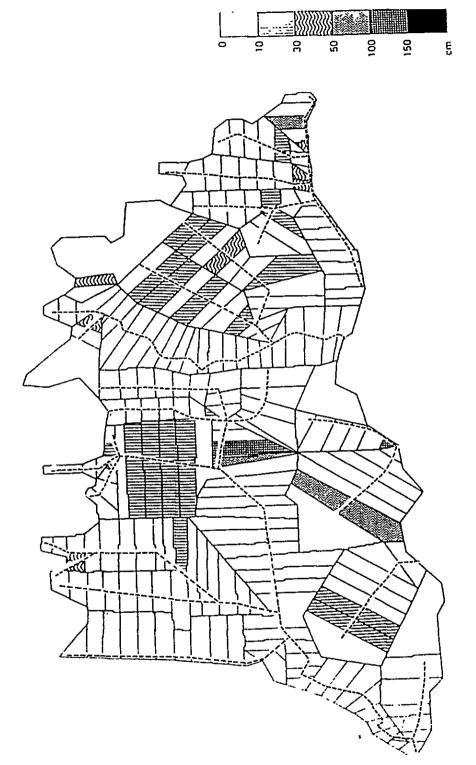
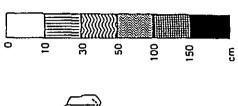



Fig. 5-158 Inundation Condition Case II-3-2-MAX.

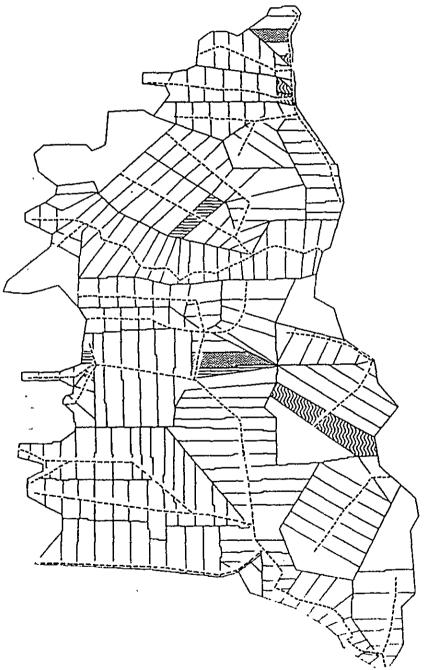


Fig. 5-159 Inundation Condition Case II-4-2-MAX.

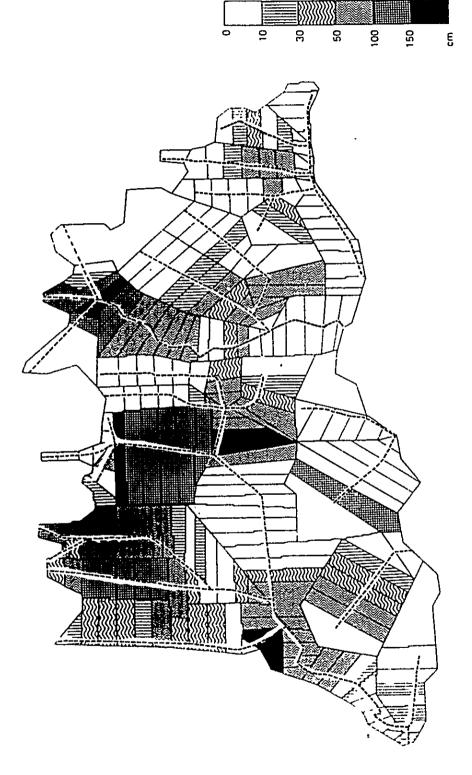
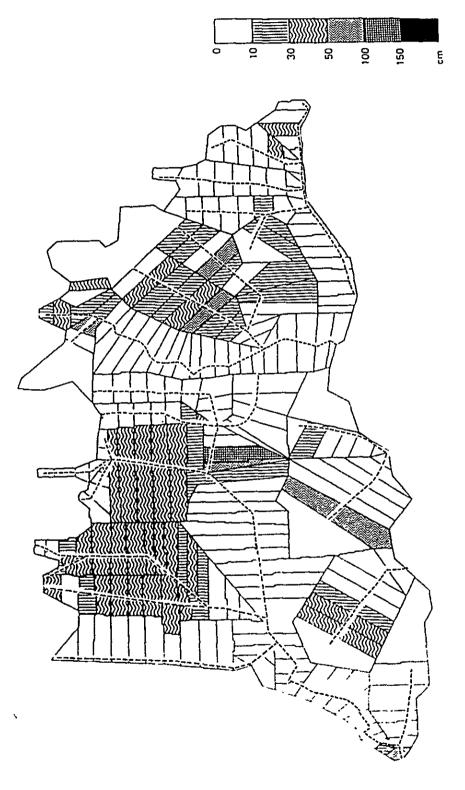
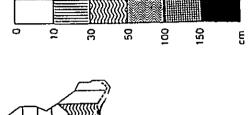




Fig. 5-160 Inundation Condition Case II-1-3-MAX.

í

Fig. 5-161 Inundation Condition Case II-1-3-MAX.

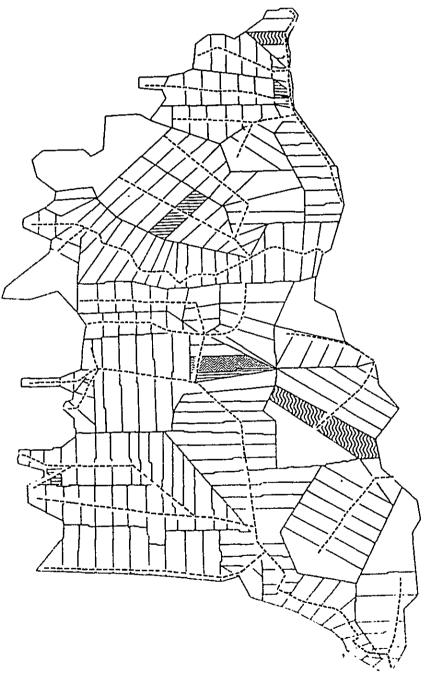


Fig. 5-162 Inundation Condition Case II-3-3-MAX.

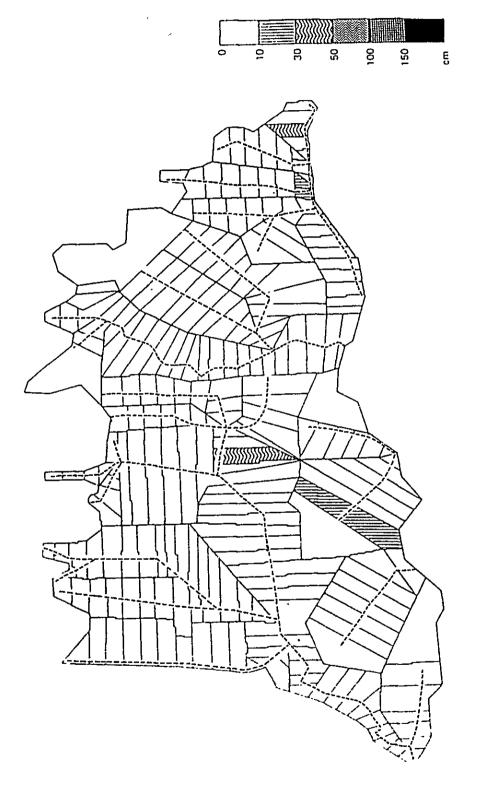


Fig. 5-163 Inundation Condition Case II-4-3-MAX,

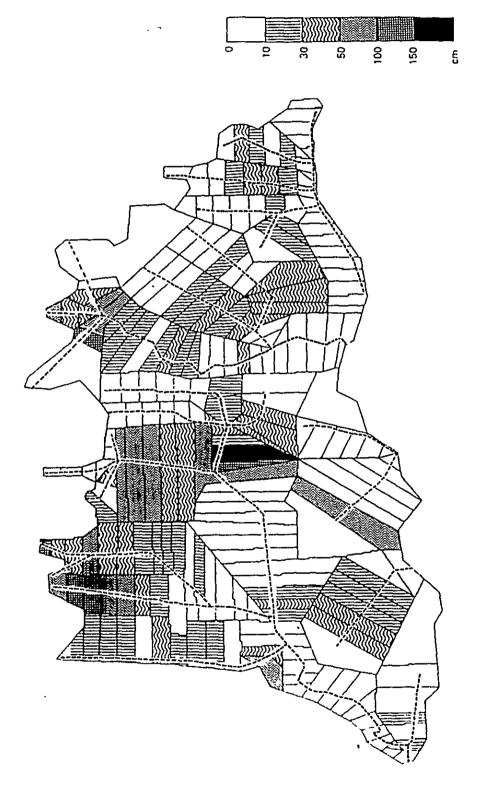


Fig. 5-164 Inundation Condition Case II-1-2-10H

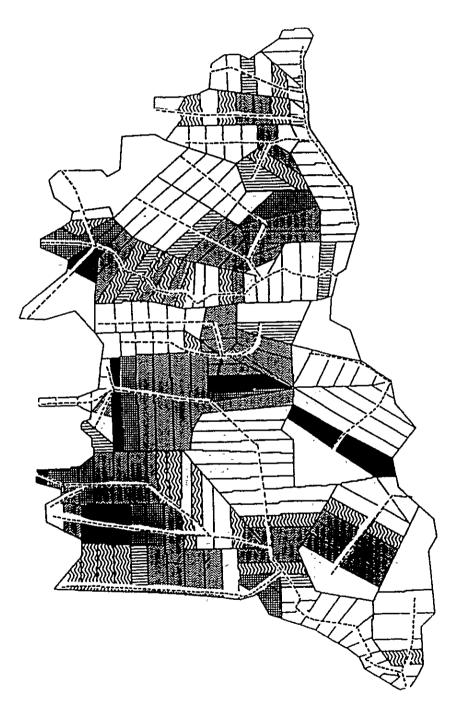


Fig. 5-165 Inundation Condition Case II-1-2-20H

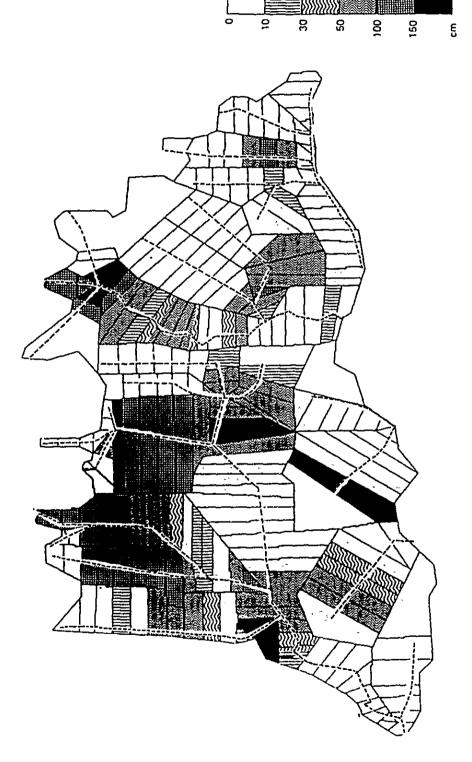


Fig. 5-166 Inundation Condition Case II-1-2-30H

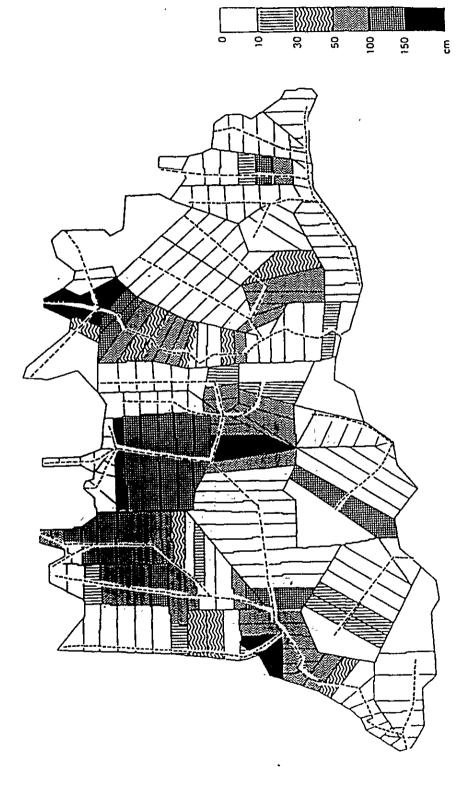
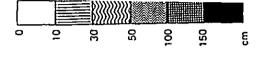



Fig. 5-167 Inundation Condition Case II-1-2-40H

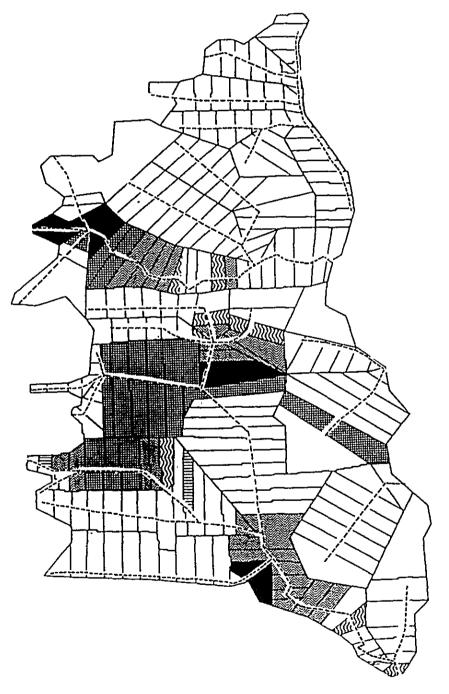


Fig. 5-168 Inundation Condition Case II-1-2-60H

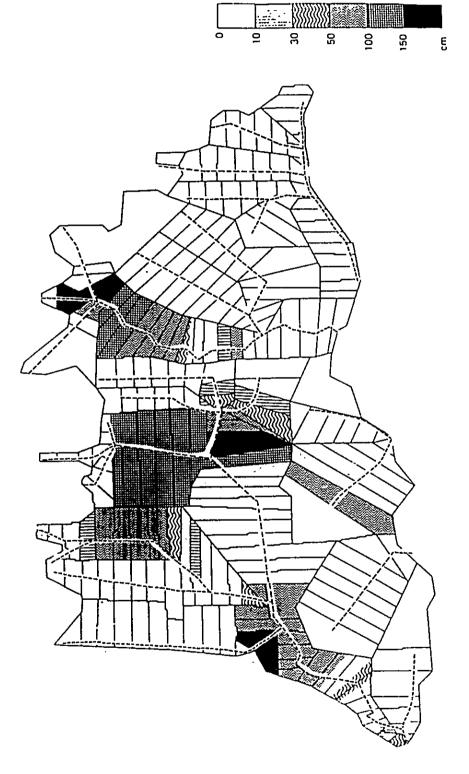


Fig. 5-169 Inundation Condition Case II-1-2-80H

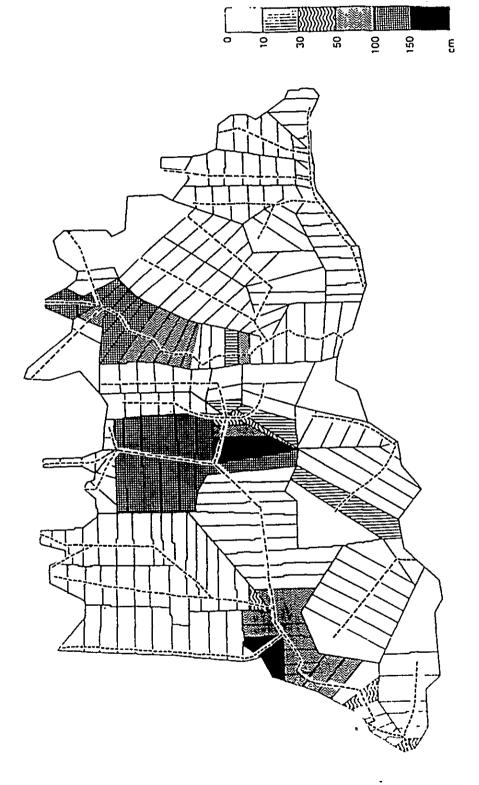
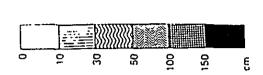



Fig. 5-170 Inundation Condition Case II-1-2-100H

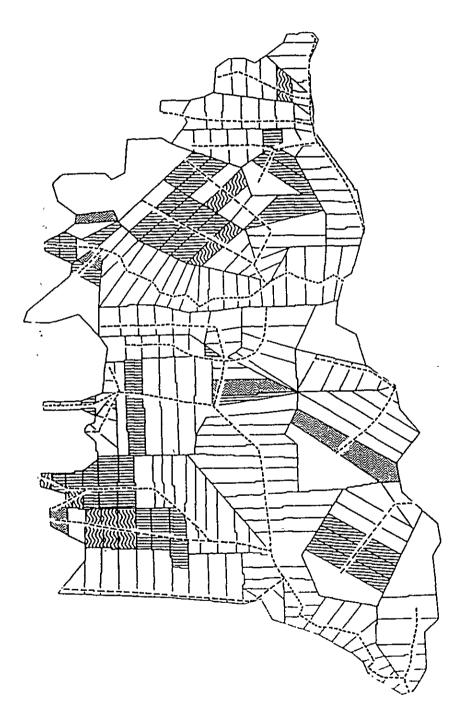


Fig. 5-171 Inundation Condition Case II-2-2-10H

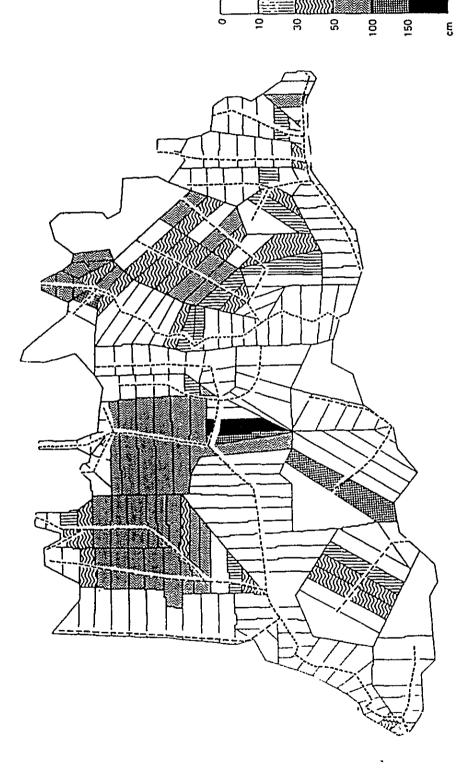


Fig. 5-172 Inundation Condition Case II-2-2-20H

Fig. 5-173 Inundation Condition Case II-2-2-30H

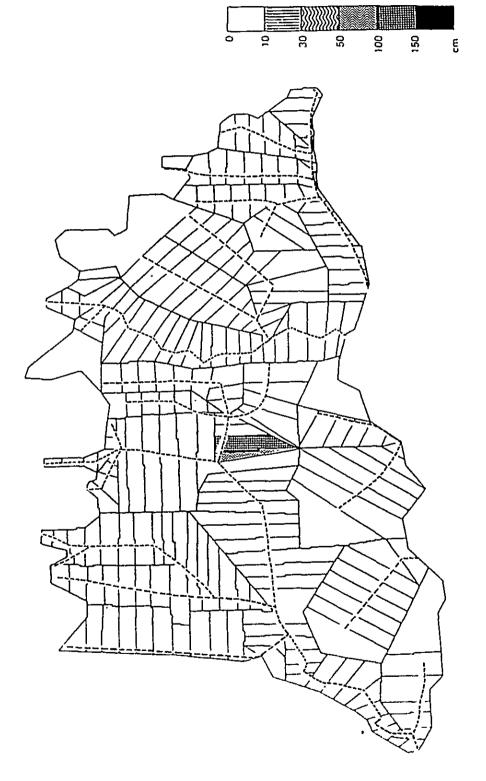


Fig. 5-174 Inundation Condition Case II-2-2-40H

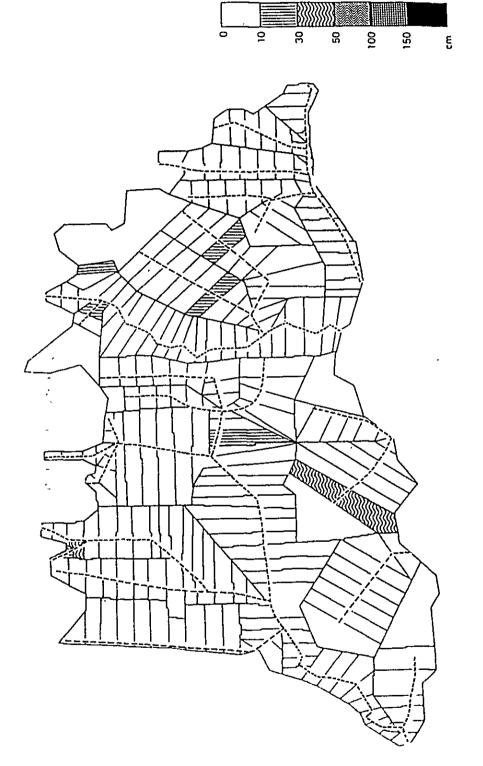


Fig. 5-175 Inundation Condition Case II-3-2-10H

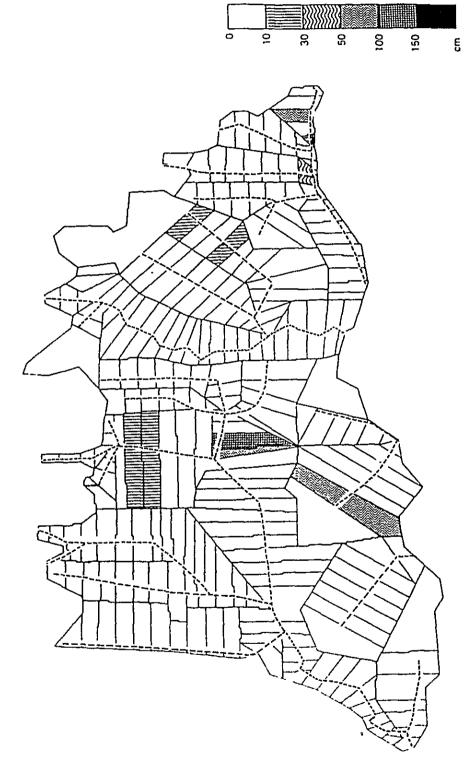


Fig. 5-176 Inundation Condition Case II-3-2-20H

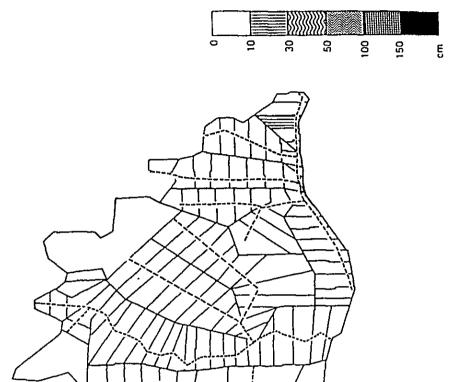


Fig. 5-177 Inundation Condition Case II-3-2-30H

- 371 -

Table 5-8 List of Inundated Area

					a	ystem I, Mild	System 1, whomic of rathitall 1085 0.0 m/m	TOSS O'O
	CASE	1-1	CASE	2-1	CASE	3-1	CASE	4-1 : خُ
NO RANK	· MENSEKI	WARIAI	HENSEK 1	WARIAI	HEUSEKI	HARIAI	HENSEKI	UARIAI
1 0.0 CM	46581.00	27.25	38572,51	22.56	26608.66	15.56	12881.22	7.53
2 5.0 CM	1 44192.16	25.85	36203.24	21.18	24508.96	14.34	11552.61	6.76
3 10.0 CH	41850.29	24.48	33879.21	19.82	22439.89	13.13	10292.05	6.02
4 15.0 CM	1 39544.85	23.13	31595.10	18.48	20398.92	11.93	9095.58	5.32
5 20.0 CM	1 37264.47	21.80	29394.15	17.19	18447.97	10.79	8001.53	4.68
6 25.0 CM	1 35055.89	20.51	27266.76	15.95	16636.06	9.73	7017.38	4.10
7 30.0 CM	1 32904.20	19.25	25206.13	14.74	15027.71	8.79	6102.91	3.57
8 35.0 CM	1 30784.68	18.01	23226.82	13.59	13559.63	7.93	5227.95	3.06
9 40.0 CM	4 28713.23	16.80	21383.28	12.51	12190.71	7.13	4404.54	2.58
10 45.0 CM	1 26714.69	15.63	19629.58	11.48	10927.16	6.39	3715.35	2.17
11 50.0.CII	1 24780.15	14.50	17972.66	10.51	9742.16	5.70	3130.42	1.83
12 55.0 CM	72905-22	13.40	16360.92	9.57	8610.91	5.04	7665.15	1.56

Table 5-9 List of Inundated Area

						S	/stem I, Amoun	System I, Amount of rainfall loss 50.0 m/m	oss 50.0 m/m
		CASE	1-2	CASE	2-2	CASE	3-2	CASE 4	4-2
IIU PANK	-	MENSEKI	KARIAI	MENSEK 1	WARIAI	HENSEKI	WARIAI	MENSEK1	MARIAI
1 0.0 CM	1 - 50	34953,23	20.45	26213.66	15.33	15252.26	8.92	5167.84	3.02
2 5.0 CM	1 2 2	32760.46	19.16	24172.12	14.14	13611.01	7.96	4533.30	2.65
ן כי	7	30610.94	17.91	22195.50	12.98	12091.61	7.07	3946.67	2.31
4 15.0 CY	7 - F O	28529.54	16.69	20301.86	11.88	10767.68	6.30	3429.56	2.01
5 20.0 CM	KU	26494.25	15.50	18520.34	10.83	9572.34	5.60	2968.73	1.74
6 25.0 CM	1 E U	24496.36	14.33	16824:49	9.84	8436.83	46.4	2576.32	1.51
7 30.0 CM	CMLT	22567.62	13.20	15196.52	8.89	7346.49	4.30	2732.55	1.31
35.0 C4	1 - F U	20699-10	12.11	13648.95	7.98	6362.77	3.72	1937.09	1.13
WD 0.04 6	C-M	18912.47	11.06	12161.45	7.11	5471.34	3.20	1694.63	0.99
10 45.0 C4	 	17211.47	10.07	10740,66	6.28	4643.64	2.72	1491.91	0.87
11 50.0 CM	C.4	15570.06	9.11	9392,85	5.49	3910.74	2.29	1296.82	0.76
83 0 C3	K.U	14001.94	3.19	8186.51	4.79	3297.59	1.93	1126.68	0.66

Table 5-10 List of Inundated Area

						Sy	stem I, Amoun	System I, Amount of rainfall loss 80.0 m/m	oss 80.0 m/m
		CASE	1-3	CASE	2-3	CASE	3-3	CASE	ź-4
110	RANK	. MENŠEKI	WARIAI	- MENSEKI	WARIAI	MENSEKI	WARIAI	NENSEK1	WARIAI
1	0.0 CM	26806.79	15.68	17226.93	10.08	A070.76	4.72	2512.58	1.47
2	5.0 CH	24781.98	14.50	15545.77	60.6	7070.50	4.14	2288.87	1.34
3	3 10.0 CM	22787.49	13,33	13960.08	8.17	6151.35	3.60	2078.87	1.22
4	4 15.0 CM	20870.35	12.21	12438.99	7.28	5318.06	3.11	1868.A7	1.09
5 21	5 20.0 CM	18985.85	11.11	10984.62	6.43	4514.68	2.64	1672.33	0.08
6 2	25.0 CM	17159.97	10.04	9611.80	5.62	3783.25	7.21	1492.10	0.87
7 31	7 30.0 CM	15452.02	9.04	8355.82	4.89	3162.63	1.85	1327.10	0.78
8	35.0 CM	13797.07	8.07	7205.81	4.22	2685.68	1.57	1180.16	0.69
6	9 40.0 CM	12187.82	7.13	6175.01	3.61	2281.57	1.33	1038.76	0.61
10 4	10 45.0 CM	10702.52	6.26	5303.50	3.10	1915.55	1.12	911.33	0.53
11 5	11 50.0 CM	9318.33	5.45	4518.79	2.64	1584.51	. 0.93	815.22	0.48
12 5	12 55.0 CM	8135.25	4.76	3842.89	2.25	1368.51	0.00	725.22	0.42

Table 5-11 List of Inundated Area

					Sys	tem II, Amour	System II, Amount of rainfall loss 0.0 m/m	loss 0.0 m/m
	CASE	1-1	CASE	2-1	CASE	3~1	CASE	4-1
NO RANK	Area	Ratio	Area	Ratio	Area	Ratio	Area	Ratio
		(9)	(pq)	(%)	(ha)	(%)	(ha)	
10.0	49034-16	30.62	28302.80	17.96	15750.46	8.73	5167.13	3.2x
ио-си	15780.65	28.96	26376.44	16.74	12415.85	7.88	4473.20	2,84
3_10.0_CH==	43504.07	27.52	24534.66	15.57	11128-56	7.06	3391.12	2.47
4 15.0 CH	41229,48	26.08	22741.94	14.43	9955.00	6.32	3413.44	2.12
S20.0_CM	38970.20	24.45	21043.23	13.35	8813.67	5.59	3355.64	1.95
4 5 5.0 CM	36756.37	23.25	19416,59	12.32	7758.10	26.7	2799.66	1,78
7 36.0 CM	34577.42	21.87	17830.55	11.31	6811, 27	4.32	2592,49	1.65
8 _ 35.0_CM	32513,29	20.56	16316,20	10.35	5914.12	3,75	2393.08	1.52
940.0 CM	30545.24	19.32	14369.12	25.6	5083.68	5,23	2221.55	1.41
10 45.0 CM	28626.91	18.11	13456.67	8.54	4324.28	2,75	2073,51	1,32
11 5,0.0, CM==	26290.52	16.95	12164,51	7,72	3695.37	2.35	1939.11	1,23
12 55,0 CM	25021.37	15.83	10986.15	6.97	3185.12	2.02	1792.56	1.14

Table 5-12 List of Inundated Area

					Systi	em II, Amount	System II, Amount of rainfall loss 50.0 m/m	ss 50.0 m/m
	CASE 1	1-2	CASE	2-2	CASE 3	3-2	CASE 4	4-2
NO ON	Area	Ratio	Area	Ratio	Area	Ratio	Area	Ratio
		€	(ha)	(*)	(ha)	(8)	(ha)	(8)
1 0 CH	34608.49	25-12	1/725.40	11.62	4721974	3.00	4737.57	1.35
2 5 . 0 . CM	34384,33	21.75	16145.96	10.25	4021.52	2.55	1969.51	1.25
310.0_CM==_321Z2.24	32122,24	20.35	14640.36	92.2	3453.12	2.19	1795.38	1.14
4 15.0 CM	30055-21	19.01	13151.46	8.35	2993.34	1.96	1639.13	1.04
5 _20.0_CM==	23043,31	17.74	11699.20	27.2	2653.31	1,68	1504.18	0.95
- 6 25 0 CM	26075.23	16.50	10319,29	6,55	2371.45	1.50	1393.31	0.88
7 30.0 CK	24202.59	15.31	9050.94	5.74	2130.07	1.35	1288.31	0.82
8 35.0 CM	22426.19	14.18	7937.43	50.5	1921,09	1.22	1185.86	0.75
9 - 40,0 CF 23716.56	20716.56	13,16	95.7.69	4.41	1734.97	1.10	1095.36	0.70
10 45.9 Ch	12109.35	12.09	79.7509	3,83	1585.14	1,01	1005.36	0,64
11 50,0 Ch 12614,52	17614.52	11.14	5169.50	3,28	1470.93	0.93	934.45	9.59
12 55.0 CM	16216.11	10.26	4374.01	2.78	1370.00	0.87	874-45	0.55

Table 5-13 List of Inundated Area

					Systi	em II, Amount	System II, Amount of rainfall loss 80.0 m/m	n/m 0.08 ssc
	CASE	1-3	CASE	2-3	CASE	3-3	CASE	4-3
200	Area	Ratio	Area	Ratio	Area	Ratio	Area	Ratio
M. N. Link	(ha)	(8)	(ha)	(%)	(ha)	(%)	(ha)	(%)
1 0 CB==	27535.94	17.42	9110,74	5.78	1878.26	-19	1285,65	24.0
WJ 0.5 2	25589,79	16.19	7904.03	5,02	1697.50	1.08	1150.65	13.25.
3 10.0 CF 23721.90		15,20	6750.60	82.4	1547.45	0.9K	1081-65	0.69
4 15.0 CM==	21987.02	13.91	5732.04	3.64	1414.27	0.90	994.19	0.53
5 20.0 CM	74.67505	12,83	4821.95	3.06	1294.57	0.82	919.19	0.5 S.
6 25.0 CM 18632.48	18632.48	11.79	3972.64	2,52	1186,42	0,75	854.41	1,54
7 30,0 CF 17082,49	17082.49	10,80	3257.76	2.07	1106,03	0.70	794.41	0.56
8 35.0 CM 15593.28	15593,28	7,80	86*0022	1,71	1031.03	0.65	734.41	6,47
9 _ 40.0_CM14.19726	14.19726	3,93	2300,68	1.46	22.696	0,62	.078.63	0.43
10 45.0 CM	12862,97	3.14	2064,89	1,31	909.27	0.5R	647.85	0.41
11 50.0 CF		7,32	1900.11	1.21	856.34	0.54	617.85	62.0
12 55 CI		6.57	1750-11		811.34	0.51	587.85	0.37

Table 5-14 List of Inundated Area by Drainage Basins

System II, Depths of Inundation over 5 cm

Drainage	Amount of	Case 1		Case 2	21	Case 3		Case 4		Notes
system	loss (RL) (m/m)	Area (ha)	Ratio	Area (ha)	Ratio (%)	Area (ha)	Ratio	Area (ha)	Ratio (%)	
Yabebyry River	0.0	28,367	34.0	15,353	18.4	6,405	7.7	1,340	1.6	
(83,500 ha)	50.0	21,233	25.4	9,166	11.0	1,210	1.4	324	0.4	
	80.0	15,885	19.0	4,144	5.0	347	0.4	105	0.1	
7 4	0.0	11,092	33.9	7,875	24.1	4,369	13.4	2,269	6.9	
Acinguy River (32,700 ha)	50.0	9,081	27.8	5,101	15.6	2,071	6.3	1,131	3.5	
	80.0	7,214	22.1	2,859	8.7	1,103	3,3	888	2.7	,
Yacyreta Dam	0.0	3,479	18.0	1,687	8.7	940	4.9	610	3.2	
secondary channels	50.0	2,166	11.2	972	5.0	458	2.4	387	2.0	
(19,300 ha)	80.0	1,138	5.9	409	2.1	119	9.0	137	0.7	
	0.0	2,842	12.6	1,461	6.5	τοι	3.1	254	1.1	
(22,600 ha)	50.0	1,904	8.4	906	4.0	282	1.2	127	9.0	
	80.0	1,352	6.0	492	2.2	128	0.6	50	0.2	

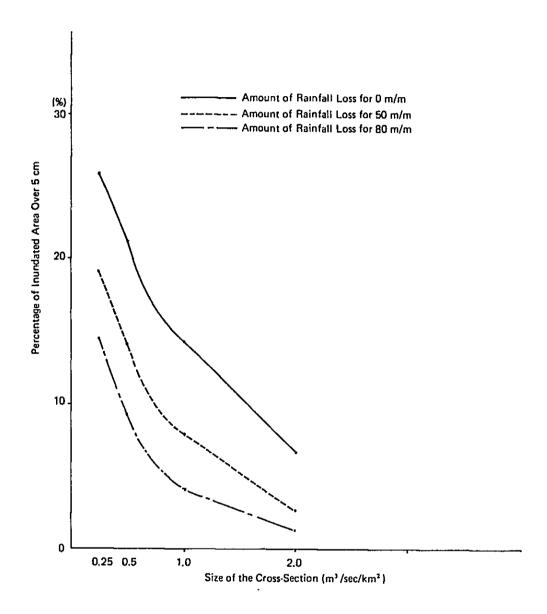


Fig. 5-178 Relationship between the Size of the Cross-Section of the Drainage Canal and the Percentage of the Inundated Area (System I)

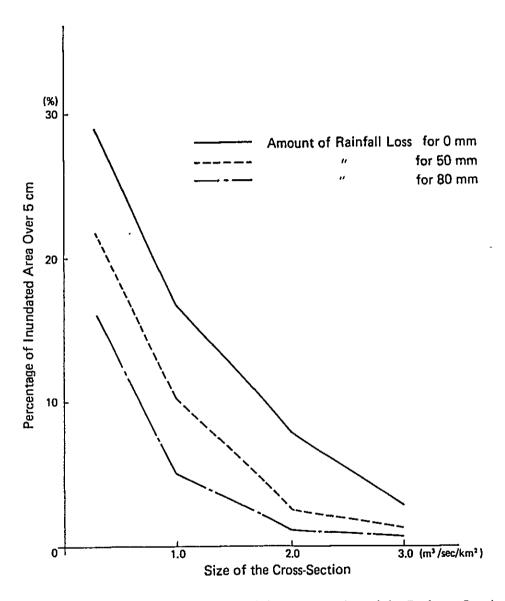


Fig. 5-179 Relationship between the Size of the Cross-Section of the Drainage Canal and the Percentage of the Inundated Area (System II)

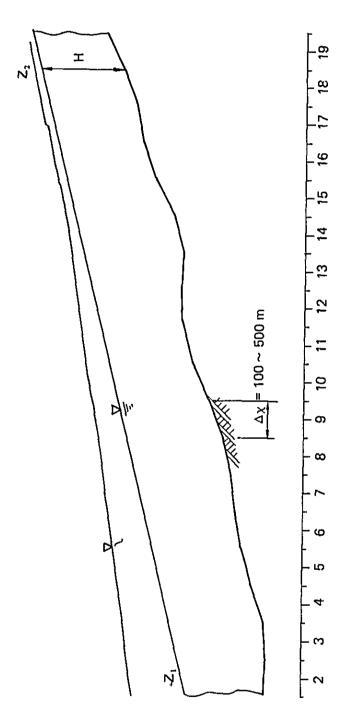


Fig. 7-1 Longitudinal Rivers Regime



Fig. 7-2 Grid for the Analysis of Flow Regime of Rivers (Numerical Model)

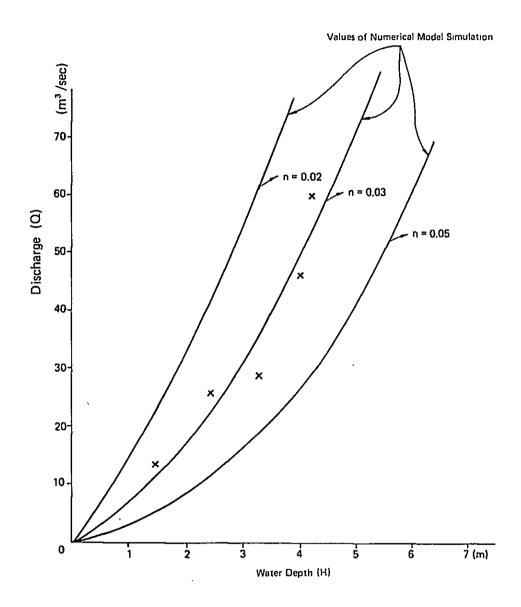


Fig. 7-3 Q-H Curve (Comparison between the Calculated Values and the Measured Values)

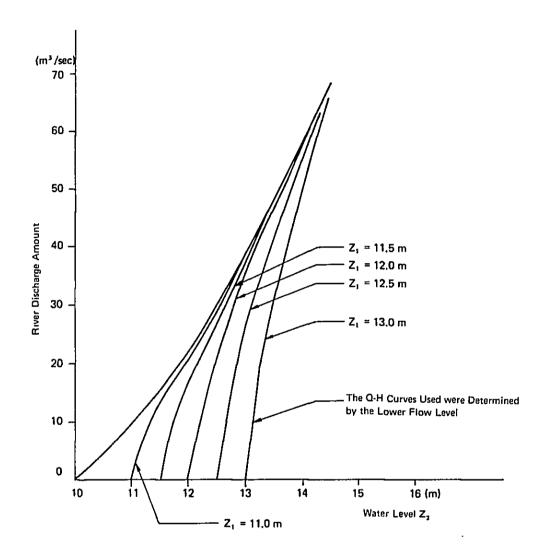


Fig. 7-4 Q-H Curve (Locations Which Are Affected by the Downstream Water)

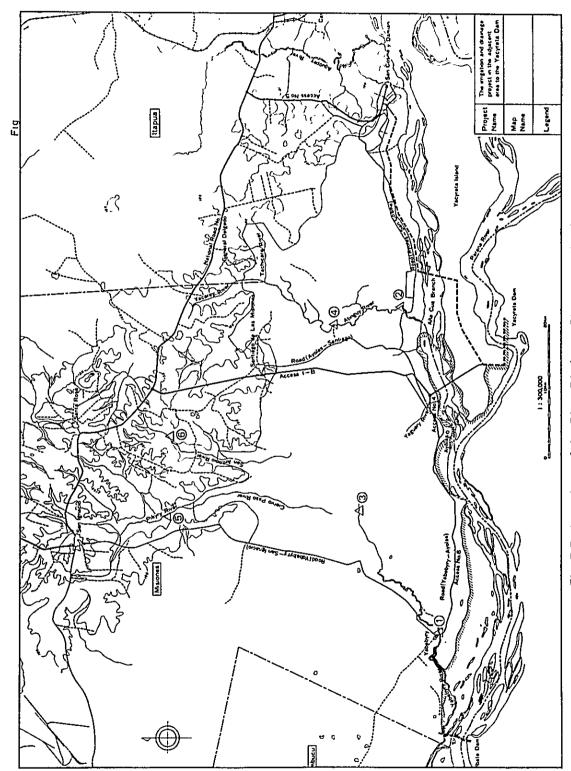
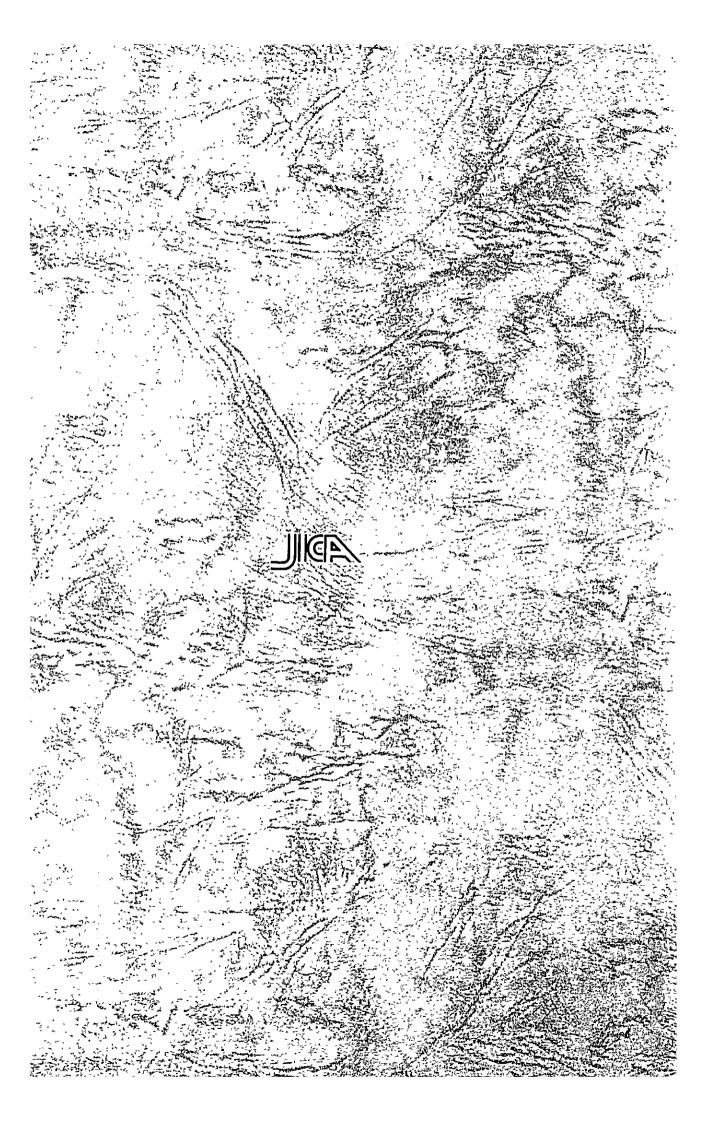



Fig. 7-5 Locations of the River Discharge Observation Station

