CHAPTER 6 CONCLUSION AND RECOMMENDATION

CHAPTER 6 CONCLUSION AND RECOMMENDATION

6-1 Conclusion

A. SAN CLEMENTE Area

(1) Distribution and scale of the Au-geochemically anomalous zones by trench sampling, and the relation to the SAN SEVERIANO mineralized zone

The anomalous zones are divided into two groups such as the one distributed concentratedly on a large scale in rhyolite found from the eastern-central part to the northeastern part of the area and the other in a stock-like rhyolite in the southern part of the area. In the former, high grade part is found in two sections. One of these occupies an area of 15 meters in average width by more than 100 meters in extension, showing an average grade of 1.18 g/t Au, while the other extends for more than 50 meters with the average width of 12 meters, showing an average grade of 1.5 g/t Au.

As shown in Fig. 6-1, some samples showing high assay values among those taken so far are found to be scattered in the area between the anomalous zone and the SAN SEVERIANO mine, and the zone is open, as a whole, toward the SAN SEVERIANO mine. Therefore, it is strongly possible that the main part of the Au-anomalous zones extend toward the east.

(2) Relation between Au and Ag anomalous zones

It was made clear that the both anomalous zones were not overlapped but distributed in a form of zonal arrangement. Namely, the Au-anomalous zones are distributed in the eastern part of the area to the central part of the rhyolite mass and the Ag-anomalous zones are distributed along near the contact between the rhyolite mass and the underlying tuffaceous conglomerate in the surrounding part of the former. Topographically, the Au-anomalous zones are positioned in the vicinity of the ridge (more than 2,450 m high above sea level) in the eastern part of the area, and the

Ag-anomalous zone on the lower slope in the surrounding part on the side of the foot of the moutain.

(3) Comparison of the assay values of drill cores with those of the surface samples

The assay values of Au of the drill core were generally low as compared with those of the surface samples. In the MJM-3 hole, however, the assay values of gold from about 200 meters to the bottom was generally high showing the highest value of 1.65 g/t Au. This section is positioned at about 70 meters below the surface, which is rather the shallowest part from the standpoint of the depth. Whereas the bottom of the holes such as MJM-1 and 2 are positioned at the depth of about 160 meters below the surface, which is deeper than the above. Furthermore, the two holes were cut through tuffaceous conglomerate near the basement rock underlying the rhyolite mass. On the other hand, the disseminated mineralized zones of sphalerite, galena and chalcopyrite are observed in many places of the two holes.

Taking the above facts into account, the comprehensive consideration of the relation between the two modes of distribution of the geochemically anomalous zones of gold and silver, the mineralization of copper, lead and zinc observed in the drill core and the country rocks of each mineralized zone leads to the conception that the distribution of the mineralized zones of gold and silver and those of copper, lead and zinc suggests a vertical zonal arrangement of the mineralization of the area.

B. PROVIDENCIA Area

(1) Relation between the mineralized zone and the geologic structure

The mineralized zone of the area consists of irregularly massive and partly disseminated ore bodies emplaced along the fracture zones near the faults and fold axes in black flint bearing medium-bedded limestone and the disseminated ore bodies found along the bedding planes of

limestone, among which the former is superior to the latter in both size and grade. The Mina Providencia mineralized zone is the largest in size and the highest in grade among these mineralized zones.

(2) Grade and size

All the ore bodies found in the area consist of oxide ore. The dimension of individual ore bodies is several tens centimeters to several meters in width and a little more than a dozen meters in extension, while in the Mina Providencia mineralized zone, it extends for about 200 meters with the width of two meters along the fault fracture zone of NNW-SSE system.

The ore grades shown are several percent in lead, several tons percent in zinc, $n \times 10 - n \times 100$ g/t in silver and very small content in copper.

(3) The result of the drill survey

As the result of drill survey of the two holes of MJM-4 and 5, the mineralized parts were intersected at six places in the MJM-4 hole. Under the microscope, the ore consists of oxides ore mainly of goethite and hematite. The average assay values of the most dominant massive oxide ore found at the depth of 67.00 m - 68.70 m showed 11.87% Pb and 0.68% Zn. Those of oxide ore at 96.72 m - 97.12 m showed 0.13% Pb and 29.16% Zn and those at 57.85 m - 58.10 m, 1.69% Pb and 1.84% Zn. Those of other oxides ores are less than one percent both in lead and zinc, showing a low grade.

No notable mineralization was observed in the MJM-5 hole.

The result of surface geological survey and drill survey showed that the mineralized zones formed with close relation to the fracture zones along fault and fold axis. On the other hand, six mineralized zones were intersected in the MJM-4 hole. All these, however, are still in the oxides zone, and it has been made clear that the sulfide zone which had

been assumed to exist in the depths by the electric survey (IP method) has not been encountered yet.

6-2 Recommendation

While the project is to be finalized by the survey of this phase, the following investigations are recommended to be conducted in the two areas if the mexian side has the intention to continue the survey in future (Fig. 6-1, 6-2, PL. 26 and 27).

(1) SAN CLEMENTE Area:

It is recommended to investigate the distribution of the gold and silver grades on the surface in the area (150 m x 400 m) between the SAN SEVERIANO mine and the eastern limit of the surveyed area in the fourth phase. For this purpose, the following measures are recommended: excavation of trenches in a grid pattern at an interval of 50 meters in a position shown in PL. 26; continuous linear-sampling of rock samples along trenches (channel sampling for every 3-meter interval); analysis of gold and silver on 540 samples from the above area.

If the result were promising, execution of shallow-hole drilling (50 m - 100 m deep) at a regular interval (50 - 100 m) by selecting the stations on the grid to investigate the condition of mineralization in the depths.

(2) PROVIDENCIA Area:

The main subject of the survey would have to be directed to the investigation of the sulfide zone which is estimated to exist in the depths of the mineralized zone distributed along the fold axis and the weak zones. For this purpose, a drill survey consisting of two holes each 500 meters long, one vertical and the other inclined at -70° is recommended to be cut at the locality shown in PL. 27. If a promising result be obtained, the policy for exploration in the next stage is to be worked out.

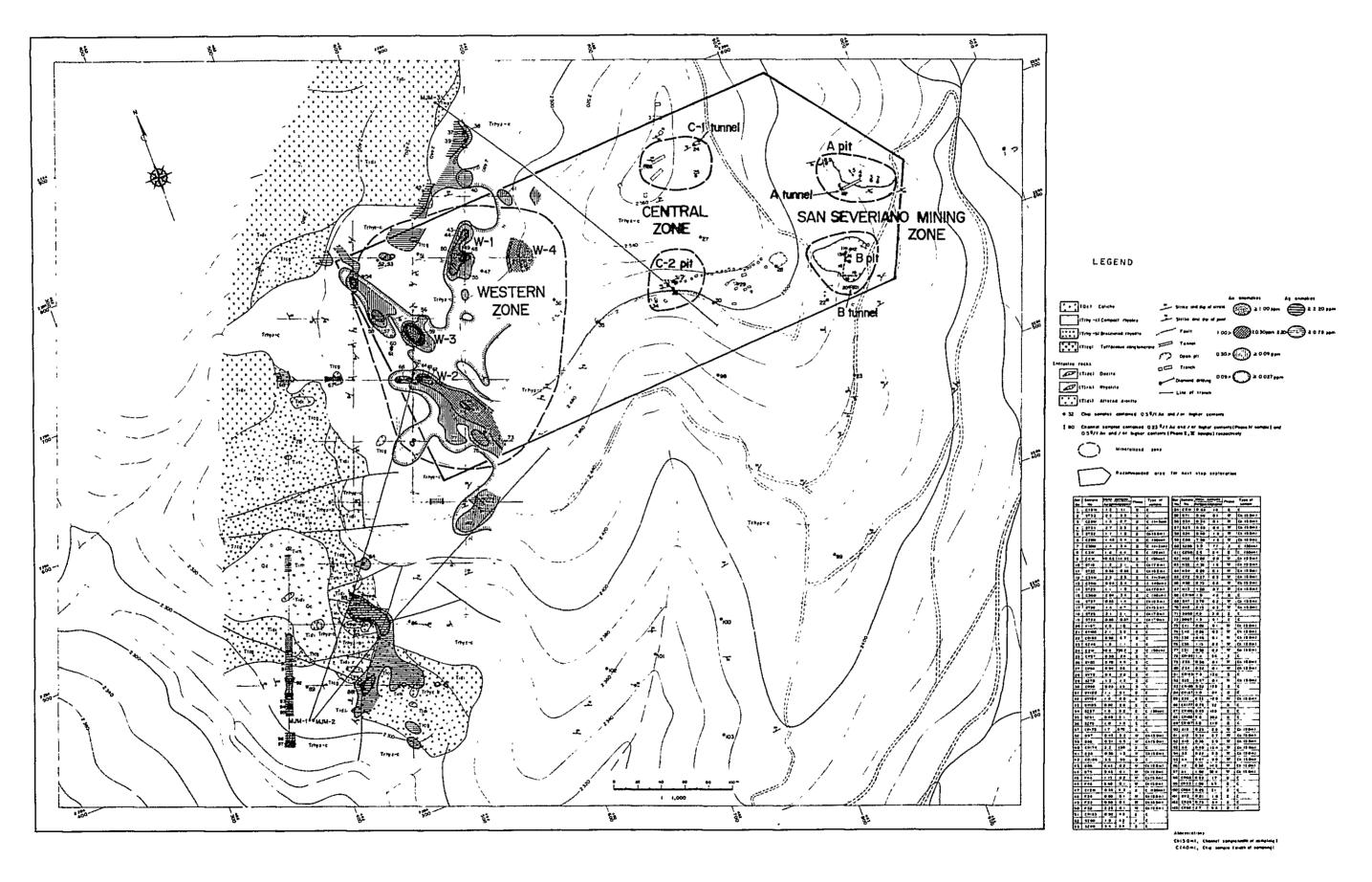


Fig. 6-1 Interpretation Map of the SAN SEVERIANO Mining Area, SAN CLEMENTE

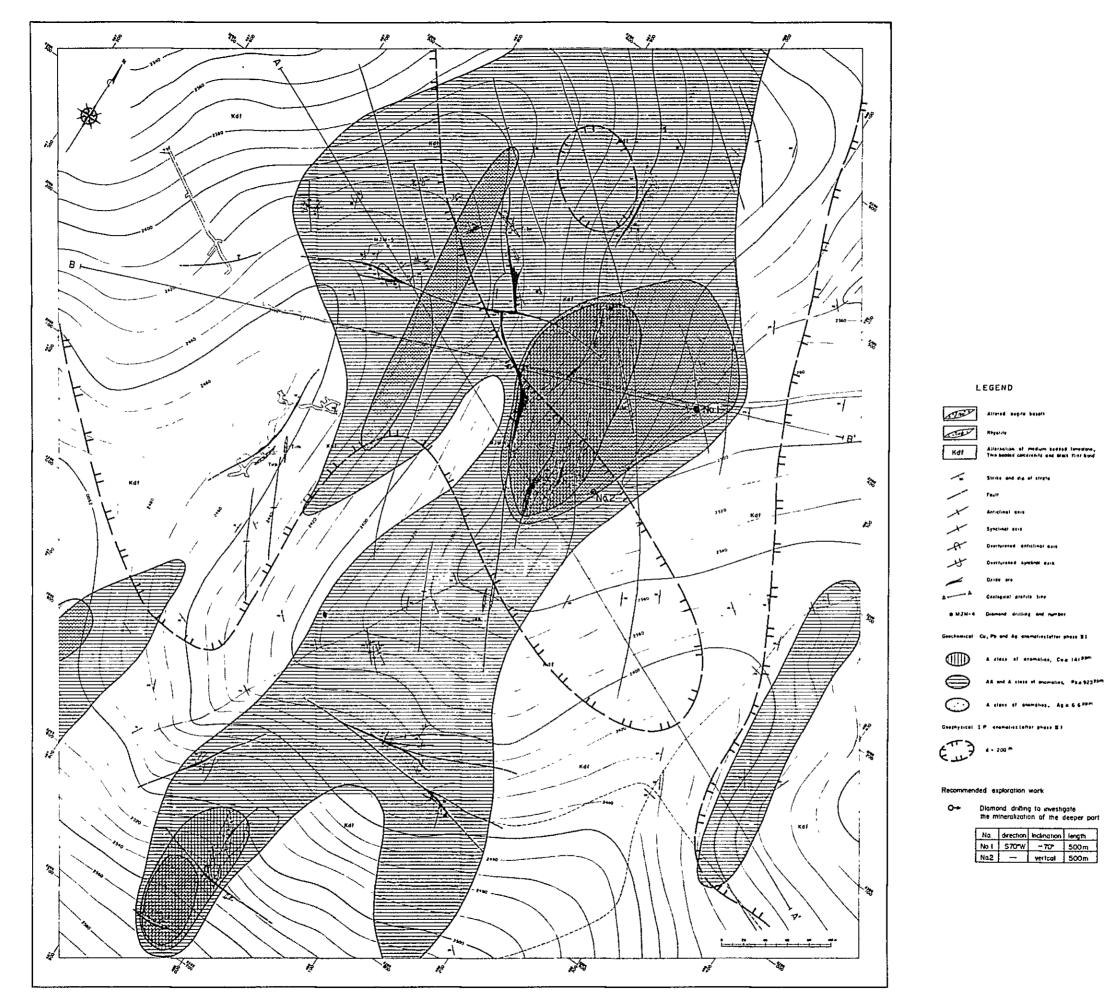


Fig.6-2 Interpretation Map of the PROVIDENCIA Mining Area, PROVIDENCIA

REFERENCES

1)	Aguilar Garcia, M., 1972	Prospección geológico-minera de la región de Maconí, Zimapań, Pachuca, Edos. de Queretaro e Hidalgo: Tesis Profesional, I.P.N.
2)	Bastin, E.S., 1948	Mineral relationships in the ores of Pachuca and Real del Monte, Hidalgo, México: Econ. Geol., v. 43, p. 53-65.
3)	Benites M., J.A., 1972	<pre>Informe mesual de la zona Cardonal, Hgo. : C.R.N.N.R. (inedito).</pre>
4)	Boyle, R.W., 1976	The geochemistry of gold and its deposits (together with a chapter on geochemical prospecting for the element): Geological Survey of Canada, Bulletin 280.
5)	Carrillo Bravo, J., 1965	Estudio geológico de una parte del Anticlinorio de Huayacocotla : Asoc. Mex. Geol. Petrol., v. 13.
6)	Casarrubias Jimenez, J.S., 1973	Exploración geológico minera del área de el Cardonal, Estado de Hidalgo : Tesis Profesional, 52 p., I.P.N.
7)	Chairez Blanco, J., 1978	Estudio geológico-minero de la Mina San Miguel, la Pechuga, Mpio. de Ixmiquilpan , Hidalgo : Tesis Profesional, I.P.N.
8)	Cumming, G.L., et al., 1979	Isotopic composition of lead in Mexican mineral deposits: Econ. Geol., v. 74. pp. 1395-1407.
9)	De la Crus, Trejo, M., 1975	Guias útiles de la prosección de minerales en el distrito minero de Zimapán, Edo. de Hidalgo : Tesis Profesional, I.P.N.
10)	De Pablo Galan, L., 1965	Los minerales de manganeso de Molango, Hidalgo : Univ. Nac. Autón. Méx. Inst. Geol., Bol. 76,pte. 1, p. 1-38.
11)	Fries, C., Jr., 1956	Bosquejo geológico de la región entre México, D.F. y Taxco, Guerrrero : Internat. Geol. Cong., 20th, Mexico, 1956, Guide book Excursions A-4 and C-2, P.11-35.
12)	Galicia F., J., 1972	Informes mensuales de la zona de Encarnación, Hgo. : C.R.N.N.R.

101		
13)	Geyne, A.R., 1949	Mineral relationships in the ores of Pachuca and Real del Monte, Hidalgo, México - A reply : Econ. Geol., v. 44, p.233-234.
14)	Geyne,A.R., and Wilson, I.F., et al., 1963	Geology and mineral deposits of the Pachuca-Real del Monte District, State of Hidalgo, México: C.R.N.N.R., Mem.5 E.
15)	Imlay, R.W., 1944 a	Cretaceous formations of Central America and Mexico :Bull. Amer. Assoc. Petrol. Geol., v. 28, p. 1077-1195.
16)	————— 1944ъ	Correlation of the Cretaceous formations of the Greater Antillers, Central America, and Mexico: Bull. Geol. Soci. Amer.,v. 55, p. 1005-1046.
17)	 1952	Correlation of the Jurassic formations of North America, exclusive of Canada: Bull. Geol. Soci. Amer., v. 63, p.953-992.
18)	JICA and MMAJ, 1980-1982	Report on geological survey of the Pachuca-Zimapán area, Central Mexico; phase I-III., Japan International Cooperation Agency and Metal Mining Agency of Japan.
19)	Krauskopf, K.B., 1979	Introduction to Geochemistry : 721 p., MacGraw-Hill Book Co.
20)	Kuno, H. 1976	Volcanoes and Volcanic Rocks (in Japanese) 2nd ed., 283 p., Iwanami Press.
21)	Lee Moreno, J.L., 1974	Geochemical prospecting for epithermal precious metals veins in the vicinity of the Pachuca-Real del Monte mining district in Mexico: Soci. Min. Eng., AIME, p. 1-16.
22)	Miyashiro, A. and Kushiro,I., 1977	Petrology I, II and III (in Japanese) : Kyoritsu Press.
23)	Quintus Bosz, R.L., 1972	Estudio geológico de la zona fosforitica de San Francisco, Municipio de Pacula, Edo. de Hgo. : C.R.N.N.R., p.28-45.
24)	Restovic Peres, I.V., 1973	Estudio geológico minero del área de Encarnacion, Mpio. de Zimapán, Edo. Hgo.: Tesis Profesional, U.N.A.M.
25)	Rösler and Lange, 1972	Geochemical Tables : Elsevier

26)	Salas, G.P., 1975	Carta y provincias metarogeneticas de la Republica Mexicana : C.R.M. de México, Publicación 21 E.
27)	Schulze, G., 1951	Mantos intrusivos en formaciones volcanicas en sus relaciones con vetas : Convención Interamericana de Recursos Minerales, 1 ^a , México., 1951, Mem., p.202-207.
28)	Segerstrom, K., 1962	Geology of south-central Hidalgo and northeastern Mexico, Mexico: U.S.Geol. Survey, Bull., 1104-C, p.87-162.
29)	Simons, F.S. and Mapes V.E., 1957	Geologia y yacimientos minerales del distrito minero de Zimapán, Hidalgo : Instituto Nacional para Investigación de Recursos Minerales.
30)	Smith, R.L. et al	Hidalgoite, a new mineral : U.S.Geol. Survey, Washington, D.C., p.1218-1224.
31)	Takeda, H., 1977	Las caracteristicas de la mineralización de los depositos de plomo, zinc, y plata en las calizas de la parte norte de la Sierra Madre Oriental, México : VI seminario interno sobre exploración geológico-minera, de C.R.M.
32)	Tavera Amezcua, E. and Alexandri,R., 1963	Los yacimientos de manganeso del área de Molango, Hidalgo : Vth Convención de la Asoc. de Ings. de Minas, Met. y Geologos de México, Torreon, Coahuila.
33)	Thornburg, C.L., 1945	Some applications of structural geology to mining in the Pachuca-Real del Monte area, Pachuca silver district, Mexico : Econ. Geol., v. 40, p. 283-297.
34)	Turban, E., 1947	Estudio de la minalización a la profundidad en los minerales de Pachuca y Real del Monte, Estado de Hidalgo : Minas y Petróleo, Bol., v. 16, p. 3-6.
35)	White, D.E., 1947	Diagenetic origin of chert lenses in limestone at Soyatal of Queretaro, México : Amer. Jour. Sci., v. 245, p.49-55.
36)—	1948	Antimony deposits of the Soyatal district, State of Queretaro, México : U.S. Geol. Survey, Bull. 960-B, p. 35-38.
37)	Wisser, E., 1937	Formation of the north-south fractures of the Real del Monte Area, Pachuca silver district, Mexico: Amer. Inst. Mining Metall. Engineers, Trans., v. 126, p. 442-486.

38) ————	1951
----------	------

Tectonic analysis of a mining district -Pachuca, Hidalgo: Econ. Geol., v. 46, p. 459-477.

39) Wittich, E. and Vivar, G., 1913

La celestita de Atotonilco el Grande, Hidalgo: Soc. Geol. Mex. Bol., p.5-8.

.

APPENDICES

Apx. 1 Microscopic Observations of Rock Thin Section

П		Ser.	Sample	Locat		Strati- graphic	Rock name	Texture or												Sec		. •				Remarks
11		No.	No.	E		unit [ROCK Hame	structure	qzaf	p1	bi	hoat	rua	pca	mt	tig	lop	cl	h l e	рса	s e s	ik	alp	уург	2	
		1	SA-2	482384	2284440	Trhy2-C	Rhyolite	porphyritic myrmekite	00	0				•			•									anorthoclase mantle around phenocrystic oligoclase
1 1		2	SB-2	482661	2284765	Trhy2-C	Rhyolite	porphyritic	OC	0				$oldsymbol{\perp}$			1.			_				_	- 	hollocrystalline
		3	SB-4		2284671			porphyritic	OC	0	•						•			•	•	• •?			•*	*clay mineral qz veinlets brecciated *1 completely altered
	mi	4	SB-8		2284482			porphyritic	0	<u></u>							•		?				0		₫ ²	to clay mineral *2 clay mineral hollocrystalline * completely altered to clay mineral
1	EN	5	SC-1	482601	2284734	Trhy2-C	Rhyolite	porphyritic	0	O [*]					•		1.					ď				altered to clay mineral
	CLEMENTE	6	SC-4	482565	2284634	Trhy2-C	Rhyolite	porphyritic	OC	0						?						Ц.		$\supset ig ig ig $	<u> </u>	weakly pyritized and silicifized
		7	SC-7		2284452			porphyritic	0	0												•		<u> </u>	•*	* clay mineral
ple	SAN	8	SD-6		2284610			porphyritic	0	0												•			•*	* clay mineral
Sample	0,	9	SM-5	·	2284409		Brecciated Rhyolite		0						\sqcap	$\neg \vdash$					• (00		οT		* completely replaced by kaolin
1 1		L	NB-1		2284812			porphyritic		10		+	++	+	\vdash	+	1	+	+	1		Ö		δH	• *	* clay mineral, similar to SD-6
Surface		10			2284703			porphyritic		ĬŎ				1	\Box	\top					•			•	•*	* titanite
Suz		11 12	NF-2 NH-1		2284703		Altered breccia	porphyrrere	o	ð						•	•								₫ ²	*1 fragment *2 secondary minerals are not distinct
		13	KP-7		2286357		Micritic			Ť				0												microfossil remnants
	PROVIDENCIA	14	KP-10		2286305		limestone Quartz- barite rock		0											0	0			•	○ *1 •*2	heterogeneous in grain size and texture *1 barite *2 clay mineral
	PROV	15	KP-11	487886	2286406	Tiba	Altered augite basalt	doleritic		0		C								0					đ	* saponite, calcite veinlets
	<u> </u>	16	DS1-1T			Tidi	Altered diorite			0		0,0	ļ	•)•					•*	medium grained *titamite
	MJM-1	17	(214.00**) DS1-2T (236.25)			Tidi	Altered diorite			0		O'C		•) ()•				•	.*2	*1 brown hornblende rimmed by green hornblende *2 titanite
Core	E MJ	18	DS1-3T (267.50)	_	-	Ttcg	Altered rhyolitic tuff			0				•				*	?	0	• (?	•		* rock fragments showing flow texture
Č gu	STEEN STEEN	119	DS2-1T (297.80)		_	Trhy2-C	Rhyolite	porphyritic	0	0	0			•			•			•				-		hollocrystalline
1111	SAN CLEMEN	20	DS3-1T (83.00)	-	_	Trhy2-C	Rhyolite	porphyritic	00	0							•			0						hollocrystalline
P.	SAN MJM-3	21	DS3-2T (287.50)	_	_	Trhy2-C	Rhyolite	porphyritic	00) (©				•			•		_[C				9		hollocrystalline foraminiferic remnants,
	* WJW	22	DS4-1T (82.10)	_		Kdf	Calcarenite	lamination						©												Iamina of micritic limestone

PROVIDENCIA

Abbreviations

qz; quartz, af; alkalifeldspar, pl; plagioclase, bi; biotite, ho; hornblende, au; augite, ru; rutile, ap; apatite, ca; carbonate minerals, mt; magnetite, ti; titanite, gl; glass, op; opaque minerals, chl; chlorite, ep; epidote, se; sericite,

si; silica minerals, k; kaolin, al; albite, py; pyrite

⊙ ... abundant O ... common • ... rare

depth in m

Apx.2 Photomicrographs of the Representative

Rock Thin Soction

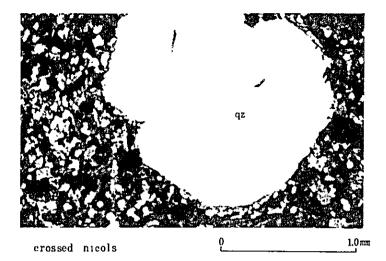
Abbreviation

qz : quartz

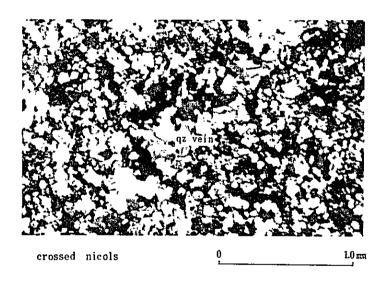
pl : plagioclase

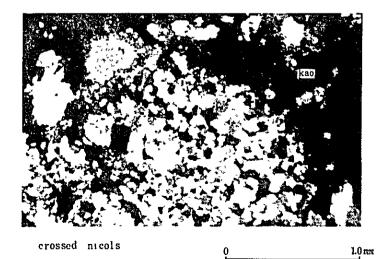
bt : biotite

ho : hornblende

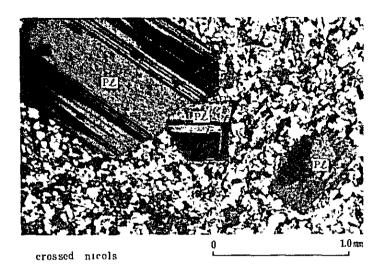

au : augite

ca : calcite

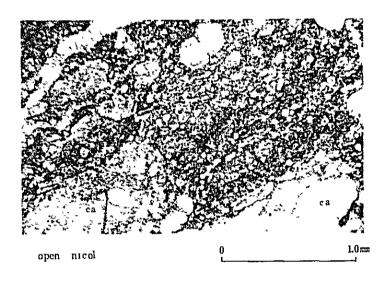

kao : kaolin

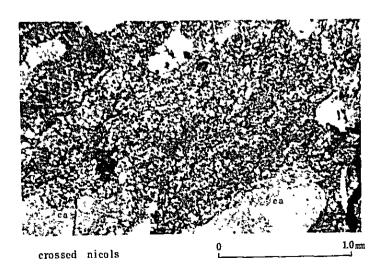

SAN CLEMENTE Area

(1) SB-2 (Trhy 2-C) Rhyolite



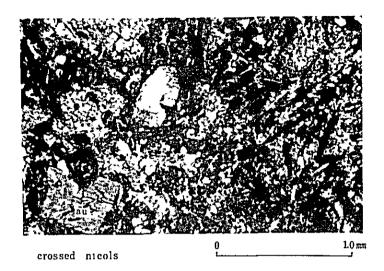
(2) SB-8 (Trhy 2-C) Rhyolite


(3) SM-5 (Tirh)
Brecciated rhyolite

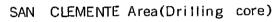


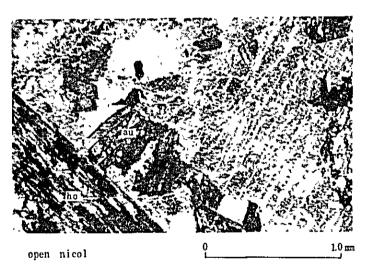
(4) N F -2 (Trhy 2-C) Rhyolite

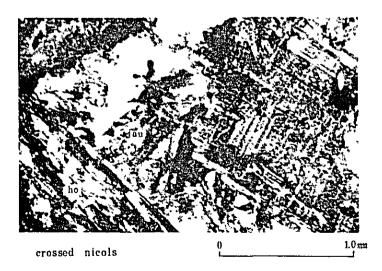
PROVIDENCIA Area

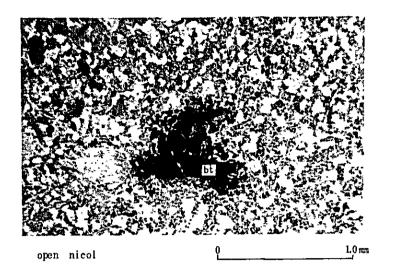


(5) KP-7 (Kdf)
Micritic limestone

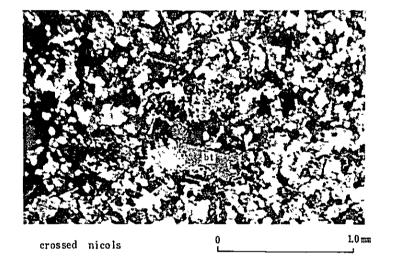



(6) KP-7 (Kdf)

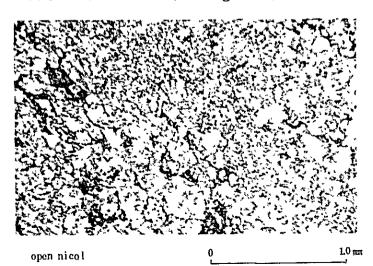

(7) KP-11 (Tiba)
Altered augite basalt


(8) DSI - 2T (Tidi)

Altered diorite



(9) $DSI - 2T(T_1di)$



(10) DS 2-1 T (Trhy 2-C) Rhyolite

(1) DS2-1T(Trhy2-C)

(12) D S 4 - 1 T (Kdf)
Calcarenite

Apx. 3 Microscopic Observations of Ore Polished Section

		Sa	Sam- Coordinates 🔯					1				y mi				-1				
Area	Ser No.	pl No	e L	E		□ Location	Occurrence	el	ср	sp			ru		<u> </u>	hm		, ` -	inear	Remarks
	_	Г			2284669	C-C'	black minerals in quartz vein	01	<u> </u>	96	P2	110	<u> 1u</u>	21	•*1 •*2	0	0			*1 hausmannite?(MgO=75%, FeO=9%) *2 Pb-Ba-Mn mineral(corolite-hollandite?)
	2	SC	-4 4	182565	2284634	C-C'	disseminated black minerals in rhyolite		•				•	•	•*1		0	-	 	*1 Mn mineral
	3	SC	-6 4	182484	2284411	C-C'	black minerals in quartz vein			•	•		•		*		0			* marcasite
世	4	SD	-7 4	482519	2284657	ים-ם	black minerals in rhyolite						•		0	•	•			* hausmannite?
CLEMENTE	5	SM-	-5 4	182470	2284409	M-M'	black minerals in cemented materials of brecciated rhyolite				•		•		• *		0			* Fe-oxide
SAN C		SL	-2 4	182452	2284468	D-D'	black minerals in cemented materials of brecciated rhyolite				•		•		•		Č ²			*1 Mn mineral *2 rhythmic zoning
		SD	-1 4	182693	2284806	D-D'	disseminated black minerals in rhyolite						•			0	0			
	8	KD	-2 4	182541	2284713	D-D'	a little amount of black minerals in rhyolite						•		• *	0	0			* Mn mineral
	9	NE	-1 4	182693	2284753	E-E	oxides ore filled with fissure	•*			•		•			0	0			* 5µ
	10	SH	-1 4	482491	2284668	н-н'	quartz vein in rhyolite						•			0	0*			* rhythmic growth
	11	KP	-1 4	188048	2286242	P No.1	massive oxides ore				•					0	©*			* rhythmic growth
	12	KP.	-3 4	188035	2286211	P No.1	disseminated oxides ore									0	0			
	13	KP.	-5 4	187984	2286283	P No.2	brecciated oxides ore					-?				0	© *			* rhythmic growth
	14	KP.	-8 4	187793	2286396	T No.10	disseminated oxides ore				•	0?				0	0			zonal texture
	15	KP	-9 4	187822	2286305	P No.6	quarts-barite rock in the oxides zone					0?	•		• *	•	•			* Pb-Mn mineral (corolite?)
IA I	16	VL.	-a 4	187982	2286267	P No.2	brecciated oxides ore									0	0			botryoidal texture
ENC	17	VL.	-2 4	187752	2286347	P No.8	brecciated oxides ore									0	0			botryoidal texture
\\X		VL.	-3 4	487857	2286384	T No.8	brecciated oxides ore					⊚?			© *	•	•			* Mn mineral; botryoidal texture
PRO	19	VL.	-5 4	187725	2286314	T No.11	brecciated oxides ore								0*		•			* Mn mineral
	20	VL.	-8 4	187895	2286390	T No.6	brecciated oxides ore									0	•			
			1		2286508	<u> </u>	brecciated oxides ore									0	•	0		
	22	NP-	-3 4	187977	2285837	P No.14	porous oxides ore									© *	0			* zonal growth, botryoidal texture
		╄—				P No.14	porous oxides ore				•				0	0	0			* barite
}	24	NP.	-6 4	488051	2285965	P No.11	brecciated oxides ore									0	0			botryoidal texture
	25	NP-	-104	188084	2285969	P No.12	brecciated oxides ore									0	0			spheroidal texture

Abbreviations

el; electrum, cp; chalcopyrite, sp; sphalerite, he; hemimorphite, ru; rutile zr; zircon, hm; hematite, goe; goethite, ce; cerussite, py; pyrite © abundant O common · · · · rare SAN CLEMENTE Area; trench number PROVIDENCIA Area; open pit and tunnnel number

Apx. 4 Microscopic Observations of Ore Polished Section from Diamond Drilling Holes

rea	lling No.	Ser. No.	Sample	Depth	Occurrence			Primary mineral Secondary mineral									7	Remarks	
A	Dri	NO.	No.	(m)		ср	sp	ga	ру	mt	tr	po	ru	gh	hm	goe	bor		
		1	DS1-1P	63.65	tuffaceous conglomerate, ga,sp,py,cp disseminate in matrix	0	*	0	0	:					0			* strong inner reflection	
		2	DS1-2P	171.60	cp veinlets in rhyolite	•			0				•		0				
	<u></u>	3	DS1-3P	196.85	tuffaceous conglomerate py,sp disseminate in matrix	0	0	0	0						•				
	MJM-1	4	DS1-4P	238.80	bleached rhyolite., py disseminate	•			0		•		0		•		•		
	_	5	DS1-5P	245.10	veinlets in altered diorite	•	0	0	0	•					•		<u> </u>		
TE		6	DS1-6P	247.00	tuffaceous conglomerate, ga,sp,py disseminate in matrix	•	0	0	0						•	•			
CLEMENTE		7	DS1-7P	271.45	black minerals in brecciated rhyolite				0	•?					0*			* like ophitic texture	
SAN CL		8	DS2-1P	54.90	tuffaceous conglomerate, sp,py,ga disseminate in matrix	0	0	0	0	•		•		*1			*2	*1 c = 80% *2 lattice intergrowth	
St		9	DS2-2P	70.55	sp,cp filled with fissure in rhyolite	0	0	0	0		•	•			•			with cp	
	-2	10	DS2-3P	74.50	sp.cp.ga filled with fissure in rhyolite	0	0	0	•	_	•				•				
	MJM	11	DS2-4P	88.00	strongly s#licified rhyolite	0	0	•	0		*	•	_				_	*in cp	
		12	DS2-5P	176.80	strongly silicified tuffaceous conglomerate	•	0	0	0										
		13	DS2-6P	202.50	rhyolitic tuff, sp,ga disseminated in matrix	•	0	0	0						•				
ICIA		14	DS4-1P	58.00	lenticular oxides ore in sedimentary rock										0	0		botryoidal texture	
PROVIDENCI	MJM-4	15	DS4-2P	67.50	lenticular oxides ore in sedimentary rock										0	0			
PRO		16	DS4-3P	97.00	lenticular oxides ore in sedimentary rock											©*		* rhythmic growth	

Abbreviation cp; chalcopyrite, sp; sphalerite, ga; galena, py; pyrite, mt; magnetite tr; tetrahedrite, po; pyrrhotite, ru; rutile, gh; graphite, hm; hematite goe; goethite, bor; borite

Omabundant Omcommon • mare

Apx.5Photomicrographs of the Representative

Ore Polished Section

Abbreviation

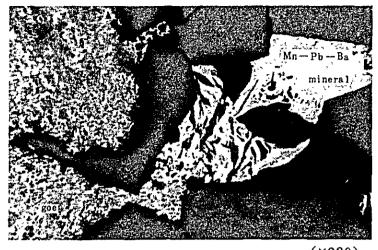
bor: bornite hm: hematite

ce: cerussite mt: magnetite

cp: chalcopyrite py: pyrite

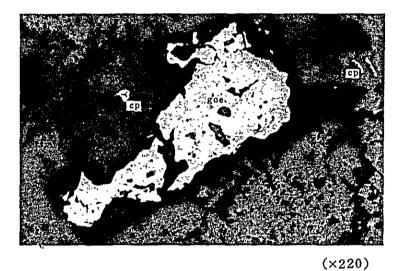
el: electrum ru: rutile

ga: galena sp: sphalerite

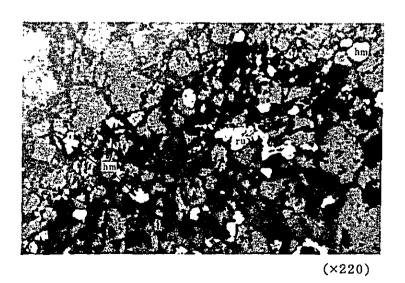

goe: goethite tr: tetrahcdrite

he : homimorphite

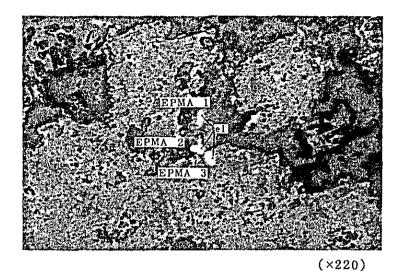
EPMA1: point of analysis by Electron Probe Microanalyzer(see Apx.8)


SAN CLENENTE Area

(1) SC-3


Mn-Pb-Ba mineral and goethite in quartz vein.

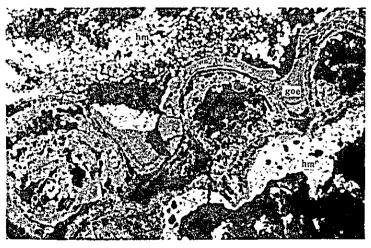
(2) SC-4


Dissemination of hematite and chalcopyrite in rhyolite.

(3) KD-2

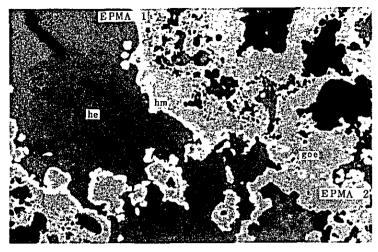
Dissemination of hematite and rutile in rhyolite

(4) NE-1


Electrum in oxides ore

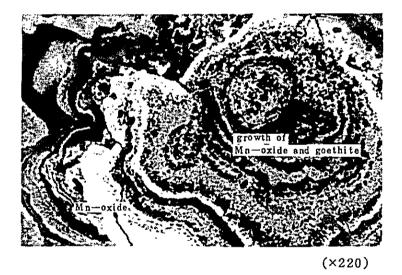
(5) SH-1

Hematite core surrounded by goethite showing rhythmic growth and rutile

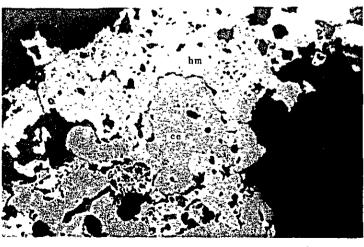


(1) KP-1

Rhythmic growth of goethite and hematite

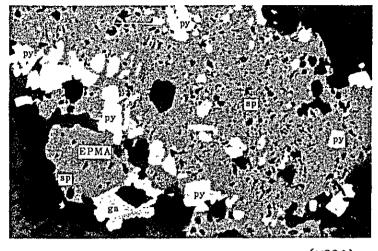

(×220)

(2) KP-8


Z onal texture of hemimorphite, hematite and geothite

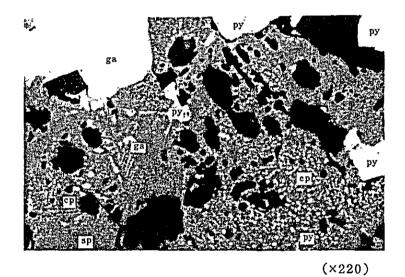
(3) V L - 3

 $\label{eq:continuous_problem} Rhythmic growth of $$M\,n-oxide$ and goethite$

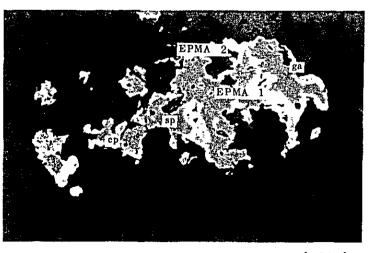

(4) V L - 11

Cerussite core surrounded by hematite

(×220)


Drilling Core

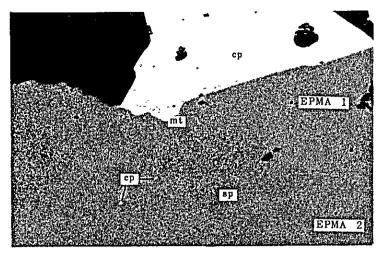
(1) DS1-1P


Sphalerite includes galena and subhedral pyrite grain

(×220)

(2) D S 1 - 3 P

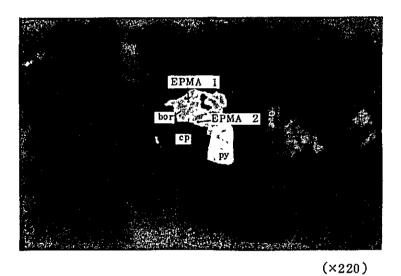
Sphalerite, galena, pyrite, and chalcopyrite in conglomerate



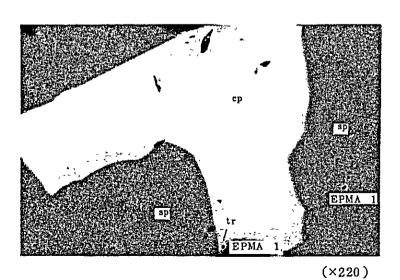
(3) DS1-5P

Sphalerite with galena and chalcopyrite marginally

(×220)

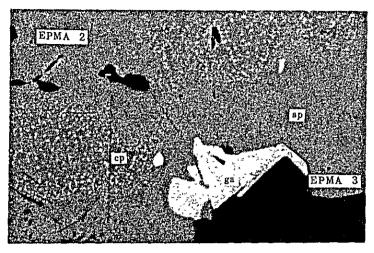


(4) DS2-1P


Large sphalerite and chalcopyrite with magnetite

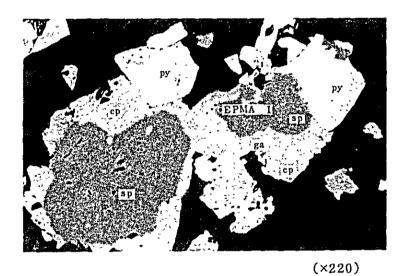
(×220)

(5) DS2-1P

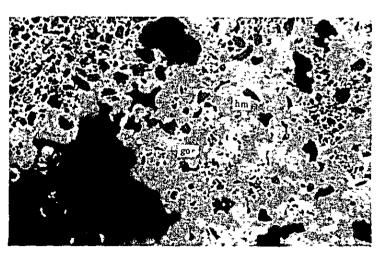

Lattice intergrowth of chalcopyrite and bornite

(6) DS2-2P

Large sphalerite and chalcopyrite which includes tetrahedrite



(7) DS2-2P


Intergrowth of chalcopyrite and sphalerite

(8) DS2-4P

Crowded grain of sphalerite, chalcopyrite, galena and pyrite

(9) DS4-1P

Botryoidal texture of goethite and hematite

(×220)

Apx. 6 Chemical Composition of Rhyolite in the SAN CLEMENTE Area

Ser	Sample	Coord	inates							nemica	al Cor	mosit	ion i	 '%)							·		
No.	No.	E	N	Si02	TiO2	A1 ₂ 0 ₃	Fe ₂ 0 ₃	MnO	,	CaO					Cr ₂ 0 ₃	ZrO2	Cu0	LOI	Tota1	H ₂ 0(+)	H ₂ O(-)	Fe0	Fe ₂ 0 ₃
1	S 1W	482632	2284775	79.96	<u> </u>	11.29				0.08							-0.00	├──	99.73	0.46	0.89	0.10	
2	S 2W	482662	2284764	76.88		12.04				0.14					0.01	0.02	0.00	2.10	98.68	1.96	1.29	0.10	
3	S 3W	482706	2284748	78.15	0.06	11.45		0.01	0.08	0.12	3.05	3.90	0.06	0.05	0.01	0.01	0.00	1.21	98.96	1.15	0.69	0.20	
4	S 4W	482555	2284750	78.19	0.09	11.57	1.35	0.03	0.05	0.09	5.62	0.13	0.05	0.00	0.01	0.01	0.00	1.63	98.85	1.36	0.99	0.20	1.13
5	S 5W	482603	2284733	78.93	0.06	11.46	0.92	0.02	0.11	0.12	4.25	0.12	0.03	0.00	0.01	0.01	0.01	2.29	98,35	1.22	1.10	0.15	0.75
6	S 6W	482645	2284718	80.41	0.07	9.92	1.00	0.01	0.07	0.07	4.67	0.37	0.05	0.00	0.01	0.01	0.01	1.41	98.07	1.19	0.78	0.15	0.83
7	S 7W	482678	2284705	84.77	0.07	9.39	1.07	0.05	0.20	0.13	0.69	0.91	0.09	0.02	0.01	0.01	0.02	2.18	99.62	2.24	0.99	0.20	0,85
8	S 8W	482707	2284695	76.29	0.06	11.73	1.21	0.01	0.16	0.16	2.85	4.78	0.02	0.06	0.01	0.01	0.00	1.23	98.58	0.96	1.10	0.20	0.99
9	S 9W	482484	2284723	77.95	0.11	12.68	0.80	0.06	0.10	0.09	4.43	0.37	0.00	0.00	0.01	0.02	0.00	2.62	99.25	1.74	1.39	0.10	0.69
10	S 10W	482538	2284703	79.04	0.08	11.39	0.63	0.01	0.07	0.15	6.43	0.38	0.01	0.00	0.01	0.02	0.00	0.58	98,82	0.60	0.69	0.25	0.35
11	S11W	482586	2284686	79.29	0.06	10.03	2.14	0.19	0.17	0.19	4.55	0.74	0.29	0.02	0.01	0.01	0.03	1.23	98.95	1.00	1.30	0.20	1.92
12	S12W	482628	2284671	77.01	0.08	11.79	1.12	0.01	0.08	0.11	3.83	3.74	0.01	0.04	0.01	0.02	0.01	1.28	99.13	1.23	0.99	0.15	0.95
13	S13W	482665	2284657	78.08	0.06	11.34	1.27	0.02	0.14	0.14	5.15	1.74	0.04	0.03	0.01	0.01	0.00	0.87	98.89	0.62	0.59	0.20	1.05
14	S14W	482469	2284675	80.26	0.07	10.13	0.91	0.10	0.04	0.06	5.74	0.01	0.08	0.01	0.01	0.01	0.00	0.84	98.29	0.74	0.99	0.20	0.69
15	S15W	482522	2284656	81.06	0.06	10.35	0.91	0.06	0.08	0.10	5.79	0.20	0.37	0.02	0.01	0.01	0.03	0.87	99.89	0.66	1.07	0.15	0.74
16	S16W	482610	2284623	78.26	0.07	11.61	0.97	0.02	0.12	0.13	3.21	3.82	0.01	0.05	0.01	0.01	0.01	1.10	99,39	0.94	1.03	0.10	0.86
17	S17W	482656	2284607	76.90	0.06	12.05	0.90	0.01	0.13	0.11	2.65	4.21	0.08	0.05	0.00	0.01	0.00	1.53	98.70	1.27	1.00	0.20	0.68
18	S18W	482505	2284609	80.15	0.06	10.19	0.66	0.03	0.11	0.09	6.36	0.07	0.02	0.00	0.01	0.01	0.00	0.92	99.42	0.77	0.70	0.10	0.55
19	S19W	482594	2284577	78.90	0.07	11.43	0.69	0.02	0.09	0.06	4.07	2.79	0.02	0.04	0.01	0.01	0.00	1.25	99.45	0.91	0.94	0.15	0.52
20	S20W	482630	2284564	79.85	0.05	11.03	0.72	0.04	0.16	0.03	2.18	3.07	0.04	0.05	0.01	0.01	0.00	2.56	99.80	1.53	0.76	0.10	0.61
21	S21W	482487	2284562	81.05	0.09	12.59	0.30	0.03	0.05	0.05	0.01	0.08	0.16	0.00	0.01	0.01	-0.00	4.81	99,23	2.00	0.92	0.20	0.08
22	S22W	482525	2284548	78.11	0.07	10.31	1.30	0.13	0.14	0.20	4.17	2.29	0.03	0.04	0.03	0.02	0.01	1.29	98,12	1.27	1.06	0.10	1.19
23	S23W	482576	2284530	78.11	0.07														98.54	1.01	1.43	0.10	0.53
24	S24W	482622	2284513		 	9.74	0.53												99.15	1.91	0.97	0.10	0.42
25	S25W	482517	2284498			9.93									0.02				99.68	0.92	1.49	0.25	0.45
26	S26W	482560	2284482		!										0.02				98.76	2.07	0.50	0.10	0.34
27	S27W	482581	2284474		· · · · · · · · · · · · · · · · · · ·	11.87						[0.03			1.06	98.44	0.64			
28	S28W	482454	2284467												0.03				100.40	1.99	0.79	0.10	
29	S29W	482501	2284451		 	11.54									0.02			0.80	99.01	0.91	0.87	0.10	
30	S30W	482541	2284436			11.06			ļ						0.02				99.88	0.69			
31	S31W	482385	2284439												0.03				99.60	0.54	0.57	0.20	
32	S32W	482435	2284421			10.79									0.02			0.72	99,60	0.77	0.44	0.10	0.46
33	S33W	482368	2284398	79.84	0.08	11.07	0.94	0.02	0.12	0.18	5.79	0.36	0.07	0.00	0.01	0.01	0.00	1.49	99.98	0.86	0.80	0.25	0.66

(Apx. 6 - Continued)

Ser.	Sample	Coordi	nation						· ·			Cl	nemica	1 Com	positi	on (%)							
No.	No.	Е	N	SiO ₂	TiO ₂	A1 ₂ 0 ₃	Fe ₂ 0 ₃	MnO	MgO	Ca0	Na ₂ 0	K ₂ O	P ₂ O ₅	BaO	Cr ₂ 0 ₃	Zr02	Cu0	LOI	Total	H ₂ O(+)	H ₂ O(-)	Fe0	Fe ₂ 0 ₃
34	S34W	482421	2284383	77.95	0.08	11.45	0.91	0.02	0.06	0.10	6.26	0.06	0.10	0.00	0.01	0.01	-0.00	1.11	98.12	0.88	0.81	0.20	0.69
35	S35W	482471	2284522	78.83	0.09	11.48	0.43	0.02	0.11	0.15	6.21	0.36	0.09	0.00	0.02	0.01	0.00	0.98	98.78	1.00	0.90	0.15	0.26
36	S36W	482564	2284778	77.70	0.08	11.72	1.33	0.01	0.07	0.07	6.15	0.02	0.12	0.00	0.01	0.01	-0.00	1.00	98.29	0.86	0.80	0.20	1.11
37	S37W	482462	2284351	81,21	0.08	9,27	1.86	0.11	0.11	0.14	1.65	0.28	0.08	0.00	0.01	0.01	0.00	3.22	98.04	2.78	0.72	0.15	1.69
38	S38W	482551	2284596	77.98	0.08	11.52	0.81	0.01	0.12	0.10	2.38	3.92	0.04	0.05	0.01	0.01	0.00	1.73	98.75	1.28	0.97	1.10	0.70
39	S39W	482569	2284645	80.76	0.07	10.65	0.90	0.02	0.06	0.10	3.44	0.41	0.03	0.01	0.01	0.01	0.00	2.28	98.76	2.08	0.69	0.25	0.62
40	S40W	482686	2284836	79.15	0.06	11.13	0.76	0.02	0.10	0.08	6.52	0.11	0.02	0.00	0.03	0.01	0.00	0.50	98.50	0.47	0.89	0.20	0.54
aver	age valu	ue of 40	Samples	79.35	0.08	11.05	0.96	0.04	0.10	0.11	4.16	1.40	0.08	0.02	0.02	0.01	0.00	1.62	99.01	1.19	0.90	0.16	0.78

Ser.	Sample	Dril1	Sample									Cl	nemica	1 Com	positi	on (%)							
No.	No.	No.	depth (m)	SiO ₂	TiO ₂	A1203	Fe ₂ 0 ₃	Mn0	MgO	Ca0	Na ₂ 0	K ₂ 0	P ₂ O ₅	BaO	Cr203	ZrO2	Cu0	LOI	Total	H ₂ O(+)	H ₂ 0(-)	Fe0	Fe ₂ 0 ₃ *
1	DS1-1W	MJM-1	20	77,64	0.07	11.43	0.67	0.03	0.04	0.08	7.07	0.52	0.04	0.00	0.04	0.01	0.00	0.38	98.02	0.35	0.38	0.20	0.45
2	DS1-2W	MJM-1	57	79.37	0.07	10.56	1.80	0.02	0.04	0.13	6.35	0.78	0.04	0.00	0.04	0.01	0.00	0.69	99.92	0.36	0.61	0.10	1.69
3	DS1-3W	MJM-1	258	74.85	0.08	10.96	0.73	0.10	0.21	3.41	5.32	0.55	0.01	0.00	0.04	0.01	0.00	2.04	98.33	0.92	0.56	0.15	0.56
4	DS2-1W	MJM-2	18	79.41	0.07	11.45	0.74	0.03	0.05	0.07	6.97	0.35	0,03	0.00	0.03	0.01	0.00	0.55	99.77	0.39	0.44	0.20	0.52
5	DS2-2W	MJM-2	45	77.91	0.07	11.24	0.99	0.01	0.13	0.18	6.48	0.47	0.05	0.00	0.04	0.01	0.00	0.72	98.31	0.47	0.83	0.15	0.82
6	DS2-3W	MJM-2	.211	79.91	0.08	10.63	1.21	0.04	0.17	1.06	5.04	0.33	0.04	0.00	0.03	0.01	0.00	1.79	99.35	1.36	0.68	0.10	1.10
7	DS2-4W	MJM-2	235	79.08	0.07	11.35	0.67	0.02	0.24	0.82	5.44	0.43	0.03	0.00	0.03	0.01	0.00	1.59	99.80	1.11	1.36	0.15	0.50
8	DS2-5W	MJM-2	254	78.30	0.07	11.36	0.90	0.03	0.26	2.24	3.90	0.59	0.05	0.00	0.03	0.02	0.00	2.43	100.19	1.70	1.38	0.20	0.68
9	DS2-6W	MJM-2	268	77.14	0.07	11.36	1.01	0.04	0.22	0.85	5.95	0.45	0.05	0.01	0.03	0.02	0.00	1,21	98.42	0.78	0.69	0.36	0.61
10	DS2-7W	МЈМ-2	295	75.60	0.07	11.70	1.37	0.03	0.18	0.60	4.20	4.17	0.07	0.06	0.04	0.01	0.00	0.65	98.74	0.57	0.46	0.48	0.84
ave	rage val	lue of 1	.0 Samples	77.82	0.07	11.20	1.01	0.04	0.15	0.94	5.67	0.86	0.04	0.01	0.04	0.01	0.00	1.21	99.08	0.80	0.74	0.21	0.78

The Fe_2o_3 listed in the whole Rock Analysis is based on Total Iron.

Apx. 7 Chemical Analysis of Ore Samples

(Ore Showing)

Area	Ser	Sample	Coordinates	*	Occurrence			Metal Content	<u>s</u>	
ļ	No.	No.	E N	Location		Au g/t	Ag g/t	Cu %	Pb %	Zn %
{	1	VL-2M	487752 2286347	PNo.8	brecciated oxides ore	0.03	3	0.01	0.06	0.72
[<u>Z</u>	VL-3M	487857 2286384	TNo. 8	brecciated oxides ore	<0.01	14	0.02	0.55	44.78
[3	VL-5M	487725 2286314	TNo.11	brecciated oxides ore		4	Tr.	0.04	37.77
1	4	VL-8M	487895 2286390	TNo. 6	brecciated oxides ore		10	0.01	6.66	0.90
1	5	VL-11M	487975 2286508	TNo. 2	brecciated oxides ore		7	Tr.	7.90	1.91
}	<u> </u>	VL-aM	487982 2286267	PNo. 2	brecciated oxides ore	< 0.01	12	0.02	1.18	7.61
}	7	NP-2M	487972 2285791	PNo .14	brecciated oxides ore	0.05	15	0.01	2.34	18.96
1 _		NP-3M	487977 2285837	PNo.14	porous oxides ore	0.01	8	0.01	1.63	4.08
1	1 9	NP-5M	488049 2285965	PNo .11	brecciated oxides ore	< 0.01	6	0.02	1.98	4.65
8	10	NP-7M	488047 2285964	PNo 11	brecciated oxides ore		7	0.02	1.93	3.97
TDENC	11	NP-8M	488107 2285953	PNo .13	brecciated oxides ore	<u> </u>	4	0.02	1.33	2.62
\(\begin{array}{c} \begin{array}{c} \eqric{1}{2} \eqric	12	NP-9M	488083 2285969	PNo.12	brecciated oxides ore		5	Tr.	0.93	23.76
ROV	13	NP-10M	488084 2285969	Pno.12	brecciated oxides ore	< 0.01	3	Tr.	0.91	6.41
1 -	14	U14-1M	487761 2286240	TNo. 1	oxided shale	_	3	0.01	0.01	0.22
ł	15	KP-1M	488048 2286242	PNo. 1	massive oxides ore	0.01	11	0.01	6.06	0.52
}	16	KP-2M	488048 2286242	PNo. 1	massive oxides ore	_	10	0.03	2.56	2.63
1	17	KP-3M	488035 2286211	PNo.1	disseminated oxides ore		13	0.08	1.38	41.78
}		KP-4M	487915 2286292	PNo. 2	brecciated oxides ore	0.01	19	0.01	0.94	32.87
}		KP-6M	487951 2286337	PNo. 3	brecciated oxides ore	0.03	21	0.05	8.80	33.39
	20	KP-8M	487793 2286396	TNo.10	disseminated oxides ore		18	0.01	10.28	25.71
	21	KP-9M	487822 2286305	PNo. 6	quartz-barite rock in the oxide zone	_	8	0.04	0.24	43.25
	22	KD-1	482509 2284632	D-D'	brecciated quartz vein	0.02	0.2			
SAN CLE-	23	SHQ-1	482535 2284652	н-н'	silicious brecciated rhyolite	0.10	1.0			

^{*}SAN CLEMENTE Area; trench number PROVIDENCIA Area; open pit and tunnel number

(Core Sample)

Area	Ser	Sample	Depth	Thick-	Occurrence			Metal Content	ts	
	No.	No.	(m)	ness(m)		Au g/t	Ag g/t	Cu %	Pb %	Zn %
i	24	DS1-1M			strongly py.diss, 62.80~62.82; qtz.vein with sp.,cp.,py.		4	0.04	0.14	0.49
1	25		63.00 ~ 64.00		strongly py.diss., sp. spot		3	0.01	0.14	0.53
1	26		$244.00 \sim 245.00$		strongly py.diss., 244.80~245.10; sheared zone		3	0.08	0.30	0.94
] 巴	21		$298.00 \sim 299.00$		strongly py.diss., weakly sp. diss.		33	Tr.	0.08	0.25
LEMENTE	28	DS2-1M		1.00	70.50~70.55; ga., sp., cp., spot, 70.70~70.33. white clay		3	Tr.	0.12	0.06
🚡	30	DS2-2M	$74.00 \sim 75.00$		weakly silicified 74.25~74.65; sp.,ga.,cp. spot		5	0.02	0.16	0.59
3		DC2 4M	$174.00 \sim 175.00$	1.00	174.70~179.65; strongly py.diss.,sp.,ga.,cp., diss.		3	0.01	0.48	0.81
-		DC2 FM	$175.00 \sim 176.00$	0 1.00	177.00~179.65; strongly sp., ga. diss.		2	Tr.	1.48	3.74
SAN		DC2 5M	$176.00 \sim 177.00$	1.00	178.30~178.70; strongly silicified		2	0.01	0.33	0.78
1	34	DC2 7M	$177.00 \sim 178.00$	1.00			3	0.02	1.63	3.45
{		DC2 0M	$178.00 \sim 179.00$		202 00 204 00		3	0.03	1.50	4.68
1		DC2 OM	$202.00 \sim 203.00$	1.00	202.00~204.00 strongly silicified and py.diss.		<u> </u>	Tr.	0.14	0.47
 	37		203.00~204.00		weakly sp., ga., diss.		1	Tr.	0.16	0.12
\ <u>\</u>	38	DP4-1 DP4-2	18.05 ~ 18.20		massive oxides ore		6	Tr.	0.02	0.11
	39		57.85 ~ 58.10		massive oxides ore with calcite vein		7	Tr.	1.69	1.84
IDENS		DP4-3	58.10 ~ 58.40		massive oxides ore		7	Tr.	0.58	0.76
	40	DP4-4 DP4-5	$67.00 \sim 67.70$		massive oxides ore		12	0.01	1.32	0.64
PROV	42		$67.70 \sim 68.70$		brecciated oxides ore		14	0.01	2.25	0.70
		DP4-6	$72.35 \sim 72.62$		slime		6	0.01	0.32	0.71
L	43	DP4-7	$96.72 \sim 97.12$	4 0.40	massive oxides ore with calcite veinlets		4	0.01	0.13	29.16

Apx. 8 Quantitative Analysis of Ore Minerals by Electron Probe Microanalyzer

Si	ample	Ele	ctrum		Т	etrahe	drite								Sphale	rite					Born	ite
			NE-1		DS1-4P	DS2-2P	DS2-3P	DS2-4P	DS1	-1P		DS1	-5P		DS2	-1P	Ι)S2-2P		DS2 -4P	DS2-	1P
eleme	nt	1	2	3	1	1	1	1	1	2	1	2	3	4	1	2	1	2	3	1	1	2
	Au	76.3	77.0	76.7	_																	
	Ag	23.2	21.8	21.8	0.3	13.1	4.3	12.0										ĺ	<u> </u>		0.5	0.3
	Cu				36.1	28.2	36.2	29.4	0.2	0.2	0.5	0.5	0.3	1.5	0.5	0.4	0.2	0.2	0.2	1.6	62.5	61.9
	Zn				6.3	7.6	3.6	2.2	65.1	64.4	64.5	65.2	65.4	63.3	64.3	63.4	65.0	66.4	64.0	61.9	1	
Weight	Fe				4.8	1.8	1.0	7.1	2.1	1.5	1.4	0.1	1.0	0.8	1.4	1.8	1.1	1.2	2.4	2.8	11.8	12.0
%	Mn								-	-	_	_	_	-	_	-	_	_	_	-		
	Cd								0.5	0.5	0.5	0.7	0.5	0.4	0.6	0.6	0.6	0.6	0.6	0.6	•	
	As]		2.1	1.3	1.5	1.4														
	Sb				26.7	26.6	26.4	26.6														
	S				24.7	22.5	25.2	22.8	32.8	32.8	33.0	31.7	32.9	32.6	33.5	33.0	33.4	32.6	32.8	32.6	25.8	25.5
	Total	99.4	98.8	98.5	101.0	101.2	98.2	101.5	100.6	99.4	99.9	98.1	100.1	98.6	100.3	99.2	100.3	100.9	100.1	99.4	100.5	99.7
,	Au	64.3	65.9	65.8	<u>.</u>																	
	Ag	35.7	34.1	34.2	0.2	7.4	2.3	6.6	<u> </u>												0.2	0.2
	Cu	ļ			32.1	26.9	33.5	27.5	0.1	0.1	0.4	0.4	0.2	1.2	0.4	0.3	0.1	0.1	0,2	1.2	49.1	49.1
ļ	Zn				5.4	7.0	3.2	2.0	48.3	48.3	48.1	49.8	48.7	47.8	47.6	47.5	48.2	49.3	47.6	46.4		
Atomic	Fe				4.9	1.9	1.0	7.5	1.8	1.3	1.2	0.1	0.9	0.7	1.2	1.6	0.9	1.0	2.1	2.4	10.6	10.8
ą,	Mn								–	_	_	_	_	_	_	_	-		_	_		
	Cd								0.2	0.2	0.2	0.3	0.2	0.2	0.3	0.3	0.3	0.3	0.3	0.3		
	As				1.6	1.0	1.2	1.1														
	Sb				12.4	13.2	12.7	13.0														
	S				43.6	42.6	46.1	42.2	49.6	50.1	50.2	49.4	50.0	50.1	50.6	\$0.4	50.5	49.4	49.9	49.8	40.1	40.0

sam-	Zn-S:	ilicate	e(weigl	
ele\	KP-		KP-9)
ment	1	2	1	2
SiO ₂	23.55	23.35	22.99	23.28
TiO ₂	-	0.01	0.01	_
Al ₂ O ₃	0.09	0.09	0.09	0.10
Fe0	0.04	0.03	0.03	0.02
ZnO	67.64	68.82	67.94	66.68
MnO	0.05	0.02	_	0.01
Ca0	0.28	0.42	0.03	0.03
Total	91.66	92.73	91.08	90.11

Apx. 9 Analytical Value of Rock Samples for Geochemical Exploration in the SAN CLEMENTE Area

Ser-No-	Samp.No.	Αu	Ag	San,No.	Samp.No.	Au	Ag	Ser.No.	Samp.No.	Au	Ag	Ser-No	Samp.No.	Au	Ag
1 2 3 4 5	A - 1 A - 2 A - 3 A - 4 A - 5	1.60 0.58 0.01 0.47 0.28	35.4 14.3 0.2 9.8 6.5	51 52 53 54 55		0.01 0.01 0.01 0.02 0.02	0.2 0.1 0.2 0.5 0.2	101 102 103 104 105	B - 43 B - 44 B - 45 B - 46 B - 47	0.10 0.20 2.15 0.05 2.70	0.6 0.1 0.3 0.1 0.2	151 152 153 154 155		0.01 0.01 0.01 0.31 0.45	0.2 0.2 0.1 6.5 3.2
6 7 8 9 10	A - 6 A - 7 A - 8 A - 9 A - 10	0.40 0.02 0.01 0.20 0.36	13.4 0.1 0.4 4.1 5.9	56 57 58 59 60	A - 56 A - 57 A - 58 B - 1 < B - 2 <	0.02 0.03 0.01 0.01 0.01	0.3 0.3 < 0.1 0.1 0.1	106 107 108 109 110	B - 48 B - 49 B - 50 B - 51 < B - 52	0.01 0.01 0.19 0.01 0.01	0.1 0.1 0.2 0.6 0.1	156 157 158 159 160	_	0.01 0.01 0.01	0.1 0.1 0.3 0.1 0.1
11 12 13 14 15	A - 11 A - 12 A - 13 A - 14 A - 15	0.17 0.34 0.25 0.18 0.14	1.8 8.7 5.9 4.0 1.6	61 62 63 64 65	B - 3 B - 4 < B - 5 B - 6 < B - 7	0.05	0.1 0.1 0.1 0.1 0.3	111 112 113 114 115	B - 53 B - 54 B - 55 B - 56 B - 57	0.01 0.03 0.09 0.04 0.07	0.1 0.2 0.1 1.1 0.2	161 162 163 164 165	B -105 < C - 1	0.01	0.1 0.1 0.1 0.1 0.1
16 17 18 19 20	A - 16 A - 17 A - 18 A - 19 A - 20.	0.09 0.23 0.03 0.05 0.02	1.5 3.2 0.1 < 0.1 0.1	66 67 68 69 70	B - 9 < B - 10 < B - 11	0.01 0.01 0.01 0.01 0.01	0.1 0.1 0.1 0.2 0.1	116 117 118 119 120	B - 58 < B - 59 B - 60 B - 61 B - 62	0.01 0.06 0.10 0.01 0.02	0.1 0.1 0.3 0.3	166 167 168 169 170	C - 3 C - 4 < C - 5 C - 6 C - 7	0.01 0.01 0.01 0.01 0.03	2.1 0.3 1.2 0.5 1.9
21 22 23 24 25	A - 21 A - 22 A - 23 A - 24 A - 25	0.03 0.01 0.03 0.09 0.01	< 0.1 0.1 0.4 < 0.1 0.1	71 72 73 74 75	B - 14 < B - 15 <	0.01 0.01 0.01 0.01 0.01	0.1 0.1 0.2 0.1 0.1	121 122 123 124 125	B - 63 B - 64 B - 65 B - 66 B - 67	0.03 0.07 0.02 0.09 0.16	0.3 0.1 0.4 0.1	171 172 173 174 175	C'- 8 < C- 9 C-10 < C-11 C-12	0.01 0.01 0.01 0.02 0.03	0.1 0.2 0.1 0.1
26 27 28 29 30	A - 26 A - 27 A - 28 A - 29 A - 30	0.04 0.04 0.01 0.01 0.01	0.7 0.3 0.3 0.3 0.5	76 77 78 79 80	B - 18 < 8 - 19 B - 20 < B - 21 < B - 22		0.1 0.2 0.1 0.1	126 127 128 129 130	B - 68 B - 69 B - 70 B - 71 B - 72	0.02 0.04 0.04 0.45 0.05	0.2 0.1 0.1 0.1 0.2	176 177 178 179 180	C - 13 C - 14 < C - 15 < C - 16 C - 17	0.01 0.01 0.01 0.04 0.02	0.3 0.2 0.5 1.9
31 32 33 34 35	A - 31 A - 32 A - 33 A - 34 A - 35	0.02 0.04 0.01 0.07 0.01	2.7 0.4 0.1 0.1 0.2	81 82 83 84 85	B - 23 B - 24 B - 25 < B - 26 B - 27 <	0.22 0.05 0.01 0.10	0.4 0.1 0.1 0.3 0.1	131 132 133 134 135	B - 73 B - 74 B - 75 B - 76 B - 77	0.07 0.15 0.01 0.02 0.01	0.2 0.1 0.1 0.3 0.1	181 182 183 184 185	C - 18 < C - 19 < C - 20 C - 21 < C - 22 <	0.01	0.5 0.5 0.6 0.5
36 37 38 39 40	A - 36 A - 37 A - 38 A - 39 A - 40	0.01 0.04 0.01 0.02 0.02		86 87 88 89 90	B - 28 B - 29 < B - 30 < B - 31 < B - 32	0.01	1.6 0.2 0.2 0.1 1.0	136 137 138 139 140	B - 78 B - 79 B - 80 B - 81 B - 82	0.03 0.45 0.65 0.03	0.2 0.1 0.2 0.1 0.1	186 187 188 189 190	C - 23 < C - 24 < C - 25 < C - 26 < C - 27 <	0.01 0.01 0.01	0.3 0.6 0.2 0.1 0.1
41 42 43 44 45	A - 41 A - 42 A - 43 A - 44 A - 45	0.03 0.02 0.02 0.01 0.03	< 0.1 0.1 0.2	91 92 93 94 95	B - 33 B - 34 < B - 35 < B - 36 B - 37		0.2 0.7 0.6 0.1	141 142 143 144 145	B - 83 < B - 84 < B - 85 < B - 86 < B - 87 <	0.01	0.1 0.3 0.1 0.1	191 192 193 194 195	C - 28 < C - 29 C - 30 < C - 31 < C - 32 <	0.01 0.01 0.01	0.1 0.5 0.2 0.1 0.1
46 47 48 49 50	A - 46 A - 47 A - 48 A - 49 A - 50	0.03 0.02 0.02 0.02 0.01	< 0.1 0.1	. 96 97 98 99 100	B - 38 B - 39 B - 40 B - 41 B - 42	0.02 0.04 0.10 0.02 0.07	0.1 0.1 0.1	146 147 148 149 150	B - 89	0.01 0.10 0.01 0.01 0.01	0.1 4.5 0.1 0.1 0.1	196 197 198 199 200	C - 33 < C - 34 < C - 35 < C - 36 < C - 37 <	0.01 0.01 0.01	0.1 0.1 0.4 0.1 0.1

(Apx.9 Continued)

Ser.No.	Samp.No.	Àu	Ag	Ser.No.	Samp.No.	Au	Ag.	Ser.No.	Samp.No.	Au	Ag	Ser. No	. Samp.No.	Au	Ag
201 202 203 204 205	C - 40 C - 41	< 0.01 0.01	0.2 0.2 0.2 0.2	251 252 253 254 255	C - 88 < C - 89 < C - 90 < C - 91 C - 92	0.01	0.3 0.4 0.3 0.3	301 302 303 304 305	D - 38 < D - 39 < D - 40 < D - 41 < D - 42 <	0.01 0.01 0.01	0.1 0.1 0.6 0.3 0.1	351 352 353 354 355	D - 88 < D - 89 < D - 90 < D - 91 < D - 92 <	0.01 0.01 0.01	0.6 1.3 0.1 0.1
206 207 208 209 210	C - 43 C - 44 C - 45 C - 46 C - 47	< 0.01 0.01 < 0.01 0.01 0.04	0.1 0.1 0.1 0.2 0.1	256 257 258 259 260	C - 93 C - 94 < C - 95 C - 96 C - 97		0.1 0.1 1.3 1.3 3.0	306 307 308 309 310	D - 43 D - 44 < D - 45 D - 46 < D - 47 <	0.01	0.1 0.1 0.1 0.1	356 357 358 359 360	D - 93 < D - 94 < D - 95 < E - 1 E - 2	0.01	0.1 0.1 0.1 4.1 0.4
211 212 213 214 215	C - 49 C - 50 C - 51	< 0.01 0.02 0.02 0.02 0.01	0.1 0.2 0.1 0.1 0.1	261 262 263 264 265		0.06 0.01 0.04 0.01 0.01	0.4 0.1 0.1 0.3 0.3	311 312 313 314 315	D - 48 < D - 49 < D - 50 < D - 51 < D - 52 <	0.01 0.01 0.01	0.1 0.1 0.1 0.1	361 362 363 364 365		0.01 0.05 0.01 0.01 0.01	0.1 1.8 0.1 0.1
216 217 218 219 220	C - 53 C - 54 C - 55 C - 56 C - 57	0.01 0.03 0.02 < 0.01 < 0.01	0.1 0.1 0.4 0.1 0.3	266 267 268 269 270	D - 4 < D - 5 <	0.01 0.01 0.01 0.01 0.02	0.2 0.3 0.6 0.8 0.7	316 317 318 319 320	D - 53 < D - 54 < D - 55 < D - 56 < D - 57 <	0.01 0.01 0.01	0.1 0.1 0.4 0.1 0.1	366 367 368 369 370		0.01 0.01 0.01 0.01 0.02	0.1 0.1 0.1 0.1 0.1
221 222 223 224 - 225		< 0.01 < 0.01 .0.16 0.07 < 0.01	0.2 0.3 0.3 0.1	271 272 273 274 275			0.9 0.4 0.4 0.3 0.5	321 322 323 324 325	D - 58 < D - 59 < D - 60 D - 61 < D - 62 <	0.01 0.01 0.01	0.1 0.1 0.1 0.1	371 372 373 374 375	E - 13 E - 14 E - 15 < E - 16 E - 17	0.01 0.01 0.01 0.02 0.01	0.5 0.2 0.4 1.3 0.3
226 227 228 229 230			0.1 0.1 0.1 0.1	276 277 278 279 280	D - 15	0.02 0.01 0.01 0.01 0.08	0.7 0.3 0.8 0.3 0.6	326 327 328 329 330	D ÷ 63 < D = 64 D = 65 < D = 66 < D = 67	0.01	0.1 0.7 0.1 0.6 0.1	376 377 378 379 380	E - 18 E - 19 E - 20 E - 21 E - 22	0.04 0.21 0.30 0.03 0.02	0.3 0.2 1.3 0.1 0.1
231 232 233 234 235	C - 69	< 0.01 < 0.01 < 0.01 0.02 0.27	0.1 0.2 0.1 0.1	281 282 283 284 285	D - 18 D - 19 D - 20 < D - 21 < D - 22 <		2.4 2.1 0.5 0.5 0.1	331 332 333 334 335	D - 68 D - 69 < D - 70 < D - 71 < D - 72	0.01	0.1 0.1 0.1 0.1	381 382 383 384 385	E - 23 E - 24 E - 25 E - 26 E - 27	0.10 0.04 0.04 0.03 0.23	0.1 0.2 0.1 0.1 0.1
236 237 238 239 240	C - 74	< 0.01 0.02 < 0.01 0.04 0.03	0.1 0.1 0.2 0.3	286 287 288 289 290	D - 23 < D - 24 D - 25 D - 26 D - 27	0.01 0.03 0.02 0.16 0.02	0.4 0.6 1.0 6.8 0.6	336 337 338 339 340	D - 73 < D - 74 D - 75 < D - 76 < D - 77 <	0.03 0.01 0.01	0.1 0.1 0.1 0.7 0.1	386 387 388 389 390	F - 2 F - 3	0.01 0.04 0.02 0.01 0.01	0.3 2.2 2.1 0.2 0.2
241 242 243 244 245		0.02 0.02 7.90 < 0.01 < 0.01	0.1 0.1 1.5 0.4 0.2	291 292 293 294 295	D - 30 <	0.33 0.01 0.01 0.01 0.01	12.9 0.1 0.1 0.1 0.5	341 342 343 344 345	D - 78 < D - 79 < D - 80 < D - 81 < D - 82 <	0.01 0.01 0.01	0.1 0.1 0.1 0.1	391 392 393 394 395	F - 6 F - 7 F - 8 F - 9 F - 10	0.02 0.02 0.01 0.02 0.07	0.5 0.3 1.9 0.3 0.1
246 247 248 249 250		0.03 0.02 < 0.01 < 0.01 0.02	0.1 0.1 0.2 0.1	296 297 298 299 300	D - 33 < D - 34 < D - 35 < D - 36 < D - 37 <	0.01	0.1 0.1 0.2 0.1 0.2	346 347 348 349 350	D - 83 < D - 84 D - 85 D - 86 D - 87 <	0.10 0.13 0.05	0.1 2.7 4.5 1.1 0.5	396 397 398 399 400	F - 11 F - 12 F - 13 F - 14 F - 15	0.01 0.01 0.02 0.02 0.04	0.2 0.7 0.1 0.1 1.8

(Apx.9 Continued)

Ser.No.	Samp.No.	Au	Ag	Ser No	- Samp No	Au	Ag	Ser.No.	Samp.No.	Au	Ag	Ser.No.	Samp.No.	Au	Ag
401 402 403 404 405	F - 17 F - 18 F - 19	0.08 0.16 0.11 0.02 0.01	0.7 1.9 0.7 0.3 0.1	451 452 453 454 455	G - 20 <	0.01 0.01 0.01 0.01 0.01	0.1 0.3 0.1 0.1 0.1	501 502 503 504 505	H - 15 H - 16 H - 17 H - 18 H - 19	0.01 < 0.01 0.05 0.03 0.01	0.5 0.3 0.1 0.1	551 552 553 554 555	I - 11 I - 12 < I - 13 < I - 14 < I - 15 <	0.01	0.7 0.3 0.1 0.1
406 407 408 409 410	F - 21 F - 22 F - 23 F - 24 F - 25	0.01 0.02 0.01 0.02 0.02	0.4 0.1 0.1 0.1 0.3	456 457 458 459 460	G - 22 G - 23 G - 24 G - 25 G - 26	0.02 0.01 0.40 0.65 0.02	0.1 0.1 1.8 0.4 0.1	506 507 508 509 510	H - 20 H - 21 H - 22 H - 23 H - 24	0.01 0.02 < 0.01 0.01 < 0.01	0.3 1.0 0.4 0.6 0.6	556 557 558 559 560	I - 16 I - 17 < I - 18 < I - 19 I - 20		0.3 0.1 0.1 0.1
411 412 413 414 415	F - 26 F - 27 F - 28 F - 29 F - 30 <	0.01 0.01 0.01 0.03 0.01	0.1 0.1 0.1 0.1	461 462 463 464 465	G - 27 G - 28 G - 29 G - 30 G - 31	0.04 0.01 0.03 0.04 0.05	0.4 0.1 0.1 0.1 0.2	511 512 513 514 515	H - 25 H - 26 H - 27 H - 28 H - 29	< 0.01 0.01 0.01 0.18 0.03	1.2 0.2 0.1 0.3 0.6	561 562 563 564 565	1 - 21 1 - 22 1 - 23 < 1 - 24 1 - 25	0.06 0.03 0.01 0.03 0.06	0.1 0.1 0.1 0.1
416 417 418 419 420	F - 31 F - 32 F - 33 F - 34 F - 35	0.02 2.25 0.58 0.60 0.01	0.5 0.1 0.1 0.1	466 467 468 469 470	G - 32 G - 33 G - 34 G - 35 G - 36	0.01 0.03 0.34 0.03 0.02	0.5 0.2 0.1 0.1	516 517 518 519 520	H - 30 H - 31 H - 32 H - 33 H - 34	0.75 0.09 0.06 0.09 0.29	0.8 0.3 1.0 0.4 0.1	566 567 568 569 570	1 - 26 1 - 27 1 - 28 1 - 29 1 - 30	0.02 0.02 0.02 0.03 0.07	0.1 0.1 0.1 0.2 0.1
421 422 423 424 425	_E36 F _ 37 F _ 38 F _ 39 F _ 40	0.04 0.03 0.08 0.08 0.10	0.1 0.1 0.1 0.6 0.1	471 472 473 474 475	G - 37 G - 38 G - 39 G - 40 G - 41	0.01 0.01 0.02 0.03 0.05	0.3 0.1 0.1 0.1	521 522 523 524 525	H - 35 H - 36 H - 37 H - 38 H - 39	4.35 0.80 0.01 0.07 0.02	1.9 0.8 0.3 0.1	571 572 573 574 575	1 - 31 I - 32 I - 33 I - 34 I - 35	0.38 0.16 0.06 0.07 0.06	0.2 .0.1 0.1 0.6
426 427 428 429 430	F - 41 F - 42 F - 43 F - 44 F - 45	0.07 0.02 0.02 1.13 0.04	0.1 0.1 0.6 0.2 0.1	476 477 478 479 480	G - 42. G - 43 G - 45 G - 46		0.1 0.1 0.2 0.3	526 527 528 529 530	H - 40 H - 41 H - 42 H - 43 H - 44	0.02 0.04 0.14 0.06 0.03	0.5 0.1 0.1 0.2 0.6	576 577 578 579 580	I - 36 I - 37 I - 38 I - 39 I - 40	1.15 0.06 0.45 0.14 0.50	0.2 0.2 0.1 0.2 0.3
431 432 433 434 435	F - 46 F - 47 F - 48 F - 49 < G - 1	6.60 0.01 0.01 0.01 0.02	0.1 0.1 0.1 0.1 0.1	481 482 483 484 485	G - 47 G - 48 G - 49 G - 50 G - 51	0.03 (0.01 0.05 0.04 0.02	0.1 0.3 2.1 0.2 0.1	531 532 533 534 535	H - 45 H - 46 H - 47 H - 48 H - 49	<pre></pre>	0.6 0.2 0.2 0.2 0.1	581 582 583 584 585	I - 41 J - 1 < J - 2 < J - 3 J - 4	0.60 0.01 0.01 0.02 0.02	0.1 0.2 0.2 0.6 0.1
436 437 438 439 440	G - 2 G - 3 G - 4 G - 5 G - 6	0.09 0.10 0.02 0.01 0.02	0.7 0.1 0.1 0.1 0.4	486 487 488 489 490	G - 52 H - 1 H - 2 H - 3 H - 4	0.04 0.05 0.07 0.01 0.01	0.1 3.5 2.2 0.1 0.1	536 537 538 539 540	H - 50 H - 51 H - 52 H - 53 H - 54	0.01 0.04 0.04 0.02 0.02	0.1 0.1 0.1 0.1 0.1	586 587 588 589 590	J - 6 < J - 7 J - 8	0.01 0.01 0.02 0.04 0.01	0.1 0.3 0.5 0.2 0.1
441 442 443 444 445	G - 8	0.01 0.04 0.01 0.03 0.01	0.1 0.3 0.1 0.1 0.2	491 492 493 494 495	H - 8	0.01 0.01 0.01 0.01 0.01	0.1 0.1 0.1 0.1	541 542 543 544 545	1 - 2 1 - 3 1 - 4	< 0.01 < 0.01 < 0.01 0.01 < 0.01	0.1 0.1 0.1 0.3 0.1	591 592 593 594 595	J - 10 < J - 11 < J - 12 < J - 13 < J - 14 <	0.01 0.01 0.01	0.2 0.1 0.2 0.1 0.1
446 447 448 449 450	G - 12 < G - 13 G - 14 G - 15 G - 16 <	0.01 0.04 0.04 0.01 0.01	0.1 0.3 0.8 0.1 0.1	496 497 498 499 500	H - 10 H - 11 H - 12 H - 13 H - 14	0.02 0.03 0.01 1.00 0.05	0.2 0.1 0.6 0.7 0.1	546 547 548 549 550	1 - 7 1 - 8 1 - 9	< 0.01 < 0.01 < 0.01 0.01 < 0.01	0.1 0.1 0.3 0.1	596 597 598 599 600	J - 15 < J - 16 J - 17 J - 18 J - 19	0.01 0.04 0.02 0.02 0.03	0.1 0.1 0.5 0.1 0.1

(Apx.9 Continued)

Ser.No. Semp.No. Au Ag				<u> </u>	 		(A	рх.9
602 J - 21 0.02 0.1 652 K - 31 < 0.01	Ser.No.	Samp.No.	Au	Ag	Ser.No.	Samp.No.	Au	Ag
607 J - 26 0.07 0.4 657 L - 4 0.01 0.1 608 J - 27 0.03 0.3 658 L - 5 0.01 0.1 609 J - 28 0.02 0.1 659 L - 6 0.02 0.1 610 J - 39 0.02 0.2 661 L - 8 0.01 0.1 612 J - 31 0.03 0.3 662 L - 9 0.01 0.1 614 J - 33 0.04 1.4 663 L - 11 0.01 0.1 615 J - 34 0.33 0.1 665 L - 12 0.05 0.2 616 J - 35 0.38 0.1 666 L - 13 0.02 0.1 617 J - 36 0.03 0.1 666 L - 13 0.02 0.1 618 J - 37 0.02 0.1 668 L - 13 0.02 0.1 619 J - 39 0.01 0.1	602 603 604	J - 21 J - 22 J - 23	0.02 0.02 0.02	0.1 0.3 0.2	652 653 654	K - 31 < K - 32 < L - 1 <	0.01 0.01 0.01	0.2 0.1 0.1
612 J - 31 0.03 0.3 662 L - 9 0.01 0.1 613 J - 32 0.07 1.5 663 L - 10 0.01 0.1 614 J - 33 0.04 1.4 664 L - 11 0.01 0.1 615 J - 34 0.33 0.1 665 L - 12 0.05 0.2 616 J - 35 0.38 0.1 666 L - 13 0.02 0.1 618 J - 37 0.02 0.1 666 L - 15 0.03 0.1 619 J - 38 0.01 0.1 668 L - 15 0.03 0.1 619 J - 38 0.01 0.1 668 L - 15 0.03 0.1 619 J - 39 0.01 0.1 669 L - 17 0.04 0.3 621 J - 40 0.01 0.3 671 L - 18 0.11 17.7 622 K - 1 < 0.01	607 608 609	J - 26 J - 27 J - 28	0.07 0.03 0.02	0.4 0.3 0.1	657 658 659	L - 4 L - 5 < L - 6	0.01 0.01 0.02	0.1 0.1 0.1
617 J - 36 0.03 0.1 667 L - 14 0.01 1.3 618 J - 37 0.02 0.1 668 L - 15 0.03 0.1 619 J - 38 0.01 0.1 668 L - 16 0.04 0.1 620 J - 39 0.01 0.1 670 L - 17 0.04 0.3 621 J - 40 0.01 0.3 671 L - 18 0.11 17.7 622 K - 1 0.01 0.1 672 L - 19 0.01 0.5 623 K - 2 0.01 0.1 674 L - 21 0.01 0.5 625 K - 4 0.01 0.1 674 L - 21 0.01 0.2 625 K - 4 0.01 0.1 676 L - 23 0.01 0.1 629 K - 6 0.01 0.1 677 L - 24 0.01 0.1 630 K - 7 0.01 0.1	612 613 614	J - 31 J - 32 J - 33	0.03 0.07 0.04	0.3 1.5 1.4	662 663 664	L - 9 L - 10 L - 11	0.01 0.01 0.01	0.1 0.1 0.1
622 K - 1	617 618 619	J - 36 J - 37 J - 38 <	0.03 0.02 0.01	0.1 0.1 0.1	667 668 669	L - 14 L - 15 L - 16	0.01 0.03 0.04	1.3 0.1 0.1
627 K - 6 < 0.01 0.1 628 K - 7 < 0.01 0.1 678 L - 24 < 0.01 0.1 629 K - 8 0.03 1.5 679 L - 26 < 0.01 0.2 630 K - 9 0.10 3.0 680 L - 27 < 0.01 0.1 632 K - 11 < 0.01 0.1 682 L - 29 0.02 0.9 633 K - 12 < 0.01 0.1 682 L - 29 0.02 0.9 634 K - 13 < 0.01 0.1 683 L - 30 0.01 0.2 635 K - 14 < 0.01 0.1 685 L - 32 < 0.01 0.2 636 K - 15 < 0.01 0.1 685 L - 32 < 0.01 0.2 639 K - 18 < 0.01 0.1 687 M - 2 0.01 0.2 639 K - 18 < 0.01 0.1 688 M - 3 0.01 0.2 639 K - 18 < 0.01 0.1 689 M - 4 0.01 0.3 640 K - 19 < 0.01 0.1 690 M - 5 < 0.01 0.1 644 K - 23 < 0.01 0.1 690 M - 5 < 0.01 0.1 644 K - 23 < 0.01 0.1 694 M - 9 < 0.01 0.1 694 M - 9 < 0.01 0.1 695 M - 10 < 0.01 0.1 695 M - 10 < 0.01 0.1 694 M - 9 < 0.01 0.1 695 M - 10 < 0.01 0.1 695 M - 10 < 0.01 0.1 694 M - 9 < 0.01 0.1 695 M - 10 < 0.01 0.1 695 M - 10 < 0.01 0.1 694 M - 9 < 0.01 0.1 695 M - 10 < 0.01 0.1 697 M - 12 0.02 0.4 698 M - 13 < 0.01 0.1 698 M - 13 < 0.01 0.1 699 M - 14 < 0.01 0.1	622 623 624	K - 1 < K - 2 < K - 3 <	0.01 0.01 0.01	0.1 0.1 0.1	 672 673 674	L - 19 L - 20 L - 21 <	0.01 0.01 0.01	0.5 0.3 0.2
632 K - 11 < 0.01 0.1 682 L - 29 0.02 0.9 633 K - 12 < 0.01 0.1 683 L - 30 0.01 0.2 634 K - 13 < 0.01 0.1 684 L - 31 0.02 0.1 685 K - 14 < 0.01 0.1 685 L - 32 < 0.01 0.2 636 K - 15 < 0.01 0.1 685 L - 32 < 0.01 0.2 637 K - 16 < 0.01 0.1 687 M - 2 0.01 1.0 638 K - 17 0.01 0.1 688 M - 3 0.01 0.2 639 K - 18 < 0.01 0.1 688 M - 3 0.01 0.2 639 K - 18 < 0.01 0.1 689 M - 4 0.01 0.3 640 K - 19 < 0.01 0.1 690 M - 5 < 0.01 0.1 642 K - 21 0.03 0.7 690 M - 5 < 0.01 0.1 644 K - 23 < 0.01 0.1 692 M - 7 < 0.01 0.1 644 K - 23 < 0.01 0.1 693 M - 8 < 0.01 0.4 644 K - 23 < 0.01 0.1 694 M - 9 < 0.01 0.1 645 K - 24 < 0.01 0.1 695 M - 10 < 0.01 0.1 646 K - 25 < 0.01 0.1 695 M - 10 < 0.01 0.1 646 K - 26 < 0.01 0.1 695 M - 10 < 0.01 0.1 648 K - 27 0.02 0.1 698 M - 13 < 0.01 0.1 649 K - 28 < 0.01 0.2 699 M - 14 < 0.01 0.1	627 628 629	K - 6 < K - 7 < K - 8	0.01 0.01 0.03	0.1 0.1 1.5	677 678 679	L - 24 < L - 25 L - 26 <	0.01 0.02 0.01	0.1 0.1 0.2
637 K - 16 < 0.01	632 633 634	K - 11 < K - 12 < K - 13 <	0.01 0.01 0.01	0.1 0.1 0.1	682 683 684	L - 29 L - 30 L - 31	0.02 0.01 0.02	0.9 0.2 0.1
642 K - 21 0.03 0.7 692 M - 7 < 0.01	637 638 639	K - 16 < K - 17 K - 18 <	0.01 0.01 0.01	0.1 0.1 0.1	687 688 689	M - 2 M - 3 M - 4	0.01 0.01 0.01	1.0 0.2 0.3
647 K - 26 < 0.01 0.1 697 M - 12 0.02 0.4 648 K - 27 0.02 0.1 698 M - 13 < 0.01 0.1 649 K - 28 < 0.01 0.2 699 M - 14 < 0.01 0.1	642 643 644	K - 21 K - 22 < K - 23 <	0.03 0.01 0.01	0.7 0.1 0.1	692 693 694	M - 7 (M - 8 (M - 9 (0.01 0.01 0.01	0.5 0.4 0.1
	647 648 649	K - 26 < K - 27 K - 28 <	0.01 0.02 0.01	0.1 0.1 0.2	697 698 699	M - 12 M - 13 < M - 14 <	0.02 0.01 0.01	0.4 0.1 0.1

ntinued)		
Ser.No.	Samp.No.	Au	Ag
701 702 703 704 705	M - 16 < M - 17 < M - 18 < M - 19 < M - 20 <	0.01 0.01 0.01 0.01 0.01	0.3 0.1 0.2 0.9 1.0
706 707 708 709 710	M - 21 < M - 22 M - 23 < M - 24 M - 25	0.01	0.1 0.2 0.1 4.6 2.3
711 712 713 714 715	M - 26 < M - 27 M - 28 M - 29 M - 30	0.01 0.01 0.03 0.05 0.05	0.3 0.5 0.3 0.8 1.4
716 717 718 719 720	M - 31 M - 32 < M - 33 M - 34 M - 35	0.03 0.01 0.03 0.06 0.01	0.3 0.3 2.2 1.5
721 722 723 724 725	M - 36 < M - 37 < M - 38 M - 39 M - 40 <	0.01 0.01 0.03	0.4 0.7 0.4 1.4 0.2
726 727 728 729 730	SQ- 1 SQ- 2 SQ- 3 SQ- 4 SQ- 5	.0.74 0.22 0.21 0.11 0.15	23.5 10.0 9.2 4.5 5.7
731 732 733	SQ- 6 SQ- 7 SQ- 8	0.48 0.18 0.43	11.8 6.5 8.2

Apx.10 Analytical Value of Core Samples for Geochemical Exploration by Drilling Holes in the SAN CLEMENTE Area, (DDM)

Ser.No.	Samp.No.	Au	Ag	Ser.No. Samp.No. Au	Ag
1 2 3 4 5	MJM-1- 1 MJM-1- 4 MJM-1- 7 MJM-1- 10 MJM-1- 13	0.39 0.14 0.10 0.06 0.08	14.8 4.0 5.0 2.6 2.5	51 MJM-1-151 0.03 52 MJM-1-154 0.01 53 MJM-1-157 0.02 54 MJM-1-160 0.01	0.4 0.4 0.6 0.5
6 7 8 9	MJM-1- 16 MJM-1- 19 MJM-1- 22 MJM-1- 25 MJM-1- 28	0.05 0.05 0.05 0.05 0.05	2.1 1.9 2.0 1.5	55 MJM-1-163 0.02 56 MJM-1-166 0.02 57 MJM-1-169 0.14 58 MJM-1-172 0.02 59 MJM-1-175 0.04	1.0 0.5 0.7 0.4 0.9
11 12 13 14 15	MJM-1- 31 MJM-1- 34 MJM-1- 37 MJM-1- 40 MJM-1- 43	0.02 0.02 0.05 0.04 0.05	1.9 1.7 1.5 1.9	60 MJM-1-178 0.08 61 MJM-1-181 0.04 62 MJM-1-184 0.02 63 MJM-1-187 0.10 64 MJM-1-190 0.02	1.4 0.8 0.7 1.1 0.6
16 17 18 19	MJM-1- 46 MJM-1- 49 MJM-1- 52 MJM-1- 55	0.04 0.04 0.04 0.04	1.5 1.1 1.7 1.2	65 MJM-1-193 0.05 66 MJM-1-196 0.06 67 MJM-1-199 0.09 68 MJM-1-202 0.22 69 MJM-1-205 0.23	0.9 3.0 2.5 2.7
20 21 22 23	MJM-1- 58 MJM-1- 61 MJM-1- 64 MJM-1- 67	0.07 0.08 0.07 0.03	1.5 1.3 1.9	70 MJM-1-208 0.02 71 MJM-1-211 0.01 72 MJM-1-214 0.01 73 MJM-1-217 0.02	0.6 0.4 0.5 0.4
24 25 26 27 28	MJM-1- 70 MJM-1- 73 MJM-1- 76 MJM-1- 79 MJM-1- 82	0.03 0.03 0.03 0.01 0.01	0.5 0.8 0.6 0.7 0.8	74 MJM-1-220 0.02 75 MJM-1-223 0.02 76 MJM-1-226 0.05 77 MJM-1-229 0.01 78 MJM-1-232 <0.01	0.4 0.5 0.5 0.6 0.5
29 30 31 32	MJM-1- 85 MJM-1- 88 MJM-1- 91 MJM-1- 94	0.01 0.02 0.01 0.06	0.7 0.5 0.7	79 MJM-1-235 0.01 80 MJM-1-238 0.01 81 MJM-1-241 0.01 82 MJM-1-244 0.03	0.6 0.7 0.4 1.7
33 34 35 36 37	MJM-1- 97 MJM-1-100 MJM-1-103 MJM-1-106 MJM-1-109	0.02 0.06 0.02 0.02 0.02	0.8 0.9 1.0 0.7 0.7	83 MJM-1-247 0.02 84 MJM-1-250 0.01 85 MJM-1-253 0.01 86 MJM-1-256 0.01 87 MJM-1-259 0.02	1.9 2.5 1.2 1.6 0.5
37 38 39 40 41	MJM-1-112 MJM-1-115 MJM-1-118 MJM-1-121	0.02 0.03 0.02 0.02	0.8	89 MJM-1-265 0.04 89 MJM-1-265 0.04 90 MJM-1-268 0.02 91 MJM-1-271 <0.01	0.4 1.1 0.4 0.6
42 43 44 45	MJM-1-127 MJM-1-127 MJM-1-130	0.04 0.07 0.03	1.4	92 MJM-1-274 0.01 93 MJM-1-277 0.01 94 MJM-1-280 0.01 95 MJM-1-283 0.01	0.5
46 47 48 49	MJM-1-136 MJM-1-139 MJM-1-142 MJM-1-145	0.03 0.03 0.02 0.02 0.01	0.5 0.6 0.5 0.4	96 MJM-1-286 <0.01 97 MJM-1-289 <0.01 98 MJM-1-292 0.01	0.3
50	MJM-1-148	0.03	0.8	99 MJM-1-295 0.01 100 MJM-1-298 0.01	0.7

Ser.No.	Samp.No.	Au	Ag
101 102 103 104 105	MJM-2- 1 MJM-2- 4 MJM-2- 7 MJM-2- 10 MJM-2- 13	0.05	0.6 1.0 3.0 1.9 0.4
106 107 108 109 110	MJM-2- 16 MJM-2- 19 MJM-2- 22 MJM-2- 25 MJM-2- 28	0.02 <0.01 0.01	
111 112 113 114 115	MJM-2- 31 MJM-2- 34 MJM-2- 37 MJM-2- 40 MJM-2- 43	<0.01 <0.01 <0.01	
116 117 118 119 120	MJM-2- 46 MJM-2- 49 MJM-2- 52 MJM-2- 55 MJM-2- 58	<0.01 0.01 0.03	0.2 0.1 0.3
121 122 123 124 125	MJM-2- 61 MJM-2- 64 MJM-2- 67 MJM-2- 70 MJM-2- 73	<0.01 0.01 0.01	0.2
126 127 128 129 130	MJM-2- 76 MJM-2- 79 MJM-2- 82 MJM-2- 85 MJM-2- 88	0.02 <0.01 <0.01	0.2 0.2 2.0
131 132 133 134	MJM-2- 91 MJM-2- 94 MJM-2- 97 MJM-2-100	<0.01	< 0.1
135 136 137 138 139	MJM-2-103 MJM-2-106 MJM-2-109 MJM-2-112 MJM-2-115	0.01 0.01 0.03	0.3
140 141 142 143 144	MJM-2-118 MJM-2-121 MJM-2-124 MJM-2-127 MJM-2-130	<0.01 0.03 0.01	1.1 0.4 0.4
145 146 147 148 149	MJM-2-133 MJM-2-136 MJM-2-139 MJM-2-142 MJM-2-145	0.02 0.01 2 <0.01	0.2 0.2 0.4
150_	MJM-2-148	0.02	0.5

			
Ger.No.	Samp.No.	Au	Ag
151	MJM-2-151	0.03	0.2
152	MJM-2-154	0.02	0.2
153	MJM-2-157	0.01	0.1
154	MJM-2-160	0.03	0.3
155	MJM-2-163	0.03	0.8
156	MJM-2-166	0.03	0.3
157	MJM-2-169	0.02	0.4
158	MJM-2-172	0.03	0.5
159	MJM-2-175	0.03	2.3
160	MJM-2-178	0.02	3.1
161	MJM-2-181	0.03	2.0
162	MJM-2-184	0.01	0.7
163	MJM-2-187	0.01	0.5
164	MJM-2-190	0.03	0.5
165	MJM-2-193	0.02	0.6
166	MJM-2-196	<0.01	0.7
167	MJM-2-199	<0.01	0.4
168	MJM-2-202	0.01	0.3
169	MJM-2-205	<0.01	0.5
170	MJM-2-208	0.01	0.3
171	MJM-2-211	0.01	0.1
172	MJM-2-214	0.01	0.7
173	MJM-2-217	<0.01	0.3
174	MJM-2-220	0.01	0.3
175	MJM-2-223	<0.01	0.7
176	MJM-2-226	<0.01	2.0
177	MJM-2-229	0.01	0.9
178	MJM-2-232	<0.01	0.6
179	MJM-2-235	0.01	0.1
180	MJM-2-238	0.02	0.1
181	MJM-2-241	0.01	0.2
182	MJM-2-244	0.04	0.2
183	MJM-2-247	0.04	0.3
184 185 186 187 188	MJM-2-250 MJM-2-253 MJM-2-256 MJM-2-259 MJM-2-262	0.02 <0.01 0.02	0.6 0.2 0.3 0.2 0.3
189 190 191 192 193	MJM-2-265 MJM-2-268 MJM-2-271 MJM-2-274 MJM-2-277	0.01 <0.01 0.01	0.2 0.3 0.1 0.2 0.4
194	MJM-2-280	<pre></pre>	0.1
195	MJM-2-283		0.2
196	MJM-2-286		0.2
197	MJM-2-289		0.1
198	MJM-2-292		0.2
199 200	MJM-2-295 MJM-2-298		0.1

							
Ser.No.	Samp.No.	Au	Ag		Samp.No.	Au	Ag
201	MJM-3- 1	0.02	0.1	251	MJM-3-151		0.1
202	MJM-3- 4	0.02	0.1	252	MJM-3-154		0.1
203	MJM-3- 7	<0.01	0.1	253 254	MJM-3-157 MJM-3-160		0.1
204 205	MJM-3- 10 MJM-3- 13	0.04 0.06	0.1	204	טסו -3-ויונויו	(0.01	0.1
203	MUM-0- 13	0.00	0.1	255	MJM-3-163	<0.01	0.1
206	MJM-3- 16	0.01	0.7	256	MJM-3-166		0.1
207	MJM-3- 19		0.1	257	MJM-3-169		0.1
208	MJM-3- 22	0.03	0.1	258	MJM-3-172	**	0.1
209	MJM-3- 25	0.03	0 - 1	259	MJM-3-175	<0.01	0.1
210	MJM-3- 28	0.03	0.1	260	MJM-3-178	ζΩ Ω1	0.1
211	MJM-3- 31	0.08	0.1	261	MJM-3-181	<0.01	0.1
212	MJM-3- 34		0.1	262	MJM-3-184		0.1
213	MJM-3- 37		ŏ. il	263	MJM-3-187		0.1
214	MJM-3- 40		ŏ.il	264	MJM-3-190	<0.01	0.3
215	MJM-3- 43		0.1				
ł . <u>.</u> .		_	Ì	265	MJM-3-193		0.3
216	MJM-3- 46		0.1	266	MJM-3-196		0.1
217	MJM-3- 49		0.1	267	MJM-3-199		0.1
218 219	MJM-3- 52 MJM-3- 55		0.1	268	MJM-3-202	0.50	0.1
220	MJM-3- 58		0.1	269	MJM-3-205		0.1
220	11011 5 50	(0.01	۱, ۰,	270	MJM-3-208		0.1
221	MJM-3- 61	<0.01	0.1	271	MJM-3-211		0.1
222	MJM-3- 64		0.1	272 273	MJM-3-214 MJM-3-217		0.1
223		0.02	0.1	2/3	11011 3 217	(0.01	0.1
224	MJM-3- 70		0.1	274	MJM-3-220	0.01	0.1
225	MJM-3- 73	<0.01	0.1	275	MJM-3-223		0.1
226	MJM-3- 76	ZO 01	0.1	276	MJM-3-226		0.1
227	MJM-3- 79		0.1	277	MJM-3-229		0.3
228	MJM-3- 82		ŏ. i	278	MJM-3-232	0.01	0.2
229	MJM-3- 85	0.02	0.1	279	MJM-3-235	0.02	0.2
230	MJM-3- 88	<0.01	0.1	280	MJM-3-238		0.1
]				281	MJM-3-241	0.11	0.1
231	MJM-3- 91		0.1	282	MJM-3-244		0.1
232	MJM-3- 94 MJM-3- 97		0.1	283	MJM-3-247	0.12	0.2
233	MJM-3-100		0.1				
			i	284	MJM-3-250	0.33	0.4
235		<0.01	0.1	285 286	MJM-3-253 MJM-3-256	0.11	0.1
236 237	MJM-3-106 MJM-3-109		0.1	287	MJM-3-250	0.14	0.1
238	MJM-9-112		ŏ. i	288	MJM-3-262	0.28	0.1
239	MJM-3-115		0.1				
	-	•)	289	MJM-3-265	0.09	0.1
240	MJM-3-118	<0.01	0.1	290	MJM-3-268	1.65	0.1
241	MJM-3-121	<0.01	0.1	291	MJM-3-271	0.16	0.1
242	MJM-3-124		0.1	292 293	MJM-3-274 MJM-3-277	0.25	0.1
243 244	MJM-3-127 MJM-3-130	<0.01 <0.01	0.1	293	MUM-3-2//	0.00	0.1
244	130 - 130	10.01	7.0	294	MJM-3-280	0.04	0.1
245	MJM-3-133	<0.01	0.1	295	MJM-3-283		0.1
246	MJM-3-136	<0.01	0.1	296	MJM-3-286	0.07	0.1
247	MJM-3-139	<0.01	0.1	297	MJM-3-289		0.1
248	MJM-3-142		0.1	298	MJM-3-292	0.08	0.1
249	MJM-3-145	<0.01	0.1	200	MJM-3-295	20 O1	0.1
050	MJM-3-148	(0.01	0.1	299 300	MJM-3-295 MJM-3-298		0.1
250	148	70.01	_ ' • • •	300	MAM. 2-720	0.03	J • 1

Apx.11 Analytical Procedure of CHEMEX LABS LTD.

A. Sample Preparation

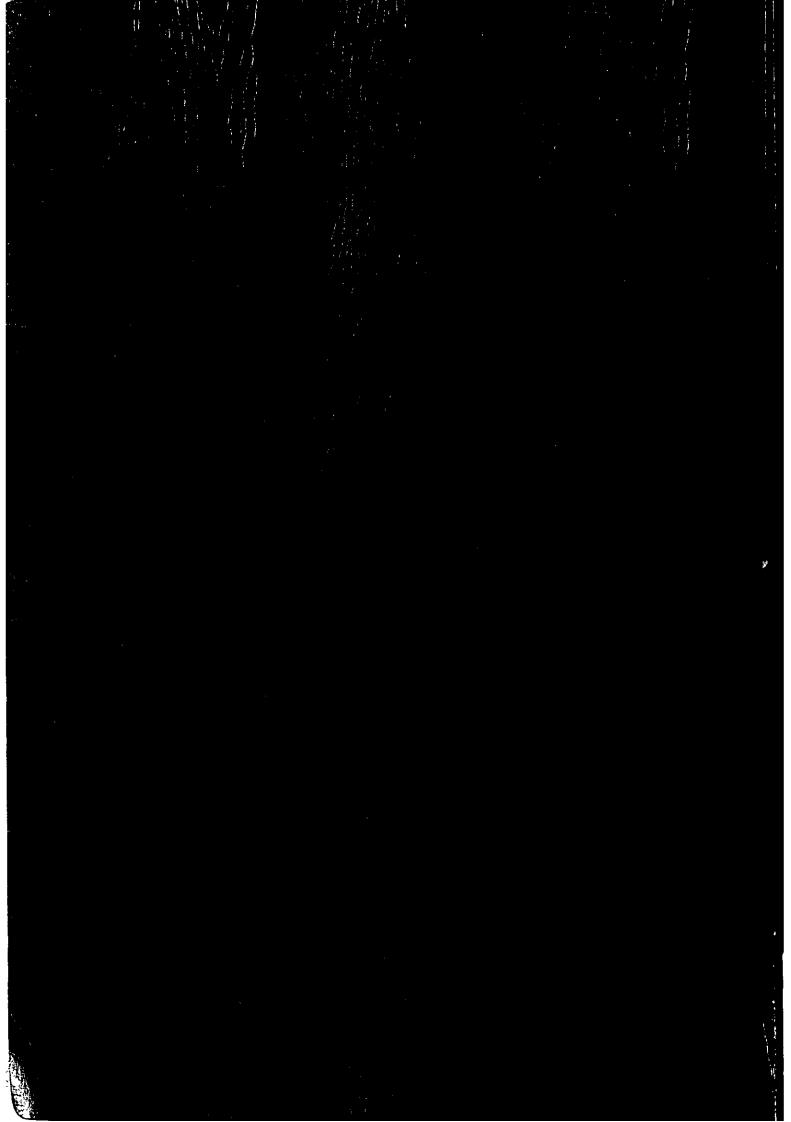
Materials received from your mineral exploration project in Mexico have been of two types:

- 1) Prepared geochemical soil samples.
- 2) Crushed rock materials.

The soil samples have not required further preparation before analyses. Rock chips (crushed to approximately 1/4 inch) are pulverized to -100 mesh in a ring grinder. Samples are homogenized and packaged in kraft envelopes for analyses.

B. Geochemical Analyses Procedures

F.A. - A.A. Gold Combo Method


For low grade samples and geochemical materials 10 gram samples are fused in litharge, carbonate and siliceous flux with the addition of 10 mg Au-free Ag metal and cupelled. The silver bead is parted with dilute HNO3 and then treated with aqua regia. The salts are dissolved in dilute HCl and analyzed for Au on an atomic absorption spectrophotometer to a detection of 5 ppb.

PPM Silver_

A 1.0 gram portion of sample is digested in conc. perchloric-nitric acid ($HC10_4-HNO_3$) for approximately 2 hours. The digested sample is cooled and made up to 25 mls with distilled water. The solution is mixed and solids are allowed to settle. Silver is determined by atomic absorption technique using background correction on analysis to a detection limit of 0.1 PPM.

	•	

