

LIST OF TABLE

Table A-15-1	Operation and Maintenance Equipment Cost
Table A-15-2	Administration Cost
Table A-15-3	Estimated Consulting Services Cost
Table A-15-4	Annual Operation and Maintenance Cost
Table A-15-5	Replacement Cost

LIST OF FIGURES

Fig	A-15-1	Assignment Schedule of Engineering Services (Diteiled Design Phase)
Fig	A-15-2	Assignment Schedule of Engineering Services (Construction Phase)

Table A-15-1 Operation and Maintenance Equipment Cost

120.2 5	.014]	Unit Rate			Ásount	-	
	4.43	F/C	L/C	Total	F/C	L/C	Total	Remarko
Unit	2	22,000,000		22,000,000	44,000,000		44,000,000	
	2	27,300,000		27,300,000	54,600,000	•	54,600,000	
"	ì	19,800,000	-	19,800,000	19,800,000	•	19,800,000	
**	- 1	32,000,000		32,000,000	32,000,000		32,000,000	
"	6	20,800,000		20,800,000	124,800,000		124,800,000	
		1 1			275,200,000		275,200,000	
	·							
		}	•					
							1	
]				•		
	Unit	Unit 2 u 2 u 1	Unit 2 22,000,000 " 2 27,300,000 " 1 19,800,000 " 1 32,000,000	F/C L/C Unit 2 22,000,000 2 27,300,000 1 19,800,000 1 32,000,000	Unit 2 22,000,000 22,000,000 " 2 27,300,000 27,300,000 " 1 19,800,000 19,800,000 " 1 32,000,000 32,000,000	Unit 2 22,000,000 22,000,000 44,000,000	Unit 2 22,000,000 22,000,000 44,000,000	Unit Q'ty F/C L/C Total F/C L/C Total Unit 2 22,000,000 44,000,000 44,000,000 44,000,000 " 2 27,300,000 54,600,000 54,600,000 " 1 19,800,000 19,800,000 19,800,000 " 1 32,000,000 32,000,000 32,000,000 32,000,000 " 6 20,800,000 20,800,000 124,800,000 124,800,000

Table A-15-2 Administration Cost

Description	Unit	Q• ty		Unit Rate			Amount	:	- Remarks
	5,,,,	1.5	F/C	ΓζC	Total	F/C	L/C	Total	Remarka
1. Temporary Office Rental	Honth	4		150,000	150,000		600,000	600,000	
2. Construction of Project	<u>n</u> 2	200		40,000	40,000		8,000,000	8,000,000	1
3.Office Equipment and Facilities	L.S	1					2,000,000	2,000,000	
4. Hotor Pool	12 E	600	1	10,000	10,000		6,000,000	6,000,000	
Sub-total					<u>;</u>		(16,600,000)	(16,600,000)	
5. Salaries									
Officer in thargo	и/н	60		180,000	180,000		10,890,000	10,800,000	
Civil Engineer	"	120		100,000	100,000		12,000,000	12,000,000	60 x 2
Asst, Civil Engineer	"	120		45,000	45,000		5,400,000	5,400,000	60 x 2
Secretary	"	60		35,000	35,000	}	2,100,000	2,100,000	
Driver		180		26,000	26,000		4,680,000	4,680,000	60 x 3
6. Postage and Others	south	60		\$0,000	\$0,000		3,000,000	3,000,000	
7. O/H of Vehicles	eonth .	60		450,000	450,000		27,000,000	27,000,000	
8. O.H. (20% of 1)	,						6,996,000	6,996,000	
Sub-total							(71,976,000)	(71,976,000)	
Grand Total							(88,576,000)	(88,576,000)	

Table A-15-3 Estimated Consulting Services Cost

								-
	Total	64.9	838.1	71.2	91.0	74.0	53.2	1,162.4
Total	Local	0.3	130.0	59.3	71.0		13.0	273.6
	Foreign	9.49	708.1	11.9	20.0	44.0	40.2	888.8
.se	Total	37.9	526.4	15.3	63.2	I	32.1	6.479
Construction Phase	Local	0.1	88.2	9.9	53.2	1	7.4	155.5
Cons	Foreign	37.8	438.2	8.7	10.0	ı	24.7	519.4
nase	Total	27.0	311.7	55.9	27.8	0.44	21.1	487.5
Detailed Design Phase	Local	0.2	41.8	52.7	17.8	ı	5.6	118.1
Detail	Foreign	26.8	269.9	3.2	10.0	0.44	15.5	369.4
i i	E E E	l. Mobilization and De- mobilization	2. Professional Services	3. Fixed Cost incl. Boring, Topo-Survey, etc.	4. Reimbursable Cost	5. Equipment and Vehicle	6. Miscellaneous 5% of (1-4)	Total

Fig.A-15-1 Assignment of Consulting Services (Detailed Design Phase)

					19	1987				-		To	Total M/M	¥
Personnel	JAN FEB	B MAR	R APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Foreign	Local	Trip
1.Project Director	3											2.0		4 (
3.Planning Engineer (A)												7.0		н н
4.Planning Engineer (B)							. *						7.0	۱.
5.Senior Design Engineer	l	1										12.0		Н
6.Design Engineer(A)														, - 1
7.Design Engineer(B)										·		0.6		н
8.Design Engineer(C)			-:										8.0	
9.Design Engineer(D)													0.8	
10.Structural Engineer												0.6		Н
11. Hydraulic Engineer												8.0		ᆏ
12.Hydrologist		-										4.0		~
13.Geologist(A)												4.0		른
14.Geologist(B)			-										0.9	
15.Soil Mechanical Engineer												4.0		Н
16.Topo-Surveyor(A)		-										0,0		Н
17.Topo-Surveyor(B)		-										7.0		,-1
18.Topo-Surveyor(C)		-											0.0	
19.Topo-Surveyor(D)													7.0	
20.Topo-Surveyor(E)		-											7.0	
21.Topo-Surveyor(F)													7.0	
22.Agronomist		-		-								3,0		H
23. Construction Planning Engineer												0.4		H
24. Technical Specification Engineer (A)												4.0	•	н
25.Technical Specification Engineer(3)													4.0	
26.Mechanical Engineer												4.0	•	H
27.Operation/Maintenance Engineer												4.0		
28. Economist			···•··									4.0		⊢ I
29.Specialists as required	日本 日	基础 化氯甲基苯酚 医水杨素	# B B B B B B B B B B B B B B B B B B B						. " " " " " " " " " " " " " " " " " " "			12.0		ო
30.Home office support			~~			· · · · · · · · · · · · · ·						0.8		
Total												138.0	62.0	25
			-					Ì						1

Fig. A-15-2 Assignment Schedule of Consulting Services (Construction Phase)

Trin) 	4	4		1	4	ო		 			н		1		24
M/M	Local			***************************************				42.0	42.0	2	36.0					120.0
Total	Foreign	4.0	48.0	α		0.84	42.0					3.0	ć	0.00	5.0	218.0
1992	. [
1991														# # # # # # # # # # # # # # # # # # #	10 位 2 位 2 位 2 位 2 位 2 位 2 位 2 位 2 位 2 位	
1990														######################################	· · · · · · · · · · · · · · · · · · ·	
1989															多四位医检测性线 经加强 医水溶涂剂 医外侧外侧 医甲状腺检查 医拉斯拉斯拉斯拉斯拉斯拉斯拉斯拉斯拉斯拉斯拉斯拉斯拉斯拉斯拉斯拉斯拉斯拉斯拉斯	
1988											-				医达克拉耳氏试验 医动脉系统	
1987																
Year	Personnel	1.Project Director	2.Team Leader	a Construction Brainson	(u) Tabilitaire in the table of the	4. Construction Engineer(B)	5.Construction Engineer(C)	6.Construction Engineer(D)	7. Construction Engineer(E)		8.Construction Engineer(F)	9.0/M Expert	40 10000	io.opecialist as nequired	11.Home Office Support	Total

Table A-15-4 Annual Operation and Maintenance Cost

(Unit: 10³ Ch\$)

	Item	Block-1	Block-2	Block-3 & 4	Total
1.	Personnel	1,903	3,782	8,127	13,812
2.	Depreciation of O/M Equipment	3,720	4,420	20,130	28,270
3.	Maintenance of Facilities	475	565	2,560	3,600
4.	Electricity for Treatment Plant	1,311	8,194	0	9,505
5	Chlorine	8,060	11,200	0	19,260
·	Office and General Expenses	1,800	2,150	9,850	13,800
7.	Miscellaneous	100	100	300	500
	Total	17,369	30,411	40,967	88,747

Table A-15-5 Replacement Cost

				(Unit:	10 ³ Ch\$)
 Item	Durability (Year)	Block-l	Block-2	Blocks-3 and 4	Total
Gate	20	5,090	777	14,505	20,372
Treatment Plant Facilities					
(1) Aerator	20	68,103	423,780		49,883
(2) Float	10	48,478	301,665		350,143
(3) Chlorinator	10	12,432	74,602	-	87,034
 (4) Switch Board	20	8,715	38,377		47,092
Total	20	81,908	462,934	14,505	559,347
•	10	60,910	376,267	_	437,177

Appendix 16 : PROJECT JUSTIFICATION

16.1 Justification Concept

16.2 Project Benefits

16.3 Economic Evaluation

16.4 Financial Evaluation

LIST OF TABLES

```
Table A-16-1
                 Agricultural Land of Small-Sector
Table A-16-2
                Agricultural Land of Small- and Large-Sector
Table A-16-3
                Upland Field and Pasture Areas
Table A-16-4
                 Irrigation Area
Table A-16-5
                 Inundation Area
Table A-16-6
                 Planting Schedule of Large-Sector
Table A-16-7
                 Benefit of Road and Bridge Improvements
                 Benefit of Flood Control
Table A-16-8
Table A-16-9
                 Economic Prices of Wheat and Maize
                Production Budget of Large-Sector (Financial and Economic
Table A-16-10
                 Praices )
Table A-16-11
                 Useful Life and Production Volume of Fruits
Table A-16-12
                Project Benefit of Small-Sector ( Economic Price )
Table A-16-13
                 Benefit Flow of Small-Sector ( Economic Price )
Table A-16-14
                 Benefit Flow of Table Grapes ( Economic Price )
Table A-16-15
                 Benefit Flow of Peaches ( Economic Price )
Table A-16-16
                 Benefit Flow of Nectarines ( Economic Price )
Table A-16-17
                 Benefit Flow of Wheat ( Economic Price )
Table A-16-18
                 Benefit Flow of Water Quality Improvement ( Economic Price )
Table A-16-19
                 Benefit Flow of Road and Bridge Improvements ( Economic Price )
Table A-16-20
                 Benefit Flow of Flood Control ( Economic Price )
Table A-16-21
                 Project Cost ( Economic Price )
                 Project Disbursment ( Economic Price )
Table A-16 22
Table A-16-23
                 Sensitivity Analysis with Flood Control Benefit
                 ( Economic Price )
Table A-16-24
                Project Benefit of Small-Sector (Financial Price)
Table A-16-25
                Benefit Flow of Small-Sector (Financial Price)
```

```
Table A-16-26
                Benefit Flow of Table Grapes (Financial Price)
Table A-16-27
                Benefit Flow of Peaches (Financial Price)
Table A-16-28
                Benefit Flow of Nectarines (Financial Price)
Table A-16-29
                Benefit Flow of Wheat (Financial Price)
Table A-16-30
                Benefit Flow of Water Quality Improvement (Financial Price)
Table A-16-31
                Benefit Flow of Road and Bridge Improvements (Financial Price)
Table A-16-32
                Project Cost (Financial Price)
Table A-16-33
                Project Cost -Measure Wise- (Financial Price)
Table A-16-34
                Project Disbursment (Financial Price)
```

LIST OF FIGURE

Fig A-16-1 Flow of Project Justification

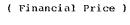
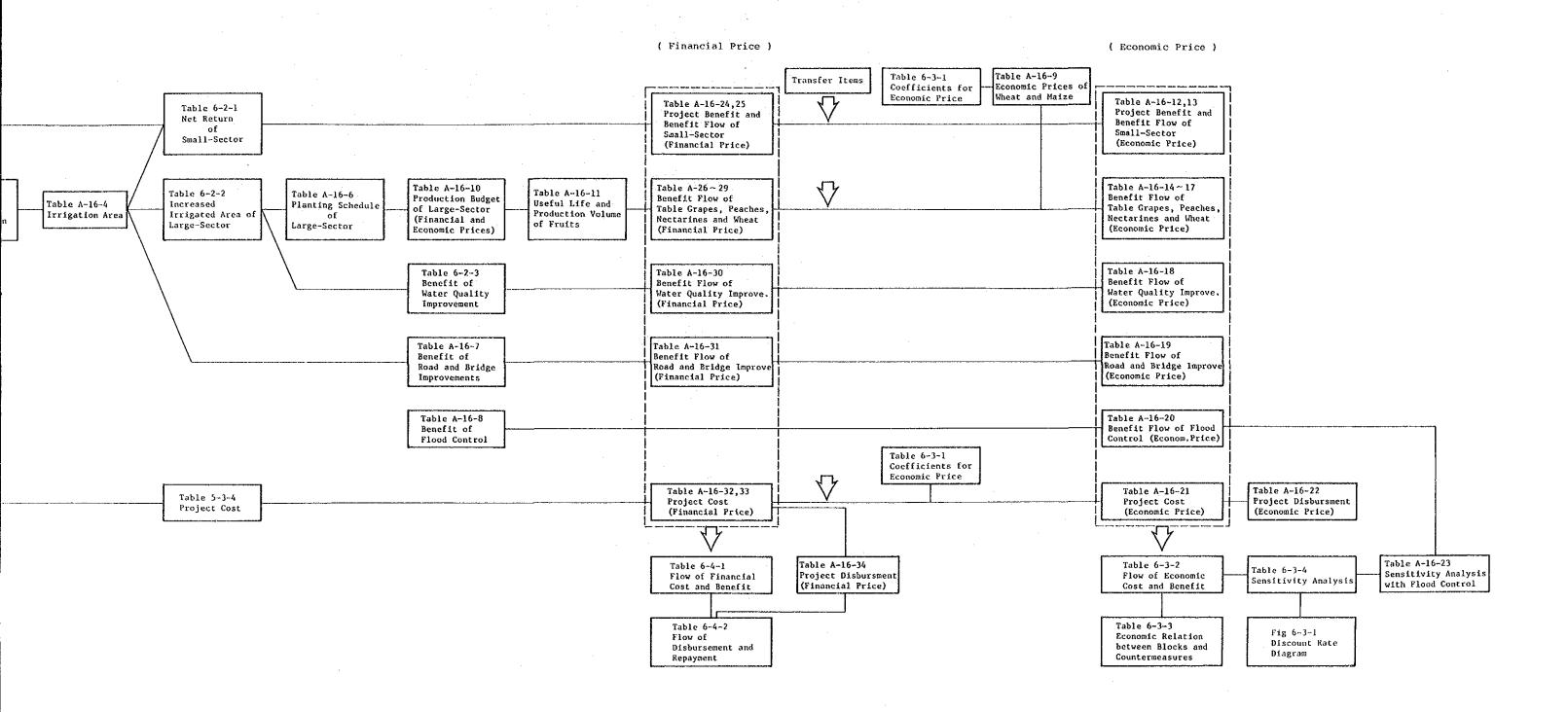



Fig A-16-1 Flow of Project Justification

16.2 Project Benefits

Table A-16-1 Agricultural Land of Small-Sector

(Unit: ha)

	Block	No. of Farm	Upland Field	Pasture	Sub- Total	Agricul. Infra. Area	Total
	Present	68	299	136	435	14	449
1	Without project	68	299	136	435	14	449
	With Project	68	360	75	435	14	449
	Present	184	626	276	902	36	938
2	Without Project	128	435	192	627	26	653
	With Project	128	627	0	627	26	653
	Present	105	483	221	704	21	725
3	Without Project	85	391	179	57.0	17	587
	With Project	85	570	0	570	17	587
	Present	693	2,772	1,247	4,019	139	4,158
4	Without Project	549	2,196	988	3,184	110	3,294
	With Project	549	3,184	.0	3,184	110	3,294
То	tal						
	Present	1,050	4,180	1,880	6,060	210	6,270
	Without Project	1,050	3,321	1,495	4,816	210	4,983
	With Project	830	4,741	75	4,816	167	4,983

Source: Table 4-3-1, 4-3-2

Table A-16-2 Agricultural Land of Small- and Large-Sector

(Unit: ha)

	m 4 .	Total	Others	_	Upland	Field + Pa	
	Block	Block	•	Infra. Area	Total	Small- Sector	Large- Sector
-	Present	2,870	120	90	2,660	435	2,225
1	Without Project	2,870	120	90	2,660	435	2,225
•	With project	2,870	120	90	2,660	435	2,225
	Present	4,910	320	200	4,390	902	3,488
2	Without Project	4,910	1,490	150	3,270	627	2,643
	With Project	4,910	1,490	150	3,270	627	2,643
	Present	5,660	480	120	5,060	704	4,356
3	Without Project	5,660	1,110	110	4,440	570	3,870
	With Project	5,660	1,110	110	4,440	570	3,870
	Present	22,500	2,430	450	19,620	4,019	15,601
4	Without Project	22,500	4,610	400	17,490	3,184	14,306
	With Project	22,500	4,610	400	17,490	3,184	14,306
Го	tal		·				-AU-W
	Present	35,940	3,530	860	31,730	6,060	25,670
	Without Project	35,940	7,330	750	27,860	4,816	23,044
	With Project	35,940	7,330	750	27,860	4,816	23,044

Source: Table 4-2-1, A-16-1

Urbanization after 1991: Block-1 would not be encroached. Block-2 may be saved by special legislation. Otherwise, 100 ha of field a year would be reduced. In Block-3, 30 ha for 5 years, then 10 ha a year throughout the rest of the project life. Block-4; 350 ha in 1992, 300 ha in 1993, 250 in 94, 200 in 95, 150 in 96, then 50 ha for the rest of the project life.

Table A-16-3 Upland Field and Pasture Areas

(Unit: ha)

		· . · . · · · · · · · · · · · · · · · ·	pland Fiel	d		Pasture	
	Block	Small- Sector	Large- Sector	Total	Small- Sector	Large- Sector	Total
	Present	299	1,461	1,760	136	764	900
1	Without Project	299	1,461	1,760	136	764	900
	With project	360	1,710	2,070	75	515	590
	Present	626	3,104	3,730	276	384	660
2	Without Project	435	2,293	2,728	192	350	542
	With Project	627	2,293	2,920	0	350	350
	Present	483	1,817	2,300	221	2,539	2,760
3	Without Project	391	$1,470^{\frac{1}{2}}$	1,861	179	2,400	2,579
	With Project	570	2,580	3,150	0	1,290	1,290
	Present	2,772	5,828	8,600	1,247	9,773	11,020
4	Without Project	2,196	5,828	8,024	988	8,478	9,466
	With Project	3,184	8,066	11,250	0	6,240	6,240
То	tal				***************************************		,
	Present	4,180	12,210	16,390	1,880	13,460	15,340
	Without Project	3,321	11,052	14,373	1,495	11,992	13,487
	With Project	4,741	14,649	19,390	75	8,395	8,470

Source: Table 4-2-1, A-16-1

Note: 1/ No reach to 1,817 ha because of the inundation influence.

Table A-16-4 Irrigation Area

(Unit: ha)

			rigable A	cea	Irrigated Arca	Increase
	Block	Total	Small- Sector	Large - Sector	Large-Sector	
~~~	Present	950	299	651	651	
1	Without Project	950	299	651	651	
	With project	1,190	360	830	830	179
***************************************	Present	2,920	626	2,294	2,294	
2	Without Project	2,920	435	2,485	2,2931/	
	With Project	2,920	627	2,293	2,293	0
<del></del>	Present	2,170	483	1,687	1,687	
3	Without Project	2,170	391	1,779	$1,470^{1/}$	
	With Project	3,150	570	2,580	2,580	1,110 (801) ^{2/}
	Present	4,740	2,772	1,968	1,968	
4	Without Project	4,740	2,196	2,544	2,544	
	With Project	10,080	3,184	6,896	6,896	4,352
	Total					····
	Present	11,080	4,180	6,900	6,600	
	Without Project	11,080	3,321	7,759	6,958	
	With Project	17,340	4,741	12,599	12,599	5,641
						$(5,332)^{2/}$

Source: Table 4-2-8, A-16-1, Fig 6-2-1

Note: 1/ Landuse limitation Table A-16-3

2/ Only irrigation effect.

In any case, urbanization would occur regardless of with or without project situation. Logically, a volume of irrigation water squeezed by urganization would be utilized to irrigate the periphery of the irrigated field at the time.

Table A-16-5 Inundation Area

Block	ŗ.	2	3	7	Total
Present	300	0	1,650	3,990	5,640
Without Project	300	0	1,650	3,990	5,640
With Project	0	0	0	0	0

Source: 3.5.2 Drainage Facilities and Related Problems, Table A-13-6

Table A-16-6 Planting Schedule of Large-Sector

			E		4			
Irrigation Irrigation	rigation		Irrigation Flood Control	L1	Irrigation		; <b>H</b>	Total
Table Grapes Table Grapes	Table	•	Grapes	Table Grapes	Peachs	Nectarines		
179 200	200		150	009	200	300	m	1,929
- 200	200		159	009	200	350	<b>P</b>	1,809
- 401	107		1	652	200	350	<b>≠</b> -1	1,903
179 801	801		309	1,852	1,500	1,000	3	5,641

Source: Table 6-2-2

Table A-16-7 Benefit of Road and Bridge Improvements

				(Unit: ha	ha)					( Unit : t )	; t)	(Un	1t : 10	( Unit : 10 ³ Ch\$ )
Block Large- Sector1/		S	Small-Sector	77				Weight	14				Benefit	
Orchard & Vineyard	No. of Farm	Orchard & Viney per Farm Area	Orchard & Vineyard per Farm Area3/	Ozdinary Field per Farm Area	• •	to Val Fruits of Large-Sec.	to Valparaiso Fruits of Fruits of Large-Sec. Small-Sec.	Total S	ro Sar Fruits of Small-Sec.	to Santiago 5/ Fruits of Others of Total Small-Sec. Small-Sec. Total	Total	to Val- paraiso	to San- tiago	Total
1 830	89	1.1	75	8.4	571	12,450	006	13,350	225	5,710	5,935	2,670	712	3,382
2 2,293	128	1.0	128	7.8	866	34,395	1,536	35,931	384	086,6	10,364	7,186	1,244	8,430
3 2,580	85	1.3	111	10.8	918	38,700	1,332	40,032	333	9,180	9,513	8,006	1,142	9,148
4 6,896	675	1.2	659	9.2	5,051	103,440	7,908	111,348 1,977	1,977	50,510	52,487	22,270	6,298	6,298 28,568
Total 12,599	830	   	973	- 7	7,538	188,985	11,676	200,661	2,919	75,380	78,299	40,132	9,396	9,396 49,528
Note:	10 m 10 m	Table A-16-4 Table 4-3-2 80% for expo Mean yield o Benefit can	Table A-16-4 Table 4-3-2 80% for export, 20% Mean yield of fruits Benefit can also be	for domestic is 15t/ha and mean yiel applied to return trips.	c and me return	an yield o	for domestic is 15t/ha and mean yield of other crops, cereal and vegetables is 10t/ha. applied to return trips.	ps, cerea	l and vege	tables is I	10c/ba.			

Table A-16-8 Benefit of Flood Control

Year Da					
Ħ	Damage of Houses	Damage of Road	Loss of Product.	Loss of Consumption of Product. Combustible	of Total
1985	72,080	51,457	52,861	36,263	212,661
1996	93,200	65,001	65,856	57,057	281,114
2010	129,120	87,516	87,506	76,598	380,740
1991	83,600	58,845	59,949	47,605	249,999
Source:	Plan Maes	Source : Plan Maestro, Alcantarillado del Gran Santiago, EMOS,	arillado de	1 Gran San	riago, EM
•	1984		-		

### 16.3 Economic Evaluation

Table A-16-9 Economic Prices of Wheat and Maize

(1985 Price)

Item	Unit	Wheat	Maize
Projected Price $\frac{1}{2}$ (Average of 1990 - 95)	US\$/ton	151	116
Quality Adjustment	8	100	100
Freight and Insurance	US\$/ton	26	26
CIF at San Antonio 2/	US\$/ton Ch\$/ton	177 36,547	142 29,320
Port Fee 3/	Ch\$/ton	1,424	1,424
Transport to Santiago	Ch\$/ton	953	953
Local Transport 3/	Ch\$/ton	-500	-500
Farm Gate Price	Ch\$/ton	38,424	31,197

> Year 1983 1985 1990 1995 Wheat (1983 price) 170 168 153 149 Wheat (current) 170 164 213 259 Canadian, No.1 WRS 13.5%, FOB St. Lawrence

Maize (1983 price) 136 120 113 113 Maize (current) 136 136 158 196 US No.2, Yellow, FOB Gulf Ports

2/Ch\$ = US\$ x 178 x 1.16 3/Value added tax (20%) is excluded.

Financial farm gate prices (producer's price) of the agricultural products are given in Chapters 3 and 4. The economic farm gate prices of wheat and maize are calculated from probable 1990 and 1995 world market prices forcasted by the World Bank, which was up-dated in June 1985. The base year is changed from 1985 in this report. Economic prices of vegetables and fruits are assumed to be equal to their financial price.

Table A-16-10 Production Budget of Large-Sector (Financial and Economic Praices)

Production   Price   Production   Producti											י מודרי מוא/ווש)
Financial 30.0 6.5 195,000	Cr Cr Cr Cr Cr Cr Cr Cr Cr Cr Cr Cr Cr C		94.19	الم تام	Gross	Direction 1	Production (	Cost	Net		Agricultural
Financial   30.0   6.5   195,000   -			(Ch\$/Kg)	(t/ha)	Value	Planting		Production	Value		111111111111111111111111111111111111111
Economic   38.4   6.5   249,600     67,500   182,100   21,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000	# * * * * * * * * * * * * * * * * * * *	Financial	30.0	6.5	195,000	ı	•	77,800	117,200	23,000	94,200
Financial 69.0   480,500   116,100   186,000   23,000   21,000   Economic 69.0   Table A-16-11   112,600   85,000   1119,400   D.P.C. 21,000   138,400   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   21,000   2	2 2 2 3 3	Economic	38.4	6.5	249,600	ı	,	67,500	182,100	21,000	161,100
Economic         69.0         397,600         98,200         165,100         21,000           Financial         77.0         Table A-16-11         112,600         85,000         138,400         G.P.V 23,000           Financial         77.0         94,200         71,800         1119,400         D.P.C. 21,000           Financial         62.0         89,600         82,000         115,000         21,000	Table	Financial	0.69			480,500	116,100	186,000		23,000	
Financial         77.0         Table A-16-11         112,600         85,000         138,400         G.P.V         23,000           Economic         77.0         94,200         71,800         1119,400         D.P.C.         21,000           Financial         62.0         89,600         82,000         115,000         21,000	Grapes	Economic	0.69	<del>-,</del>		397,600	98,200	165,100	·	21,000	
Economic 77.0 100.00 71,800 1119,400 0.P.C. 21,000 Financial 62.0 106,600 97,400 132,100 23,000 Economic 62.0 89,600 82,000 115,000 21,000		Financial	77.0	É		112,600	85,000	138,400	G.P.V	23,000	N.P.V
Financial 62.0 106,600 97,400 132,100 Economic 62.0 89,600 82,000 115,000	*anoray	Economic	77.0	Tap.	17-01-4 21	94,200	71,800	1119,400	) D.P.C.	21,000	I.P.C.
Economic 62.0 J 89,600 82,000 115,000	2		62.0			106,600	97,400	132,100		23,000	
	nec tar 188		62.0			89,600	82,000	115,000		21,000	

Source: Table A-16-9, A-10-8 to 14, A-10-24

Table A-16-11 Useful Life and Production Volume of Fruits

	. 10																									
Unit : t/ha )	Nectarines	0	0	0	0	Ö	H	ď	'n	15.0	ŝ	Ġ	ô.	Ġ	ō	15.5	'n	4	13.0	4	Ä	0	10.0		•	· i
un )	Peachs	0	0	0	0			10.5	12.0	13.5	15.0	14.5	14.5	- ;	14.5	14.0	13.5	13.0	12.0	11.0	Ö	9.5	0.6	8	8.0	. ]
	Table Grapes	0	0	•	5.5	ä	2			15.5		15.9			14.1		12.6			٠.		7.0	0.9	0.0	4.5	-
	Year No.	1	73	m	4	ŀŪ	v	7	ω	⁻ ທ	10	11	12	13	14	15	16	17	18	57	20	21	22	23	24	25

Source : Table A-10-18

Table A-16-12 Project Benefit of Small-Sector (Economic Price)

No. Total of Benefit Farm (103)	With-W/O	103,200 68 88,618	1,259,900 128 161,267	A CANADA CAN
Agricul- tural Net Return	W/OP. Wit	434,800 1,303,200	328,200	
	W.P.	116,900 113,500 1,738,000	1,588,100	
Indirect Production Cost	4/0 b.	113,500	87,700	
Indirec	W.P.		108,500	
ction	W/O P.	117,900 161,600 90,200 387,500 548,300	121,700 142,900 90,200 387,500 415,900	121,700
Met Production Value	. B.	174,400 191,000 90,200 650,300 1,854,900	182,100 172,300 90,200 650,300 1,696,600	182,100
Direct Production Cost	4/0 P.	54,900 72,400 96,900 130,800	54,900 72,400 96,900 130,800 per Farm	54,900 72,400 96,900
Direct E	W.P.	67,500 80,400 96,900 130,800	67,500 80,400 96,900 130,800	67,500 80,400 96,900
oduc- ue	W/0 P.	172,800 234,000 187,100 518,300	176,600 215,300 187,100 518,300	176,600 215,300 187,100 518,300
Grass Production Value	W.P.	241,900 271,400 187,100 781,100	249,600 252,700 187,100 781,100	249,600 252,700 187,100 781,100
Cropped Area(ha)	W/0 P.	4.6.6.4	90.00	40.00
Cropped Area(ha	W.P.	2.5 1.7 1.8 4.2 1.1	2.3 1.6 1.0 8.8	3.2 2.2 2.2 1.3
Block		Wheat Haize I Vegetables Fruits	Wheat Maixe 2 Vegetables Fruits Total	Wheat Maize 3 Vegetables Fruits

Note: W.P. = With Project, W/O P. = Without Project

Table A-16-13 Benefit Flow of Small-Sector (Economic Price)

al				-		00	ന	8	0	834	8	8	8	83	83	<u>က</u>	8	<u>დ</u>	დ (ე	8	3	8	со С.	8	83	ω (,)	ω ω	(ነ)	(,)
Total						$\omega$	$\omega$	$\infty$	$\omega$	1081	ω	8	8	80	$\omega$	80	90	80	00	8	08	8	8	8	00	8	$\omega$	1081	1081
Block-4						8958	8959	8959	8928	683233	8959	8359	8958	8828	8929	8923	8323	8959	8928	9929	8323	8928	8929	8359	8959	8359	8959	8959	8958
Block-3						4235	4235	4235	4235	142350	4235	4235	4235	4235	4235	4235	4235	4235	4235	4235	4235	4235	4235	4235	4235	4235	4235	235	235
Block-2						5126	6126	6126	6126	161267	6126	6126	6125	<b>8126</b>	<b>6126</b>	6126	<b>6128</b>	6126	5126	<b>6126</b>	6126	6126	6126	6126	6128	<b>B12</b> 8	6126	8126	6126
Block-1						361	361	361	361	88618	361	361	361	861	861	861	861	861	861	861	861	861	861	861	861	861	861	861	861
Year	တ	9	S S	1890	ന	ന	T)	ſΠ	m	თ	စ	on on	on on	8	$\Box$	00	00	00	0	0	0	0	8	ö	5	<u></u>		0	0
No.	-	N	ຄ	4	ເດ	ധ	<b>C</b> ~	00	ഗ	10		2	<u>ო</u>	4	ដ	9	<u></u>	00	9	20	2	22	23	() 4	25	13 13 13	۲. ۲.	(7 (0)	Ω Ω

Surce : Table A-16-12

Table A-16-14 Benefit Flow of Table Grapes (Economic Price)

				-251160	-322680	-290507	92262	539095	696377	1249105	1376833	1504681	1632469	1694017	1689325	1612652	1535979	1455166	1366074	1258342	1161972	1034901	682632	715508	562444	425559	3.857	232183	
	652 ha					-272927	81777-	58615	126097	396025	641013	486001	530383	575977	620985	593972	566979	539385	512994	401502	445512	409521	359032	310548	247564	193579	148591	103603	
Block-4 lerigation	600 ha	•			-251150	-71520	53940	116040	364440	405940	447240	488640	530040	571440	546600	521760	496920	472080	443100	403380	376860	339600	285780	227820	178140	136740	95340	74640	
	900 P4			1061160	-21520	53940	116040	364440	405840	447240	488640	530040	571440	546600	521760	496320	472080	443100	408580	376860	338600	285780	227820	178140	136740	95340	24640	53940	
Sub-Total				-622an	-84437	-546B	43304	121861	198037	219359	240679	262000	263321	288082	275289	262496	249704	235876	224018	206628	188164	164297	134965	106689	82760	61025	44672	33804	
Plood Control	139 84				-66557	-18953	14294	30751	96577	107548	116519	129490	140461	151432	144845	138266	131684	125101	117422	108645	93868	89994	75732	60372	47207	36236	25265	19780	
Plood				09663-	-17880	3485	29010	91110	101460	111810	122160	132510	142860	136650	130440	124230	118020	110775	106595	97984	88296	74303	59233	46316	35552	24769	19406	14024	
Block-3 Sub-Total				00000	102560	6 6 6 6 1 -	9661	196210	334313	527927	583196	638465	693734	726923	738032	704871	671710	637168	533667	558419	512823	460328	398166	326316	257220	196417	148048	106579	
	eu Ins					-167859	-47799	36050	77553	243567	271236	298305	326574	354243	381912	36531-1	348710	332108	315507	256139	274003	251868	225965	190596	152260	119057	91368	63718	
irrigacion	eu 007				06658-	03860-	17980	38680	121480	135280	149080	162880	175680	150460	182200	173920	165640	157360	147700	136660	125620	13200	95260	75940	59380	45580	31780	24890	
	80 007			0000	042601	17980	38560	121480	135280	149080	162880	176680	190480	182200	173920	165640	157360	147700	136660	125620	113200	95260	75940	59380	45580	31780	24880	17560	9-91
Block-1 Irrigation	173			0000	0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	1000	346.9	108725	121076	133427	145778	158129	170480	163069	155658	148248	140837	132192	122311	112430	101314	85258	67966	53145	40784	28443	22268	16092	* x Table A-16-6
Ho. Yera	1997	2 2998 3 1989	1990				_					14 2000				16 2004		20 2006			23 2008		25 2011			28 2014	29 2015	30 2016	Source : 6
	kecutu :		-418500	89300	193400	607400	675400	745400	914400	883400	952400	311000	859500	328200	785800	738500	993300	628100	20000	905674	379700	295900	227900	158900	124400	83300		-	
	3632		21000	21000	21000	21000	21000	21000	21000	23000	21000	21000	21000	2 1000	21000	21000	2 ( 000	21000	2000	00012	21000	21000	21000	21000	21000	21000			6-11
Direct Production	18	0	009785	165100	165100	185100	165100	165100	155100	165 300	185100	165100	165100	165100	165100	185100	001551	155100	00000	165190	165100	165100	165100	165100	165100	165100			-16-10, A-1
Gross Production	100	•	<b>5</b> C	276000	379500	733500	862500	931500	1000200	1069500	1138500	1097100	1055700	1014300	972900	924500	656465	814200	001257	252400	208686	483000	414000	345000	310500	275000			Source : Table A-16-10, A-16-11
%o.	100		‹	4 (*)	4	ĸ	ç	r~	œ.	Ø	2	=	2	<u>ب</u>	er 1	<u>.</u>	! ب	<u>-</u> :	9 0	<u>n</u> (	20	2.1	75	23	24	23			Source

Table A-16-15 Benefit Flow of Peaches (Economic Price)

3 Ch\$)	Total			4			5750	0400	150400	3920	6425	0620	8665	02140	17540	34865	44490	48340	46415	48415	44430	40840	34885	27165	17540	05880	6365	8685	2890	7115	1340	
( Unit : 10	500 ha							ı	760	-46400	4640	4640	705	95550	34050	91800	49550	07300	88050	88050	8805	88050	68800	49550	30300	91800	5330	1480	9555	7530	5705	
	Block-4 Irrigation 500 ha				÷			760	-48400	640	4640	5705	55	3405	9180	4955	0220	8802	8805	8805	8802	6880	4955	3030	9180	5330	1480	9555	7630	5705	3780	16-6
	500 ha						760	4640	-46400	640	5705	9555	3405	9180	4955	0730	8805	8805	8805	8805	6890	4855	3030	9180	5330	1480	9555	7830	5705	3780	1822	x Table A-
	No. Year	198	100	199	56	1.00	 00 00	1.99	8 1994	1 00	0 199	1 199	199	3 199	4 200	5 200	6 200	7 200	8 200	9 200	0 200	1 200	2 200	3 200	4 201	5 201	6 201	7 201	8 201	9 201	0 201	Source ; *
Ch\$/ha)	Agricul. Net Return *				11520	9280	9280	9280	514100	9119	5810	8380	9910	1450	7610	7610	7610	7510	3760	9910	6060	8360	0680	2950	9110	5260	1410	7560	3710	-	-	
(Unit : (	Indirect Production Cost				100	100	100	100	21000	100	100	100	100	100	100	100	100	100	100	100	100	100	100	001	100	100	100	100	100			-16-11
	Direct Production Cost				420	180	180	180	119400	940	940	1940	940	1940	1940	1940	1940	1940	1940	1940	1940	1940	1940	1940	1940	940 0	046	940	940			A-16-10, A-
	Gross Production : Value				0	0	0	0	545	731500	0850	2400	03820	5500	11650	11850	11650	11650	02800	03820	00100	2400	4700	7000	3150	9300	5450	1600	7750			ource : Table
	No. Of Year				-	Ø	ო	4	ເດ	ധ	<b>c</b> ~	œ	თ								 [											Sou

Table A-16-16 Benefit Flow of Nectarines (Economic Price)

( Unit : 10 ³ Ch\$ )	Total 350 ha				-33180	981	27	6050 -10300	6050 8240	35050 31730	80250 57390	01950 83590	23650 70720	45350 78935	77900 84515	10450 86685	99600 85600	99600 85600	9600 84670	99600 82655	88750 78625	77900 73510	56200 67310	34500 61110	12800 55840	31100 51655	0250 48555	9400 45455	8550 42355
	Block-4 Irrigation 350 ha		÷		.> -	871	-36050	808	3805	025	0135	2365	4535	7790	1045	9960	9980	9360	9960	8875	7790	5620	3450	1280	9110	025	940	855	770
	300 ha				0 1 0	080	-30300	080	5450	310	9170	1030	3820	6610	5680	5680	5880	5680	4750	3820	1960	0100	8240	6380	450	520	590	550	730
	No. Year	1 1987 1 1988		000	133	199	199	199	00	199	00	100	200	200	200	200	8 200	9 200	0 200	1 200	2 200	3 200	4 201	5 201	6 201	201	8 201	9 201	0 201
Ch\$/ha)	Agricul. Net Return *	( ( (	-110500	10300	0300	1500	7700	3900	0100	9400	8700	5800	5600	5600	5800	2500	9400	3200	7000	0800	4600	1500	9400	5300	2200	9100			
( Unit :	Indirect Production Cost	0	21000	1000	1000	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	.00	0	100	100			
	Direct Production Cost	[	82000	200	200	500	1500	500	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500			
	Gross Production Value	¢	<b>&gt;</b> C	) C	O	5100	713000	7500	3700	3000	2300	9200	9200	9200	9200	6100	3000	0089	080	4400	8200	5100	2000	3088	ຮອງເ	2700			
	OMP																												

Table	A-16-17	.7 Benefit	Flow of 1	Wheat (Economic	omic Price
				(Unit:	10 ³ ch\$)
		Block-	1,.,	1 U	Total
o N	Year	Irrigation 601 ha	Flood 159 ha	Irrigation 2,952 ha	71
				띪	903
	œ				
8	1988			-	
ന	$\omega$				
ব	ത				
ហ	ഗ				
ധ	Œ	96821	25615	475557	538003
ţ~-	m	460		4197	0657
co	m				
<b>o</b> n	ത				
10	ന				
	ത			٠	
12	(T)				
<u>ლ</u>	on on				
4	8				
15	8				
9	8				
r- r-	2003				
∞	0				
<u>ი</u>	8				
20	8				
2	8				
22	8				
23	8				
24	$\overline{\Box}$				
25	$\overline{c}$				
28	0				
27	<u> </u>				
28	2				
28	<u></u>				
30	0		٠		
					*

Source : Table A-16-6, A-16-10

Total Benefit of (Economic Price) Table A-16-14 Benefit Flow of Water Quality Improvement ( Economic Price ) 4566404 4467061 4938190 5183328 5223742 Large-Sector -381864 -688475 -41968 Source : 21187 21187 21187 21187 21187 21187 21187 21187 21187 21187 ChS Total ( Unit : 10³ Block-3 7056 7056 7056 7056 Block-2 11006 11006 Block-1 Source : Table 6-2-3 Table A-16-18 2012 2013 Yera 

to A-16-18

Benefit Flow of Road and Bridge Improvements ( Economic Price ) Table A-16-19

) ³ chs)	Total				-		952	952	952	952	49528	952	952	952	952	952	952	952	952	952	952	952	952	952	952	952	952	952	952	952	352
( Unit : 10	Block-4		-				850	856	82	856	28568	858	858	928	858	828	9 20 80 80 80 80 80 80 80 80 80 80 80 80 80	856	828	8 8 8 8 8 8 8	856	85	828	858	856	858	928	8 8 8 8 8	858	858	856
	Block-3					٠	4	4	4.	4	9148	4	4	14	7.4	14	4	4	<u>.</u> 4	4	<u>1</u>	14	4	<u>.</u> 4	4	4	4	4.	7	4.	4
	Block-2						ω	43	€	4 G	8430	4 რ	<u>4</u>	4 რ	<del>გ</del>	€	<del>4</del>	4 რ	43	<b>4</b>	<b>4</b>	43	4 რ	<b>4</b>	4 Ω	€	<b>4</b>	64	4 (J)	4 (C)	<b>4</b> 3
	Block-1						დ დ	<u>ო</u>	က	დ.	3382	က က	ധ	က	დ ლ	က	ന	დ ლ	က	<u>ო</u>	თ ტ	က	ლ ლ	ന	დ დ	დ ტ	<u>ო</u>	ლ	<u>ო</u>	ന	ന
	Yera	ω	60	œ	1990	ഗ	Œ	$\boldsymbol{\sigma}$	ധ	<del>თ</del>	တ	თ თ	თ თ	ற ர	0	0	0	00	0	0	00	00	00		0	<u></u>	2	Ö	0	0	Ö
	.cN		N	ന	4	ເດ	ω	r~	œ	ഗ	0		CI CI		4																

Source : Table A-16-7

Table A-16-20 Benefit Flow of Flood Control (Economic Price)

														•																	
10 ³ ch\$)	of Total						5822	5244	5866	7489	281114	8823	9534	0246	0957	1689	2381	3092	3804	4515	5227	5939	8850	7382	8074	8785	9497	0208	0820	1632	2343
(Unit:	Consumption Combustible						949	138	327	518	57057	345	984	124	254	403	543	682	822	961	101	241	380	520	853	788	939	0.78	2.18	357	497
	Loss of Product						113	231	349	467	65856	740	89.4	043	204	358	513	888	822	377	132	286	441	596	750	905	059	214	389	523	678
	Damage of Road						007	130	253	377	65001	581	821	382	143	304	465	625	788	947	0.8	269	429	280	751	912	073	234	394	555	716
	Damage of Houses						552	744	938	128	93200	576	833	6800	0348	0602	0823	1118	372	1629	1885	2142	2398	2655	2912	3168	3425	3681	938	194	45 1.1
	Year	Ιω	$\omega$	$\infty$	ന	1991	တ	ഗ	O3	တ္တ	(O)	ຫ ຫ	9	თ	8	8	00	00	8	8	00	00	8	00	2	ö	0	0	0	<u></u>	0
	No.	1	8	m	4	ហ	9	r~	cc	ഗ																					

Table A-16-21 Project Cost ( Economic Price )

			· · · · · · · · · · · · · · · · · · ·				inth de laboration of the		: 10 ⁶ Ch\$ )
	.and Acquisition		Loc Semiskilled Labour	al Currer Skilled Labuor		Trans- portation	Sub-Total	Foreign Currenc	Total
Construction Co						_			
I ESP HDWKS I ESP CANAL I ESP DVS			٠,					; ;	
I ESP CHUTE I TER CANAL Q TREATMENT F EST FRIO T BRIDGE Block 2	. 0 . 0 . 0	11.6 18.0 2.4 .5	1, 2 2, 5 , 3 , 1	.8 1.4 .2 .1	57. 6 22. 7 . 0 2. 9	12. 6 5, 2 1. 3 . 4	83. 8 49. 8 4. 1 3. 9	257. 8; 265. 7; 26. 1; 8. 2;	341. 315. 30. 12.
Q ORTUZANO Q RINCONADA Q LOMA BLNC Q ENCANADO T BRIDGE	. 0 . 0	40. 2	6. 4 . 2	4.8	6. 7 1. 9	17. 3 . 4	75. 5 3. 4	883. 9 7. 8	959. 11.
lock 3 & 4 Q PUNTA CNL Q SIPHON Q SIPHON Q SIPHON Q SAPHAL CAU			·					1 1 2 2 3 4 7	
Q CARMN CNL I CARMEN (B) Q DIVERSION I TUNNEL I TUNNEL I TUNNEL I SANCARLOS									
I TER CANAL F LAMPA(1) F LAMPA(2,3) F MEMB BRDG F NOVC BRDG F BOZA BRDG F COLINA F CSQR BRDG F PRMV BRDG F CHORO(A) F CAREN (A) F CAREN (B) F CHOROS(B)	. 0	240. 2	62. 1	43. 7	1, 512. 7	232. 5	2,091.2	4,741.4;	6,832.
F CHOROS(C) F DRAIN C-1 F DRAIN C-2 F SABO DAM F TEM MPCHO	. 0	214. 5	32. 4	40, 8	988. 5	189. 3	1,465.5	3, 859. 9	5, 325. 4
T ROAD (A) T ROAD (B) T BR A, B, C	. 0	28. 1	2. 8	2. 8	50. 8	15. 6	100. 2	317. 11	417. 3
Sub-Total	.0	556. 3	108. 0	94. 7	2,643.8	474. 6		10, 367. 8	14, 245. 3
Procurement of O/M Equipment Administration Consulting Serv	t Cost	9.1	,	79.2 301.0		. 0	, 0 88.3 301.0	257. 2 1, 104. 8	257. : 88. : 1,405.
Sub-Total		9. 1	. 0	380. 2	. 0	. 0	389. 3	1,362.01	1,751.
Total							4, 266. 8	11,729.8	15,996.6

Source: Table 5-3-4, 6-3-1

Note: Land Acquisition = F.P. x 0, Unskilled Labour = F.P. x 0.5

Semiskilled Labour = F.P. x 0.52, Skilled Labour = F.P. x 1.0 Material = F.P. - IVA(0.2), Transportation = F.P. - IVA(0.2)

Foreign Currency = F.P. x Shadow Price(1.13) - Import Duty(0.3) - Sale Tax(0.03)

F.P. = Financial Price

Table A-16-22 Project Disbursment (Economic Price)

Item	16	987		15	1988			1989	7 0110
	F/C	1/C	TOTAL	F/C	L/C	TOTAL	1/C	2/2	TOTAL
Block-1 Irrigation			0	2037	932	2969	247615	79140	326755
Water Quality			O	0	ω	0	0	0	C
Flood Control			C	2008	316	2323	8031	1261	9292
Transportation			O	912	434	1345	3645	1733	5378
Block-2 Water Quality			<u>۵</u>		0	<b>.</b>	0	O	0
Transportation			0	867	378	1246	3467	1511	4978
Block-3.4 Irrigation			0	109660	53581	163341	1502733	664622	2167356
Flood Control			0	282710	105287	387997	1130835	421148	1551983
To concert			0	35233	11133	46366	140933	44533	185467
Total Construction Cost				433426	172161	605587	3037259	1213949	4251208
Procurement of O/M Equipment	0	0	0	0	0	.0	0	O	, o
Administration Cost	0	15840	15840	0	24940	24940	0	15840	15840
Consulting Services	459173	129927	589100	126664	25523	152188	163209	48408	211616
Sub-Total	459173	145767	604940	125664	50463	177128	163209	84248	227458
Total	459173	145767	604940	560091	222625	782715	3200468	1278195	4478663

7	1990		15	1991			TOTAL	
F/C	170	TOTAL	F/C	1/0	TOTAL	F/C	L/C	TOTAL
8148	3728	11876				257,800	83,800	341,600
132849	24900	157749	132851	24900	157751	265,700	49,800	315,500
8031	1261	9292	8031	1261	9292	-	4,100	30,200
3645	1733	5378	0	0	0	8,200	3,900	12,100
441950	37750	479700	441950	37750	479700	883,900	75,500	959,400
3467	131	4978	0	0	0	7,800	3,400	11,200
1502733	564622	2167356	1626274	708274	2334548	4,741,400	2,091,200	6,832,600
1315520	517918	1833437	1130835	421148	1551983	3,859,900	1,465,500	5,325,400
140933	44533	185467	O	0	O	317,100	100,200	417,300
3557276	1297956	4855232	3339842	1193332	4533274	10,367,900	3,877,400	14,245,300
ုဝ	0	0	257200		257200	257,200	C	257,200
0	15840	15840	0	15840	15840	0	88,300	88,300
170543	48406	218949	185211	48736	233947	1,104,800	301,000	1,405,800
170543	64246	234789	442411	64576	508387	1,362,000	389,300	1,751,300
3727819	1362202	5090022	3782353	1257909	5040261	5040261 11,729,900	4,266,700 15,996,	15,996,600
			***************************************			**************************************		

Source : Table 5-6-2, A-16-21

Table A-16-23 Sensitivity Analysis with Flood Control Benefit (Economic Price)

lue 12%) Cost	25.00	950 950 974	458 235 031	847 679 526 387	0 4 4 4 6 6	8	J (D (D (C)	91057
Vа. 87:		. e			-		1 നഗനത	9 115
m		ന വ	4 0.0	- 4 m a	2000000	1 C) ~ ~ ~ ~ 4 CO U	0 0 0 4	2118803
nefit - Cost	-60494 -78271 447856	7 (0 (0 4	. W & &	2223	- C C C C C C	50004458 5004458 50444496 5073873 3795764	3440	Total
Total Benefit Cost	504940 782715 478563	50022 40261 52700 52700	222	7222	4 2 2 2 2 2 2	8 9 9 3 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9000	47 2 x 10 ³ ch\$
O/M Cost		27	223	2222	227 227 227 227	52700 52700 52700 52700 52700 52700	2227	959698
Project Cost & Replacement Cost	604940 782715 4478663	04026			371436	846671	-542144	EIRR= ENPV(10%)= (1987:12%)
Total P. Benefit R	0000	1443395 1011943	71155 36428 64620	81408 03826 45885 90800	38724 63863 63863 538003 718080	5057158 5799775 5497196 5126573 4695134 4272229	58774 32812 10159	
ol Project Benefit	0000	717	44288 08939 36508	52585 74291 15639 58842	07055 31469 36110 20096 07096	5697766 5433766 5123572 4745833 4307278 3877257	17854 91180 67815	A-16-20
Flood Control Benefit		5622	5866 7489 8111	98823 9534 0246 0957	1669 2381 3092 3804 5215	359392 366508 373624 387740 387858 402088	0920 1632 2343	able 6-3-2,
Year	$\mathbf{o}$ $\mathbf{o}$ $\mathbf{o}$ $\mathbf{o}$	തെത	$\sigma \sigma \sigma$	, , , , , , ,	888888	2007 2008 2008 2010 2011 2012	000	ource : Ta
No.	~ U W 4	- លល-	თ თ <del>ე</del> :			00000000000000000000000000000000000000		Sour

16.4 Financial Evaluation

Table A-16-24 Project Benefit of Small-Sector (Financial Price)

Total Benefit (103)		66,545	121,280	105,834	535,385	829,044
No. of Farm		88	128	88	549	830
	With-W/o	978,600	947,500	1,245,100	975,200	 : : :
Agricul- tural Net Return	W/0 P	335,700	255,900	372,600	316,100	·
	W.P.	126,700 1,314,300	97,900 1,203,400	132,500 1,617,700	101,600 1,291,300	
Indirect Production Cost	4/0 P.					•
Indirec	P4 53	130,100	118,700	160,100	139,400	
tion	W/0 P.	72,800 65,400 80,500 370,000	75,800 53,700 80,500 370,000 353,800	75,800 53,700 80,500 370,000 505,100	52,900 35,400 80,500 370,000 417,700	
Net Production Value	- A	111,200 77,800 80,500 632,800 1,444,400	117,200 66,100 80,500 632,800 1,322,100	117,260 66,100 80,500 632,800 1,777,800	81,800 40,000 80,500 632,800 1,430,700	
rect Production Cost	W/O P.	62,200 80,900 106,600 148,300 per Farm	62,200 80,900 106,600 148,300 per Farm	62,200 80,900 106,600 148,300 per Farm	49,100 69,900 106,600 148,300 per Farm	
Direct P Co	F. P.	77,800 91,900 106,600 148,300	77,800 91,900 106,600 148,300	77,800 91,900 106,600 148,300	62,200 80,900 106,600 148,300	
	W/0 P.	135,000 146,300 187,100 518,300	138,000 134,600 187,100 518,300	138,000 134,600 187,100 518,300	102,000 62,200 105,300 80,900 187,100 106,600 518,300 148,300	
Grass Production Value	W.P.	189,000 169,700 187,100 781,100	195,000 158,000 187,100 781,100	195,000 158,000 187,100 781,100	144,000 120,900 187,100 781,100	
ed ha)	W/0 P.	400004	9.00 9.00 9.00 9.00 9.00	46.4.2.3	9.0	
Cropped Area(ha)	W. P.	2.5 1.7 1.1 9.5	44.48 40.08	5.2.2	2.8 1.8 1.2 10.4	
Block		Wheat Haize I Vegetables Fruits Total	Wheat Maire Vegetables Fruits Total	Wheat Maize 3 Vegetables Fruits Total	Wheat Maize 4 Vegetables Fruits Total	Total

Note : W.P. = With Project, W/O P. = Without Project

829044 829044 Benefit Flow of Small-Sector ( Financial Price Total ( Unit : 10³ Ch\$ Block-4 Block-3 121280 121280 121280 121280 121280 121280 121280 121280 121280 121280 121280 121280 121280 121280 121280 121280 121280 121280 Block-2 Block-1 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 6665545 666555 666555 66655 66655 66655 66655 66655 66655 A-16-25 1109988 11099888 1109999 1109999 1109999 1109999 1109999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 110999 11099 Year Table

Source : Table A-16-24

Table A-16-26 Benefit Flow of Table Grapes (Financial Price)

: 10 ³ Ch5)	Sub-Total		-302100	ဗု		853966	1206694			1590058		-	-	-	_	1225931	119561				٠	~	189772	
( Umit: 10	652 hs			-328282	66906-	111155	381094	426082	471070	516058	505040	579041	552048	525056	498063	466571	430583	2647000	205617	232634	178648	133660	88672	
	Block-4 Irrigation 600 ha		-302100	-83450	40200	350700	392100	433500	474900	516300	537868	508020	483180	458340	429360	396240	363120	272040	214080	164400	123000	81600	60609	
	600 ha		-302199	40200	102300	392100	433500	474900	516300	557700	552650	483180	458340	429360	396240	363120	325860	02020	164400	123000	81600	60900	40200	
	Sub-Total		-75525	-12067	36228	190361	212282	233603	254924	276245	268213	255420	242628	228800	212840	195784	177692	12561	97831	74316	52995	36849	26189	
	Flood Control ha 159 ha	· .	-80057	-22117	10653	92936	103907	114878	125849	136820	14/208	134625	128043	121460	113780	105004	96227	72001	56731	43566	32595	21624	16139	
	Flood (		-75525	10050	25575	98025	108375	118725	129075	139425	127805	120795	114585	107340	99060	90780	51465	1000	41100	30750	20400	15225	10050	
	Block-3 Sub-Total		-100700	-216324	18279	315971	509585	564854	620123	675392	719690	686528	653367	618825	581524	540076	494480	279825	307973	238877	178074	129705	88236	
	401 ha			-201904	-55779	68371	234385	262054	289723	317392	372730	356128	339527	322925	306324	286956	264820	217783	181813	143077	109874	82205	24536	
	Frigation 200 ha		-106700	-27820	13400	116900	130700	144500	158300	172100	177620	169340	161060	152780	143120	132080	121040	90688	71360	54800	41000	27200	20300	
	200 ha	•	-100700 -27820	13400	34100	130700	144500	158300	172100	185900	169340	151050	152780	143120	132080	121046	02920	71363	54800	11000	27200	20300	13400	۹
	Biock-1 Irrigation 179 ha		-94127	11893	30520	116977	129328	141679	154030	166381	10000	144149	136738	128092	118212	108331	97215	53867	49046	36695	24344	18169	1 993	x Table A-16-6
	Yera	1987 1988 1989 1990	1992 1993	1994	1995	1997	1998	1999	2000	2001	2002	2004	2002	2005	2007	2008	5002	2012	2012	2013	2014	2015	2016	Source : *
	No.	-00AR	9 ~	<b>6</b> 0 (	en c	-	7	<u></u>	<del>-</del>		2 -	. sec	en C	20	2	25	N C	, č	26	52	28	59	30	Š
( Unit : Ch\$/ha >	Agricul. Her Return f	-503500	170500	584500	722500	791500	860500	929500	888100	805300	763900	715600	660400	512500	453400	00000	274000	205000	135000	101500	62000			
( Unit	Direct Indirect Production Production Cost Cost	23000 23000		23000	23000	23000	23000	23000	23000	23000	23000	23000	23000	00062	23000	00000	23000	23000	23000	23000	23000			6-13
	Direct Production Cost	480500 116100	185000	86900	185000	185000	186000	00000	185000	186000	186000	186000	186000		186000	2000	185000	186000	186000	186000	185000			-16-10, A-1
	Gross Production Value	<b>3</b> 5	375000	793500	934500	1000500	1069500	0008511	109/100	1014300	972900	924600	869400	514200	562400		483000	414000	345000	310500	276000	,		Source : Table A-16-10, A-16-13
	No. of Year	~ N	ტ <b>დ</b> (	io a	۰,	60	on 9	2:	- :	4 6	=	5	9 !	-	0		3 72	22	23	24	22			Source

Table A-16-27 Benefit Flow of Peaches (Financial Price)

·			(Unit:	Ch\$/ha )					: prin )	10 ³ ch\$ )
No. of Year	Gross Production Value	Direct Production Cost	Indirect n Production Cost	Agricul. Net Return *	No.	Year	500 ha	Block-4 Irrigation 500 ha	500 ha	Total
						98				
-	٠				. 2	1988				-
•	(	•	0	( (	က	တ				
<b>-</b> ⟨	<b>○</b>	112600	23000	135600	₽ 1	60				
1 W	o ⊂	8500		10800	<u>်</u>	თ (	0			0
4		8500		10800	D [	ກ ( ກ (		0		00/01
വ	5450	13840	300	9310	~ α	n o	104000	000/01	6790	-175900
φ	3150	13840	300	7010	<b>0</b> C	0 0	) ( ) ( ) (	) ( ) ( ) (		000
~	0820	13840	300	4710	, D	ת מכ	0.40 0.00 0.00	240	0.40 0.40 0.00	10000
ထ	2400	13840	300	6260	÷ -	n a	, , , , , ,	ל ה ה ה ה		7000
Ø	03950	13840	300	7810	F	ת הכ	) ) ) ()	) LI	1 C L C L C L C L C L C L C L C L C L C	П - С П - С
	1155000	13840	300	9360	7 -	n o	0000 00000	0 0 0 K 0 K	740000 787070	0 0 0 0 0 0
	11650	13840	300	5510	) .प 	) C		0.00		4000
	11650	13840	300	5510	ተ <b>.</b>	) )	3000	3 C C C C C C C C C C C C C C C C C C C	7,000	しょうない
	11650	13840	300	5510	ر د د	2 6	0 L 0 C 0 C 0 C	いっこい	0 T O	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
	11850	13840	300	55.10	Ω (	200	こここ	2000	0000	4 · 0 4 C
	2000	0 C T X X Y	) C	2000	17	0	7755	7755	9680	45180
		0001	0 0 0 0 0	2007	 8	0.0	7755	7755	7755	43265
		0.700 F	ე (C	0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0	13	00	7755	7755	7755	43265
		10040	200	2000	20	00	5830	7755	7755	41340
	7400	0,400,1	200	0720	21	00	3905	5830	7755	37490
	20 / 40 20 / 40	13840	200	8000	22	00	1980	3905	5830	31715
	000/	1,4840	300	U & 6 C	23	00	8130	1980	3905	24015
	0 T C C C C C C C C C C C C C C C C C C	1,004	200		24	0.1	4280	8130	1980	14390
	0055	13840	202	3150	25	0.1	0430	4280	8130	02840
	545U	04881 0486.	0 0 0 0 0 0	9310	26	0.1	8505	0430	4280	3215
27 ( 4, 1	1600	04821	300	5460	27	0.1	6580	8505	0430	5515
	7.750	13840	300	1610	28	0.1	4655	6580	8505	9740
					29	01	2730	4655	6580	3965
					30	01	0805	2730	4655	8190
Sou	Source : Table	A-16-10,	A-16-11		Sou	ource ; *	x Table A-	.16-6		

Table A-16-28 Benefit Flow of Nectarines (Financial Price)

10 ³ ch\$)	Total			000	0 <del>1</del>	2362	2040	6449	9879	248U	688100	7025	2605	4775	3690	3690	7/00	67.4 67.15	1600	5400	9200	3930	9745	6645	3545	0445	
(Unit	350 ha					36	214	4214	4214	7355	216965	3866	7121	0376	9291	9291	829 000 1000	8208 8208	$\frac{3}{7121}$	4951	2781	0611	8441	7356	6271	5186	
	Block-4 Irrigation 350 ha		÷ .	-	36	4214	4214	4214	7356	352b	238665	7121	0376	9291	9291	9291	1000	7121	4951	2781	0611	8441	7356	6271	5186	4101	9-9
	300 ha			0	3610	3612	3612	4877	6737	Ø 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	232470	6037	5107	5107	5107	5107	イン・イクログ	1387	9527	7667	5807	4877	3947	3017	2087	1157	x Table A-16-
	Year	1987 1988	တတ	99	0 0 0	66	99	86	88	ກ c ກ c	000	00	00	00	00	000			000	0	0.1	0.1	01	0	01	01	*
	No.	177	თ 4	ഹ വ	0 [~	. ∞	တ	0 0	C	7 0	3 4					თ <u>(</u>											Source
Ch\$/ha)	Agricul. on Net Return *		12960	-120400 -120400	12040	9590	5790	1890	7490	6790	3690	3690	3690	2000	7400	1290	5090	8890	2690	9590	6490	3390	0220	130			
(Unit: (	Indirect Production Cost		3000	23000	3000	300	300	300	3000	300	300	300	300	300	) () ()	300	300	300	300	300	300	300	300	ດ ດີດ ກໍ			16-11
	면			20	Ö	0	0	$\supset c$	$\supset \subset$		10	10	0,	2 5	J 5	_, C	10	$\circ$	0	10	10	0,	$\supset$	7			0, A-1
	Direct Productj Cost		66	974(	7	32	32	N 0	3 K	(X) (A)		<ul><li>φ</li></ul>	(n)	Y) (	י) פ	o in	(1)	32	ŝ	(C)	က	(C)	, j	7)			1-16-1
;	9 40 41		1066	7.4	0 97	51000 132	13000 132	75000 132	30000 132	23000 132	992000 13	92000 13	92000 13	8Z000	2000 13	58000 13	06000 13	44000 132	82000 13	51000 13	20000 13	89000 13	28000	2/000 13			Source : Table A-16-1

Table A-16-29 Benefit Flow of Wheat (Financial Price)

				( Unit :	10 ³ Ch\$ )
		Bloc	k-3	Block-4	Total
No.	Year	Irrigation	Flood	Irrigation	
		601 ha	159 ha	2,952 ha	3,712 ha
·		401 ha		1,502 ha	<u>1,903 ha</u>
1	1987				
2	1988				
3	1989				
4	1990				
5 6	1991			•	
6	1992	56614	14978	278078	349670
7	1993	37774		141488	179263
8	1994	,			
9	1995				•
10	1996				
11	1997				
12	1998				
13	1999			•	
14	2000				
15	2001				
16	2002				
17	2003	•			
18	2004				
19	2005				
20	2006				
21	2007				
22	2008 2009				
23 24	2019				
2 <del>4</del> 25	2010	•			
26	2011				
27	2012				
28	2013	•			
29	2015				
30	2016				
00	4010		_		

Source : Table A-16-6, A-16-10

( Financial Price )		Total Benefit of Large-Sector (Financial Price)	0	<b>O</b>	0	0		04	64273	6617	15093	11818	27545	48902	90250	34453	81666		10721	94707	81703	65066	43977	17560	86628	48908	05110	62158	24370	92369	65717	42372		4	1911-8 1911-8
Quality Improvement	10 ³ ch\$)	Total		•	٠			118	118	118	118	118	118	118	118	118	118	21187	118	118	등	118	118	118	, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	178	118	118	118	128	118	118			
Water Quality	(Unit:	Block-3						S	05	05	05	05	05	05	05	05	05	$\circ$	05	0.5	05	05	05	03	0.5	02	05	05	05	05	05	05			
t Flow of Wa		Block-2						00	00	00	00	00	00	00	00	00	õ	11006	00	00	Ö	00	00	00	00	00	00	00	00	00	00	00	2, a, a, y, v	01-01-	
Benefi		Block-1						7	2	2	7	12	2	12	12	12	12	3125	12	7.	12	12	2	77	7	77	7	17	2	1.2	12	12	•	a TOP T	
. A-16-30		Yera	တ္	ထ	86	99	99	1992	99	66	66	00	98	99	99	00	00	00	00	00	00	00	00	00	00	0	0.1	0	0	0	0.1	0.1	- ( · ; v ) 5	Tenha .	
Table		No.	<b>-</b>	~	ന	4	ഗ	တ	~	œ	Ø							16															Iι	)	

Benefit Flow of Road and Bridge Improvements (Financial Price) Table A-16-31

t -t	Block-1	Block-2	Block-3	Block-4	Total
00					
88					
$\infty$					
0				-	
ത					
တ	8	43	14	856	952
တ	ဗ္ဗ	43	14	856	952
O	8	63	4	856	952
တ	38	43	4	856	952
$\circ$	က ထ	43	4	856	952
g	$\infty$	<b>4</b> α	4	856	952
Ø	38	433	44	856	952
σ	38	43	4	856	952
$\bigcirc$	3382	8430	9148	28568	49528
0	ထ္ထ	43	4	856	952
0	38	43	~_ 4	856	952
0	ထို	43	4	856	952
0	ဗ္ဗ	<b>4</b> , ω	4.	856	952
0	88	43	4	856	952
O	38	43	4	858	952
0	ဗ္ဗ	43	7,	856	952
$\circ$	33	43	寸	856	952
	88	43	4	856	952
	38	43	14	856	952
₹-4	ထ္က	43	<b>~~</b> . 4,	856	952
	ဗ္ဗ	43	4	856	952
₩.	38	43	14	856	952
<b>7</b> —4	80	83	4	856	952
$\vec{}$	88	4	14	856	952
	80	43	4	S C C	C II

Note : Equal in Table A-16-19 (Economic Price)

Table A-16-32 Project Cost (Financial Price)

		**************************************	Loc	al Currenc	Υ			Foreign	: 10 ⁶ Ch\$
Item	Land Acquisition		Semiskilled Labour		Material	Trans- portation	Sub-Total	_	Tota
Construction					···				
lock 1			7				."	1	
I ESP HDWKS	1 6	18.8	1.9	. 7	65. 8	14.1	102.8	281.81	384.
I ESP CANAL	2. 1	3. 3	. 3	. 1	7	. 8	7.2	16.21	23.
I ESP DVS	. 0	. 2	. 1	. 0	1.1	1	1.6	3. 01	4.
I ESP CHUTE	. 0	. 2	. 0	. 0	. 7	. 1	1. 1	2.4	3.
I TER CANAL	0	. 7	. 1	. 0	. 8	. 0	1.5	. 0 :	1.
Q TREATMENT	2. 7	36. 0	4. 8	1.4	27. 3	6. 3	78.5	312. 71	391.
F EST FRIO T BRIDGE	. 0 . 0	4. 8 1. 0	. 5 . 2	. 2 . 1	. 0 3. 4	1.5	7. 0 5. 2	30. 71 9. 61	37. 14.
lock 2	. 0	1. 0		• •	3. 4		J. Z	9. O i	14.
ORTUZANO	1.4	26. 1	4, 4	1.7	1.5	6. 7	41.7	333. 3	375.
Q RINCONADA	1.8	32. 2	5. 0	1.8	3. 7	8. 7	53. 2	433. 61	486.
Q LOMA BLNC	6	11.9	1.8	7	. 4	2.6	18.1	132. 1	150.
Q ENCANADO	6	10. 2	1.1	. 6	2, 5	2.8	17. 9	141.4	159.
T BRIDGE	0	1.6	. 4	, 1	2.3	5	4.9	9. 1	14.
lock 3 & 4								005.01	
Q PUNTA CNL	10.5	51.8	7. 8	4. 2	65. 7	34.8	174.7	695. 8	870.
Q SIPHON	0	2. 5	. 2	. 1	6.0	1.0	9.9	19.4	29. 16.
Q SIPHON Q SIPHON	. 0 . 0	1.6 14.6	. 2 3. 2	. 1 1. 7	3. 4 15. 5	. 6 5. 7	5. 7 40. 7	11, 1; 114, 9;	155.
Q CARMN CNL	. 0	76. 0	3. Z 8. 4	5. 2	240. 1	23. 5	353. 2	469. 71	822.
I CARMEN (B)	Ö	51.8	5. 9	3. 1	232. 5	20.8		415.4	729.
Q DIVERSION	ŏ	1. 2	. 3	i	1	2	1.8	3. 8	5.
I TUNNEL	Ō	2. 4	. 5	. 2	9.0	9	13.2	18.21	31.
I TUNNEL	0	5.4	1.0	. 5	17. 3	2.6	26.8	51.81	78.
I TUNNEL	. 0	3. 3	, 6	. 3	12. 3	1.2	17.6	23. 31	40.
I SANCARLOS	. 0	252. 8	89. 6	27. 6	1, 185, 6	187. 9	1,743.5	3,757.3	5,500.
I TER CANAL	. 0	16. 9	1. 7	. 6	27.6	. 0	46.9	.01	46.
F LAMPA(1)	. 0	45. 1	5. 4	2. 3	40. 4	31.1	124. 2	621. 11	745.
F LAMPA (2,3	. 0 . 0	92. 5 5. 6	11.1	4. 6 . 3	97. 4	68. 5	274.1	1,370.51	1.644
F MEMB BRDG F NOVC BRDG	. 0	. 6.0	. 9	. 3	24. 4 28. 0	2. 1 2. 3	33. 2 37. 5	41. 11 46. 01	74. 83.
F BOZA BRDG	. 0	5. 1	. 8	. 2	21.3	1.7	29. 2	34. 21	63.
F COLINA	Ö	3. 2	2. 2	16. 5	18. 3	13. 4	53.6	268. 11	321.
F CSQR BRDG	. 0	3. 9	. 6	. 2	14. 1	1.4	20. 2	27. 91	48.
F PRMV BRDG	. 0	4.4	. 6	. 2	14. 1	1.4	20. 7	27. 91	48.
F CHORO(A)	. 0	3. 7	. 4	. 2	5. 3	2. 7	12. 3	54.1:	66.
F CAREN (A)	. 0	2. 9	. 3	. 2	1.0	1 2	5. 7	24. 81	30.
F CAREN (B)	. 0	1.8	. 2	. 1	6. 0	2. 3	10.3	45. 11	55.
F CHOROS (B)	٠ ٥	1.4	. 2	. l	9. 2	3.0	13. 9	60. 8	74.
F CHOROS(C) F DRAIN C-1	. ú 3. 7	2. 1 70. 0	. 3 10. 5	. I 3. 6	6.3	2. 5 32. 7	11.3 469.1	49.61 654.21	60. 1,123.
F DRAIN C-1	13. i	139. 6	20. 9	8. 4	348. 6 477. 8	48.8	708.6	976. 61	1,685.
F SABO DAM		39. 1	6. 6	3. 5	72. 6	10.9	132. 7	217. 41	350.
F TEM MPCHO	. ŏ	2. 7	. 3	. 1	1. 2	1. 2	5. 5	23. 9	29.
T ROAD (A)	12.5	33. 0	2. 9	1.6	40.9	8.5	99. 5	169.8	269.
T ROAD (B)	16. 2	20. 4	1. 8	. 9	13. 7	9 1	62. 1	182.01	244.
T BR A, B, C	. 0	2. 9	. 7	. 3	6.4	1.1	11.3	21. 31	32.
Sub-Total	66. 7	1,112.6	207. 6	94. 7	3, 172. 6	569. 5	5, 223. 9	12, 202. 9	17, 426.
Procurement o						^		200 2	200
O/M Equipme		10.2		79.2		. 0	97.5	302. 7	302. 97.
Administratio Consulting Se		18.3		301. 0			301.0	977. 7	1,278.
Sub-Total	· · · · · · · · · · · · · · · · · · ·	18. 3	. 0	380. 2	. 0	. 0	398. 4	1,280.4	1,678.
Total	<del></del>								19, 105.

Source : Table 5-3-4

Table A-16-33 Project Cost -Measure Wise- (Financial Price)

			T	al Correr	AV.	·····		(Unit :	10° Ch\$
and the second s	Land Acquisitio		Semiskilled Labour	Skilled Labuor	daterial	Trans- portatio	Sub-Total	Currency	Total
Construction Co						····			
lock i					•				
I ESP HDWKS								1	
I ESP CANAL								:	
I ESP DVS		*						ŧ	
I ESP CHUTE									
I TER CANAL	3. 7	23. 1	2. 4	. 8	69. 1	15. 2	114.3	303, 41	417.
Q TREATMENT	2.7	36, 0	4.8	1.4	27. 3	6. 3	78. 5	312.71	391.
F EST FRIO	0	4.8	. 5	. 2	. 0	1. 5	7. 0	30. 71	37.
T BRIDGE	. 0	1.0	. 2	. 1	3. 4	. 5	5. 2	9.6	14.
lock 2								į	
Q ORTUZANO					•			į	
Q RINCONADA	•				•		•	;	
Q LOMA BLNC		00 5	10.0	4.0	8. 1	20. 8	120 0	1,040.4	1, 171.
Q ENCANADO	4. 4	80.5	12. 3	4.8				9.11	14.
T BRIDGE	. 0	1.6	. 4	. 1	2.3	. 5	4. 3	3.11	14.
lock 3 & 4									
Q PUNTA CNL									
2 SIPHON								j	
SIPHON									
SIPHON									
CARMN CNL								, :	
I CARMEN(B)								i	
DIVERSION TUNNEL						*		i	
								j	
I TUNNEL I TUNNEL								i	
I SANCARLOS								•	
I TER CANAL	10.5	480. 3	119. 4	43.7	1,815.2	279. 0	2,748,1	5, 580, 61	8, 328.
F LAMPA (1)	10. 5	400.0	110, 4	10. 1			_,	1	-•
F LAMPA(2,3)								1	
F MEMB BRDG								1	
F NOVC BRDG								i	
F BOZA BRDG								1	
F COLINA								:	
F CSOR BRDG								;	
F PRMV BRDG								:	
F CHORO (A)								:	
CAREN (A)								;	
CAREN (B)								;	
CHOROS (B)								1	
CHOROS (C)								+	
F DRAIN C-1								;	
F DRAIN C-2								;	
F SABO DAM								;	
F TEM MPCHO	16.7	429. 0	62. 2	40.8	1,186.2	227. 2	1,962.1	4,543.1;	6, 505.
r ROAD (A)								1	
T ROAD (B)								1	
F BR A, B, C	28. 7	56. 3	5. 4	2. 8	61.0	18. 7	172. 9	373. 21	546.
Sub-Total	66. 7	1,112.6	207. 6	94. 7	3, 172. 6	569. 5	5, 223. 9	2, 202. 9	17, 426.
Procurement of O/M Equipment						. 0		302. 7	302. 1
-, -		18.3		79.2			97.5	· ·	97.5
Administration Consulting Serv		~~.		301.0			301.0	977. 7	1,278.6
Sub-Total					. 0	. 0	398. 4	1,280.4	1,678.

Source: Table A-16-32

Table A-16-34 Project Disbursment (Financial Price)

Ttom	57	927		01	888			\$110 OT - 17110 \	/ hito 07
	5/L	7.0	TOTAL	E/C	ر /	TOTAL	F/C	1/0	TOTAL
Block-1 Irrigation			1	2397	1001	7557	291298	107017	200215
Water Quality			o c	- C	4 - -	כ	)	4	)
Flood Control			0 0	0.35.4 2.05.4	n 740 c	C	<b>4</b> 45	u	11010
Transportation			) C	1070	010	1647	4278	2310	000000000000000000000000000000000000000
Block-2 Water Quality				O	O	٠ .		0	
Transportation			0	1015	542	1557	4058	9	6221
Block-3,4 Irrigation			0	129069	68343	198411	1768704	5853	2627239
Flood Control			0	332749	43	80	1330990	4	9
Transportation			0	41467	19213	8	ന	5	242725
Total Construction Cost				510129	235822	745951	3574754	28	5202036
Procurement of O/M Equipment	0	C	c	С	С	C	c	C	C
Administration Cost	C	15840	$\alpha$	C	34100	34100	C	524	-
Consulting Services	408340	129910	i (C)	112090	25520	137610	144430	48400	192830
Sub-Total	406340	145750	0	112090	58620	171710	144430	424	- A
Total	406340	145750	552090	622219	295442	917661	3719184	1691522	5410706
With Economic Contingency*	414467	173297	587754	644819	393529	1038148	3915301	2478080	5394381
* : Total x	1.020	1.189		1.036	1.332		1.053	1.465	
					1		222	1	

50000000000000000000000000000000000000	W0 - 0 4 W	156368 9456	27	TOTAL		1/0	TOTAL
9589 50 9456 392 4278 21 520185 53 4058 654 788704 8585 548363 7100	33 14 0 185 0 185 0 85 0 85 0 85	636 945	C				
156366 392 9456 21 4278 23 520185 654 4058 21 548363 7100	0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	636 945	כ	5	303,384	27	ι Ω
9456 4278 520185 654 728704 8585 548363 7100	7. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	45	23	953	312,734	78 450	70.
4278 23 520185 654 4058 21 758704 8585 548363 7100		•	ι. π	113	20,70		
520185 654 4058 21 768704 8585 548363 7100	0400 00000 00000	_	•	•	- (	- c	٠, (
520165 654 4058 21 788704 8585 548363 7100	4 ტ ( გ ( გ (	•	:	1	70.0		Ď
4058 21 768704 8585 548363 7100	9000 0000 0000	520182	55424	585608	38	48.	ď
758704 8585 548363 7100	0000	Ö	0	C	~	4	σ
548363 7100	7227 0	1914111	149	290	េ	701,00	000
	7 2258	or or	57734E	1908036	0		
	0.70	) ) )	)	)	) · · · · · · · · · · · · · · · · · · ·	000	1,200,
00/ 0/0001	717 t	1	Đ	0	20	172.921	46
4186858 176176	5 5948	3931110	1599080	5530190	12,202,861		25,8
		302720	0	302720	302.720	c	302, 220
200	0 15840	0	15840	15840		97.460	L C
50920 484	0 19932	163900	5	œ	977 580	300 980	Œ
150920 6424		466520	64570	531190	1,280,400	98	ļω
4337788 182600	6 6153794	4397730	838	6061380	483 2E	622	19 105 821
10		4780332	949	38	14,397,152	8.938,077	)^
1.070 1.61	.2	1.087	1.773	٠		1	

Source : Table 5-6-2, A-16-32

Appendix 17: Study On the Mapocho River Basin

- 17.1 Diagnosis of the Mapocho River Basin
- 17.2 Brosion Control of the Mapocho River Upper Basin and Surrounding Areas

# LIST OF TABLE

Table A-17-1	Landuse of Mapocho River Basin
Table A-17-2	Average Annual Change in Landuse (1977-1984)
Table A-17-3	Type and Area of Natural Vegetation
Table A-17-4	Features of Main Ravines in Eastern Part of Santiago
Table A-17-5	Prevention Works areinst Slope Failure

# LIST OF FIGURE

Fig. A-17-1	Landuse Type of the Mapocho River Basin
Fig A-17-2	Changes in Space of Urban Area and Agricultural Land
Fig A-17-3	Average Annual Changes of Landuse During 1977 and 1984
Fig A-17-4	Type and Area of Natural Vegetation
Fig A-17-5	Erosion Map in Mapocho River Basin

## 17.1 Diagnosis of the Mapocho River Basin

## (1) Introduction

The basin consists of three major river systems, namely, the Mapocho, the Lampa and the Colina. The Mapocho river originates in the Andean range which form the eastern border of the basin. Excepting one, the major tributaries of the Mapocho river: Molina, Yerba Loca, San Francisco and Arrayan, flow towards the south before they join the Mapocho river. The direction of flow of the Mapocho river is east-west till the point of confluence with the Lampa river. From this point, it flows towards the south-west until it joins the Maipo river. The Colina river originates in the pre-Andean range, and flows towards the south-west till it joins the Lampa river. The Lampa river originates in the small hills which form the northern boundary of the basin, and flows towards the south along the Coastal Range in the western boundary. Besides these rivers, there are three rivulets worth mentioning, because of their locations and steepness. They are Apoquindo, San Ramon and Macul. They originate in the pre-Andean range located to the east of Santiago city, and their torrents during heavy rainfall have the potential of causing great damage to the city.

Total catchment area at the confluence with the Maipo river is approx.  $5,270 \text{ km}^2$ . Of these, the First Phase Study included approx. 61,000 ha and the feasibility study in the Second Phase, approx. 36,000 ha.

## (2) Geomorphology and the Change in Pattern of Landuse

The total catchment area can be divided geomorphologically into three parts: the upstream region, the piedmont and the central valley. The upstream region covers about 28.4% of the total basin, i.e., a little less than 1500 km². The entire Study Area lies in the central valley.

The landuse of the basin in 1960, 1977 and 1984 is given in Table A-17-1 and Figs A-17-1 and 2. The type of landuse is classified into seven categories: 1 and 2: urban area (densely populated and less densely populated), 3 and 4: agricultural land (for annual and perennial crops), 5: thicket and pasture, 6: forest and 7: unusable land.

Urban area had sprawled dramatically during 1962 - 1977, and the urban area of category 1 in 1977 was 3.4 times larger than the one in 1966. Since then, the growth rate has decreased. In the process, some of the area of category 2 was absorbed into the area of category 1 with the growth of population density. The total urban area (1 + 2) in 1984 reached 48,600 ha with an annual growth rate of 0.76% since 1977. The area occupies 9.2% of the total basin.

The area of agricultural land has been decreasing since 1962. The rate of decrease up to 1977 was 0.125 %, and about 0.5% since then. The area of category 3 and 4 was 112,900 ha in 1984, 21.4% of the total basin. The area destined for annual crops was 85% of the total agricultural land in 1984, the rest consisted of perennial crops. In absolute terms, the area of agricultural land for annual crops had decreased by 6,100 ha in 7 years, whereas that of perennial crops have increased by 1,600 ha. The latter have felt the market forces, and together with an increase of the area, there has been a change of crops. However, 1962 levels have not been reached.

The area of thicket and pasture was 241,800 ha in 1984, covering 45.9% of the total basin. There has been a loss of about 1,400 ha in 7 years, at an annual rate of 0.08%. Forestland covered 5,300 ha, making up for only 1% of the total basin area. Still, this is the result of a remarkable increase in forested area: 2,100 ha in 7 years, with an annual growth rate of 7.6%. This is a clear indication of the effort made by CONAF.

Un-usable land was 118,600 ha in 1984, making up for 22.5% of the total area of the basin area. This area lies mostly in the upstream region. There has been a slight increase in the un-usable land area 1,200 ha in 7 years with an annual increase rate of 0.14%.

Areas of categories 1+2, 6 and 7 have increased, while 3+4 and 5 have decreased. Table A-17-2 and Fig A-17-3 show this trend. Average yearly variation is represented, with in the period between 1977 and 1984. In general terms, urban sprawling has penetrated into agricultural land, and a major part of forestation has also occured on agricultural land. Most of the decrease in thicket and and pasture areas has been towards un-usable land; a very small portion has turned into forested land.

If we observe macroscopically the change in landuse, by comparing the two circular diagrams for 1977 and 1984 in Fig A-17-1, the change may be overlooked. But it is also the fact, as Fig A-17-3 shows, that each year there is a change in the type of landuse in a total area of 830 ha. This may seem insignificant, but if this trend continues, the consequences will be felt.

Forests have not shown a spontaneous increase. Forestation in agricultural land, even if it is marginally productive, needs some non-economic long range investment program. Urban area grows even in the absence of a development project, at the expense of agricultural land, because of population increase. In order to forecast the situation in 2000, we have used the same annual increase rate as the one during 1977 and 1984, i.e., 0.76%. In the absence of a development project, thicket and pasture land will also decreased, and at a slightly bigger rate than the one during 1977 and 1984, because there will be no effort for forestation. We set, therefore, an annual rate of increase of -0.7%. The whole area will turn into un-usable land because of

over grazing, for example. Table A-17-1 and Fig A-17-1 show the landuse trend in 2000 in the absence of a development project, using the figures given here.

## (3) Water Resources, Rivers and Canals

Among such resources as land, water and human work force required for agricultural production, the primary constraint to productivity in the basin is water resources. Located in a semi-arid zone, the Mapocho river basin does not get enough rain to satisfy all the needs for irrigation and water supply. The existence of mineral resources in the basin, though it has contributed to the national economy, further limits the use of water because of unavoidable mineral pollution, despite attempts to reduce pollution. Thus, water supply for the city and the irrigation water for the surrounding agricultural land have long depended on the Maipo river.

In the north, the waters from the Aconcagua river are brought into the Huechun dam to increase the irrigation water for the agricultural land immediately downstream of the river. The Lampa river has a dam at Rungüe which has helped to increase the cultivation of perennial crops in the downstream area. Along the Colina river, in the eastern marginal area of the northern part of the Central Valley, groundwater is utilized as a source of irrigation and for water supply.

Erosion takes place in the upstream region and sedimentation in the valley. Thanks to the small precipitation, the volume of earth removed by erosion is manageable; on the average, 140 ton per year per km² at Los Almendros in the Mapocho river. Sediments clogg the rivers, especially at the confluence of the Mapocho and Lampa rivers. The area, particularly the lowlands downstream of the Lampa river, is easily flooded in the rainy season.

The San Carlos canal is a life-line of the Metropolitan Area. It produces electricity and feeds Santiago and the surrounding agricultural land with the waters from the Maipo river.

## (4) Agricultural land and Pasture

The agricultural land in the basin has several natural and manmade constraints for its further development. Shortage of irrigation water is, above all, the most important. The potential volume of water to be developed in the basin is quite limited, far less than what is required. The only alternative is, to get water from the Maipo and the Aconcagua rivers. The excessive use of groundwater tends to lower its level, and thus increase the price of water. Sedimentation of alkaline/saline soil in the low lying areas is another natural problem for agricultural land. The area is often flooded for days in the rainy season. The agricultural land located downstream of Santiago receives untreated sewage water for irrigation. This has resulted in the contamination of irrigation water. On the other hand, the agricultural land has

the advantage of being near the Metropolitan Area which is a huge consumption center of agricultural products in the basin. Pasture greatly depends on rainfall. Therefore, the number of cattle should be kept within the reproductive capacity of the grass.

## (5) Urban Area (Habitat for Human Resources)

Most of the basic economic factors of the city are destined to be determined by the national economy and policies, beyond the control of the basin's own economic potentials. Population growth is a typical example. Investment tends to delay the provision of necessary infrastructures; the lack of sewage treatment plants is one example.

Urban area sprawls into the adjacent agricultural land. Some urban development schemes are located in the east, in the piedmont zone, where there is great danger from flashfloods during (or after) heavy rainfall. The San Carlos canal makes a lower channel or rivulets; Apoquindo and San Ramon.

The Macul flushes into the Zanjon de la Aguada. Thus, in addition to improvement of channel structure and restruction of urban development, formulation of the coordinated management program in case of emergency is vital to minimize damages.

#### (6) Upstream Region and Piedmont

The upstream region of the Mapocho river basin provides water for the flora and fauna in the valley, though not enough to maintain the present level of human activity. The region prodeces copper and accomodates resort industries. It also has aesthetic value for the people in the Central Valley. Because of the poor vegetation and of adverse climatic and geomorphological conditions, there is no forestry production in the region.

Table A-17-3 and Fig A-17-4 show the types and area covered by natural vegetation in the basin in 1983. Natural vegetation (including quasi-natural vegetation and bare land) covers 37.6% of the total basin, mostly distributed in the upstream region, piedmont and prairie. Bare land consists of 1.6% of the total basin. It is distributed, besides in the andean zone, in the periphery of the agricultural and pasture land as a result of excessive human use.

La Disputada copper mine is located at the head of the San Francisco river at an altitude of 3,450 m. A.S.L. With an excavation rate of some five million tons per year, the copper reserve of a billion tons will last for 200 years. After the ore concentrates are removed, residuum has been and will continue to accumulate in the downstream area of the San Francisco river. The waters of the river are contaminated with heavy metals, but after the tributary joins with the Mapocho river, the polluted waters are gradually diluted.

Farellones, Colorado and La Parva are excellent winter sports centers. They are built on the barren gentle slopes between 3,300 and 2,500 m of altitude, above the tributary Manzanito. These resorts are totally dormant when the area is not covered with snow. During these periods, the road to Farellones and La Disputada is repaired, widened or improved. Earth removed at construction sites is dumped to the bottom of the valley, suggesting that the danger of sedimentation in the Central Valley is not recognized by the public. Near Farellones, the road is paved, and the houses and flats in the ski-resort are beginning to be surrounded by poplar trees, in contrast to La Disputada mine and downstream in the San Francisco river where not a single tree is found. Snow accumulates 2 to 3 m deep.

Mining and tourism are the two major economic activities. They produce a taxable income, a part of which can be allocated to a basin management program. It is one thing to say that watershed management is necessary to reduce erosion, sedimentation and flooding, but quite another to do something about it in this very frail environment. The existence of a forestry station in the lower reach of the Yerba Loca river is worth mentioning here. The station is managed by CONAF. There is a tree nursery, experimental station, and educational and recreational facilities for the public. In the experimental station, some seventy species of trees are grown for studies on their adaptability. The aim is the propagation and conservation of forests wherever possible, and also to make known the idea of proper watershed management through education.

The major benefits derived from well managed forests are the production of oxygen, prevention of erosion, and conservation of water resources. In a recent study, the Forestry Agency in Japan has calculated the monetary benefit brought by the forests in Japan. It amounts to about US\$4,000/ha on the average in 1979 prices.

The piedmont region shows the most drastic change in the whole of the basin because of its easy access. This has resulted in the loss of the delicate balance of the eco-system. Human intrusion is most notable in the form of over-grazing by cattle or new urban development. (unit:ha)

	1967			1977			1984			2000	
	ha	60/	ha	%	A.R.I(Z)	ha		A.R.I.(7)	ha	%	A.R.I.(7)
1.Urban Area	10,603.2	(51.8)	36,331.5	(78.8)	8.6	40,201.8	(82.7)	1.5			
2do- (less dense)	9,883.7	(48.2)	9,795.3	(21.2)	-0.06	8,420.0	(17.3)	-2.1			
1+2	20,486.9	(100)	46,126.8	(100)	5.6	48,621.8	(100)	0.76	54,883.5	10.4	0.76
3.Agricultural Land(annual	101,223.6 (84.8) 102,477.	(84.8)	102,477.1	(87.3)	0.08	96,415.5	(85.4)	-0.87			
-op-	18,208.4 (15.2)	(15.2)	14,896.0	(12.7)	1.3	16,532.8	(14.6)	1.5			
3+¢	119,432.0	(100)	117,373.1	(100) 22.3	-0.12	112,948.3	(100)	-0.55	106,686.6	20.3	-0.36
5. Thicket & Pasture	226,105.2		243,142.9	46.1		241,776.3	45.9	-0.08	237,936.8	45.1	-0.1
6.Forest	2,220.9		3,142.2	9.0		5,257.5	1.0	7.6	5,257.5	1.0	0
7.Unusable Land	9,076.4		117,430.4	22.3		118,611.5	22.5	0.14	112,451.0	23.2	0.2
Total	377,321.4	ŀ	527,215.4	100.0		527,215.4	100.0		527,215.4 100.0	100.0	

1. About 150 thousand ha.of upstream area is not included

note: A.R.I. = Annual Rate of Increase

2. A Projection made by the Team

Source: The Basic Cartography for the Basin of Mapocho river

(ha)

Type of Use	Increase	Type of Use	Decrease
Urban Area 1+2	356.4	Agricultural Land 3+4	632.1
Forest	302.2	Thicket and Pature	195.2
Total	827.3	Total	827.3

Table A-17-3 TYPE AND AREA OF NATURAL VEGETATION

		(ha)
1. Scanty Shrubland	(i) 71,662.7	(ii)
2. Dense Shrubland	31,612.2	103,274.9
3. Scanty Acacia Caven Savannah	27,341.7	•
4. Dense Acacia Caven Savannah	8,597.9	35,939.6
5. Open forest	2,672.2	
6. Dense forest	2,596.9	5,269.1
7. Andean vegetation	26,296.2	26,295.2
8. Succulent scrubs	21,377.3	21,377.3
Matovial de sucullutas 9. Bare land	5,237.2	5,237.2
10. Oak Tree	886.9	886.9
Total natural Vegetation	198,280.2	198,280.2
Others		328,935.2
Total Basin		527,215.4

Note:(i) Vegetated area only

(ii)Total basin

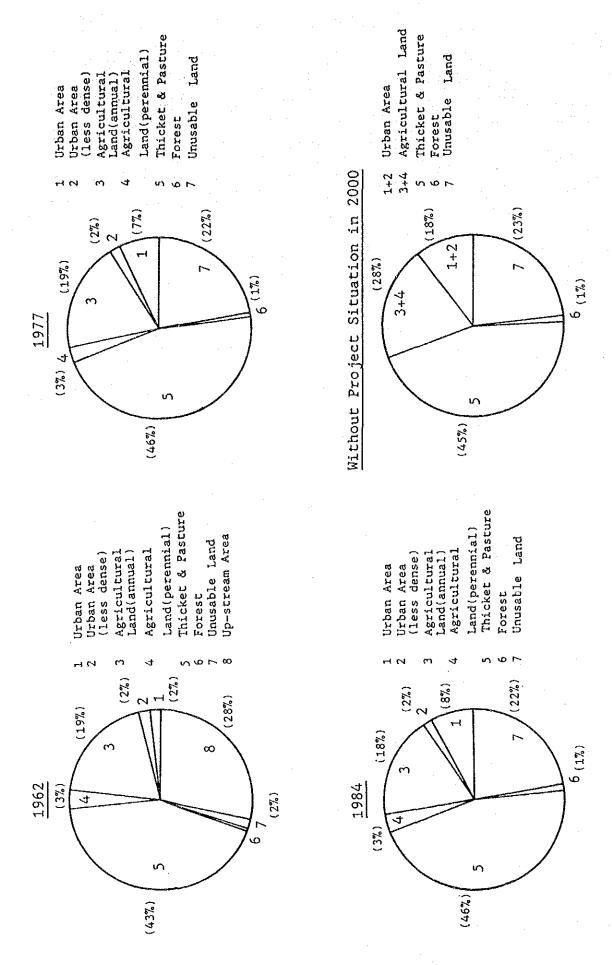
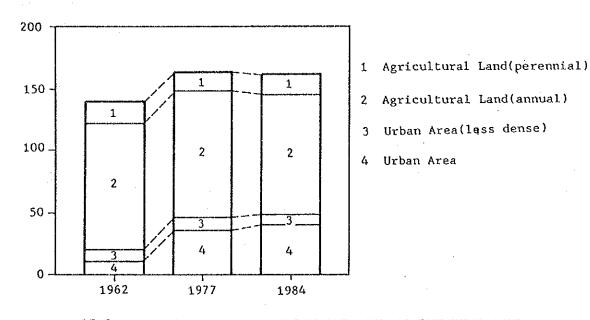




Fig A-17-1 LANDUSE TYPES OF THE MAPOCHO RIVER BASIN



. Fig A-17-2 CHANGES IN SPACE OF URBAN AREA AND AGRICULTURAL LAND

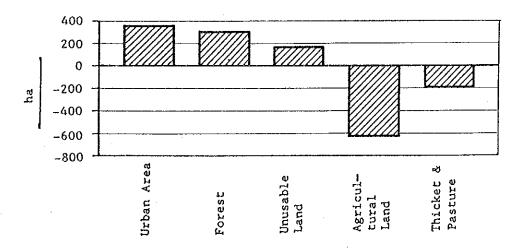
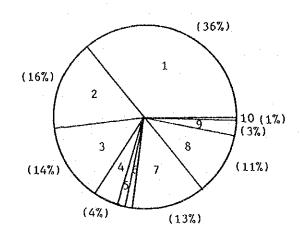
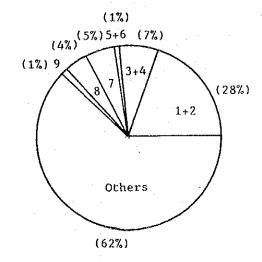





Fig A-17-3 AVERAGE ANNUAL CHANGES OF LANDUSE DURING 1977 AND 1984





(ii)



- 1. Scanty Shrubland
- 2. Dense Shrubland
- 3. Scanty Acacia Caven Savannah
- 4. Dense Acacia Caven Savannah
- 5. Open forest
- 6. Dense forest
- 7. Andean vegetation
- 8. Succulent scrubs Matovial de sucullutas
- 9. Bare land
- 10. Oak Tree

Note:(i) Vegetation area only

(ii)Total basin

Fig A-17-4 TYPE AND AREA OF NATURAL VEGETATION

# 17.2 Erosion Control of the Mapocho River Upper Basin and Surrounding Areas

This Study was done in connection with the Mapocho River Basin Agriculture Development Project. The objectives are: describe the present condition of the Study Area, analyse the cause and effect of slope failures, and discuss the methodology of disaster prevention.

## (1) Study Area

The area of this Study covers the upper reach of the Mapocho river and its tributaries which flow through the eastern part of Santiago. The mountain area above the timberline, EL + 2,000m, is excluded from the Study, as it is too remote to have a direct effect on the Project Area.

#### (2) Present Condition of Slope Disaster

#### 1) Types of slope disaster

Systematic recording of past slope disasters are not available. However, the type of disaster dealt with in this Study was identified as steep slope failure through interpretation of 1:40,000 scale aerial photos and site investigation.

#### 2) Location

The location of slope failures identified by interpretation of aerial photos and site investigation are shown in Fig A-17-5. Most of these is small scale slope failures of surface strata.

### (3) Site Investigation

#### Methodology

High potential areas of slope failure were chosen for site investigation from those identified, in Fig A-17-5.

The investigation dealt mainly with slope environments due to technical limitations. Nonetheless, observations were made on soil, rock structure and water, whenever it was possible.

## 2) Slope Environment Study

a. Study on slope micro-morphology.

A preliminary study with 1:40,000 scale aerial photos was carried out. For a more detailed investigation, however, aerial photos of 1:20,000 scale should be used.

#### b. Study on vegetation

The main concern of this part of the Study is to assess the existing vegetation so to plan a suitable replanting scheme for the recovery of slopes.

The vegetation was sampled except for the San Francisco and Yerba Loca rivers. For trees and shrubs the size of quadrangles was set in  $10 \times 10m$ , and for herbaceous plant,  $1 \times 1m$ . The latter was done within the  $10 \times 10m$  quadrangles.

## 3) Study of Soil and Rock Structure

a. Soil Survey

The thickness and permeability of surface soil were studied.

b. Geological Survey

The geological formation of the area is related to the nature of the slope failure. Special attention was paid to the following aspects.

- Strike/dip, types of fractures of stratum
- Weathering band and distribution of rolling stones

#### 4) Water Survey

Observations were made of surface and spring waters.

## (4) Actual Situation of Steep Slope Failures

The slope failure is a type of landslip, in which the material forming the hill slope moves. In general, this happens at a small scale, but the movement of earth is rapid and violent.

Slope failure causes two types of problems in the areas located downhill.

- Type 1: It produces unstable debris, which will further derange the river course and can potentially ruin it.
- Type 2: It sometimes becomes a direct threat to the inhabited houses and man-made facilities in the vicinity.

All the slope failures in the study area except the ones in the ravine of San Ramón belong to type 1.

#### 1) Sites investigated

Site investigations were carried out in the following five localities:

- a. Covarrubias Tributary flowing into the Molina river 3 km above the confluence of the Molina and San Francisco rivers.
- b. The Mapocho river near the confluence with the ravine of Los Potrerillos
- c. Basin of the San Francisco river
- d. Yerba Loca river
- e. Eastern part of Santiago

## (5) Description of Existing Slope Failures

## 1) Covarrubias Tributary

## a. Geomorphology

Flat terraces are formed at a height of 10 to 15m above the river bed. In many instances, steep slopes continue up from the terrace, which suggests a past slope disaster. Beneath the terrace loosely sedimented soil and gravels susceptible to erosion are found. This is the critical area for a failure.

The big deposits of earth at the confluence with the tributary Los Recauquenes are supposed to be eroded earth transported from these spurs. Many slope failures are relatively recent having slid the upper parts of the surface stratum of the slopes.

There are some failures near the ridge area, which have been caused presumably by the earthquake of March 1985. The earthquake has not initiated new failures, rather, it has triggered the activity of the dormant ones.

#### b. Geology and Soil

The geology of the locality consists of Abanico Formation, mainly formed by alternate stratum of hard andesitic lava and with terrestrial deposits and rhyolite. Weathering of andesite has not developed so much so that slope failure has not penetrated deep into the earth.

The thickness of the soil is about 25cm of which the upper 10cm are of black colour.

## c. Vegetation

The gist of the survey is as follows:

- Altitude : EL + 1,300m

- Gradient : 33° - Slope aspect : East

- Height of trees : 2.5 to 4.5 m - Species : Species number

> Bollen 10 Guayacan 1 Quillay 1

The vegetation can be described as a pure stand of Bollen. This species grows well in this area. It is found up to an altitude of 1,800m in the Andes Range, and is adaptable to dry or slightly humid soil. It also regenerates well from seed, so it may be used for replanting. An ecological study of Bollen should be carried out at the Yerba Loca Experimental Station.

#### d. Rainfall and Hydrology

Annual rainfall is approximately 600mm according to CNR estimation. There was no trace of damage caused by rain in the

slope failure in September 1985 as it has been a dry year. Neither surface nor spring waters were visible on the slope.

#### e. Damage

Many boulders of various sizes are found in the torrential valley down to the confluence with the tributary of Los Recauquenes. Erosion of the lower part of the hillside, at the border of the riverbed, is conspicuous. From the confluence downwards, not many boulders are found, because the deposits at the confluence have been functioning as a dam. The few houses located on the terrace at the confluence with the Molina river will remain unharmed. If flooded, low lying fields and pastures along the river will be intruded with sand and stones. Yet, as a whole, the slope failures of this tributary would not cause big damages to the Molina river.

# 2) The Mapocho river near the confluence with the ravine of Los Potrerillos

#### a. Geomorphology

All the slope failures are of small scale except one located 1 km from the confluence up the Los Potrerillos ravine. The place is a depression, where rain water flows in. The failure starts from near the ridge; the length of the slope is about 320m. The part of the failure near the ridge is still active. The crests of many failures are located near the ridge, which means that logistically countermeasures are very difficult to carry out.

#### b. Geology and Soil

The geology of the area consists of a typical Abanico Formation. The ratio of composition of the three commons elements, andesitic lava, clastic andesite and sedimentary rock, is approximately 65:30:5. Hard andesitic lava is fairly new. Joints develop in it, and fine gypsum veins are found, too. Weathering of andesite is advanced so that with a slight impact rocks may crumble down to pieces. Intrusion of water to the andesite stratum is presumed to accelerate the process. Surface soil is dry, sandy, and very thin. It is of reddish brown colour.

#### c. Vegetation

The gist of the survey is as follows:

The Survey Site is located 50m North of the large scale failure on the same slope.

- Altitude: EL + 1,050m; Gradient: 35°; Slope aspect: East

- Species:	name	number	height(m)
	Colliguay	6	1 - 2
	Mitique	1	1 - 2
	Quisco	1	1 - 2
	Litre	1.	1 - 2

Colliquay, an evergreen shrub, is abundant in this region. The average height of the plant is between 1 and 1.5 m. It is well adopted to the dry rocky substrate, and generates well from seeds.

No ecological study of the species has been carried out.

#### d. Rainfall and Hydrology

Annual rainfall is approximately 500 mm according to CNR estimation. No trace of surface or spring waters was found at the time of the field survey.

The following factors may have contributed to the development of such a large scale failure:

- The failure may have been initiated when the andesite stratum reached the surface, because it is liable to be weathered quickly.
- ii. If joints develop in alternate beds of hard andesitic lava, and fine gypsum veins develop along the joints, this cannot stand long even with little rain. The surface of failure could have grown in this way.
- iii. As the rainy season coincides with winter, although rainfall may be little, freezing and thawing is common, which triggers the crumbling process.

## e. Damage

As the surface soil is thin and all sediments are clastic. At the lower tip of the failure a big boulder with a diameter of more than 3mis located. Clastic rocks are distributed by sizes, and transported not more than 30 m from the failure because of the topography of the site. An irrigation canal crosses the lower tip of the failure. No big damage is observed in it except for some traces of the falling of stones probably triggered by the earthquake in March 1985.

## 3) San Francisco River

## a. Geomorphology

The hillside slopes are very steep, with many rocky outcrops, and very few slope failures. A fairly big reddish brown failure can be seen in a depression at the altitude of EL + 2,400m, far above the timberline.

## b. Geology

Abanico Formation's andesite beds have fewer joints and a lesser degree of weathering than the ones in the above mentioned other localities. This explains that in spite of the fact that there are many rocky outcrops, failures are very few. The failure just mentioned is located in the hydrothermal alteration belts which includes the deposit zone of porphyry copper.

#### c. Vegetation

In this case the quadrangle method was not used. By simple observation, 9 species were identified of which three, Frangel, Colliquay, and Muchi, are commonly found in the region. The area studied is located close to the river, at EL + 1,650m, facing the North-West.

Frangel, the dominant species, seldom grows more than 4 meters tall. Closer to the timberline, the density of this species increases and it grows better in humid soil. Muchi also prefers humid soil, so it is not suitable for replanting on dry barren soil.

The San Francisco river area has very poor vegetation, except close to the river stream or in depressions where snow remains till late in spring.

#### d. Rainfall and Hydrology

In the Andean zone above the timberline, it seldom rains; but it snows.

#### e. Damage

The torrential river course is not due to slope failures, but to a cheaply constructed road leading to the mine. In some places this road occupies half of the river. Every time there is high water the slope of the road is washed away.

## 4) Yerba Loca River

#### a. Geomorphology

Yerba Loca retains the feature of a glacial valley. The slopes are gentle with few failures. Loose slopes of the side moraines have given into the gullies little rain, yet rich and stable vegetation will prevent the gullies from short and long term erosion.

## b. Geology and Soil

Farellones Formation of Tertiary (Miocene) is found in the valley. The Farellones Formation consists mainly of andesite and welded tuff with a small portion of a Paleozoic sedimentary bed. The relatively young age of the Formation explains the slight weathering. An anticline is found near the river course. There is also an acidic rock which intrudes the Formation. Thickness of the surface soil is 24cm in average.

#### c. Vegetation

Observations without setting up the quadrangle frame were conducted at 3 points. The vegetation is comparatively rich is

species and cover, considering the altitude. Four factors have contributed to this: gentle slope, thick surface soil, high soil moisture and gentle micro-climate.

The gist of the observation is as follows:

- On the slope facing South EL + 1,500m Bollen, Quillay, Frangel, Gundillo and Muchi
- On the slope facing North, EL + 1,500m Bollen, Quillay, Frangel, Gundillo and Espino
- On the slope facing Southwest, EL + 1,800m The presence of guillay indicates the gentle climate of the Yerba Loca valley. The species, except Espino, grow better on humid soil.

# 5) Eastern part of Santiago

## a. Geomorphology

The area consists of many basins of ravines originated in the pre-Andean range. The main ravines are Apoquindo, San Ramon, and Macul, from north to south. These ravines have steep stream gradient (>12.5%) and have been eroded due to poor vegetation. The pre-Andean range is situated just 7 km east of the eastern boundary of urban area of Santiago, rising from the plan into an altitude of over EL + 2,000 (Table A-17-4).

Table A-17-4 Features of Main Ravines in Eastern Part of Santiago

Ravine	Catchment Area(km ² )	Average Altitud (m.A.S.L)	_	Average Stream radient (%)	Max.preci pitation (m/24 hr)	Regarding Time (hr)
Apoquindo	20.97	1,050	8.7	12.5	70	1.8
San Ramon	15.70	1,050	8.1	13.5	75	1.8
Macul	12.90	1,150	7.6		70	1.6

Source: MINVIV (1985), Areas de Riesgo por Inundation

We shall deal with San Ramon only, as the slope failures of the area concentrate in this ravine. San Ramon ravine originates from area near the San Ramon mountain. (3,253 m.A.S.L) the highest peak of the pre-Andean ridge. It has the largest basin in the area with the largest stream flow.

The failure in San Ramon closely resembles those in Los Potrerillos. The difference is the gradient of the slopes. Here the average gradient of the slopes is 38°. The upper portion of the failure was activated by the earthquake in March 1985 and the surface is very fresh.

#### b. Geology

The principal geological features in this area are classified into following three components:

 Unconsolidated sediments: Fluvioglacial, alluvial, colluvial and volcanic ash origen of Quaternary.

They consist of debris, alluvial cone, mudflow and volcanic ash. These sediments are found in a band with north-south direction between EL+900 and +600m. The lithological facies are heterogeneous mixtures of gravel, sand, silt and clay. They are permeable because of consolidation of them.

- Volcanoclastic rocks: Abanico Formation of Cretaceous sup. - Terciary

They distribute in the piedmont of the pre-Andean Range higher than EL+900m.

The principal petrological facies are andesites, breccias and sedimentary rocks. The outcrop of rock of this type shows many fracutures, high weathering and alteration. These are many semi vertical faults with north-south direction. Erosions occur in many places of this components.

- Plutonic intrusive bodies: Diorite and granodirite of Terciary

They ocupay small area in upper parts of small ravine (Quebrada) basins and show moderate weathering and fracturing.

The distribution ratio of these three components is approximately 60: 25: 15, respectively

#### c. Vegetation

A quadrangle was set at an altitude of EL + 930m, facing North, with a gradient of  $30^{\circ}$ , just above the failure. The gradient is less steep than that of the failure. The surface soil is very thin and dry. As a result, the vegetation in this locality is very simple; 14 Colliquays and 1 Litre. The height of Colliquay ranges between 1 and 2 m and Litre 5 m.

## d. Rainfall and Hydrology

Annual rainfall is approximately 600 mm according to the estimation of CNR. A record indicates that the maximum hourly precipitation in the city of Santiago is 12 mm with a probability of 10 years, and 16 mm in 100 years. Taking into account these data, the maximum hourly precipitation in this area, though mountanous, should be less than 15mm. This suggests that a localized torrential downpour is hardly expected. On the contrary, fine rains fall continuously throughout the rainy season. No trace of surface or spring waters was found at the time of the investigation.

#### e. Problems and Damages

The San Ramon vaine has small catchment area but poor vegetations. Its stream gradient is steep, approx. 13.5%. Due to these natural conditions, a huge amount of sediments has been transported and deposited in its downstream area around the ravine during flood.

The clastic sediments containing fine grained materials deposited in the urban area and around the cross of the San Ramon ravine with the Perdices canal have formed low permiable layers. In addition, the flow capacity of the ravine is reducing annually due to the sedimentation of the ravine.

The construction of the paved roads and the development of urban areas in the piedmont have increased the inundation in such areas as Principe de Gales, Aguas Claras, La Canada and Loveley. A further development upwards may reduce the recharging potentials of the bill area and increase the supply of unstable sediments.

## (6) Countermeasures against Slope Failure

## 1) Prevention Work

There are two types of prevention work, one is stabilizing works and the other, slide check works. The former seeks to stabilize the slope, by trying to remove the factors which will cause the failure, like rainwater before reaching the spot. The latter checks directly the movement of earth with the means of man-made structures in the spot where the failure takes place.

The following is a list of works to be done for disaster prevention.

#### a. Stabilizing Works

- (a drainage works (against surface water and ground water accumulation)
- b replanting works
- (c spraying works (with mortar or concrete)
- d pitching works (with stone block or concrete)
- e frame works (with stone, block or concrete)

- (f) masonry (with stone or block)
- (9) cutting of unstable earth blocks
- b. Slide Check Works (slide prevention works)
  - (h) sheathing wall works (with block, concrete or concrete frame)
  - (i) anchor method
  - (j) pile method
  - (k) counterweight fill method

#### c. Others

(1) skeleton works and (m) gabion works are used for satisfying both of the above-mentioned purposes.

## 2) Selection of Works

There are two pre-requisites to chose a particular type of works. The first is an analysis of the factors causing the failure and its shape. The second is clarifying the objectives of the work, i.e., what is to be protected from the failure.

A final choice should be made by taking into account the conditions of construction and of the surrounding environment. Normally, a slide check work is first chosen, and then a suitable stabilizing work is selected.

Table A-17-5 gives the criteria for the selection of protection works for slope surface.

## Countermeasure Works

All the slope disasters in the basins of the upper reach of the Mapocho river and its tributaries in the eastern part of Santiago, as has been found by the site investigation, are steep slope rock failures. They belong either to the type NO 5 or 6 of Table A-17-5. The range of choices of countermeasures is limited, and construction is difficult. According to the matrix of the slope, the methods generally used now are concrete pitching works with anchor works, mortar or concrete spraying works. The following are some of the points to be observed in the execution of the prevention works.

## a. Concrete Pitching Works

Standard gradient of the slope must be 1:0.5. It can be designed, though, up to 1:0.3, if the slope condition allows it. Maximum height of the slope should be 20m. When a stepping method is used, the height of one step should be kept around 15 m with a small flight in-between the slopes. Normally, the plain concrete pitching method is used when the slope gradient is approximately 1:1.0, and reinforced concrete

Table A-17-5 Prevention Works against Slope Failure

Ио	Water	Gradient	Characteristics	Type of Works $\frac{1}{2}$
1	0	<1:1.0		(b) (block) or (e)
2	. 0	>1:1.0	Weathered rock long slope	(concrete)
3	_	<1:1.0	Sand, soil, talus crumbly clay	(d) (stone or block)
4		>1:1.0	- do -	(f) (stone or block) or (h) (concrete frame)
5		<del></del>	Rock with many joints	(d) (concrete) or (i)
6	х	<u> </u>	Weathered rock	
7	0		Sand or soil (liable to be washed away)	. (b) and (m)
8			Sand or soil	(b) and (1)

^{1/} (d) corresponds to the works listed in Section (6), 1)

pitching when 1:0.5. The thickness of concrete should be between 20 and 80cm. Anchor works are usually carried out together with pitching in order to solidify the original matrix. Crest lining should carefully be carried out so that water will not infiltrate into the back.

## b. Concrete or Mortar Spraying Works

The standard thickness with mortar spraying is 5 - 10cm, and concrete 10 - 25cm. In the localities where freezing and thawing alternate, the thickness of mortar should be more than 10cm and concrete, minimum 20cm. In order to further increase the durability and safety of the spraying works, reinforcing bars and steel nets should be place in the sprayed layer.

# 4) Construction Planning

As is the case with any other project execution, the construction of preventive works against slope failure cannot escape from an appraisal of the economic effect. Construction usually needs big machinery and a large volume of material. A large volume of earth is also to be transported by dump trucks on behalf of the river flow itself. It is not realistic to plan these works on sites far away from existing access roads.

However, when immediate danger affects the lives of human being, i.e., when potential slope failure is found just above railways, roads, houses, etc., cost; and benefit ratio should give in to human lives. Durable structures should be constructed immediately at all costs.

## a. Mapocho River Upper Basin

There are no particular tributaries or slope failures from which a big amount of earth is transported. Therefore, to provide preventive works for each failures is out of the question because the effect would be minimal.

On the other hand, a fairly large amount of sedimentation is found on the riverbed of the Mapocho river, between the confluence with the Arrayan and the point where the river flows through the central part of the city of Santiago. This is a proof that a large volume of earth is transported during high water, though the scarcity of data on sedimentation deprives us of analyzing the phenomenon. So, from the view point disaster prevention, the construction of riverbed stabilizing structures to check the sediment, such as debris barriers or Sabo dams, is an effective means to maintain the necessary river section at its lower reach.

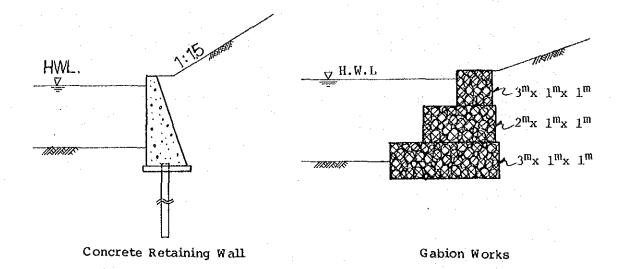
#### b. Eastern Part of Santiago

The basin of San Ramon covers 37% (approx. 10,000 ha) of the total area of the eastern part of Santiago. This is the biggest ravine in the area, and is potentially the most dangerous. The area above EL + 2,000m is barren and rocky.

The debris from this area is transported directly to the alluvial fan. The slope is steep, the distance is short and, to make matters worse, the river flows through an urban zone just after its gradient becomes less steep. Therefore, the planning of a prevention strategy is very difficult.

## (i) Countermeasures against Slope Failure

In this basin there are quite a few failures. The most dangerous one is, the only one which is able to be attended. As a preliminary work, a 500 m access road is required for the carrying of material. Mortar spraying works would be the most appropriate. To reduce further possibilities of failure damage to the water supply facilities and the housing zone, construction of a debris barrier in the upper reach of San Ramon is thought to be an adequate countermeasure.


## (ii) River Improvement

With sedimentation flows under the ground at the alluvial fan, though the gradient of the ravine bed is still steep. Since the flood in 1982, banks have been partially protected by gabion works, and small debris barriers have been provided. Unfortunately, the design of the levee section has not taken into account the future rise of the riberbed due to the barriers, so the river width will become, when more ravine flow down. This is really dangerous. It is necessary to enlarge the river section and raise the river banks so that it may be enough flow area according to the channel planning.

(iii) Regulations on Ill-planned Development in Mountainous Areas
Ill-planned development not only destroys the environment, but
also lessens the storage capacity, increases peak discharge and
generates sediments and water pollution. Regulation on illplanned development is required.

#### (7) Sediment Run-Off Caused by Road Construction

A mountain road is being constructed along the Mapocho river from near the confluence with the Arrayan. In some places, the cuttings are being thrown into the river section without proper precautions. These man-made slopes, of both cutting and banking, are liable to erosion. If left unattended, it may lead to road or river disaster. Prevention steps need to be taken urgently. One of the best methods is to construct concrete retaining walls. Gabion works is also recommendable, but water would infiltrate into the slope, so it is not 100 percent proof against erosion.



Prevention works are hardly carried out on the slopes of cuttings and bankings. Replanting on banking slopes should be done by using the sprayed sodding method. Natural vegetation will not intrude into the rain-short, rock-rich banking slope by itself. Seeds of several species of grass should be mixed taking into account both the slope environment and the characteristics of the selected grasses.

When heavy-duty bulldozers are used for road construction on solid rocky slopes, rock cuttings cannot but slip down the slope into the bed river, spoiling it. An ideal combination of equipment to avoid this kind of unfortunate consequence is shovel-type excavators and dump trucks. This combination will enable the remain of cuttings to be transported to a deposit area free from the danger of further erosion.

Construction of mountain roads is a necessity for a mountainous country like Chile. Still, once the environment is destroyed it seldom returns to the previous equilibrium state. Short-sighted cheaper construction surely will have to be followed by unnecessary spending in countermeasures. So, in the long run, the situation will prove to follow the truth found in an old saying, "penny wise, pound foolish."

### (8) Recommendations

#### 1) Countercheck against Slope Failure

It is desirable to carry out mortar spraying works in the slope failure which is located in the upper basin of the San Ramon river.

# 2) River Improvement and Prevention Measures against Sediment Runoff

In order to prevent sediment runoff, it is advisable to construct debris barriers or Sabo dam in the mid-stream of the Mapocho river and in that of the San Ramón ravine.

As the river section of the San Ramon becomes smaller, the more ravine flows down. So, it is also advisable to carry out river improvement works which take into account the flow area according to the channel planning.

# 3) Regulation of Development

The following measures for the development in mountain regions are proposed.

- a. Carry out revetment or slope replanting works in the area devastated by the construction of the existing mountain road;
- b. Conduct investigation and research on the designing and execution of future mountain road construction; and
- c. As ill-planned housing development at the piedmont not only reduces the precious vegetation, but also devastates the hillside and river channel, the establishing of countermeasures, like enacting of regulations, is of the almost urgency.

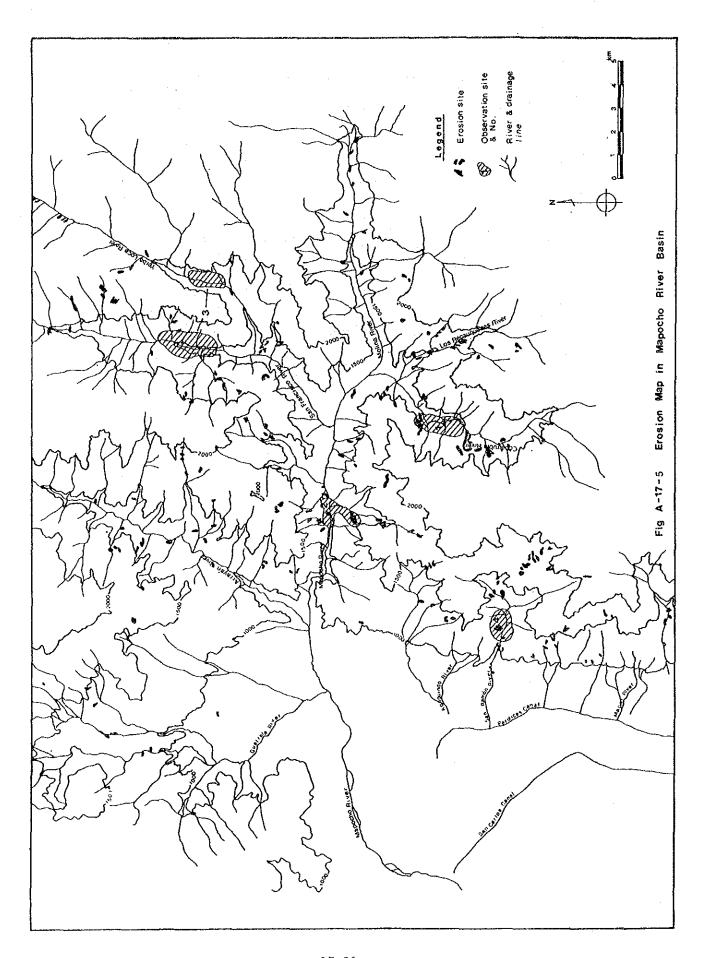
# 4) Promotion of Basic Studies

It is advisable to conduct the following basic research and data collection in order to grasp the present situation of slope failures and to study its countermeasures.

# a. Topographic Maps

An essential prerequisite for the analysis, is a set of 1:5,000 scale topographic maps, without which no meaningful analysis can successfully be carried out.

b. Studies on soil and vegetation


The CONAF research station in Yerba Loca is conducting ecological studies at higher altitude with foreign trees mainly. But no study is being done on suitable species for erosion and torrent control. Ecological studies should be made on the selection of trees suitable for the replanting of slopes.

c. Data on River Sedimentation

The data on sedimentation, such as total volume of sediments, flowing down volume of materials per year and changes of elevation of riverbed, are important for analysis and countermeasures.

d. Meteorological and Hydrological Data

Meteorological and hydrological data of the upper basins are also important factors for the analysis of the phenomenon of erosion.



Appendix 18 References

BCC , 1981. Sintesis Estadística de Chile, 1976-1980.

BCC ,1983. Sintesis Estadística de Chile, 1978-1982.

BCC ,1985. Síntesis Estadística de Chile, 1980-1984.

BCC , 1984. Memoria Anual 1983.

BCC ,1984-85. Informe Económico y Financiero, diciembre 1984, enero y julio 1985.

BCC ,1984 . Informe Económico de Chile 1983.

BCC, 1984-85. Boletin Mensual N° 675 692.

BCC, 1984-85. Indicadores de Comercio Exterior, diciembre 1984, mayo 1985, julio 1985 y agosto 1985.

BCC 1984 Cuentas Nacionales de Chile 1960-1983.

BCC , 1985. Statistical Synthesis of Chile, 1978-1982.

INE , 1985 . Compendio Estadístico, Chile 1985.

INE , 1984 . Compendio Estadístico, Chile 1984.

INE La Evolución Social y Económica de Chile en siete años, septiembre 1973-1980.

INE , 1984 . Actividades de Investigación y Desarrollo Experimental 1982.

INE Indice de Precios al Consumidor , Base diciembre 1978 = 100.

INE Sintesis Estadística Regional, enero-diciembre,1983.

INE Informativo Estadístico enero-junio, 1984.

INE, 1984. Demografía 1982.

INE Muestras de Hogares Regionalizada, Metodología.

INE, 1984. Población Estimada al 30 de junio y 31 de diciembre de 1984, según Regiones, Provincias, Comunas y Ciudades.

INE, 1982. Chile XV Censo Nacional de Población y IV de Vivienda 21 de abril de 1982.

INE, 1982. Encues ta Nacional del Empleo Calificación de la Fuerza de Trabajo, octubre-diciembre 1980.

INE Proyecciones de Población 1970-2000, Región Metropolitana de Santiago.

INE , 1983 . Encuesta Nacional del Empleo, Gran Santiago, abril - junio, 1983.

INE , 1983 . Sintesis Estadística Regional.

INE Cuentas Nacionales de Chile 1960-1983.

INE, 1984. Anuario de Comercio Exterior y Servicios 1981-1982.

INE , 1984 Informativo Estadístico.

INE ,1984. Chile Regionalizado, Sus Provincias y Comunas.

# Geology and Hydrogeology

CIREN Catastro de Pozos, Hoya Nº 308. Maipo, Informe 34, 123 p.

CORFO - IIG ,1970. Hidrogeología de la Cuenca de Santiago, 14 p., Cuadros, Tablas.

DHARMO C. y ROJAS D., 1981. Condiciones de Sedimentación en la Cuenca de Santiago, 118 p.

VALENZUELA B., GLORIA, 1978. Suelo de Fundación del Gran Santiago, Boletín N° 33, 84 p.

INSTITUTO DE INVESTIGACIONES GEOLOGICAS (I.I.G.), 1962. Contribución de la Corporación de Fomento al Desarrollo del Agua Subterránea en Chile.

I.I.G. y THIELE C., RICARDO, 1980. Carta Geológica de Chile, Hoja San tiago, Región Metropolitana.

I.I.G., 1972. Edades Radiométricas de Rocas Intrusivas y Metamorfi - cas de la Hoja Valparaíso - San Antonio.

I.I.G. El Agua Subterránea de Santiago.

IPLA Proyecto Maipo. Estudio Hidrológico e Hidrogeológico, Aguas Subterráneas.

KARZULOVIC K., JUAN, 1958. Sedimentos Cuaternarios y Aguas Subterráneas en la Cuenca de Santiago, Instituto de Geología, Pub. Nº 10, 120 p.

GARRIDO, M.XIMENA, 1979. Geología y Consideraciones Geotécnicas del Sector Santiago Oriente en Relación a Suelos de Fundación y Riesgos Naturales, Santiago, 123 p.

OFICINA ZEGERS, JULIO Y CIA, Estudio Geotécnico.

UCh. Perfil Estratigráfico Sedimentario de la Cubierta Su perficial de la Cuenca de Santiago.

UCh. Geología y Consideraciones Geotécnicas del Sector Santiago Oriente en Relación Suelos de Fundación y Riesgos Naturales.

#### Meteorology and Hydrology

BENITEZ G., ANDRES. <u>et al</u> - ENDESA, 1974. Método para la Determina - ción de Hidrogramas Unitarios Sintéticos en Chile , 86 p.

CIA. MINERA DISPUTADA DE LAS CONDES S.A., 1984. Anuario Meteorológico, Los Broncos, 56 p.

CIREN Fichas de Distritos Agroclimáticos, Región Metropoli tana y Provincias San Antonio y Nuble, Producto CIREN Nº 8352, noviembre 1984.

CNR - IPLA, 1984. Proyecto Maipo, Estudio Hidrológico e Hidrogeológico:

Volumen I : Resumen y Conclusiones

Volumen II : Precipitación

Volumen III : Escorrentía Superficial

Volumen IV : Aguas Subterráneas

Volumen V : Calidad de las Aguas y Sedimentación. Volumen VII : - Pérdidas y Recuperaciones

 Modelo de Simulación del Sistema de Recursos Hidraulicos.

CNR, 1982. Proyecto Maipo, Estudios Hidrológicos e Hidrogeológi

co, Pluviometría. Anexos.

DGA Nomenclatura de las Cuencas y Grandes Sub-cuencas.

DGA, REGION METROPOLITANA, 1982. Estudios de Crecidas y de Regulación de Cauces del Estero Las Hualtatas y sus Afluentes, 112 p.

VARAS C., EDUARDO, et al, 1984. Curvas Generalizadas de Intensidad Duración Frecuencia de lluvias.

MA, 1984. Base de Datos Agrometeorológicos. Estación La Platina 1965-1977, 87 p.

MOP (DGA), 1983. Balance Hidrológico Nacional Regiones V, VI, VII y Metropolitana, 148 p.

MOP Estadísticas de Caudales, Estaciones Fluviométricas, Hoya Maipo.

RENDEL PALMER & TRITTON CONSULTING ENGINEERS. Maipo Investigation.

# Soil

FIEBICH ZAMORANO, ANNELI, 1978. Cobre y Cadmio en Suelos Regados con Aguas Servidas no tratadas, Tesis de Prueba para op tar al Título de Químico de la UCh.

CIREN, 1985. Información de Estandares de Insumo y Jornadas.

CIREN, 1983. Catastro Frutícola, Región Metropolitana.

CNR Estudio de Suelos del Proyecto Maipo.

Tomos I, II, III y IV.

DIPROREN Estudio Agrológico de un Sector de la Cuenca Norte de Santiago.

DIPROREN Estudio Agrológico de un Sector de la Cuenca Norte de Santiago.

SAG - DIPROREN, 1981. Pauta para Estudio de Suelos.

DIPROREN, 1983. Estudio Físico - Hídrico y Geomorfológico de algunos Suelos de Secano, Región Metropolitana Santiago.

FAO, 1973. Reconocimiento e Investigación de los Suelos de Chile.

FAO, 1979. Land Evaluation Criteria for Irrigation, Report of an Experto Consultation, Rome, 27 february - 2 march, 1979.

FAO, 1980. Soil and Plant Testing and Analysis.

FAO, 1980. Land Evaluation Guidelineas for Rainfed Agriculture.

VALENZUELA B., GLORIA, 1978. Suelo de Fundación del Gran Santiago Boletín N° 33.

JICA, 1977. Diagnosis and Improvement of Saline and Alkali Soils.

GRAMUSSET VASQUEZ, JIMMYA, 1978. Zinc y Niquel en Suelos Regados con Aguas de Alcantarillas y sus Interacciones con el Sustrato. Tesis para optar al Título de Químico de la UCh.

PALACIOS G., RAUL J., 1984. Sorción y Desorción del Cadmio y Niquel en Suelos. Tesis para optar al Título de Químico Farmacéutico de la UCh.

USDA, 1969. Diagnosis and Improvement of Saline and Alkali Soils.

INSTITUTO DE ECONOMIA. Tratamiento (Descontaminación) del Río Mapocho.

# Landuse

EMOS, 1984. Plan Maestro Alcantarillado del Gran Santiago.
Período 1985 - 2010.

MENVIU. Plan Intercomunal de Santiago, Modificación Plan Intercomunal de Santiago, 1/50.000.

MINVIU, 1981. Limited Intercomunal de Santiago, 1/100.000.

MINVIU, 1981. Mercado de Tierras Area Metropolitana de Santiago,

Volumenes I, II, III, IV, V y VI.

MINVIU, 1985. Ordenanza Plan Intercomunal de Santiago.

MINVIU, 1982. Normas Técnicas por Subsectores Geográficos.

# Environment

DIPROREN Bases para un Estudio de Correlación entre Hortali-

zas de Consumo Crudo y Enfermedades Infecciosas Di-

gestivas en la Región Metropolitana.

EMOS , 1984. Plan Maestro, Alcantarillados del Gran Santiago.

INIA, 1980. Simposio de Contaminación del Medio Ambiente y Su

Incidencia en el Sector Agropecuario.

INIA, 1983. Simposio sobre Contaminación Ambiental Tomos I y II.

IPL Saneamiento Urbano de Santiago.

IPL Calidad de las Aguas en la Cuenca.

IPLA Proyecto Maipo, Estudio Hidrológico e Hidrogeológi

co. Calidad de las Aguas.

MA , 1982. Bases para un Estudio de Correlación entre Hortali-

zas de Consumo Crudo y Enfermedades Infecciosas Di-

gestivas en la Región Metropolitana.

MA , 1983. Situación de la Producción de Hortalizas y el Riego

con Aguas Servidas de la Región Metropolitana.

MOP Sistema Mundial de Vigilancia de Calidad de Agua

Formulario de Datos.

MOP (DGA) Estadística de Análisis Físico y Químico de Aguas.

MINISTERIO DE SALUD, 1983. Resolución Nº 350.

UCh Diagnóstico del Zanjón de la Aguada, Calidad de sus

Aguas.

UCh Calidad Bactereológica de las Aguas del Sistema Mai

po - Mapocho.

UCh Proyecto: Diagnóstico y Proyección de las Aguas Su-

perficiales en la Cuenca del Rio Maipo.

UCh Simulación de la Calidad de las Aguas del Sistema

Maipo - Mapocho.

UCh La Contaminación del Río Mapocho.

UCh Determinación de Metales Pesados en Aguas Lenticas

de la Región Central de Chile.

UCh Determinación de Cobre, Cromo, Cobalto, Zinc, Niquel,

Plomo y Manganeso en Aguas y Lodos del Río Mapocho.

UCh Calidad Química de las Aguas de Riego de Santiago

Norte, Estudio de la Distribución de Boro y de Nitra

tos en Aguas y de Boro en Suelos.

UCh Metales Pesados en Aguas del Zanjón de la Aguada.

#### Agriculture

AGRO-COLINA, 1985. Necesidades de Insumos por Cultivo.

BCC , 1985. Economic and Financial Report.

BCC, 1985. Informe Económico y Financiero.

BCC , 1984. Indicadores de Comercio Exterior.

BCC , 1985. Statistical Synthesis of Chile 1980-1984.

BCC , 1983. Informe Económico de Chile.

BCC Boletín Mensual Nºs 691 y 692.

BCC , 1984. Indicadores de Comercio Exterior

JUSCAFRESA SERRAT, B., 1981. Cultivo de la Vid

MENDEZ, CARLOS. Chilean Economic Policy.

CIREN , 1979. Actualizado Propiedades

CIREN, 1981. Catastro Frutícola y Actualización.

CIREN, 1983. Catastro Frutícola, Actualización 1981.

CHILE AGRICOLA, 1985. Chile Agricola, octubre, noviembre, diciembre 1984, enero, febrero 1985,

EL MERCURIO , Revista del Campo y Agro

FAO , 1978. Commodity Projections, 1985.

FAO Production Yearbook, Vol. 35, 36, 37 y 38.

FAO , 1981. Desarrollo del Subsector Carnes Rojas en Chile.

FUNDACION CHILE, 1985. Informativo Agro-Económico, septiembre 1984, abril, julio, agosto 1985, febrero 1986.

CASTILLO A., GALVARINO, 1974. Encuesta Agropecuaria, Provincia de Santiago (Piloto), 58 p.

AGUILA CASTRO, HUGO, 1962. Pastos y Empastadas.

ILACO , 1981. Agricultural Compendium.

INE , 1980. Encuesta Nacional Agropecuaria, Año Agrícola 1980-1981.

INE , 1984. Agricultura y Pesca , 1981-82, 1982-83.

INE, 1984. Encuesta Nacional de Mataderos y Ferias de Animales 1983.

INE , 1985. Programa de Mejoramiento de las Estadísticas Agrope cuarias (1984/85).

INE , 1984. Encuesta Nacional Agropecuaria. Año Agrícola 1983-

INE , 1984. Encuesta Nacional Agropecuaria.

INE , 1981. V Censo Nacional Agropecuario 1975/76.

INE , 1984. Encuesta Nacional de Porcinos 1983.

INE. Anuario de Comercio Interior y Servicios 1981-1982.

INE , 1982. Actividades de Investigaciones y Desarrollo Experimental.

INE , 1985. Indice de Precios al por Mayor.

INE , 1985. Indice de Precios al Consumidor.

INIA Bibliografía Agrícola Chilena, Volumen 4. 1960-1980.

INIA La Platina N°s 16, 17, 18, 23, 24, 25, 27, 28 y 30.

INIA El Cultivo de la Cebolla.

INIA , 1978. El Cultivo del Maíz.

INIA , 1979. El Cultivo de la Cebolla.

INIA , 1978. El Cultivo del Frejol.

INIA , 1981. Manual de Plantación de Vides.

INIA , 1981. Normas Técnicas.

INIA , 1982. Manual de Conducción de Vides.

INIA Cultivo de la Vid.

INIA , 1982. Economía y Organización de la Investigación Agropecuaria.

INIA , 1983. Bibliografía Agrícola Chilena, Vol. 5, 1960-1962.

MA, 1984,85. Separata de Antecedentes Estadísticos.

MA Antecedentes Sector Silvo-Agropecuario, Programa Trienal, 1984-1986.

MA Boletín de Comercio Exterior.

MA , 1984. Exportaciones Silvoagropecuarias Chilenas 1982 - Primer Semestre.

MA , 1985. Boletín Pecuario.

MA , 1984. Exportaciones Silvoagropecuarias Chilenas 1982, primer semestre - 1984, Santiago.

MA , 1985. Antecedentes Sector Silvo-Agropecuario, Programa
Trienal 1985-1987.

MA Primera Etapa de la Modernización del Agro Nacional.

ODEPA Chile, Estadísticas Agropecuarias 1975-1979, 1980-1981.

ODEPA , 1982. Estudio sobre Comercialización de Hortalizas. Conclusiones y Recomendaciones, 62 p. ODEPA, 1984. Boletín de Comercio Exterior, Exportaciones, Importaciones, Precios Internacionales octubre 1984.

ODEPA , 1985. Boletín Pecuario, abril 1985.

ODEPA, 1984. Exportaciones Silvoagropecuarias Chilenas, 1982 - septiembre 1982.

ODEPA, 1984. Embarques de Productos Agrícolas, Pecuarios, Forestales y del Mar Chileno, Clasificados por País de Destino, 218 p.

ODEPA , 1985. Crédito Agricola, Temporada 1985.

PROCHILE Informativo, mayo octubre 1985.

PROCHILE Chile, Exports. Investments. Economy, N°s 9, 10, 11, 15, 16 y 17.

SAG , 1974 Encuesta Agropecuaria, Provincia de Santiago (Piloto)-mayo, junio, 1974.

SAG, 1983 Estudio Físico-Hídrico y Geomorfológico de Algunos Suelos de Secano Región Metropolitana.

SAG , 1982. Recopilación de Disposiciones Legales y Reglamentarias sobre Protección Agrícola.

SEREMI-AGRICULTURA, 1984. Antecedentes de la Elaboración del Plan de Desarrollo Regional, 24 p.

SNA Boletín Económico y de Mercado N°s 51, 58, 63, 114, 120, 125, 128 y 130.

UNIVERSIDAD CATOLICA DE CHILE, 1985. Inversiones Agrosilvícolas para la Exportación.

UCh Servicios y Tarifas

UCh Economía y Organización de la Investigación Agropecuaria.

UCh Chile Agricola N°s 96, 97, 98 y 99.

GIACONI M., VICENTE, 1983. Cultivo de Hortalizas.

WB , 1982. Improving Irrigated Agriculture.

# Irrigation and Drainage

- CNR , 1981. Mapa Interpretativo, Categorías de Riego y Aptitudes Frutales, 1/50.000.
- CNR , 1981. Aprovechamiento Múltiple de Recursos Hídricos del Mai po Alto, Evaluación Preliminar, 120 p.
- CNR , 1984. Proyecto Maipo Estudio Hidrológico e Hidrogeológico.
- CNR , 1984. Modelo Hidrogeológico de la Cuenca Chacabuco-Polpaico, 143 p.
- CNR , 1984. Modelo Hidrogeológico de la Cuenca Maipo-Mapocho , 171 p.
- CNR Estudio Integral de Riego de los Valles Aconcagua, Putaendo, La Ligua y Petorca, Tomo I Resumen y conclusiones, Tomo II Recursos Físicos, Tomo II Agricultura Actual, Tomo IV Desarrollo Agrícola, Tomo V Estudios de Ingeniería, Tomo VII Evaluación y Carpeta de Planos.
- EDITORIAL JURIDICA DE CHILE , 1984. Código de Aguas, Novena Edición , 161 p.
- FUENZALIDA SAAVEDRA, GABRIEL , 1977. Desarrollo de una Red Hidrológi ca en la Cuenca del Río Maipo. Memoria para optar al Título de Ingeniero Civil, 79 p.
- INRH , 1975. Canales y Estructuras Relacionadas, 148 p.
- IPLA-MOP , 1974. Estudio de las Recuperaciones de un Río Santiago , 70 p.
- PEREZ CONCHA, JUAN C., 1979. Racionalización del Uso del Agua en el Zanjón de la Aguada. Tesis presentada como parte de los requisitos para optar al Título de Geografo, 140 p.
- MOP-IRRIGATION DIRECTORALES , 1970. Investigation of the Water Resources of the Maipo Basin, Final Report, Volume I:

  Report and Drawings, 290 p.

MOP, 1970. Estudio de los Recursos Hidrológicos en la Hoya del Río Maipo, Informe Final, Tomo I: Informe y Planos, 283 p., Tomo II: Anexos.

MOP , 1970. Estudio de los Recursos Hidrológicos de la Hoya del Río Maipo, Tomo I: Informe y Planos, 283 p.

MOP, 1974. Estudio Racionalización Primera Sección Río Maipo.

Informe Preliminar, 311 p.

MOP, 1975. Planificación del Uso de los Recursos de Agua en la Cuenca de Santiago, Informe de Prefactibilidad, 348 p.

MOP (DGA) , 1978. Estudio de Drenaje del Area Ubicada al Oriente del Canal San Carlos.

MOP (DGA) Estudio Regulación Nocturna de las Primeras Secciones de los Ríos Maipo y Mapocho y del Area del Zanjón de la Aguada, Primera Etapa, Informe Final.

MOP Estudio Preliminar para la Racionalización del Recurso Agua de la Primera Sección del Río Mapocho . Cálculo de la Tasa de Uso Racional y Beneficios.

MOP Canal Oriente, Anteproyecto Preliminar.

MOP, 1982. Informe sobre Operación del Canal San Carlos y de EMOS, Los Días del Temporal del 25 al 27 de junio de 1982, 9 p. más planos.

OFICINA ZEGERS, JULIO Y COMPAÑIA. Proyecto del Canal Colector de

- IRM Aguas Lluvias y Drenaje, Sector Santiago Norte. Tomo I: Informe General, Tomo II: Anexos.

UCh , 1981. Desarrollo y Validación de un Modelo de Simulación en la Cuenca del Río Maipo, 202 p.

UCh, 1983. Nuevo Código de Aguas, Colección Seminario Nº 3, Facultad de Derecho, 104.

#### Flood Control

GUTIERREZ ARAYA, ALEJANDRO. Plan de Manejo Santuario de la Naturale za, Yerba Loca, Santiago.

BENITEZ GIRON, ANDRES y et al, 1982. Río Colina en Colina, Determinación de las Zonas de Inundación para períodos de Retorno de 5, 10, 20, 50 y 100 años.

COMISION DEL PLAN INTEGRAL CONTRA INUNDACIONES, 1983. Recopilación de Estudios Cuenca del Río Mapocho.

CNR Proyecto Maipo, Estudio Hidrológico e Hidrogeológico, Sedimentación.

CONAF Programa Manejo de Cuencas y Control de Dunas.

CONAF, 1982. Manpostería Gavionada en la Protección Hidrológico Forestal.

CONAF Proposiciones para la Elaboración de un Plan de Desarrollo para el Predio Yerba Loca.

CONAF, 1983. Proposición de un Diagnóstico Preliminar para el Sector Andino de la Cuenca del Río Maipo, 41 p., planos.

DONOSO Z., CLAUDIO . CONAF - FAO , 1981. Investigación y Desarrollo Forestal, Tipos Forestales y los Bosques Nativos de Chile, 64 p.

CONAF , 1978. Proyecto Area Santiago, 114 p. y Anexos.

CONAF Plan de Acción para la Reducción del Efecto Torrencial de los sistemas Hidrográficos Tributarios al Gran Santiago.

CONAF Programa Manejo de Cuencas, 19 p.

CONAF, 1983. Informe de Avance para Manejo de las Subcuencas del Sector Manquehue, 34 p.

CONAF, 1983. Ensayos de Introducción de Especies Forestales de Interés Económicos en la Región Metropolitana, Informe Final de Establecimiento (1981-1982), 79 p.

CONAF Programa Manejo de Cuencas, Caracterización Preliminar de Parámetros Morfométricos en las Cuencas de la Región Metropolitana.

CONAF Plan de Acción para la Reducción del Efecto Torrencial de los Sistemas Hidrográficos Tributarios al Gran Santiago.

- CONAF , 1978. Proyecto "Santiago Andino" , 42 p.
- CONAF Watershed Management and Dune Control Program.
- DEPARTAMENTO DE AGRICULTURA DE LOS ESTADOS UNIDOS DE AMERICA , 1963.

  Algunas Relaciones entre Planta, Suelo y Agua en el

  Manejo de Cuencas, Circular Nº 910, México, 67 p.
- DIPROREN , 1982. Daños Causados por la Crecida del Río Mapocho en el Sector Urbano de Santiago y Medidas de Conservación de R.N.R.
- MURO DE LA FUENTE, HECTOR, 1985. Areas de Riego por Inundación, Informe Primera Etapa, 19 p.
- ORPLANO POULOS, JORGE , 1980. Estudio Hidráulico "Río Mapocho" entre los Puentes "El Cerro - Pedro de Valdivia", 33 p.
- GANA J., JUAN , 1984. Estudio de Crecidas Río Mapocho, Informe para optar al Título de Ingeniero Civil, Concepción , 314 p.
- ARRETZ, L.ALBERTO, 1984. Antecedentes Relativos a la Magnitud de la Escorrentía del 27 de junio de 1982, Los Daños Causados y Acción Emprendida por la DGA para afrontarlas en el Futuro, 20 p.
- MOP (DGA) , 1978. Estudio de Drenaje del Area ubicada al oriente del Canal San Carlos
- MOP Estudio de Previsión de Crecidas Río Mapocho.
- MOP Cuenca del Río Mapocho, Determinación de Caudales de Crecida.
- MOP YANEZ Y., JOSE ORLANDO , 1979. Ingeniería Civil de Defensas Fluviales en el Uso, Manejo y Conservación de los Cauces Fluviales de las Diversas Cuencas del País , 32 p.
- MOP (DGA), 1982. Análisis de Datos Meteorológicos de las Hoyas de los Ríos Maipo y Aconcagua e Ingreso a Medios Magnéticos, Informe Final, 66 p. y Anexos.
- MOP (DGA), 1983. Estudio de Previsión de Crecidas, Río Mapocho, 24 p.

MINVIU Estudio Areas de Riego por Inundación, Oferta Técnica.

MUNICIPALIDAD DE LA REINA. Regulación de Crecidas por Inundación de la Quebrada San Ramón. Anexo.

MUNICIPALIDAD DE QUINTA NORMAL , 1983. Plan Piloto para la Defensa y Recuperación de las Riberas del Río Mapocho en las Comunas de Quinta Normal y Renca.

CORTES M., ROBERTO. Magnitud y Dinámica de Procesos Erosivos en la Cuenca del Arrayán, Santiago, 55 p.

# Planning and Evaluation

INDAP, 1984. Programa de Transferencia Tecnológica de INDAP.

INE , 1980. La Evolución Social y Economía de Chile en Siete Años.

INIA Programa Grupos de Transferencia Tecnológica (G.T. T.),

INSTITUTO DE ECONOMIA , 1981. Programa de Adiestramiento en Prepara ción y Evaluación de Proyectos, 303 p.

MENDEZ , J. CARLOS , 1979. Chilean Economic Policy.

PRICE GITTINGER, J., 1982. Economic Analysis of Agricultural Projects.

MA Primera Etapa de la Modernización del Agro Nacional.

MA , 1984. Antecedentes Sector Silvo-Agropecuario, Programa
Trienal 1984 - 1986.

MINISTERIO DE ECONOMIA, FOMENTO Y RECONSTRUCCION , 1985. Anteceden tes Sector Comercio Interno y Externo, Programa Trienal 1985 - 1987.

MINVIU Mercado de Tierras, Area Metropolitana de Santiago,
Volumenes I, II, III, IV y V.

MINVIU, 1985. Antecedentes por Regiones, Programa Trienal 1985 - 1987.

MINVIU, 1985. Antecedentes Sector Vivienda, Programa Trienal 1985-1987.

MINVIU Proposiciones de Ideas y Soluciones sobre Planes Reguladores y Uso del Suelo I y II.

MOP, 1985. Antecedentes Sector Obras Públicas, Programa Trie - nal 1985 - 1987.

ODEPLAN, 1975, 1985. Preparación y Presentación de Proyectos de Inversión.

ODEPLAN, 1982. Plan Regional de Desarrollo 1982 - 1989.

ODEPLAN Plan Nacional Indicativo de Desarrollo 1978-1983.

ODEPLAN, 1980. Informe Económico Primer Trimestre 1980.

ODEPLAN, 1984. Informe sobre Proyectos y Estudios de Inversión del Sector Público 1984.

Presidencia de la República e Intendencia de la Región ,

Plan Regional de Desarrollo 1982-1989.

Metropolitana

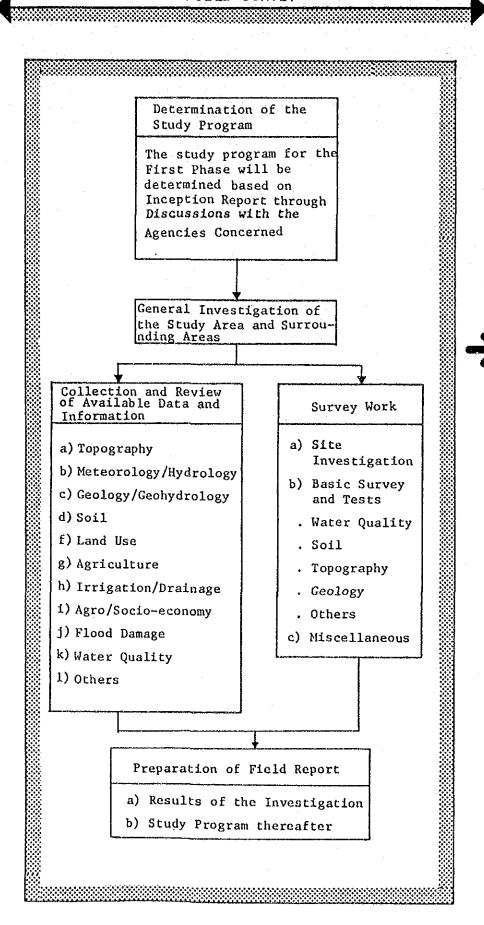
Presidencia de la República , 1985. Programa Ministeriales Año 1985.

UCh , 1984. Cartografía Básica para el Diagnóstico de la Cuenca del Río Mapocho.

#### Construcción

ENDESA , 1985. Proyecto Pehuenche, Antecedentes Presupuestarios, 120 p.

MOD (DGA) Anteproyecto Canal Linares, Anexo F - Precios Unitarios y Presupuesto.

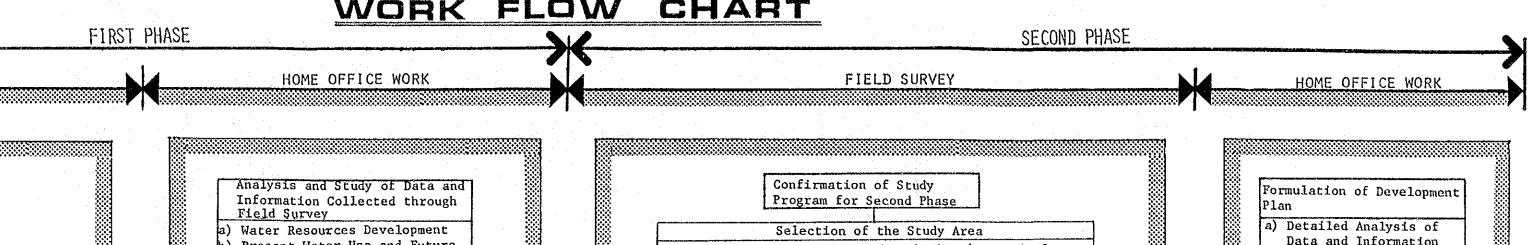

Appendix 19 Work Flow Chart

FIELD SURVEY

HOME OFFICE WORK

FIRST PHASE

FIELD SURVEY




Analysis and Study of Data and Information Collected through Field Survey Water Resources Development Present Water Use and Future Water Demand c) Water Allocation for Irrigation d) Land Use and Irrigation Area e) Irrigation and Drainage Facilities f) Soil Erosion and Sedimentation g) Water Quality Preparation of Basic Development Scheme Basic development scheme for the study area of about 61,000 ha mainly covering water resources development will be prepared Establishment of Study Program for Second Phase Preparation of Progress Report a) Results of the Study and Basic Development Scheme b) Study Program for Second Phase

Confirmation of Study Program for Second Phase Selection of the Study Area The development area with high priority (tentatively estimated to be 36,000 ha) will be selected for Feasibility Study in Second Phase Collection and Review of Additional Data/ Survey Work Information a) Supplemental Data and a) Land Capability Information b) Water Quality, Soil, Geolog and Topography b) Marketing and Prices of c) Land Use Agricultural Products d) Agro-economy and Farmers c) Farm Economy Organizations d) Agricultural Supporting e) Social Infrastructure System and Farmers' f) Irrigation/Drainage System Organizations and Facilities g) Construction Equipment and e) Construction Equip-Materials ment and Materials h) Others f) Social System and Laws g) Others Framework of Development Plan a) Soil and Water Quality Improvement/Control Plan b) Water Resources Development Plan c) Inundation Prevention/Flood Control Plan d) Land Use Plan Farming System Irrigation and Drainage System g) Farmers' Organization Plan

Preparation of Interim Report

# WORK FLOW CHART



Present Water Use and Future Water Demand c) Water Allocation for Irrigad) Land Use and Irrigation Area e) Irrigation and Drainage Facilities f) Soil Erosion and Sedimentation g) Water Quality Preparation of Basic Development Scheme Basic development scheme for the ey Work study area of about 61,000 ha mainly covering water resources development will be prepared estigation c Survey Tests r Quality Establishment of Study Program for Second Phase graphy ogy Preparation of Progress rs Report ellaneous a) Results of the Study and Basic Development Scheme b) Study Program for Second Phase

The development area with high priority (tentatively estimated to be 36,000 ha) will be selected for Feasibility Study in Second Phase Collection and Review of Additional Data/ Survey Work Information a) Supplemental Data and a) Land Capability Information b) Water Quality, Soil, Geology and Topography b) Marketing and Prices of c) Land Use Agricultural Products d) Agro-economy and Farmers c) Farm Economy Organizations e) Social Infrastructure d) Agricultural Supporting System and Farmers' f) Irrigation/Drainage System Organizations and Facilities g) Construction Equipment and e) Construction Equip-Materials ment and Materials h) Others f) Social System and Laws g) Others Framework of Development Plan a) Soil and Water Quality Improvement/Control Plan b) Water Resources Development P1an c) Inundation Prevention/Flood Control Plan Land Use Plan e) Farming System f) Irrigation and Drainage System g) Farmers' Organization Plan Preparation of Interim Report

Data and Information Collected b) Review of the Development Plan Prepared at the Site c) Study and Finalization of the Plan Facility Improvement Plan a) Preliminary Design of Facilities b) Construction Cost and Construction Schedule Project Implementation and Operation & Maintenance Schedules Project Cost and Benefit Evaluation of the Project a) Economic Analysis incl. Sensitivity Tests b) Financial Analysis c) Overall Evaluation incl Social Analysis Preparation of Draft Final Report

