Appendix

-

...

• •

•

.

.

-

.

.

• • • • • • •

Appendix

A.1 Measurement of Sonic Velocity

A.I.1 Instrument

New Sonic Viewer, Model-5217, OYO corporation.

A.1.2 Method of Measuring Sonic Velocity

A piece is held between a pair of vibrators and a travelling time of wave from one end of vibrator to another through a piece of sample is recorded (see Fig. A-1-1). Travelling time read from CRT is divided by a length of sample to obtain the velocity. A piece of sample is one which is used for measurement of apparent resistivity. Samples are dried in a room condition.

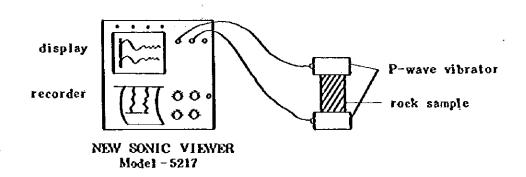
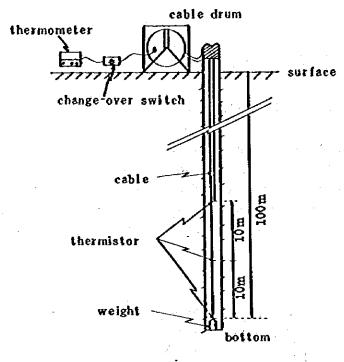


Fig. A-1-1 Schematic diagram for measuring sonic velocity

The results are shown in Table A-1-1 and compiled in Table A-1-2 with respect to lithological units.

A.2 Heat Flow Survey

A.2.1 Methods of Temperature Measurement


(1) Multi-sensor logging

The system consists of multiple thermistors mounted on cables at 10 m intervals.

The cables are inserted into a hole and after waiting more than 30 minutes when the effect of disturbance due to insertion ceased, the readings are taken from every 10 m spaced thermistor. Then the cables are pulled up by 5 meters and, after more than 20 minutes, the readings are made. Thus the system gives the readings of every five meters.

(2) Normal logging

A standardized method of temperature logging is to move a thermal electrode at a

: 3

Fig. A-2-1 Schematic diagram of measuring ground temperature by multi sensor

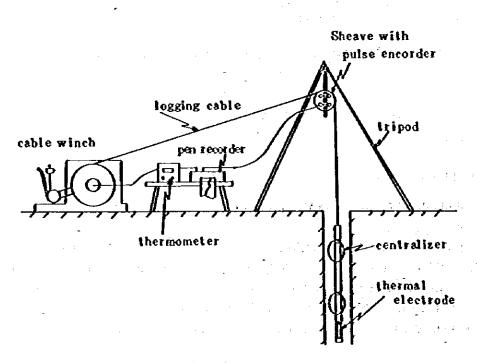


Fig. A-2-2 Schematic diagram of measuring ground temperature by normal logging

Table A-1-1 Results of measurement of sonic velocity (m/sec)

Sample Na	Rock name	P-wave velocity	Sample Na	Rock name	P-wave velocity
F-1	Oránodiorite	5,160	TM- 27	Oranodiorite	5,0 5 0
₽+ 3	Dacitic welded tuff	4,180	TM- 31	Andesite	6,140
F- 5	Andesitic vitric tuff	2,4 5 0	TM- 35	Andesitic tuff	2,6 5 0
₽-8	Basaltic tuff breccia	2,2 5 0	TM-40	Dacite	2,170
F- 9	Aplite	5,640	TM-44	Andesitic túff	3,260
F-14	Quartz diorite porphyry	4,500	TM- 45	Pyroxène andesite	4,270
F- 21	Dacite	4,290	TM- 46	Sandstone	4,710
F-23	Rhyolite	3,810	TN- 47	Dacitic suff	2,1 90
F-25	Dacite	3,3 2 0	TM- 48	Oranodiorite porphyry	4,770
F-26	Granodiorite	4,5 80	TM- 50	Rhyolite	2,500
F-27	Aplite	4,840	TM- 5 2	Andesite	5,0 8 0
F-28	Hornfets	6,730	TM- 53	Rhyolite	3,360
F-31	Dacitic lapitli tuff	6,2 9 0	TM-55	Dacitic tuff	6,0 6 0
F-32	Andesīte 🕤	4,820	TM- 57	Dacite	6,4 5 0
F-33	Andesitic tuffaceous Sandstone	6, 3 2 0	TM- 5 9	Sandstone	5,420
F- 40	Andesitic sandy luff	5,680	TM-64	Pyroxene andesite	4,740
F-41	Andesite	2,970	TM-66	Horafets	6,0 3 0
F-41-2	Andesitic tuff breccia	2,140	TM-68	Andesite	6,330
F-43	Pyroxen andesite	4,6 30	TM- 69	Pyroxene andesite	5,830
F-44-2	Dacite	3.4 0 0	TM-71	Augite andesite	6,3 9 0
F-45	Andesitic tuff breccia	1,890	TM-74	Dacitic tuíf breccia	3,410
F-48	Dacitic sandy tuff	2,440	TM-80	Andesite	4,630
F-60	Dacitic vitric tuff	1,740	TM- 86	Dacite	3,070
F-160	Andesite	4,880	TM- 87	Dacite	2,4 3 0
TN-6	Dacitic tuff	5,3 3 0	TM- 89	Pyroxene andesite	6,0 3 0
TM- 1 1	Granodiorite	4,760	TN- 92	Pyroxene andesite	4,000
TM-13	Rhyolilic tuff breccia	2,640	TN-94	Pyroxene andesite	4,810
TN-15	Dacite (Perlite)	2,4 80	TN-106	Tulfaceous sandstone	6,260
TM-16	Granodiorite	6,810	TM-110	Sandstone	- 3,720
TN- 23	Dacite	2,600	TM-114	Sandstone	5,110

Dack fasia	Oeoto	gicəl	Na of	Ar	erage		Maxin	ាមក្នុ	Minin	បភា
Rock facies	unit		samples	R. f.	0.u.		R. f.	0,u.	R, f.	0, u.
Rhyolite			4	3,011			3,810		2,372	
Dacite			11	2,883	÷				21 69	
Dacitic tuff breccia(1)		N- S	—		2,91	U U	-	4,290		2,169
Dacitic tuff breccia(2)			1	2,640			-		_	
Pumice tuff	v			_					_	
Welded tuff			2	4,755			5,330		4,1 80	
Andesitic tuff breccia		V-1	2	2,195	4,1	29	2,250	6,390	2,1 40	1,740
Scoria tuff			4	2,525			3,260		1,7 40	
Andesite			2	5,4 2 0			6,390		4,000	
Andesite		•	5	4,316			5,080		2,970	1000
Andesitic tuff breccia		Т	2	3,7 8 5	4,1		5,680	5,680	1,890	1,890
Sandstone, Nudstone			2	4,910			5,110		4,710	
Tuff		J-3	3	2,6 80		3,572	3,410		2,1 90	
Sandstone			1 -	3,720			_		'	
Limestone	J.	3-2	_	_	4,863				-	_
Sandstone, Mudstone (Basalt)			3	6,000			6,320		5,4 20	
Andesite, Basalt		J - 1	2	4,850		5,813	4,880	6,450	4,820	4,820
Pyroclastic rocks			3	6.267			6,4 5 0		6,0 6 0	
Granodiorite			5	5,272			6,810		4.5 80	
Metamorphic rocks		B	2	6,380	5,5	11	6,730	6,810	60 30	4,5 80
Aplîte		`	2	5,240			5,640		4,840	
Andesite dyke			1	6,330			_		-	
Basalt dyke		D	-	-	5,2	200	-	4.770	— ·	\$,500
Oranodiorite porphyry			2	4,635			4,770		1,500	
Total			64							

Table A-1-2 Results of measurement of sonic velocity (m/sec) (the mean value of rock facies & geological "nit)

R.f. : Rock facies

O.u. : Geological unit

rate of 5 to 10 m/min by means of an electric winch.

The time intervals of measurement are set logarithmically after the completion of drilling.

A.2.2	Instru	ments

(1)

Thermistor Thermometer D-221
Range 0-99.9°C
Sensitivity 0.1°C
TAKARA INDUSTRY Co., Ltd.
PXA-64, 210 m, with 10 m spacing sensors
Operating Temperature 80°C, max.
TAKARA INDUSTRY Co., Ltd.

(2) Normal logging

Thermometer:	Thermistor Thermometer D-111
	Range 0-199.9°C
:	Sensitivity 0.1°C
	with a compensating circuit of cable resistivity
	TAKARA INDUSTRY Co., Ltd.
Recorder:	Automatic three-pen-recorder KER-4
	KAIHATSU KOGYO Co., Ltd.
Thermistor:	ø45 mm-thermistor
	KAIHATSU KOGYO Co., Ltd.
Winch:	Electric Winch KEW-1,000
	KAIHATSU KOGYO Co., Ltd.
Cable:	Ø11 mm-beatproof Cable, 600 m
	Operating Temperature: below 150°C
	Temperature Limitation: 200°C an instant
	KAIHATSU KOGYO Co., Ltd.

- A.2.3 Results of Temperature Measurement Temperature of 5 m-sections; See Table A-2-1 Temperature Log: See Fig. A-2-3
- A.2.4 Estimation of Equilibrium Temperature

.

$$T = To - \frac{q}{4\pi K} \cdot fn \frac{dt}{t + dt}$$

A - 3

Where: To : temperature before drilling

- q : loss or gain of heat per unit time and unit length
- K : the thermal conductivity
- dt : a time difference between completion of drilling and measurement
- t : the time elapsed between passing a depth and completion of drilling

A.2.5 Estimated Equilibrium Temperature (by Argentine team)

The Table A-2-2 shows the estimation of equilibrium temperature over a ten-meter section of each holes by Argentine team.

						(Unit: °C
Hole No. Depth (m)	1	9	10	\$1	12	14
10		14.5	9.2	9.5		9.0
20		13.5	10,8	15.2	11.0	·:: 15.0
30	28.0	13.4	10.8	13.8	11.3	16.8
40	34.2	13.0	11.7	12.8	- 11.1	19.0
50	43.3	13.5	11.3	13.0	11.2	20.2
60	49.5	18.5	10.9	11.8	11.4	22.5
70	50.0	18.8	10.9	11.1	12.4	25.2
80	36.0	36.1	10.8	11.8	13.1	29.8
90	48.0	41.2	10.8	11.6	14.3	30.8
100	59.0	62.0	11.3	9.5	14.8	37.0
110		69.0	· •	1		1
120		77.0			:	

 Table A-2-2
 Estimated equilibrium temperature (by Argentine)

Argentine partners conducted a method applicable with repetitions of measurement in a short time using a graph especially prepared through their experiences.

A.2.6 Geothermal Gradient

The Table A-2-3 shows the geothermal gradients obtained by the calculations from the equilibrium temperature over a S-m section. Calculation was made

- 1) in the ranges where the gradients remain rather stable in the depths, and
- 2) over a total length drilled by the least squares method.

In the test, the former was adopted.

A.3 Electrical Prospecting

A.3.1 Theory of Electrical Prospecting

The Schlumberger array is an layout of electrodes to determine the subsurface distribution of resistivity and comprises one pair of electrodes to introduce current into the earth,

Coordinat	es ; X	5939.9	935	, Y	1629.3	353	EI	evatio	n :		m			
Date; fr	DTA 5/	Dec./8	3,1	io 13	/Dec./	/83	De	pth, d	rilled	101.00	m			
Drilling	Method	Rota	ary					· · · ·						
Casing ;			<u>;</u>											
Measurement	151	2nd	3rð	416	5th	61h	7th	81h	91h	1016	11th			
Date	13. Dec	13.Dec	14.Dec	14.Dec	15. De c	16.Dec	18.Dee	19.Dec	21.Dec	27.Dec	8. Jan			
Hour	13 00 35 00	ມ°ຄ∕	a 15, a 25'	ឆ ចរុំទ ឆ	21 60	13 30 23 14	11 25,15 00	17 20 19 15	ກຕຸ່ມຕໍ	หร,่หะ	เรื่อรุ่นส			
Weather	fine	fine	fine	fine	cloudy	eloady	fine	fine	fine	fine	fipe			
Depth (m)		Temperature (C)												
0	21.3													
5	1 3.8		13.1	13.0		125	124	121	12.1	J21	120			
10	17.1	16.9	16.4	162	162	16.0	16.1	15.8	15.8	15.8	15.8			
15	19.0		19.0	190		18.8	18.9	18.7	188	18.7	18.6			
20	212	21.7	21.6	21.5	21.7	21.7	21.7	21.6	21.4	21.6	21.6			
25	23.9		21.5	24.5		217	24.7	24.7	24.7	24.6	24.7			
30	262	27.1	27.4	27.4	27.7	27.8	27.9	27.9	27.8	28.0	28.1			
35	29.2		30.6	30.7		31.1	312	312	31.3	31.3	31.5			
40	31.4	332	34.0	34.1	34.6	34.7	31.8	31.9	35.0	352	35.3			
45	35.7		37.6	37.9		38.7	38.9	39.1	39.3	39.5	39.7			
50	38.7	41.3	426	428	43.4	43.6	43.8	44.0	44.6	445	4 4.6			
55	418		15.6	459		47.2	47.6	47.8	48.2	48.6	49.			
60	41.1	45.6	17.9	48.8	50.0	50.6	512	51.5	51.9	52.4	527			
65	43.0		482	48.8		50.6	51.2	51.4	51.6	521	52			
70	34.4	442	47.7	48.7	49.6	49.8	50.2	50.4	50.7	51.0	51.2			
75	35.8		46.6	47.4		49.1	49.3	49.4	49.5	19.5	49)			
80	23.6	28.9	31.4		38.9	39.0	40.7	43.6	43.3	44.8	16.4			
85	27.0		39.7	41.7	,	44.6	45.3	45.5	45.9	46.3	46)			
90	29.7	38.4	445		46.5	46.7	46.9	47.1	47.2	47.3	\$7.A			
95	36.	\$	46.0	46.6	;	47.8	18	48.	48.3	18.3	48.			
100	10.3	492	55.0	1	56.7	57,0	57.1	57.2	57.2	57.8	57.6			

Hole No<u>l</u>

Note ; Water Level : 20°00' 14. Dec. 75~80m 1700' 24. Jan. 58m

•

-

Table A-2-1(j) Records of temperature logging

.

Coordinates	; X ;	5940899	•	Y 162	7.966		Elevatio)n ;		m
Date; from	n 5/0	e c/83	, to	20/ De	c/83		Depth.	drilled	103.00	m
Drilling Me	thod ;	Rotar	У		Bit si	ze ;				
Casing ;	•				Casing	z diamet	er ;		. <u>.</u>	
Measurement	1 st	2 в.)	3 rd	4 15	5 (3	6 th	7 15	8 th		
Date	20 Dec.	21 Dec.	21. Dec.	22 Dec.	24 Dec.	27 Dec.	1 /22-	8 Jan.		
Hour	21 00	835,905	2115205	1805,1825	20152035	16 00, 15 4	18 20, 18 10	1181110		,
Weather	fine	fine	fine	fine	fize	fine	cloudy	fine		· · · ·
Depth (m)			·	Temper		(ፒ)			· · ·	
0	120	145	146		163	197	208	185	T	
5		156	117	98	89(1)	-	9.4(4)	85(4)		
10	210	150	131 (82)	R	110	106	105	102	- <u>.</u>	
15		156	111	134	121(16)	124(11)				
20	221	166	и 150(182)	143(182)		1 46	138	140		
25		175	167	156		150(24)	· · · · · · · · · · · · · · · · · · ·	155(24)		
30	232	18.8	175(232)	168(2*2)		176	17.5	181		
35		199	19.4	190	201(31)			196(31)	· 	
40	250	216		199(382)		220	221	226	-	
45	<u>.</u>	2 3 1	221	228	229(11)			23.9(11)		
50	268	2 1 9	236(452)		· · · · · · · · · · · · · · · · · · ·	247	259	261		
55		267	268	272	266(54)	265(54)	282(51)	289[51		
60	293	295	283(582)	291(582)		299	31.1	330		
65	1	319	325	323	323(64)			359(61)		
70	351	381	35 4 (68 2)	359(682)	381	39.4	370	411		
75		405	415	425	43 4(74)	434(74)	438(74)	459(74)		1
80	317	1 20	110(782)	152(782)	187	500	512	519		•
85		449		· · ·	514(84)	54 4 (84)	555(81)	553(81)	,	
90	411	510	521(852)	517(882	\$76	59.8	623	626		
95		573	605	634	?61 6{94)	161.6(91)	658(91)	67.2(91)	1 . 1 .	
100	\$80	660	657(932	67.9{982				1	T	

Itole Na_2

Note ; Water Level : 10"20 26. Jan. 56m

.

.

.

Table A-2-1(9) Records of temperature togging

.

Note Na<u>3</u>____

Coordinates					29497		Eievati			m
Date; from	n 14/Dee	./83	, 10	20/ Dec.	1		Depth,	drilled	10100	m
Drilling Me	ihod ;	Rotar	<u>у</u>	*	Bit size;					
Casing :				·	Casing	g diamet	er :			
Measurement	1st	2 вф	3 rd	4 îh	5 t b	6 th	7 th	8 ih		
Date	20. Dec .	21 De e.	21 Dec.	22 Dec.	24 Dec.	27 Dec.	1. Jan.	8. Jan.		
Hour	3723,17 i	10151110	19.02,18.31	1935,1915	ເຈົ <i>້</i> ດຊຶ່,ເຈົ <i>້າວ</i> ່	1105,1725	19 30,19 30	9351000		
Weather	fine	fice	fice	fice	fice	fice	cloady	fine		
Depth (m)				Temper	ature	(°C)				
0	161	134	1 5 2	164	20.4	209	153	118		
5	153	1.7	110	101	93	85	81	82		
10	176	1 35	1 31	121	114	108	101	98		
15	176	136	1 3 2	1 2 2	116	110	10.5	10.4		
20	180	144	1 39	1 31	125	119	115	113		
25	180	151	148	140	134	1 29	126	124		
30	185	159	154	148	142	141	137	135		
35	185	164	161	156	152	1 52	149	146		
40	19.4	182	178	169	166	165	163	162		
45	195	185	182	177	17.5	175	17.5	173		
50	199 .	192	190	186	185	188	188	189		
55	201	201	200	197	198	199	199	198		
60	201	211	210	210	210	210	213	213		
65	205	221	222	223	225	226	226	221		
70	205	232	231	237	239	242	243	2 1 2		
75	212	214	216	251	255	259	258	260		
80	213	257	260	286	271	275	276	275		
85	232	-213	27.6	281	281			28.8		
90	226		286	291	294	!		29.8		
95	228	291	2 9.4	300	302			305		
100	218	1	307	310	312					

-

Table A-2-1 (IV) Records of temperature logging

Coordinates ; X 5943331 , Y 1630918 Elevation ; m **,** to Depth, drilled Date ; from 21/Dec./83 2450 m Dritting Method : Rotary Bit size : -Casing diameter i Casing 1 Measurement 1 st 2 64 3 rd 4 ib 12 Jac Date 13. Jae. 16 Jag 1. Feb. 1855 \$16,835 16 HI 1701 12 21 Hous Weather . sait file fiae fize Temperature (°C) Depth (m) 118 123 257 150 0 438(4) 534(4)² 584(33) 624(33) 5 10 692 821 9 0 0 90.3[7.5] 15 58.6(11) 711(11) 837(133 924(100 20 690 811 8 6 9 926133 25 71 3 (24) 826(24) 857 30 35 40 45 50 . 55 60 65 70 75 80 -85 90 95 100

Hole Na<u>4</u>

Note ;

Table A-2-1M Records of temperature logging

•

-

Hole Na_5

-

Coordinates	;X s	941677	,	Y 162	5898		Elevati	ion 🕽		m	
Date ; from	n 9/J	an/81	, to	23/ \$AD,	/81		Depth,	drilleð	10200	m	
Dritting Ne	thod ;	Rotary	,		Bit si	ize ;					
Casing ‡	·····				Casing diameter ;						
Measurement	1 51	2 ad	3 rð	4 ih	5 th	6 th					
Ďále	23. Jan.	24. Jan.	28. Jan.	1 Feb.	3. Mar.	7. Mar.					
Hour	18 4)	855,915	10161025	ອໍ ເຮົ,ອໍ ວນ	13 45						
Weather	fine	fine	fise	fine	fine	fine		·.		•	
Depth (m)		<u>,</u>		Temper	rature	(°C)					
0	232	131	152	123		153		•			
5		155	128	122	114	-					
10	251	177	146	135		120 m (75)					
15		151	115	108	103			1			
20	2 5 2	160	119	112		104 (125)					
25		154	119	112	105			-	İ		
30	242	163	120	111		105 (275)					
35		162	120	112	105	- <u></u> /	1	1			
40	231	161	120	113		10.5					
45	1	164	120	113	10.5			1			
50	233	160	122	116		105 (475)	1				
55		16.1	115	131	123		1	-			
60	246	178	153	148		131 (575)		1			
65		205	166	1 62	1 5 9	1					
70	272	19.8	176	175		164 (675)					
75		205	196	196	19.7						
80	270	226	219			209 (775)					
85		243		1	1	1					
90	284	260		- ⁻							
95		282									
100	311	303							 	[

Note ;

• • • •

Table A-2-1 (V) Records of temperature logging

Coordinates	;х.	5940904	,	Y 16	24449		Elevali	ion ;		m
Date: from	n 18/J	37./81	, to	21/Jan./	/81		Depth,	drilled	10000	m
Drilling Me	lhod ;	Rotary			Bit si	ze ;				
Casing 1		_			Casing	g diame	ter ;	· · · · · ·		
Measurement	1 51	2 ad	3 rd	4 tb	5 16		·			
Date	22 Jan.	23 Jan.	28 Jan.	l Feb.	3. Mar.			[
Hour	915,90)	910,850	905,920	10 30 10 15	1121					5
Weather	fine	fine	fice	fine	fire		[
Depth (m)			_	Темрен		(ፒ)	•	<u> </u>		
0	133	1 40	167		ature	(0)	<u> </u>			
5	1 49	134	107	171				· · · · ·		
10	165	151	130	126	115(90)	•	<u> </u>			
15	175	1 60	1 42	1 40						
20	201	185	164	158	111(19.0)					
25	207	194	178	174	111(124)					
30	211	20.0	188	184	17.7(29.0)					
35	216	211	203	201	1+1(23.07					
40	227	223	218	214	20.9(39.0)	. <u> </u>				
45	231	223	237	236	20-3[35:0]	-				
50	253	251	253		252(19.0)					
55	2 3 3	2 51	233	512[430]	232(19.0)					
60	278	278								
65	283									
70	289	293					1			•
15	29.1				<u> </u>		-	-		
80	300	305		-				- <u>}</u>		
85	306			· · · ·	· - · · ·		1.			
90	312	318	1	1		· · ·		· - · · ·		
95	313			-[•			-	·	
100		-	-	1					<u> </u>	

Hole Na<u>6</u>

Note : Water Level : 10'25' 25. Jag. 465 #

.

: -

Table A-2-1 (W) Records of temperature logging

Hote Na_7___

Coordinates	; X 5	939650		¥ 162	6326		Elevati	ion ;		(j)	
Date; from	n 12/J	20./81	, 10	16/Ja	e./81	181 Depth, drifted 1050					
Drilling Met	lbod ;	Rotar	Ÿ		Bit size ;						
Casing ;					Casin	g diamet	er i				
Measurement	l st	2 ed	3 rd	4 th	5 th	6 1h	7 ih	8 th			
Date	16. Jaz.	17. 122.	18. Jan.	20. Jaa.	23 Jan.	I. Feb.	3 Mar.	9.Mar.			
Hour	1815	9°20,9°50	9 15,925	10 31,10 10	10351015	រវែណ៍ទ័	11 35	ຂໍ ໝໍ,ຂໍສາ			
Weather	fine	fine	fine	cloady	fine	ſise	fine	fize			
Depth (m)		•	· <u> </u>	Temper	ralure	(ፒ)		· • • • • • • • • • • • • • • • • • • •			
Ó	145	121	150	173	1 56	202	237	126			
5		114	105	101	90	86		83			
10	167	1 19	107	9.7	92	88	8.3	83			
15		122	109	104	9.4	88		83			
20	165	112	102	109	95	92	87	83			
25		114	101	92	89	84	1	7.9			
30	181	3 2 1	100	90	8.5	83	7.9	18			
35		115	9.6	88	85	81		80			
40	182	116	98	90	8.5	82	80	80			
45		115	99	88	85	82		90			
50	171	113	9.7	87	9.0	82	80	80			
55		113	97	88	8.8	85		81			
60	179	113	9.6	87	88	81	81	82			
65		113	98		88	83		83			
70	170	1.6.5	98	89	8.6	83	82	83			
15		113	98	9.0	8.6	84	 	<u> </u>	<u> </u>	<u> </u>	
80	163	112	98	9.0	91	8.5(79.0)	<u> </u>	<u> </u>		<u> </u>	
85	II	114	98	90	8.9]	_	ļ		
90	165	122	9.8	91			.	_			
95		125	102	9.1			1		<u> </u>		
100	17.8	122	102	94					<u> </u>		

Note ; Water Level : 1500 25. Jan. 30.0 m

.

Table A-2-1 (m) Records of temperature logging

.

,

				<u> </u>				•		
Coordinates		·····	•	Y 163			Elevati			m
Date: from	n 26/J2	<u>6./84</u>	, to	27/Feb.	· · · · · · · · ·		Depth,	drilled	120.00	m'
Drilling Met	ihod; R	otary			Bit si	ze ;				
Casing 2			<u> </u>		Casing	g diamet	er ;			
Measurement	1 st	2 вф	3 rd	4 15	5 (1	6 Ib	7 11	8 14		· <u>·</u> ·
Date	4Feb.	6Nar	6Nar.	7Nar.	9 Var	12Var.	15Nar_	20¥11.		
Hour	950,1010	9 25	1325,1337	100(1120)	103%1107	15 47	9 10,9 37	กโญเปริ/		
Weather	cloudy	fine	fise	fise	fiae	fine	fine	line	-	
Depth (m)				Тетрен	rature	(°C)				
0	-0.6	143	187	207	283	210	30.0		ſ	
\$	145		153	11.5	10.3	17.0	9.2	89		
10	15.8	160	152	130	124(9.5)	152 95	10.0(9.5	95(95)		
15	17.5		15.1	129	123	140	105	10.1		
20	181	15.4	144	130	11 9(19.5)	13 2 19.5	10.6(19.5)	10.0(19.5)		
25	181		138	122	112	128	101	9.7	1	
30	178	143	136	12.0	11.1(29.5)	12 2 29 5	10.0(29.5)	97(295)		
35	17.7		133	121	EL1	120	98	10.5		
40	17.6	137	133	124	11 2(39.5)	11.8(39.5)	10.0(39.5)	10.3(39.5)		
45	17.4		13.5	132	11.3	114	102	9.9		
50	17.2	13.6	137	144	11.5(43.5)	11.4[49.5	10.0(19.5	9.7(49.5)		
55	17.5		145	163	128	11.4	107	104		
60	18.6	15.0	169	20.4	17.6(59.5)	13 56 59 5) 13.1(59.5	132(59.5)		
65	215		200	242	211	19.0	215	202		
70	246	181	228	27.8	Z S 63.5	26.41 69.5	27_9{ 69.5	28.4(69 5)		
75	287		27.1	30.6	29.9	310	313	348		
80	307	219	299	331	36.1(79.5	310 79.5	38.71 79.5	Y 49-34 79 5)		
85	334		321	354	37.1	385	445	459		
90	361	25.0	341	380	H 3(89.5	43.01 83.5	49.91 89.5	। २१ ६२ ६३		
95	433		44.1	51.5	50.5	545	56.5	57.0		
100	551	325	5 0.0	57.3	3₽2(93.5) 60.0(99 :	8 61 0(59.5	61.1(99.5)	{T	
105			538	61.7	622	610	65.1	658		
110		329	56.1	657	87 3(169.5) 63.3(159.)	5) 68 6(109 5	69.0(169.5)		
115			613	708	701	725	730	732		
120		40.5	620	735	75 ¥119 5	176.0(119.	\$ 76.7(119.	\$ 768(119.5)		

Hole Na<u>9</u>

Note ;

Table A-2-1 (X) Records of temperature logging

-

Hole No. 10

			110	uc 10_	10						
Coordinates	; X 59	37.650	,	Y 162	8599	8599 Elevation ;					
Date; from 6/Apr./84 , to 9/Apr./8						84 Depth, dritled 10200					
Drilling Met	hod: R	otary	·	_	Bit si	ize; 5 ³ 1	inches				
Casing :					Casin	g diamet	er i				
Measurement	1 51	2 nd	\$ 13 [‡]	4 th	5 16	6 th	7 th	8 th	9 16		
Datë	9 Apr.	9Apr.	9Apr.	9Apr.	10Aser,	ПАрг.	12Asr.	14Дрг,	17Арг,		
Hour	18 45	19°45	20 15	2145,2210	10 35, 10 53	1613,1705	1600,1630	1100, 1120	1620,1645		
Weather	line				fine						
Depth (m)				Temper	alure	(°)					
. 0	126	543	1 3.0	10.2	9.2	10.5	17.3	8.3	9.0		
5				. 11.9	10.4	9.5	9,5	9.3	9.2		
10	15.3	132	125	120	104	9.4	93	85	87		
15				12.4	10.3	9.2	9.0	9.3	8.4		
20	15.4	149	145	139	10.4	9.4	9.1	9.4	8.1		
25		:		13.8	10.9	9.6	9.3	93	8.6		
30	15.4	148	143	139	110	9.8	9.1	9.4	87		
35				13.6	112	9.7	9.3	9.1	87		
40	15.1	14.4	340	137	113	9.8	9.4	9.2	8.7	-	
45		-		1 4.0	11.6	101	9.6	9.5	9.1		
50	15.3	14.7	143	140	11.6	102	9.8	9.6	92		
55				135	115	10.2	9.7	102	92		
60	155	j 19	144	140	115	10-4	9.9	10.5	9.4		
65				138	116	10.4	102	105	9.8		
70	15.5	149	144-	139	116	10-5	10.3	10.7	99		
. 75		· · ·		140	118	10.8	10.1	11.0	102	<u> </u>	
80	156	149	145	110	118	108	10.5	11.1	103	 	
85		<u> </u>	_	139	11.9	10.9	10.6	10.8	10.2		
90	159	15.4	147	142	11.8	10.9	10.6	110	10.3	ļ	
95				143	119	111	10.8	109	107		
100	16.0	155	148	143 -	118	11.1	10.9	109	107	<u> </u>	

Note ; * Water Level : 20°45' 9. Apr. 20m ** 16°20' 12. Apr. 40m

•

.

.

1994 - A. S.

Coordinates	; X \$	938203	· •	Y 16:	30.706		Blévati	on ;		តា
Date; from	1 23/N	ar, /81	, to	21/Na	184 Depth, drilled 1020					20 m
Drilling Met	lhod; F	lotary			Bit s	ize; 5 [;]	K inches			:
Casing ;					Casio	g diame	ter ;			
Neassreament	1 st	2 sd	3 rd	4 IB	5 lb	6 th	7 13	8 1b *	9 15 ^{**}	10 15
Date	27 <u>N</u> er.	27 <u>Nar.</u>	27 Mar.	27 Var.	27Nar.	27Nar.	28Nar	30.Var.	31Nar_	12Var
neoH	19"55	20 25	20*55	22'00	22 55	23*53	1734,1754	1 (28,1 (5)	3150,1210	1510,1530
Weather	fine						· · · · · · · · · · · · · · · · · · ·	-		
Depth (m)				Tempe	rature	(°C)				· ·
0	131	10.1	10.5	8.6	8.0	6.7	62	3.4	9.4	142
5				1			12.0	10.0	9.3	8.6
10	20.5	20.2	19.8	183	16.8	160	11.5	9.5	8.5	12
15			l			<u> </u>	134	10.9	9.0	1,9
20	208	201	20.5	199	195	18.9	130	10.3	78	7.1
25							10.5	1.7	6.6	6.4
30	208	201	19.4	181	175	17.1	164	83	7.4	68
35				<u> </u>			114	87	7.6	69
40	201	19.0	184	17.2	165	159	113	8.6	12	6.6
45	· · ·				1	· · ·	11-1	8.4	7.0	6.4
50	20.7	19.7	191	17.9	17.1	163	112	8.6	7.2	6.7
55				1			111	8.8	7.3	6.7
60	20.8	20.0	19.0	174	16.4	158	11.1	8.8	72	6.8
65							9.0	1.5	6.7	6.6
70	20.9	203	195	177	166	157	10.6	8.8	17	1.4
75							11.6	9.4	83	8.0
80	21.3	208	20.3	191	183	17.4	121	10.3	93	9.(
85	 	·					126	10.8	100	9.8
90	195	18.6	178	166	159	153	120	109		
95	<u> </u>		<u> </u>				122	11.3	•	
100	210	195	185	16.5	155	147	119	113		

Hole Nn 11

Nole; * Water Level: 14°50' 30. Mar. 70m ## 12°10' 31. Mar. 15m

.

Table A-2-1 (Xi) Records of temperature logging

.

Coordinates	X 5	946265	•	Y 162	8.981		Etevati	on ;	2096	91 m
Date; from	1 25/4	20. /84	, to	6/Nu.	/84		Depth,	drilled	101	00 m
Drilling Met	ibod 🗧 F	Rolary			Bit s	ize; s ³	inches in the s			
Casing ;				·	Casin	g diamet	er :			
Meassemeint	1 51	2 n.đ	b1 6	4 th	5 th	6 th	7 (1)	8 th	9 th	10 11
Date	16Nar.	16Var.	16¥37	16Mar.	36Nar.	17Mar.	1 9 V 27.	22Nar.	30M2r.	31Mar
Hoar	10 50	11'50	12 50	13 50	1150,1500	1949,1109	1345,1355	1650,1710	1650,1710	1971, 103
Weather	fibe			1						
Depth (m)				Témpe	rature	(Ľ)				
0	7.9	67	7.3	9.1	128	102	227	19.5	69	6.
5					105	9.6	9.4	9.3	3.8	86
10	109	10.6	10.6	105	10.5	10.0	9.7	93	102	8
15					10.8	30.5	10.1	107	92	93
20	11.1	11.1	113	11.1	11.0	10.9	103	100	9.1	9.
25					112	109	105	10.2	9.9	9.8
30	113	113	11.3	113	113	119	10.6	10.6	10.0	10
35 -					11.3	11.0	107	109	105	10.5
40	112	112	51.1	11.1	11.1	119	107	10.5	10.7	
45					11.0	10.9	10.7	105		
50	11.3	113	11.2	112	112	11.0	10.8	108		
55		Ì		Î ·	113	115	11.1	11.1	1	
60	11.4	114	114	11.4	11.4	11.7	11.3	11.6		
65					11.7	120	11.6	120		
70	11.7	119	120	120	120	323	120	122		
75					127	128	129	12.8		
80	12.5	128	128	128	129	132	133	132		
85	.	ŀ	<u> </u>	<u> </u>	133	135	135	135		
90	127	13.0	132	13.4	13.5	137	138	1		
95		·		<u> </u>	137	143	143	<u> </u>		
100	128	133	136	138	139	164	14.6			

· Hole Na 12

Note :

-

.

.

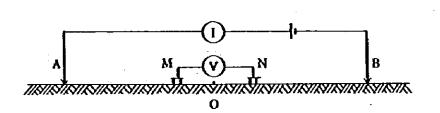
Table A-2-1 (XI) Records of temperature logging

.

Coordinates	X .	-	,	Y			Etevati	on ‡ 🦷		ខ
Date: from	1 15/M	ar, /84	, 10	20/Nar	./84		Depth,	drilleð	10	10 m.
Drifting Met	ihod i B	lotary			Bit s	ize i s ⁵	inches			
Casing :					Casio	g diamet	es :			
Measurement	k st	2 nđ	3 rd	4 (5	5 tk	6 Ib	7 (5	8 th	9 th	10 11
Date	20 <u>N</u> ar.	20Nar.	20 Var.	20Var.	20Mar.	23Nar.	2 2 N 21.	24Nar.	26¥27.	S Apr
Hour	16 30	17 30	18 30	19 30	2030,2045	1733,1800	1000, 1021	ന്ത,ല്മാ	1500,1520	1035,10
Weather	fine					-				
Depth (m)				Tempe	rature	(°C)			· · · · ·	
0	142	21.9	223	161	107	215	<u>9</u> 9	21.5	102	9.8(0
5					133	104	10.1	11.6	92	(25)9
10	207	19.8	16.8	163	15.7	11.9	118	128	10.3	93(7
15 -					173	12.6	125	15.6	114	(125) 9
- 20	20.6	19.6	19.0	184	17.9	139	13.4	143	119	1).9(17
25					183	34.6	141	158	127	(22 5) 12
30	21.0	20.4	20.1	19.6	19.1	15.8	150	173	142	13.0 (27
35					19.5	16.4	16.0	187	15.4	(32 5) 1 1
40	21.3	21.9	20.6	205	202	17.5	17.1	202	165	159[37
45					21.5	19.5	19.4	209	183	(12 5) 17
50	237	23.0	225	222	220	21.0	20.6	22.6	20.0	187(47
55				1	21.5	206	20.1	240	213	(52.5) X
60	221	225	225	225	225	221	221	253	229	21.5 (5)
65					232	233	23.5	27.9	243	
70	22.7	233	236	237	210	245	242			
75		-]	<u> </u>	<u> </u>	251	261	262			_
80	23.4	21.4	25.0	259	26.1	279	279	·		<u> </u>
85	<u> </u>	<u> </u>	<u> </u>		263	- · · ·	30.0	_		
90	239	25.7	265	269	27.6	322	318			
95		<u> </u>	<u> </u>		29.7			 		-
100	235	268	28.1	29.5	30.6	360	367	1 .	1	

Hole No. 14

Note ;


-

•

	Cas	ėl	Case 2			
Hole No.	Geothermal gradient (x10 ⁻³ °C/cm)	Range of calculation (m)	Geothermal gradient (x10 ⁻³ °C/cm)	Range of calculation (m)		
1	5.3	5100	5.3	5100		
2	11.9	74-100	7.3	5-100		
3	1.8	80-100	2.7	5-100		
4		-		-		
5	4.2	70-100	2.6	5–100		
6	1.6	55-95	2.8	5-95		
7	0.2	SŠ-100	0.1	5-100		
9	6.9	90-120	8.1	5-120		
10	0.3	70-100	0.3	5-100		
11	1.4	65-100	0.8	5–100		
12	0.9	45-100	0.7	5-100		
· 14	4.3	70-100	3.2	5-100		
Average	3.53		3.08			

Table A-2-3 Calculated geothermal gradients

and the other pair of electrodes to measure the potential difference associated with the current. Both sets of electrodes are laid out along a line and the current electrodes are placed on the outside of the potential electrodes, symmetrically around the central point which is often designated as the station. (See Fig. A-3-1)

I : current V : potential difference A,B: current electrode M,N: potential electrode O : station

Fig. A-3-1 Schlumberger electrode array

In an isotropic homogeneous medium, the resistivity ρ is given as

$$\rho = 2\pi \frac{V}{I} \left(\frac{1}{\overline{AM}} - \frac{1}{\overline{BM}} - \frac{1}{\overline{AN}} + \frac{1}{\overline{BN}}\right)$$
$$= \frac{\pi}{4} \cdot \frac{\overline{AB^2} - \overline{MN^2}}{\overline{MN}} \cdot \frac{V}{1}$$

where: I : a current introduced between two electrodes A and B,
 V : a potential difference between two electrodes M and N
 AM, BM, AN, AB, MN : the distances of corresponding electrodes.

A - 5

If the subsurface consists of layers separated by the horizontal interfaces and if the separations of electrodes are increased in a systematic manner, the change in the resistivity as defined in the equation makes it possible to determine the variation of resistivity with depth. The value of resistivity obtained from the equation is now designated as the apparent resistivity p_{a} .

The apparent resistivity is plotted versus the electrode separation on a logarithmic scale, and the resulting curves are called as the Vertical Electric Sounding curves. By analysing these curves, a vertical distribution of the resistivity in the subsurface can be determined.

A.3.2 Method of Electrical Prospecting

In the field, the distance of potential electrodes is fixed and the distance of current electrodes is increased, the latter being five times bigger than the former ($\overline{AB} \ge 5MN$). When the current electrodes spacing becomes some 30 times bigger than that of potential electrodes, the potential difference becomes smaller and a measurement error becomes larger. Then, the distance of potential electrodes is expanded and the measurements are repeatedly made within a range where the relation of spacing $\overline{AB} \ge 5MN$ is maintained to the maximum separation of current electrodes. The combinations of electrode spacings is shown in Table A-3-1.

	A8/2 (m)	MN/2 (m)		AB/2 (m)	MN/2 (m)
1	10	4	15	250	20
2	15	4	16	. 300	20
3	20	4	17	400	20
4	30	4	18	400	100
5	40	4	19	500	20
6	· 50	4	20	500	100
7	60	- 4	21	600	· . 100 ·
8	80	4	22	750	100
9	63	20	23	1000	100
10	100	4	24	1250	100
11	100	20	25	1500	100
12	130	20	26	1750	100
13	160	20	27	2000	100
14	200	20	Į		100

Table A-3-1 Schlumberger electrode spacing

To minimize an effect of polarization potential induced by the introduction of direct current, the multi-pulse of transmitted current was selected, as shown in Fig. A-3-2. The on-time and off-time of current are set at four seconds under the measurements up to 600 m of the spacing of current electrodes and at eight seconds under the measurements from 800 to 4,000 m of spacing.

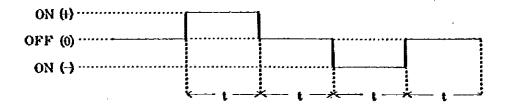


Fig. A-3-2 Current-wave of transmitter

The received voltages are continuously recorded, after a compensation of self-potential, by an analogue recorder of automatic balancing type.

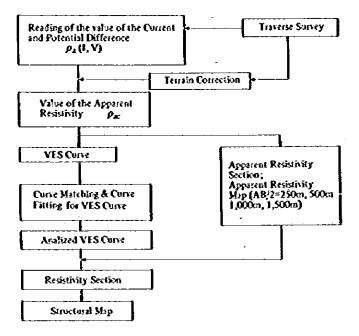
Stainless stakes of 10 mm in diameter were used for the current electrodes and porouspots with copper and solution of copper sulphate were used as the non-polarizing electrodes of receiver-side.

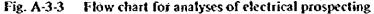
A.3.3 Instruments

Transmitter	:	Time Domain IP Transmitter, Model CH-8310A
		CHIBA ELECTRIC RESEARCH Ltd.
Receiver	:	Receiver Model EPR-200A
		TOA ELECTRONICS Ltd.
Generator	:	2.5KVA generator
		SCINTREX Co., Ltd.

A.3.4 Analysis of Electrical Prospecting

A flow chart of analyses is shown in Fig. A-3-3.


(1) Terrain correction


Generally, the value of apparent resistivity obtained in the field has an influence from topography.

In case of the Schlumberger array, an apparent resistivity decreases in a ridge and increases in a valley. A trial of terrain correction was applied over an area at the east of Line A, where topography was steep. There are several methods to correct the effect of topography such as calculation with a computer or experimental determination using a water tank. The electric conductive paper method was applied for this study and resulted in showing that an effect of topography remained within a range of several per cents at the most. Therefore, no correction was made on the data measured in the field.

(2) Apparent resistivity section

A general idea of apparent resistivity can be seen on a section. The relations between the spacing of current electrodes and apparent resistivity were plotted over all stations. The

ordinate shows a half distance of the electrode spacing.

(3) Apparent resistivity map at the different depths

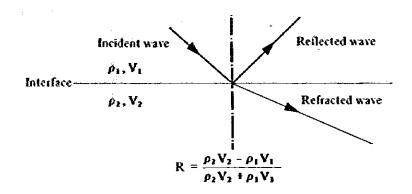
The measurements of apparent resistivity on the half distance of current electrode spacing plotted to give a general idea of areal distribution in depths.

(4) Vertical Electric Sounding curve

The curve on each station was plotted on a logarithmic scale. The abscissa is the logarithm of the half distance of current electrode spacing and the ordinate is the logarithm of the value of the apparent resistivity.

(5) Analyses

The obtained Vertical Electric Sounding curves are compared with the standard curves of Schlumberger's to set a primary model of multi-layered structure. The theoretical VES-curve of the primary model is calculated and compared with the actual curve. From the difference of two sets of curves, a primary model is corrected by the non-linear least squares method. These corrections are repeated until an approximation of the theoretical curve on a corrected model with the curve obtained in the field. The optimum model is automatically calculated by a computer, and is compared and adjusted to be in concordance with the models of neighboring stations or models of intersecting lines. The correction and adjustment are made with a computer in a way of try-and-error.


The results are shown in Fig. A-3-4.

A.4 Seismic Prospecting

A.4.1 Outline of Reflection Method

An elastic wave generated at shallow depth propagates into the ground and when a seismic wave strikes an interface between the two elastic media of different elastic properties, part of energy is reflected at the interface and the balance of energy is refracted into the second medium. With the reflection method, the structure of subsurface formations is mapped by measuring the times required for a wave to return to the surface.

The relative amplitude of the reflected and incident waves is designated as the reflection coefficient R and expressed in the form.

Where the p_1 and p_2 are the densities and the V_1 , V_2 are the wave velocities in the media. The more two velocities differ, the coefficient becomes bigger, indicating an increase of amplitude of reflected waves.

The seismic reflection method is one of the indispensable methods employed for exploration of oil and gas. In the field of geothermal investigation, the seismic reflection method is now being used to detect effectively the faults or crushed zones in the subsurface or to find out the depths of the basements, etc.

The principle of Mini-Sosie process was invented in France and the instrument used in this survey was developed by the Input/Output Inc. of the U.S.A. In case of Mini-Sosie, the seismic waves are generated by a tamping rammer, widely used in the world of civil engineering. Although energy created by tamping is small, stacking of several hundred to several thousand impulses improves the signal to noise ratio.

The Mini-Sosie method is widely employed in civil engineering, geothermal prospecting, and investigations of deposits of oil, gas, coal and sedimentary uranium in shallow depths of less than 1,000 m.

A-4.2 Seismic Field Tests

(1) Noise analysis

The wave-length of surface waves on this field was dominant of 5 to 15 m, having an

apparent velocity of 150 to 330 m/sec, with a frequency of 22 to 33 Hz. To attenuate these surface waves, geophones are grouped with the patterns of 18 geophones spaced at 1.2 m intervals.

The array is illustrated in Fig. A-4-1.

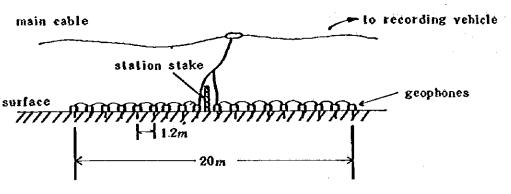


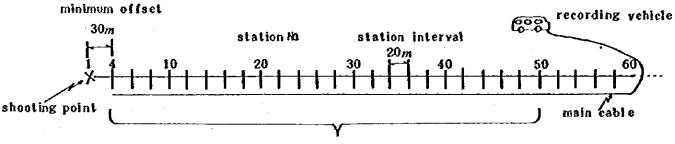
Fig. A-4-1 Geophone array

(2) Filters

To attenuate the noises differing from the signals of reflection in frequencies, the lowcut filter of 30 Hz and the high-cut filter of 250 Hz were used. Selections of filters are made on the front panel of the recording unit.

(3) Number of pops

Usually the number of pops is in a range of 1,000 to 3,000. The number of pops should be chosen to keep quality of the data and to avoid time loss of working due to an excess number of pops. After the field test, the number was set at 2,000 pops per record.


A.4.3 Seismic Field Procedures

i) A series of geophones of more than thirty is laid on a line as illustrated in Fig. A-4-2.

ii) At the station No. 1, stacking of 2,000 pops is made with two or three rammers and signals are received at the stations Nos. 4 to 50 in 24 channels and transmitted to the recording instrument of DHR-2,400 which was designed and built Input/Output Inc. and mounted on the vehicle. Signals are shifted and stacked, and then recorded automatically in magnetic tapes after the completion of 2,000 stacks (see Fig. A-4-2).

iii) Rammers are moved to the station No. 3, and receiving stations are transferred to Nos. 6 to 52. After the completion of 2,000 stacking, data are recorded in a magnetic tapes.

iv) Thus, the shooting point and receiving stations are moved every 20 meters.

receiving stations (24 channel)

Fig. A-4-2 Schematic diagram of seismic prospecting

Geophones and a main cable of completed stations are transferred to the stations to be investigated.

v) This method is called the twelvefold common depth point method, and illustrated in Fig. A-4-3.

A.4.4 Instruments

Recording instrument	:	DHR-2,400. Input/Output Inc.
Camera	:	R-6B, S.I.E.
Geophone	:	L-21A of 27 Hz, 18/group, Mark Products Inc.
Rammer	:	MTR-80G, 85 kg x 2~3 pcs.
		MIKASA Industry Co., Ltd.

A.4.5 Seismic Data processing

The purpose of data processing is to convert the complex wave pattern recorded on magnetic tapes into record section that can be used to determine the underground structure.

A flow of processing is shown in Fig. A-4-4.

i) Gain recovery & Editing

The gain of channels is controlled and unwanted data are deleted.

ii) Sorting

The records are sorted and rearranged to groups of each common-depth-point. Where a line is crooked, reflecting points are scattered. Records on crooked line are converted and edited on the line which passes the center of scattering points of refletion. This editing was made at No. 620, Nos. 710 to 700 of Line A and at No. 170 of Line D.

iii) Static correction

In case that shooting and receiving stations are at various elevations, time variations in reflection, which are associated with such elevations at the surface, yield. Static correction for elevation is that such variations in reflection time are corrected by proper subtraction or addition of the time increment, chosing an arbitraily datum plane.

In this study, elevation of each point was corrected to the floating datum plane which surface irregularities were smoothed, and then converted to the fixed datum plane, using a velocity of 2,380 m/sec.

iv) Correction of normal moveout

In the Fig. A-4-5(i), the traveltime of reflected waves increases depending on a distance of path and a delay time is expressed with a horizontal distance between a shooting point and a receiving point. From this relation, a velocity can be calculated and using an adequate velocity, the normal moveout is corrected as illustrated in Fig. A-4-5(ii). Signals are summed to eliminate random noises and multiples to obtain reflection records with an acceptable ratio of signal to noise.

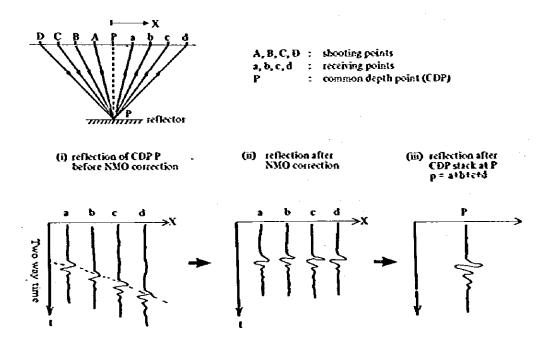


Fig. A-4-5 Schematic diagram for CDP stack (4-fold)

v) Migration

The processed data are plotted on record sections, of which the ordinates represent the time. Where the reflecting beds dip, the point from which each reflection originates is not located vertically below. An adjustment of this point closed to its true position in space is called migration.

Finally, adjusted information is presented on depth sections. The Fig. A-4-6 shows the relationship of two-way time to the depths.

2000 - S.

-

- - · · · •