$0-9.00\ m.$

Overburden was drilled by using HQ-WL diamond bit and bentonite mud water. HQ casing was inserted at 9.00 m, when the rock facies became stable.

9.00 – 250.50 m.

Mica schist, amphibolite, carbonate rocks, graphite schist and limestone to dolomite were drilling by using NQ-WL diamond bit and bentonite mud water.

Lead and zinc ore zone was intersected at the section from 194.30 m. to 196.20 m. NQ-WL diamond bit was replaced at 200.10 m.

2-5 Measurement of the Drill Holes

When drilling is made in the terrain of schistose rocks, the drill hole generally tends to deflect to the direction perpendicular to the schistosity plane or bedding plane.

In order to get hold deviation accurately, the measurement for deviation of the holes using the Tro Pari survey instrument was conducted. The result is shown as follows in which 23° was the maximum deviation.

The survey of azimuth was carried out at the same time, the result of which showed that the measured values did not stand for use because of the existence of pyrrhotite dissemination in amphibolite in the area and the presence of the "magnetite zone" in the hangingwall of the ore deposit.

AG-01

Depth surveyed	Deviation
50 ^m .	7°
100	8
150	18
200	18
250	22
300	23
AG-02	
Depth surveyed	Deviation
50m.	10

ptil sulveyed	Deviation
50 ^{m.}	1°
100	8
150	10
200	15
250	20
300	23

AG-03	-03
-------	-----

Depth surveyed	Deviation
50 ^m .	1°
100	9
150	16
200	21
250	23

CHAPTER 3 GEOLOGY AND MINERALIZATION OF THE DRILL HOLES (Fig. III-2-1~2)

3-1 AG-01

(1) Purpose : The hole AG-01 was drilled in order to make clear the anomalous zones of IP and SIP, and geologic structure in the western part of the Perau mine.

(2) Location : It was situated close to the point No.8 of G-Line of IP survey line in the western part of the Perau mine.

Distance in logitude701.29 EDistance in latitude7251.10 NAltitude409 m.

(3) Rock facies : The hole encountered the bed rock at 0.55 m. The whole section from the top to the bottom consists of metamorphic rocks of the Açungui I formation. From 0.55 m. to 236 20 m., the rock is composed mainly of mica schist, muscovite-biotite schist, interbedded with amphibolite to amphibole schist. Mica schist often shows the rock facies of graphite-mica schist with distribution of pyrite films along the schitosity plane.

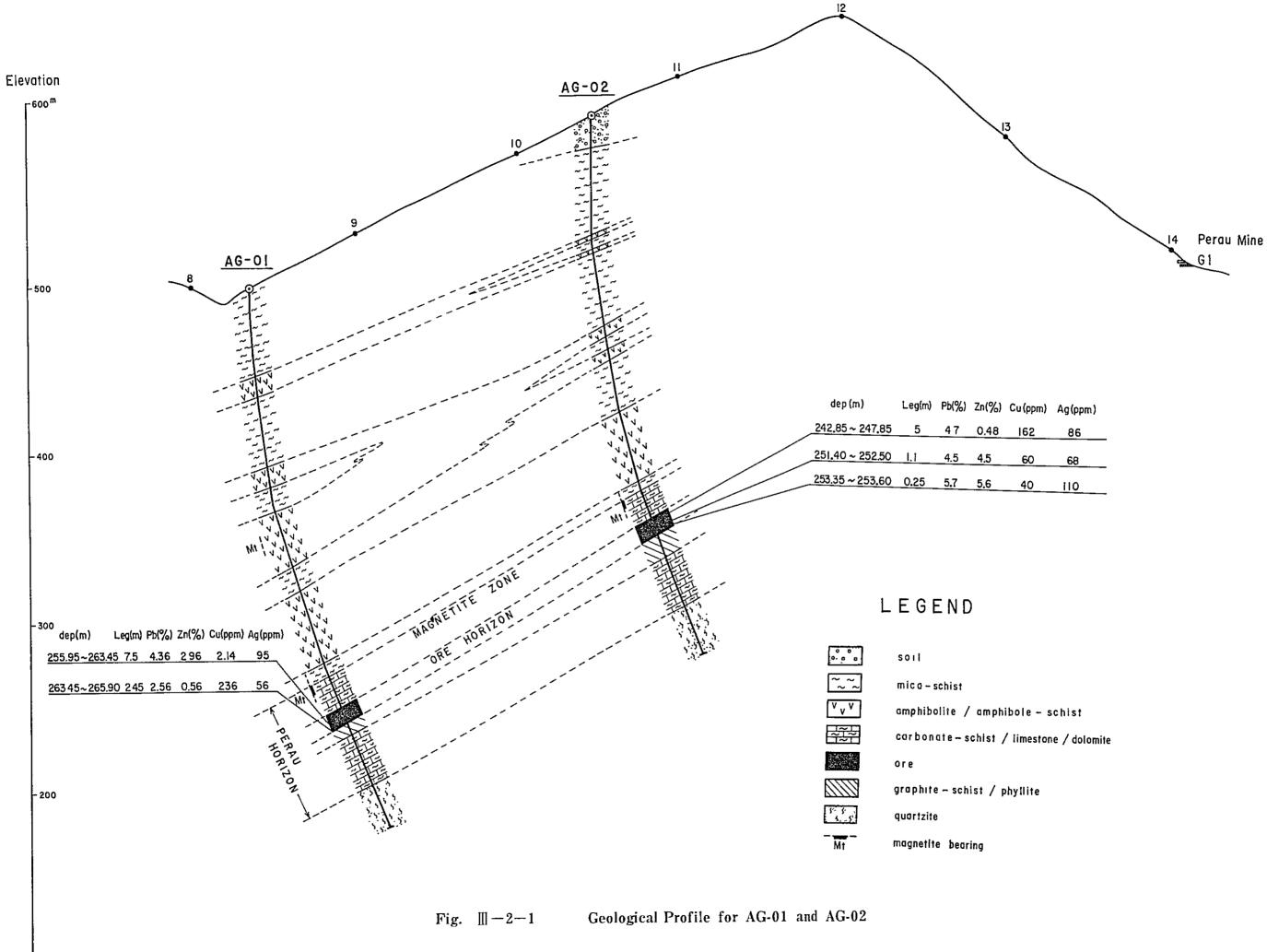
Quartz veins, segregation, are often observed cutting the schistosity.

Amphibolite or amphibole schist are interstratified harmoniously with mica schist accompanied by small amount of pyrite and pyrrhotite, rarely associated with chalcopyrite. Calcite is often present.

The section between 236.20 m. and 305.50 m. consists of limestone to dolomite, carbonate schist, which is called the "Perau horizon".

Magnetite occurs in the section between 236.20 m. and 241.00 m. within the carbonate schist, which is effectively used as a key bed of the hangingwall of the ore horizon.

Between 255.95 m. and 265.90 m., lead and zinc ore in the barite-sulphide zone was intersected.


The section between 256.90 m. 271.50 m. consists of graphite schist, and the rock is an effective key bed of the footwall of the ore horizon.

Weak mineralization of pyrite is observed along the schistosity plane.

Between 271.50 m. and 305.50 m., the main rocks are limestone to dolomite interbedded with carbonate schist.

The section between 305.50 m. and 331.15 m. is composed of alternating beds of limestone and quartzite, showing a rock facies of the transitional zone grading into the lower quartzite member.

Since the rock at the bottom of the hole is interbedded with quartzite, this rock facies

pm)	Ag(ppm)	
2	86	
<u> </u>	68	
)	110	

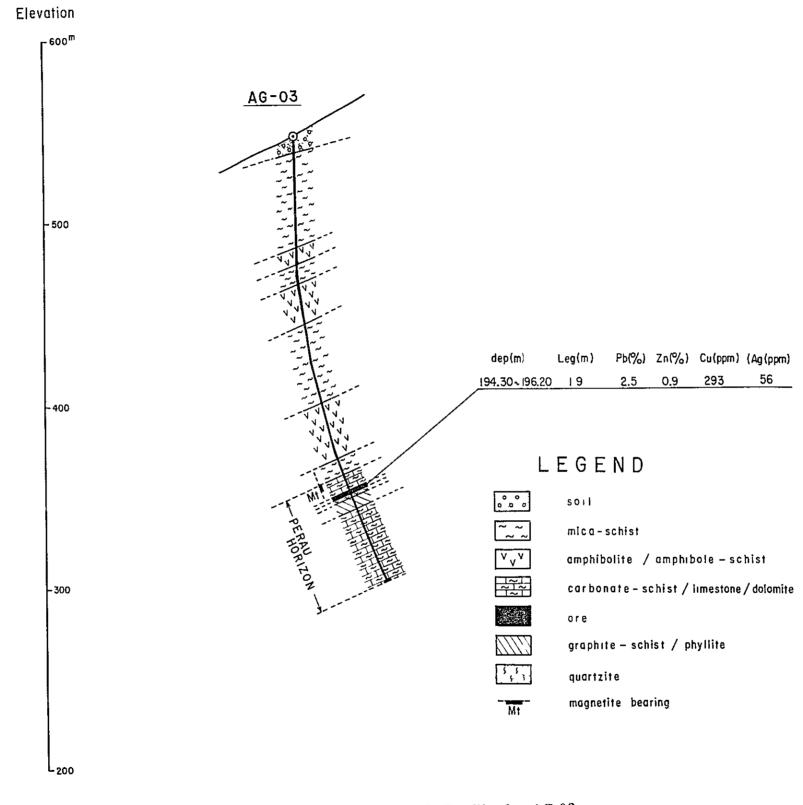


Fig. $\||-2-2$ Geological Profile for AG-03

can be determined stratigraphically to be the quartzite member. Therefore, the purpose of the hole has been attained.

(4) Mineralization and Assay

The result of analysis of the continuous ore samples at the ore section of the hole is as follows.

Depth (m.)	Interval (m.)	Number of sample	Pb %	Zn %	Cu ppm	Ag ppm	CaO %
255.95-263.45	7.5	8	4.36	2.96	214	95	11.36
263.45-265.90	2.45	3	2.56	0.56	236	56	12.5
				MgO %	SiO ₂ %	BaO %	
				8.91	5.62	15.20	
				8.85	33.06	4.44	

As shown in the analytical values and the result of microscopic observation of the polished sections, the ore shows the characteristic of mineralization of the barite-sulphide mineral. The ore minerals mainly consist of galena, sphalerite and pyrite with small amount of chalco-pyrite, rarely accompanied by pyrrhotite.

In the ore section between 255.95 m. and 265.90 m., galena, sphalerite and pyrite occur in the barite zone as dissemination. It is a characteristic of this ore section that the grade of zinc is high.

In the ore section between 263.45 m. and 265.90 m., the mineral assemblage is the same as the above, but barite is very small in amount and SiO_2 , cherty, increases and zinc is very low in grade. Thus it can be considered that characteristic of the ore is similar to the Perau ore deposit.

3-2 AG-02

ŧ

(1) Purpose : The hole AG-02 was drilled to make clear the conditions of IP and SIP anomalies and the geologic structure as in the hole AG-01.

(2) Location : It is located about on the midway between the point of No.10 and No.11 on the G-Line of IP survey.

Distance in longitude	701.49 E
Distance in latitude	7,251.21 N
Altitude	592 m.

(3) Rock facies : Bed rock was encountered at 19.00 m. From there to 226.30 m., the rock consists mainly of mica schist interbedded with amphibolite to amphibole schist.

Mica schist is often intercalated with graphitic mica schist, in which pyrite occurs as film shape along the schistosity plane.

Quartz segregation often occurs in parallel with schistosity or forming boundinage.

The section between 226.30 m. and 298.60 m. is composed of carbonate schist, mineralized zone and graphite schist of the "Perau Horizon".

Magnetite zone is present between 228.10 m. and 231.05 m. Lead and zinc ore in the barite-sulphide zone was intersected between 242.85 m. and 252.5 m.

In the section between 256.20 m. and 267.00 m., graphite schist was encountered as key bed of the footwall of the ore deposit.

Alternating beds of limestone and quartzite were found between 298.60 m. and 330.55 m. The hole was completed because it had entered the quartzite horizon stratigraphically.

(4) Mineralization and Assay

The grades of the ore section is as follows, and the three main ore sections were encountered.

Depth (m.)	Interval (m.)	Numberof sample	Pb %	Zn %	Cu ppm	Ag ppm	CaO %
242.85-247.85	5	5	4.7	0.48	162	86	12.6
251.40-252.50	1.1	1	4.5	4.5	60	68	12.2
253 35-253.60	0.25	1	5.7	5.6	40	110	13.2
				MgO %	SiO ₂ %	BaO	
				6.2	9.0	20.5	
				7.5	4.3	17.9	
				6.9	7.6	12.3	

This ore section shows the characterisites of mineralization of the barite-sulphide minerals and is considered to continue to the ore section intersected in the hole AG-01.

Ore minerals such as galena, sphalerite and pyrite dissemination occur in the barite zone.

In the section between 242.85 m. and 247.85 m., zinc is very low grade, and the ore is mainly composed of fine to medium grained galena.

In the two ore zones lower than the above mentioned, galena and sphalerite are present almost in equal amount.

3-3 AG-03

(1) Purpose : Hole AG-03 was drilled to confirm the southern extention of the mineralized zone intersected in the hole AG-01 and AG-02.

(2) Location. The collar of the hole lies midway between the G-Line and H-Line of IP survey close to the position of 10.

Distance in longitude	701.50 E
Distance in latitude	7,251.03 N
Altitude	548 m.

(3) Rock facies : The bed rock was encountered at 9.00 m. From there to 185.80 m., the rock is mainly composed of mica schist interbedded with amphibolit to amphibole schist.

Mica schist contains more intertrappean graphitic mica schist than that observed in AG-01 and AG-02, and pyrite mineralization is dominant.

The section between 185.80 m. and 250.50 m. consists of carbonate schist of the "Perau Horizon", "Magnetite zone", the ore zone and graphite schist.

"Magnetite zone" was encountered between 185.80 m. and 187.60 m.

A lead and zinc ore zone was intersected between 194.30 m. and 196.20 m. The ore zone here declined in size and mineralization compared with AG-01 and AG-02, showing a marginal part of the ore deposit. Graphite schist, the key bed of the footwall of the ore deposot was encountered between 198.25 m. and 205.05 m.

(4) Mineralization and Assay.

The assay grades of the ore section are as follows.

Depth (m.)	Interval (m.)	Number of sample	Pb %	Zn %	Cu ppm	Ag ppm	Cao %
194.30-196.20	1.9	2	2.5	0.9	293	35	8.3
				MgO %	SiO ₂ %	BaO %	
				3.1	40.4	4.7	

Both lead and zinc in the ore zone are low in grade, and barite is small in amount.

The galena is concentrated showing stratiform to network shape in the hangingwall side and sphalerite is relatively abundant in the footwall side in cherty schist and carbonate schist. Barite is also observed in the part of galena concentration, showing an appearance of marginal part of barite-sulphide zone.

3-4 Discussion of Drilling Survey

The result of drilling survey of three holes carried out in the anomalous zones of IP and SIP surveys in the Perau horizon, confirmed the occurrence of the stratiform ore deposit of barite and sulphide.

The ore zone is embedded in carbonate schist of the "Perau Horizon", and "Magnetite zone" occurs in the hangingwall, while graphite schist occurs in the footwall. The magnetite zone and graphite schist are the very effective key beds in the area to know the position of the ore deposit.

As the result, it was concluded that the ore zone intersected in the three holes are the stratiform deposit embedded in the same horizon.

The assay result and the microscopic observation indicated that the mineralization of barite-sulphide zone is dominant in the AG-01 and AG-02 and declines in the AG-03.

Lead and zinc mineralization is dominant in AG-01, showing a lowering zinc grade toward the holes AG-02 and AG-03.

Beside the IP and SIP anomalies of the mineralization in the "Perau Horizon" have been detected as mentioned above, a broad distribution of on other IP anomalous zones is known extending toward the south.

It was confirmed, however, that the anomaly of the southern area is caused by graphitic mica schist and pyrite mineralization emplaced in the schist.

It is necessary for the area, therefore, to be explored in future to confirm the extention of the mineralized zone discovred by the drill survey of this time toward the west and the north.

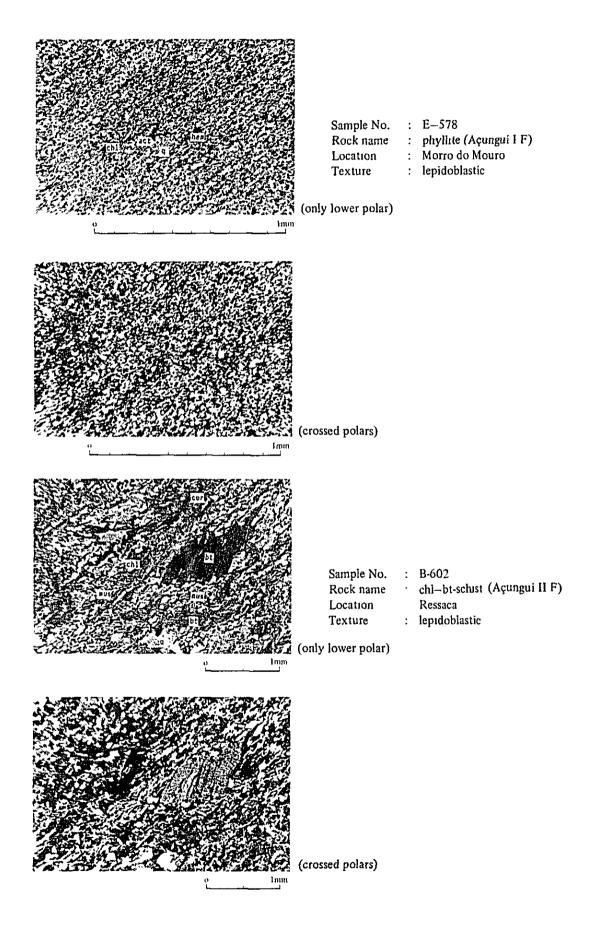
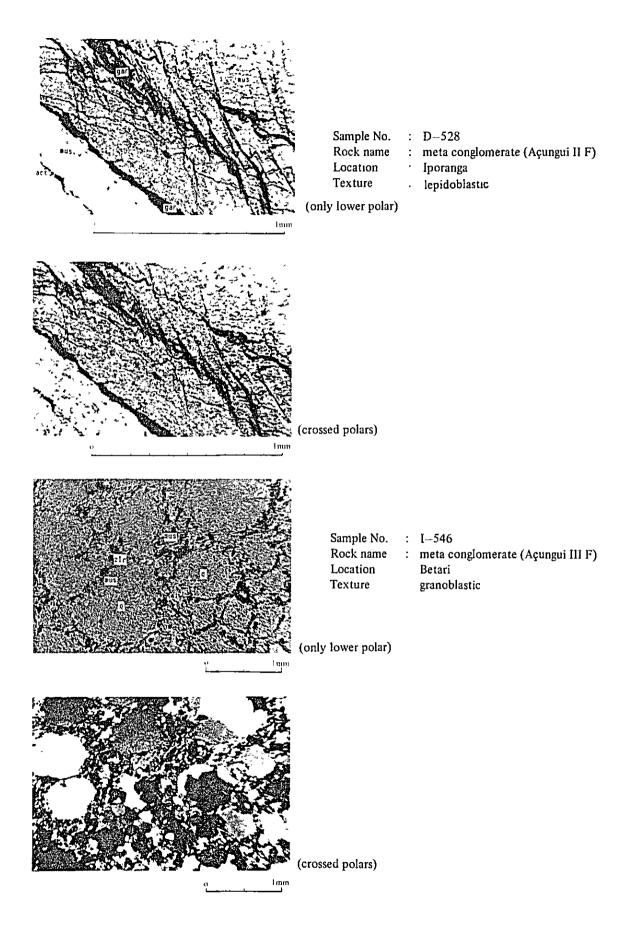
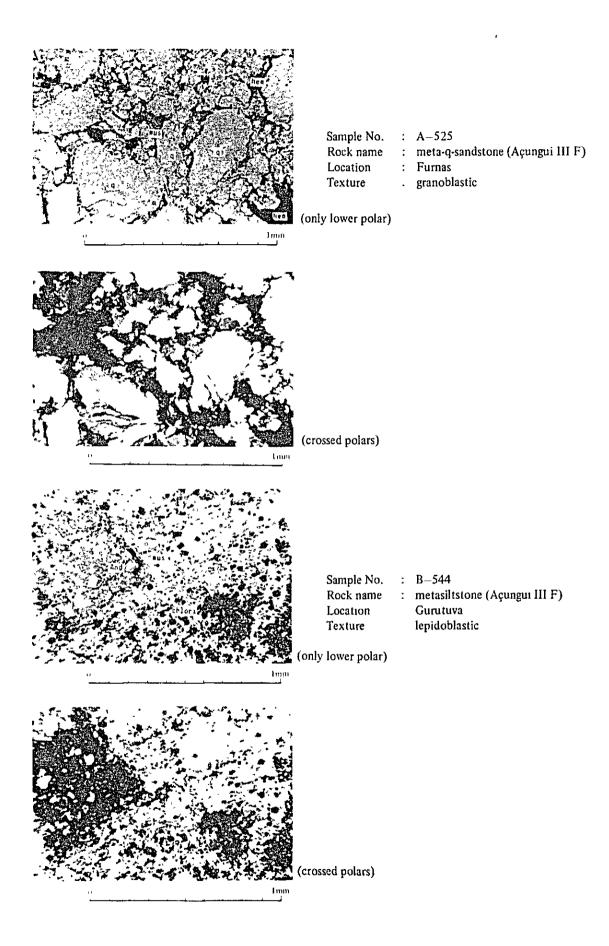
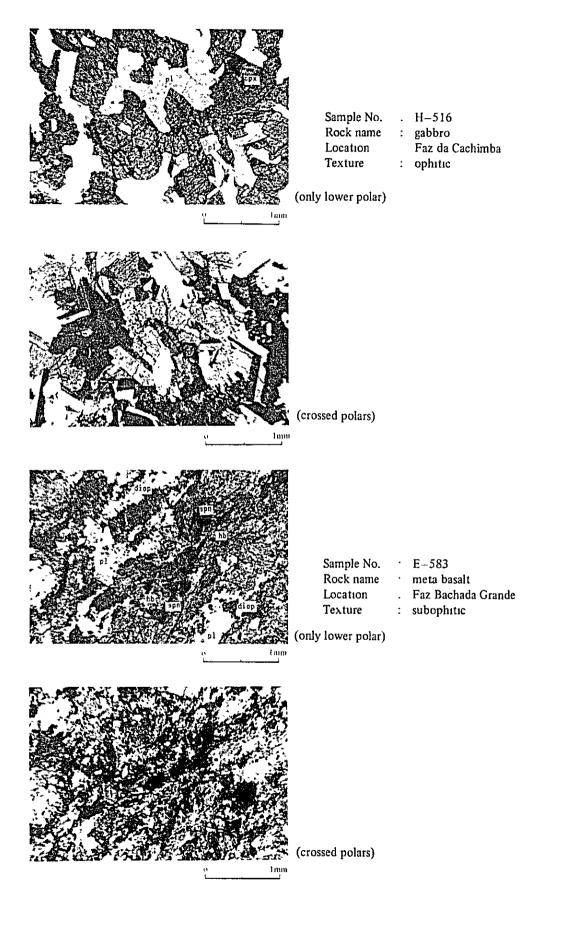

APPENDICES

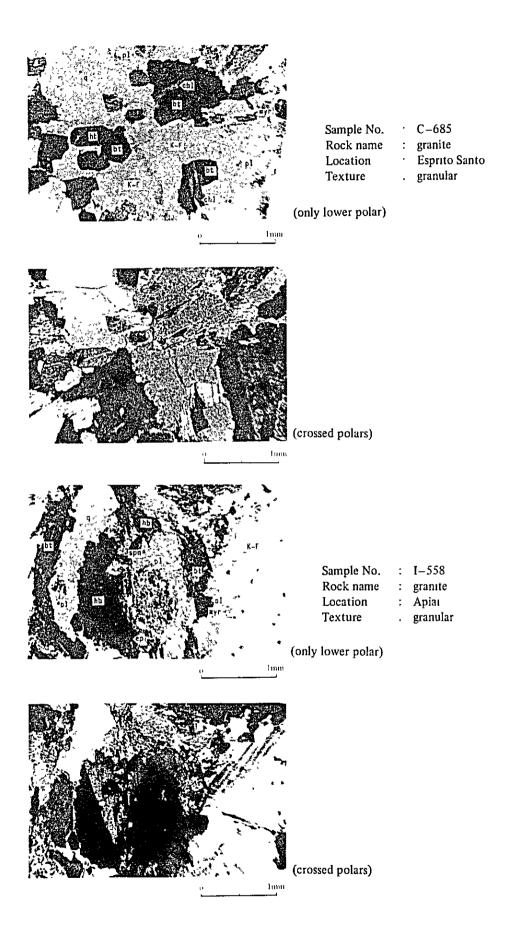
Photo A-1 Microphotograph of Thin Section

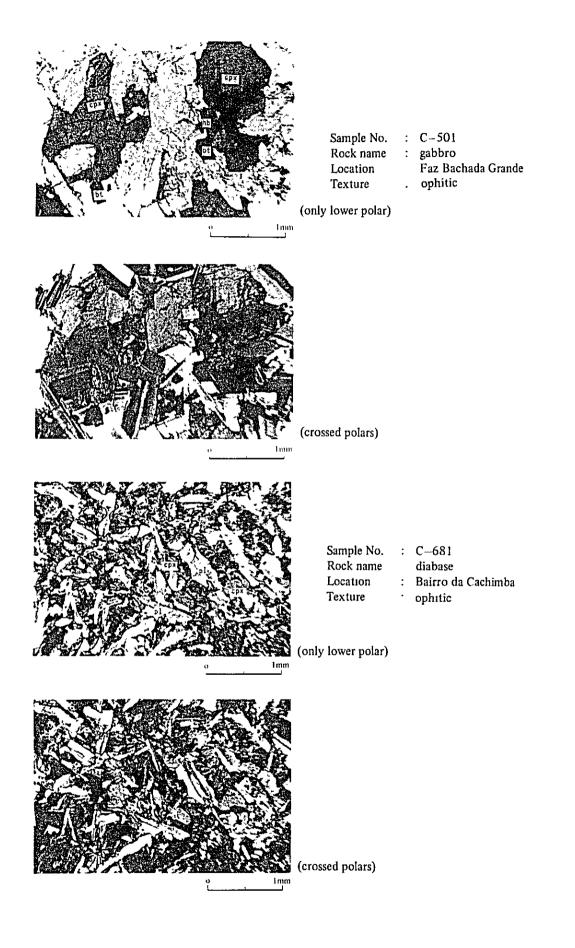

Abbreviations

q	:	quartz
pl	:	plagioclase
K-F	:	potash felspar
bt	٠	biotite
mus	:	muscovite
hb	·	hornblende
chl		chlorite
cpx	:	clinopyroxene
act		actinolite
myr	:	myrmekite
diop		diopside
spn	:	sphane
zir	•	zırcon
ep	:	epidote
hem	:	hematite
grp	:	graphite
cor		cordierite
And	:	andalusite
chlor	1:	chloritoide


-


A - 2


-



,

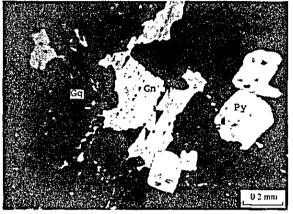
A - 5

,

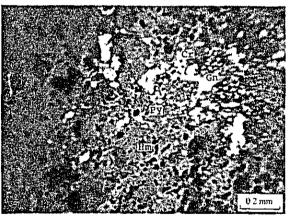
Photo A-2 Microphotograph of Polished Section

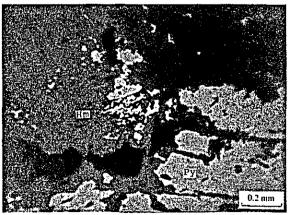
Abbreviation

.


Gn		galena
Ру	:	pyrite
Te	:	tetrahedrite
Sp		sphalerite
Cp	:	chalcopyrite
Ро	•	pyrrhotite
Mt		magnetite
Hm		hematite
Cr	:	cerussite
Ge	:	goethite
Cc	•	chalcocite

Dg : digenite

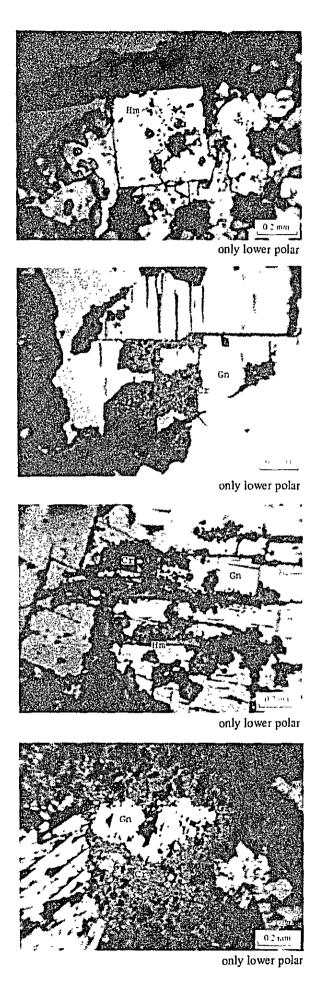

•


only lower polar

only lower polar

only lower polar

only lower polar

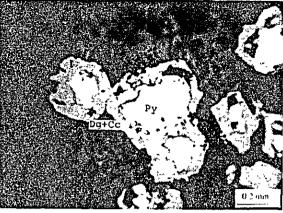

(Geological Survey)

Sample No.	:	A576
Location	:	Barrinha Mine
Ore name	:	Pyrite-Galena Ore

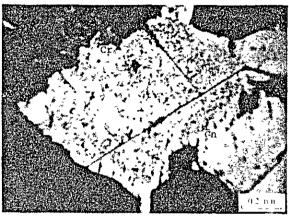
Sample No.	;	A578
Location	:	Barrinha Mine
Ore name	:	Galena-Pyrite Ore

Sample No.	•	C-518
Location		Esprito Santo Mine
Ore name		Hematite-Galena Ore

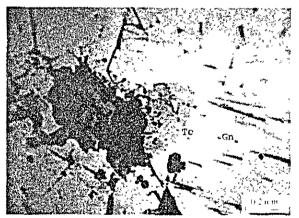
Sample No.	:	D-542
Location	:	west of Furnas
Ore name	:	Hematite-Pyrite Ore

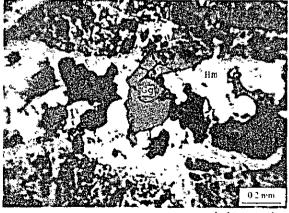

Sample No.	•	D-581a
Location	:	Lageado (Boa Ventura)
Ore name	٠	Cerussite Ore

(Geological Survey)


Sample No.	:	D-583
Location		Lageado (Boa Ventura)
Ore name	:	Cerussite-Galena Ore

Sample No.	:	D-584
Location	:	Lageado (São Vicente)
Ore name	:	Galena Ore

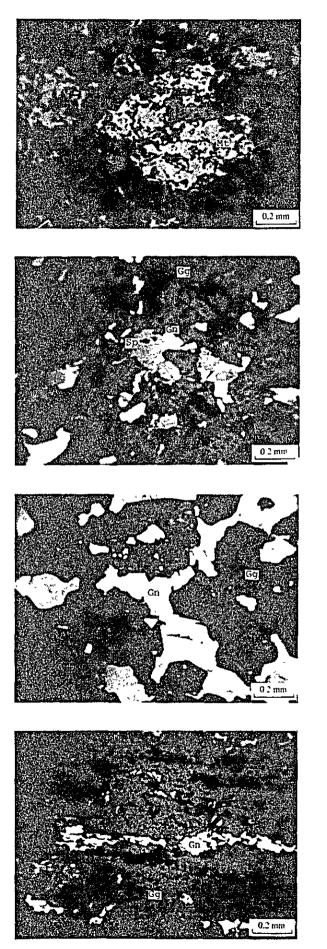

Sample No.	:	D-586
Location	:	Legeado (Jardim G2)
Ore name	:	Galena Ore


only lower polar

only lower polar

only lower polar

(Geological Survey)


Sample No.	:	D-592
Location	:	Lageado (Copper Showing)
Ore name	:	Pyrite-Ore

Sample No.	:	D-593
Location		Lageado (Copper Showing)
Ore name		Galena Ore

Sample No.	:	D–595a
Location	:	Serra (Jaguatiria)
Ore name	•	Cerussite-Galena Ore

Sample No.	:	E-548
Location	:	Agua Suja
Ore name	:	Hematite Ore

•

Sample No		F-627
Depth		AG-02, 228.70m
Ore name	:	Magnetite Ore

(Logging Core)

Sample No.	F-637b
Depth	AG-02, 243.70m
Ore name	Pyrite-Galena Ore

Sample No.	:	F-640a
Depth	:	AG-02, 246.05m
Ore name	:	Galena Ore

Sample No.	:	F-675a
Depth	:	AG03, 191.10m
Ore name		Chalcopyrite-Pyrite Ore

Table A-1

List of Mines and Showings in Survey Area

	Nh	me of Mine	Kind of						Ore Dep	osits			G	rade	<u></u> _		Ore Mineral	
No		Showing	Ore	Туре	Status	Location	Host Rock	Strike & dip	Lateral Extension	Longitudinal Fxtension	Average Width	Au g/t	Ag g/t	Cu %	Pb %	Zn %		<u> </u>
1		aço da	Рь	Vein	closed	Areta Branca	Açungui III I		_	_	_		-	_	_	-	Gn	
2		scaria jua da	Ръ	do	do	Fast of	L3 limestone Açungui III I	N400~600W,	1,200m	-	0 005	04	554.0	0.06	12.09	0.00	Gn, Cp, Py, Cc, Cv	
-		meira onjolinko de	Pb	do	do	Espinto Santo do	L ₂ limestone Açungui III I	30°~70°SW N40°[`,80°SI	10	_	~0 20 m network	08	204 0	0 00	7 70	0 00	Gn, Py, Cp	F
2		bastião	РЪ				L3 dolomite Açungui III Г	N50ºE,80ºNW	250	100	0 03~0.10 0 30	0.0	85 9	0.05	8.57	0 66	Gn, Hm, Cer, Py, Cv	Ţ
4		pirito Santo		do	do	Espirito Santo Southwest of	L ₃ limestone	N50°E,80°NW	ļ	100	0 15~0 20	-	0		-	_	Sp, Ga, Py, Cp	
5		gueira	Pb	do	do	Espirito Santo	do		-		0.80~1 50			_		_	Gn, Sp, Py, Cp	
6		iciencia	Zn, Pb Pb, Ag,	do Vein and	do	do	do	N60°F,50°SE N60°W,80°SW	-			-	7586.0		12 60	3.82		P P
7		irnas ruta de	Zn	pipe-like	operating	Furnas Fast of	do Açungui III F	N40°F,45°NW	800	100	- network	02	2586.0	0.11		2.79		
8		intana	РЬ	Vein	closed	Furnas	L ₂ limestone	-	-] -	0.01~0.05	00	7.9	0 02	5.92		Gn, Sp	P
9		gua Suja	(Pb)	(Vein)	do	Northeast of Furnas	Açungui III F L3 limestone	-		-	(0 02~0 04)	11.8	2.0	0 01	0.12	0.01		
10		Occorençia de Cobre	Cu,Zn	Vein	do	Lageado	Açungui III F L2 dolomite	N55°E, 50°SE	1.5	30	network 0 02	1.5	100.7	1.33	0.50	11 50		
11		Lourenço Velho (São Lourenço)	Pb	do	do	do	Açungui III F L2 limestone	N45ºE, 75ºSE	20~30	-	1.00	-	-	-	-	-	Gn, Cer	F
12		Santana Velha	Ръ	do	do	do	do	N75ºE, 70ºSE	5	250	0.50	-	-	-	-	-	Gn, Sp	ŗ
13		Porco ou Porco do Mato	Pb, Zn	do	do	do	do	N70ºE, 70ºSE	-	-	0.60~0.80	-	_	-	-	-	Gn, Sp, Py	F
14		Mamangava	РЬ	do	do	do	do	N65ºE, 70ºS E	500	100	0 80	0	215	00	11.1	0.01	Gn, Sp, Py, Cer	t t
15	5	Santana Nova	Pb, Ag	do	do	do	do	N50ºE, 75ºSE	600	200		0.3	1874 0	0 08	12.24	0.01	Gn, Py, Cer, Cv	I S
16	Deposits	Santana T	РЬ	do	do	do	do	N50°E, 60°SE	-	100+	1.00~2 00	-	_	-	-	-	Gn, Py, Cer	F
17	1 1	Nova Esperança	1	do	do	do	do	N80ºE, 70ºSE	20	80+	0.50	05	1891.0	0.08	12 04	0.01	Gn, Cer, Py, Cp, Cv	F
18	oprađe	São Vicente	РЬ	do	do	do	do	N50°E, 50°SE	-	50	0.60	05	496.0	0.08	12.04	0.22	Gn, Hm, Cer	F
19	[<u>-</u>]	Coqueiro	РЬ	do	do	do	do	N60ºE, 80ºSE	-	6+	0.20	-	-	-	-	-	Gn, Py, Cer	F F
20		Bugios	РЪ	do	do	do	do	N50°E, 70°ST	-	150	0 30	_			-	-	Gn, Py	1
21		Jardım I II	Pb, Ag	do	do	do	do	N500~600E, 600SE	20	250	0.70	0.4	2150 0	0.58	12.14	0.08	Gn, Py, Hm, Cer	
22		São Rafael	РЪ	do	do	do	do	N70°E, 60°SE	-	150+	1.00		-	-	-	-	Gn, Py	
23		Boa Ventura	РЪ	do	do	do	do	N70ºE, 60ºSE	5~10	80m (py-vein 1,000m)	1.00~1.50	0.1	1073.0	0.05	11 84	0.27	Gn, Py, Hm, Cer	
		Macaquinho	Pb	do	do	do	do	E-W, 65°S	-	~	0.10	-	1 -	-	-	-	Gn, Sp, Hm, Cer	
25		Jaguatirica	Pb, Zn	do	do	do	do	N50ºE, 65ºSE	-	50+	0.10~0 50	0.1	835.0	0 16	10.56	5.37	Gn, Cer, Sp, Py, Mt, Hm, Cv	1
26	Its	Sete Alqueires	Ръ	do	do	đo	do	N70ºE, 75ºSE	- 1	-	,	-	-	-	-	-	Gn, Hm	
27	Depos	Berta Funda	Ръ	do	do	do	do	N30°E, 40°SE	-	-	0 20~0.30	-	-	-	-	-	Gn, Sp	
28		1	РЪ	do	do	đo	do	N709E, 709SE	-	-	0.30~0.40	-	-	-	–	-	Gn, Sp, Py	
20 29	Serra	(Descanso I·II) Casa Velha	РЪ	do	do	do	do	N60ºE, 80ºSE	_	200	0.10~0.40	tr	265	-	9.48	n.d.	Gn, Sp, Py, Hm, Cer	
29 30		Sitio Noro	Pb	do	do	do	do	N80°E, 60°SE	_	_	0.20~0.30	-	- 1)	ļ _	-	Gn	
						do	do	N45ºE, 60ºSE	_	60	0.20~0 30	0.0	1131 0	0.01	12.86	0.27	Gn, Sp, Py	
31 32	+-	Berta do Leão Santo Antonio do Pavão	Pb, Ag Pb	do do	do do	Pavão	do	N60°W, 30°~80°NE	300	130+	0.15	0.0	51.9	0.00	4.29	0.06	Py, Gn	

	Remarks
v	production several tons production several hundred tons production several hundred kilograms production Galena 200kg production (1981) 500TM Pb: 7%, Ag: 3,000g/T production 10 tons
r	
	production 10 tons
	production 1,000 tons
	production Gn: 2 tons
	by JICA(1981), produc- tion several thousand tors production severalthou- sand tons Pb:5~50% production Gn ² 20~30 tons production 40 tons
'	production 40 tons Pb 40%
	production 40 tons production 5 tons
	production 5 tons
	production 1,000 tons(l), 80 tons Pb. 50% (II) by Sudelpa, production 500~1,000 tons
	production 85 tons
	production several hundred tons
t,	production 80 tons
er	by Sudelpa, production Gn [.] 15 tons by Sudelpa
	by Sudelpa, production 70 tons

Table A-2-1-1 Microscopic Observations (Thin Section) (Geological Survey)

Metamorphic rocks

Formation	Sample No.	Location	Rock Name	Texture	quartz	plagioclase K-feldenar	apatite	2HCOR enhane	calcute	dolomite magnetite	hematite	sericite graphite	tourmalme	tremolite	chloritoid	andalusite earnet	chlorite	staurolite phlogopite	biotite	muscovite	epiaote zoisite	clinozoisite	antnopnyllite hornblende	clinopyrovine	Remarks
Açungui I Formation	$\begin{array}{rrrr} C & - \ 659 \\ C & - \ 661 \\ E & - \ 577 \\ E & - \ 578 \\ G & - \ 576 \\ J & - \ 532 \\ J & - \ 555 \end{array}$	Bairro Matia Rosa Bairro Maria Rosa Morro do Mouro Morro do Mouro Bicas Morro do Mouro Bairro Maria Rosa	phyllite metabasalt phyllite phyllite meta conglomerate phyllite metadiabase	lepidoblastic clastic lepidoblastic lepidoblastic clastic and lepidoblastic lepidoblastic subophitic	• 0 0 0 0 0	•			¢,		• • •	0 0 0		0			~~~ ~			• 00000				0	qtz-opq-mus vein
Açungul II Formation	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Ressaca Ressaca Ressaca Ribeirão Farto Iporanga Bicas Bicas Serra do Monte Negro Corrego da Cotia Corrego Pedra de Amolar Corrego Pedra de Amolar Corrego Pedra de Amolar	amph sch. meta qtz sandstone chl-bt sch ep-act sch meta siltstone meta conglomerate meta conglomerate meta conglomerate meta siltstone meta sandstone meta arkose sand-tone meta conglomerate dolomite	nematoblastic granoblastic lepidoblastic granoblastic lepidoblastic lepidoblastic porphyroblastic and clastic porphyroblastic and clastic lepidoblastic lepidoblastic clastic (partly lepidoblastic) clastic micromosaic		0				•	•	• • • • •		© (・ (() ()		•				•		cordiente •
Açungui III Formation	$ \begin{array}{r} A & - 525 \\ B & - 514 \\ B & - 517 \\ B & - 531 \\ B & - 544 \\ B & - 553 \\ B & - 611 \\ B & - 624 \\ C & - 573 \\ C & - 682 \\ D & - 553 \\ D & - 553 \\ D & - 558 \\ D & - 564 \\ D & - 564 \\ D & - 564 \\ D & - 566 \\ D & - 592 \\ E & - 513 \\ E & - 540 \\ G & - 533 \\ I & - 519 \\ I & - 546 \\ I & - 551 \\ I & - 555 \\ I & - 556 \\ \end{array} $	Furnas Caracol Pouso Triste Itaoca Guruttuva Guruttuva Guruttuva Bairro da Cachimba Bairro da Cachimba Bairro da Cachimba Cachoetra Betari Funil Edati Funil Lageado Lambari Serra Lambari Serra da Onça Panda Corrego da Cotia Betari Apiai Apiai	meta qtz sandstone calc sch. calc sch hormfels metasiltstone mus-bt sch. bt sch meta siltstone meta siltstone meta siltstone calc schist meta sandstone meta qtz sandstone breccrated dolomite meta siltstone mus sch meta siltstone meta siltstone meta siltstone meta sandstone breccrated silcified limestone meta conglomerate bt-mus sch. mus-bt sch meta qtz sandstone bt-bearing metasundstone	granoblastic granoblastic nematoblastic granoblastic and porphyroblastic lepidoblastic porphyroblastic nematoblastic nematoblastic lepidoblastic lepidoblastic lepidoblastic granoblastic lepidoblastic lepidoblastic lepidoblastic lepidoblastic lepidoblastic lepidoblastic lepidoblastic lepidoblastic lepidoblastic lepidoblastic lepidoblastic granoblastic lepidoblastic lepidoblastic granoblastic lepidoblastic lepidoblastic lepidoblastic lepidoblastic lepidoblastic lepidoblastic lepidoblastic lepidoblastic lepidoblastic lepidoblastic lepidoblastic lepidoblastic lepidoblastic lepidoblastic lepidoblastic	らし 15 <u>あ</u> 000へ 55				1 (C) -	 						• 🥲			• © © 000 • %		0		0	© C	cal vein allanite • tourmaline © opq ()
Rocks	$ \begin{array}{r} I & -565 \\ B & -548 \\ C & -538 \\ C & -631 \end{array} $	Barrinha Gurutuva Faz Bachada Grande Bairro da Cachimba	meta conglomerate gabbro meta basalt meta gabbro	clastic and lepidoblastic ophitic subophitic ophitic	•				- - +	•	•		-				•					•	r 1	0	stilpnomelane vein
Meta Igneous Rocks	D - 600 E - 583 G - 561 H - 516	Cachoeira Faz da Cachimba Faz da Cachimba Pamital	meta gabbro meta gabbro meta gabbro gabbro	ophitic ophitic ophitic ophitic		2.0								•		•	•	1 1		000	000	stilpnomelane • orthopyroxene ()

Table A-2-1-2 Microscopic Observations (Thin Section) (Geological Survey)

						Constituent mineral Secondary mineral	
	Rock Group	Sample No.	Location	Rock Name	Texture	quartz K-feldspar plagioclase biotite muscovite hornblende hornblende hypersthene olivine zarnet zarnet calcite sericite epidote sphene actinolite dingsite serpentin	Remarks
	Apiai mass	B - 508	Apiai	granite	granular		ly mylonitic
		L – 558	Apıai	granite	granular		nte • allanite •
	Itaoca mass	B - 623	Ita oca	granite	equigranular		ute •
ranite	E. Santo mass	C - 685	Espirito Santo	granite	granular		mekite • apatite •
Grai	Vardım Grande mass	G – 570	Serra de Vargem Gtande	granite	equigranular		(ite (•)
	small mass	D - 533	Serra do João Ferreira	granite porphyry	porphyritic		atite •
		G - 618	Furnas	granite	porphyritic		netite •
di	abase dyke	C - 501 C - 681	Fa2 Bachada Grande Bairro da Cachimba	gabbro diabase	ophitic ophitic	C₂ • © • • • 𝔅₂ • © • • •	metute ()
ar po dy	ndesite ~ orphyrite yke	C - 553 C - 641	Espirito Santo Ribeirão Farto	porphyrite porphyrite	porphyritic porphyritic		ute •

Igneous Rocks

.

Formation	Sample No.	De (n	pth 1)	Rock Name	Texture	quartz	plaglociase K-feldspar	apatite	sphene	calcite dolomite	magnetite	hematife sericite	graphite tourmaline	tremolite actuolite	chloritoid	andalusite garnet	chlorite	phlogopite	biotite muscovite	epidote	zoisite clinozoisite	anthophylite hornblende	dinopyrovine		Remarks
	F- 525		15.55	mus-bt sch	lapidoblastic	00	1					•													
	530		64.40	act sch	nematoblastic	•				•				6.											
	537		87.90	graph-mus sch	nematoblastic	0	•						0						00						
	544		137.20	act sch	nematoblastic					•				0						•					
1	548		184 00	bt-mus sch	lapidoblastic	0	•]		1				.						00						
	560	10	240.20	mt-bearing calc-silicate rock	granoblastic	0				0	 •			¢.,		Ì	•	0							
	562	10-9A	254.30	bt-carbonate sch	nematoblastic					0	0							C							
	575		256.50	graph-mus sch	lepidoblastic	00				•	•		0						• ©						
	578		280.50	carbonate sch	nematoblastic	0	• •	•	•	0	•					ł			•						
Ę	580		292 00	lumestone	granoblastic					0				(°.)				0							
Formation	583		323 15	quartzite	granoblastic	(C) (ן ור			•							•		•						
orn	F- 588		52 10	bt-mus sch	granoblastic	(t. j.)	•	•		•			• •			•			00						cal vein
1 -	597		75 20	bt-mus sch	lepidoblastic	0	기			ļ			•						S				įĮ	l	
Aqungui	606		113.80	bt-mus sch	lepidoblastic	0						•	•				•	•	C	9					
unp∧	610		128 60	bt-act sch	nematoblastic	00	2	•											0	•					
	612		137.80	bt-mus sch	lepidoblastic	0	•									•			Ol©						
	617		167.30	garnet-bt-mus sch	lepidoblastic	0	1 1	• •					• •			0			00						
1	621	6	195.50	amphibolite	nematoblastic	0	0		-	1	•			•						•		¢			
	623	AG02	214.40	amphibolite	nematoblastic	•)		·	•		•		•0			•			•		G			
	626	× ×	225.70	bt-mus sch	lepidoblastic	Ô							e			0			06						
1	627		228 70	bt-carbonate-mt sch	granoblastic	0	•			0						Ì	•		0						
	636		240.30	tre-phlo-carbonate sch	mosaic and lepidoblastic	0	ור			0			•	0		•		O							
	651		260.50	graph-bt-mus sch	lepidoblastic	\odot		•			•		0				•		lolc						
	654		271 75	phlo-carbonate sch	granoblastic	0	0	•		0	•			•				$\left \right\rangle$							
	659		299.20	quartzite	granoblastic	0	• •		•	0								0							
	662		328.10	quartzite	granoblastic	00)			0	 • 			0				0							

.

Table A-2-2 Microscopic Observations (Thin Section) (Logging Core)

Table A-3-1

Microscopic Observations (Polished Section)

	Pyrihotite Thalcopynite	Tetrahedotte	Chalcocue (second) Coviline (second)	Magnetite	Hematute (second)	Centsute	Goethite	stadio Bot
2A 573 $110 + 26mL$ Panelas Mime Galena OreGalena Ore θ_{20} 3A 574Perau Mime G2 + 8 S 	• •	•	-			•		Bor
2A 573 $110 + 26$ mL Panelas Mime Galena OreGalena Ore 6_{2r} 3A 574Perau Mine G2 + 8 S G2 + 8 SPynte-Serussite Ore G2 + 8 S•4A 575Perau Mine G2 + 8 SGalena Pyrite Ore•5A 576Barrinha MinePynte-Galena Ore•6A 577doPynte-Galena Ore•7A 578doGalena Pyrite Ore•8A 579doGalena Pyrite Ore•9A 580Perau Mine G2 + 8 SGalena Pyrite Ore•9A 580Perau Mine G2 + 8 SGalena Pyrite Ore•9A 580Perau Mine G2 + 8 SGalena Pyrite Ore•9A 581Panelas Mine Panelas Mine 110 + 34mLPyrite Ore•11A 582UNIGLOGalena Magnetite Ore Galena Ore•12B-622Santo Antomo doPyrite-Galena Ore•	• •	•	-		•	•		Bor
110 + 34mL Pynte-Serusate Ore • 3 A 574 Perau Mine Ostena Pyrite Ore • 4 A 575 Perau Mine Ostena Pyrite Ore • • 5 A 576 Barrinha Mine Pynte-Galena Ore • • • 6 A 577 do Pynte-Galena Ore • • • • 6 A 577 do Pynte-Galena Ore • • • • 6 A 577 do Galena Pyrite Ore • • • • 7 A 578 do Galena Pyrite Ore • • • • 9 A 580 Perau Mine Galena Pyrite Ore • • • • 9 A 583 Panelas Mine Pynte Ore • • • • • • 9 A 583 Panelas Mine Pynte Ore • • • • • • 10 A 583 Panelas Mine Pynte Ore • • • • <	•	•	-		•	•		Bor
4A575 Perau Mine $G2 + 8$ N Barrinha MineGalena Pyrite Ore Pynte-Galena Ore•••5A576Barrinha MinePynte-Galena Ore('••6A577doPynte-Galena Ore('•7A578doGalena Pyrite Ore••8A579doGalena Pyrite Ore••9A580Perau Mine $G2 + 8$ SGalena Pyrite Ore••9A583Panelas Mine 110 + 34mLPynte Ore••11A582UNIGLOGalena Magnetite Ore••12B-622Santo Antonio doPyrite-Galena Ore e_{xy} ('	•	•	-		•			Bor
5 A 576 Barrinha Mine Pynte-Galena Ore (• 6 A 577 do Pynte-Galena Ore • • 7 A 578 do Galena Pyrite Ore • • 8 A 579 do Calena Pyrite Ore • • 9 A 580 Perau Mine G2 + 8 S Galena Pyrite Ore • • 9 A 580 Perau Mine G2 + 8 S Galena Pyrite Ore • • 10 A 581 Panelas Mine Panelas Mine Dilo + 34mL Pyrite Ore • • 11 A 582 UNIGLO Galena Magnetite Ore • • 12 B-622 Santo Antonio do Pyrite-Galena Ore • •	•	•	•		•			Bor
6 A 577 do Pynte-Galena Ore • • 7 A 578 do Galena Pyrite Ore • • 8 A 579 do Galena Pyrite Ore • • 9 A 580 Perau Mine G2 + 8 S Galena Pyrite Ore • • 10 A 583 Panelas Mine Panelas Mine 110 + 34mL Pyrite Ore • • 11 A 582 UNIGLO Galena Magnetute Ore • • 12 B-622 Santo Antonio do Pyrite-Galena Ore • •		•			•			
7 A 578 do Galena Pyrite Ore • 8 A 579 do Galena Pyrite Ore • 9 A 580 Perau Mine Galena Pyrite Ore • 9 A 583 Panelas Mine Pyrite Ore • 10 A 583 Panelas Mine Pyrite Ore • 11 A 582 UNIGLO Galena Magnetite Ore • 12 B-622 Santo Antonio do Pyrite-Galena Ore •	•	•						
8 A 579 do Galena Pynte Ore 9 A 580 Perau Mine G2 + 8 Galena Pynte Ore 10 A 581 Panelas Mine H10 + 34mL Pynte Ore 11 A 582 UNIGLO Galena Magnetite Ore 12 B-622 Santo Antonio do Pyrute-Galena Ore	•				5			
9 A \$80 Perau Mine G2+8 Galena Pyrite Ore 10 A \$81 Panelas Mine 110+34mL Pyrite Ore 11 A \$82 UNIGLO 12 B-622 Santo Antonio do Pyrite-Galena Ore	•	•				j.		
10 A 580 For a value Outer a value of the outer a value of	•							
10 A 583 Panelas Mine Pynte Ore 110+34mL 110+34mL Galena Magnetate Ore 12 B-622 Santo Antonio do Pynte-Galena Ore e	•					•		
11 A 582 UNIGLO Galena Magnetite Ore • 12 B-622 Santo Antonio do Pyrite-Galena Ore •	•				ļ	ļ		
				í		-		
				ļ				
13 C 518 Espirito Santo Mine Hematite-Galena Ore					~			
14 (591 Agua da Limeira Galena Ore	1		•		С			
15 C 592 do Chalcopyrite Ore				ļ	.			Dg
C. C			- -					[*
Santo Mine					_			
	•		•	ļ ,	•			
18 D 581a Lageado Cerussite-Ote Boa Ventura					•	(C 3)	•	
19 D 581b do Galena Ore					•	•		ļ
20 D- 583 do Cerussite Galena Ore .					•	0	•	
21 D 584 Lageado Galena Ore					•	•		
22 D 586 Lageado Gelena Ore •					•	٠		
21 D 588 Legeado Pynte-Galena Ore 🖉 🔍	•		٠			•		
24 D 590 Lageado Pynte-Galena Ore			٠			•		
25 D 592 Lageado Pynte Ore					•	ļ	•	
Copper Showing 26 D 593 do Galena Ore 4 •			•		•	•	•	Ì
27 D 595a Serra Cerussite-Galena Ore •				-		•		
28 D 595b do Cerussue-Galena Ore •							1	
29 D 597 do Galena Cerussite Ote • •						6		
			Ī			Ĭ	1	
31 E 548 Agus Suja Hematite Ore			1		0			
s corrections of contracting of cont							ł	
33 E 644 do Galena Ore C ●		•				•		
34 E-645 do Galena Sphalenste Ore 🕲 🖾 🗣		•				•	ł	1
35 E 646 Diogo Lopes Mine Cerussite-Galena Ore						•		
16 E. 647 Paquetro Mine Galena Ore			•			•	ł	
37 L - 648 Bueno Mine Galena Ore •	•		•	ļ		•		
38 E 649 Onça II Galena Ore C 🔹				1		•		
39 I 508 Serra Galena Ore • •								
40 G 610 Barrinha Mine Galena Ore •			1	1				
				L	Ļ			- 1

(Geological Survey)

Remarks (** abundant "...) common Chittle • rate Dg Digentte Bor ... Bornite

.

1. A-572

Massive pyrrhotite occupies more than 30 % and disseminated galena occupies about 20 % of the area. Galena, pyrrhotite and a small amount of chalcopyrite occur with mutual boundary. No indication of the temporal difference in the deposition of them was observed microscopically. These sulfide minerals fill the interstices of carbonate and quartz grains. Pyrite grains occur rarely between pyrrhotite and chalcopyrite grains. Few sphalerite grains occur in chalcopyrite.

2. A-573

Galena occuptes nearly 80 % and pyrite about 20 % of the area. Large grains of pyrite occur in galena. The shape of grain is mostly irregular and the boundary is partly coroded. A small amount of galena, pyrrhotite, chalcopyrite occur in pyrite grains. Small grains of pyrrhotite occur sporadically in galena and the shape of them is quite irregular being coroded by galena. Sphalerite occurs also in galena as small irregular grains or with pyrrhotite grains. From the texture, galena

3. A-574

Pyrite and galena occupy several per cent of the area totally. A small amount of covellite, sphalerite and cerussite are observed. Galena fills the interstices of carbonate and quartz grains. Cerussite replaces galena along the boundary forming thin films. In the case of small grain, cerussite replaces almost of the galena grain leaving minute relict of

gzlena in the cerussite aggregate. Pyrite occurs as isolated grains or with galena in carbonate gangue. Round grains of pyrite (500 µm - 1200 µm) are often found in carbonate aggregates. Covellite is observed in cerussite.

4. A-575

Pyrite occuptes 10 % and galena 10 % of the area totally. Galena fills the interstices of ganuge minerals and round grains of pyrite distributed radomly in gangue. Small round grains of sphalerite occur in galena. Bornite occurs with chalcocite and covellite as veinlets and films along the boundary of chalcopyrite which contacts with galena. The assemblage also occurs in cerussite aggregates. A small amount of fine-grained covellite also occurs in cerussite. Hematite occasionally occurs along the boundary of galena.

5. A-576

Galena occupies 30 % and pyrite about 10 % of the area. Galena fills the interstices of carbonate and quartz grains, and pyrite occur as corodedeuhedral grains with galena. Fine grains of sulfides disseminated in gangue, mostly of carbonate. Fyrite grains often contain fine blebs of sphalerite and galena. Few grains of magnetite are replaced by hematite along their margin. Irregular form of tetrahedrite occurs in galena. A few amount of cerussite is formed in galena.

6. A-577

Galena and pyrite occur in carbonate and quartz gangue. Galena occupies 20 % and pyrite is much less. Galena fills the interstices of gangue or disseminates finely (less than 10 µm) along the grain boundary or cleavage cracks of carbonate grains. Pyrite occurs as coroded round form in gangue isolated from or with galena.

7. A-578

Fyrite and galena occupy 20 % Of the area. Euhedral or coroded large grains of pyrite (200 μ m - 800 μ m) occur in carbonate. The grains include small blebs of galena, chalcopyrite and tetrahedrite. Galena fills the interstices of gangue grains, and also finely disseminated in or along the grains of carbonate. A small amount of tetrahedrite occurs in galena.

8. A-579

10 % Of galena and 10 % of pyrite disseminate in gangue. Galena fills the interstices of ganuge minerals and distributes randomly. Pyrite occurs as round grains in galena or as isolated in gangue. Sphalerite grains of irregular shape occur occasionally surrounded by galena thin film and tetrahedrite film at the outside. A trace amount of sphalerite is observed.

9. A-580

Pyrite occupies several per cent of the area. Pyrite graıns of round shape (less than 1 mm) distribute in gangue minerals. Galena graıns which fill the interstices of gangue minerals are replaced by cerussite partly along the rim or completely.

10. A~581

95 % of the area is occupied by pyrite. Large sugargular grains of pyrite compose the most part of ore. The interstices of large pyrite grains are filled with the aggregates of small framboidal pyrite grains and irregularly shaped chalcopyrite.

11. A-582

Magnetite occupies about 40 % of the area. Sulfides including galena, pyrite and chalcopyrite, occupy only less than 10 %. Magnetite forms a band and it consists of grains ranging from 100 µm to 300 µm. The rim and cracks are partly replaced by hematite. Galena fills the interstices of gangue minerals but they show roughly the distribution along a direction. Sphalerite generally occurs with galena. Chalcopyrite occurs with pyrite and sphalerite, filling the interstices of them, but it occurs with galena with mutual boundary.

12. B-622

Pyrite is the major sulfide mineral. Galena is quite few. Large anhedral grains of pyrite occupy the most part. The size of grain ranges from 300 µm to 1000 µm. Pyrite grains contain small grains of gangue minerals as well as blebs of galena. Cracks filled with gangue minerals penetrate irregularly the pyrite grains.

13. C-518

in galena grains, or in the aggregates of cerussite and hematite. of cerussite and hematite. A small amount of covellite occurs replaces galena and pyrite grains forming fine bands or partly Less as aggregates of colitic texture. Tiny relicts of galena of amount of cerussite and minor amount of pyrite and covellite irregular shapes were observed everywhere in the aggregates Slightly eroded euhedral or anhedral grains of pyrite occur galena grains Quartz grains also occur in the aggregates of cerussite and up the cleavage cracks of galena. Hematite as small grains (less than 10 μ m) in cerussite aggregates. Opaque minerals consist mostly of galena and hematite. rin of Cerussite replaces the and also fills were observed. hematite

14. C-591

A small amount of galena fills up the interstices of grains of gangue minerals and also occur as small aggregates having very rugged surface.

15. C-592

Chalcopyrite predominates in the sulfide minerals. Chalcopyrite fills the interstices of gangue minerals, and show very rugged surface. Few round grains of pyrite occur in chalcopyrite grains. Mixture of chalcocite and digenite replaces irregularly the chalcopyrite grains. Covellite is rarely found on the boundary of the mixture of digenite and chalcocite.

16. C-596

A small amount of pyrite (less than 1%) occurs in gangue minerals as irregularly coroded grains. Besides pyrite, no other sulfide minerals were observed.

17. D-542

Pyrite occupies nearly 50% of the area of the polished surface and hematite does about 35%. A small amount of chalcopyrite and covellite were observed. Massive aggregates of pyrite occupy the most part of sulfide minerals. Chalcopyrite fills the interstices of pyrite grains. The size of pyrite grain ranges from 100 µm to 2 mm, and chalcopyrite about 10-20 µm. Pyrite grains are partly replaced by hematite, especially along the rim of grain. Hematite occurs as flaky aggregates surrounding the massive pyrite. The size of hematite was

between 100 μ m and 500 μ m. Covellite occurs as small aggregates in the hematite aggregates.

18. D-581-a

Sulfides, probably galena, are completely replaced by the fine-grain aggregates of cerussite leaving quartz grains in them. Hematite pseudomorph after pyrite crystal is rarely obaserved.

19. D-581-b

Galena occupies the most part of the sample. Large grains of galena (4 mm - 6 mm) form a compact mass. Fine grains of cerussite occur along cleavage cracks or partly replacing galena. Hematite occurs with cerussite forming the center part of the cerussite veinlets along cleavage cracks.

20. D-583

Galena occupies 60 % and cerussite 30 % of the area. Mixture of hematite and geothite is leaa than 5 %. Galena grains are large ($500 \ \mu m \sim 2 \ mm$). Cerussite occurs along cleavage cracks or replacing galena grains. Aggregates of fine grain cerussite geasionally contain many irregular grains of galena (less than 2 μm) as the relicts of replacement of galena by cerussite. Hematite and goethite mixtures occur in the cerussite aggregates and they also include galena relicts. Two grains of pyrite (about 100 μm) occur in galena.

21. D-584

The sample is occupied exclusively by galena. A small amount of cerussite and hematite were observed. Cerussite occurs along cleavage cracks forming veinlets which have hematite aggregates in the center.

22. D-586

Galena predominates over the other sulfide minerals. Galena is remarkably replaced by fine-grain aggregates of cerussite which include fine irregular relicts of galena, mostly along cleavage cracks. The galena grains are surrounded by the mixture of cerussite, hematite and goethite with the irregular boundary. These secondary mixtures form fine banding texture along the boundary, and sporadically contain covellite. Few pyrite grains were observed.

23. D-588

Galena occupies more than 90 % of the area. Cerussite succeeds គ្គ galena but much less. A small amount of pyrite, chalcopyrite guartz. Pyrite relicts were often observed in these hematite and replacing galena and filling cleavage cracks. Eroded grains n - mu A small amount of covellite occurs in cerussite aggregates. pyrite crystal in the assemblage of cerussite, carbonate boundary. In smaller grains of galena, cerussite occurs Mixture of hematite and goethite forms pseudomorph after the of pyrite contain few blebs of chalcopyrite and galena. t ទ grains of galena partly except cerussite, Large covellite were found. scarcely replaced by and goethite mixture. and o are

24. D-590

Galena occupies about 75 % and pyrite about 25 % of the area. Galena grains are partly replaced by cerussite aggregates along the grain boundary and cleavage cracks. Pyrite grains are eroded by galena in various states. Some grains show slightly eroded euhedral shape and others show quite irregular shapes cut by cracks filled with gangue minerals. A very few amount of covellite was observed.

25. D~592

Less than 5 $^{01}_{A}$ the area is occupied by pyrite. The other part is gangue. The rim of pyrite grain is strikingly replaced by the mixture of chalcocite and digenite. Larger grain consists of pyrite core and secondary envelop but smaller one is completely replaced.

26. D-593

Galena occupies the most part of sulfides. Galena fills the interstices of gangue minerals, mostly of carbonate and quartz. Galena also occurs with quartz as veinlets cutting gangue. Galena grain is often replaced by cerussite aggregates along cleavage cracks or as selvages of them. Covellite is found in the aggregate. A finely crushed pyrite grain, the interstices of which is filled with the mixture of chalcocite and digenite, is found.

27. D-595~a

The sample consists of 60 % Of galena and 30 % of cerussite. In the rest, covellite, sphalerite, pyrite and some undetermined

texture and including fine relicts of galena, especially around by hematite occur with cerussite in cleavage cracks of galena. Cerussite replaces remarkably galena grains along as round grains in galena. Magnetite grains partly replaced forming fine colloform or banding aggregates or in galena with sphalerite. Covellite occurs the replaced galena grains. Pyrite shows slightly eroded 15 sporadically in cerussite aggregates. Sphalerite occurs They occur intimately euhedral or anhedral shapes and occurs in the cerussite Mo undetermined minerals occur with cerussite. The one brownish and the other is bluish. making aggregates with cerussite. cleavage cracks and rims, minerals.

28. D-595-b

Galena occupies the area more than 80 %. Galena grains (500 um - 2 mm) are partly replaced by cerussite along cleavage cracks and boundary or as spots. Near the grain boundary, cerussite aggregates form fine bands. A small amount of covellite with the undetermined brownish mineral occur in covellite with the undetermined brownish mineral occur in cerussite. Larger area of galena, however, is still intact by cerussite, and contains round grains of pyrite and sphalerite, by cerussite, and contains round grains of greenish undetermined and rather irregularly shaped grains of greenish undetermined mineral (tetrahodrite?). It is inferred microscopically that galena was first replaced by fine grains of cerussite along cleavage cracks, and then they grew to connect each other forming a fine grained aggregate leaving small flakes of galena in it.

A

29. D-597

Galena occupies 60 % of the area. Sphalerite, pyrite, covellite and cerussite occur in a much less amount. Galena is intensively replaced by cerussite which accompanies hematite and goethite aggregates in someplaces. The secondary aggregates show a concentric banding in somewhere. Covellite is found in the secondary aggregates. Small round grains of pyrite and sphalerite occur scarcely in galena.

31. E-548

Aggregates of hematite and goethite. Fine-grained hematite occurs associated with goethite. Hematite forms fine mesh-like texture, filling the interstices of quartz grains and veinlets, forming concentric nodules and pseudomorph after sulfide grain. The parts of rugged surface are porous with more goethite. No sulfide minerals such as sphalerite, galena, pyrite or chalcopyrite are found.

30. E-554

Stringer of galena and sphalorite in gangue minerals. Galena and sphalerite fill up the interstices of carbonate grains distributing randomly but along a direction.

32, E-643

Galena occupies about 75 % of the area, and pyrite about 20 %. A small amount of sphalerite is found. Galena fills the interstices of pyrite and gangue grains. Some parts are almost occupied by galena. The size of galena grain ranges from 100 µm to 800 µm. Some pyrite grains are coroded by galena.

galena several grains or separately in galena, but in gangue minerals, about Pyrite grains ranges from 50 µm to 200 µm, and generally they ч A single large grain of sphalerite, the size of which is H ÷ show a slightly coroded euhedral shapes. Pyrite grains a small aggregate consisting the distribution of pyrite grains is much denser than 1800 µm, is observed in galena. Several small blebs ц. chalcopyrite and galena are observed in forming distrıbute evenly

33. E~644

Largely galena. Large well-developed crystals of galena include some round grains of pyrite and sphalerite. Irregular patches of tetrahedrite(?) occur sporadically in galena. Some parts of galena grain are sparsely replaced by cerussite.

34. E-645

50 % of the area 1s occupied by galena and the rest by sphalerite. in the aggregates are as large as $100-2000~\mu\mathrm{m}$, and they include A small amount of pyrite, tetrahedrite and cerussite are found Ē contacts with galena with mutual boundary. Sphalerite grains and irregular patches of tetrahedrite. Pyrite and sphalerite many tiny grains of galena (less than 50 µm) and round grains and 2000 µm are roughly separated from sphalerite aggregates. grains show occasionally a corosion texture but tetrahedrite Galena grains include round grains of sphalerite and pyrite, Veinlets consisting of fine grains of cerussite with galena relicts penetrate the sphalerite aggregates and part. 500 grains ranging between the most galena and sphalerite occupy Galena aggregates consisting of Large grains of of pyrite.

they extend to galena which contacts with the sphalerite, and connects with the cleavage cracks formed in galena.

35. E-646

Galena fills the interstices of carbonate grains forming irregular shapes, and it is partly replaced by cerussite. Fine grains of the undetermined brownish and bluish minerals form aggregates with hematite and goethite and occur in cerussite. Pyrite and galena relicts occur in cerussite. Coroded grains of pyrite (100-200 µm) occur sparsely in galena.

36. E-647

Galena predominates over pyrite, sphalerite and covellite. Galena occurs randomly filling the interstices of gangue minerals and the size is between 30 µm and 300 µm. Some parts of grains are slightly replaced by fine grain aggregates of cerussite. In the highly altered parts, very few galena is observed as the remnants of replacement forming very irregular shapes. Coroded grains of pyrite, ranging from 40 µm to 150 µm, occur sparsely in galena and gangue. A small amount of sphalerite also occurs in galena. Few grains of covellite are found in cerussite.

37. E-64B

Sulfides occupy only about 5 % of the area. Galena fills the interstices of carbonate and quartz grains. The size ranges from 5 µm to 500 µm. Rims and smaller parts of galena grain are partly replaced by cerussite. Very few covellite occurs in cerussite. Chalcopyrite occurs in galena but very few.

Several anhedral grains of pyrite, the size of which is smaller than 200 μm, occur with galena or separately in gangue.

38. E-649

Galena occupies less than 40 % of the area. Galena occurs in large grains ranging from 500 µm to 1 mm with mutual boundary. Cerussite replaces the boundary or cleavage cracks of galena, but the replacement is not intense. Pyrite grains, ranging from 40 µm to 800 µm, form aggregates in galena and gangue. The brownish and bluish undetermined minerals occur with cerussite which replace galena.

39. I-508

Galema occuptes the most part. Galema occurs as mosatc aggregates of large grains of about 1-2 mm in diameter. Rounded cubic form of pyrite occurs in galema with gangue and a certain amount of sphalerite. Pyrite grains range from 10 µm to 200 µm. Cerussite and secondary minerals replace galema partly or along cleavage cracks.

40. G-610

Very few galena occurs in gangue. Galena fills the interstices of gangue minerals but very few.

Table A-3-2	Microscopic	Observations	(Polished	Section)	(Logging Core)
-------------	-------------	--------------	-----------	----------	----------------

-	r -	,	· · · · · · · · · · · · · · · · · · ·					-
Nc.	Sample No.	Depth	Ore Name	Galena	Sphalerite	Pynte	Chalcopyrite	Magnetite
1	F-564a	AG-01, 256.20 ^m	Galena-Pyrite Ore	9	•	•		
2	F567a	do. 259.10 ^m	Galena-Sphalerite Ore		0	0	•	
3	F-570a	do. 262.10 ^m	Galena-Sphalerite Ore	•	•	0		
4	F-627	AG-02, 228.70 ^m	Magnetire Ore					0
5	F-637a	do. 242.90 ^m	Galena-Sphalerite Ore	0	0	•	•	
6	F637b	do. 243.70 ^m	Pyrite-Galena Ore	\bigcirc	•	0	0	
7	F-640a	do. 246 05 ^m	Galena Ore	0		•		
8	F-641a	do. 247.10 ^m	Sphalerite-Galena Ore	0	•	0	•	
9	F-646a	do. 252.30 ^m	Galena-Sphelerite Ore	•	Ċ,	•		
10	F-646b	do. 252 45 ^m	Galena-Sphalerite Ore	()	С	•	•	
11	F673a	AG-03, 190.10 ^m	Chalcopyrite.Pyrite Ore	•	0	0	0	
12	F-675a	do 194.60 ^m	Pyrite-Galena Ore	0		0		
13	F-675b	do. 195.30 ^m	Galena-Sphalerite Ore	•	•	0		

Remarks () abundant () common () little • rare

ru
1
•
ø
ŝ
1
<u> </u>
•
-

Sulfides consisting of pyrite, galena and sphalerite, occupy less than 10 % of the area. Sulfides distribute irregularly in the interstices of gangue minerals, mostly of carbonate. Pyrite occasionally shows euhedral form but sphalerite and galena contact with mutual boundary. Grain size varies from a few µm to 600 µm in maximum of pyrite. Rounded guartz grains distribute sparsely in carbonate.

2. E-567-a

Sulfides occupy about 15 % of the area. Galena and sphalerite contact with mutual boundary and distribute in gangue randomly or making a rough distribution. They include a small amount of chalcopyrite. Pyrste occurs in euhedral forms in galena and sphalerite or in gangue separated from the other sulfides.

3. F-570-a

Sulfides, consisting of galena, sphalerite and pyrite, occupy about 10 % of the area. Galena occurs in some parts as a slender distribution of fine grains (ca. 5 μ m) along the grain boundary of carbonate of cutting them. Galena also occurs as large grains (400 μ m - 1 mm) filling the interstices of gangue minerals. Sphalerite occurs mostly with galena in contact with mutual boundary or included in galena grain. Pyrite grain occurs as a single grain in gangue, or included or contact with galena and sphalerite. A small amount of chalcopyrite is observed.

4. F-627

Magnetite occupies about 40 % of the area. Very irregularly shaped grains of magnetite ranging from 30 µm to 500 µm, distribute among gangue minerals. They show very irregular shapes and heavily rugged surface. No other opague minerals were seen.

5. F-637-a

Galena and sphalerite occupy about 20 % of the area. Galena and sphalerite disseminate in the interstices of gangue minerals. Galena especially distributes finely along the grain boundary of carbonate and also fills the interstices irregularly. Chalcopyrite occurs more intimately with sphalerite than galena. Pyrite showeuhedral forms and occurs with galena and sphalerite or separately in gangue. Flaky crystals of gangue are observed in sulfide-rich zone.

6. F-637-b

Galena and pyrite occupy about 20 % of the area. Galena occurs randomly in aggregates of flaky gangue minerals and quartz grains. It ranges from 20 µm to 500 µm in size and shows irregular forms. Sphalerite is few and mostly included in galena. Pyrite occurs in large grains, the size of which is between 200 µm and 1 mm. A very small amount of chalcopyrite is observed in gangue.

A

7. F-640-a

Galena occupies about 10 % and pyrite about 10 % of the area. Galena fills the interstices of carbonate grains and distributes randomly. No sharp boundary is microscopically observed between the sulfide-poor zone and the sulfide-rich zone. Round or subangular grains of pyrite distribute separately or with galena in gangue minerals.

8. F-641-a

Sulfides form bands in carbonate gangue. A band consists of only galena which occurs in the interstices of carbonate forming irregularly shaped grains of 50-350 µm diameter. Galena occupies about 20 % of the area. In the second band, sphalerite forms a mosaic texture with carbonate and it includes smaller irregular patches of chalcopyrite and galena. At some boundaries between sphalerite and galena, it seems that galena is replaced by sphalerite. Two large grains are included in this zone as round shapes ranging 800 µm and 300x600 µm. In the third part, sphalerite predominates than galena or pyrite. A large grain of pyrite partly coroded occurs in carbonate with a small amount of galena and sphalerite. The diameter is about 1 mm.

9 F-646-a

Sphalerite disseminates in the interstices of quartz and carbonate gangue, occupying about 20 % of the area. Galena and sphalerite contact each other with mutual boundary, or partly galena fills the interstices of sphalerite grains. Pyrite occurs in round irregular grains ranging from 50 µm to 800 µm.

10. F-646-b

Galena and sphalerite mixture forms irregular streaks in carbonate gangue. The mixture occupies about 15 % of the area. Galena occurs in irregular forms between the gangue grains or cutting them as irregular veinlets. The grain size is between 50 µm and 600 µm. Sphalerite occurs intimately with galena. Pyrite with mutual boundaries or partly replaced by galena. Pyrite occurs sparsely in gangue as fine round grains. The grains are partly coroded and range between 20 µm and 40 µm. Very few chalcopyrite is observed.

11. F-673-a

Chalcopyrite occupies about 40 % and pyrite about 30 % of the area. Large grains (larger than 4 mm) are included in the sulfide mixture. The mixture also includes large round grains of pyrite. Besides this aggregate, chalcopyrite occurs in carbonate gangue along grain boundary or cleavage cracks forming thin veinlets. It also fills the interstices of flaky crystals of gangue. In some parts, it replaces carbonate, but it does not quartz grains. Very few sphalerite and galena occur with chalcopyrite and pyrite.

12. F-675-a

Pyrite and galena evenly disseminate in carbonate gangue. They occupy about 10 % of the area. Pyrite is coroded to round shapes or includes some gangue minerals. The grain ragnes from 60 μm to 350 μm. Galena occurs in the interstices of gangue ranging from 5 to 80 μm, but mostly between 10 and 40 μm. Quartz grains range from 100 μm to 600 μm and most of them show round shapes. No distinct orientation of distribution of sulfide minerals is observed.

.

13. F-675-b

Slender sreaks of sulfides show distinct orientation. Irregular and rugged grains of galena, sphalerite and pyrite disseminate along the boundary of gangue, mostly of guartz grains. The size of sulfide grains is between 20 µm and 500 µm. Very few -

0. 0. 0.00000 0.0000				Table A-4-1	N-V	- -	V	ssay }	Results	ofo	e (Geol	Assay Results of Ore (Geological Survey)						
00000 matrix matrix </th <th>No.</th> <th>Sample No.</th> <th>Location</th> <th></th> <th>Au (g/t)</th> <th>Ag (g/t)</th> <th>ર શ્</th> <th>4 X</th> <th>۲2 (۲)</th> <th>No</th> <th>Sample No.</th> <th>Location</th> <th></th> <th>Au (<u>g</u>/t)</th> <th></th> <th>38</th> <th>4 ¥</th> <th>ч К</th>	No.	Sample No.	Location		Au (g/t)	Ag (g/t)	ર શ્	4 X	۲2 (۲)	No	Sample No.	Location		Au (<u>g</u> /t)		38	4 ¥	ч К
4.54 Arrow free with a fractionation of the contractionation of the contraction with a fractionation of the contraction with a fractionation with a fractionationation with a fractionationationationationationationationa		A-573	Panclas Mine 110+34 mL	Galena, Pyrrhotíte	5 '0			17.21	0.02	23	D-595	Serra Juguatirica	Pb oxid e- Galena vein				3.32	0.27
4.40 0.0. 0.0. 0.0	N 2	A-574	Perau Mine G2+8-S		0.0	53.0	0.074		0.12	24	D-596	do.	do.				1.53	0.92
4-956 Bertink Mer Galare value 0.9 0.01 0.71 15.12 0.01 0.73 0.20<	e	A575	do. G2+8-N		0.0	52.0	010.0	5.40	0.60	52	D-597	Serra Juguatirica	Pb oxide-Galena veín	0.1			0.56	5.37
effect Second Memory Calametry later with Col Size Col Col< Co<	4	A-576	Barrinha Mine	Galcna vein	6.0	480.8	0.73	15.12	60.0	26	E-544a	Gruta de Sentana	Pb-calcite network	0.0		-05	5.92	2.79
C-010 Reginting Sating Chinen-Currity volume 0.0 0.3 0.4	ŝ	B-622	Santo Antonio do Pavão Mine		0.0	51.9	0.0	4.29	0.06	27	E-544b	do.		0.0			0.17	0.06
G-569 Sequencination of construction of constructin construction of construction of constructin constr	Ś	C-518	Espirito Santo Mine	o Galeno-Quartz vein	0.0	85.9	0.05	8.57	0.66	58	E-548	Agua Suja		11.8		10.	0.12	10-0
C491 Manual matrix C41 Sci 1 C43	2	C-580	Monjolinho de Sebastião		0.8	204.0	0.0	7.70	0.00	23	E-571	Rio Iporanga	Pb oxide vein	0.0			0.02	0.0
G-589 i.e. 0.246670400007110^{-10} i.o. i.o. </td <td>8</td> <td>C-591</td> <td>Agua do Limeira</td> <td>Calena-Quartz vein</td> <td>0.4</td> <td>554.0</td> <td>0.06</td> <td>12.09</td> <td>0.00</td> <td>õ</td> <td>E-620</td> <td>do.</td> <td>do.</td> <td>0.0</td> <td></td> <td></td> <td>0.03</td> <td>0.01</td>	8	C-591	Agua do Limeira	Calena-Quartz vein	0.4	554.0	0.06	12.09	0.00	õ	E-620	do.	do.	0.0			0.03	0.01
G-36 State Repariting Canany (7)-PF-Quents) 0.0 3.2 0.01 0.01 0.01 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.11 0.10	¢,	C-592	do.	Galena-Chalcopyrite- Quartz vein	0.0	16.8	0.11	0.14	0.00	16	E-643	Furnas Mine	Pyrite-Galena vein	0.3			2.81	0.13
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	965-0	SW of Eppiritc Santo Mine	o Galena(?)-Py-Quarts vein	0.0	3.2	10.0	0.15	0.00	35	£-644	do.	Sphalerite-Galena vein	2.0			2.60	3.82
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	D-521	Lageado Santa Nova G3	Galena vein	0.8	157.0	0.05	11.58	0.18	33	E-645	do.	do.	0.0	0 0-1681			17.75
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12	D-523		Galena vein	1.1	218.0	0,04	11.28	0.29	34	E-646	Díogo Lopes Míne	Pb oxide-Galena vein	0.0			2.50	0.29
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	£1	D-526	din		0.0	1.6	0.23	0.02	10.0	35	E-647	Paqueiro Mine	Pyrite-Galena vein	0.0			2.60	60°0
D-560 Lageado Galena vein 6.4 24.8 0.16 0.26 0.63 1.63 0.61 0.1 $0.73.0$ 0.27 0.2 0.2 0.61 0.61 0.27 $0.$		D-542	Furnas vest	Quartz-Pyrite Yein W:5	0-1	18.0	0.02	0.12	31.4B	36	E-648	Bueno Mine	do.	0.3	1506.0 0		2,96	0.01
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		D-580	Lageado Boa Ventura	Galena vein	6.4	24.8	0.16	0.26	0.08	37	F-649		do.	3.6	904.0 1	5	7.40	0.03
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		D-581	do.	da.			0.05	11.84	0.27	38	F-685	Perau Mine	Galena in barite zono	0.0	53.0 0	.076	4.50	0.15
D-584 do. 0.5 496.0 0.08 12.04 0.22 40 F-607 do. do. 22.0 0.01 52.0 0.01 53.0 D-586 do. do. 0.4 2150.0 0.58 12.14 0.08 11.508 Serera Aberta Galena 0.0 1131.0 0.01 12.86 Jardim G2 do. 0.01 47 J-508 Kona Aberta Galena 0.0 1131.0 0.01 12.86 Nova Esperance 0.0 1831.0 0.01 47 J-506 Monjolitha de Limonitized rock 0.0 11.3 0.19 0.57 D-593 do. Galena vein 0.3 1874.0 0.30 12.24 0.01 43 J-507 do Sandastore with disceri 0.0 11.3 0.19 0.57 D-593 do. Galena vein 0.3 1874.0 0.30 11.50 do 140 J-507 do 200 10.2 0.51 0.51		D-583	do.	Pb oxide ore - Galena vein	0.1	0,919	0.07	12.24	0.04	60	F-686	do.	do.	0.0	40.0 0		3.40	0.13
D-586 do. 0.4 2150.0 0.58 12.14 0.08 11 1-508 Serra Aberta Galena 0.0 1131.0 0.01 12.86 Jardin G2 Jardin G2 do. 0.0 1831.0 0.01 47 J-506 MonJalihha de Limonitized rock 0.0 11.3 0.19 0.57 D-589 do. do. 0.0 12.04 0.01 47 J-506 MonJalihha de Limonitized rock 0.0 11.3 0.19 0.57 Nova Esperança 0.0 1874.0 0.08 12.24 0.01 43 J-507 do Sandstone with dissemi 0.0 21.3 0.19 0.51 D-593 do. Chalcopyrite and G1 1.5 10.07 1.30 0.50 11.50 44 J-5/4 Espirito Santo Limonitized rock 0.0 2.1 0.10 2.1 0.10 0.15 0.10 0.15 0.10 1.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	-	D-584	do. São Vicente	da,	d.0	496.0	80.0	12.04	0.22	40	F-687	do.	da.	0.0	52.00	0.01	5	0.90
D-589 do. do. do. do. do. 11.3 0.19 0.57 Nova Esperança Nova Esperança 0.0 1874.0 0.08 12.24 0.01 43 J-507 do Sabastião 0.0 11.3 0.19 0.57 D-590 do. Galena vcin 0.3 1874.0 0.08 12.24 0.01 43 J-507 do Sandstone with dissemir 0.0 2.9 0.02 0.61 Santana Nova G5 0.0 1.33 0.50 11.50 44 J-5/4 Espirito Santo Limonitized rock 0.0 2.2 0.16 0.16 0.16 0-593 do. Chalcopyrite and G1 1.5 100.7 1.33 0.50 11.50 44 J-5/4 Espirito Santo Limonitized rock 0.0 2.2 0.16 0.16 0.16 0-593 do. Chalcopyrite and G1 1.5 10.50 11.50 44 J-5/4 Espirito Santo Limonitized rock 0.0 2.2 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.1	19	D-566	do. Jardim G2	do.	0.4	0	0.58	12.14	90.08	41	1-508	Serra Aberta do Leão	Galena	0.0			2.86	0.27
D-590 do. Galena vein 0.3 1874.0 0.08 12.24 0.01 43 J-507 do Sandstone with dissemi- 0.0 2.9 0.02 0.61 Santana Nova G5 Santana Nova G5 nation of manganese 1.33 0.50 11.50 44 J-5/4 Espirito Santo Limonitized rock 0.0 2.2 0.16 0.16 0-593 do. Chalcopyrite and G1 1.5 100.7 1.33 0.50 11.50 44 J-5/4 Espirito Santo Limonitized rock 0.0 2.2 0.16 0.16 0.16 copper showing impregnation Comments Context Santo Limonitized rock 0.0 2.2 0.16 0.16	20	p-588	do. Nova Esperança		0.5	0	0.08	12.04	10.0	42	л -506		Límonitized rock	0.0			0.57	10'0
D-593 do. Chalcopyrite and Gl 1.5 100.7 1.33 0.50 11.50 44 J-5/4 Espirito Santo Limonitized rock 0.0 2.2 0.16 0.16 copper showing impregnation	51	D-590	do. Santana Nova G	Galena voin 35	0.3	<u>.</u>	0.08	12.24	10.0	43	J-507	do	Sandstone with dissemi- nation of mangamese	0.0		0.02	0.61	0.03
	22	D-593	do. copper showing	Chalcopyrite and Gl 3 impregnation	1.5	100.7	1.33	0.50	11.50	44	4/ ر ³ – ل	Espirito Santo		0.0			0,16	0.16

Α-

A – 29

Assay Results of Drilling Core

No.	Sample No.	Depth (m)	Width (m)	Rock Type	РЪ (%)	Zn (%)	Cu (ppm)	Ag (ppm)	Ca0 (%)	MgO (%)	SiO2 (%)	BaO (%)
AG-01 1	F-563	254.95 ~255.95	1,00	cab-sch	0.07	0,03	90	З	11.8	6.0	39.8	2.1
2	F-564	∿256.95	1.00	ore	2.1	3.3	120	100	7.7	6.6	8.0	26.1
3	F-565	∿257.95	1.00	ore	1.2	3.8	70	50	11.9	9.4	5.5	17,8
4	F-566	∿258.95	1.00	ore	3.3	3.5	170	110	11.9	9.4	6.7	16,1
5	F-567	∿259 . 95	1.00	ore	5.3	3.8	110	75	12.6	9.4	4.9	15.4
6	F-568	∿260.95	1.00	ore	8.9	2.2	290	150	8.4	6.9	3.4	27.1
7	F-569	∿261.95	1.00	ore	3.6	0.68	590	80	18.2	13.8	4.6	7.5
8	F-570	∿262.95	1.00	ore	7.5	2.6	330	130	11.2	8.6	4.0	18.1
9	F-571	∿263.45	0.50	ore	1.7	4.7	50	35	6.6	5.5	10.3	27.1
10	F-572	∿264.45	1.00	ore	0.19	0.84	280	12	14.0	9.4	23.0	10.9
11	F-573	∿265.45	1.00	ore	5.0	0,36	250	100	14.0	9.9	34.6	0.05
12	F-574	∿265.90	0,45	ore	2.3	0.41	110	60	3.4	5.3	52.3	0.05
AG-02		231.05		<u></u>							····	
13	F-629	~232.05	1.00	cab-sch	0.02	0.01	230	1	11.8	5.8	41.9	0.45
14	F-630	∿233.05	1.00	cab-sch	0.32	0.02	1.2%	44	22.7	10.2	16.6	0.08
15	F-631	v234 . 05	1.00	cab-sch	0.08	0.01	4200	13	24.4	8.5	15.6	0.37
16	F-632	∿235.05	1.00	cab-sch	0.02	0.01	960	5	24.0	12.0	14.0	0.3
17	F-633	∿236.05	1,00	cab-sch	0.01	0.04	1200	5,5	18.2	6.6	24.4	0.49
18	F-634	∿237.05	1.00	cab-sch	0.06	0,03	2000	11	17.4	7.7	31.7	0.71
19	F-635	1237.80	0.75	cab-sch	0.01	0.01	2400	7.5	24.0	8.3	21.1	0.15
20	F-650	241.85										
		∿242.85	1.00	cab-sch	0.03	0,02	75	2	12,6	7.3	38.6	0.94
21	F-637	∿243.85	1.00	ore	4.9	1.7	140	76	12.3	5.8	5.4	17.9
22	F-638	∿244.85	1.00	ore	6.3	0.32	480	98	13.2	6.6	6.3	22.3
23	F-639	∿245.85	1.00	ore	6.4	0.16	45	98	14.3	7.7	7.5	17.9
24	F-640	∿246.85	1.00	ore	6.0	0.09	70	86	11.2	5.6	10.2	22.3
25	F-641	√247.85	1.00	ore	2.4	0.29	75	76	12.3	5.6	15.6	22.3
26	F-642	∿248.85	1.00	cab-sch	0.14	0,27	80	5.5	14.0	7.5	43.8	2.7
	F-643	~249.85	1.00	cab-sch	0.02	Լ	40	1.5	10.4	6.0	2.8	2.2
28	F-644	~250,85	1.00	cab-sch	0,07	0,01	150	3.5	15.1	7.5	28.5	2.7
29	F-645	∿251.40	0.55	cab-sch	0,25	0.03	.90	8.0	15.1	6.6	33.4	1.3
30	F-646	∿252,50	1.10	ore	6.0	4,5	60	68	12.2	7.5	4.3	17.9
31	F-647	∿253.35	0.85	cab-sch	0.21	0.09	70	7.0	11.8	6.4	17.5	13.4
32	F-648	~253.60	0.25	ore	6.4	5,6	40	114	13,2	6.9	7.6	12.3
33	F-649	∿254,60	1.00	cab-sch	0,65	0.38	160	10	11.9	5.2	32.9	4.0
AG-03		188.30	<u> </u>	••••••	<u>+</u>	<u> </u>	<u> </u>				·	<u> </u>
34	F-673	∿189.50	1.20	cab-sch	0.02	0.01	1200	3	9.7	4.8	53.0	1.6
35	F-674	∿190.70	1.20	cab-sch	0.24	0.03	880	5	17.0	6.0	39.6	0.89
36	F-675	194.30 ~195.30	1.00	ore	3.3	0.39	350	38	9.5	3.7	35.0	8.5
37	F-676	v196.20	0.90	ore	2.0	1.6	230	35	7.0	2.5	46.5	0.67

Table A-5

Г

· · ·	amp Le Nr	er 1 Leut	(<i>14</i> 1 25	}r r€m	'n + F P 27	Aq PF T	.^> ~44	, 55bu	Pr ppm	ba FF T) o (91 m	F \$ 5 m	l Lau	Mac	h d	ŗ	I H
104 104 105 11 111 112 117 117	8508751629000111819121113127。 195751629000111819121113127。1957515、3557555555555555555555555555555555		анананананананана. 			с кога за се за се за се се со се со			15000000000000000000000000000000000000	3400 94000 94000 94000 94000 94000 940000 94000 94000 94000 94000 9	1920 10 0000 0000 0000 0000 0000 0000 00	2000 500 13255 1000	30 2007 59 58 8001 1311 1917 219 70 450 98 20 40 40 714 1450 4455 551 1442 457 714 140 1150 144 1451 934 2240 1221 140 144 1451 435 445 1450 4455 151 1442 457 1451 4455 1451 445 1452 455 1452 445 1452 445 1452 455 1452 1452	10160250080 1921、12024、4、200112819180 1444、14、11151(102、14、0日、 4、 0日、 4、 1110 12、1224、4、20011281914(4) 1443、1224、4、20011281914(4) 1443、1444(4) 144(4) 1444(4) 1444(4) 144(4		- 1	

Table A--6

Result of Factor Analysis of Geochemical Date of Carbonate Rocks in

Survey Area

-	Serble	Bample Geol. Factor Score						Sample	Geol.		Factor Score				
1.0	Νċ.	Unit	Factor 1	Factor 2	Factor 3	Factor 4	۰،د	· U .	init	Factor 1	Factor 2	Factor 3	Factor 4		
1	B510	L3	0.784	-0.087	-0.029	• • • • • • • • • • • • • • • • • • •	51	D534	L 2	, 856	C 554	-0 :40	0 814		
2	8524	L3	0 987	-0.132	0.175	-0.B44	62	0537	ιZ	-9 265	-0 127	C 176	-0 3 7 8		
3	8536	L3	-1.051	-0.311		0 943	4. s - 1	0540 0543	<u>`</u>	0 49P 621	-0 169 J 149	0 276	-0.407 2.190		
4 5	8542 8547	.⊥4 ⊥14	0 936	-0 462 -1 144	-0.539 -1.974	-0 429 -1.569	45	D545		. 651	1115		1 224		
6	8551	L4	0 344		-0.340	1.170	· · ·	0555	ί٦	: 516	-Ç.189	: 254	1 233		
5	8571	12	0 066	-0.424	0.311	-0.617	. 67	D556	LB	2.04.	-0 375		. 739		
8	8583	L2	1.058	-0.276	0 978	-0.631	60 69	0569 0573	L2 _3	-C 787 0 ∋27	-0 000 -0 092	5 162 - 41	' -0.021 -1 506		
9	8592 8599	.2 L2	0 597	-0 366	0.779 0.247	-0 719 -0,529	70	6582	L2	0.014	7 224	-,	1 626		
11	B605	i L3	-0.242	-0.439	0.247	-1.236	-1	0591	τŽ	J 155	2 341	. 11	1 2 5 1		
12	B606	Ē2	0.174	-0.445	0 766	-0.521	77	5587	. 2	5 105 -41	3 891	- :	-0.795		
13	B609	LZ	-0 021	0 448	D 312	0 023	4	150- 1591		ي. 75 م	5.148		- 191 - 10		
14	8614 8616	ι2 ε3	-0 568 6 990	0.508 0.213	0 320 -3 440	-0.855 -0.464		υ <u>5</u> 94	ź	- 94×	0 188 5 297	÷.	C 892		
16	B619	د ب 1	0.032	0.2.5	-0.041	-0.829	26	5598	- 2	0 44	1 923				
17	B619	L2	0 392	-0.054	0.364	0 084		.502		• 4	. 4 - 4	191	-] 522		
18	H518	_ 4	1 252	-0 909	-1.742	·0 319 ·		150° 1509		•	- 183		4.5		
19 20	++521 C510	L4 L3	0.480 -0 597	0 392 -0 435	-6 314 1 965	-2 915 -1.078		1514		•		*	5		
21	2517	L3	0 787	4 017	-5.087	0.284		1518		÷-	- 1				
22	0591	Ľ4	-U.8C9	-0.527	0,990	0 140		1523 525		. 144		- <u>-</u> 1 210			
23	0547	- 3	0.818	-0.368	0.140	0.088		152	- •	. (÷F	174	7	1		
24 25	0549 1550	L3	0.401 -0 036	-0.044 -0.184	-0 451 -0 303	5.450 1.504	1 - 5	153.		7	1.588	161	466		
26	0552	13	-1.189	0.050	-0 174	-1.041		1534	U B	0 130	1_1	.568	-0 390		
27 :		L3	0 46:	0.573	-0.676	-0.077	 -e	1535 536	ι,	1 463 0 049	5.119 5.552	•	0 579 0 031		
28	C556	L3	0 439	-0.299	-0 851	5 724		75 *	٢ĝ	2 04 4 2 4 4	. 64	134			
29 30	C577 C581	L4 L3	-1 1?" -0,096	5-083 C 790	-0 499	-0.392 -0.098	-	· - 4	.3	· · · ·	. 336	C. C.	-0 1 - 8		
31	0590	L2	-6 153	1 418	0 102	-0 200	1 -	54		· · .			- 51		
32	C 5 95	د ع	-1.057	J.186	-1.535	0.881	-	5	_ 4			, 618 274	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
33	C599 C600	- 3	-0 795	-0.198	-0 155	-1.192		·	_1		- 325	- 51	-(- 1		
34 35 i		- 3	1 176 1.077	-0 579 -0 680	C 713 0.067	306 0.376	59	2 E C E		-0 153	-1 556	286	-5 11		
36	C603	3	0 845	394	-0.396	0.651		EEC1 E51		. 734	-1 489	183	1 442		
37	_⇒0 4	L3	-1 141	129	0.045	-0 559				115 405	-1 152 - 122	- 95 114			
38	0605 672	÷3	0 77	369	-0.234	1.345			-	967 99	- 3-5	42	1 .55		
39 40	6 7-	-2	1 44: 0 564	0 265 J 510	-2 6∠7 -0 131	1.139	• -	1- <u>1</u> -		⊷. 292	- 018	J.910	-0 398		
41	- II - II	23	-1 -1 -1 -	. 510 1 €11	-1 /18	0.890	111	15-44		. 854		493	-1 274		
42	<u>.</u>	_ 3	-1 .20	40	0.369	-0 206	152	• 5• 3 85•4		• • •	-C 31-	-	-1 55.		
43 44 -	.51 J524	_3 _1	-L 726 -0.147	-0 597 -0 579	-1.495 ^ 814	0.961 -2.673	1.4	2422		5 654 1 654	-0 559 0 121	-1.730	-1 1st		
45	525	23	-0.1	263	-1 094	1 038	1.5	: = , c	_ 1	. 43	-C 243	- 55-			
46	15 39	L 3	C.451	-0-122	-1 250	0 451	105	8590		~. c∃≏	U 605	-, •.•			
47	540	<u>_</u> 3	-0.107	0.365	0 382	0 584	107 108	sî ≞		-1 475	-0 .1e -7 .41	12.0	-, 399		
48 49	2541 2542	L3 L3	-1 894	-C 542 -0.357	-1 142 0.320	0.515	109	Ēt S		, 14∉ -0 _4≏	-0 379	266 0.609	0 6 e 0 7 c		
50	2501	13		-0.357	0.320	-0 800	110	EtC.		-0 041	-0.124	0.374	0.019		
	D504	L3	,		-					-Ċ.159	-0 199	240	1.145		
. *	0506	L Ĵ			· · ·	→ •	112	End" Etu	_ 1	~1 074 0.020	-0.463		-1-258		
	0507 0508	3		<u></u>	2		114	F-31		-24	-0 466				
•	0508 0511	12					11.5			.559	0.000		197		
	0515	12						- T 1	Ξ.	-2.025	-0 355 -0.441		Se4		
r.	D519	Ĺ.	1 5	5	551		1	152: 531		1.225 1.225	-0.118	1	-2.189		
. 0	0522 0529		- 1,59 <u>-</u> - 131	ູ) 40 ສູຈ	-13	-1 375 -, 2-4		1528		5,692	-0 148	-	1.4(3 245 -1.4(3		
	D531	L L	i −1 ∪55	38	- 18	-1 Jee	1120			-2 768	-0 432	E.110	- 4.0		

·

. _____