_ h		AREA	LINE	ROCK	žN	AS	HU	AREA	LINE	AOCK	ZM	AS
нъ	85	GT	U33	Ç4	106	300.0	HS 180	PA	007	CG	14	1.0
H5	86	GŦ	033	GA	32	20.0	HS 189	PA	007	CG	56	2.6
H 7	87	Ğİ	033	GA.	54	6.0	HS 190	PA	100	ČĞ	18	2.0
H5	88	6Ť	033	ĞH	40	20.0	H5 191	PA	D07	čč	26	2.0
н5	99	GT	D33	1	46	6.0	H\$ 192	PA	DO 7	ĊG	17	2.0
H2	90	GT	033	LA	39	10.0	H5 193	PA	007	CG	42	3.0
45	91	ψĬ	033	(A	33	12.0	H5 194	PA	DO 7	CĢ	79	با. ع
#5	45	GT	033	GR	47	50.0	HS 195	PA	D01	ce	22	6.0
HS HS	93	LT GT	033 033	GR GR	41 46	11.0 13.0	НЗ 196 НЗ 197	PA PA	007 007	CG CG	16 12	1.0
145	95	ĞŤ	D3 3	GR	57	9.0	HS 198	PA	D0 7	CG	19	1.0
HS	96	Ğİ	D3.3	GH	25	7.0	H5 199	PA	D07	55	ží	2.6
нЪ	97	6 T	دوں	L/4	33	6.0	_					
+15	90	61	UJ 3	-	53	5.0	f					
42	99	6	u33	ų ų	50	10.0	104 0	GŤ	909	CG	50	5.0
нS	100	61	62.1 F E G	e e l	15	15.0	508 0	ĞŤ	200	čě	70	4.0
42	101	61 61	n33	to-d Gen	34 27	45.0 U.¢	0 603	ĞŤ	908	ÇG	57	1.0
45	103	Ğİ	J33	64	36	¢1.0	U 604	GT	408	CG	33	1.0
HS	104	GT	031	Ğ	21	11.0	0 805	61	90 5	ÇG	24	3.0
H5	105	GT	D31	CR	31	25.0	0 806	GŤ	403	ČĢ	31 35	3.0 1.0
#5	104	GŤ	D3 1	ÇB.	16	7.0	0 807 U 808	GT GT	60 a	CG CG	26	1.0
H5	107	GT	D3 1	هي	36	15.0	9 809	61	908	čč	40	1.0
H\$	108	6T 6T	D31 D31	GR GR	59	100.0 12.0	9 810	ĞŤ	908	ČĞ	36	2.0
HS	109 110	GT	D3 1	<u> </u>	46	2.0	9 811	GT	905	ÇG	28	4.0
H2	111	GT.	031	Ģ	75	15.0	Q 812	GT	408	ČG	35	4.0
HS	iii	61	D3 I	Ĝ	70	11.0	9 813	GT	908	ce	57	3.0
нъ	114	GT	D31	GA	78	20.0	0 814	ĢŢ	60#	Ce Cr	28 35	2.0 3.0
нь	115	GT	031	GA	68	6-0	u 815 u 816	GT GT	8 09 8 09	ÇG	35 51	4.0
H\$	116	GT GT	031	GA CO	88	7.0	9 817	GŤ	DOS	č	žŝ	5.0
H5 H5	117	GT GT	031 031	GA GA	81 45	21.0	0 618	67	908	čš	46	13.0
115	118	GT	D3 1	GA GA	63	24.0	U 901	GT	404	ÇG	36	2.0
нS	120	GT	031	GH	73	6.0	y 902	G1	409	ÇĞ	49	0.1
H5	121	GT	033	(A	43	13.0	U 903	GT GT	UQ 9 UD 4	CG CG	42 48	7.0 7.0
H\$	122	GT	033	<u> </u>	37	10.0	905	ωĭ	609	ČĞ	64	15.0
H5	123	GT GT	D3 3 D3 3	ija Ga	58 29	7.0 5.0	y 906	61	904	ČĞ	64	24.0
145	152	61	D33	G4	36	7.0	0 907	υī	009	CG	65	20.0
HS	126	ĞŤ	033	GH	50	7.0	0 905	ωŢ	904	CG	55	47.0
HS	127	GT	D3.3	GA	32	6.0	0 909	64	90 9	ÇĢ	62	15.D 12.D
нЪ	123	61	933	Бн	24	6 - D	010 U	GT GT	404	CG CG	44 57	20.0
нъ	150	GT	033 033	(A)	30 24	5.0 7.0	0 912	61	604	ČĞ	77	50.0
H2	130 131	uT GT	033	Ģ.	36	12.0	0 913	61	404	Cu	38	10.0
нь	132	61	033	GR	53	b.0	U 914	G1	404	CC	40	7.0
нъ	133	GT	U33	GH	27	7.0	Q 915	u I	009	CG	46	12.0 42.0
м5	234	GT	033	(pri	29	11.0	Q 716 U 717	61 61	40 Y	26 23	24 32	3.0
HS	135	ĢŢ	03.3	GH	20	>.0	4 916	ĞĪ	404	ČG	22	5.0
H\$	136 137	61 61	033 D33	يىن يىل	25 36	5.0	4 1101	ĞĪ	33N	SH	92	120.G
HS	138	<u>.,</u>	033	Ç.	51	25.0	u 1102	GŦ	IIN	SH	64	16.0
HS	139	ĞŤ	D3 3	آفي	62	120.0	u 1103	υľ	11N	ÇG	D1	16.0
HS	140	ωT	033	GH	54	76.0	u 1104	GT	11N	CG Sh	117 80	20.0 18.0
нŞ	141	υT	F09	Cu	58	3.0	0 1105 0 1106	GT GT	11N 11N	3H	83	43.6
H5	142	GT GT	FOY FOY	CG CG	31 25	4.0 5.0	4 1107	ĞŤ	11N	541	63	19.0
HS.	144	GT	F09	Ce Ce	27	3.0	u 1108	6.1	110	5H	54	200.0
HS	145	ĞŤ	F0 9	ČĠ	14	5.0	0 1109	GŢ	11N	Sн	34	15.0
H5	146	GT	FO9	CG-	23	3.0	u 1116	ωŢ	11N	SH	92	40.C
н5	147	61	F09	Cio	25	5.0	w 1111	اں 10	11n 11n	54 5H	215 142	40.0
H5	148	GŤ	FOY FOY	ÇĞ	25	5.0	u 1112	GT.	110	24	H4	120.0
145	144 150	GT GT	FOV	ti. Ci	24 23	45.0 49.0	3 1114	υŤ	110	54	69	8.4
н5 н5	151	į. Įū	FUY	Eb	44	12.0	U 1115	GT	114	5H	152	64.0
HS	152	PA	006	ũ	64	1.0	U 1116	GT	11N	211	920	19.0
H7	153	PA	DOL	Cu	23	3.0	0 1202	61	615	Č.	41 39	5.0
н5	154	Pa	100	Çu	14	۶۰۵	9 1203 U 1204	67 67	012 V12	CG CG	39 48	4.0
15	1>>	PA	DO 6	CG CG	13 14	1.6 1.0	0 1205	GT	012	če	38	5.0
H5 H5	15 b 15 7	PA PA	006	CG	46	1.6	0 1206	GT	912	CG.	37	2.0
HS	158	PÄ	004	ĆG	32	6.0	0 1207	GT	612	CG	49	7.0
H5	159	PA	006	ÇG	35	5.0	0 1206	61	615	ÇĞ	47	9.0
HS	160	PA	004	Ce	32	4.0	Q 1209 Q 1210	GT GT	912 912	CG CG	28 44	9.0 6.0
	161	PA	D0 6 D0 6	CG	23 30	2.0 7.0	0 1210 0 1211	GT	615	CG	36	6.0
	162 163	PA Pa	DO 4	ઇઇઇઇઇ	14	9.0	0 1301	ĞŤ	913	GR	43	28.0
	164	PA	006	22	36	6.0	Q 1302	67	Q13	GA	63	5.0
	165	PA	D0 6	CG	26	5.0	Q 1303	ĢT	673	GH	65	6.0
HS	166	PA	006	ÇĢ	30	4.0	9 1304	GT	913	Ç4	81 77	18.0 12.0
	167	PA	D0 6	çç	26 38	1.0 5.0	U 1305 U 1306	GT GT	413 413	Gri Lit	67	4.0
H\$	168	PA PA	D0 6 D0 6	CG	33	6.0	u 1307	ŭŤ.	613	Gil	56	2.0
	169 170	PA	006	CG	13	1.0	U 1308	GT	813	e He	38	5.0
	171	PA	006	22	21	2.0	4 1309	GŤ	413	Ģų	43	5.0
HS	172	PA	006	ĊG	15	3.0	0 1310	ωT	413	GR	47	6.0
н\$	173	PA	D0 6	CG	36	1.0	6 1311	GT GT	013	GR CH	42 35	5.0 5.0
	174	PA	400	CG	35 27	2.0	Q 1313	6 T 6 T	⊌13 ⊌13	GH GH	39	4.6
	175 176	PA Pa	D0 6	CG CG	27 24	1.0 5.0	0 1314	ĞŤ	-13.5 -13.5	(AK	41	3.0
H2	177	PA	006	Č.	10	5.0	u 1315	ĞŤ	613	L ^M	47	6.0
	176	PA	DOS	t G	34	1.0	U 1316	GT	613	GR.	65	6.0
нЪ	179	PA	D0 6	ÇG	21	4.0	0 1317	GT	013	Ç4	54	18-0
HS	180	PA	004	CG	32	2.0	0 1318	GT	913	CH	40	\$0.0
H\$	181	PA PA	800	¢s rc	31 32	1.0 1.0	I					
	182 183	PA	006 400	CG CG	9 E	1.0	I					
	184	PA	007	ÇG	90	3.0	I					
H5	185	PA	007	CL	32	5.0	I					
н5	106	PA	D0 7	<u>Cla</u>	18	1.0	I					
Н2	107	PA	00 7	CE	56	5.0	ľ					

	NO	AREA	LINE	RDCK	ŽN	45
D	3801	DA	038	GR	44	16.0
Đ	3802	DA.	03 8	GR	45	20.0
٥	3 60 3	DA	D38	GR	43	14.0
ø	3804	DA	D38	GA	20	13.0
D	3805	DA	03.8	GR	37	5.0
O	3806	DA	038	Ç.R	28	5.0
D	3807	ŌA.	D38	GR	36	.D
D	3808	DA	D36	GR	21	12.0
ō	3809	DA	038	ĞR	27	10.0
ō	3810	DA	036	GR	26	4.0
ō	3811	DA	036	GR	32	18.0
ō	3612	DA	036	GA	49	15.0
ŏ	3613	DA	038	ĜÃ	56	23.0
ŏ	3814	DA	038	ĞÄ	57	32.0
Ď	3815	DA	038	GR	53	5.0
	3616	DA	038	ÇR.	71	13.0
D						
0	3817	DA	D3 6	G4	61	3.0
D	3901	OA.	039	GR	92	8.0
D	3902	DΑ	039	GH	44	7.0
Đ	3403	DA	039	يعوا	45	0.0
D	3904	DA	039	Grit	32	6.0
٥	3 40 5	DA	039	GR	30	4.0
Ð	3904	DA	U3 9	GA	33	6.0
D	3 40 7	DA	D3 4	GR	32	5.0
۵	3 90 a	DA	039	GH	53	20.0
D	3909	DA	039	GR	32	3.0
D	4001	DA	D40	GAL	38	17.0
Ď	4 002	DA	040	jui .	10	21.0
Ď	4003	DA	040	ĞĀ	45	19.0
ō	4005	DA	D40	GR	28	24.0
ō	4006	DA .	D+0	Ğ	47	15.0
Ď	4007	DA	0+0	GR.	160	6.0
0	4008		D4 C	GH	65	8.0
		DA				
D	4009	DA	D4 0	GR	34	20.0
_						
F	801	GT	FOR	CG	54	18.0
F	802	GT	FOB	CG	37	5.0
F	603	GT	FOS	CG	36	\$.0

A. I - 2 Chemical Analysis of Ore Samples

Sample	Locality	Description	Au	Ag	Cu	Pb	Zn	As
No.			g/t	g/t	%	%	%	%
MAM 1	Mina Marina	arsenopyrite QV (40 cm)	2.6	21	0.05	0.18	0.04	2.32
MAM 2	11	arsenopyrite QV (30 cm)	2.3	15	0.11	0.09	0.15	2.12
мам з	H	arsenopyrite QV (20 cm)	8.2	39	0.08	1.07	0.18	2.67
MTM 1	Mina Marina	clayey QV (80 cm)	Tr	Tr	0.03	0.06	0.09	0.41
MTM 2	11	clayey QV (50 cm)	10.8	47	0.08	0.23	0.59	2.76
мтм 3	11	clayey QV (65 cm)	Tr	Tr	0.03	0.03	0.04	0.39
GITA 1	Gitana	pyrite QV (15 cm)	9.4	53	0.17	0.07	0.07	0.76
GIT E	U	clayey QV (60 cm)	2.0	34	0.07	0.05	0.17	2.07
GIT B	11	clayey OV (60 cm)	2.1	13	0.09	0.04	0.05	1.99
MMM 1	Mina Marina	pyrite-arsenopyrite QV (20 cm)	7.2	40	0.12	0.21	0.90	6.24
MMM 2	11	arsenopyrite QV (20 cm)	11.4	112	0.21	0.56	1.10	6.13
YELA 1	Gitana-NW	arsenopyrite QV	0.6	36	0.11	0.04	0.06	5.50
GIT C	Gitana	pyrite-arsenopyrite QV (15 cm)	11.8	114	0.98	0.07	0.14	14.5
Q1116	Gitana-NW	clayey QV	Tr	Tr	0.01	0.00	0.00	0.05
Q11S36	11	clayey QV	Tr	Tr	0.03	0.02	0.01	0.13
нса 1	Paraiso San Antonio		Tr	Tr	0.00	0.01	0.00	0.04
HCA 2	11	purplish clay (")	8.6	8	0.10	0.04	0.05	1.25
нса з	11	white clay (")	Tr	Tr	0.00	0.00	0.01	0.01
HCA 17	Desquite Q-6	silicified shale (")	Tr	Tr	0.01	0.00	0.00	0.02
N 3	Paraiso San Luis	clayey QV (50 cm)	Tr	Tr	0.01	0.02	0.01	0.02
ท 9	Mina Desquite	clayey QV (10 cm)	5.1	9	0.00	0.05	0.06	0.03
ท 10	11	" (15 cm)	Tr	Tr	0.00	0.02	0.03	0.02
N 11	11	" (15 cm)	Tr	Tr	0.00	0.03	0.05	0.02
N 20	1r	QV (5 cm)	Tr	Tr	0.06	0.01	0.01	9.11
N 21	Delicia Q-3	clayey QV (32 cm)	Tr	Tr	0.01	0.01	0.03	0.06

					,					
N 23	Delicia Q-3	clayey QV	(35	cm)	Tr	Tr	0.01	0.01	0.03	0.29
N 26	11	clayey V	(55	cm)	7.3	7	0.01	0.01	0.01	0.07
N 27	11	clayey V	(200	cm)	Tr	Tr	0.00	0.00	0.00	0.02
N 32	11	py – QV	(5	cm)	1.8	6	0.00	0.04	0.01	0.69
ท 35	Delicia Jaroe	clay VN	(120	cm)	Tr	Tr	0.04	0.01	0.01	0.16
N 39	11	clay - QV	(5	cm)	Tr	Tr	0.00	0.00	0.00	0.06
N 51	Paraiso San Luis	clayey QV	(5	cm)	Tr	Tr	0.04	0.12	0.05	0.33
N 54	11	clayey V	(80	cm)	Tr	Tr	0.03	0.14	0.03	0.32
ท 56	11	clayey V	(100	cm)	Tr	Tr	0.00	0.04	0.03	0.12
N 64	Paraiso Ruidosa	clayey V	(80	cm)	6.7	149	0.13	0.35	0.15	0.56
N 73	Paraiso Lulo	clayey QV	(10	cm)	Tr	Tr	0.00	0.00	0.00	0.01
s 9	Desquite	py - QV	(15	cm)	Tr	Tr	0.00	0.00	0.00	0.04
S 16	Delicia	clayey V	(20	cm)	Tr	Tr	0.00	0.01	0.00	0.11
s 32	Bombona-NW	py-Ars QV	(15	cm)	5.7	27	0.01	0.16	0.01	2.33
S 39	I1	py-cp QV	(35	cm)	43.6	1144	0.28	0.44	0.06	3.09
S 44	91	clayey QV	(15	cm)	Tr	Tr	0.00	0.05	0.03	0.23
S 49	11	clayey QV	(80	cm)	0.7	7	0.00	0.01	0.00	0.27
RM 2	Paraiso Q-2	clayey QV	(10	cm)	Tr	Tr	0.00	0.00	0.10	0.01
RM 5	tt	old tu	nel		Tr	Tr	0.01	0.05	0.04	0.04
RM 8	Delicia Q-3	gos: (rolling		•)	Tr	Tr	0.00	0.00	0.00	0.08
RM 8A	t t	clayey QV			Tr	Tr	0.00	0.00	0.00	0.03
RM 8B	11	clayey QV	(32	cm)	Tr	Tr	0.00	0.00	0.00	0.04
RM 9	tr .	clayey QV	(15	cm)	Tr	Tr	0.02	0.01	0.01	0.17
RM 10	tt .	clayey V	(55	cm)	2.6	3	0.01	0.01	0.01	0.05
RM 11	II	clayey QV	(80	cm)	3.0	18	0.00	0.00	0.00	0.02

A. I-3 Chemical Analysis of Altered Rock Samples

Sample			Ass	say	(%)	
No.	Locality	As	Sb	Ca	Si	S
CAN 58	Paraiso	5.13	0.02	0.04	31.38	0.91
59	tt.	0.09	0.01	0.02	26.30	0.01
60	tr	0.20	0.03	0.25	23.86	0.03
61	11	0.17	0.03	0.46	24.61	0.03
62	н	0.06	0.02	2.17	25.52	0.02
CAS 32	Bombona-NW	2.26	0.03	0.03	32,67	1.90
33	"	0.03	0.003	0.09	31.69	0.005
34	tt.	0.14	0.01	0.10	26.28	0.01
35	п	0.08	0.02	1.41	25.91	0.02
36	"	0.08	0.005	0.12	31.82	0.004
37	11	0.08	0.005	0.13	31.94	0.005
38	11	0.06	0.02	1.90	27.67	0.01
CAGITAX 01	Mina Gitana	0.19	0.03	0.18	16.71	0.02
-ditto- 02	n	0.10	0.01	0.15	22.27	0.01
" 03	11	0.08	0.01	0.08	18.81	0.01
" 04	11	0.10	0.01	0.11	23.92	0.005
" 05	h	0.24	0.04	2.66	18.58	0.03
" 06	n	0.05	0.03	0.16	21.10	0.01
" 07	11	0.07	0.02	0.16	15.40	0.01
" 08	11	0.09	0.02	0.16	19.56	0.01
" 09	11	0.06	0.02	0.10	17.52	0.01
" 10	Ω	0.03	0.02	0.22	33.51	0.01
" 11	H	0.02	0.01	0.19	20.57	0.005
CAGITBX 01	11	0.36	0.03	0.26	20.15	0.02
-ditto- 02	11	0.08	0.01	0.10	25.67	0.003
" 03	п	0.19	0.03	0.28	13.89	0.01
" 04	11	0.15	0.04	0.40	18.36	0.02
" 05	n	0.06	0.03	0.32	12.15	0.01
" 06	tt	0.21	0.04	1.72	11.76	0.02
CAMMXII 1	Mina Marina	0.12	0.03	0.40	16.25	0.01
-ditto- 2	11	0.07	0.02	0.29	17.81	0.01
" 3	11	1.19	0.03	0.06	16.6]	0.05
" 4	IT	0.39	0.04	0.57	13.37	0.02

A. I -4 Microscopic Observation of the Thin Sections

Microscopic observation	Biotite-Hornblende Granodiorite The rock has a coarse-grained hypidiomorphic and granular texture and consists mainly of unhedral to subhedral quartz up to 4.5 ' 4 mm in size subhedral to euhedral plagioclase up to 4 × 3 mm, unhedral to subhedral potash feldspar up to 3 × 2 mm, subhedral to euhedral brown biotite up to 2.5 ' 2.5 mm and subhedral green hornblende up to 3.5 × 2 mm. Plagioclase, the major of felsic constituents, is commonly twinned after albite law and zoned from andesine core to oligoclase margin. Accessory apatite, zircon and magnetite are present. Plagioclase is partly replaced by sericite, carbonates, epidote and albite. Mafic minerals are weakly altered to chlorite and epidote.	Calcite-Diopside-Quartz Hornfels The rock shows a fine-grained and granoblastic texture and is mainly composed of mosaic quartz up to 0.1 mm sporadically filled with small amounts by diopside, calcite and opaque minerals. Quartz grains usually include minute and rounded salic minerals, one of which is plagioclase. A few veinlets of epidote-calcite-quartz-opaque mineral cut the rock. Leucoxene, sphene, apatite and zircon are present in a trace amount. There is a carbonaceous vug filled with carbonates, epidote, diopside and wollastonite, several diopside veinlets cut the rock. The original rock seems to be a siliceous sediment and somewhat calcareous.	Biotite Hornfels The rock is pelitic hornfels, and phenoblastic pyrite, fragmental relic plagioclase and quartz up to 0.2 mm in size are scattered in a fine-grained and granoblastic matrix of quartz, brown biotite and plagioclase, up to 0.05 mm in size, with a little muscovite and microcline. Biotite veinlets and sericite-quartz veinlets are cut the rock.
W	Biotite The roc consist subhedr potash 2.5 ' 2 Plagioc albite Accesso Plagioc albite. Mafic m	Calcite The roc compose amounts Quartz which i A few v Leucoxe There i wollast	Biotite The rocl plagioc grained up to 0 Biotite
Macroscopic description	granodiorite	Cherty rock	Silicified shale
Location	Delicia Q.3-S	Gitana-NW road to Paraiso	Gitana-NW Q.11-N
Sample No.	HCA7	N43	Q1129

Sample No.	Location Gitana-NW	Macroscopic description Siliceous	Microscopic observation Biotite-bearing Muscovite Hornfels
	Q. 12	shale	The rock is mainly composed of fine-grained and recrystalized quartz and muscovite up to 0.2 mm in size. Small to trace amounts of opaque minerals, leucoxene, biotite, plagioclase and primary zircon are acompanied. A crystal of chloritoid with 0.4 mm long is present. Texture of the rock is granoblastic although muscovite flakes are weakly orientated probably along sedimentary planes of the original rock.
Q1327	Gitana-NW Q.13	gabbroic rock	Metamorphosed Andesitic Tuff Breccia The rock remains clearly an original clastic texture. Fragmental crystals of pseudomorphic to relic plagioclase, hornblende and fine-grained matrix. Plagioclase fragments and phenocrysts are replaced mainly by biotite with a little biotite. The matrix consists mainly of acicular actinolite, flaky biotite, short prismatic plagioclase and opaque minerals. Biotite aggregates fills abundant amygdaloidal cavities of an andesitic fragment.
HCA12	Desquite Q, 6	granodiorite	Biotite Granodiorite The rock shows a hypidiomorphic and granular texture and consists mainly of unhedral to subhedral quartz up to 3.5 x 3 mm in size, subhedral to euhedral to lass upto 2.6 x 2.2 mm, subhedral to unhedral patash feldsper up to 2.0 x 1.8 mm and subhedral to euhedral brown biotite up to 1.8 x 1.8 mm. Accessory apatite, zircon and magnetite are present. Plagioclase is commonly zoned and twinned after albite law with occasional pericline twinning. Potash feldspar is mostly of orthoclase and a few crystals twins after carlsbad law. Biotite is slightly chloritised and a few grains of epidote replace plagioclase.

sample No.	Location	Macroscopic description	Microscopic observation
HCA12A	Desquite Q. 6	Autolith in granitic rock	Diopside-Hornblende Hernfels The rock is fairly sharpely divided into the diopside zone and hornblende zone.
			The diopside zone consists mainly of phenoblastic diopside, orthoclase, quartz, opaque mineral and residual subhedral plagioclase enclosed in a fine-grained granoblastic plagioclase mosaic, up to 0.05 mm in size, with diopside, opaque mineral and numerous micron-ordered sphene.
			Small amounts of coarser sphene, leucoxene, rutile, zircon and apatite are present. Diopside phenoblasts contains minute rounded grains of probable
			ino
			inere are lenticular bands of coarser quartz mosaic up to 1.5 mm in size and with diopside, opaque mineral and orthoclase. The hornblende zone is mainly composed of phenoblastic green hornblende,
			orthoclase, quartz, opaque mineral a little brown biotite and relic plagioclase enclosed by a fine-grained plagioclase mosaic with bornblende,
			opaque mineral, leucoxene, minute sphene, rutile, apatite and zircon. Hornblende, too, contains minute and rounded inclusions of plagioclase.
			Orthoclase and quartz phenoblasts are usually unhedral and often includes other minerals poikilitically, suggesting the product of later stage. There present diopside veinlets cutting the rock.
HCA12B		1	Hornblende-Biotite Granodiorite
	Q, 6	grandatorire	The rock shows a hypidiomorphic and granular texture and consists mainly of unhedral quartz up to 3 x 1.5 mm in size, subhedral to euhedral plagioclase up to 3 x 1 mm, subhedral green hornblende up to 5 x 2 mm
			Accessory magnetite, apatite, zircon and sphene are present in small to trace amounts.
			A little chlorite and epidote occur replacing mafic minerals and plagioclase.

Microscopic observation	Hornblende Granodiorite The rock shows a hypidiomorphic and granular texture and consists mainly of plagioclase, quartz, potash feldspar and green hornblende. Plagioclase is most abundant among felsic minerals. Accessory muscovite, magnetite, apatite, zircon and sphene occur in small to trace amounts. The grain size is less than I man except for some crystals of plagioclase which come up to 3 × I man. Plagioclase is subhedral to euhedral in form, and shows commonly zonal structure and twinning albite with occasional Pericline type. Quartz and potash feldspar are generally unhedral in form, filling among plagioclase and mafic crystals. Hornblende is often replaced by actinolite, biotite and quartz,	Diopside-Hornblende Hornfels The rock consists of the diopside hornfels and the hornblende similar to Sample HCA12A. The diopside zone is essentially a fine-grained granoblastic hornfels composed mainly of diopside, plagioclase, orthoclase, sphene and opaque mineral up to 0.05 mm in size, filling microphenoblastic diopside, Quartz, orthoclase, opaque mineral and a little hornblende of 0.1 to 0.2 mm in size. The hornblende zone consists mainly of phenoblastic matrix composed chiefly of hornblende, plagioclase orthoclase, sphene and opaque mineral up to 0.1 mm in size. Many poikilitic inclusions of minute and rounded plagioclase and others are often present in hornblende and quartz phenoblasts. A network of coarser-grained quartz, up to 1.5 mm in size, developes in the hornblende zone, suggesting the presence of fine-cracks in the original rock.
Macroscopic description	Micro gabbroic diorite	Strongly silicified granitic rock
Location	Gitana-NW Q. 11	Desquite Q. 6
Sample No.	Q11848	HCA13A

Sample No.	Location	Macroscopic description	Microscopic observation
Q1370	Gitana-NW Q.13	Micro granodiorite	Biotite-Hornblende Granodiorite The rock shows a hypidiomorplic and granular texture and consists mainly of subhedral to euhedral plagioclase up to $1.8 \times 1.5 \text{mm}$ in size, unhedral to subhedral quartz up to $2 \times 1.5 \text{mm}$, unhedral to subhedral potash feldspar up to $2 \times 1 \text{mm}$, subhedral to euhedral green hornblende up to $1.8 \times 1 \text{mm}$.
,			Potash feldspar occupies about 10 % of felsic constituents and the rock is one near quartz diorite. Plagioclase is essentially of andesine, but it is commonly zoned up to marginal oligoclase. It is usually twinned after albite law with occasional pericline twins. Magnetite, apatite and zircon are accessary. Biotite and hornblende are partly replaced by epidote and chlorite.
RM-6	Paraiso Q. 1-S	granodiorite	Biotite-Hornblende Granodiorite The rock shows a hypidiomorphic and granular texture and consists mainly of unhedral to euhedral quartz up to 5 × 4mm, subhedral to euhedral plagioclase up to 3 × 2mm, unhedral to subhedral potash feldspar up to 5 × 1mm, subhedral brown biotite up to 2 × 2.5 mm and subhedral green hornblende up to 3 × 2mm. A small myrmekite occurs between plagioclase and orthoclase crystals. Accessory opaque minerals, apatite, zircon and sphene are present in a small to trace amounts. Plagioclase is partly replaced by sericite and mafic minerals are partly replaced by chlorite and epidote.
HCA14	Desquite Q.6	Strongly silicified sedimentary rock	Biotite-Muscovite Hornfels The rock is a granoblastic texture and consists mainly of quartz, muscovite, chlorite, brown biotite, opaque minerals and leucoxene. Quartz includes commonly minute grains of flaky muscovite and biotite, rounded plagioclase and opaque minerals. Biotite-muscovite veinlets and chlorite-muscovite films are cut the rock, suggesting developed micro-fractures in the original rock.

Microscopic observation	*	aggregates of fine-grained green amphibole laths up to 1 mm in length and microphenocrystic relic magnetite grains are enclosed in a fine-grained granoblastic matrix of quartz and plagiocalclase mosaics with abundant laths of green amphibole, small amounts of magnetite, leucoxene and brown biotite up to 0.05 mm in grain size. Relic plagioclase phenocrysts, too, are often replaced by green amphibole and subordinate biotite chiefly along cracks and zoning planes.	Magnetite is probably titaniferous and often leucoxenized marginally. Green amphibole is mainly of hornblende with a preochloism of X=pale green, Y=green and Z=bluish green but actinolite and actinolitic hornblende occur commonly.	Metamorphosed Andesite The rock is meta-andesite with the original porphyritie texture and completely rearranged matrix. Relic zoned plagioclase subhedras up to 3.5 × 3 mm in size and aggregates of brown biotite often with a little actinolite and epidote are enclosed in a granoblastic matrix composed mainly of brown biotite, yellowish epidote, plagioclase, quartz and leucoxene up to 0.1 mm in size. Relic plagioclase phenocrysts are andesine in composition and are replaced fairly by fine-grained epidote, brown biotite, quartz and chlolite. Accessory zircon, apatite and magnetite are possibly relic minerals. Original rock is andesite judging from the presence of abundant relic phenocrysts of plagioclace and pseudomorphic mafic minerals (now biotite
Macroscopic description	Basaltic andesite			Porphyritic andesite
Location	Gitana-NW Q.13			Diamante Mina Marina
Sample No.	QCPP 49			М 8021

Microscopic observation	Biotite-Hornblende Granodiorite The rock shows a fine-grained hypidiomorphic and granular texture and is mainly composed of unhedral quartz up to 1.5 x 1.0 mm, subhedral potash teldspar up to 1.0 x 0.8 mm, subhedral potash feldspar up to 1.0 x 0.8 mm, subhedral green hornblende up to 2.5 x 0.3 mm, subhedral brown biotite up to 1.5 x 1.3 mm. Subhedral brown biotite up to 1.5 x 1.3 mm. Small amounts of chlorite, sphene and opaque minerals are present. Small amounts of chlorite, epidote and sericite are present as alteration products.
Macroscopic description	Micro
Location	Bombona Q. 17-S
Sample No.	φ.

A. I -5 Microscopic Observation of the Polished Section

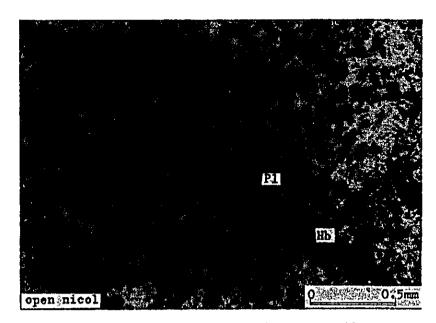
Sample No.	Location	Macroscopic Description	Microscopic Observation
MM 1	Diamante Area Mina Marina	Arsenopyrite ore	Mineral assemblage:arsenopyrite, pyrite
,			Arsenopyrite shows euhedral to anhedral crystal form and a part of of it is replaced by gangue mineral. Pyrite also shows euhedral to anhedral crystal form which contains small dotts of galena and sphalerite a few to several tens of \(\alpha \) in size. Sphalerite is unhedral and contains a lot of chalcopyrite dot and is often associated with arsenopyrite. Chalcopyrite, majority of it is a small dot in sphalerite, however, free crystal in gangue mineral or closely associated with pyrite is also found.
			Covelline is a secondary mineral found in a periphery of sphalerite or in a minute crack.
MM 2A	Diamante Area Mina Marina	Arsenopyrite -chalcopyrite ore	Mineral assemblage:arsenopyrite, pyrite
		, , ,	Both arsenopyrite and pyrite disseminate in the ore vein and have euhedral to anhedral crystal form. Sphalerite containing chalcopyrite dot is closely associated with arsenopyrite. Chalcopyrite and tetrahedrite are formed in the corroded part of pyrite. Covelline is a secondary mineral. Electrum, 2-25 μ m in size, is found in pyrite crystal.
MM 2B	Diamante Area Mina Marina	Arsenopyrite -sphalerite ore	Mineral assemblage:arsenopyrite, pyrite
			The same as MM 2A. Aside from that, chalcopyrite commonly occurs as a dot in sphalerite but in rare case it is included in arsenopyrite crystal

Sample No.	Location	Macroscopic Description	Microscopic Observation
3 W	Diamante Area Mina Marina	Arsenopyrite -sphalerite ore	and EPMA discloses that tetrahedrite contains lots of silver. Mineral assemblage:arsenopyrite
	-		Arsenopyrite is euhedral to anhedral crystal. Sphalerite with dotted crystal of chalcopyrite is commonly associated with arsenopyrite. Covelline is found in the crack or at the margin of sphalerite crystal. A single crystal of electrum (Ga. 100 μ m in size) is found in the skelton crystal of arsenopyrite.
MM 4A	Diamante Area Mina Marina		Mineral assemblage:arsenopyrite common sphalerite a few covelline, galena, chalcopyrite few
··			The occurrance of arsenopyrite, sphalerite and covelline is the same as MM 3. galena (10 μ m in size) is enclosed in the crystal of arsenopyrite. Chalcopyrite commonly appears as a dot in sphalerite but a part of it is enclosed in arsenopyrite.
MM 4B	Diamante Area Mina Marina	Arsenopyrite ore	Mineral assemblage:arsenopyrite common sphalerite, chalcopyrite, covelline few Arsenpyrite is euhedral to anhedral crystal and a part of it is replaced with gangue mineral. Sphalerite contains dotts of chalcopyrite and is often associated with arsenopyrite. Chalcopyrite is found as a dot in sphalerite or inclusion of arsenopyrite. Covelline scattered in arsenopyrite is most probably derived from chalcopyrite.

Sample No.	Location	Macroscopic Description Subslerite-eslens	
DF-LA	Diamante Area Mina Diamante	spnalerite-galena ore	Mineral assemblage:pyrite, sphalerite common galena, arsenopyrite a few chalcopyrite, tetrahedrite few
			Pyrite is anhedral and disseminates with one alignment. Sphalerite contains small dotts of chalcopyrite and a part of it occupies the minute cracks in pyrite and arsenopyrite. galena is closely associated with sphalerite and mode of occurrence is the same as sphalerite. Chalcopyrite is found both in sphalerite and in the gangue mineral and it usually associates with tetrahedrite. Tetrahedrite is also found in sphalerite as a veinlet.
DP-LB	Diamante Area Mina Diamante	Sphalerite-galena ore	Mineral assamblage:pyrite, sphalerite common galena, arsenopyritea few chalcopyrite, tetrahedrite few
			The occurrence is the same as DP-LA, however, it is noted that arsenopyrite is mostly euhedral and a part of it is enclosed in pyrite. Although tetrahedrite has strong paragenesis with chalcopyrite, it is noticed in part that tetrahedrite is intruding among chalcopyrite and sphalerite. Tetrahedrite is later product than chalcopyrite and sphalerite.
N-13	Mina Desquite	Arsenopyrite -sphalerite ore	Mineral assemblage:pyrite, arsenopyrite, sphalerite common covelline few Both pyrite and arsenopyrite show euhedral to anhedral crystal and disseminate in the vein. Sphalerite contains much less chalcopyrite dot than the ore at Mina Marina and is commonly associated with arsenopyrite. Covelline is the secondary mineral appearing periphery and cracks of sphalerite crystal. Limonite is also noted as a secondary mineral.

Sample No.	Location	Macroscopic Description	Microscopic Observation
N-14	Mina Desquite	Sphalerite-galena ore	Mineral assemblage:sphalerite common galena, pyrite, chalcopyrite a few tetrahedrite few
			Sphalerite contains a lot of chalcopyrite dotts and it forms a vein-like precipitation. galena is closely associated with sphalerite. Chalcopyrite appears not only as a dot in sphalerite, but also as paragenesis with galena and as a scattered single crystal in the gangue mineral. Tetrahedrite usually associates with chalocpyrite.
N 57A	Paraiso Area Mina San Luís	Sphalerite-galena ore	Mineral assemblage:pyrite, sphalerite, galena, cerussite tetrahedrite error common argentite electrum scarcely
			Pyrite is euhedral to anhedral. Sphalerite seldom contains chalcopyrite dot. The marginal part of galena contains exsolutional dot of argentite. (a few to several tens µm in size) Argentite is also found in sphalerite. Electrum (5 to 75 µm in size) is found in tetrahedrite or in the crystal boundary of pyrite and tetrahedrite.
N 57B	Paraiso Area Mina San Luis	Pyrite ore	Mineral assemblage:pyrite
			The occurrence of pyrite, sphalerite and chalcopyrite is the same as N 57A. Tetrahedrite appears as crack-filling or periphery-coating of pyrite, scattered single crystal in the gangue mineral and a part

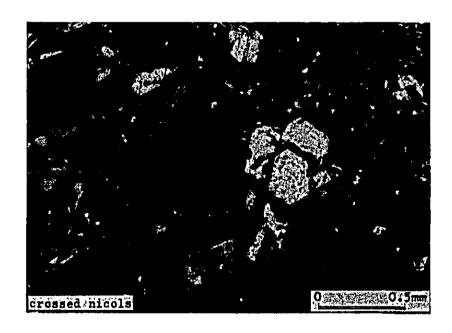
Sample No.	Location	Macroscopic Description	Microscopic Observation
			of it as a veinlet in sphalerite. Covelline is secondary product of chalcopyrite. Electrum (20 μ m in size) is found in the minute crack in pyrite.
N 57C	Paraiso Area Mina San	Pyrite ore	Mineral assemblage:arsenopyritecommon electrumscarcely
	Luis		Arsenopyrite is in the form of euhedral to anhedral and is replaced by gangue mineral. Electrum (17-30 μ m in size) is found in the minute crack in arsenopyrite and crystal boundary between arsenopyrite and gangue mineral.
N 63B	Paraiso Area Mina San Luis	Pyrite-chalcopyrite ore	Mineral assemblage:pyrite coumon chalcopyrite, covelline a few sphalerite, galena few
			Pyrite disseminates in the vein and its crystal form is euhedral to anhedral. Chalcopyrite also disseminates separately from pyrite and marginal part of chalcopyrite changes into covelline. Sphalerite seldom contains chalcopyrite dot and appears near or inside of pyrite. Galena is enclosed in pyrite.

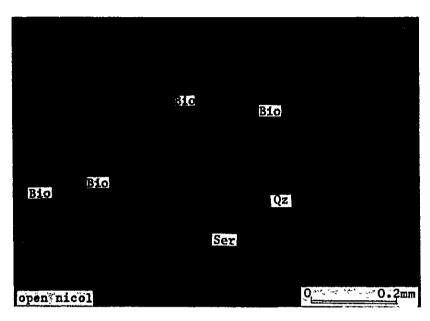

A. I-6 Photomicrographs

A. I-6-I Thin Section

Sample No.	Location	Rock type
QCPP49	Gitana-NWQ-13	Metamorphosed andesite
Q1129	Gitana-NWQ-11	Sericite biotite quartz hornfels
Q1370	Gitana-NWQ-13	Biotite hornblende quartz diorite
Q1327	Gitana-NWQ-13	Metamorphosed andesitic tuff breccia
HCA 12A	Desquite Q-6	Diopside hornblende hornfels
HCA 12B	Desquite Q-6	Hornblende biotite granodiorite
F9	Bombona-NWQ-17	Biotite hornblende granodiorite
RM6	Paraiso Q-2	Biotite hornblende granodiorite

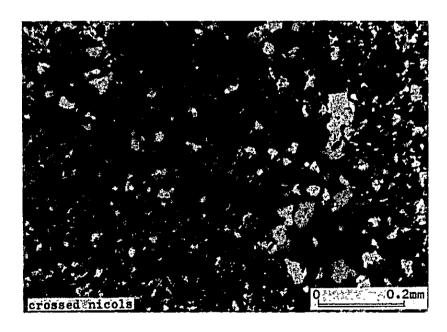
Abbreviations

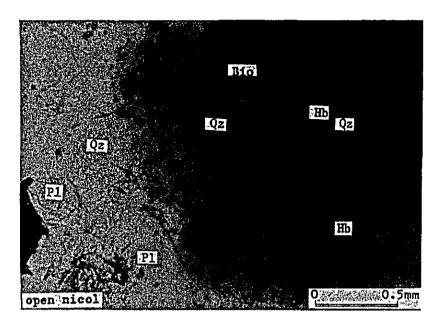

Qz : Quartz
Or : Orthoclase
Pl : Plagioclase
Bio : Biotite
Hb : Hornblende
Act : Actinolite
Diop : Diopside
Chl : Chlorite



Sample No. QCPP49

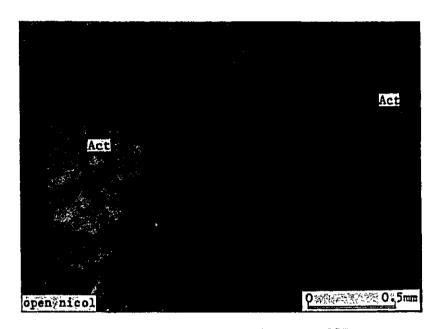
Rock type:


Metamorphosed andesite



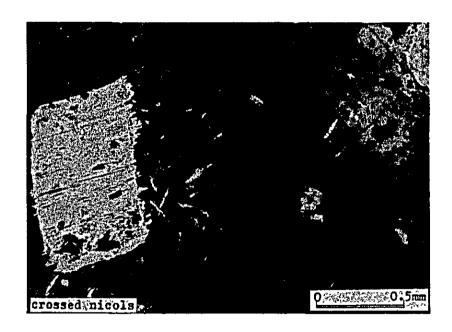
Sample No. Q1129

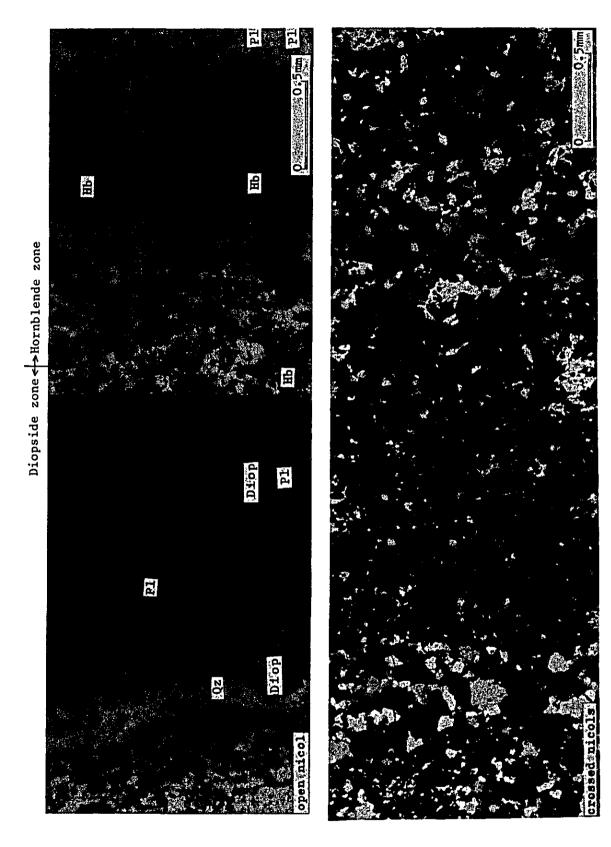
Rock type:
Sericite biotite quartz
hornfels



Sample No. Q1370

Rock type:
Biotite hornblende
quartz diorite

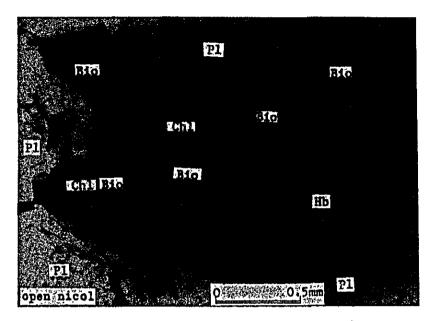




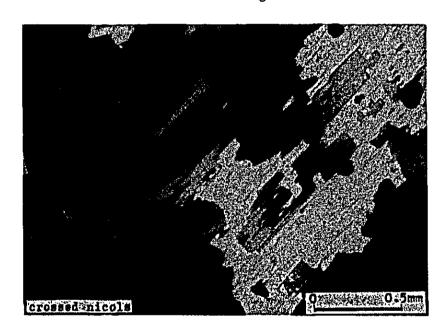
Sample No. Q1327

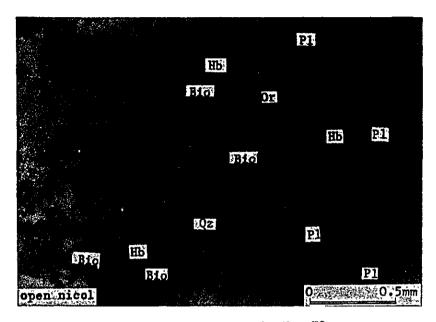
Rock type:

Metamorphosed andesitic
tuff breccia

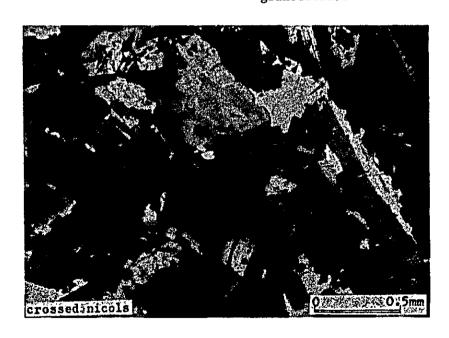


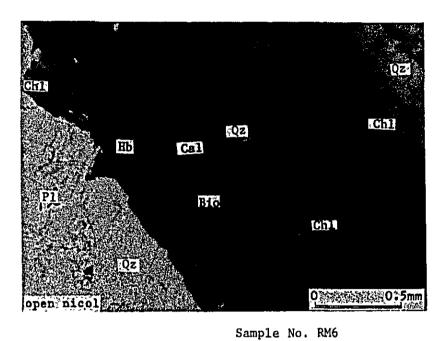
Sample No. HCA 12A


Rock type:

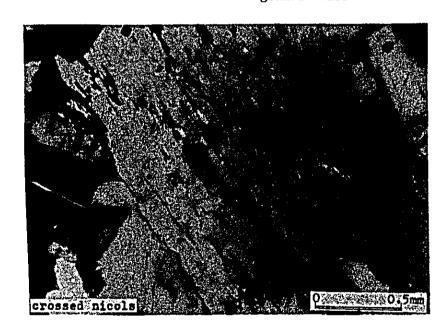

Diopside hornblende hornfels

Sample No. HCA 12B


Rock type:
Hornblende biotite
granodiorite



Sample No. F9


Rock type:
Biotite hornblende
granodiorite

Rock type:
Biotite hornblende

granodiorite

A. I-6-2 Polished Section

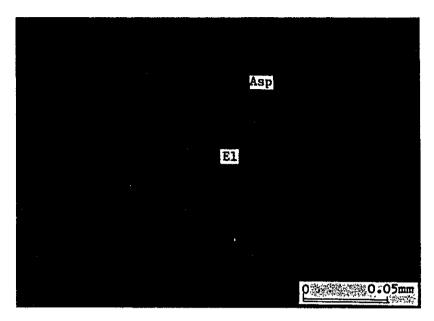
Sample No.	Location
MM2A	Mina Marina
MM2B	Mina Marina
MM3	Mina Marina
DPL-A	Mina Diamante
DPL-B	Mina Diamante
N14	Mina Desquite
N57A	San Luis
N57B	San Luis
N63A	San Antonio

Abbreviations

Sp : Sphalerite

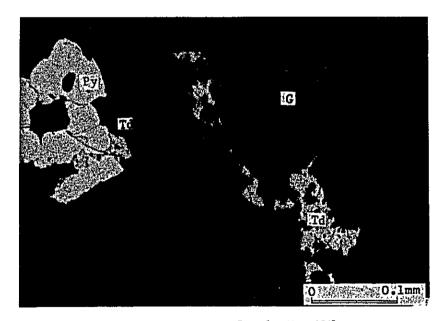
Gn : Galena

Cp : Chalcopyrite
Td : Tetrahedrite

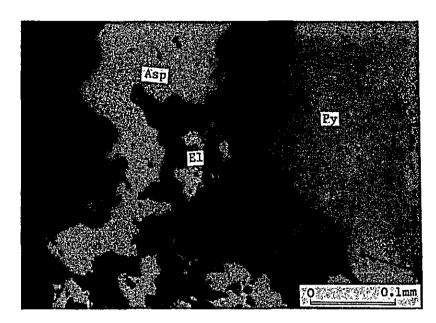

El : Electrum
Arg : Argentite

Py : Pyrite

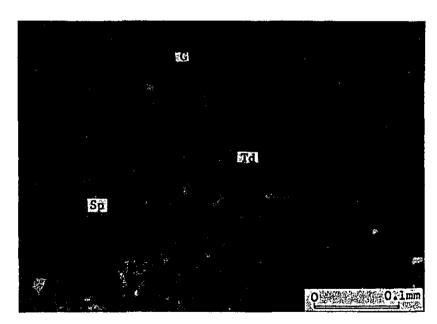
Asp : Arsenopyrite


Ce : Cerrusite

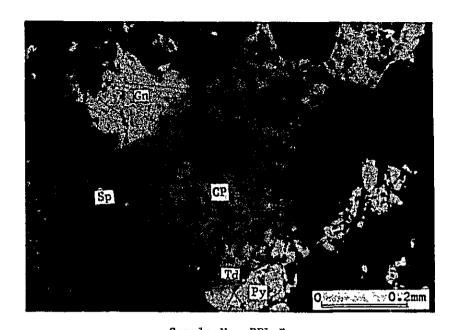
G : Gangue mineral


Sample No. MM2A

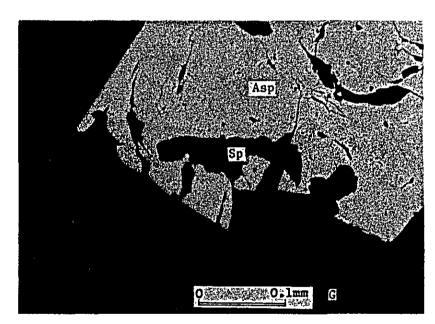
Electrum in arsenopyrite


Sample No. MM2B

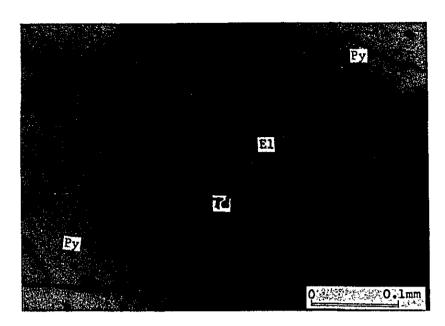
Ag bearing tetrahedrite
(conducted EPMA)


Sample No. MM3

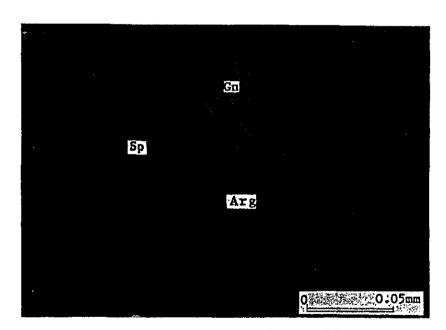
Electrum with arsenopyrite
(conducted EPMA)


Sample No. DPL-A

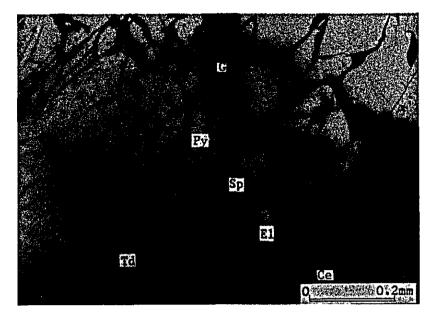
Exsolution of sphaleritechalcopyrite-tetrahedrite
(conducted EPMA)


Sample No. DPL-B

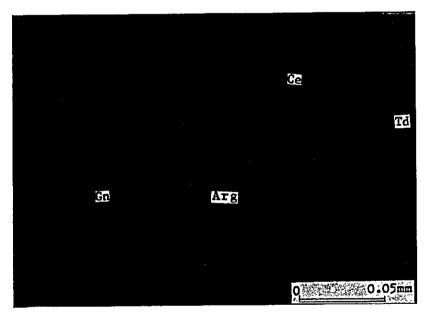
Paragenesis of galena-sphaleritechalcopyrite with latest mineral
of tetrahedrite


Sample No. N14

Sphalerite with exsolutional chalcopyrite replaces arsenopyrite


Sample No. N57A

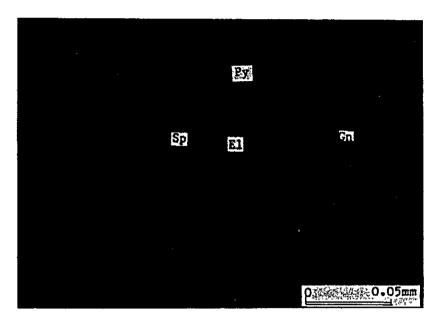
Electrum in tetrahedrite


Sample No. N57A

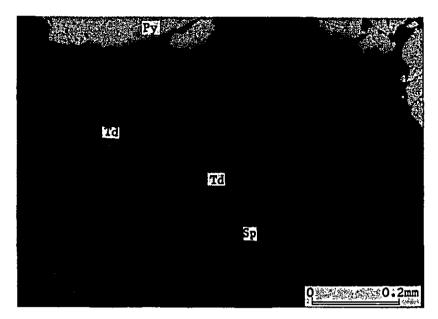
Exsolution of galena and argentite

Sample No. N57A

Pyrite is replaced by tetrahedrite

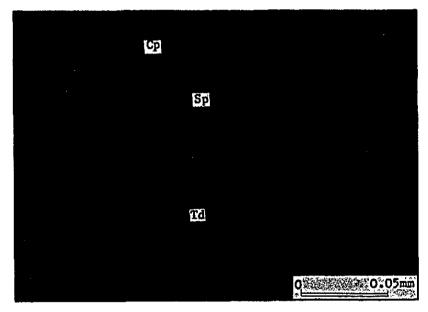


Sample No. N57A

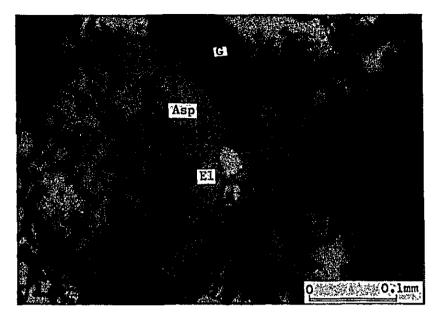

Galena altered to cerrusite.

Argentite coexists with

cerrusite

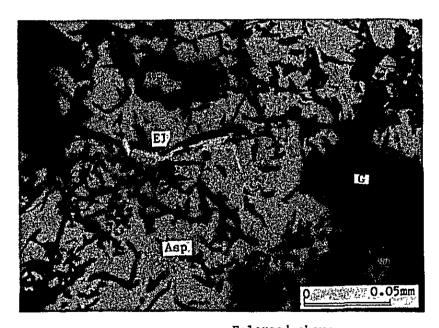


Sample No. N57B
Electrum in pyrite



Sample No. N57B

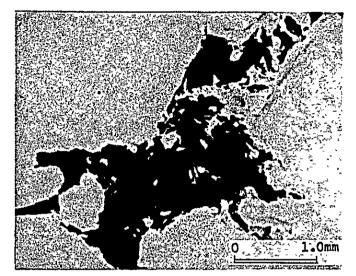
Exsolution of sphaleritechalcopyrite-tetrahedrite



Enlarged above

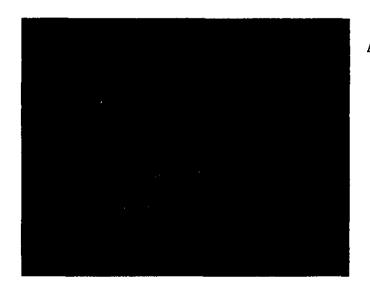
Sample No. N63A

Electrum is a single crystal
connected with a narrow channel



Enlarged above

Electrum in zigzag form
in arsenopyrite
(conducted EPMA)


A. I-6-3 EPMA

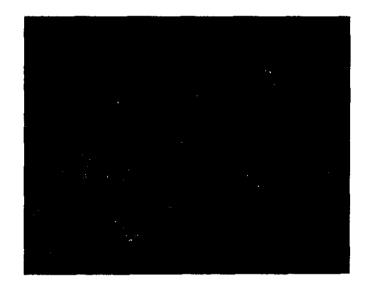
A - 48

Absorted electron image

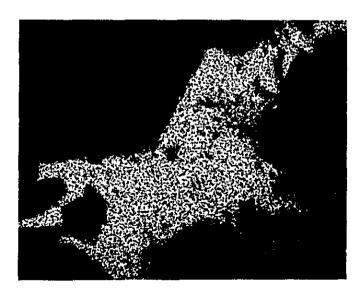
Freibergite (Ag bearing tetrahedrite) in gangue mineral

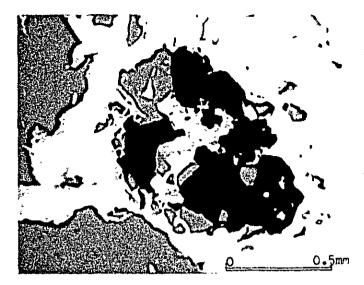
Ag X-ray image

Cu X-ray image

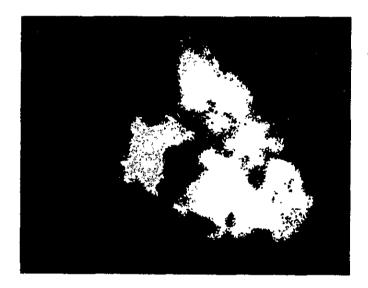

Sample No. : MM2B

Locality : Mina marina

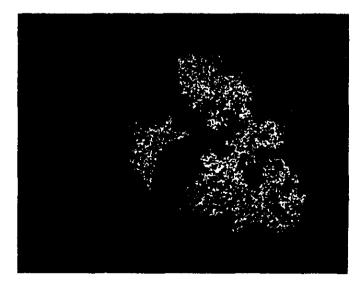

Accel. volt. : 15 kV Absorb. elect. : 0.1 μA


Sb X-ray image

Fe X-ray image



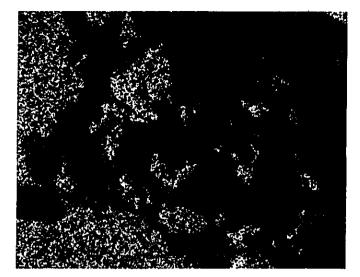
S X-ray image



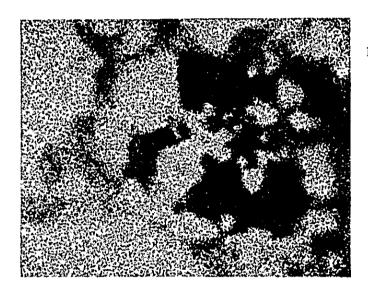
Absorbed electron image

Electrum is association with arsenopyrite.

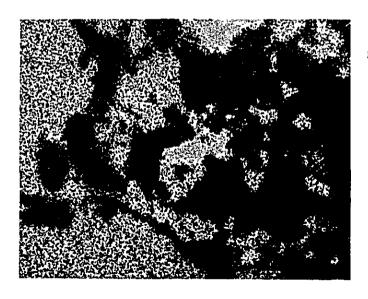
Au X-ray image

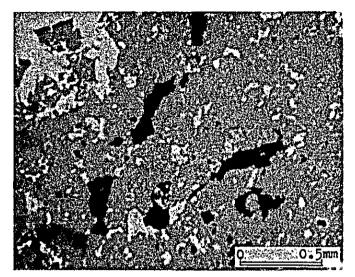


Ag X-ray image


Sample No. : MM3

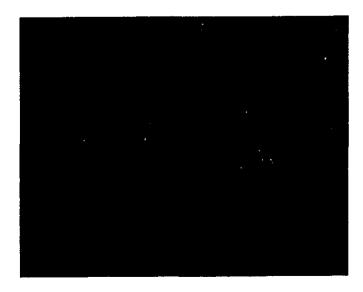
Locality : Mina marina


Accel. volt. : 25 kV Absorb. elect. : 0.2 μA


As X-ray image

Fe X-ray image

S X-ray image

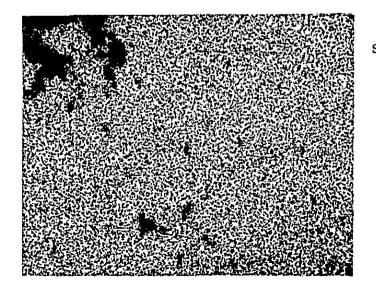

Absorbed electron image

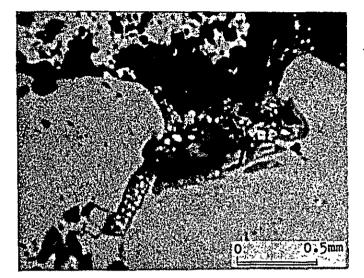
Exsolution of Ag bearing tetrahedrite(black in the photo)

- chalcopyrite
- sphalerite.

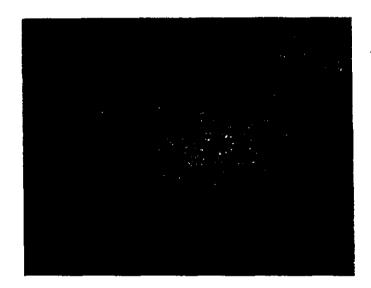
Ag X-ray image

Cu X-ray image

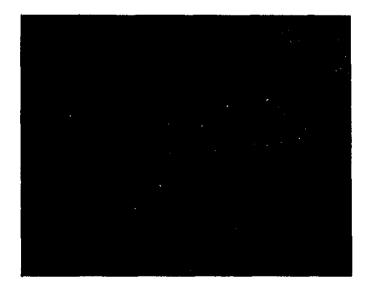

Sample No. : DPL-A
Locality : Diamante
Accel. volt. : 15 kV
Absorb. elect. : 0.1 µA


Sb X-ray image

Zn X-ray image



S X-ray image



Absorbed electron image

Freibergite

Ag X-ray image

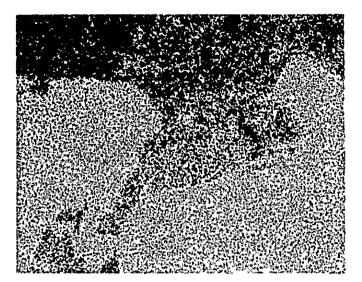
Cu X-ray image

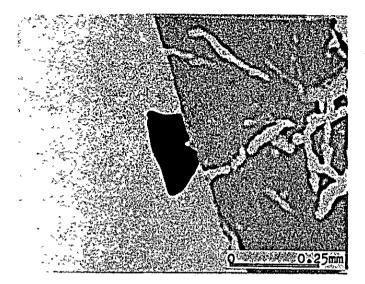
Sample No. : N57A

Locality : San Luis

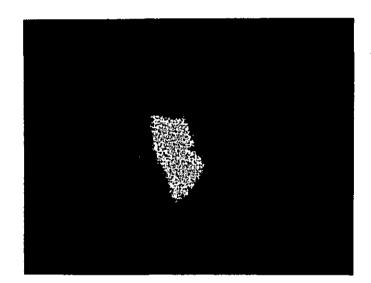
Accel. volt. : 15 kV

Absorb. elect. : 0.1 µA

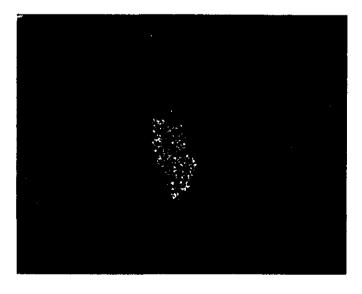

Sb X-ray image


Pb X-ray image

Fe X-ray image



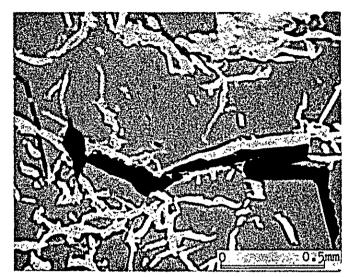
S X-ray image



Absorbed electron image

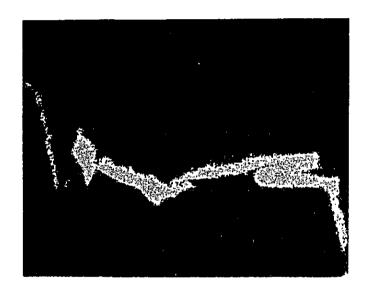
Electrum

Au X-ray image

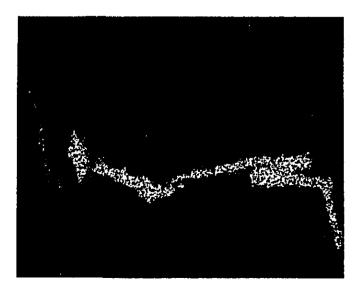

Ag X-ray image

Sample No. : N57C

Locality : San Luis


Accel. volt. : 25 kV

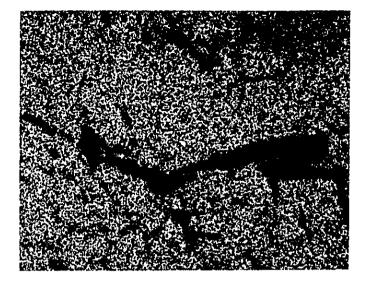
Absorb. elect. : 0.2 µA



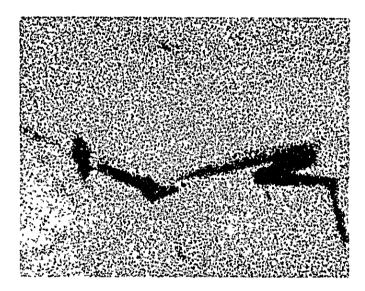
Absorbed electron image

Electrum in zigzag form in arsenopyrite.

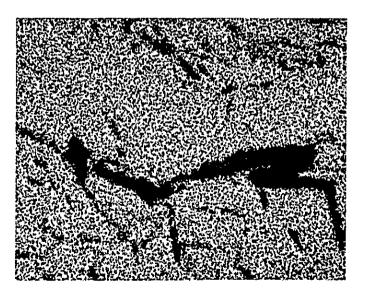
Au X-ray image



Ag X-ray image


Sample No. : N63A

Locality : San Antonio

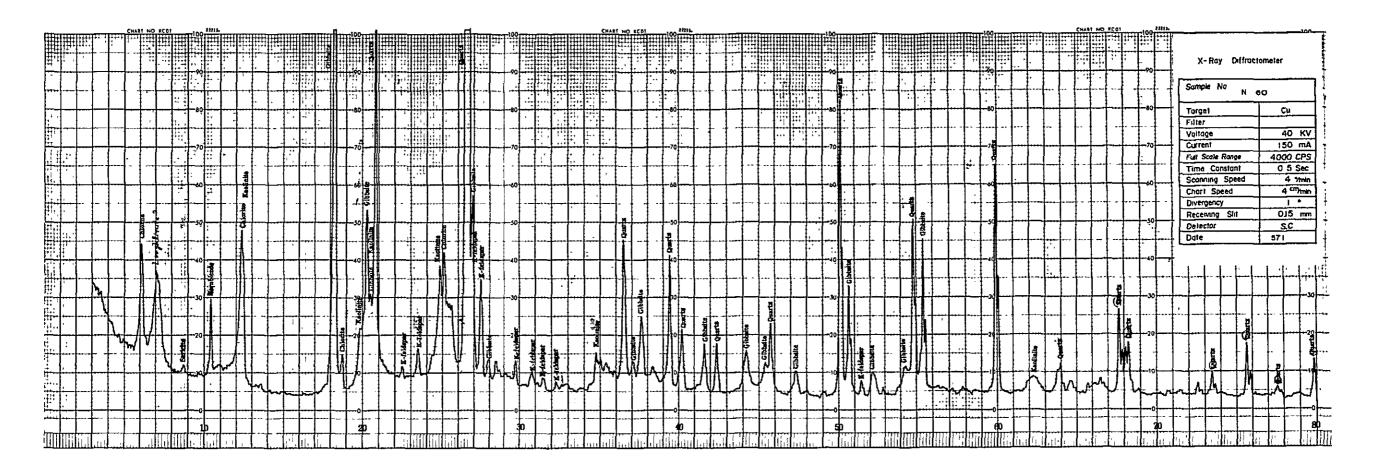

Accel. volt. : 25 kV Absorb. elect. : 0.2 µA

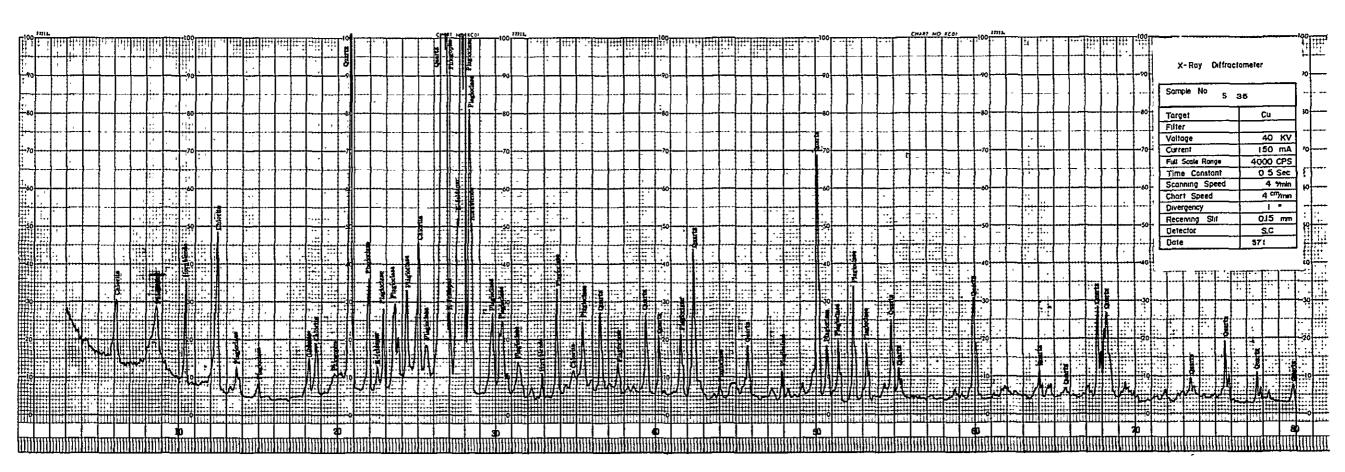
As X-ray image

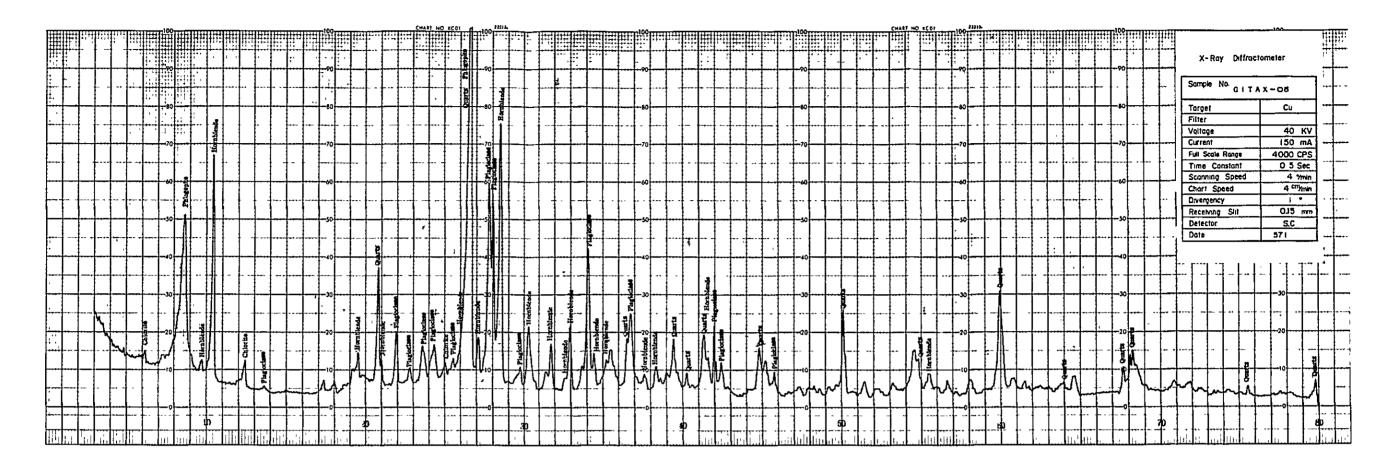
Fe X-ray image

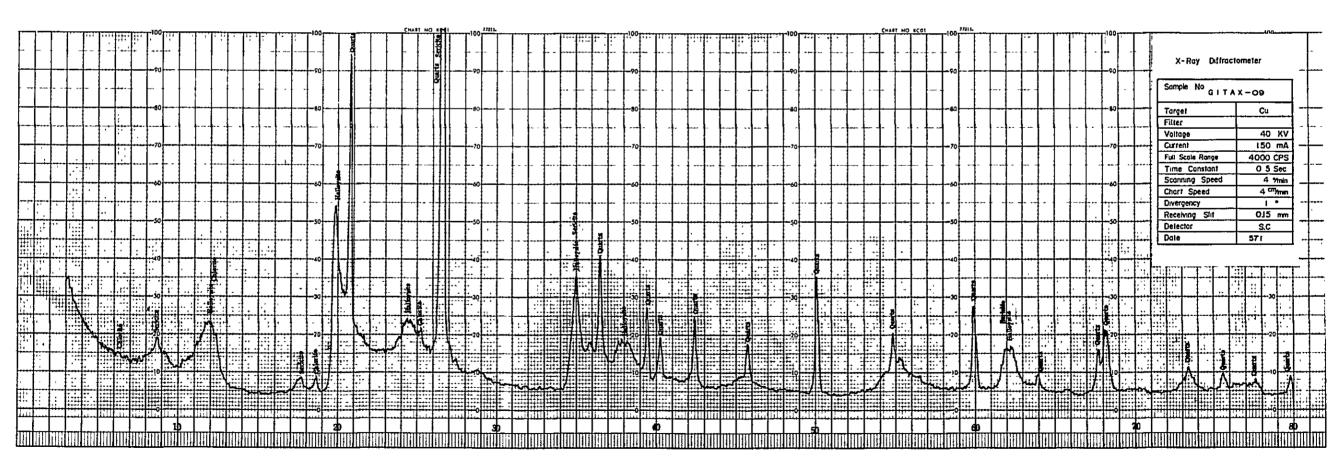
S X-ray image

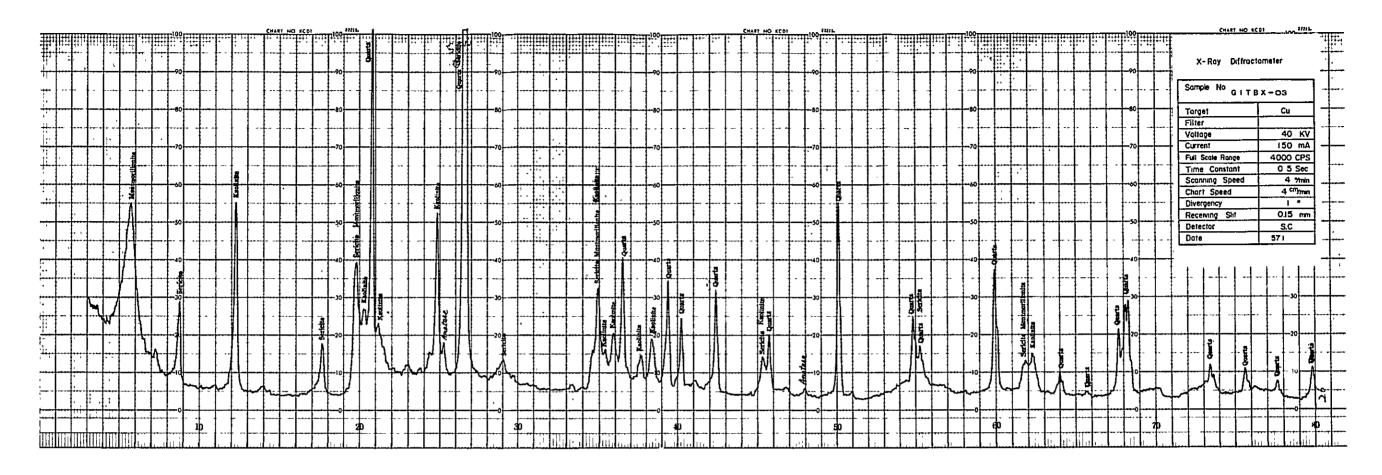
A. I-7-I Summary of X-ray Diffractive Analysis

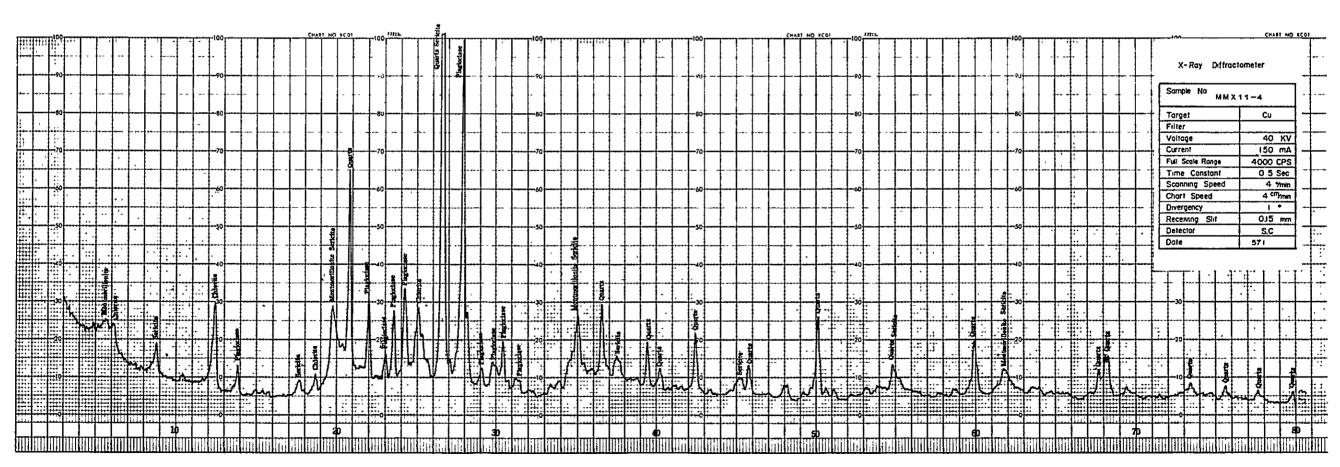

Ser.	Mineral Sample	Quartz	Plagioclase	K-feldspar	Hornblende	Chlorite	Sericite	Phlogopite	Montmorillonite	Kaolinite	Halloysite	Gibbsite	Anatase	Loughlinite?	Talc?	dA 8.10?	dA 7.73	Pyrite	Arsenopyrite	Goethite	Scorodite
1	N58	V					С									L			L		L
2	ท59	٧		L			L			М		S									
3	N60	V		L		L	S			L		٧		L							
4	N61	٧		V		V	S					٧		L							
5	N62	v	V	L											М		М				
6	S32	v					М											S			L
7	S33	V		С			V		L												
8	S34	٧		М		М	s					L									
9	S35	v	٧	L	С	С		L													
10	S36	V		s			С		С												
11	S37	v		L			С		С												
12	s38	v	V	L	L	L		М			į										
13	GITAX-01	М					С			C			S	L							
14	GITAX-02	v					С		C	L			s	Γ							
15	GITAX-03	v					v		С				s							s	
16	GITAX-04	v					М						L								
17	GITAX-05	v	М		М	s		М													
18	GITAX-06	٧					¢		С	L			s								
19	GITAX-07	v					С		С				L							s	
20	GITAX-08	v					S			V											
21	GITAX-09	v				s	s				м										
22	GITAX-10	V					С		С	L			L								
			ŀ																		


Foot Note V:very much M:much C:common L:less S:scarcely


Mineral Ser. Sample	Quartz	Plagioclase	K-feldspar		Hornblende	Chlorite	Sericite	Phlogopite	Montmorillonite	Kaolinite	Halloysite	Gibbsite	Anatase	Loughlimite?			Pyrite	Arsenopyrite	Goethite	Scorodite
23 GITAX-11	V						С		Ç	L			S							
24 GITBX-01	v			******	S	С	s							С						
25 GITBX-02	v						М						s							
26 GITBX-03	V						L		М	M	_		s							
27 GITBX-04	V													M		-				
28 GITBX-05	V						L		М	С			s	S						
29 GITBX-06	V				М									М	 					
30 MMX11-1	v		L				L		С	s			L							
31 MMX11- 2	v						L		С	s	_		L							
32 MMX11- 3	v	s					С						L							L
33 MMX11- 4	v	V				С	L		L											


Foot Note V:very much M:much C:common L:less S:scarcely


A. I -7 -2 X-ray Diffraction Chart



APPENDICES PART I DRILLING DATA

LIST OF APPENDICES

A. 11-1	List of the used equipments for drilling
A. II-2	Supplis and consumed parts for drilling
A.II-3	Preparation and removal
A. II-4	Operational results of drill hole, PD-8
A.II-5	Operational results of drill hole, PD-9
A.II-6	Operational results of drill hole, PD-10
A.II-7	Operational results of drill hole, PD-11
A.11-8	Operational results of drill hole, PD-12
A.11-9	Operational results of drill hole, PD-13
A.II-10	Operational results of drill hole, PD-14
A.11-11	Operational results of drill hole, PD-15
A.II-12	Summarized operational data of each drill hole
A.II-13	Working time of each drill hole
A.II-14	Drilling meterage of diamond bits
A.II-15	Specifications of diamond bits
A.II-16	Assay results of the drilled core
A.II-17	Microscopic observation of the thin sections
A. II-18	Microscopic observation of the polished sections
A.II-19	Photomicrographs
A.II-19-1	Thin section
A.II-19-2	Polished section
A.II-19-3	EPMA
A.II-20	Summary of X-ray diffractive analysis
A.II-21	Charts of X-ray diffraction test

A. II-I List of the used equipments for drilling

			
Item	Mode1	Quantity	Capacity, Type, and Specification
Drilling Machine	TOM-3B	1	Capacity NQ 590m BQ 750m Inner Diameter of Spindle 92mm Weight (except engine) 120,250,600,120F
Engine for Drill	F3L-912	1	Diesel Engine 1,800 rpm/41 PS ∿ 1,500 rpm/35 PS
Pump	NAS-2A	1	Piston ϕ 63mm Capacity 62 \sim 45 ℓ/min Pressure 27 \sim 37 Kg/cm ²
Engine for pump	NS-110C	1	Diesel Engine 1,800 rpm/9.5 PS
Generator	YSG-5SN	1	5KVA, 110V, 50 C/S
н	YSG-3	1	3KVA, 110V, 50 C/S
Engine for Generator	NS-90C	1	Diesel Engine 1,800 rpm/8.5 PS
11	NS-50C	1	Diesel Engine 1,800 rpm/4.5 PS
Pump	норе-ғ	1	Piston ø 13.8mm Capacity 60 ∿ 80 l/min Pressure 40 ∿ 30 Kg/cm ²
Engine for pump	NS-90C	1	Diesel Engine 1,800 rpm/8.5 PS
Mud Mixer	MCE-100A	1	Volume 100£, 800 ∿ 1,000 rpm/min
Derrick		1	Wooden
Rod Holder	RH-85	1	Hand Type
Drill Rods	NQ-WL	50	3.00 M/PC
	BQ-WL	70	3.00 M/PC
Casing Pipes	NW	30	3.00 M/PC
	tt	3	1.00 M/PC
	BW	50	3.00 M/PC

A. II-2 Supplis and consumed parts for drilling

						Quant	lty			
Description	Specification	Unit	PD-8	PD-9	PD-10	PD-11	PD-12	PD-13	PD-14	PD-15
Light oil		L	2,112	1,760	2,100	1,980	1,950	1,430	2,720	1,890
Mobil oil		£	90	60	20	20	10	-	20	40
Hydraulic oil		L	20	-	-	-	-		30	-
Grease		kg	20	-	-	20	-	-	-	15
Bentonite	50 kg/bag	bag	40	26	52	34	56	26	50	36
Libonite		kg	25	50	75	100	75	50	100	50
Tel-cellose		kg	15	12	20	15	18	11	16	20
Cement	50 kg/bag	bag	3	25	4	9	4	6_	9	5
Tel-stop		kg	25	30	25	100	75	50	50	
Emale 20C		L	10	10		20	-			
Metal crown	101mm	рc			3	3	4	3	2	1
Single core tub	e 99mm x 0.5m	set	_	-	1	_	1	_	1	-
Double core tub	e 99mm x 1.5m	11		1	_	-	-		-	
Wire line core barrel	x Om	"	-	-	-	_	-	_	_	-
11	NQ x 3.00m	11	-	-	-	-	1			1_
11	BQ x 3.00m	"	-	-	_	-	1	-	_	1
Inner tube assembly	x Om	11	-	_	_	-		_	_	-
11	NQ x 3.00m	11		1	-	-	1		-	
11	ВQ ж 3.00ш	ř1	-	1	-	-	1			
Outer tube	x Om	рс	-	-	-		_	-	1	-
"	NQ x 3.00m	"	1	-	_	1	-		1	
н	BQ x 3.00m	"	1	-	-	1		_	1	-
Inner tube	x 3.00m	11	-	-	-	-		-	-	
l)	NQ x 3.00m	11	1	-		1	-	_	1	_
п	BQ x 3.00m	"	1	\ -	-	1	-	_	1	
Casing metal sh	106	H	-				-	-	_	
11	NW	11	1	2	2	1	2	2	1	1
11	BW	19	1	1	1	1	2	2	1	1
Rag	[kg	10	10	10	10	10	20	10	30
Core box	ľ	рс	30	20	30	20	30	18	30	25

						Quant:	ity			
Description	Specification	Unit	PD-8	PD-9	PD-10	PD-11	PD-12	PD-13	PD-14	PD-15
Wire	10	kg	20	10	10	10	10	10	10	10
11	12	11	20	20	20	20	20	20	20	10
Nail		11	10	10	10	5	5	10	10	5
Wire rope	6mm x 300m	rol1	-	0.5	-	-	0.5	-	_	-
(1	12mm x 90m	"	-	-	1	_	-	1	-	-
Manila rope	18mm x 100m	рc	1		_	-	-	-	-	-
Vinyl rope	9mm x 300m	*1	0.5	-	-	1	0.5	-	-	
Pump packing		"	-	1	-	-	1	-	-	-
Valve steel ba	11 38.1¢	11	-	-	1		-	-	-	_
Piston rod		"	-	-	1	_	-	-	-	-
Guide pipe		11	-	-	-	_	-		-	
H	NQ	11	-	-	1	-	-	-	-	_
11	BQ	"	-	1	-	-	-	-	-	
Guide coupling		"	-	-	_	-	-	-	-	-
r1	NQ	4	-	_	1	_	-	-	-	
(1	BQ	"		-	-	1	-	-	-	
Suction hose	38mm x 3.0m	"	-	1	-	-	-	-	-	_
Water swivel packing		"	-	1	-	_	-	1	-	_
Water swivel spindle		11	1	-	1	-	-	-	_	-
V-belt	TOM-3 F31-912	set	-	1	_	1	-	-		_
rı	YSG-3	"	-	1	-	-	-	1	-	-
Core lifter		рс	-	_	-	_			-	_
ii .	NQ	11	3	2	4	3	4	3	5	4
ff	BQ	11	3	2	3	2	2	4	4	4
Core lifter cas	se	11	-	-	-	_	-	-	_	-
H	NQ	"	2	1	2	3	2	2	3	2
11	BQ	11	2	1	2	2	3	2	3	2

A. II-3 Preparation and removal

PD-8		PD-9	E.		l l	PD-11	d	PD-12	Δ.	PD-13	ā.	PD-14	Ы	PD-15
13th, Jul. '82 26th, Jul. '82	Jul.	7	8th, Aug.	lug. '82	24th. Aug.	Aug.'82	10th.	10th. Sep. '82	26th.	Sep. '82	IOth.	IOth. Sep. '82	26th, Oct.)ct.'82
14th. Jul. '82 28th. Jul. '82	Jul.	~	8th. Aug.	lug. 82	28th.Aug.	Aug. 82	11th.	Sep. 182	30th,	Sep. 182	10th. Oct.)ct. '82	31st.Oct.	oct. 182
25th. Jul. '82 7th. Jul. '82	Jul.		22nd. Aug.	lug. † 82	8th.	Sep. '82	24th. Sep.	Sep. 182	9th.	9th, Oct. '82	24th, (24th, Oct. '82	12th. Nov.	lov. '82
25th. Jul. '82 7th. Jul. '82			23rd, /	Aug.'82	9th.	9th. Sep. '82	26th. Sep.	Sep. 182	9th.	9th, Oct., 82	25th. (25th. Oct. '82	13th, 1	13th, Nov. '82
Man- Man- shifts Days shifts			Days	Man- shifts	Days	Man- shifts	Days	Man- shifts	Days	Man- shifts	Days	Man- shifts	Days	Man- shifts
6 5.0	6						1.0	28			0.5	20		
1.0 26	56				2.5	98	1.0	20	2.4	117	0.5	23	3.0	120
36 1.0 14 (_	8.0	18	2.0	58			1.5	24			2.5	38
7 5.0 4		9	0.2	4	0.5	9			0.5	7			0.5	8
2														
42 3.0 56 1		י רו	1.0	22	5.0	150	2.0	87	4.4	145	1.0	43	0.9	166
8 0.2 4			1.0	16	1.0	26	1.0	20	0.5	12	1.0	18	1.0	16
6 0.1 3			1.0	30	1.0	20	1.4	42	0.5	1.1	1.0	28	0.7	20
		1												
14 0.3 7 2			2.0	46	2.0	46	2.4	62	1.0	23	2.0	46	1.7	36
56 3.3 63	63			68	7.0	196	4.4	110	5.4	168	3.0	89	7.7	186

A. II-4 Operational results of drill hole, PD-8

Period		Pe	riod		Number of Days	Actual Working Days	Day Off	Nu	Total mber of orkers
	- *-	13th Jul.8	2∿14th	Ju1.82	2.0	2.0	_		42
Working	Drilling	15th Jul.8	2∿25th	Ju1.82	10.3	10.3	_		217
ork	Removing	25th Jul.8	2∿25th	Ju1.82	0.7	0.7	-		14
3	Total	13th Jul.8	2∿25th	Jul.82	13.0	13.0	_		273
ngth	Planned Length Increase or		ver- urden	4.50 ^m	Core	Recovery	for ea	h 1	00m section
fing	Decrease in Length	-	ore ength	173.50 ^m	Deg of Hol	=	Section		Total
Dril	Length Drilled	1 7 XII 5II	ore covery	98.5%		00.00 ^m	99.5%		99.5%
	Drilling	131°00 5	1.2%	46.1%	100~18	30.50 ^m	97.5%		98.5%
	Hoisting & Lowering Rod	23°00'	9.0%	8.1%					
	Hoisting & Lowering I.T.	98°00' 3	8.3%	34.5%					
Time	Miscellaneous	4°00'	1.5%	1.4%		Efficie	ncy of 1)r11	ling
	Repairing	_	-	-	180.50	m/Workin	g Period	i	13.88 m/day
Working	Others	-		_	180.50	m/Workin	g Days		13.88 m/day
Wor		256°00' 100.0%		90.1%	180.50m/Drilling Period			d	17.52 m/day
	Preparation Moving	1 20°00'	-	7.1%	180.50m/Net Drilling D			ays	17.52 m/day
	Moving	8°00'	-	2.8%	Total workers/180.5			Om 1.51 Man/m	
	Ren								
	Grand Total	284°001	-	100.0%	Total	•	- /100		1 00 11
serted	Pipe Size & Meterage	Inserted Length (%) Drilling Length		ery of g Pipe	Hoisti	ng Worke	ering Ho		1.20 Man/m ing & Lowering 312 Times
Ins	NW 4.50m	2.5%	10	00%					
Pipe	BW 132.80m	73.5%	10	00%					
Casing Pi									

A. II-5 Operational results of drill hole, PD-9

				-		Number	Actual	 	Ĭ	Total
riod			1	Period		of Days	Working Days	Day of	f	Number of Workers
P.	Prej	paration	26th Jul	.82∿28th	Jul.82	3.0	3.0]	56
lng	Dr1	lling oving	29th Jul	.82∿ 7th	Aug.82	9.7	9.7	<u>-</u>		203
뵕	Rem	oving	7th Aug	.82∿ 7th	Aug.82	0.3	0.3	-		7
×	Tota	al	26th Jul	.82∿ 7th	Aug.82	13.0	13.0	-		266
ngth	Pla: Len	nned gth	130.00 ^m	Over- burden	10.00 ^m	Core	Recover	y for eac	2h 1	.00 m section
f.ng	Dec	rease or rease in gth	1	Core Length	103.30 ^m	De o Ho		Section		Total
뒤	Len	gth 11ed	131.00 ^m	Core Recovery	85.3%	0∿10	0.00m	79.5%		79.5%
	Dri	lling	96°00'	40.9%	35.6%	100~13	1.00 ^m	100.0%		85.4%
		sting & ering Rod	16°00'	6.8%	5.9%					
8		sting & ering I.T.	83°00'	35.3%	30.7%					
		cellaneous	16°00'	6.8%	5.9%	<u> </u>	Efficie	ncy of D	ril.	ling
8	Rep	airing	_	-		131.00	m/Workin	g Period	:	10.08 m/day
rki	Oth	ers	24°00'	10.2%	8.9%	131.00	m/Workin	g Days		10.08 m/day
Wo	Sub	Total	235°00'	100.0%	87.0%	131.00)m/Drilli	ng Perio	đ	13.51 m/day
]	38	Preparation	15°00'		5.6%	131.00	m/Net Dr	illing D	ays	13.51 m/day
	oví	Preparation Moving	20°00'	-	7.4%	Total workers/131.00m				2.03 Man/m
	Reg					<u> </u>				
		ind Total	270°00'	-	100.0%	Total	lng Worke	rs/131.0	Om	1.55 Man/m
nserted	Pig Met	pe Size & cerage	Inserted Length Drilling Length	(%) Reco	very of ng Pipe	-	ing & Low	vering Ho		ing & Lowering 163 Times
e In	NW	9.20m	7.0%		100%					
Pip	BW	74.20m	56.6%		100%	1				
Casing							_			

A. II-6 Operational results of drill hole, PD-10

eriod				Period		Number of Days	Actual Working Days	Day	Off	Total Number of Workers	
Per	Pre	paration	8th Aug	.82∿ 8th	Aug.82	1.0	1.0	-		22	
lng	Dri	lling	9th Aug	.82√21th	Aug.82	13.0	13.0			299	
Working	Rem	oving	22nd Aug	.82~23rd	Aug.82	2.0	2.0	•		46	
ĭ	Tot	al	8th Aug	.82∿23rd	Aug.82	16.0	16.0	-		367	
ength		inned igth	200.00 ^m	Over- burden	8.70 ^m	Core	Recovery	for ea	ch 10	00 m section	
ling L	Dec	rease or rease in gth	-	Core Length	183.30 ^m	Dept of Hole		Section		Total	
Dril		igth 11ed	200.50 ^m	Core Recovery	95.6%	0~10	0.00m	93.9%		93.9%	
	Dri	lling	180°00'	55.5%	52.0%	100~20	0.50m	97.0%		95.6%	
		sting & vering Rod	18°00'	5.6%	5.2%		-				
۵		sting & vering I.T.	108°00'	33.3%	31.2%						
Time	Mis	scellaneous	18°00'	5.6%	5.2%		Efficie	ncy of	Dril	ling	
, gu	Rep	airing	-	-	-	200.50	m/Workin	g Perio	od	12.53 m/day	
Worki	Oth	ners	-		-	200.50	m/Workir	g Days		12.53 m/day	
Wo	Sub	Total	324°00' 100.0%		93.6%	200.50	m/Drilli	ng Peri	od	15.42 m/day	
	gı	Preparation	8°00' -		2.3%	200.50m/Net Drilling Days			Days	15.42 m/day	
	Removing	Moving	14°00'	-	4.1%	Total	workers/	200.50n	n	1.49 Man/m	
	Rem										
	Gra	and Total	346°00'		100.0%	Total	ng Worke	re /200	50m	1.83 Man/m	
Inserted	Pipe Size & <u>Le</u> Meterage D		Inserted Length (%) Drilling Casing Pi Length			Hoisti		vering I		ing & Lowering 311 Times	
	NW	17.90m	8.9%		100%						
Pipe		120.20m	60.0%		100%						
Casing						<u> </u>					

A. II-7 Operational results of drill hole, PD-II

								
erfod		Pe	riod		Number of Days	Actual Working Days	Day Off	Total Number of Workers
P. P.	Preparation	24th Aug.8	2∿28th	Aug.82	5.0	5.0	-	150
ļ.	Drilling	29th Aug.8	2∿ 7th	Sep.82	10.0	10.0	-	230
Workin	Removing	8th Sep.8	2∿ 9th	Sep.82	2.0	2.0	-	46
3	Total	24th Aug.8	2∿ 9th	Sep.82	17.0	17.0		426
eth	Planned Length	1 140.461	ver- urden	13.20 ^m	Core 1	Recovery	for each 1	00 m section
led Len	Increase or Decrease in Length	_	ore ength	124.90 ^m	Depth of Hole		Section	Total
Dril	Length Drilled	1 1411.5()	ore covery	98.1%	0~700	0.00m	98.0%	98.0%
	Drilling	106°00° 4	2.4%	34.2%	100~140	0.50m	98.2%	98.1%
	Hoisting & Lowering Rod	11°00'	4.4%	3.5%			- · · · · · · · · · · · · · · · · · · ·	
 	Hoisting & Lowering I.T.	84°00' 3:	3.6%	27.1%				
Tim	Miscellaneous	25°0' 10	0.0%	8.1%		Efficie	ncy of Dril	ling
8	Repairing	24°00'	9.6%	7.7%	140.50	n/Workin	g Period	8.26 m/day
됩	Others	-	-	-	140.50n	n/Workin	g Days	8.26 m/day
8	Sub Total	250°00' 100	0.0%	80.6%	140.50m	n/Drilli	ng Period	14.05 m/day
	ည္ Preparation	25°00'	-	8.1%	140.50	n/Net Dr	illing Days	14.05 m/day
	Preparation Moving	35°00'	_	11.3%	Total v	vorkers/	140.50m	3.03 Man/m
	Rem						·	
	Grand Total	310°00'	-	100.0%	Total			
Inserted	Pipe Size & Meterage	Inserted Length (%) Drilling	1	very of	Hoistir	ng & Low		1.64 Man/m
		Length	 	1005	Kod 18	3 Times		168 Times
Pipe	NW 20.30m	14.4%	 -	100%				
	BW 83.60m	59.2%	-	100%				
Casing	·			·				
٩								

A. II-8 Operational results of drill hole, PD-12

poj		Pe	riod		Number of Days	Actual Working Days	Day Off	Total Number of Workers	
Period	Preparation	10th Sep.8	2∿11th	Sep.82	2.0	2.0		48	
ng	Drilling Drilling	12th Sep.8	2∿24th	Sep.82	12.3	12.3	-	300	
Working	Removing	24th Sep.8	2∿26th	Sep.82	2.4	2,4	-	62	
₹	Total	10th Sep.8	2∿26th	Sep.82	16.7	16.7	1	410	
_	Planned Length	7DH. (II)	ver- urden	17.20 ^m	Core 1	Recovery	for each 1	00 m section	
-g	Increase or Decrease in Length	_	ore ength	178.20 ^m	Depth of Hole		Section	Total	
Dr11	Length Drilled	200.20	ore covery	97.4%	0√100	0.00m	99.1%	99.1%	
	Drilling	154°00' 4	7.8%	43.8%	100~200).20m	95.9%	97.4%	
	Hoisting & Lowering Rod	18°00'	5.6%	5.1%					
1 1	Hoisting & Lowering I.T.	110°00' 3	4.2%	31.2%					
Time	Miscellaneous	24°001	7.4%	6.8%		Efficie	ncy of Dril	ling	
ng Bu	Repairing	-	-	-	200.20n	n/Workin	g Period	11.99 m/day	
Working	Others	16°00'	5.0%	4.5%	200.20n	n/Workin	g Days	11.99 m/day	
3	Sub Total	322°00' 100.0%		91.5%	200.20	n/Drilli	ng Period	16.28 m/day	
li	Preparation	15°00' -		4.3%	200.20m/Net Drilling Day			s 16.28 m/day	
	Removing Moving	15°00'	-	4.3%	Total v	orkers/	200.20m	2.05 Man/m	
	Ren								
	Grand Total	352°00'	-	100.0%	Total		1000 00		
Inserted	Pipe Size & Meterage	Inserted Length (%) Drilling Length		very of ng Pipe	Hoistir			1.50 Man/m ing & Lowering 315 Times	
	NW 17.20m	8.6%		100%					
	BW 120.20m	60.0%		100%					
Casing									

A. II-9 Operational results of drill hole, PD-13

							·	1	
eriod		Pe	riod		Number of Days	Actual Working Days	Day Off	Total Number of Workers	
Pe	Preparation	26th Sep.8	2∿30th	Sep.82	4.3	4.3	-	145	
ing	Drilling	1st Oct.8	2∿ 8th	Oct.82	8.0	8.0	_	196	
Working	Removing	9th Oct.8	2∿ 9th	Oct.82	1.0	1.0	<u>-</u>	23	
3	Total	26th Sep.8	2∿ 9th	Oct.82	13.3	13.3	-	364	
ngth	Length	L 12D.OO	ver- urden	10.00 ^m	Core l	Recovery	for each 1	100 m section	
lled Len	Increase or Decrease in Length	_	ore ength	104.70 ^m	Depti of Hole		Section	Total	
Dri	Length Drilled	1 (21.50)	ore covery	93.9%			92.7%	92.7%	
	Drilling	93°00' 46.5%		35.1%	100~121.50m		99.0%	93.9%	
	Hoisting & Lowering Rod	10°00'	5.0%	3.8%			12 2		
Jie	Hoisting & Lowering I.T.	70°00¹ 3	5.0%	26.4%					
Time			3.5%	10.1%	Efficiency of Dril			ling	
Ing	Repairing			•	121.50m/Working Period			9.14 m/day	
Working	Others			-	121.50m/Working Days			9.14 m/day	
3	Sub Total	200°00' 10	0.0%	75.5%	121.50m/Drilling Period			15.19 m/day	
	Removing Preparation	24°00'	-	9.1%	121.50m/Net Drilling Days			15.19 m/day	
	Moving	41°00' -		15.5%	Total workers/121.50m			3.00 Man/m	
	Rei								
Ш	Grand Total			100.0%	Total		/101 50		
Ę,					Drilli	ig Worke	rs/121.50m	1.61 Man/m	
Inserted	Pipe Size & Meterage			very of ng Pipe	Hoisting & Lowering Hoist Rod 15 Times I.T.			ing & Lowering	
	NW 20.50m	16.9%		100%					
Pipe	BW 72.00m	59.3%		100%					
Casing		· · · · · · · · · · · · · · · · · · ·							
ျ			<u> </u>						

A. II-10 Operational results of drill hole, PD-14

Г		· 			N -1	Actual			m1	
Period		Pe	eriod				Day	Off	Total Number of Workers	
		10th Oct.82	2∿10th	Oct.82	1.0	1.0	-	-	43	
l ng	Drilling	11th Oct.82	2∿23rd	Oct.82	13.0	13.0	•	•	419	
Working	Removing	24th Oct.82	2∿25th	Oct.82	2.0	2.0	-	•	46	
3	Total	10th Oct.82	2∿25th	Oct.82	16.0	16.0	-	-	508	
Length	Planned Length	1 200 aa	ver- urden	12.00 ^m	Core 1	Core Recovery for each		ch 1	00 m section	
	Daggerong de	_	ore ength	184.50 ^m	Depth of Hole		Section	n	Total	
Drilled	Length Drilled	i 200. 2D	ore covery	98.0%	0∿100.00m 98.7		98.7%		98.7%	
	Drilling	163°00' 50.3%		46.9%	100~200	.00∿200.20m			98.0%	
	Hoisting & Lowering Rod	19°00' 5	5.9%	5.5%						
 	Hoisting & Lowering I.T.	90°00† 27	7.8%	25.9%						
Time	Miscellaneous			5.7%	Efficiency of Dril					
	Repairing -				200.20m/Working Period				12.51m/day	
Working	Others	32°00' 9.9%		9.2%	200.20m/Working Days			12.51m/day		
₩	Sub Total	324°00' 100.0%		93.1%	200.20m/Drilling Period			15.40 m/day		
	° Preparation	12°00'	-	3.4%	200.20m/Net Drilling Days			Days	15.40 m/day	
	Moving 12°00' -		-	3.4%	Total workers/200.20m				2.54 Man/m	
	Кеп									
	Grand Total 348°00'		- 100.0%		Total			30-	2 09 Man/m	
nserted	Pipe Size &			very of	Drilling Workers/200.20m 2.09 Mar					
Inser	Meterage			ng Pipe	Hoisting & Lowering Hois Rod 26 Times I.T.				ting & Lowering 315 Times	
	NW 12.00m	6.0%	<u> </u>	100%		_				
Pipe	BW 120.90m	60.4%		100%						
Casing										
Ш	· <u></u>		<u> </u>		<u> </u>					

A. II-II Operatinoal results of drill hole, PD-15

eriod		Р	eriod		Number of Days	Actual Working Days	Day	Off	Total Number of Workers	
18	Preparation	26th Oct.8	2∿31st	Oct.82	6.0	6.0		-	166	
Working	Drilling	1st Nov.8	2∿12th	Nov.82	11.3	11.3		_	273	
lor.	Removing	12th Nov.8	2∿13th	Nov.82	1.7	1.7		-	38	
	Total	26th Oct.8	2∿13th	Nov.82	19.0	19.0		-	477	
Length	Planned Length	160.00** *	ver- urden	1.00 ^m	Core 1	Core Recovery for each 1			00 m section	
۱۶	Decrease in	_	ore ength	158.30 th	Depth of Hole		Sectio	n	Total	
Drille	Length Drilled	161.30	ore covery	98.6%	<u> </u>		100%		100%	
	Drilling	158°00' 54.9%		44.1%	100~161	1.50m	96.4%		98.6%	
	Hoisting & Lowering Rod	18°00'	6.2%	5.0%	-	_				
Je J	Hoisting & Lowering I.T.	106°00' 3	6.8%	29.6%						
Time	Miscellaneous	6°00'	2.1%	1.7%		Efficie	ling			
gu	Repairing			-	161.50m/Working Period			8.50 m/day		
Working	Others			-	161.50m/Working Days			8.50 m/day		
WC	Sub Total	288°00' 10	0.0%	80.4%	161.50	n/Drilli	14.29 m/day			
	Preparation	30°00'	_	8.4%	161.50	61.50m/Net Drilling Days			14.29 m/day	
	Preparation Moving	40°00' -		11.2%	Total workers/161.50m			2.95 Man/m		
Н	Ren									
	Grand Total	358°00' -		100.0%	Total					
nserted	Pipe Size &			ery of	<u> </u>	ng Worke	1.69 Man/m			
Ins	Meterage	Drilling Length	Casi	ng Pipe	Hoisting & Lowering Hoist Rod 19 Times I.T.			noist I.T.	ing & Lowering 254 Times	
Ptpe	NW 1.00m	0.6%		100%	,					
	BW 96,00m	59.4%		100%						
Casing										

A. II-12 Summarized operational data of each drill hole

	Remarks									
	** m/shift	5.82	4.52	5.14	89.7	5.41	90°5	5.13	4.75	5.08
	* m/shift	6.02	5.24	5.42	5.85	6.26	5.52	5.89	4.90	5.64
	Total	31	29	39	30	37	54	39	34	263
	Casing etc.	1	7	2	9	5	2	5	Ι	26
	Drilling	30	25	37	24	32	22	34	33	237
	Recovery	98.5	85.4	95.6	98.1	97.4	93.9	98.0	98.6	96.1
	Length	173.50	103.30	183.30	124.90	178.20	104.70	184.50	158.30	1,210.70
Drilling	length	180.50	131.00	200.50	140.50	200.20	121.50	200.20	161.50	1,335.90
Drilling poriod	ובל מוודדדים	15th Jul. '82 ~ 25th Jul. '82	29th Jul. '82 ~ 7th Aug. '82	9th Aug. '82 ~ 21st Aug. '82	29th Aug. '82 ~ 7th Sep. '82	12th Sep. '82 ~ 24th Sep. '82	lst Oct. '82 ~ 8th Oct. '82	11th Oct. '82 ~ 23rd Oct. '82	1st Nov. '82 ~ 12th Nov. '82	
	machine	TOM-3	TOM-3	TOM-3	TOM-3	TOM-3	TOM-3	TOM-3	TOM-3	Total
Drill hole	No.	PD-8	6-04	PD-10	PD-11	PD-12	PD-13	PD-14	PD-15	

* Drilled per one shift covering net drilling operations.

** Drilled per one shift covering total works conducted.

A. II-13 Working time of each drill hole

Drill Hole	Drilling	Hoisting	- σ -	Misc	Miscellaneous		Repairs	Others	Moving	Total
•		Rod	Inner tube	Casing insertion	Hole	Others			operacion	
PD-8	131°00'	23°001	98,001	4°001	1		1	ı	28°00'	284"00"
PD-9	,00,96	16°00'	83°001	8°00'	1	8°00'	ţ	24°00'	35°00'	270°00'
PD-10	180,001	18°00'	108°001	10,001	8°001	ı	. 1	ı	22°00'	346°001
PD-11	106°00'	11,000	84°001	100°6	16°00'	1	24°00'	ı	60°00'	310°00'
PD-12	154°00'	18°00'	110°00'	24°00'	1	ı	ı	16°001	30°001	352°00'
PD-13	93°001	100.01	70°00'	,00,9	18°001	3°001	1	ı	65°00'	265°001
PD-14	163°00¹	19°00'	,00,06	10,00	8°001	2°00°	ı	32°00'	24°00'	348°001
PD-15	158°00'	18°00'	106,001	00.9	ı	1	•	1	70°001	358°001
F I	10001001	1000001	100001	,00,22	50°00'	13°00'	100076	10000	1000766	2 5226001
1002	.00 T80°T	.00 ffT	/49 00		140,00	,	74 00	00 7/	334 00	2,333 00

A. II-14 Drilling meterage of diamond bits

					Dri		neteraç Jnit me		irill l	nole		
Item	Size	Туре	Bit No.	PD-8	PD-9	PD-10	PD-11	PD-12	PD-13	PD-14	PD-15	Total
	NX	NQ-WL	481180	10.20		_	-					10.20
			481181	13.80	_							13.80
			481182	13.50								13.50
			481183	14.60								14.60
			481184	20.60								20.60
			481185	30.60								30.60
			481186	25.00								25.00
			481205		11.10							11.10
			481206		14.80							14.80
			481207		18.10							18.10
			481208		21.00							21.00
			M-6557			9.80						9.80
			M-6558			12.50						12.50
			M-6559			13.90						13.90
			M-6560			15.80						15.80
			M-6561			20.00						20.00
			M-6562			23.00						23.00
			M-6563			15.10						15.10
Bit			M-9741				15.20					15.20
			M-9742				18.50					18.50
			M-9743				17.50					17.50
			M-9744				25.20					25.20
			M-9745					13.50				13.50
			M-9746					12.00				12.00
			M-9747					19.00				19.00
			M-9748					20.00				20.00
		į	M-9749					19.50				19.50
			M-9750					19.00				19.00
			M-9751						9.50			9.50
			M-9752						10.80			10.80
			M-9753						13.60			13.60
			M-9754						13.50			13.50
			M-9755						14.60			14.60

					Di	rilling	metera Unit m		irill b	nole		
Item	Size	Type	Bit No.	PD-8	PD-9	PD-10	PD-11	PD-12	PD-13	PD-14	PD-15	Total
	NX	NQ-WL	11410							11.50		11.50
			11411		************					14.00		14.00
			11412	-						18.50		18.50
Bit			11413							18,00		18.00
			11414							20.00		20,00
i		'	11415							15.30		15.30
]			48117							15.00		15.00
			48118								8.50	8.50
}			48119								15.00	15.00
			N-583								21.00	21.00
			N-584								18.00	18.00
			ท-585								15.00	15.00
			N-586								17.50	17.50
			Total	128.30	65.00	110.10	76.40	103.00	62.00	112.30	95.00	752.10
-	вх	BQ-WL	471795	13.00								13.00
			471796	15.00								15.00
	1		471797	10.00								10.00
			471798	9.70								9.70
			471799		15.00							15.00
			471800		18.00							18.00
			11422		23.80						*****	23.80
		•	M-1969			11.50						11.50
Bit			M-1970			13.00						13.00
			M-1971			20.00						20.00
			M-1972			15.00		 				15.00
			M-1973			20.80						20.80
			M-6559				10.00					10.00
			M-6560				8.00				·	8.00
			M-6923				18.00			 		18.00
Ì			M-6924				20.90					20.90
			11423					13.00				13.00
		<u> </u>	11424					15.00				15.00
			471790					19.00				19.00
1		}	471791	ļ				15.00	ļ			15.00
	<u> </u>	<u> </u>	471792	<u> </u>				18.00			<u></u>	18.00

					D	rilling		rage by	y dril	l hole		
Item	Size	Туре	Bit No.	PD-8	PD-9	PD-10	PD-11	PD-12	PD-13	PD-14	PD-15	Total
			471793						8.00			8.00
1	i		471794						9.00			9.00
			N-588						15.00			15.00
			N-589						17.50			17.50
Bit			N-590							9.50		9.50
			N-591							8.00		8.00
			M-6925							10.00		10.00
			M-6926				ĺ.			11.80		11.80
			M-6927							19.00		19.00
		:	11425							21.00		21.00
			11426								15.00	15.00
			11427								16.00	16.00
			471811								15.00	15.00
			471812								19.50	19.50
		l 	Total	47.70	56.80	80.30	56.90	80.00	49.50	79.30	65.50	516.00

A. II-15 Specifications of diamond bits

Size	Type	Carats per bit	Matrix	Stones per carat	Water way	Number	Remark
	NQ-WL	30	E	1/30	4	481180	Reset
		30	E	1/30	4	481181	н
		30	E	1/30	4	481182	11
		30	С	1/30	4	481183	11
		30	С	1/30	4	481184	11
		30	E	1/30	4	481185	IT
		30	E	1/30	4	481186	11
		30	E	1/30	4	481205	н
		30	E	1/30	4	481206	11
		30	С	1/30	4	481207	11
		30	E	1/30	4	481208	tı
		30	ZZ	1/30	4	M-6557	11
		30	Z	1/30	4	M-6558	н
NX		30	ZZ	1/30	4	M-6559	11
		30	Z	1/30	4	M-6560	11
		30	Z	1/30	4	M-6561	11
		30	Z	1/30	4	M-6562	11
		30	ZZ	1/30	4	M-6563	н
		30	ZZ	1/30	4	M-9741	H
		30	Z	1/30	4	M-9742	II
		30	Z	1/30	4	M-9743	
		30	Z	1/30	4	M-9744	It
		30	ZZ,	1/30	4	M-9745	11
	<u></u>	30	ZZ	1/30	4	M-9746	11

Size	Type	Carats per bit	Matrix	Stones per carat	Water way	Number	Remark
	NQ-WL	30	Z	1/30	4	M-9747	Reset
		30	Z	1/30	4	M-9748	11
		30	Z	1/30	4	M-9749	11
		30	Z	1/30	4	M-9750	11
		30	ZZ	1/30	4	M-9751	11
		30	ZZ	1/30	4	M-9752	11
		30	Z	1/30	4	M-9753	11
		30	Z	1/30	4	M-9754	11
		30	Z	1/30	4	M-9755	11
NX		30	^T 1	1/30	4	11410	11
		30	T ₁	1/30	4	11411	11
		30	т ₁	1/30	4	11412	11
		30	т2	1/30	4	11413	tı
		30	т2	1/30	4	11414	11
		30	T ₁	1/30	4	11415	11
		30	С	1/30	4	48118	11
		30	ပ	1/30	4	48119	tt
		30	ZZ	1/30	4	N-583	11
		30	Z	1/30	4	N-584	11
		30	Z	1/30	4	N-585	11
		30	Z	1/30	4	N-586	11
вх	BQ-WL	20	E	1/30	4	471795	tr
		20	E	1/30	4	471796	!I
		20	С	1/30	4	471797	11
		20	С	1/30	4	471798	11
		20	С	1/30	4	471799	

Size	Туре	Carats per bit	Matrix	Stones per carat	Water way	Number	Remark
	BQ-WL	20	E	1/30	4	471800	Reset
		20	т2	1/30	4	11422	11
		20	ZZ	1/30	4	M-1969	71
		20	ZZ	1/30	4	M-1970	11
		20	Z	1/30	4	M-1971	11
		20	Z	1/30	4	M-1972	11
		20	Z	1/30	4	M-1973	11
		20	Z	1/30	4	M-6559	11
		20	Z	1/30	4	M-6560	πt
		20	Z	1/30	4	M-6923	11
		20	Z	1/30	4	M-6924	11
вх		20	т ₁	1/30	4	11423	11
		20	T ₁	1/30	4	11424	11
		20	Е	1/30	4	471790	tt
		20	E	1/30	4	471791	11
		20	С	1/30	4	471792	11
		20	С	1/30	4	471793	11
		20	E	1/30	4	471794	†I
		20	ZZ	1/30	4	N-588	11
		20	ZZ	1/30	4	N-589	11
		20	Z	1/30	4	N-590	11
		20	Z	1/30	4	N-591	11
		20	ZZ	1/30	4	M-6925	11
		20	Z	1/30	4	M-6926	117
		20	Ž	1/30	4	M-6927	11

Size	Type	Carate per bit	Matrix	Stones per carat	Water way	Number	Remark
	BQ-WL	20	T ₁	1/30	4	11425	Reset
		20	^T 1	1/30	4	11426	31
вх		20	T ₁	1/30	4	11427	"
		20	E	1/30	4	471811	11
		20	С	1/30	4	471812	ft

A. II-16 Assay results of the drilled core

Sample No.	Length (m)	Au g/t	Ag g/t	Cu %	РЪ %	Zn %	As %
PD 859	59.1∿ 59.45	6.0	4	0.03	0.01	0.01	0.08
878	77.9∿ 79.3	1.1	4	0.02	0.05	0.07	0.07
890	90.2∿ 90.7	5.3	5	<0.01	0.03	0.09	0.52
8119	119.5~119.8	<0.1	<1	<0.01	0.02	0.03	0.06
8136	136.00137.4	0.8	3	0.02	0.01	0.42	0.69
8142	142.3∿142.8	<0.1	13	<0.01	0.01	0.01	0.05
8154	154.6~155.8	<0.1	<1	0.01	0.01	0.01	0.07
8155	155.8~156.4	0.5	2	0.02	0.07	0.52	0.16
8157	157.1~158.1	<0.1	29	0.17	0.02	1.20	0.12
8158	158.1∿158.6	<0.1	6	0.10	0.02	0.23	0.07
8166	166.4∿167.4	1.0	13	0.10	0.03	1.60	2.10
8167	167.4∿168.3	<1.0	<1	0.01	0.02	0.12	0.12
8168	168.3~169.5	1.3	37	0.01	0.03	0.40	5.20
8169	169.5∿170.5	<0.1	13	0.04	0.02	0.04	0.28
8170	170.5∿171.4	0.2	2	0.01	0.02	0.07	0.21
977	77.3∿ 78.0	<0.1	<1	<0.01	0.03	0.26	0.96
978	78.0∿ 79.0	1.9	15	0.02	0.05	1.40	9.70
979	79.0∿ 80.0	0.4	6	0.03	0.03	0.22	1.10
980	80.0∿ 81.0	<0.1	<1	0.01	0.02	0.02	0.09
981	81.0~ 82.0	<0.1	<1	0.01	0.02	0.03	0.12
982	82.0∿ 83.0	<0.1	<1	<0.01	0.03	0.03	0.20
983	83.0∿ 84.7	0.4	17	0.01	0.04	0.08	0.11
984	84.7∿ 85.3	0.1	3	0.01	0.06	0.32	2.80
10105	105.2∿105.8	5.2	17	0.05	0.11	1.73	2.42
10106	105.8∿107.4	0.5	8	0.03	0.02	0.04	0.11
10107	107.4∿108.0	4.3	25	0.08	0.09	1.20	1.60
10108	108.0~109.0	0.4	4	0.01	0.03	0.26	0.40
10109	109.0~110.0	24.8	42	0.13	0.16	2.09	2.54
10110	110.0~111.0	3.4	70	0.22	0.13	4.98	4.26
10111	111.0~111.8	1.9	50	0.18	0.06	4.33	2.30
10112	111.8~112.8	tr,	tr	0.01	0.02	0.17	0.15
10113	112.8~113.6	2.1	11	0.04	0.01	1.35	0.64
10114	113.6~114.8	1.9	19	0.12	0.03	1.49	0.47

Sam	ple No.	Length (m)	Au g/t	Ag g/t	Сս %	Pb %	Zn %	As %
PD	10115	114.8~116.1	15.0	84	0.25	0.13	5.53	12.6
	11132	131.8~132.55	tr	tr	0.01	0.04	0.20	0.66
	11133	133.0~134.2	tr	tr	0.00	0.02	0.02	0.13
	11134	134.2∿135.0	tr	tr	0.00	0.04	0.06	0.12
	11135	135.0\136.0	tr	tr	0.01	0.02	0.03	0.10
	11136	136.0∿137.0	tr	tr	0.01	0.03	0.17	0.20
	11137	137.0∿138.0	tr	tr	0.01	0.02	0.08	0.10
	12180	180.0\180.8	tr	tr	0.02	0.03	0.04	0.11
	12181	180.8\182.2	tr	tr	0.02	0.02	0.07	0.14
	12182	182.2∿183.0	tr	tr	0.01	0.00	0.04	0.05
	12183	183.0∿184.0	tr	tr	0.01	0.01	0.13	0.05
	12184	184.0∿185.0	tr	tr	0.00	0.01	0.03	0.07
	12185	185.0∿186.0	tr	tr	0.07	0.01	0.06	0.08
	12186	186.0∿187.0	0.9	10	0.11	0.02	0.07	0.09
	12187	187.0~188.0	tr	tr	0.00	0.00	0.02	0.06
	12188	188.0∿188.9	tr	tr	0.02	0.02	0.04	0.10
	12191	190.8~192.0	tr	tr	0.01	0.01	0.01	0.06
	12192	192.0∿193.0	tr	tr	0.00	0.01	0.00	0.06
	12193	193.0∿193.6	tr	73	0.00	0.01	0.00	0.06
	1376	76.1∿ 76.5	tr	tr	0.53	0.07	0.13	0.17
	13765	76.5∿ 77.0	tr	276	2.09	0.03	0.12	0.11
	1377	77.0∿ 78.1	tr	tr	0.01	0.03	0.02	0.11
	13100	100.6∿101.4	tr	tr	0.01	0.02	0.03	0.10
	13101	101.4∿101.8	tr	tr	0.01	0.04	0.07	0.31
	14124	123.7∿125.0	tr	9	0.03	0.05	0.45	0.15
	14125	125.0~126.0	tr	tr	0.00	0.06	0.06	0.13
	14126	126.0∿127.0	tr	tr	0.00	0.03	0.03	0.12
	14127	127.0∿128.0	tr	6	0.01	0.08	0.20	0.14
	14128	128.0∿129.0	tr	tr	0.00	0.06	0.06	0.13
	14141	141.0∿141.7	tr	tr	0.00	0.02	0.01	0.08
	14158	158.3~159.3	tr	tr	0.01	0.03	0.15	0.10
	14159	159.3∿160.0	tr	tr	0.01	0.02	0.02	0.09
	14160	160.0∿161.3	4.6	8	0.02	0.04	0.32	0.35
	14161	161.3~162.3	tr	10	0.02	0.04	0.40	0.10

Samp	ple No.	Length (m)	Au g/t	Ag g/t	Cu %	Pb %	Zn %	As %
PD	14162	162.3~163.3	tr	tr	0.01	0.02	0.06	0.07
	14163	163.3∿164.4	2.0	35	0.12	0.13	2.56	2.62
	15110	110.1∿111.2	2.0	54	0.34	0.09	0.33	0.70
	15111	111.2∿112.4	2.5	69	0.40	0.13	0.18	0.70
	15112	112.4~113.4	1.5	16	0.07	0.14	0.24	1.13
	15113	113.4~114.5	tr	15	0.05	0.05	0.26	0.82
	15114	114.5~115.5	tr	15	0.04	0.02	0.04	0.06
	15115	115.5~116.0	0.4	39	0.25	0.05	0.11	0.24
	15120	120.8∿121.4	1.6	43	0.24	0.03	0.64	1.73
	15121	121.4∿122.0	0.9	12	0.00	0.03	0.31	5.70
	15147	147.5∿148.5	2.8	9 -	0.00	0.05	0.13	0.26
	15148	148.5∿149.3	tr	tr	0.00	0.01	0.01	0.05
	15152	152.1∿153.1	0.9	9	0.01	0.03	0.13	1.13

A. II-17 Microscopic observation of the thin sections

Sample No.	Location	Macroscopic description	Microscopic observation
PD-811.5	PD-8	granodiorite	Biotite-hornblende granodiorite Hypidiomorphic and granular texture Felsic mineral compositions of the rock are a little quartz (0.2~ 0.4 mm in size) and a large amount of potash feldspar and plagio- clase (Ca. 1.5 mm in size). As mafic minerals, it is observed that majority is green hornblende with subordinate amount of brown hornblende and biotite. Accompanied also are a few amount of zircon, apatite and opaque mineral. Hornblende sometimes shows glomerophyric texture and is altered to actinolite. It suffered strong epidotization and sericitization with a few chlorite.
PD-898	PD-8	Altered andesite	Hornblende andesite Strong alteration made it difficult to identify an original rock. Strong alteration made it difficult to identify an original rock. Main constituent minerals are hornblende, lath-shaped subhedral plagioclase (1.0 \times 0.5 mm in size), subhedral potash feldspar (0.2 \times 0.3 mm in size) and subhedral quartz with accessory magnetite and leucoxine. Plagioclase shows albite twinning and is partly altered to actinolite and sericite. Hornblende shows sub to euhedral crystal form and grain size varies 1.8 \times 1.0 mm to 2.0 \times 2.5 mm. Axial color of hornblende is green and a part of it changes into actinolite. The rock suffers from various alteration such as silicification, sericitization, carbonitization, epidotization and minor chloritization.
PD-910.5	PD-9	tuff breccia	Pyroxene-andesitic tuff Fragments are composed mainly of prismatic eu-subhedral plagioclase (1.0 \times 0.5 mm) and coarse grained clinopyroxene (2.0 1.5 mm) which suffers fragmentation. Interstice is composed of devitrified glass and plagioclase.

Sample No.	Location	Macroscopic description	Microscopic observation
			Alteration is strong to produce lots of amphibole, chlorite, epidote and sericite.
PD-987.6	PD-9	tuff breccia	Two pyroxene-andestic tuff Fragments are fractured crystals of monoclinic pyroxene (2.0 \times 1.5 mm \sim 3.0 \times 2.5 mm in size), lath-shaped plagioclase (1.5 \times 0.5 mm in size) and a small amount of orthorhombic pyroxene. Interstice is filled with glass and minute plagioclase. Sericitization and chloritization are observed.
PD-1088	PD-10	basaltic andesite	Hornblende andesite Porphyritic texture Porphyritic texture Phenocryst is composed of euhedral to subhedral lath-shaped plagioclase (2 × 0.8 mm) and euhedral hornblende (0.5 × 0.5 ~ 1 × 1 mm). Groundmass is filled with minute lath-shaped plagioclase. The rock suffers strong alteration to hornblende (probably actinolite) and sericite. Weak silicification and argillization producing kaoline are also observed.
PD1242.3	PD-12	Lithic tuff	Hornblende-pyroxene andesitic tuff Lithic fragment (3.5 × 2.0 mm) and crystal fragments of euhedral pyroxene and green hornblende are observed. Interstice is composed of minute plagioclase, quartz and glassy material. Strong alteration is observed such as uralitization, epidotization, sericitization and silicification.
PD1282.8	PD-12	tuff breccia	Pyroxene-andesitic tuff Porphyroclastic texture Crystal fragment is mainly pyroxene which suffers uralitization— chloritization along the crack and a small amount of plagioclase. Interstices are filled with minute crystals of plagioclase and amphibole and of quartz which is product of silicification.

Sample No.	Location	Macroscopic description	Microscopic observation
PD-1424	PD-14	Massive basaltic andesite	Pyroxene andesite Porphyrytic texture Coarse-grained (max 3.0 x 3.0 mm) euhedral clinopyroxene and a small amount of plagioclase comprise phenocrysts. Plagioclase remains as a pseudomorph and pyroxene suffers uralitization. Groundmass is composed of fine-grained plagioclase and pyroxene and is changed into aggregates of actinolite-tremolite. Very fine-grained crystals of biotite and chlorite are also
PD-1505	PD-15	Tuff breccia	Pyroxene andesite Porphyritic texture and porphyroclastic texture Porphyritic texture and porphyroclastic texture Phenocryst is mainly composed of sub to euhedral medium grained (2.0 × 1.8 mm) pyroxene which shows a zonal structure and changes into amphibole along and/or in the crystal. Groundmass is composed mainly of plagioclase with subordinate amount of pyroxene which is changed to amphibole. It suffers epidotization and argillization.
PD-1522	PD-15	Altered tuff breccia	Hornblende andesite Porphyritic texture The rock suffers strong silicification, uralitization, epidotization and argillization. Phenocryst is composed of hornblende and plagioclase (1.0 \times 0.5 mm and 0.3 \times 0.1 mm respectively). Groundmass is composed of minute plagioclase and is suffered from various alterations such as silicification, epidotization and uralitization. Secondary quartz is also observed as a vein-let, coarse-grained crystal and dissemination.
PD-1551	PD-15	Tuff breccia	Hornblende andesite Porphyritic texture and porphyroclastic texture

Sample No.	Location	Macroscopic description	Microscopic observation
			Phenocryst is composed of euhedral hornblende (1.0 x 0.8 mm) and plagioclase which show a porphyroclastic texture. Groundmass is mainly composed of fine lath-shaped plagioclase and a small amount of quartz. It suffers strong sericitization, chloritization and epidotization. Noted also is a quartz veinlet with tremolite and sericite. As opaque minerals, iron hydro-oxide mineral and leucoxene are observed.
PD-1510	PD-15	Aphanitic basaltic andesite	Hornblende andesite Porphyritic texture Phenocryst is composed of coarse-grained (2.0 ×1.8 mm) green hornblende and plagioclase which shows albite twinning and obscure crystal boundary due to sericitization. Groundmass is composed of minute plagioclase. Epidots, epidote-sericite-quartz veinlets and a small amount of
PD-15146	PD-15	Altered rock	Tuff breccia The rock suffers bitter alteration producing a lot of chlorite, sericite, carbonate and quartz. A lithic fragment $(2.5 \times 1.5 \text{ mm} \text{ in size})$ which is changed into sericite aggregate suggests the tuff breccia origin.
PD-15155	PD-15	Tuff breccia	Andesitic tuff Fragments are lithic material and plagioclase crystals both of which are replaced by fine-grained quartz and chlorite and veinformed amphibole. Plagioclase shows albite twinning and glomeroporphyritic texture. Interstice is mainly composed of fine lath-shaped plagioclase and spherulite filled with chlorite, chalcedony and zeolite. The rock as a whole suffers silicification, chloritization, carbonitization and argillization.
PD8169.6	PD-8	Silicified- argillized rock	Altered rock The rock is composed mainly of quartz, calcite and chlorite with

Microscopic observation	subordinate amount of sericite and sphene.	Altered rock The rock is highly altered and pyritized. Mineral composition is nearly the same as PD 8169.6.				
Macroscopic description		Argillized altered rock				
Location		PD-9				
Sample No.		PD979.6			_	

A. II-18 Microscopic observation of the polished sections

Microscopic Observation	Mineral assemblage: Chalcopyrite a little Pyrite rare	Ore shows a brecciated texture and mineralization is restricted only in the breccia. Chalcopyrite is a very fine grain (a few μ m to several tens μ m) in association with eu-anhedral pyrite.	Mineral assemblage: Arsenopyrite common Sphalerite a few Galena, chalcopyrite, pyrite few	Arsenopyrite aggregates in anhedral to euhedral crystal. Sphalerite containing chalcopyrite dotts replaces a part of arsenopyrite. Galena is enclosed in an arsenopyrite crystal.	Chalcopyrite appears as a dot in sphalerite. Pyrite is euhedral to anhedral crystal in association with arsenopyrite or gangue mineral. A part of pyrite is changed into marcasite.	Mineral assemblage : Pyrite, sphalerite	Pyrite has two types of occurrence, one is dissemination or aggregates of euhedral to subhedral crystal, the other is fine grained vein type pyrite which surrounds euhedral pyrite crystal. Sphalerite usually contains sphalerite dot and replaces a part of pyrite and arsenopyrite. Arsenopyrite shows euhedral to anhedral crystal and occurs dissemination or coparagenesis with pyrite.	Chalcopyrite appears as a dot in sphalerite and minor crack filling in pyrite and arsenopyrite. All mineral but veintype pyrite and marcasite is shatterd and brecciated.	
Macroscopic Description	Chalcopyrite ore		Arsenopyrite- sphalerite ore			Sphalerite ore			
Location	PD-8		PD-9	,	-	PD-10			
Sample No.	PD 867.3		PD 978.0			PD 10109			

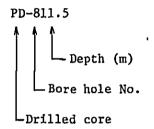
Sample No.	Location	Macroscopic Description	Microscopic Observation
PD 10110.0	PD-10	Sphalerite- chalcopyrite ore	Mineral assemblage: Sphalerite abundant Chalcopyrite, arsenopyrite common Pyrite, galena, Ag bearing pb-Bi mineral a few
			Spalerite with chalcopyrite dot is massive replacement of arsenopyrite. Chalcopyrite fills crack and marginal part of sphalerite and replaces arsenopyrite and pyrite. Arsenopyrite usually takes euhedral crystal. Pyrite has two crystal form as is a case in PDI0109 and later pyrite is cutting sphalerite and replacing chalcopyrite. Ag bearing pb-Bi mineral is often associated with chalcopyrite. This sample is also brecciated.
PD 10111	PD-10	Sphalerite ore	Mineral assemblage: Pyrite
			Pyrite is euhedral to anhedral crystal form and presents either massive or dissemination in gangue mineral. Arsenopyrite, in most of the cases, shows euhedral crystal presenting massive or dissemination. Sphalerite with chalcopytite dot replaces pyrite and arsenopyrite is, aside from inclusion in sphalerite, fracture filling in and around pyrite and sphalerite. Electrum, 200μ m and 100μ m in size, was found at crystal boundary of arsenopyrite and whithin a gangue mineral.
PD 10111.4	PD-10	Arsenopyrite- sphalerite ore	Mineral assemblage: Pyrite, arsenopyrite, sphalerite common Galena, chalcopyrite

Sample No.	Location	Macroscopic Description	Microscopic Observation
			Sphalerite contains chalcopyrite dot and replaces arsenopyrite and pyrite. Galena replaces pyrite and intrudes in sphalerite and arsenopyrite. Chalcopyrite also cuts arsenopyrite and encloses sphalerite.
PD10114	PD-10	Sphalerite ore	Mineral assemblage: Sphalerite, pyrite, arsenopyrite common Chalcopyrite a few Eledctrumscarse
	,		Arsenopyrite takes euhedral crystal form and interstices are filled with pyrite. Sphalerite containds lotds of chalcopyrite dot and replaces arsenopyrite or pyrite. Electrum shows various occurrence; paragenesis with grain boundary between arsenopyrite and pyrite, and within arsenopyrite crystal. EPMA discloses electrum contains about 40 percent of silver.
PD 10115.7	PD-10	Arsenopyrite- sphalerite ore	Mineral assemblage: Pyrite, arsenopyrite, sphalerite common Chalcopyrite a few
			Pyrite shows eu-anhedral crystal form and appears either dissemination or massive aggregates. Arsenopyrite is coarse grain and euhedral crystal which is surrounded by pyrite. Sphalerite contains chalcopyrite dot and replaces arsenopyrite.
PD11181	PD-11	Pyrite ore	Mineral assemblage: Pyrite a few Chalcopyrite, galena, sphalerite few
			Pyrite shows eu-anhedral crystal accompanyed by quartz vein in the form of dissemination and veinlet. Sphalerite is divided into two groupes, one contains chalcopyrite dot and the other not. Galena replaces pyrite. Chalcopyrite disseminates in the gangue mineral.
PD11183	PD-11	Pyrite ore	Mineral assemblage : Pyrite, marcasite common Chalcopyrite, sphalerite a few
			Pyrite is anhedral crystal and appeards inquartz vein.

Sample No.	Location	Macroscopic Description	Microscopic Observation
			Marcasite ids fine grained veinlert or aggregate surrounding pyritec crystal or in gangue mineral. Both chalcopyrite and sphalerite containing little dot of chalcopyrite appeards in the form of dissemination in quartz vein.
PD11187	PD-11	Pyrite ore	Mineral assemblage : Marcasite a few Sphalerite scarce
			The amount of ore mineral is very poor. Marcasite shows veinlet or dissemination.
PD 12181.7	PD-12	Pyrite ore	Mineral assemblage: Pyrite, marcasite common Chalcopyrite a few
			Chalcopyrite is accompanied by quartz vein with its anhedral crystal form. Marcasite is fine grained and cutting quartz and other gangue mineral. Chalcopyrite fills in the periphery of minute crack of pyrite.
PD 12190.9	PD-12	Pyrite ore	Mineral assemblage : Pyrite, marcasite a few Chalcopyrite few
			Pyrite is anhedral crystal and accompanied by quartz vein changing a part of it into marcasite. Both marcasite and chalcopyrite present in the form of dissemination.
PD1376.4	PD-13	Chalcopyrite ore	Mineral assemblage: Chalcopyrite, pyrite, marcasite common Sphalerite, pyrrhotite a few Argentite, pyrargyrite few
			Chaldcopyrite id is massive and contains eu-anhedral pyrite. Marcasite replaces apart of chalcopyrite. Sphalerite which contains fine dot of chalcopyrite ocupies periphery of and id is enclosed by chalcopyrite. Pyrrhotite also id is enclosed by chalcopyrite. Argentite and pyragyrite are cutting chalcopyrite.

Sample No.	Location	Macroscopic Description	Microscopic Observation
PD1376.5	PD-13	Chalcopyrite ore	Mineral assemblage: Chacopyrite abundant Pyrite, marcasite common Sphalerite a few Pyragyrite, argentitescarce
			Chalcopyrite appears in massive crystal which contains eu-anhedral pyrite. Pyrite has at least two stages of crystalization, the earlier one is enclosed in chalcopyrite and latter is fine grained pyrite which coexists with marcasite filling the periphery of euhedral pyrite and replacing chalcopyrite. Sphalerite with very fine grained chalcopyrite dot appears in the periphery of or as a inclusion of chalcopyrite. Argentite and pyrargyrite cut chalcopyrite and sphalerite.
PD 1378	PD-13	Chalcopyrite ore	Mineral assemblage: Chalcopyrite, pyrite
			Chalcopyrite is accompanied by quartz vein. pyrite shows two type of lccurrence, one is enclosed in shalcpyrite crystal and the other is surrounding, fracture-filling and replacing chalcopyrite. Both sphalerite and pyrrhotite are enclosed inchalcopyrite crystal. Pyrrargyrite is cutting foth chalcopyrite and later stage pyrite.
PD 14124	PD-14	Sphalerite ore	Mineral assemblage: Sphalerite, pyrite
			Pyrite shoues two types of occurrence, one is eu-anhedral crystal form and massivi the other is fine grained veinlet. Sphalerite which contains lots of pyrrhotite dot coexists with
			pyrice. A few grains of pyrrhotite are included in pyrite also. Galena is eithev inclusion of sphalerite or single crystal in
			gangue mineralv. Ag bearing pb-Bi mineral was found in galena showing exsolution lamellas. A part of pyrite changes into marcaste.

Sample No.	Location	Macroscopic Description	Microscopic Observation
PD 14163.6	PD-14	Sphalerite ore	Mineral assemblage: Pyrite, sphalerite
			Pyrite shows eu-anhedral crystal form and is accompanied by quaryz vein.
			Sphalerite usually contains chalcopyrite Galena replaces pyrite and occupies the peripheries of sphalerite and pyrite.
			Unalcopyrice also occurs near pyrite crystal. Pyrargyrite coexists with chalcopyrite.
PD 14164.1	PD-14	Arsenopyrite- sphalerite ore	Mineval assemblage : Pyrite, arsenopyrite, sphalerite common Galena a few
			Pyrite is massive with eu-anhedral crystal form. Arsenopyrite also shows eu-anhedral crystal andmost of the cases coexists with pyrite. Both pyrite and arsenopyrite are breciated. Sphalerite replaces purite and arsenopyrite. galena is enclosed in pyrite and arsenopyrite crystals.
PD 15115.6	PD-15	Chalcopyrite ore	Mineral assemblage: Chalcopyrite, marcasite
			Most of the eu-anhedral pyrite ehanges into mancasite. Chalcopyrite replaces a part of marcasite. Sphalerite with no chalcopyrite dot coexists with chalcopyrite. Pyraghrite, $20-30~\mu$ m in size, appears in chalcopyrite crystal.
PD 15121.4	PD-15	Arsenopyrite ore	Mineral assemblage: Arsenopyrite
			Arsenopyrite with euhedral crystal form appears as dissemenation


Sample No.	Location	Macroscopic Description	Microscopic Observation
			or aggregates. Pyrite is the same as arsenopyrite. Marcasite appears; (1) Vein-forming withen gangue mineral and (2) the periphery of pyrite crystal. Sphalerite with chalcopyrite dot disseminates independently in gangue mineral. Galena is enclosed both in pyrite and arsenopyrite.
PD 15121.7	PD-15	Arsenopyrite ore	Mineral assemblage: Arsenopyrite
PD 15129	PD-15	Pyrite ore	Mineral assemblage: Pyrite
PD 15148.7	PD-15	Arsenopyrite ore	Mineral assemblage: Arsenopyrite

Microscopic Observation	or gangue mineral in the form of dissemination and aggregates. Pyrite also exhibits eu-anhedral crystal. Sphalerite replaces arsenopyrite and pyrite. Galena is enclosed in arsenopyrite. Electrum, teo grains with size of $50~\mu$ m and $100~\mu$ m, was found adjacent to arsenopyrite.				
Macroscopic Description					
Location					
Sample No.					

A. II-19 Photomicrographs

A. II-19-1 Thin section

Sample No.	Rock Type
PD-811.5	Biotite-hornblende granodiorite
PD-910.5	Pyroxene andesitic tuff
PD-1088	Hornblende andesite
PD-1282.8	Pyroxene andesitic tuff?
PD-1505	Pyroxene andesite

Abbreviations

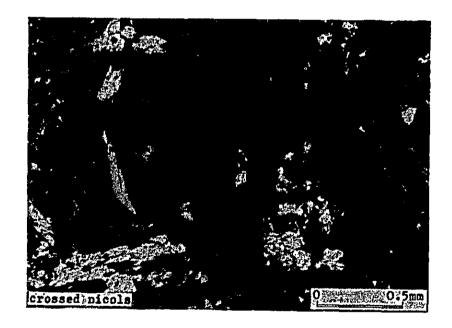
Pl : Plagioclase

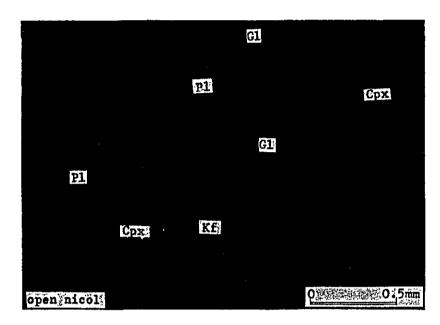
Qz : Quartz
Ch1 : Chlorite
Hb : Hornblend

Hb : Hornblende

Cpx : Clinopyroxene
Ep : Epidote

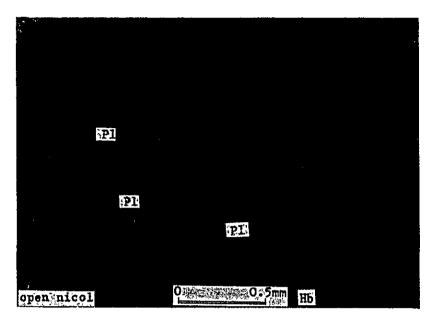
Bio : Biotite


Kf : Potash feldspar


G1 : Glass
Clay : Clay

Sample No. PD-811.5

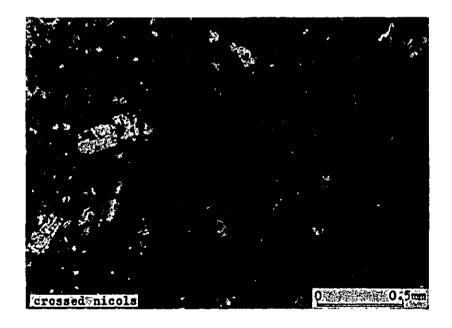
Rock type:
Biotite-hornblende granodiorite

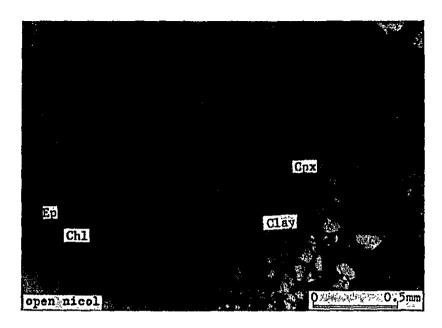


Sample No. PD-910.5

Rock type:

Pyroxene andesitic tuff

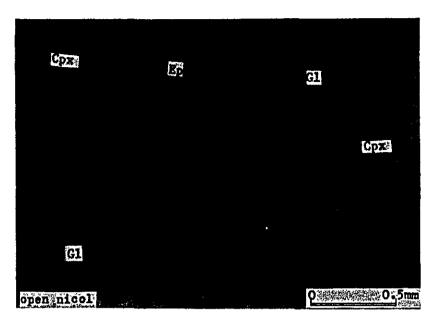




Sample No. PD-1088

Rock type:

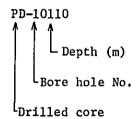
Hornblende andesite



Sample No. PD-1282.8

Rock type:

Pyroxene andesitic tuff ?


Sample No. PD-1505

Rock type:

Pyroxene andesite

A. I-19-2 Polished section

Abbreviations

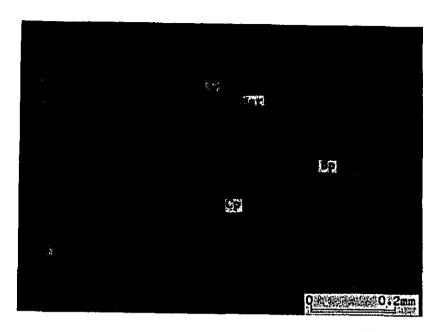
Sp : Sphalerite

Gn : Galena

Cp : Chalcopyrite

Gb : Ag-Pb-Bi mineral

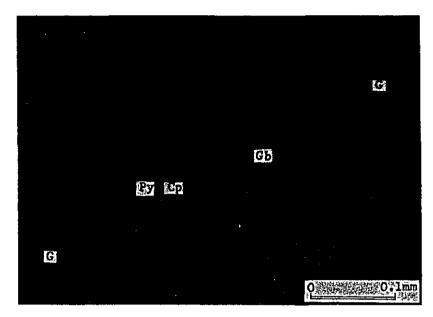
El : Electrum Arg : Argentite


Pr : Pyrargyrite

Py : Pyrite

Asp : Arsenopyrite
Mar : Marcasite

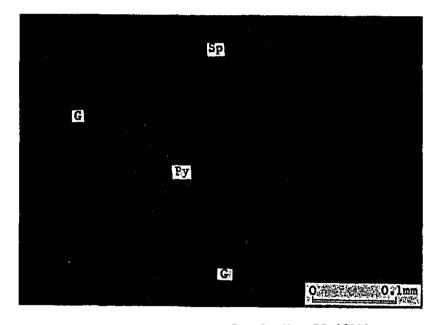
G : Gangue mineral


Pu : Proustite

Sample No. PD-10110

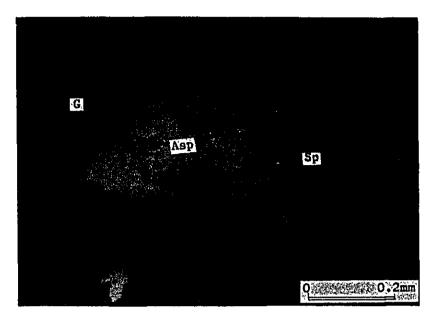

Paragenesis of chalcopyrite
and sphalerite.

Marcasite is the latest mineral
cutting both Cp and Sp.

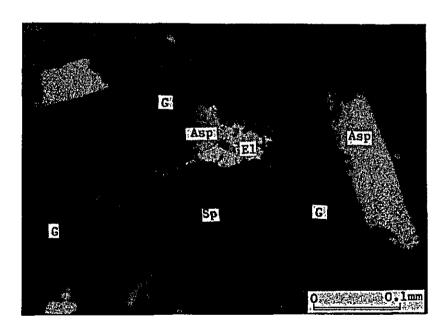


Sample No. PD-10110

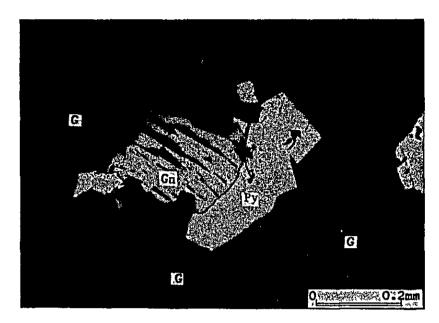
Ag-Pb-Bi mineral coexists with chalcopyrite.



Sample No. PD-10111
Electrum within gangue mineral.

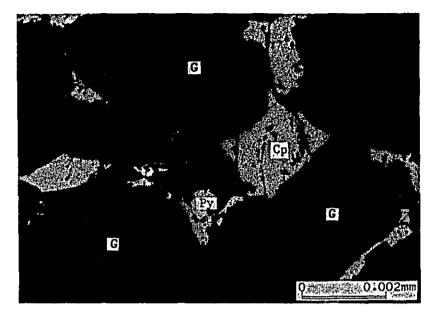

Sample No. PD-10111

Pyrite is replaced by sphalerite with chalcopyrite dot.

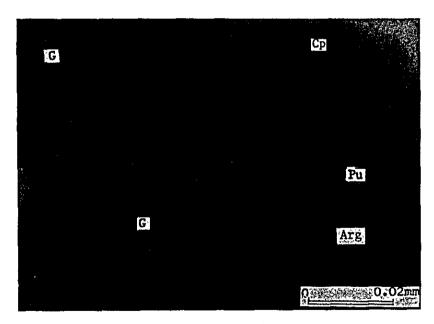


Sample No. PD-10111.4

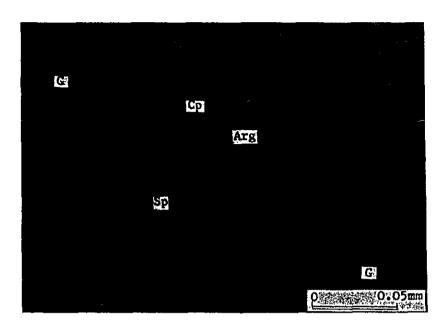
Arsenopyrite is replaced by sphalerite.



Sample No. PD-10114
Electrum coexists
with arsenopyrite.

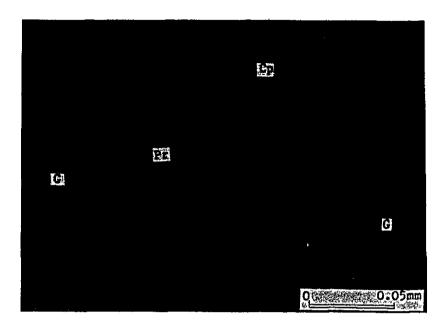

Sample No. PD-11181

Galena with triangular pit replaces pyrite.

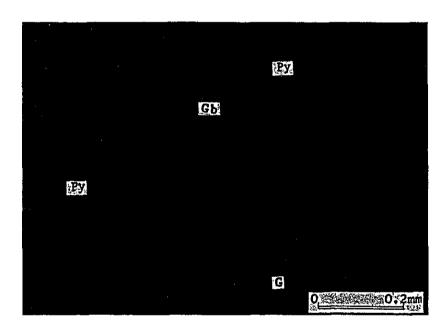


Sample No. PD-1376.4

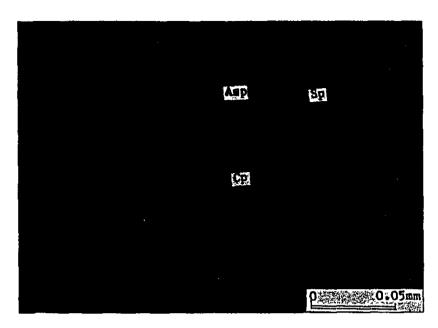
Paragenesis of chalcopyrite
-pyrite-pyrargyrite-argentite.



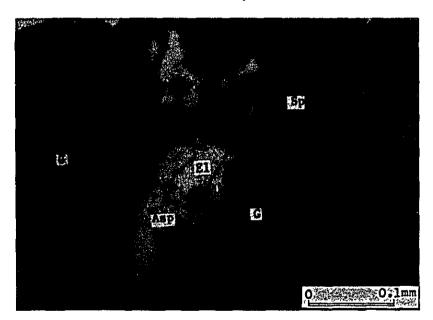
Sample No. PD-1376.4
Enlarged above.


Sample No. PD-1376.5

Argentite is cutting both sphalerite and chalcopyrite.


Sample No. PD-1378

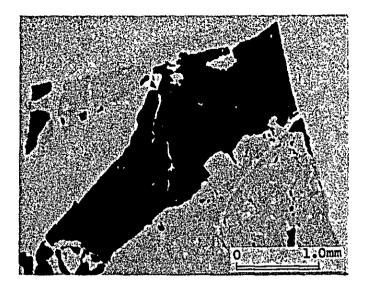
Pyrargyrite vein cuts chalcopyrite.


Sample No. PD-14124

Ag-Pb-Bi mineral within pyrite.

Sample No. PD-15121.7

Arsenopyrite-sphaleritechalcopyrite in
crystallization order.

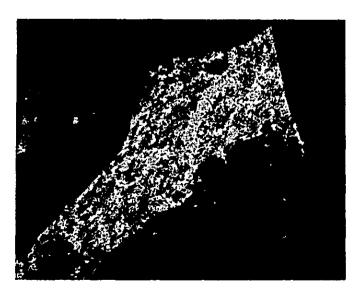


Sample No. PD-15148.7

Electrum with arsenopyrite.

A. I-19-3 EPMA

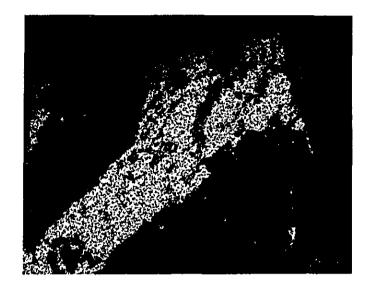
A - 121



Absorbed electron image

Ag-Pb-Bi mineral (Cosalite-galenobithmuthinite -gustarite series)

Ag X-ray image


Pb X-ray image

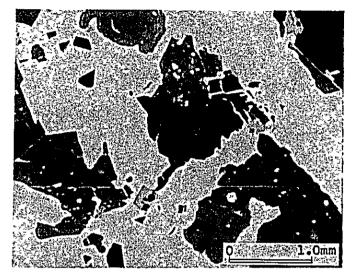
Sample No. : PD-10110


Locality : Diamante

Accel. volt : 15 kV

Absorb. elect. : 0.1 µA


Bi X-ray image


Cu X-ray image

Fe X-ray image

S X-ray image

Absorbed electron image

Electrum (black in the photo) in association with arsenopyrite.

Au X-ray image

Ag X-ray image

Sample No. : PD-10114

Locality : Diamante

Accel. volt. : 15 kV

Absorb. elect. : 0.1 µA