Microscopic observation	Metamorphosed Andesite The rock is andesite fairly affected by a contact metamorphism remaining clearly the original porphyritic texture. Residual phenocrysts of twinned and zoned plagioclase subhedra up to 1.5 × 1 mm in sixe, pseudomorphic mafic minerals now changed into aggregates of fine-grained green amphibole laths up to 1 mm in length and microphenocrystic relic magnetite grains are enclosed in a fine- grained granoblastic matrix of quartz and plagioclclase mosaics with abundant laths of green amphibole, small amounts of magnetite, leu- coxene and brown biotite up to 0.05 mm in grain size. Relic plagioclase phenocrysts, too, are often replaced by green amphibole and subordinate biotite chiefly along cracks and zoning planes. Several veinlets of green amphibole cut the rock. Magnetite is probably titaniferous and often leucoxenized marginally. Green amphibole is mainly of hornblende with a preochloism of X ⁼ pale green, Y ⁼ green and Z ⁼ bluish green but actinolite and actinolitic	Metamorphosed Andesite The rock is meta-andesite with the original porphyritie texture and completely rearranged matrix. Relic zoned plagioclase subhedras up to 3.5 × 3 mm in size and aggregates of brown biotite often with a little actinolite and epidote are enclosed in a granoblastic matrix composed mainly of brown biotite, yellowish epidote, plagioclase, quartz and leucoxene up to 0.1 mm in size. Relic plagioclase phenocrysts are andesine in composition and are replaced fairly by fine-grained epidote, brown biotite, quartz and chlo- lite. Accessory zircon, apatite and magnetite are possibly relic minerals. Original rock is andesite judging from the presence of abundant relic phenocrysts of plagioclace and pseudomorphic mafic minerals (now biotite aggregates) and the lack of quartz phenocryst.
Macroscopic description	Basaltic andesite	Porphyritic andesite
Location	Gitana-NW H Q. 13	Diamante Mína Marina
Sample No.	дсрр 49	M8021

Microscopic observation	Biotite-Hornblende Granodiorite The rock shows a fine-grained hypidiomorphic and granular texture and is mainly composed of unhedral quartz up to 1.5×1.0 mm, subhedral to euhedral plagioclase up to 2.0×1.5 mm, unhedral to subhedral potash feldspar up to 1.0×0.8 mm, subhedral green hornblende up to 2.5×0.3 mm, subhedral brown biotite up to 1.5×1.3 mm. Accessory apatite, zircon, sphene and opaque minerals are present. Small amounts of chlorite, epidote and sericite are present as alteration products.				
	Biot The mair euhe feld mm, Acce Smal alte		 <u></u>	 .	
Macroscopic description	Micro Branodiorite				
Location	Bombona Q. 17-S	,		•	1
Sample No.	6 1 년		 	 	

Sample No.	Location	Macroscopic Description	Microscopic Observation
MM 1	Diamante Area Mina Marina	Arsenopyrite ore	<pre>Mineral assemblage:arsenopyrite, pyrite common sphalerite a few chalcopyrite, galena, covelline, tetrahedritescarcely</pre>
			Arsenopyrite shows euhedral to anhedral crystal form and a part of of it is replaced by gangue mineral. Pyrite also shows euhedral to anhedral crystal form which contains small dotts of galena and sphalerite a few to several tens of μ m in size. Sphalerite is unhedral and contains a lot of chalcopyrite dot and is often associated with arsenopyrite. Chalcopyrite, majority of it is a small dot in sphalerite, however, free crystal in gangue mineral or closely associated with pyrite is also found. Covelline is a secondary mineral found in a periphery of sphalerite or in a minute crack.
MM 2A	Diamante Area Mina Marina	Arsenopyrite ore -chalcopyrite ore	<pre>Mineral assemblage:arsenopyrite, pyrite common sphalerite, chalcopyrite, tetrahedrite a few covelline few electrum much less Both arsenopyrite and pyrite disseminate in the ore vein and have euhedral to anhedral crystal form. Sphalerite containing chalcopyrite dot is closely associated with arsenopyrite. Chalcopyrite and tetrahedrite are formed in the corroded part of pyrite. Covelline is a secondary mineral. Electrum, 2-25 #m in size, is found in pyrite crystal.</pre>
MM 2B	Diamante Area Mina Marina	Arsenopyrite -sphalerite ore	<pre>Mineral assemblage:arsenopyrite, pyrite common</pre>

A. I-5 Microscopic Observation of the Polished Section

,

Sample No.	Location	Macroscopic Description	Microscopic Observation
MM 3	Diamante Area Mina Marina	Arsenopyrite -sphalerite ore	and EPMA discloses that tetrahedrite contains lots of silver. Mineral assemblage:arsenopyrite common sphalerite a few covelline few
			Arsenopyrite is euhedral to anhedral crystal. Sphalerite with dotted crystal of chalcopyrite is commonly associated with arsenopyrite. Covelline is found in the crack or at the margin of sphalerite crystal. A single crystal of electrum (Ca. 100 μ m in size) is found in the skelton crystal of arsenopyrite.
MM 4A	Diamante Area Mina Marina		Mineral assemblage:arsenopyrite common sphalerite a few covelline, galena, chalcopyrite few
			The occurrance of arsenopyrite, sphalerite and covelline is the same as MM 3. Balena (10 μ m in size) is enclosed in the crystal of arsenopyrite. Chalcopyrite commonly appears as a dot in sphalerite but a part of it is enclosed in arsenopyrite.
WW 4B	Diamante Area Mina Marina	Arsenopyrite ore	Mineral assemblage:arsenopyrite common sphalerite, chalcopyrite, covelline few Arsenpyrite is euhedral to anhedral crystal and a part of it is replaced with gangue mineral. Sphalerite contains dotts of chalcopyrite and is often associated with arsenopyrite. Chalcopyrite is found as a dot in sphalerite or inclusion of arsenopyrite. Covelline scattered in arsenopyrite is most probably derived from chalcopyrite.

-

.

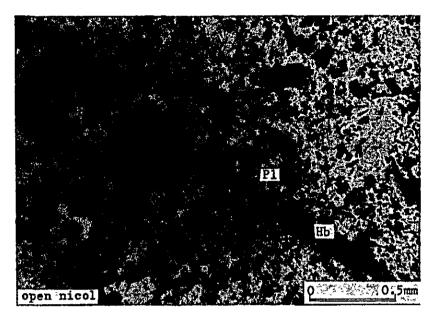
Microscopic Observation	Mineral assemblage:pyrite, sphalerite common galena, arsenopyrite a few chalcopyrite, tetrahedrite few	Pyrite is anhedral and disseminates with one alignment. Sphalerite contains small dotts of chalcopyrite and a part of it occupies the minute cracks in pyrite and arsenopyrite. galena is closely associated with sphalerite and mode of occurrence is the same as sphalerite. Chalcopyrite is found both in sphalerite and in the gangue mineral and it usually associates with tetrahedrite. Tetrahedrite is also found in sphalerite as a veinlet.	Mineral assamblage:pyrite, sphalerite common galena, arsenopyrite few chalcopyrite, tetrahedrite few	The occurrence is the same as DP-LA, however, it is noted that arsenopyrite is mostly euhedral and a part of it is enclosed in pyrite. Although tetrahedrite has strong paragenesis with chalcopyrite, it is noticed in part that tetrahedrite is intruding among chalcopyrite and sphalerite. Tetrahedrite is later product than chalcopyrite and sphalerite.	Mineral assemblage:pyrite, arsenopyrite, sphalerite common covelline few	Both pyrite and arsenopyrite show euhedral to anhedral crystal and disseminate in the vein. Sphalerite contains much less chalcopyrite dot than the ore at Mina Marina and is commonly associated with arsenopyrite. Covelline is the secondary mineral appearing periphery and cracks of sphalerite crystal. Limonite is also noted as a secondary mineral.
Macroscopıc Description	Sphalerite-galena ore		Sphalerite-galena ore		Arsenopyrite -sphalerite ore	
Location	Diamante Area Mina Diamante		Diamante Area Mina Diamante		Mina Desquite	
Sample No.	DP-LA		DP-LB		N-13	

Sample No.	Location	Macroscopic Description	Microscopic Observation
N-14	Mina Desquite	Sphalerite-galena ore	Mineral assemblage:sphalerite common galena, pyrite, chalcopyritea few tetrahedrite few
			Sphalerite contains a lot of chalcopyrite dotts and it forms a vein-like precipitation. galena is closely associated with sphalerite. Chalcopyrite appears not only as a dot in sphalerite, but also as paragenesis with galena and as a scattered single crystal in the gangue mineral. Tetrahedrite usually associates with chalocpyrite.
N 57A	Paraiso Area Mina San Luis	Sphalerite-galena ore	Mineral assemblage:pyrite, sphalerite, galena, cerussite tetrahedrite common argentite few electrumscarcely
			Pyrite is euhedral to anhedral. Sphalerite seldom contains chalcopyrite dot. The marginal part of galena contains exsolutional dot of argentite. (a few to several tens μ m in size) Argentite is also found in sphalerite. Electrum (5 to 75 μ m in size) is found in tetrahedrite or in the crystal boundary of pyrite and tetrahedrite.
N 57B	Paraiso Area Mina San Luis	Pyrite ore	Mineral assemblage:pyrite common sphalerite, chalcopyrite, tetrahedrite a few covelline, arsenopyrite few electrumscarcely
			The occurrence of pyrite, sphalerite and chalcopyrite is the same as N 57A. Tetrahedrite appears as crack-filling or periphery-coating of pyrite, scattered single crystal in the gangue mineral and a part

-

Sample No.	Location	Macroscopic Description	Microscopic Observation
			of it as a veinlet in sphalerite. Covelline is secondary product of chalcopyrite. Electrum (20μm in size) is found in the minute crack in pyrite.
N 57C	Paraiso Area Mina San	Pyrite ore	Mineral assemblage:arsenopyritecommon electrumscarcely
			Arsenopyrite is in the form of euhedral to anhedral and is replaced by gangue mineral. Electrum (17-30 μ m in size) is found in the minute crack in arsenopyrite and crystal boundary between arsenopyrite and gangue mineral.
N 63B	Paraiso Area Mina San Luis	Pyrite-chalcopyrite ore	Mineral assemblage:pyrite common chalcopyrite, covellinea few sphalerite, galena few
			Pyrite disseminates in the vein and its crystal form is euhedral to anhedral. Chalcopyrite also disseminates separately from pyrite and marginal part of chalcopyrite changes into covelline. Sphalerite seldom contains chalcopyrite dot and appears near or inside of pyrite. Galena is enclosed in pyrite.

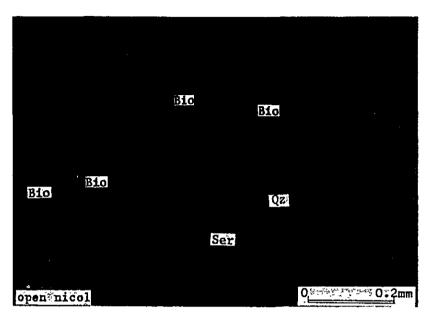
A. I-6 Photomicrographs


+

A. I-6-I Thin Section

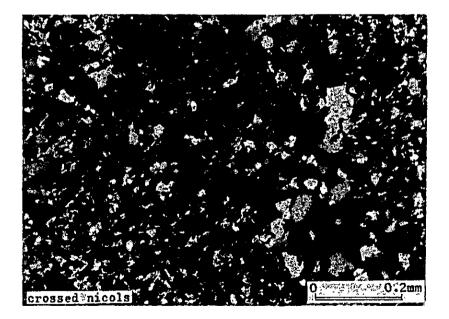
Sample No.	Location	Rock type
QCPP49	Gitana-NWQ-13	Metamorphosed andesite
Q1129	Gitana-NWQ-11	Sericite biotite quartz hornfels
Q1370	Gitana-NWQ-13	Biotite hornblende quartz diorite
Q1327	Gitana-NWQ-13	Metamorphosed andesitic tuff breccia
HCA 12A	Desquite Q-6	Diopside hornblende hornfels
HCA 12B	Desquite Q-6	Hornblende biotite granodiorite
F9	Bombona-NWQ-17	Biotite hornblende granodiorite
RM6	Paraiso Q-2	Biotite hornblende granodiorite

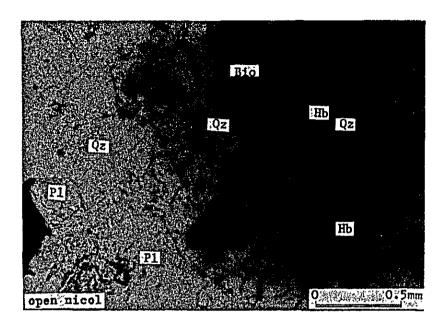

Abbreviations


Qz	:	Quartz
0r	:	Orthoclase
P1	:	Plagioclase
Bio	:	Biotite
HD	:	Hornblende
Act	:	Actinolite
Diop	:	Diopside
Ch1	:	Chlorite

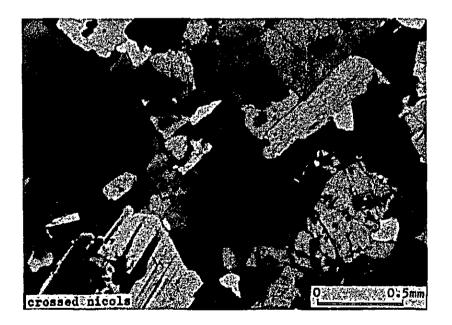
Sample No. QCPP49

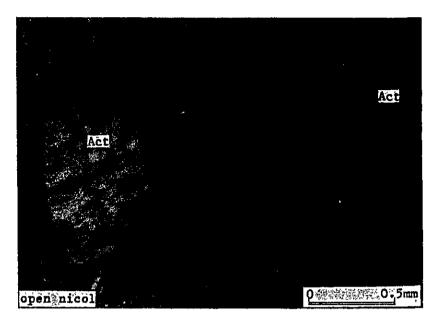
Rock type: Metamorphosed andesite



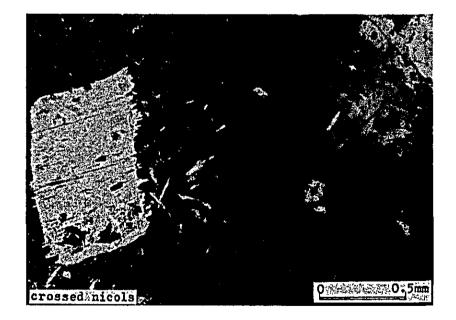


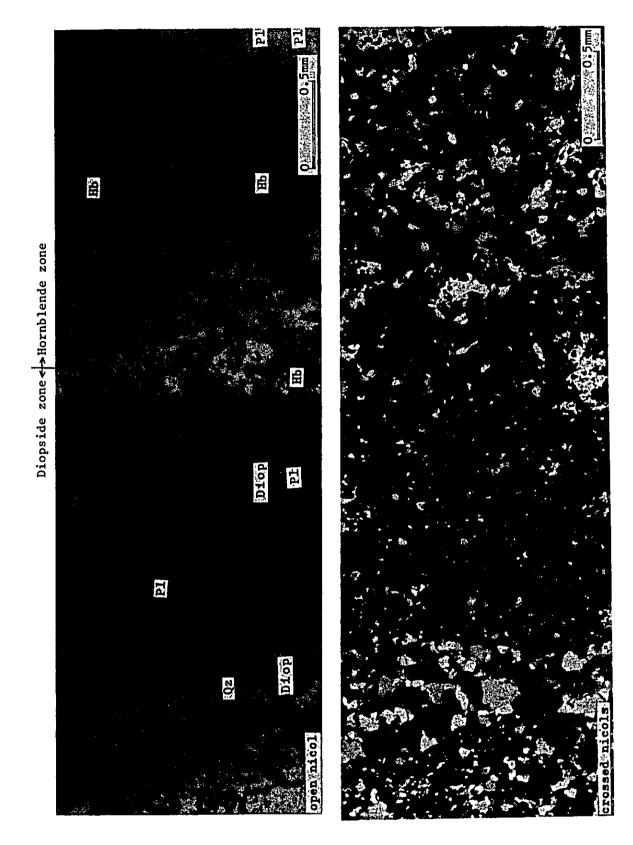
Sample No. Q1129


Rock type:


Sericite biotite quartz hornfels

Sample No. Q1370 Rock type: Biotite hornblende quartz diorite

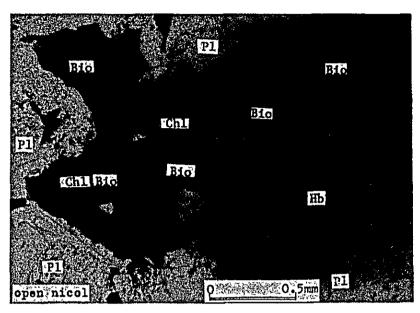


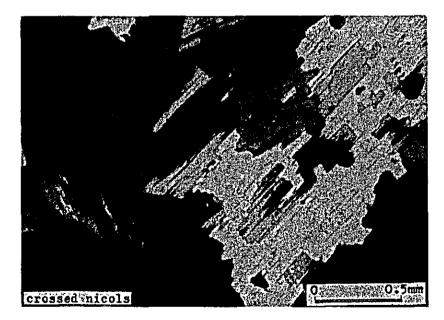


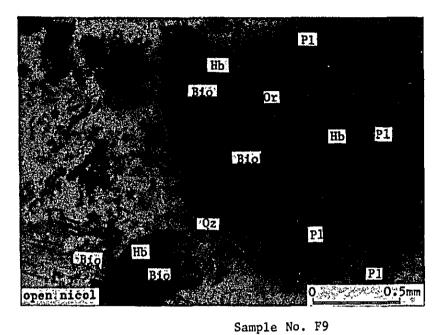
Sample No. Q1327

Rock type:

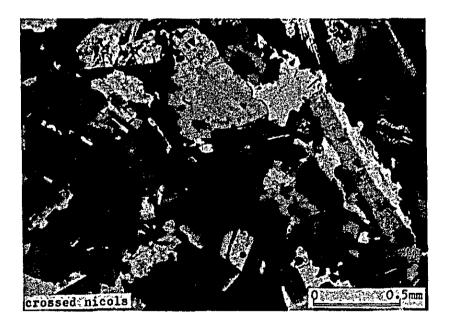
Metamorphosed andesitic tuff breccia

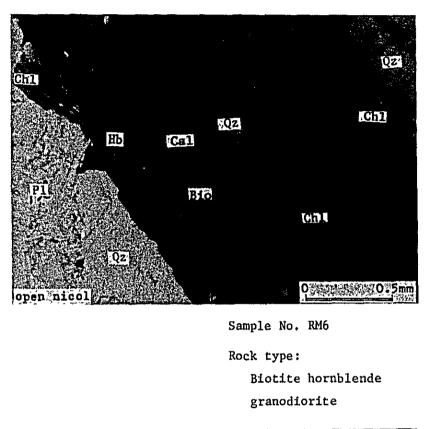


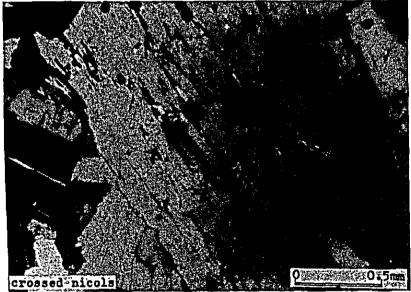

Sample No. HCA 12A


Rock type:

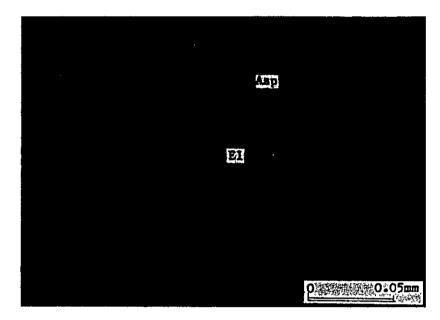
Diopside hornblende hornfels




Sample No. HCA 12B Rock type: Hornblende biotite granodiorite

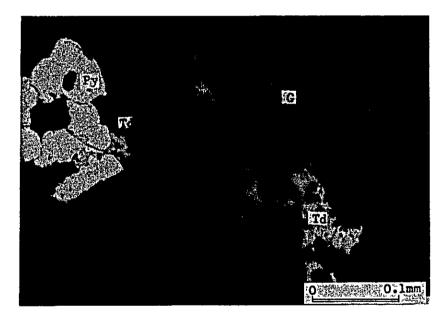


Rock type: Biotite hornblende granodiorite

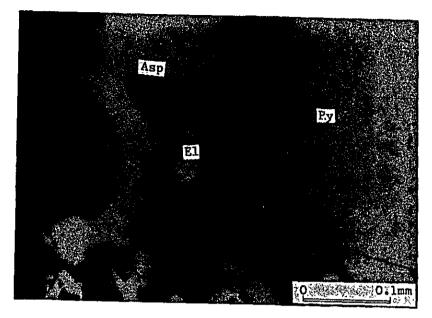

A. I-6-2 Polished Section

Sample No.	Location
MM2A	Mina Marina
MM2 B	Mina Marina
MM3	Mina Marina
DPL-A	Mina Diamante
DPL-B	Mina Diamante
N14	Mina Desquite
N57A	San Luis
N57B	San Luis
N63A	San Antonio

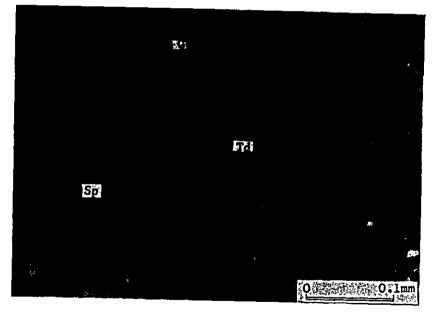
Abbreviations


Sp	:	Sphalerite
Gn	:	Galena
Cp	:	Chalcopyrite
Td	:	Tetrahedrite
El	:	Electrum
Arg	:	Argentite
Ру	:	Pyrite
Asp	:	Arsenopyrite
Ce	:	Cerrusite
G	:	Gangue mineral

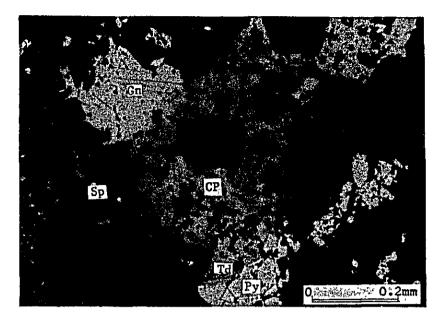
,


Sample No. MM2A

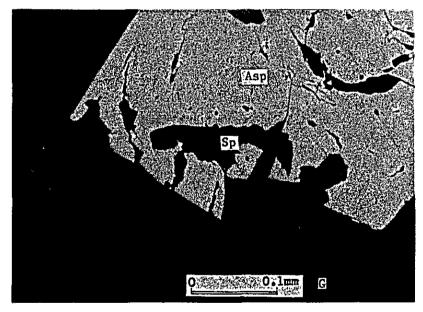
Electrum in arsenopyrite


Sample No. MM2B

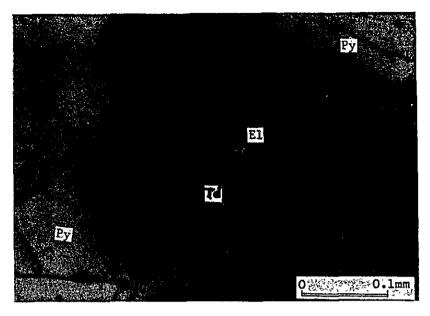
Ag bearing tetrahedrite (conducted EPMA)


Sample No. MM3

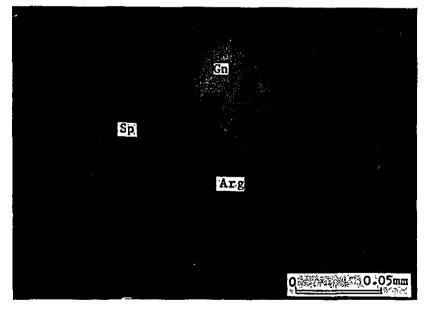
Electrum with arsenopyrite (conducted EPMA)


Sample No. DPL-A

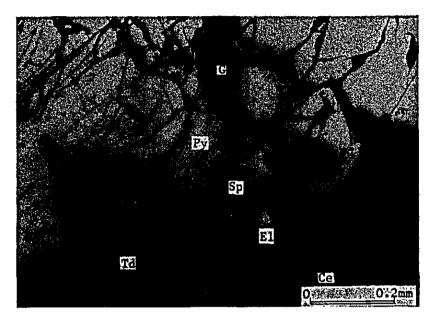
Exsolution of sphaleritechalcopyrite-tetrahedrite (conducted EPMA)


Sample No. DPL-B

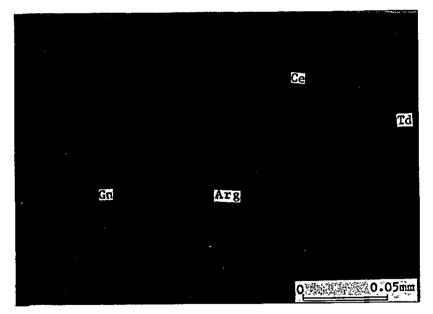
Paragenesis of galena-sphaleritechalcopyrite with latest mineral of tetrahedrite


Sample No. N14

Sphalerite with exsolutional chalcopyrite replaces arsenopyrite

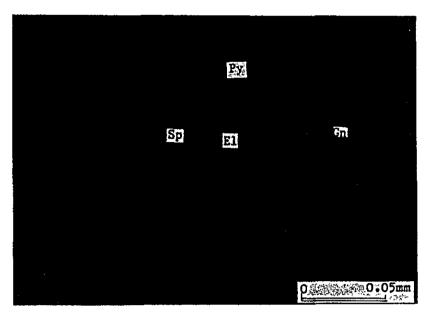

Sample No. N57A

Electrum in tetrahedrite



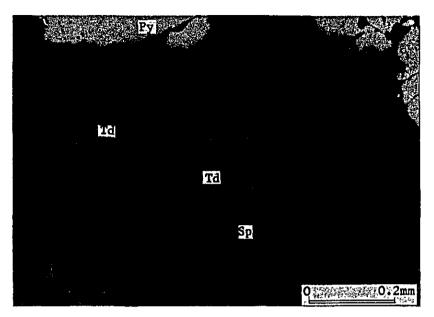
Sample No. N57A

Exsolution of galena and argentite

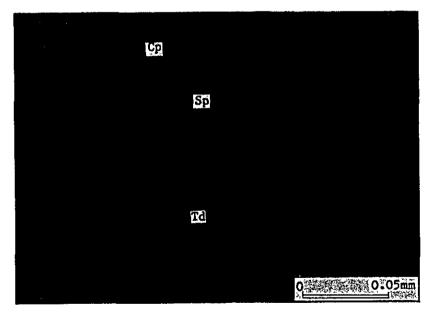


Sample No. N57A Pyrite is replaced by tetrahedrite

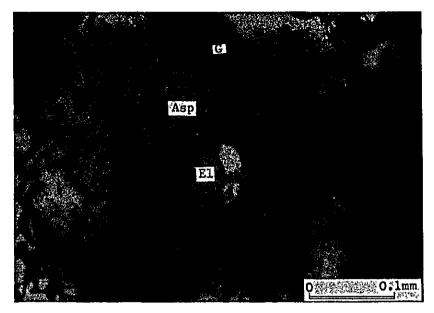
Sample No. N57A


Galena altered to cerrusite. Argentite coexists with cerrusite

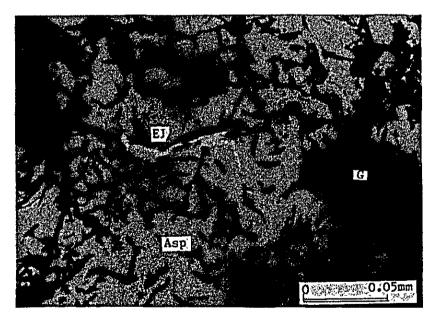
Sample No. N57B


Electrum in pyrite

+

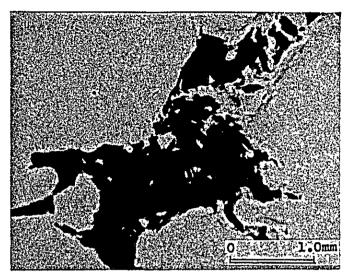


Sample No. N57B


Exsolution of sphaleritechalcopyrite-tetrahedrite

Enlarged above

Sample No. N63A Electrum is a single crystal connected with a narrow channel

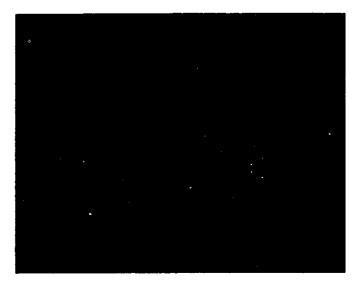


Enlarged above

Electrum in zigzag form in arsenopyrite (conducted EPMA)

A. I-6-3 EPMA

.



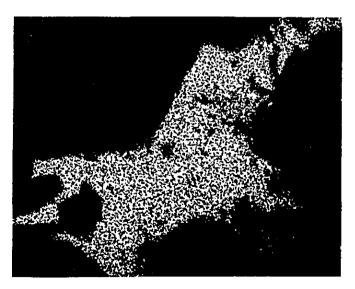
Absorted electron image

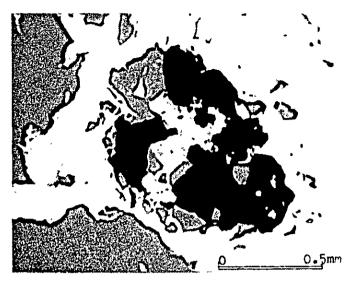
Freibergite (Ag bearing tetrahedrite) in gangue mineral

Ag X-ray image

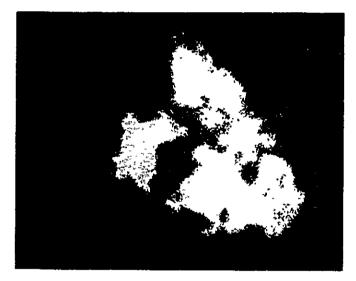


Cu X-ray image

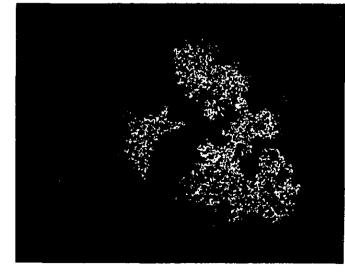

Sample No.	: MM2B	
Locality	: Mina marina	
Accel. volt.	: 15 kV	
Absorb. elect.	: 0.1 µA	


Sb X-ray image

Fe X-ray image

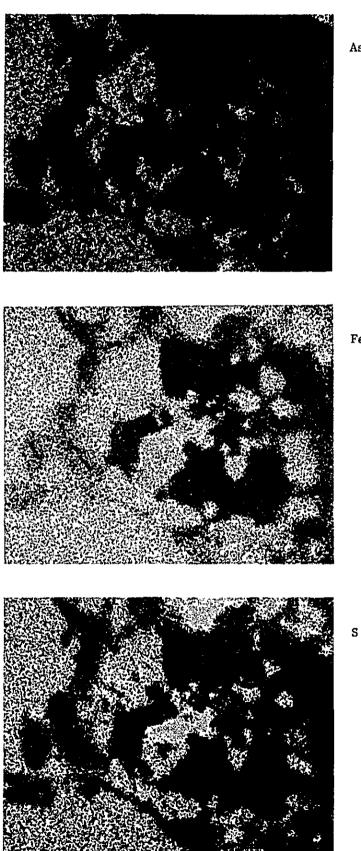


S X-ray image

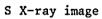


Absorbed electron image

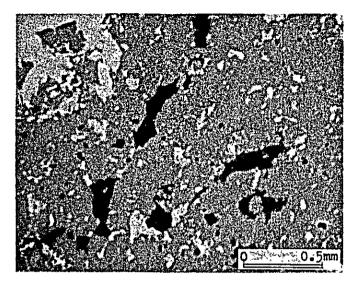
Electrum is association with arsenopyrite.



Au X-ray image

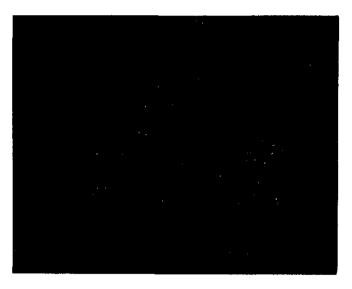

Ag X-ray image

Sample No.	: MM3
Locality	: Mina marina
Accel. volt.	: 25 kV
Absorb. elect.	: 0.2 µA



As X-ray image

Fe X-ray image


A - 52

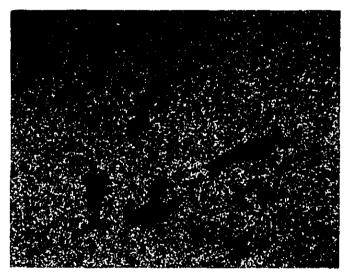
Absorbed electron image

Exsolution of Ag bearing tetrahedrite(black in the photo) - chalcopyrite

- sphalerite.

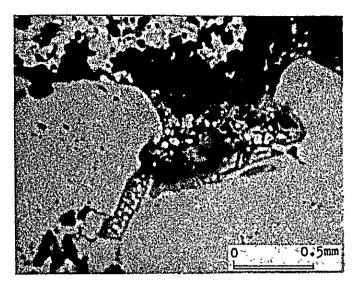


Ag X-ray image



Cu X-ray image

Sample No.	:	DPL-A
Locality	:	Diamante
Accel. volt.	:	15 kV
Absorb. elect.	:	0.1 µA


Sb X-ray image

Zn X-ray image



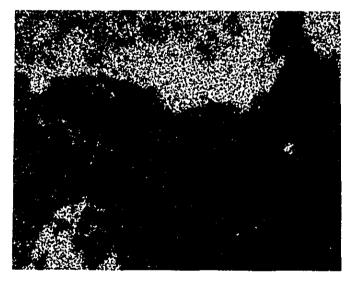
S X-ray image

Absorbed electron image

Freibergite

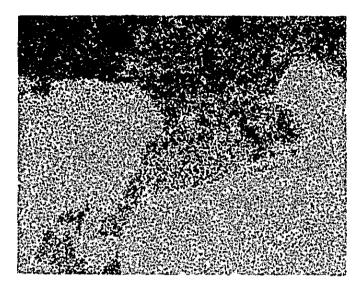


Ag X-ray image

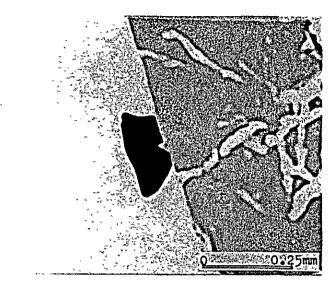


Cu X-ray image

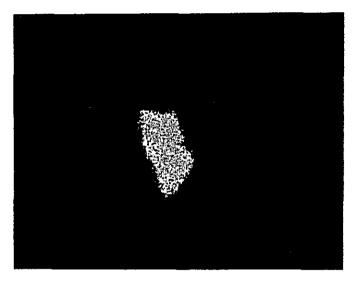
Sample No. : N57A Locality : San Luis Accel. volt. : 15 kV Absorb. elect. : 0.1 µA


Sb X-ray image

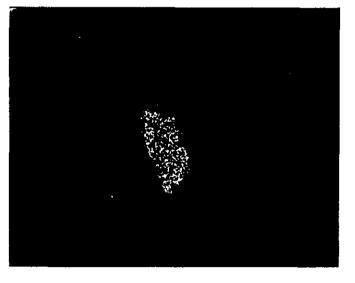
Pb X-ray image



Fe X-ray image

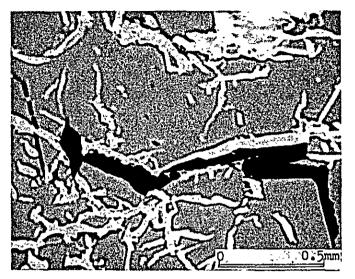

S X-ray image

,

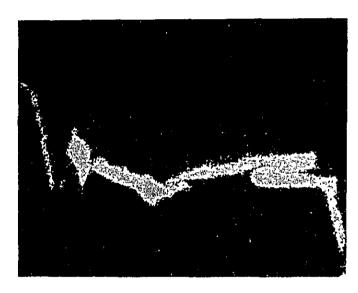


Absorbed electron image

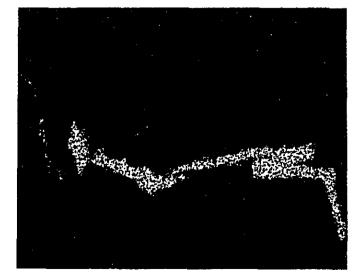
Electrum


Au X-ray image

.


Ag X-ray image

Sample No.	\$	N57C
Locality	:	San Luis
Accel. volt.	:	25 kV
Absorb. elect.	:	0.2 µA



Absorbed electron image

Electrum in zigzag form in arsenopyrite.

Au X-ray image

Ag X-ray image

Sample No.	:	N63A
Locality	:	San Antonio
Accel. volt.	:	25 kV
Absorb. elect.	:.	0.2 µA

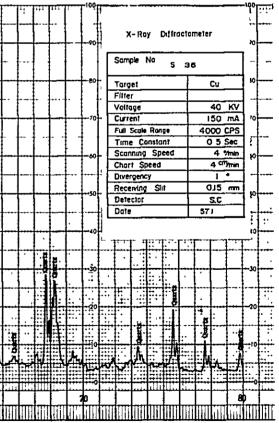
Ser. No.	Mineral Sample	Quartz	Plagioclase	K-feldspar	Hornblende	Chlorite	Sericite	Phlogopite	Montmorillonite	Kaolinite	Halloysite	Gibbsite	Anatase	Loughlinite?	Talc?	dA 8.10?	dA 7.73	Pyrite	Arsenopyrite	Goethite	Scorodite
1	N58	V					С									L			L		L
2	N59	V		L			L			м		S			_						
3	N60	V		L		L	S			L		v		L							
4	N61	V		V		v	S					V		L							
5	N62	V	V	L											M		М				
6	S32	v					М											S			L
7	\$33	V		С			V		L												
8	S34	v		М		M	S					L									
9	S35	v	v	L	С	С		L													
10	S36	V		S			С		С												
11	S37	V		L			С		С												
12	S38	V	V	L	L	L		М													
13	GITAX-01	М					С			С			S	L							
14	GITAX-02	۷					C		С	L			S								
15	GITAX-03	V					V		С				s							S	
16	GITAX-04	V					м						L								
17	GITAX-05	v	М		м	S		М													
18	GITAX-06	v					С		С	L			s								
19	GITAX-07	v					С		С				L							s	
20	GITAX-08	V					S			v											
21	GITAX-09	v				S	s				м										
22	GITAX-10	v					С		С	L			L								

A. I-7-I Summary of X-ray Diffractive Analysis

•

Foot Note V:very much M:much C:common L:less S:scarcely

23 GITAX- 24 GITBX- 25 GITBX- 26 GITBX- 27 GITBX- 28 GITBX- 29 GITBX-	01 V 02 V 03 V 04 V						1	Montmorillonite	Kaolinite	Halloysite	Gibbsite	Anatase	Loughlimite?			Pyrite	Arsenopyrite	Goethite	Scorodite
25 GITBX- 26 GITBX- 27 GITBX- 28 GITBX-	•02 V •03 V •04 V			 		С		С	L			s		_					
26 GITBX- 27 GITBX- 28 GITBX-	-03 V -04 V			S	С	S						,	С						
27 GITBX- 28 GITBX-	•04 V	+				м						s			-				_
28 GITBX-		1				L		м	м			S							
	-05 V												М	_					
29 GTTRY-						L		Μ	С			S	S						
I - STIDY-	•06 V			М									М						
30 MMX11-	· 1 V		L			L		С	S			L							
31 MMX11-	· 2 V					L		С	s			L							
32 MMX11-	- 3 V	s				С						L							L
33 MMX11-	-4 V	v			С	L		L											
						-								_					
		1																	
		1												_					
		1																	
													-	_					
							<u> </u>												


Foot Note V:very much M:much C:common L:less S:scarcely

A. I-7-2 X-ray Diffraction Chart

-

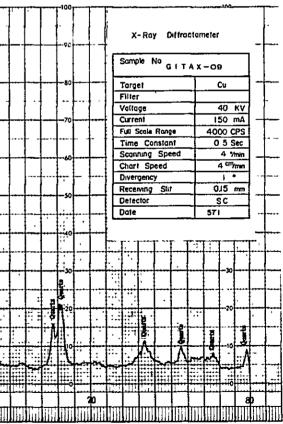

y

CHART NO KCO1 2711L			CHART NO 5CO1 100		T-100	
		-				X-Ray Diffractometer
	70 1					Comple No.
			┽┾┾╪╪			Sample No. N 60
				B0	1-B0	Target Cu *
		╸┝╍╠╢╸ ┤╞╍╁┈┼	╍┠╍╂╍╂╍╉╍╂┄╊╍╂╸┠╌╽╴┟╴┟╴╂╸╉	┉╂╍╊╶╂╍╊╍┠╍┥╺┨╼╞╦┫╍╂╍╉╌╉┈	┨╼╍┨╴┧╴╞╴╞╍╸╡╴╆╍╌┟╼╌┨╺┨╴┨╴┨	Filter Voltage 40 KV
						Current 150 mA -
┝╧┥╾┥┯┥┯┼╾┟╸╏╶┦╌┥╌┫╶┿┯╃╌┼╴┧╴┟╻┝╍┝		┉┼┈┟╉╢╌╷╴┞┈┼╍┑╎╴	╺╄┈┦╾╄╍╂╍┣╴┠╶┦╶╿╶╂╴┣╸╿╴╂┅╂╌╿	╴╺╁╍╌┞╸┠╺┎┫╍╌┨╸┥╺┽╍╌┨╸╴┨╍╴┨╍╴┨╍╴	╪╴╋╴╏╴╎╌┽╍╎╶╄┈╎┅┥╶╄╴╞╴┥╶╿	Full Scole Range 4000 CPS Time Constant 0 5 Sec
				A0		Scanning Speed 4 min
						Chart Speed 4 cm/mm Divergency
						Divergency i *
	50					Detector S.C
				╍╍╁╍╍╆╍╍╫╍┟╴┙╴╂╍╍╁╍╢╢┧╎┠╶┫╌╸	╊╍┨╌┊┊┾╍╊╍┼╶┾╼┨╴╎┊╎╞╴╏╸╎	Date 571
					┥╾₄┫╾╾┼╍╾┼╍╍┼╍╍┼╍╍┼╌╍╎╴╌╎╌┈┼╍┉┼╍	• • • • • • • • • • • •
		╌╢╌╸┟╁╸┨╄╴╴╎╴╴┼╸╶┼╴	╍┧╶╍┨╍╌┥ ╼╿╟┝╶┾╴┾╻┥╴┼╴╎╴┼╾┾╍╎╍┅╎		╪╍ <mark>┣╌</mark> ┥╶┽┅╪ ╍ ┽╶┼┄┤╶┤ _╺ ┠╴┾┈┼┈┤	╽╴┊╶┠╶┾┄╞╾┟╌╟╍╟┉
	╌┼╌╌┦╂╌┽╌╕╝╢╄┨╌╌┤╼╌┤╌		╺┼╍┼╍┼╍┼╫╎┋┼╖╫╖╴╴╎╶╷┼╖┤╍┼		34	<u> </u> 30
				╺╾┥╾┥╾┥╌╢╢┟╌╎╶╎╍╵╴╢║╎╶╶┟╶╶	<u>↓</u>	┝╵┤╌┝╺┥╍┶╴┼┄┤╴╎╴┝┅╢╸
						20
	R. Galagae					
			TTTT NATERN. IIN I ATAT A 154			
				──│Ñ╶┼┅┼ ╍ <u>┦╜╢╦╶Ñ╶┼╍─╢[╤]╄┼┼─┤</u> ┈┤┉╸		
	┙ <mark>┙</mark> ┝╌╫┈┼╴╎╴┼╴┼╴┼	╶┼┽┼┼┼╌┞╹╹	Warren	white Mart - I that		
			╾┼╍╌┼╍╌┼╍┼╧┼╾╸			┟╌╌╏╌╴ <mark>╞╶╼╞╌╍╅╌╴╞╴╴</mark> ┊╴╴┟╴╸ <mark>╽╼╸</mark> ║━╸
1) III III III	20	30	40	so l	- f0	
			и. 			1 1 1 1 1 1 1 1 1 1
						X-Roy Diffractometer
F ¹⁰⁰ 2211F	10 6 9 9 9 9 9 9				100 ⁷⁷⁷¹⁶	*
[100 #2116 						Sample No 5 35
100 #31b 100					100 ⁷⁷¹¹ 100 ⁷⁷¹¹ 90 80 80 80 80 80 80 80 80 80 8	Sample Na S 35
100 221L 					100 ^{7771 h}	Sample No S 36 Target Cu H Filter
100 201 1 1 <					100 ^{7771 h} 90	Sample No S 36 Target Cu Filter - Voltage 40 KV Current 150 mA
100 2015 100 100 100 1111 100 <td< td=""><td></td><td></td><td></td><td></td><td>100⁷⁷⁷¹¹ </td><td>Sample Na S 35 Target Cu H Filter</td></td<>					100 ⁷⁷⁷¹¹ 	Sample Na S 35 Target Cu H Filter
100 #81b 100 100					100 ¹²¹¹ 	Sample Na S 35 Target Cu Filter KV Voltage 40 KV Current 150 mA Fuil Scale Range 4000 CPS Time Constant 0 5 Sec Scanning Speed 4 7min
100 111 <td></td> <td></td> <td></td> <td>100 70 80 80 80 80 80 80 80 80 80 8</td> <td>100 ^{7771 h} 100 ^{7771 h} 90 80 80 80 80 100 70 10</td> <td>Sample Na S 35 Target Cu Filter KV Voltage 40 KV Current 150 mA Full Scole Range 4000 CPS Time Constant 0 5 Sec Scanning Speed 4 offining Chort Speed 4 offining Divergency 1 *</td>				100 70 80 80 80 80 80 80 80 80 80 8	100 ^{7771 h} 100 ^{7771 h} 90 80 80 80 80 100 70 10	Sample Na S 35 Target Cu Filter KV Voltage 40 KV Current 150 mA Full Scole Range 4000 CPS Time Constant 0 5 Sec Scanning Speed 4 offining Chort Speed 4 offining Divergency 1 *
100 11 <					100 ^{7771 h} 90	Sample Na S 35 Target Cu Filter - Voltage 40 KV Current 150 mA Full Scale Range 4000 CPS Time Constant 0 5 Sec Scanning Speed 4 *min Chort Speed 4 *min Divergency 1 * Receiving Slit 015 mm
100 100						Sample Na S 35 Target Cu Filter - Voltage 40 KV Current 150 mA Full Scole Range 4000 CPS Time Constant 0 5 Sec Scanning Speed 4 offmin Chort Speed 4 offmin Divergency 1 of
100 100						Sample No S 35 Target Cu Filter Cu Voltage 40 KV Current 150 mA Full Scale Range 4000 CPS Time Constant 0 5 Sec Scanning Speed 4 min Chort Speed 4 crimin Divergency 1 * Receiving Sitt 015 mm Date 57 1
						Sample No S 36 Target Cu Filter - Voltage 40 KV Current 150 mA Full Scale Range 4000 CPS Time Constant 0 5 Sec Scanning Speed 4 9min Divergency 1 ° Receiving Stit 0J5 mm Date 57 i
100 100						Sample No S 36 Target Cu Filter - Voltage 40 KV Current 150 mA Full Scale Range 4000 CPS Time Constant 0 5 Sec Scanning Speed 4 9min Divergency 1 ° Receiving Stit 0J5 mm Date 57 i
						Sample No S 36 Target Cu Filter - Voltage 40 KV Current 150 mA Full Scale Range 4000 CPS Time Constant 0 5 Sec Scanning Speed 4 9min Divergency 1 ° Receiving Stit 0J5 mm Date 57 i
						Sample No S 36 Target Cu Filter - Voltage 40 KV Current 150 mA Full Scale Range 4000 CPS Time Constant 0 5 Sec Scanning Speed 4 9min Divergency 1 ° Receiving Stit 0J5 mm Date 57 i
						Sample No S 36 Target Cu Filter - Voltage 40 KV Current 150 mA Full Scale Range 4000 CPS Time Constant 0 5 Sec Scanning Speed 4 9min Divergency 1 ° Receiving Stit 0J5 mm Date 57 i
						Sample No S 36 Target Cu Filter - Voltage 40 KV Current 150 mA Full Scale Range 4000 CPS Time Constant 0 5 Sec Scanning Speed 4 9min Divergency 1 ° Receiving Stit 0J5 mm Date 57 i
						Sample No S 36 Target Cu Filter K Voltage 40 KV Current 150 mA Full Scale Range 40000 CPS Time Constant 0 5 Sec Scanning Speed 4 %min Divergency 1 ° Receiving Slit 015 mm Date 57 J
						Sample Na S 36 Target Cu Filter - Voltage 40 KV Current 150 mA Full Scale Range 4000 CPS Time Constant 0 5 Sec Scanning Speed 4 %min Divergency 1 ° Receiving Sit 015 mm Date 57 i
						Sample No S 36 Target Cu Filter K Voltage 40 KV Current 150 mA Full Scale Range 40000 CPS Time Constant 0 5 Sec Scanning Speed 4 %min Divergency 1 ° Receiving Slit 015 mm Date 57 J
						Sample No S 36 Target Cu Filter K Voltage 40 KV Current 150 mA Full Scale Range 40000 CPS Time Constant 0 5 Sec Scanning Speed 4 %min Divergency 1 ° Receiving Slit 015 mm Date 57 J

			# ##!		H. H.	1				- <u>-</u>			*Col		ΓŦ	1	T			11	H. 14	9 11	in Hi	u Har	нн <u>н</u>	·:#: :	i	"F"	¥#: :	<u> </u>		-	!*!! ;	1.3					. 111	n	lt itt	99 93 19 19 19 19 19 19 19 19 19 19 19 19 19 1			5 PT				-		
		90											and a local de																0			1				-10				T			- 70				X-f	tay Oct	fracton	nater	
			•=]								-		4	·	륑			12										ł						-			+ -										Sample	Nº G I	TAX	-05	
	╉╌┼╍╄	•80				+ +		ᢥ᠁ᡛ			-+-		8	80			+			· ·		o 	<u></u>		┝╌═┠╸		$\left \cdot \right $		•—-	╞╾┝			┝╍┼╸		┝─┼	-80		┝╌┼					80			ΗC	Target			Cu	
····	+ $+$ $+$				-			4	. .		-									.		4.4	ļ			-		4-	+		-	+ -		1-	1-4			╞╞			-+	4					Filter				
		.70	1											<u> </u>							_L,															-70											Voltoge			150	0 K\ 0 m/
			12											Ĩ															1												11							le Ronge		4000	
				1 1			1.	1.1				+				1		- +-	- [1 1		† †	• • •	1			1		1		Ť	1	r †		1 1		11		-+-			· -						Constant		05	
┉┼╾┼╾┼╍╌	╶┼╌╌┠╌╌┞╴	┉┝┋┝╸	┽╂┼╴			+ +		┝──┼╸						Ħ٩		╼╬╼	┼╌┤	┝╍╼╂╼		┿╍╋		•		+	┝╼┾╸				•	┝╌┼			┝╍┼╸		┼─┼			┝╍┢			+		60			_	Chart	ng Speed	°	49	^{crry} ing
	+ + +		╶┼┇┤				4.	 -		+	-			₩ .	┟╫┼					╬╌╏		-lil									-		.	ļ				├			∔-		+			1 -	Diverge				•
		.50						 .						Ц.,							وأ					_		_,L,						_ <u> </u>		_30					 	_ _						ng Shi		012	_
												•										P :																									Detecto Date	£		<u>57 i</u>	<u> </u>
				TT	T.		T.					1				-			F	1-1				T				1	1			1		1	1 [1		Ŧ	F		T.						
	+	·••]- <u>[</u> []	╶╢╢┤╵					ѷ┤─┼		Ž				1-4					╈	+			- -					┉┼╸	•		-[-					-40										-	r1	т 1		1 1	1.
			• ++	· -		+ +				╊						- +				- <u> </u> -		+	•	- 3					ł			-			} }	ł			-	1	<u></u> +	+ ·			+	-					-
		∞ -				<u>}.</u>		┟╍╻┥		 	_			# ₋₽	₩4	- 4				╉╍╂	<u>)</u> ,	• 		1		-	┝╌┟╴	_ <u> </u> ,			.	4			┤╼╍┠	-30					┼╌┼	 		┝╍┼			╀╊				-+-
												- 21				able.	1 4	Ĩ			1			Harn										k		_ [1.			1		
				11					3				1	間		ŝ	킐	1		ş i	ŧ		ŧ.	ł		1											1			i i		Ι,									
	3	20				\mathbf{T}	20	Ϋ́Τ	Ē	I I	(octame	1		Ti i			릗	3			7	Henters	i	I			1	72	°			1		13	1-1	~20											TT			1	Т
	thin 1	#1-1	Alleran	5	1			łľ		F		AtA D	FE L	栅		Place to	1	퉒				i i	Ale	Щ		- I R							Į	Mà						1	1-1		.t	ũ I	1-	f	11	f	-	11	
┉┠╼┼╾╢━┼╍	┼╌┦╌┦	.10	4-[- -	-+4-+	3	+	10	┝	4	┨-╢	- 11	W	₩	-44,0	┝╋╋	洲	┢╖╢	-#-	ff+t	₽₩	╎┼┊	• 	ДŀР	₽₩	₩.	++	<u>д</u> .		∲		╏╾┼╶		├ -+}	- <u>-</u> -	╉╼╂	-10	++	╢┼			<u>.</u>	-+-	-+- P	F\+		┿	╆╌╆	-	\$-	+-10-	+
			14	44	<u>.</u>		A.	1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	M	υγ			11	4	/¥ '	ΨI	ЛГ	/ י	1 F	ען נ	ΨΜ	ΥV	√ '		$\boldsymbol{\mu}$	M	h	da.	$ \gamma $	LΛ	h	h	Y	\mathcal{A}	. A	μ	M	᠕	\downarrow	IJ٨		ĿĽ	_\	-	ሉ	1	mha l	8 1		
						IT	_		_					<u> </u>												1]`				۷.		1		<u> </u>							Ľ				1_[L T	キ
		· - +	in in				-	łł			•	-		+		· ±			- -	+	-+-	+		+			\mathbf{H}	T						-	+ $+$	-			·		┢┝┟			-	70	ł			ł		ł
	+	┉┨┅╍┨╼	-1	┯┨┯╷╸┥	····	╉╌╋	-+	┟╌┾	- * -	·			╞╴┟╌		╆╋	- 30			-+-	+		-	*Ľ		 -		+ +			۱Ť	' .		} - · 	1	1			┡┼	·						-#-	t	+	· + +	- { -	<u>†</u> †	t
ى 14. ئىلىپىلىتىكى	والمتباليتك	1001	H. ii	الأعلية	<u>مللالينا ا</u>	1		J	<u>l</u>					-l		1	1.	I	.1	11				. 1 . j.,	نيا يبينا	. l'aut	1	ШU	<u>ساللالا</u>	بالباليا	I	.: !!	. السللة		11111	11		<u> </u>			.H. B	i. les		1	<u> </u>	<u></u> ;	والمستلية	<u> </u>	يس الصد	<u>بىلىيلىك.</u>	يليب

······································	Сказт но крат	100 CHART NO KCDI 100 17233

a faul eres i bland berer berer beine banat sever bilder	CHART NO KCO1 2221%	10	CHART NO ECDI 100 2703		CHART NO KCOL MAN THIS
					X-Ray Diffractometer
					Sample No GITBX-03
					Target Cu Filter
		-70			Voltage 40 KV Current 150 mA Full Scale Range 4000 CPS
					Time Constant 0 5 Sec Scanning Speed 4 7min
					Chart Speed 4 cm/mm. Divergency 1 • Receiving Slift 015 mm
					Detector S.C Date 571
╡╴╢╴┼╍┼╍┝╍┼╍┼╍┼╍┼╍┝╍┑ ┝──┟╴┟╴┇╴┇╴╵┼╌╽╴╽╌┟╴╴┿╍┼╍┽╍┥					┟ ╺╍╋╍╏╴┨╴┃╺╄╼╄╶╿╴┨╸┨╸┨
		-30			
		The shares the		1	-A-A-A-
	20	3	μ μ μ		
	CHART MO KCO1 100 22816				r <u>CHART NO KCO</u>
	CHART MO KCO1 100 22814		1 100		X-Ray Diffractometer
		\$00 50 50 50 50 50 50	1		X-Ray Diffractometer
			100		X-Ray Diffractometer Sample No MMX11-4 Target Cu Filter Valtage 40 KV Current 150 mA
1+1 100 101 100			100		X-Ray Diffractometer Sample No MM X 1 1 - 4 Target Cu Filter Voltage Voltage 40 KV Current 150 mA Fuil Scale Ronge 4000 CPS Time Constant 0 5 Sec Scanning Speed 4 7min
		SQ			X-Ray Diffractometer Sample No MMX11-4 Target Cu Filter Voltage Voltage 40 KV Gurrent 150 mA Full Scale Range 4000 CPS Time Constant 0 3 Sec Scanning Speed 4 7min Chort Speed 4 cm/min Divergency 1 *
50					X-Ray Diffractometer Sample No MM x 11-4 Target Cu Filter Voltage 40 KV Current 150 mA Full Scale Range 4000 CPS Time Constant 05 Sec Scanning Speed 4 7min Chart Speed 4 ^{cm} /mm
					X-Ray Diffractometer Sample No MMX11-4 Target Cu Filter Valtage 40 KV Current 150 mA Full Scale Range 4000 CPS Time Constant 0 5 Sec Scanning Speed 4 7min Chart Speed 4 cm/min Divergency I • Receiving Stit 015 mm Detector S C
					X-Ray Diffractometer Sample No MMX11-4 Target Cu Filter Valtage 40 KV Current 150 mA Full Scale Range 4000 CPS Time Constant 0 5 Sec Scanning Speed 4 7min Chart Speed 4 cm/min Divergency I • Receiving Stit 015 mm Detector S C
			100 		X-Ray Diffractometer Sample No MMX11-4 Target Cu Filter Valtage 40 KV Current 150 mA Full Scale Range 4000 CPS Time Constant 0 5 Sec Scanning Speed 4 7min Chart Speed 4 cm/min Divergency I • Receiving Stit 015 mm Detector S C
					X-Ray Diffractometer Sample No MM X 11-4 Target Cu Filter Voltage Voltage 40 KV Current 150 mA Full Scale Ronge 40000 CPS Time Constant 0 5 Sec Scanning Speed 4 7hnin Divergency 1 * Receiving Shit 0.15 mm Detector SC Date 571
					X-Ray Diffractometer Sample No MM X 1 1 - 4 Target Cu Filter Valtage Valtage 40 KV Current 150 mA Fuil Scale Range 4000 CPS Time Constant 0 5 Sec Scanning Speed 4 7min Chart Speed 4 cm/mn Divergency 1 * Receiving Shit 0.15 mm Detector 5 C Date 571
					X-Ray Diffractometer Sample No MM X 1 1 - 4 Target Cu Filter Voltage Voltage 40 KV Current 150 mA Fuil Scale Ronge 4000 CPS Time Constant 0 5 Sec Scanning Speed 4 7min Divergency 1 * Receiving Sit 0.15 mm Detector SC Date 571

APPENDICES PART I DRILLING DATA

,

•

.

. 1

4

•

LIST OF APPENDICES

A.II-1	List of the used equipments for drilling
A.11-2	Supplis and consumed parts for drilling
A.11-3	Preparation and removal
A.II-4	Operational results of drill hole, PD-8
A.II-5	Operational results of drill hole, PD-9
A.II-6	Operational results of drill hole, PD-10
A.II-7	Operational results of drill hole, PD-11
A.II-8	Operational results of drill hole, PD-12
A.II-9	Operational results of drill hole, PD-13
A.II-10	Operational results of drill hole, PD-14
A.II-11	Operational results of drill hole, PD-15
A.II-12	Summarized operational data of each drill hole
A.II-13	Working time of each drill hole
A.II-14	Drilling meterage of diamond bits
A.II-15	Specifications of diamond bits
A.II-16	Assay results of the drilled core
A.II-17	Microscopic observation of the thin sections
A.II-18	Microscopic observation of the polished sections
A.II-19	Photomicrographs
A.II-19-1	Thin section
A.II-19-2	Polished section
A.II-19-3	EPMA
A.II-20	Summary of X-ray diffractive analysis

A.II-21 Charts of X-ray diffraction test

A. I-I List of the used equipments for drilling

Item	Model	Quantity	Capacity, Type, and Specification
Drilling Machine	том-зв	1	Capacity NQ 590m BQ 750m Inner Diameter of Spindle 92mm Weight (except engine) 120,250,600,120F
Engine for Drill	F3L-912	1	Diesel Engine 1,800 rpm/41 PS ∿ 1,500 rpm/35 PS
Pump	NAS-2A	1	Piston ø 63mm Capacity 62 ∿ 45 %/min Pressure 27 ∿ 37 Kg/cm ²
Engine for pump	NS-110C	1	Diesel Engine 1,800 rpm/9.5 PS
Generator	YSG-5SN	1	5KVA, 110V, 50 C/S
11	YSG-3	1	3KVA, 110V, 50 C/S
Engine for Generator	NS-90C	1	Diesel Engine 1,800 rpm/8.5 PS
11	NS-50C	1	Diesel Engine 1,800 rpm/4.5 PS
Pump	HOPE-F	1	Piston ϕ 13.8mm Capacity 60 \sim 80 ℓ /min Pressure 40 \sim 30 Kg/cm ²
Engine for pump	NS-90C	1	Diesel Engine 1,800 rpm/8.5 PS
Mud Mixer	MCE-100A	1	Volume 100£, 800 ∿ 1,000 rpm/min
Derrick		1	Wooden
Rod Holder	RH-85	1	Hand Type
Drill Rods	NQ-WL	50	3.00 M/PC
	BQ-WL	70	3.00 M/PC
Casing Pipes	NW	30	3.00 M/PC
	11	3	1.00 M/PC
	BW	50	3.00 M/PC

Α.	I-2	Supplis	and	consumed	parts	for	drilling	

Dogendender	Constitutes	11-2-5		·		Quant:				
Description	Specification	Unit	PD-8	PD-9	PD-10	PD-11	PD-12	PD-13	PD-14	PD-15
Light oil		L	2,112	1,760	2,100	1,980	1,950	1,430	2,720	1,890
Mobil oil		e	90	60	20	20	10	-	20	40
Hydraulic oil	· · · · · · · · · · · · · · · · · · ·	l	20	-	-	-	-		30	-
Grease		kg	20	-	-	20	-	-	-	15
Bentonite	50 kg/bag	bag	40	26	52	34	56	26	50	36
Libonite		kg	25	50	75	100	75	50	100	50
Tel-cellose		kg	15	12	20	15	18	11	16	20
Cement	50 kg/bag	bag	3	25	4	9	4	6	9	5
Tel-stop		kg	25	30	25	100	75	50	50	-
Emale 20C		٤	10	10	-	20	_	-		
Metal crown	101mm	рс	-	-	3	3	4	3	2	1
Single core tub	e 99mm x 0.5m	set	-	-	1	-	1	-	1	-
Double core tub	e 99mm x 1.5m	"	-	1	-	+	-	-		-
Wire line core barrel	x Om	11	-		-	-	-	-		-
11	NQ x 3.00m		-	-	-	-	1	-	- 1	1
47	BQ x 3.00m	"	-	-	-	-	1		-	1
Inner tube assembly	x Om	11	-	-	-	1	-	-	_	-
ŧt	NQ x 3.00m	"	-	1	-	-	1	-	-	-
11	BQ x 3.00m	11	-	1	-	-	1	-	-	-
Outer tube	x Om	pc	-	-		-	-	-	-	-
H	NQ x 3.00m	11	1	-	-	1		-	1	-
11	BQ x 3.00m	11	1	-	-	1	-	-	1	-
Inner tube	x 3.00m	н	-	-	-	-	-	-	-	-
B1	NQ x 3.00m	"	1	1	-	1	-	-	1	-
18	BQ x 3.00m	11	1	-	-	1	-	-	1	-
Casing metal sh	06	"	-		-		-	-	-	-
11	NW	"	1	2	2	1	2	2	1	1
11	BW	11	1	1	1	1	2	2	1	1
Rag		kg	10	10	10	10	10	20	10	30
Core box		pc	30	20	30	20	30	18	30	25

,

						Quant	ity			
Description	Specification	Unit	PD-8	PD-9	PD-10	PD-11	PD-12	PD-13	PD-14	PD-15
Wire	10	kg	20	10	10	10	10	10	10	10
ł	12	"	20	20	20	20	20	20	20	10
Nail		11	10	10	10	5	5	10	10	5
Wire rope	6mm x 300m	roll	-	0.5	-	-	0.5	-	-	-
11	12mm x 90m	H	-	-	1	-		1	-	_
Manila rope	18mm x 100m	pc	1	-	-	-		-	-	-
Vinyl rope	9mm x 300m		0.5	-	-	-	0.5	-	-	-
Pump packing		0	-	1	- :	-	1	-	-	-
Valve steel ba	11 38.1ø	11	1	-	1	-	-	-	-	-
Piston rod		11	-	-	1	-	-	-	-	-
Guide pipe		71	-	-	-	-	-	1		-
17	NQ	11		-	1	-	1	-	-	-
0	BQ	"	-	1	-	-	-	-	-	-
Guide coupling		"	-	-	-	-	-	-	-	-
11	NQ	u I	-	-	1	-	-	-	-	-
11	BQ	"	-	-	-	1	-	-	-	-
Suction hose	38mm x 3.0m	11	-	1	-	-	-	-	-	-
Water swivel packing		11	-	1	-	-	-	1	-	-
Water swivel spindle		"	1	-	1	1	-	-	I	-
V-belt	TOM-3 F31-912	set	-	1	-	-	-	-	-	-
It	YSG-3		-	1	-	-	-	1	-	1
Core lifter		pc	-	-	-			-		-
11	NQ	- 11	3	2	4	3	4	3	5	4
11	BQ	"	3	2	3	2	2	4	4	4
Core lifter cas	se	"	-	-	-	-		-	-	-
	NQ	11	2	1	2	3	2	2	3	2
11	BQ	"	2	1	2	2	3	2	3	2

and removal
Preparation
. п-з

PD-15	26th, Oct.'82	ct.'82	ov. 182	ov. 182	Man- shifts		120	38	80		166	16	20				36	186
G	.26th. 0	31st. Oct.	12th. Nov.	13th, Nov. ¹ 82	Days		3.0	2.5	0.5		6.0	1.0	0.7			-	1.7	7.7
PD-14	10th. Sep. '82	10th. Oct. '82	Oct.'82	25th. Oct. '82	Man- shifts	20	23				43	18	28				46	89
P.	1		24th.		Days	0.5	0.5				1.0	1.0	1.0				2.0	3.0
PD-13	26th. Sep. '82	Sep. 182	9th. Oct. 182	9th. Oct. 82	Man- shifts		117	24	4		145	12	11				23	168
Ā		30th.	9th. (9th. (Days		2.4	1.5	0.5		4.4	0.5	0.5				1.0	5.4
PD-12	10th. Sep. '82	Sep.'82	Sep.'82	Sep.'82	Man- shifts	28	20				48	20	42				62	110
	L	11th.	24th.Sep.	26th.	Days	1.0	1.0				2.0	1.0	1.4				2.4	4.4
11-04	Aug. '82	Aug. 182	Sep. 182	9th. Sep. '82	Man- shifts		86	58	و		150	26	20				46	196
р. 	24th. Aug.	28th.Aug.	8th.	9th.	Days		2.5	2.0	0.5		5.0	1.0	1.0				2.0	7.0
PD-10	8th. Aug. '82	8th. Aug. '82	Aug.' 82	23rd, Aug. '82	Man- shifts			18	4		22	16	30		1		46	68
L.	8th.		22nd. Aug.	23rd	Days			0.8	0.2		1.0	1.0	1.0				2.0	
PD-9	Jul.'82	Jul.'82	Jul.'82	Jul.'82	Man- shifts	6	26	14	7		56	4	e S				7	63
	26th.	28ch.	7th.	7th.	Days	0.5	1.0	1.0	0.5		3.0	0.2	1.0				0.3	3.3
PD-8	13th, Jul. ¹ 82	14th. Jul. '82	25th. Jul.'82	25th. Jul. ¹ 82	Man- shifts			36	4	2	42	8	6				14	56
	13th.	14th.			Days			1.5	0.3	0.2	2.0	0.4	0.3				0.7	2.7
Item Hole No.	ţ	Preparation	removal			Access road	Haulage	Installation	d Water pipe	Test run, etc.	Total	Dismounting	Pipe removal	Haulage	Road rein- statement	× Others	Total	Grand Total

Period		Per	riod		Number of Days	Actual Working Days	Day Off	Nur	Fotal mber of orkers
Per	Preparation	13th Ju1.82	2∿14th	Ju1.82	2.0	2.0	-		42
Ing	Drilling	15th Jul.82	2∿25th	Jul.82	10.3	10.3	-		217
Working	Removing	25th Jul.82	2∿25th	Ju1.82	0.7	0.7	-		14
3	Total	13th Jul.82	2∿25th	Ju1.82	13.0	13.0	-		273
ngth	Planned Length		ver- urden	4.50 ^m	Core	Recovery	for eac	2h 10	00m section
ling Le	Increase or Decrease in Length	-	ore ength	173.50 ^m	Dej of Hoj	-	Section		Fotal
Dril	Length Drilled	1180.50	ore covery	98.5%		0.00 ^m	99.5%	2	99.5%
	Drilling	131°00 51	1.2%	46.1%	100~18	30.50 ^m	97.5%		98.5%
	Hoisting & Lowering Rod	23°00' 9	9.0%	8.1%					
	Hoisting & Lowering I.T.	98°00' 38	3.3%	34.5%					
Time	Miscellaneous	4°00']	L.5%	1.4%		Efficie	ncy of 1	Dril]	Ling
	Repairing	-	-		180.50)m/Workir	ng Period	1	13.88 m/day
Working	Others				180.50)m/Workin	ng Days		13.88 m/day
WOI	Sub Total		0.0%	90.1%	180.50)m/Dri11i	ng Perio	bd	17.52 m/day
	Preparation	20°00'	-	7.1%	180.50)m/Net Di	illing I	Days	17.52 m/day
	Preparation Moving	8°00'	-	2.8%	Total	workers/	180.50m		1.51 <u>Man/m</u>
	Ren								
	Grand Total	284°00'	-	100.0%	Total	lng Worke			1.20 Man/m
erted	Pipe Size & Meterage	Inserted <u>Length</u> (%) Drilling Length		very of ng Pipe	Hoisti		vering Ho		ing & Lowering 312 Times
Ins	NW 4.50m	2.5%	10	0%					
Pipe	BW 132.80m	73.5%	10	0%					
Casing Pi									

A. II-4 Operational results of drill hole, PD-8

							,	Tabal
eriod		Per:	iod		Number of Days	Actual Working Days	Day off	Total Number of Workers
면	Preparation	26th Jul.82 ⁷	- v28th	Ju1.82	3.0	3.0	-	56
ng	Drilling Removing Total	29th Ju1.82	v 7th	Aug. 82	9.7	9.7	-	203
rkf	Removing	7th Aug.82	v 7th	Aug.82	0.3	0.3	-	7
Mo	Total	26th Jul.82	v 7th	Aug.82	13.0	13.0	-	266
ខ	Planned Length		er- rden	10.00 ^m	Core	Recover	y for each	100 m section
60	Increase or Decrease in Length	_ Co _ Le	re ngth	103.30 ^m	De o Ho		Section	Total
Dr11	Length Drilled	131.00 ^{m Co} Rec	re overy	85.3%	0∿10	0.00m	79.5%	79.5%
	Drilling	96°00' 40	.9%	35.6%	100∿13	1.00 ^m	100.0%	85.4%
	Hoisting & Lowering Rod	16°00' 6	.8%	5.9%				
a)	Hoisting & Lowering I.T.	83°00' 35	. 3%	30.7%				
Tim	Miscellaneous	16°00' 6	.8%	5.9%		Efficie	ncy of Dri	lling
60	Repairing	-	-	-	131.00	m/Workin	g Period	10.08 m/day
rki	Others Sub Total	24°00' 10	.2%	8.9%	131.00	m/Workin	g Days	10.08 m/day
8	Sub Total	235°00' 100	.0%	87.0%	131.00	m/Drilli	ng Period	13.51 m/day
	Preparation	15°00'	_	5.6%	131.00	m/Net Dr	illing Day	s 13.51 m/day
	Moving	20°00'	-	7.4%	Total	workers/	131.00m	2.03 Man/m
	Ren							
	Grand Total	270°00'	-	100.0%	Total Drilli	lng Worke	rs/131.00m	1.55 Man/m
Inserted	Pipe Size & Meterage	Inserted <u>Length</u> (%) Drilling Length		very of ng Pipe	Hoisti		vering Hois	ting & Lowering 163 Times
	NW 9.20m	7.0%		100%				
Pipe	BW 74.20m	56.6%		100%				
Castng								

A. I-5 Operational results of drill hole, PD-9

•

.

-

مد

,

eriod		Per	iod		Number of Days	Actual Working Days	Day Off	Total Number of Workers
Per	Preparation	8th Aug.82	∿ 8th	Aug.82	1.0	1.0	-	22
80	Drilling	9th Aug.82	v21th	Aug.82	13.0	13.0	-	299
Working	Removing	22nd Aug.82	∿23rd	Aug.82	2.0	2.0	-	46
M	Total	8th Aug.82	∿23rd	Aug.82	16.0	16.0	-	367
Length	Planned Length		er- rden	8.70 ^m	Core	Recovery	for each 1	00 m section
	Increase or Decrease in Length Length	_	re ngth	183.30 ^m	Dept) of Hole		Section	Total
Dri	Length Drilled	1 2021 50	re overy	95.6%	0~10	0.00m	93.9%	93.9%
	Drilling	180°00' 55	.5%	52.0%	100~20	0.50m	97.0%	95.6%
	Hoisting & Lowering Rod	18°00' 5	.6%	5.2%				
e	Hoisting & Lowering I.T.	108°00' 33	.3%	31.2%				
Time	Miscellaneous	18°00' 5	.6%	5.2%	ļ	Efficie	ncy of Dril	ling
1 1	Repairing	-	-	-	200.50	m/Workin	g Period	12.53 m/day
Working	Others	-	-	_	200.50	m/Workin	ng Days	12.53 m/day
Mo	Sub Total	324°00' 100	.0%	93.6%	200.50	m/Drilli	ng Period	15.42 m/day
	e Preparation	8°00'	-	2.3%	200.50	m/Net Dr	illing Days	s 15.42 m/day
	Moving	14°00'		4.1%	Total	workers/	200.50m	1.49 Man/m
	Rem						<u> </u>	
	Grand Total	346°00'	-	100.0%	Total	na Varke	rs/200.50m	1.83 Man/m
Inserted	Pipe Size & Meterage	Inserted Length (%) Drilling Length		very of ng Pipe	Hoisti		vering Hois	ting & Lowering 311 Times
Pipe	NW 17.90m	8.9%]	100%]			
	BW 120.20m	60.0%		100%	1			
Casing								

A. II-6 Operational results of drill hole, PD-10

riad		Per	riod		Number of Days	Actual Working Days	Day Off	Total Number of Workers
1 61	Preparation	24th Aug.8	2∿28th	Aug.82	5.0	5.0		150
Ine	Drilling	29th Aug.8	2~ 7th	Sep.82	10.0	10.0	-	230
Work	Removing	8th Sep.8	2∿ 9th	Sep.82	2.0	2.0		46
3	Total	24th Aug.8	2∿ 9th	Sep.82	17.0	17.0	-	426
gth	Planned Length		ver- urden	13.20 ^m	Core 1	Recovery	for each	100 m section
led I		_	ore ength	124.90 ^m	Dept of Hole		Section	Total
Dril	Length Drilled	140.50	ore covery	98.1%	0~70(0.00m	98.0%	98.0%
	Drilling	106°00' 42	2.4%	34.2%	100~140).50m	98.2%	98.1%
	Hoisting & Lowering Rod	11°00' 4	4.4%	3.5%				
٩	Hoisting & Lowering I.T.	84°00' 33	3.6%	27.1%				
Tim		25°0' 10	0.0%	8.1%		Efficie	ncy of Dri	lling
gu	Repairing	24°00' 9	9.6%	7.7%	140.50	Workin	g Period	8.26 m/day
rkí	Others		-	-	140.50m	n/Workin	g Days	8.26 m/day
3	Sub Total	250°00' 100	0.0%	80.6%	140.50	/Drilli	ng Period	14.05 m/day
	验 Preparation	25°00'	-	8.1%	140.50	n/Net Dr	illing Day:	3 14.05 m/day
	Moving	35°00'	-	11.3%	Total v	orkers/	140.50m	3.03 Man/m
	Ren			- <u></u>				
	Grand Total	310°00'	-	100.0%	Total			
	Pipe Size & Meterage	Inserted <u>Length</u> (%) Drilling Length		very of ng Pipe	Hoistin		-	1.64 Man/m ing & Lowering 168 Times
Pipe	NW 20.30m	14.4%	j	100%		· <u>—</u> .	£	· ······
	BW 83.60m	59.2%		100%				
Casing							·······	

A. II-7 Operational results of drill hole, PD-11

		<u>-</u>			Number	Actual		Total
Period			Period		of Days	Working Days	Day Off	Number of Workers
Per	Preparation	10th Sep	.82∿11th	Sep.82	2.0	2.0	-	48
gn	Drilling	12th Sep	.82∿24th	Sep.82	12.3	12.3	-	300
Working	Removing	24th Sep	.82~26th	Sep.82	2.4	2.4	-	62
13	Total	10th Sep	.82∿26th	Sep.82	16.7	16.7	-	410
	Planned Length	200.00 ^m	Over- burden	17.20 ^m	Core I	Recovery	for each 1	00 m section
.	Increase or Decrease in Length	-	Core Length	178.20 ^m	Depth of Hole		Section	Total
Drij	Length Drilled	200.20 ^m	Core Recovery	97.4%	ዑ.100).00m	99.1%	99.1%
	Drilling	154°00'	47.8%	43.8%	100∿200).20m	95.9%	97.4%
	Hoisting & Lowering Rod	18°00'	5.6%	5.1%				
	Hoisting & Lowering I.T.	110°00'	34.2%	31.2%				
Time	Miscellaneous	24°00'	7.4%	6.8%		Efficie	ncy of Dril	ling
Íng	Repairing	_	-	-	200.20m	/Workin	g Period	11.99 m/day
Working	Others	16°00'	5.0%	4.5%	200.20m	n/Workin	g Days	11.99 m/day
M	Sub Total	322°00'	100.0%	91.5%	200.20m	n/Drilli	ng Period	16.28 m/day
	Preparation	15°00'		4.3%	200.20m	Net Dr	illing Days	16.28 m/day
	Preparation Moving	15°00'	-	4.3%	Total w	orkers/	200,20m	2.05 Man/m
	Rea							
	Grand Total	352°00'	-	100.0%	Total			
-7		Inserted			Drillin	ig Worke	rs/200.20m	1.50 Man/m
	Pipe Size &	Length () Drilling		very of	Vedetin		and an Itad at	ing & Lowering
มะ	Meterage	Length	Cash	ıg Pipe		ig a Low . Times	I.T.	•
De I	NW 17.20m	8.6%		100%			tt	
	BW 120.20m	60.0%		100%				
ing								
Casing								
I[<u>. </u>					

A. I-8 Operational results of drill hole, PD-12

	T					Number	Actual			Total
eriod				Period		of Days	Working Days	Day	Off	
Per	Pre	eparation	26th Sep	.82∿30th	Sep.82	4.3	4.3		-	145
fng	Dri	llling	lst Oct	.82∿ 8th	Oct.82	8.0	8.0		-	196
Working	Ren	noving	9th Oct	.82∿ 9th	Oct.82	1.0	1.0		-	23
Ĭ	Tot	al	26th Sep	.82∿ 9th	Oct.82	13.3	13.3		-	364
ngth	P1a Ler	inned igth crease or	120.00 ^m	Over- burden	10.00 ^m	Core 1	Recovery	for e	ach 1	00 m section
Drilled Le	Dec	rease or rease in gth	-	Core Length	104.70 ^m	Deptl of Hole		Sectio	n	Total
Drf		igth 111ed	121.50 ^m	Core Recovery	93.9%	ው10(0.00m	92.7%		92.7%
	Dri	lling	93°00'	46.5%	35.1%	100~12	1.50m	99.0%		93.9%
		isting & Vering Rod	10°00'	5.0%	3.8%					
ne		sting & vering 1.T.	70°00'	35.0%	26.4%					
Time	Mis	cellaneous	27°00'	13.5%	10.1%		Efficie	ncy of	Dril	ling
ing	Rep	airing	_	-	_	121.50	n/Workin	g Peri	od	9.14 m/day
Working	Oth	lers		-	_	121.50	n/Workin	g Days		9.14 m/day
М	Sub	o Total	200°00'	100.0%	75.5%	121.50	n/Drilli	ng Per	iod	15.19 m/day
	1 ng	Preparation Moving	24°00'	-	9.1%	121.50	∎/Net Dr	illing	Days	15.19 m/day
	NOE	Moving	41°00'	-	15.5%	Total v	vorkers/	121.50	m	3.00 Man/m
	Rei									
	Gra	ind Total	265°00'	-	100.0%	Total				1 /1 // /
P			Inserted			Drillir	ng Worke	rs/121	.50m	1.61 Man/m
nserted	-	e Size & erage	Length (Drilling		very of ng Pipe	Notati			Ved at	ing & Lowering
[nse	net	486	Length		WP LThe		ig a Low 5 Times			112 Times
Pipe I	NW	20.50m	16.9%		100%					
1 1	BW	72.00m	59.3%		100%					
Casing										
Cas				ł	Ì					
Ш		<u> </u>	L	<u> </u>						

A. II-9 Operational results of drill hole, PD-I3

•

,

•

Period		P	eriod		Number of Days	Actual Working Days	Day	Off	Total Number of Workers
Per	Preparation	10th Oct.8	2∿10th	Oct.82	1.0	1.0	-	•	43
ing	Drilling	11th Oct.8	2∿23rd	Oct.82	13.0	13.0			419
Working	Removing	24th Oct.82	2∿25th	Oct.82	2.0	2.0	-	•	46
3	Total	10th Oct.8	2~25th	Oct.82	16.0	16.0			508
Length	Planned Length	200 00	ver- urden	12.00 ^m	Core l	Recovery	for ea	ich 1	00 m section
	Increase or Decrease in Length	_	ore ength	184.50 ^m	Deption of Hole		Section	L	Total
Drilled	Length Drilled	1 200.20	ore covery	98.0%	0~100	0.00m	98.7%		98.7%
	Drilling	163°00' 50	0.3%	46.9%	100~200),20m	97.4%		98.0%
	Hoisting & Lowering Rod	19°00' -	5.9%	5.5%					
a	Hoisting & Lowering I.T.	90°00' 2;	7.8%	25.9%					
Time	Miscellaneous	20°00' (5.1%	5.7%		Efficie	ncy of	Dril	ling
	Repairing	-	-	1	200.20	n/Workin	g Perio	d	12.51m/day
Working	Others	32°00' 9	9.9%	9.2%	200.20	n/Workin	g Days		12.51m/day
M	Sub Total	324°00' 100	0.0%	93.1%	200.20	n/Drilli	ng Peri	od	15.40 m/day
	Preparation	12°00'	-	3.4%	200.20	n/Net Dr	illing	Days	15.40 m/day
	Preparation Moving	12°00'	-	3.4%	Total v	workers/	200 . 20m	1	2.54 Man/m
	Rem								
	Grand Total	348°00'	-	100.0%	Total		/000		2.00.1-1-
Inserted	Pipe Size & Meterage	Inserted Length (%) Drilling Length		very of ng Pipe	Hoist		wering	Hois	2.09 Man/m ting & Lowering 315 Times
	NW 12.00m	6.0%		100%			4		
Pipe	BW 120.90m	60.4%		100%					
Casing									

A. I-10 Operational results of drill hole, PD-14

•

Period		Pe	eriod		Number of Days	Actual Working Days	Day Off	Total Number of Workers
	Preparation	26th Oct.82	2∿31st	Oct.82	6.0	6.0	-	166
Working	Drilling	lst Nov,82	2∿12th	Nov.82	11.3	11.3		273
0rk	Removing	12th Nov.82	?∿13th	Nov.82	1.7	1.7	-	38
2	Total	26th Oct.82	2∿13th	Nov.82	19.0	19.0		477
Length	Planned Length		ver- 1rden	1.00 ^m	Core I	Recovery	for each 1	00 m section
5	Decrease in		ore ength	158.30 ^m	Depti of Hole		Section	Total
Drill	Length Drilled	161.50	ore covery	98.6%	0~10(0.00m	100%	100%
	Drilling	158°00' 54	.9%	44.1%	100~161	L.50m	96.4%	98.6%
	Hoisting & Lowering Rod	18°00' 6	5.2%	5.0%				
le l	Hoisting & Lowering I.T.	106°00' 36	5.8%	29.6%				
Time	Miscellaneous	6°00' 2	2.1%	1.7%		Efficie	ncy of Dril	ling
Ing	Repairing	-	•	-	161.50	M/Working Period		8,50 m/day
Working	Others	-	1	-	161.50r	n/Workin	g Days	8.50 m/day
Ň	Sub Total	288°00' 100.0		80.4%	161.50r	n/Drilli	ng Period	14.29 m/day
	알 Preparation	30°00'	-	8.4%	161.50	n/Net Dr	illing Days	14.29 m/day
	Moving	<u> </u>	-	11.2%	Total v	vorkers/	161.50m	2.95 Man/m
	Ren							
	Grand Total	358°00'	-	100.0%	Total			
Inserted	Pipe Size & Meterage	Drilling C Length		very of ng Pipe	Hoistin		rs/161.50m ering Hoist I.T.	1.69 Man/m ing & Lowering 254 Times
Pipe	NW 1.00m	0.6%		100%				
	BW 96.00m	59.4%		100%				
Casing						<u> </u>		

A. I-II Operatinoal results of drill hole, PD-15

,

A. II-12 Summarized operational data of each drill hole

Drill hole		Drilling period	Drilling				•				
N0.	machine	þ	length	Length	Recovery	Drilling	Casing etc.	Total	* m/shift	** m/shift	Remarks
PD-8	TOM-3	15th Jul. '82 ~ 25th Jul. '82	180.50	173.50	98.5	30	1	31	6.02	5.82	
PD-9	TOM-3	29th Jul. '82 ~ 7th Aug. '82	131.00	103.30	85.4	25	7	29	5.24	4.52	
PD-10	TOM-3	9th Aug. '82 ~ 21st Aug. '82	200.50	183.30	92.6	37	2	39	5.42	5.14	
PD-11	TOM-3	29th Aug. 182 ~ 7th Sep. 182	140.50	124.90	98.1	24	6	30	5.85	4.68	
PD-12	TOM-3	12th Sep. '82 ~ 24th Sep. '82	200.20	178.20	97.4	32	5	37	6.26	5.41	
PD-13	TOM-3	Ist Oct. '82 ~ 8th Oct. '82	121.50	104.70	93.9	22	2	24	5.52	5.06	
PD-14	TOM-3	11th Oct. '82 ~ 23rd Oct. '82	200.20	184.50	98.0	34	5	39	5.89	5.13	
PD-15	TOM-3	1st Nov. '82 ~ 12th Nov. '82	161.50	158.30	98.6	33	1	34	4.90	4.75	
	Total		1,335.90	1,210.70	1.96	237	26	263	5.64	5.08	

* Drilled per one shift covering net drilling operations.** Drilled per one shift covering total works conducted.

A. I-13 Working time of each drill hole

Drill Hole No	Drilling	Hoisting &	& lowering L T T	Misc	Miscellaneous		Repairs	Others	Moving	Total
		Rod		Casing insertion	Hole reaming	Others			operation	
PD-8	131°00'	23°00'	98°001	4°00'	I	I	i	I	28°00'	284°00'
PD-9	6°°00	16°00'	83°001	8°001	t	8°001	a	24°00'	35°00'	270°001
PD-10	180°00'	18°00'	108°00'	10°00'	8°00'	1	r	ı	22°001	346°00'
PD-11	106°001	11°00'	84°001	100°6	16°00'	•	24°00'	1	60°00'	310°00'
PD-12	154°00'	18°00'	110°001	24°00'	I	1	1	16°00'	30°00'	352°00'
PD-13	93°00¹	10°00'	70°001	6°001	18°00'	3°00'	1	1	65°00'	265°00'
PD-14	163°00'	19°00'	100°09	10,001	8°00'	2°00'	J	32°00'	24°00'	348°001
PD-15	158°00'	18°00'	106°001	6°00'	I	ł	I	•	70°00'	358°00'
Totol Totol	100,000	1009551	1000015	77°00'	50°00'	13°00'	100010	10000	1000700	1000001
	T,001 00	00 661	143 00		140°00'		24 00	.00 7/	.00.455	- 00 22C 7

					Dri		meteraj Unit m		drill	nole		
Item	Size	Туре	Bit No.	PD-8	PD-9	PD-10	PD-11	PD-12	PD-13	PD-14	PD-15	Total
	NX	NQ-WL	481180	10.20	_			Ĩ				10.20
			481181	13.80								13.80
:			481182	13.50								13.50
ļ			481183	14.60								14.60
			481184	20.60	·							20.60
			481185	30.60								30.60
			481186	25.00								25.00
Ì			481205		11.10							11.10
			481206		14.80							14.80
			481207		18.10		_					18.10
			481208		21.00							21.00
			M-6557			9.80						9.80
			M-6558			12.50						12.50
			M-6559			13.90						13.90
			M-6560			15.80						15.80
			M-6561			20.00						20.00
			M-6562			23.00						23.00
			M-6563			15.10						15.10
Bit			M-9741				15.20					15,20
			M-9742				18.50					18,50
			M-9743				17.50					17.50
			M-9744				25.20					25.20
			M-9745					13.50				13.50
			M-9746					12.00				12.00
	ļ		M-9747					19.00				19.00
		[M-9748					20.00				20.00
			M-9749					19.50				19.50
	ł		M-9750					19.00				19.00
i			M-9751						9.50			9.50
	ļ	ľ	M-9752			•			10.80			10.80
		ſ	M-9753						13.60			13.60
	l	ľ	M-9754						13.50			13.50
			M-9755						14.60			14.60

A. II-14 Drilling meterage of diamond bits

					Dı	illing	metera Unit n		irill i	nole		
ltem	Size	Type	Bit No.	PD-8	PD-9	PD-10	PD-11	PD-12	PD-13	PD-14	PD-15	Total
	NX	NQ-WL	11410							11.50		11.50
			11411		_					14.00		14.00
			11412							18.50		18.50
Bit			11413							18.00		18.00
			11414							20.00		20.00
			11415							15.30		15.30
			48117							15.00		15.00
			48118								8.50	8.50
			48119								15.00	15.00
			N-583								21.00	21.00
			N-584								18.00	18.00
			N-585	1					·		15.00	15.00
			N-586								17.50	17.50
			Total	128.30	65.00	110.10	76.40	103.00	62.00	112.30	95.00	752.10
	BX	BQ-WL	471795	13.00								13.00
			471796	15.00								15.00
			471797	10.00	_							10.00
			471798	9.70	<u> </u>							9.70
			471799	<u> </u>	15.00							15.00
			471800	· · · · · · · · · · · · · · · · · · ·	18.00							18.00
			11422		23.80							23.80
	ļ	ļ	M-1969			11.50						11.50
Bit			M-1970			13.00						13.00
			M-1971			20.00	<u> </u>					20.00
			M-1972			15.00	·}					15.00
			M-1973			20,80						20.80
			M-6559				10.00					10.00
		1	M-6560	-			8.00				·	8.00
			M-6923				18.00					18.00
1	ł		M-6924	+			20.90			1		20.90
			11423		<u> </u>		<u> </u>	13.00	<u> </u>	1		13.00
ł			11424					15.00				15.00
			471790					19.00				19.00
			471791					15.00		<u> </u>		15.00
			471792	<u> </u>	Ļ,			18.00	l			18.00

•

					D	rillin	g mete Unit	rage by meter	y dril:	l hole		
Item	Size	Туре	Bit No.	PD-8	PD-9	PD-10	PD-11	PD-12	PD-13	PD-14	PD-15	Total
			471793						8,00			8,00
			471794						9.00			9.00
			N-588						15,00			15.00
			N-589	[17.50	_		17.50
Bit			N-590							9.50		9.50
			N-591							8.00		8.00
			M-6925							10.00		10.00
			M-6926							11.80		11.80
			M-6927							19.00		19.00
			11425							21.00		21.00
			11426								15.00	15.00
			11427								16.00	16.00
			471811								15.00	15.00
			471812								19.50	19.50
			Total	47.70	56.80	80.30	56.90	80.00	49.50	79.30	65.50	516.00

Size	Туре	Carats per bit	Matrix	Stones per carat	Water way	Number	Remark
	NQ-WL	30	E	1/30	4	481180	Reset
		30	E	1/30	4	481181	11
		30	E	1/30	4	481182	ti
		30	С	1/30	4	481183	11
		30	с	1/30	4	481184	ţ1
		30	E	1/30	4	481185	11
		30	E	1/30	4	481186	17
	-	30	E	1/30	4	481205	н
		30	E	1/30	4	481206	11
		30	С	1/30	4	481207	71
		30	E	1/30	4	481208	17
		30	ZZ	1/30	4	M-6557	11
		30	Z	1/30	4	M-6558	
NX	}	30	ZZ	1/30	4	M-6559	11
		30	Z	1/30	4	M-6560	17
		30	Z	1/30	4	M-6561	17
		30	Z	1/30	4	M-6562	11
		30	ZZ	1/30	4	M-6563	ŧt
		30	ZZ	1/30	4	M-9741	17
		30	Z	1/30	4	M-9742	ti
		30	Z	1/30	4	M-9743	
		30	z	1/30	4	M-9744	11
		30	ZZ	1/30	4	M-9745	11
		30	źz	1/30	4	M-9746	н

A. II-15 Specifications of diamond bits

.

,

Size	Туре	Carats per bit	Matrix	Stones per carat	Water way	Number	Remark
	NQ-WL	30	Z	1/30	4	M-9747	Reset
		30	Z	1/30	4	M-9748	11
		30	Z	1/30	4	M-9749	
		30	Z	1/30	4	M-9750	11
		30	ZZ	1/30	4	M-9751	11
		30	ZZ	1/30	4	M-9752	17
		30	Z	1/30	4	M-9753	11
		30	Z	1/30	4	M-9754	11
	l	30	Z	1/30	4	M-9755	ti
NX		30	т ₁	1/30	4	11410	51
		30	T ₁	1/30	4	11411	11
		30	T ₁	1/30	4	11412	11
		30	т2	1/30	4	11413	11
		30	T ₂	1/30	4	11414	IT
		30	T ₁	1/30	4	11415	1f
		30	С	1/30	4	48118	1†
		30	С	1/30	4	48119	11
		30	ZZ	1/30	4	N-583	"
,		30	Z	1/30	4	N-584	11
ſ		30	Z	1/30	4	N-585	11
		30	Z	1/30	4	N-586	17
BX	BQ-WL	20	E	1/30	4	471795	11
		20	E	1/30	4	471796	11
		20	с	1/30	4	471797	n
		20	с	1/30	4	471798	11
		20	с	1/30	4	471799	

Size	Туре	Carats per bit	Matrix	Stones per carat	Water way	Number	Remark
	BQ-WL	20	E	1/30	4	471800	Reset
		20	T ₂	1/30	4	11422	tı
		20	ZZ	1/30	4	M-1969	11
		20	ZZ	1/30	4	M-1970	11
		20	Z	1/30	4	M-1971	TP
		20	Z	1/30	4	M-1972	11
		20	Z	1/30	4	M-1973	11
		20	Z	1/30	4	M-6559	17
		20	Z.	1/30	4	M-6560	n
		20	Z	1/30	4	M-6923	11
		20	Z	1/30	4	M-6924	11
вХ		20	Tl	1/30	4	11423	11
		20	T ₁	1/30	4	11424	tr
		20	E	1/30	4	471790	11
		20	E	1/30	4	471791	11
		20	С	1/30	4	471792	
		20	С	1/30	4	471793	11
		20	E	1/30	4	471794	11
		20	ZZ	1/30	4	N-588	11
		20	ZZ	1/30	4	N−589	11
		20	Z	1/30	4	N-590	11
		20	Z	1/30	4	N-591	
		20	ZZ	1/30	4	M-6925	11
		20	Z	1/30	4	M-6926	11
		20	,Z	1/30	4	M-6927	11

1

Size	Туре	Carate per bit	Matrix	Stones per carat	Water way	Number	Remark
	BQ-WL	20	T ₁	1/30	4	11425	Reset
		20	T ₁	1/30	4	11426	
вх		20	T ₁	1/30	4	11427	IT
		20	E	1/30	4	471811	13
		20	С	1/30	4	471812	11

Sample No.	Length (m)	Au g/t	Ag g/t	Cu %	РЬ %	Zn %	As %
PD 859	59.1∿ 59.45	6.0	4	0.03	0.01	0.01	0.08
878	77.9∿ 79.3	1.1	4	0.02	0.05	0.07	0.07
890	90.2∿ 90.7	5.3	5	<0.01	0.03	0.09	0.52
8119	119.5∿119.8	<0.1	<1	<0.01	0.02	0.03	0.06
8136	136.0.137.4	0.8	3	0.02	0.01	0.42	0.69
8142	142.3∿142.8	<0.1	13	<0.01	0.01	0.01	0.05
8154	154.6∿155.8	<0.1	<1	0.01	0.01	0.01	0.07
81.55	155.8∿156.4	0.5	2.	0.02	0.07	0.52	0.16
8157	157.1∿158.1	<0.1	29	0.17	0.02	1.20	0.12
8158	158.1∿158.6	<0.1	6	0.10	0.02	0.23	0.07
8166	166.4∿167.4	1.0	13	0.10	0.03	1.60	2.10
8167	167.4∿168.3	<1.0	<1	0.01	0.02	0.12	0.12
8168	168.3∿169.5	1.3	37	0.01	0.03	0.40	5.20
8169	169.5∿170.5	<0.1	13	0.04	0.02	0.04	0.28
8170	170.5∿171.4	0.2	2	0.01	0.02	0.07	0.21
977	77.3∿ 78.0	<0.1	<1	<0.01	0.03	0,26	0.96
978	78.0 79.0	1.9	15	0.02	0.05	1.40	9.70
979	79.00 80.0	0.4	6	0.03	0.03	0.22	1.10
980	80.00 81.0	<0.1	<1	0.01	0.02	0.02	0.09
981	81.00 82.0	<0.1	<1	0.01	0.02	0.03	0.12
982	82.0 83.0	<0.1	<1	<0.01	0.03	0.03	0.20
983	83.00 84.7	0.4	17	0.01	0.04	0.08	0.11
984	84.7∿ 85.3	0.1	3	0.01	0.06	0.32	2.80
10105	105.2∿105.8	5.2	17	0.05	0.11	1.73	2.42
10106	105.80107.4	0.5	8	0.03	0.02	0.04	0.11
10107	107.4∿108.0	4.3	25	0.08	0.09	1.20	1.60
10108	108.0~109.0	0.4	4	0.01	0.03	0.26	0.40
10109	109.00110.0	24.8	42	0.13	0.16	2.09	2.54
10110	110.00111.0	3.4	70	0.22	0.13	4.98	4.26
10111	111.00111.8	1.9	50	0.18	0.06	4.33	2.30
10112	111.80112.8	tr	tr	0.01	0.02	0.17	0.15
10113	112.80113.6	2.1	11	0.04	0.01	1.35	0.64
10114	113.6∿114.8	1.9	19	0.12	0.03	1.49	0.47

A. I-16 Assay results of the drilled core

•

Sample No.	Length (m)	Au g/t	Ag g/t	Cu %	РЬ %	Zn %	As %
PD 10115	114.8∿116.1	15.0	84	0.25	0.13	5.53	12.6
11132	131.8∿132.55	tr	tr	0.01	0.04	0.20	0.66
11133	133.00134.2	tr	tr	0.00	0.02	0.02	0.13
11134	134.2∿135.0	tr	tr	0.00	0.04	0.06	0.12
11135	135.00136.0	tr	tr	0.01	0.02	0.03	0.10
11136	136.0\137.0	tr	tr	0.01	0.03	0.17	0.20
11137	137.0\138.0	tr	tr	0.01	0.02	0.08	0.10
12180	180.0∿180.8	tr	tr	0.02	0.03	0.04	0.11
12181	180.8∿182.2	tr	tr	0.02	0.02	0.07	0.14
12182	182.2∿183.0	tr	tr	0.01	0.00	0.04	0.05
12183	183.0∿184.0	tr	tr	0.01	0.01	0.13	0.05
12184	184.00185.0	tr	tr	0.00	0.01	0.03	0.07
12185	185.0∿186.0	tr	tr	0.07	0.01	0.06	0.08
12186	186.0∿187.0	0.9	10	0.11	0.02	0.07	0.09
12187	187.0∿188.0	tr	tr	0.00	0.00	0.02	0.06
12188	188.0∿188.9	tr	tr	0.02	0.02	0.04	0.10
12191	190.8∿192.0	tr	tr	0.01	0.01	0.01	0.06
12192	192.0∿193.0	tr	tr	0.00	0.01	0.00	0.06
12193	193.00193.6	tr	73	0.00	0.01	0.00	0.06
1376	76.1∿ 76.5	tr	tr	0.53	0.07	0.13	0.17
13765	76.5∿ 77.0	tr	276	2.09	0.03	0.12	0.11
1377	77.00 78.1	tr	tr	0.01	0.03	0.02	0.11
13100	100.6∿101.4	tr	tr	0.01	0.02	0.03	0.10
13101	101.4∿101.8	tr	tr	0.01	0.04	0.07	0.31
14124	123.7∿125.0	tr	9	0.03	0.05	0.45	0.15
14125	125.0∿126.0	tr	tr	0.00	0,06	0.06	0.13
14126	126.0∿127.0	tr	tr	0.00	0.03	0.03	0.12
14127	127.00128.0	tr	6	0.01	0.08	0.20	0.14
14128	128.0~129.0	tr	tr	0.00	0.06	0.06	0.13
14141	141.0∿141.7	tr	tr	0.00	0,02	0.01	0.08
14158	158.3∿159.3	tr	tr	0.01	0.03	0.15	0.10
14159	159.3∿160.0	tr	tr	0.01	0.02	0.02	0.09
14160	160.0∿161.3	4.6	8	0.02	0,04	0.32	0.35
14161	161.3∿162.3	tr	10	0.02	0,04	0.40	0.10

Sam	ple No.	Length (m)	Au g/t	Ag g/t	Cu %	РЬ %	Zn %	As %
PD	14162	162.30163.3	tr	tr	0.01	0.02	0.06	0.07
	14163	163.3∿164.4	2.0	35	0.12	0.13	2.56	2.62
	15110	110.1∿111.2	2.0	54	0.34	0.09	0.33	0.70
	15111	111.2∿112.4	2.5	69	0.40	0.13	0.18	0.70
	15112	112.4~113.4	1.5	16	0.07	0.14	0.24	1.13
	15113	113.4~114.5	tr	15	0.05	0.05	0.26	0.82
	15114	114.5∿115.5	tr	15	0.04	0.02	0.04	0.06
	15115	115.5∿116.0	0.4	39	0.25	0.05	0.11	0.24
	15120	120.8∿121.4	1.6	43	0.24	0.03	0.64	1.73
	15121	121.4∿122.0	0.9	12	0.00	0.03	0.31	5.70
	15147	147.5∿148.5	2.8	9 ·	0.00	0.05	0.13	0.26
1	15148	148.5∿149.3	tr	tr	0.00	0.01	0.01	0.05
	15152	152.1∿153.1	0.9	9	0.01	0.03	0.13	1.13

Sample No.	Location	Macroscopic description	Microscopic observation
PD-811.5	PD-8	granodiorite	Biotite-hornblende granodiorite Hypidiomorphic and granular texture Felsic mineral compositions of the rock are a little quartz (0.2~ 0.4 mm in size) and a large amount of potash feldspar and plagio- clase (Ga. 1.5 mm in size). As mafic minerals, it is observed that majority is green hornblende with subordinate amount of brown hornblende and biotite. Accompanied also are a few amount of zircon, apatite and opaque mineral. Hornblende scheetimes shows glomerophyric texture and is altered to actinolite. It suffered strong epidotization and sericitization with a few chlorite.
PD-898	8-0d	Altered andesite	Hornblende andesíte Strong alteration made it difficult to identify an original rock. Main constituent minerals are hornblende, lath-shaped subhedral plagioclase $(1.0 \times 0.5 \text{ mm} \text{ in size})$, subhedral potash feldspar $(0.2 \times 0.3 \text{ mm} \text{ in size})$ and subhedral quartz with accessory magnetite and leucoxine. Plagioclase shows albite twinning and is partly altered to actinolite and sericite. Hornblende shows sub to euhedral crystal form and grain size varies 1.8 × 1.0 mm to 2.0 × 2.5 mm. Axial color of hornblende is green and a part of it changes into actinolite. The rock suffers from various alteration such as silicification, sericitization, carbonitization, epidotization and minor chloritization.
PD-910.5	PD-9	tuff breccia	Pyroxene-andesitic tuff Fragments are composed mainly of prismatic eu-subhedral plagio- clase ($1.0 \times 0.5 \text{ mm}$) and coarse grained clinopyroxene ($2.0 1.5 \text{ mm}$) which suffers fragmentation. Interstice is composed of devitrified glass and plagioclase.

A. I-I7 Microscopic observation of the thin sections

•

Sample No.	Location	Macroscopic description	Microscopic observation
			Alteration is chloritization and epidotization.
PD-1424	PD-14	Massive basaltic andesite	Pyroxene andesite Porphyrytic texture Coarse-grained (max 3.0 × 3.0 mm) euhedral clinopyroxene and a small amount of plagioclase comprise phenocrysts. Plagioclase remains
			as a pseudomorph and pyroxene suffers uralitization. Groundmass is composed of fine-grained plagioclase and pyroxene and is changed into aggregates of actinolite-tremolite. Very fine-grained crystals of biotite and chlorite are also observed within a groundmass.
PD-1505	PD-15	Tuff breccia	Pyroxene andesite Porphyritic texture and porphyroclastic texture Porphyritic texture and porphyroclastic texture Phenocryst is mainly composed of sub to euhedral medium grained $(2.0 \times 1.8 \text{ mm})$ pyroxene which shows a zonal structure and changes into amphibole along and/or in the crystal. Groundmass is composed mainly of plagioclase with subordinate amount of pyroxene which is changed to amphibole. It suffers epidotization and argillization.
PD-1522	PD-15	Altered tuff breccia	Hornblende andesite Porphyritic texture The rock suffers strong silicification, uralitization, epidotization and argillization. Phenocryst is composed of hornblende and plagioclase ($1.0 \times 0.5 \text{ mm}$ and $0.3 \times 0.1 \text{ mm}$ respectively). Groundmass is composed of minute plagioclase and is suffered from various alterations such as silicification, epidotization and uralitization. Secondary quartz is also observed as a vein-let, coarse-grained crystal and dissemination.
PD-1551	PD-15	Tuff breccia	Hornblende andesite Porphyritic texture and porphyroclastic texture

-

.

Sample No.	Location	Macroscopic description	Microscopic observation
			Phenocryst is composed of euhedral hornblende (1.0 × 0.8 mm) and plagioclase which show a porphyroclastic texture. Groundmass is mainly composed of fine lath-shaped plagioclase and a small amount of quartz. It suffers strong sericitization, chloritization and epidotization. Noted also is a quartz veinlet with tremolite and sericite. As opaque minerals, iron hydro-oxide mineral and leucoxene are observed.
PD-1510	PD-15	Aphanitic basaltic andesite	Hornblende andesite Porphyritic texture Phenocryst is composed of coarse-grained (2.0 ×1.8 mm) green hornblende and plagioclase which shows albite twinning and obscure crystal boundary due to sericitization. Groundmass is composed of minute plagioclase. Epidots, epidote-sericite-quartz veinlets and a small amount of leucoxene are observed.
PD-15146	PD-15	Altered rock	Tuff breccia The rock suffers bitter alteration producing a lot of chlorite, sericite, carbonate and quartz. A lithic fragment $(2.5 \times 1.5 \text{ mm} \text{ in size})$ which is changed into sericite aggregate suggests the tuff breccia origin.
PD-15155	PD-15	Tuff breccia	Andesitic tuff Fragments are lithic material and plagioclase crystals both of which are replaced by fine-grained quartz and chlorite and vein- formed amphibole. Plagioclase shows albite twinning and glomeroporphyritic texture. Interstice is mainly composed of fine lath-shaped plagioclase and spherulite filled with chlorite, chalcedony and zeolite. The rock as a whole suffers silicification, chloritization,
PD8169.6	PD-8	Silicified- argillized rock	Altered rock The rock is composed mainly of quartz, calcite and chlorite with

Microscopic observation	subordinate amount of sericite and sphene.	Altered rock The rock is highly altered and pyritized. Mineral composition is nearly the same as PD 8169.6.						
Macroscopic description		Argillized altered rock						
Location		PD~9	,		 	 _		_
Sample No.		PD979.6						-

sections
polished
ı of the
observation
Microscopic
П-18
Ą.

Microscopic Observation	Mineral assemblage : Chalcopyrite a little Pyrite a little Pyrite rare constant the precedent texture and mineralization is restricted only in the breccia. Chalcopyrite is a very fine grain (a few μ m to several tens μ m) in association with eu-anhedral pyrite.	Mineral assemblage : Arsenopyrite common Sphaleritea few Galena, chalcopyrite, pyritefew Arsenopyrite aggregates in anhedral to euhedral crystal.	Sphalerite containing chalcopyrite dotts replaces a part of arseno- pyrite. Galena is enclosed in an arsenopyrite crystal. Chalcopyrite appears as a dot in sphalerite. Pyrite is euhedral to anhedral crystal in association with arseno- pyrite or gangue mineral. A part of pyrite is changed into marcasite.	Mineral assemblage : Pyrite, sphalerite common Arsenopyrite, chalcopyrite, galena a few Pyrite has two types of occurrence, one is dissemination or aggregates of euhedral to subhedral crystal, the other is fine grained vein type pyrite which surrounds euhedral pyrite crystal. Sphalerite usually contains sphalerite dot and replaces a part of pyrite and arsenopyrite. Arsenopyrite shows euhedral to anhedral crystal and occurs dissemination or coparagenesis with pyrite.	in pyrite and arsenopyrite. All mineral but veintype pyrite and marcasite is shatterd and brecciated.
Macroscopic Description	Chalcopyrite ore	Arsenopyrite- sphalerite ore		Sphalerite ore	
Location	PD-8	6-04		PD-10	
Sample No.	PD 867.3	PD 978.0		PD 10109	

Sample No. PD	Location	Macroscopic Description Subalariter	Microscopic Observation
10110.0		opuaterite chalcopyrite ore	Muneral assemblage : Sphalerite abundant Chalcopyrite, arsenopyrite common Pyrite, galena, Ag bearing pb-Bi minerala few
			Spalerite with chalcopyrite dot is massive replacement of arseno- pyrite. Chalcopyrite fills crack and marginal part of sphalerite and replaces arsenopyrite and pyrite. Arsenopyrite usually takes euhedral crystal. Pyrite has two crystal form as is a case in PD10109 and later pyrite is cutting sphalerite and replacing chalcopyrite. Ag bearing pb-Bi mineral is often associated with chalcopyrite. This sample is also brecciated.
PD 10111	PD-10	Sphalerite ore	Mineral assemblage : Pyrite abundant Sphalerite, arsenopyrite common Galena, chalcopyrite a few Electrum scarce
			Pyrite is euhedral to anhedral crystal form and presents either massive or dissemination in gangue mineral. Arsenopyrite, in most of the cases, shows euhedral crystal presenting massive or dissemination. Sphalerite with chalcopytite dot replaces pyrite and arsenopyrite. Chalcopyrite is, aside from inclusion in sphalerite, fracture filling in and around pyrite and sphalerite. Electrum, 200μ m and 100μ m in size, was found at crystal boundary of arsenopyrite and whithin a gangue mineral.
PD 10111.4	PD-10	Arsenopyrite- sphalerite ore	Mineral assemblage : Pyrite, arsenopyrite, sphalerite common Galena, chalcopyritea few Pyrite shows two type of occurrance, one is massive taking eu- anhedral crystal form and the other is vein-let cutting sphalerite or gangue mineral and surrounding pyrite crystal. The latter used to change marcasite.

Sample No.	Location	Macroscopic Description	Microscopic Observation
			Sphalerite contains chalcopyrite dot and replaces arsenopyrite and pyrite. Galena replaces pyrite and intrudes in sphalerite and arsenopyrite. Chalcopyrite also cuts arsenopyrite and encloses sphalerite.
PD10114	PD-10	Sphalerite ore	Mineral assemblage : Sphalerite, pyrite, arsenopyrite common Chalcopyriteafew Eledctrumscarse
· <u> </u>			Arsenopyrite takes euhedral crystal form and interstices are filled with pyrite. Sphalerite containds lotds of chalcopyrite dot and replaces arsenopyrite or pyrite. Electrum shows various occurrence; paragenesis with grain boundary between arsenopyrite and pyrite, and within arsenopyrite crystal. EPMA discloses electrum contains about 40 percent of silver.
PD 10115.7	PD-10	Arsenopyrite- sphalerite ore	Mineral assemblage : Pyrite, arsenopyrite, sphalerite common Chalcopyriteafew
			Pyrite shows eu-anhedral crystal form and appears either dissemi- nation or massive aggregates. Arsenopyrite is coarse grain and euhedral crystal which is surrounded by pyrite. Sphalerite contains chalcopyrite dot and replaces arsenopyrite.
PD11181	PD-11	Pyrite ore	Mineral assemblage : Pyritea few Chalcopyrite, galena, sphalerite few
***			Pyrite shows eu-anhedral crystal accompanyed by quartz vein in the form of dissemination and veinlet. Sphalerite is divided into two groupes, one contains chalcopyrite dot and the other not. Galena replaces pyrite. Chalcopyrite disseminates in the gangue mineral.
PD 11183	PD-11	Pyrite ore	Mineral assemblage : Pyrite, marcasite common Chalcopyrite, sphalerite a few
			Pyrite is anhedral crystal and appeards inquartz vein.

.

Sample No.	Location	Macroscopic Description	Microscopic Observation
			Marcasite ids fine grained veinlert or aggregate surrounding pyritec crystal or in gangue mineral. Both chalcopyrite and sphalerite containing little dot of chalcopy- rite appeards in the form of dissemination in quartz vein.
PD11187	II-DA	Pyrite ore	Mineral assemblage : Marcasitea few Sphalerite scarce The amount of one mineral is user noon Marcacito chose moint
PD 12181.7	PD-12	Pyrite ore	
			Chalcopyrite is accompanied by quartz vein with its anhedral crystal form. Marcasite is fine grained and cutting quartz and other gangue mineral. Chalcopyrite fills in the periphery of minute crack of pyrite.
PD 12190.9	PD-12	Pyrite ore	Mineral assemblage : Pyrite, marcasitea few Chalcopyrite few
			Pyrite is anhedral crystal and accompanied by quartz vein changing a part of it into marcasite. Both marcasite and chalcopyrite present in the form of dissemina- tion.
PD1376.4	PD-13	Chalcopyrite ore	Mineral assemblage : Chalcopyrite, pyríte, marcasite common Sphalerite, pyrrhotitea few Argentite, pyrargyrite few
		-	Chaldcopyrite id is massive and contains eu-anhedral pyrite. Marcasite replaces apart of chalcopyrite. Sphalerite which contains fine dot of chalcopyrite ocupies periphery of and id is enclosed by chalcopyrite. Pyrrhotite also id is enclosed by chalcopyrite. Argentite and pyragyrite are cutting chalcopyrite.

Microscopic Observation	Mineral assemblage : Chacopyrite abundant Pyrite, marcasite common Sphalerite common Sphalerite a few Pyragyrite appears in massive crystal which contains eu-anhedral pyrite. Pyrite has at least two stages of crystalization, the earlier one is enclosed in chalcopyrite and latter is fine grained pyrite which coexists with marcasite filling the periphery of euhedral pyrite and replacing chalcopyrite. Sphalerite with very fine grained chalcopyrite. Argentite and pyrargyrite cut chalcopyrite.	<pre>Mineral assemblage : Chalcopyrite, pyrite common Sphalerite a few Pyrargyrite, pyrrhotite scarce Chalcopyrite is accompanied by quartz vein. pyrite shows two type of lccurrence, one is enclosed in shalcpyrite crystal and the other is surrounding, fracture-filling and replacing chalcopyrite. Both sphalerite and pyrrhotite are enclosed in chalcopyrite crystal. Pyrrargyrite is cutting foth chalcopyrite and later stage pyrite.</pre>	<pre>Mineral assemblage : Sphalerite, pyrite common Pyrrhotite, galena a few Chalcopyrite, Ag bearing Pyrite shoues two types of occurrence, one is eu-anhedral crystal form and massivi the other is fine grained veinlet. Sphalerite which contains lots of pyrrhotite dot coexists with pyrite. A few grains of pyrrhotite are included in pyrite also. Galena is eithev inclusion of sphalerite or single crystal in gangue mineralv. Ag bearing pb-Bi mineral was found in galena showing exsolution lamellas. A part of pyrite changes into marcaste.</pre>
Macroscopic Description	Chalcopyrite ore	Chalcopyrite ore	Sphalerite ore
Location	PD-13	PD-13	PD-14
Sample No.	PD1376.5	PD 1378	PD14124

.

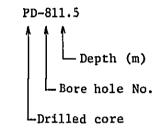
-

Sample No.	Location	Macroscopic Description	Microscopic Observation
PD 14163.6	PD-14	Sphalerite ore	Mineral assemblage : Pyrite, sphalerite common Chalcopyrite, galena a few Pyrargyrite scarce
	-		Pyrite shows eu-anhedral crystal form and is accompanied by quaryz vein. Sphalerite usually contains chalcopyrite . Galena replaces pyrite and occupies the peripheries of sphalerite and pyrite. Chalcopyrite also occurs near pyrite crystal. Pyrargyrite coexists with chalcopyrite.
PD 14164.1	PD-14	Arsenopyrite- sphalerite ore	Mineval assemblage : Pyrite, arsenopyrite, sphalerite common Galenaa few
			Pyrite is massive with eu-anhedral crystal form. Arsenopyrite also shows eu-anhedral crystal andmost of the cases coexists with pyrite. Both pyrite and arsenopyrite are breciated. Sphalerite replaces purite and arsenopyrite. galena is enclosed in pyrite and arsenopyrite crystals.
PD 15115.6	PD-15	Chalcopyrite ore	Mineral assemblage : Chalcopyrite, marcasite \ldots common Pyrite, sphalerite \ldots a few Pyrargyrite \ldots scarce Most of the eu-anhedral pyrite ehanges into mancasite. Chalcopyrite replaces a part of marcasite. Sphalerite with no chalcopyrite dot coexists with chalcopyrite. Pyraghrite, 20-30 μ m in size, appears in chalcopyrite crystal.
PD 15121.4	PD-15	Arsenopyrite ore	Mineral assemblage : Arsenopyriteabundant Pyrite, marcasite common Sphalerite, galenaafew Arsenopyrite with euhedral crystal form appears as dissemenation

.

Sample No.	Location	Macroscopic Description	Microscopic Observation
			or aggregates. Pyrite is the same as arsenopyrite. Marcasite appears; (1) Vein-forming withen gangue mineral and (2) the periphery of pyrite crystal. Sphalerite with chalcopyrite dot disseminates independently in gangue mineral. Galena is enclosed both in pyrite and arsenopyrite.
PD 15121.7	PD-15	Arsenopyrite ore	Mineral assemblage : Arsenopyrite abundant Pyrite, sphalerite, galena a few Arsenopyrite is the same as in PDI5121.4. Pyrite has two type of occurrence, one is euhedral dissemination and the other is vein type. Sphalerite which contains a small amount of chalcopyrite dot shows massive crystalization or isolated inclusion in arsenopyrite.
PD 15129	PD-15	Pyrite ore	<pre>Mineral assemblage : Pyrite</pre>
PD 15148.7	PD-15	Arsenopyrite ore	<pre>Mineral assemblage : Arsenopyrite abundant Sphalerite, Pyrite common Galena, chalcopyrite a few Electrum scarce Arsenopyrite with eu-anhedral crystal appears near pyrite crystal</pre>

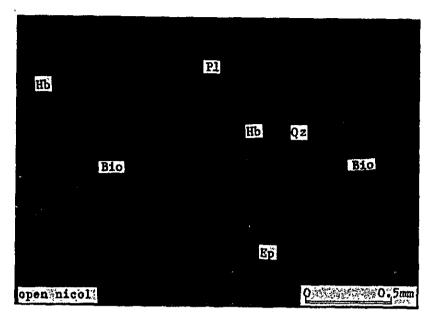
-


Microscopic Observation	or gangue mineral in the form of dissemination and aggregates. Pyrite also exhibits eu-anhedral crystal. Sphalerite replaces arsenopyrite and pyrite. Galena is enclosed in arsenopyrite. Electrum, teo grains with size of 50 μ m and 100 μ m, was found adjacent to arsenopyrite.				
Macroscopic Description		 	 	 	
Location		 	 	 	
Sample No.	· · · · ·	 	 	 	

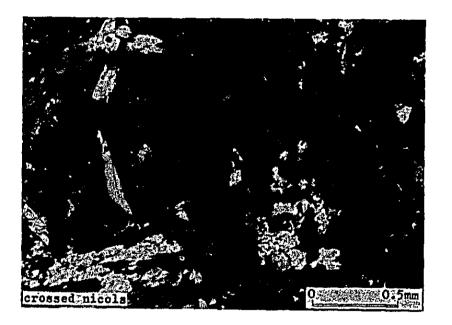
A. I-19 Photomicrographs

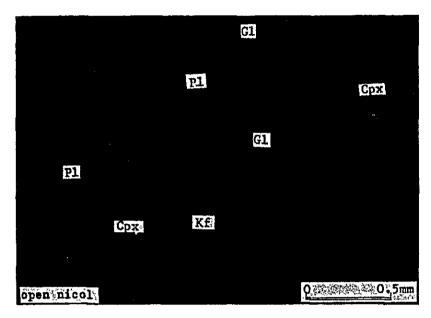
1

A. II-19-1 Thin section


Sample No.	Rock Type
PD-811.5	Biotite-hornblende granodiorite
PD-910.5	Pyroxene andesitic tuff
PD-1088	Hornblende andesite
PD-1282.8	Pyroxene andesitic tuff?
PD-1505	Pyroxene andesite

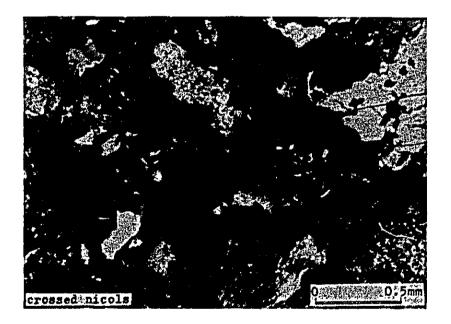
Abbreviations

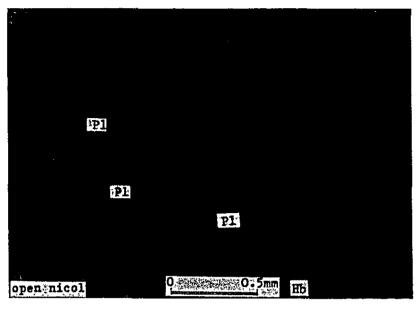

P1	:	Plagioclase
-		-


- Qz : Quartz
- Chl : Chlorite
- Hb : Hornblende
- Cpx : Clinopyroxene
- Ep : Epidote
- Bio : Biotite
- Kf : Potash feldspar
- Gl : Glass
- Clay : Clay

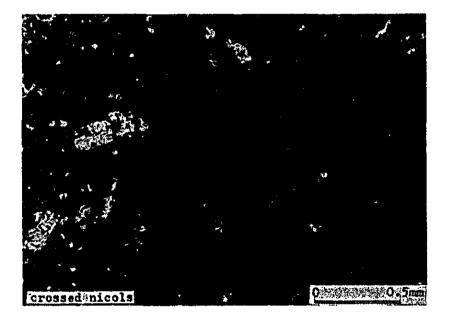
Sample No. PD-811.5

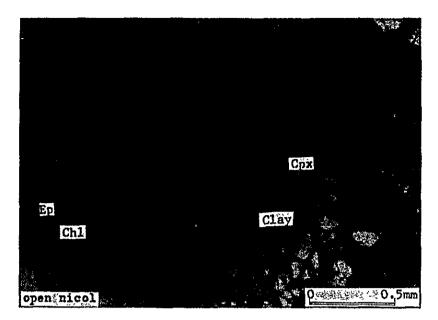
Rock type: Biotite-hornblende granodiorite

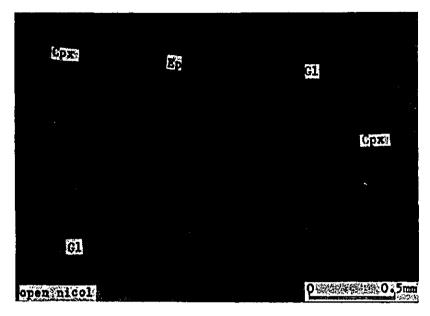




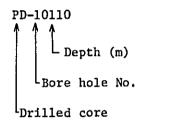
Sample No. PD-910.5


Rock type:

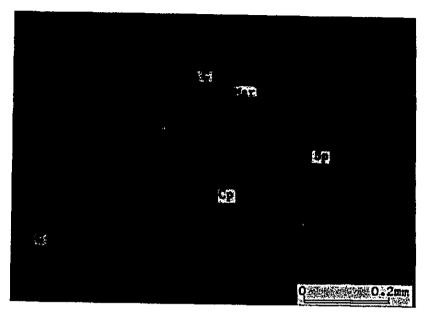

Pyroxene andesitic tuff


Sample No. PD-1088 Rock type: Hornblende andesite

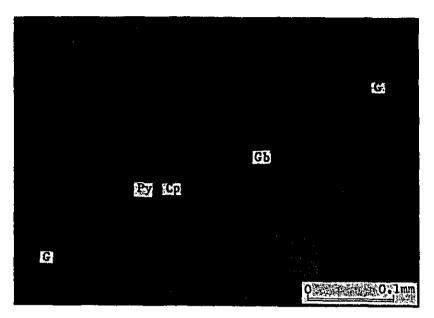
Sample No. PD-1282.8 Rock type: Pyroxene andesitic tuff ?



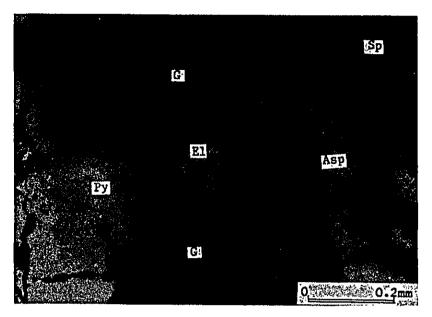
Sample No. PD-1505 Rock type: Pyroxene andesite



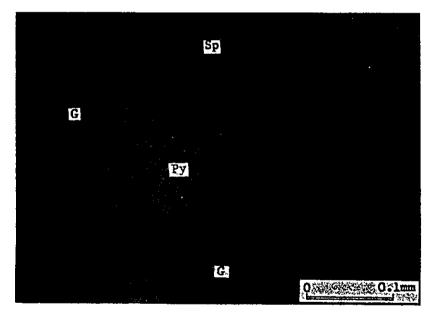
A. I-19-2 Polished section


Abbreviations

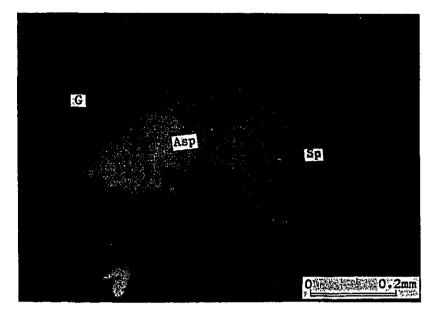
Sp	:	Sphalerite
Gn	:	Galena
Ср	:	Chalcopyrite
GЪ	:	Ag-Pb-Bi mineral
El	:	Electrum
Arg	:	Argentite
Pr	:	Pyrargyrite
Ру	:	Pyrite
Asp	:	Arsenopyrite
Mar	:	Marcasite
G	:	Gangue mineral
Pu	:	Proustite



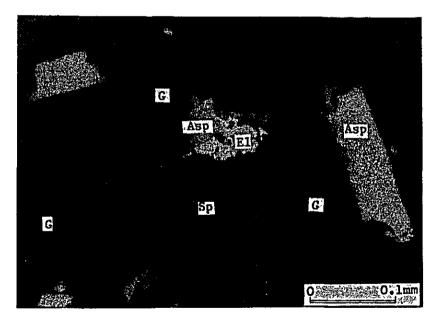
Sample No. PD-10110 Paragenesis of chalcopyrite and sphalerite. Marcasite is the latest mineral cutting both Cp and Sp.


,

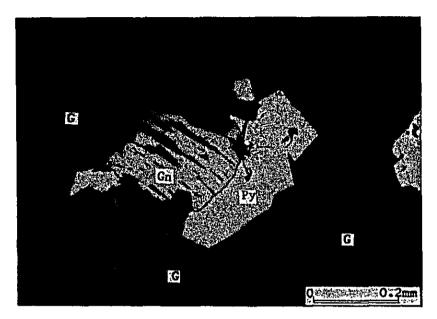
Sample No. PD-10110 Ag-Pb-Bi mineral coexists with chalcopyrite.

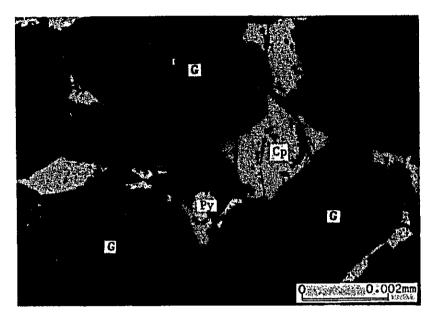


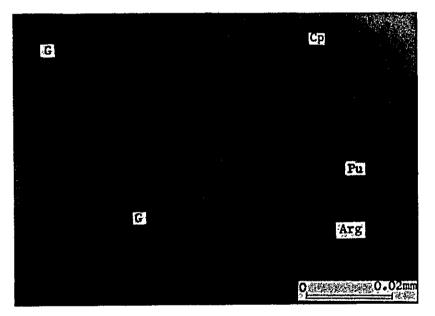
Sample No. PD-10111 Electrum within gangue mineral.



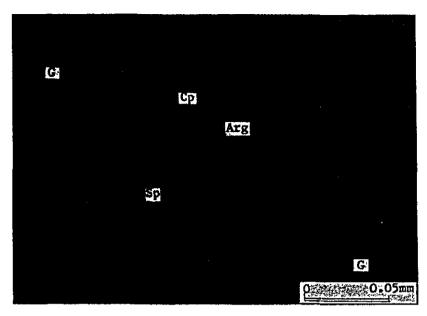
Sample No. PD-10111


Pyrite is replaced by sphalerite with chalcopyrite dot.

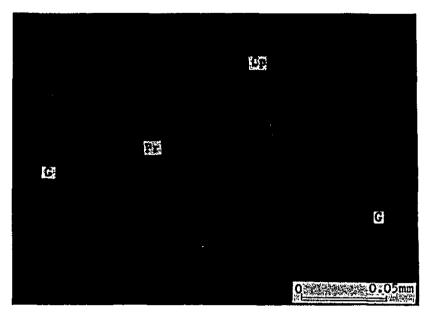

Sample No. PD-10111.4 Arsenopyrite is replaced by sphalerite.


Sample No. PD-10114 Electrum coexists with arsenopyrite.

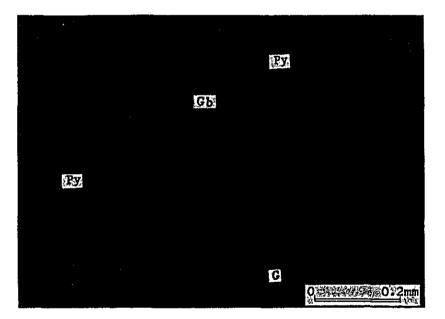
Sample No. PD-11181 Galena with triangular pit replaces pyrite.



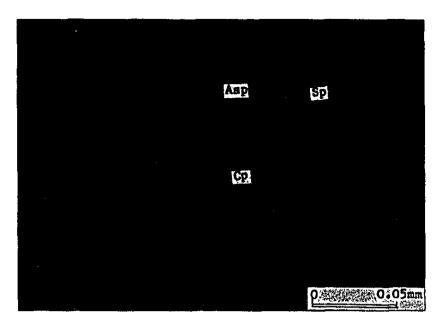
Sample No. PD-1376.4 Paragenesis of chalcopyrite -pyrite-pyrargyrite-argentite.



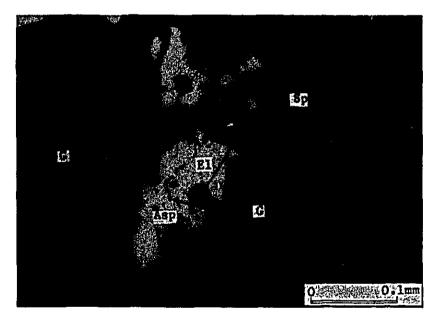
Sample No. PD-1376.4


Enlarged above.

Sample No. PD-1376.5 Argentite is cutting both sphalerite and chalcopyrite.

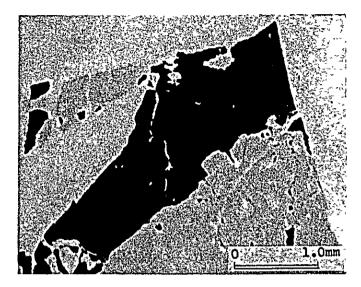


Sample No. PD-1378 Pyrargyrite vein cuts chalcopyrite.



Sample No. PD-14124

Ag-Pb-Bi mineral within pyrite.


Sample No. PD-15121.7 Arsenopyrite-sphaleritechalcopyrite in crystallization order.

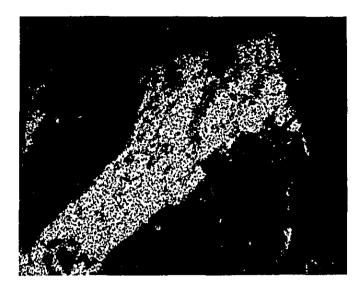
Sample No. PD-15148.7

Electrum with arsenopyrite.

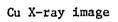
A. I-19-3 EPMA

Absorbed electron image

Ag-Pb-Bi mineral (Cosalite-galenobithmuthinite -gustarite series)

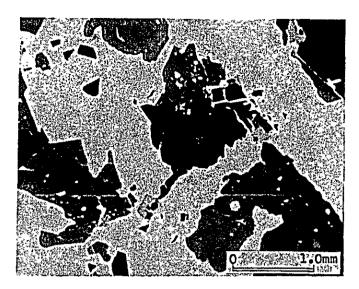


Ag X-ray image

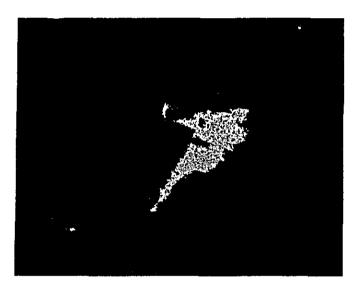

Pb X-ray image

Sample No.	: PD-10110
Locality	: Diamante
Accel. volt	: 15 kV
Absorb. elect.	: 0.1 µA

Bi X-ray image



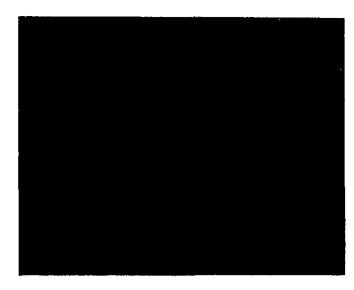
Fe X-ray image



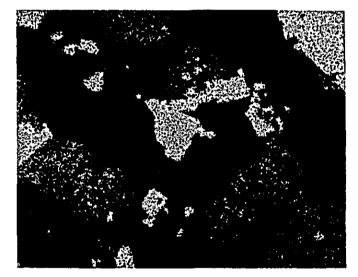
S X-ray image

Absorbed electron image

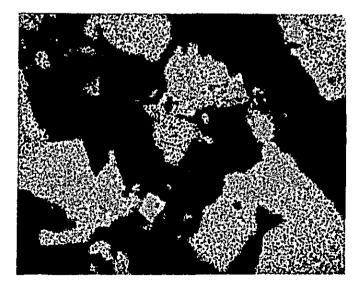
Electrum (black in the photo) in association with arsenopyrite.

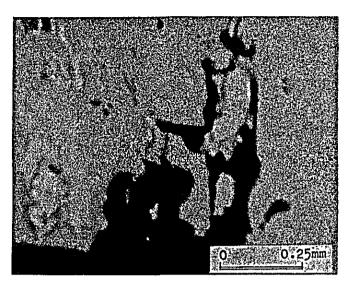


Au X-ray image

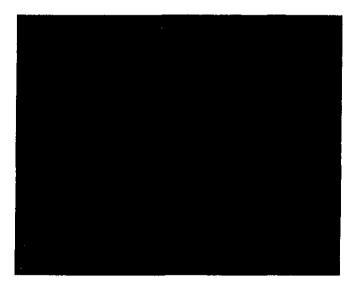


Ag X-ray image

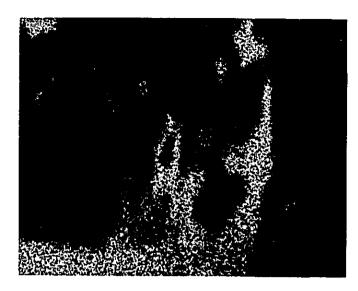

Sample No.	:	PD-10114	
Locality		Diamante	
Accel. volt.	:	15 kV	
Absorb. elect.	:	0.1 µA	


As X-ray image

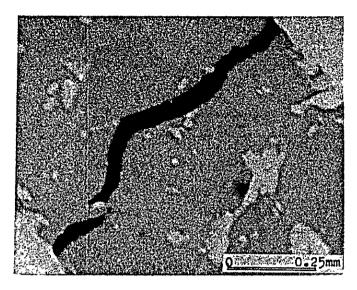
Fe X-ray image


S X-ray image

Absorbed electron image

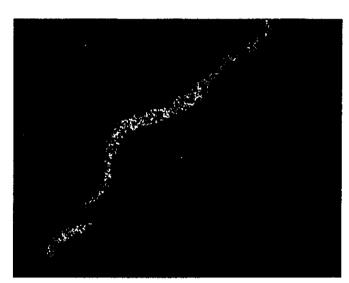


Ag X-ray image

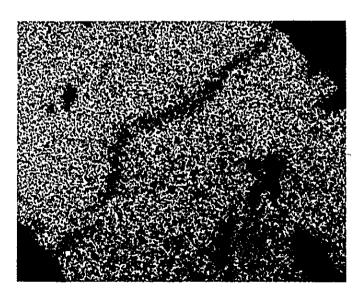


As X-ray image

Sample No.	:	PD-1376.4
Locality	:	Diamante
Accel. volt.	:	15 kV
Absorb. elect.	:	0.1 µA



S X-ray image



Absorbed electron image

Veinlet of argentite cutting both sphalerite and chalcopyrite.

Ag X-ray image

S X-ray image

Sample No.	: PD-1376.5		
Locality	: Diamante	Diamante	
Accel. volt.	: 25 kV		
Absorb. elect.	: 0.2 µA		