APPENDICES

Apx. 1 Microscopic Observations of Rock Thin Section

		Ser.	Sample	Locat		Strati- graphic	Rock name	Texture or	P	rima	ry	mine	ral (or m	ater	ial					onda	•				Remarks
		No.	No.	E		unit	ROCK Manie	structure.	qza	f pl	bi	hoa	uru	a p c	am t 1	tig	lop	ch	le j	oc a	ses	i k	alp	you)	
		1	SA-2	482384	2284440	Trhy2-C	Rhyolite	porphyritic myrmekite	!) (0	1			•			•									anorthoclase mantle around phenocrystic oligoclase
1		2	SB-2	482661	2284765	Trhy2-C	Rhyolite	porphyritic	0	() (C	Ι.						•							\perp		hollocrystalline
		3	SB-4		2284671			porphyritic	\sim 10) (O	•						•			•	• •	•?			•*	*clay mineral, qz veinlets
		4	SB-8		2284482			porphyritic	0	O*1							•		?				\circ		♂ 2	brecciated *1 completely altered to clay mineral *2 clay mineral
	N. H.	5	SC-1	482601	2284734	Trhy2-C	Rhyolite	porphyritic	0	()*	ļ											ď				to clay mineral *2 clay mineral hollocrystalline * completely altered to clay mineral
	CLEMENTE	6	SC-4		2284634			porphyritic		<u>)</u> @	-		+-		1	?	11		_		┤ .		($\overline{1}$		weakly pyritized and silicifized
		7	SC-7	 	2284452			porphyritic	0	0			+		1	\neg	11		<u> </u>		0.				•*	* clay mineral
ple	SAN	8	SD-6		2284610		! <u>.</u>	porphyritic		0			+	1	11				\top		Ŏ.		(•*	* clay mineral
Sample		9	SM-5	<u> </u>	2284409		Brecciated Rhyolite		0	_ <u>`</u> _	1		•	•		_				•	• (00				* completely replaced by kaolin
၅		10	NB-1	482677	2284812	Trhv2-C		porphyritic	\bigcirc	10	+	1-1	1	-	1 1	_	+	_	十			b			• k	* clay mineral, similar to SD-6
Surface		11	NF-2		2284703			porphyritic	Ŏ	ĬŎ											•	•		•	•*	* titanite
જ		12	NH-1		2284679		Altered breccia		0	ð				• •		•	•								(₫ ²	*1 fragment *2 secondary minerals are not distinct
	. V	13	KP-7	487932	2286357	Kdf	Micritic limestone							0												microfossil remnants
	PROVIDENCIA	14	KP-10		2286305		Quartz- barite rock		©											0	0			•	©*1 •*2	heterogeneous in grain size and texture *1 barite *2 clay mineral
	PROV	15	KP-11	487886	2286406	Tiba	Altered augite basalt	doleritic		0										0				•	đ	* saponite, calcite veinlets
	\top	16	DS1-1T (214.00**)		_	Tidi	Altered diorite			0		0;{	بإد	•				0	C	1.				•	*	medium grained *titamite
	MJM-1	17	DS1-2T (236.25)	_	-	Tidi	Altered diorite			0		O l		•				0	C	 				•	.*2	*1 brown hornblende rimmed by green hornblende *2 titanite
ore	SAN CLEMENTE JM-3 MJM MJ	18	DS1-3T (267.50)	_	_	Ttcg	Altered rhyolitic tuff			0				•				* •	?	0	• (?			* rock fragments showing flow texture
) gu	MJM	19	DS2-1T (297.80)	_	_	Trhy2-C	Rhyolite	porphyritic	0	0	0)		•			•	0	•	.				•		hollocrystalline
ri11i	S C	20	DS3-1T (83.00)	-	_	Trhy2-C	Rhyolite	porphyritic	0) (O										0			(hollocrystalline
G	SAN MJM-3	21	DS3-2T (287.50)	-		Trhy2-C	Rhyolite	porphyritic	0) (©)			•						d		1		9_		hollocrystalline foraminiferic remnants,
	* M.J.M.	22	DS4-1T (82.10)	_	_	Kdf	Calcarenite	lamination						0												Iamina of micritic limestone
<u> </u>	124				<u> </u>	<u> </u>	·																			

PROVIDENCIA

qz; quartz, af; alkalifeldspar, pl; plagioclase, bi; biotite, Abbreviations

ho; hornblende, au; augite, ru; rutile, ap; apatite, ca; carbonate minerals, mt; magnetite, ti; titanite, gl; glass, op; opaque minerals, chl; chlorite, ep; epidote, se; sericite,

si; silica minerals, k; kaolin, al; albite, py; pyrite

⊙ ··· abundant O ··· common • ··· rare

depth in m

Apx.2 Photomicrographs of the Representative

Rock Thin Soction

Abbreviation

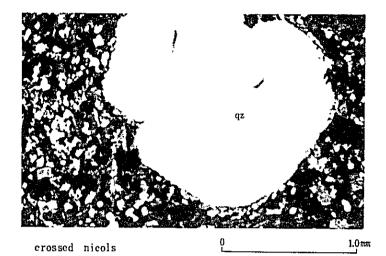
qz : quartz

pl : plagioclase

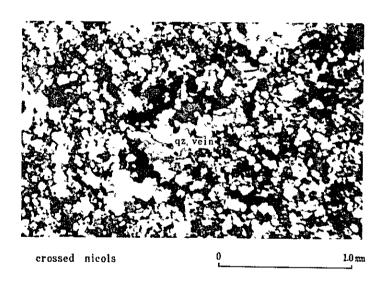
bt : biotite

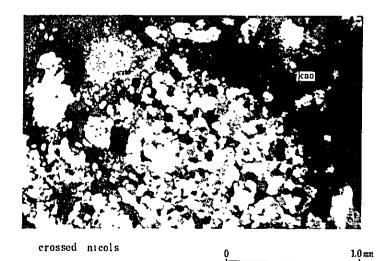
ho : hornblende

au : augite

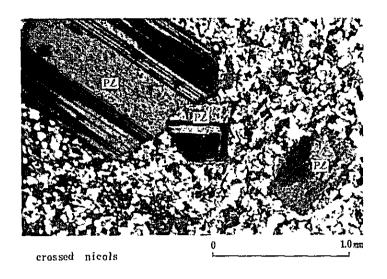

ca : calcite

kao : kaolin

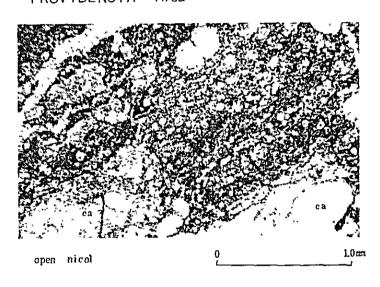

٠

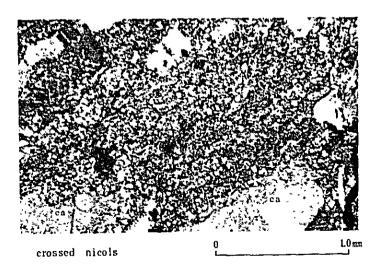

SAN CLEMENTE Area

(1) S B-2 (Trhy 2-C) Rhyolite



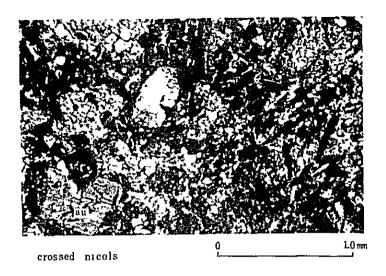
(2) SB-8 (Trhy 2-C) Rhyolite


(3) SM-5 (Tirh)
Brecciated rhyolite

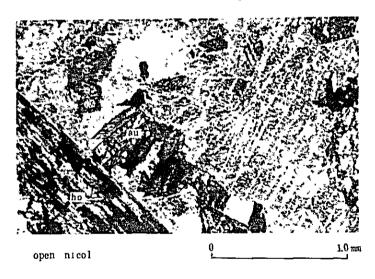


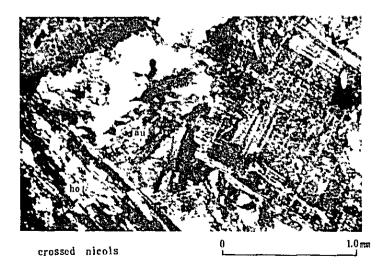
(4) NF-2 (Trhy 2-C)
Rhyolite

PROVIDENCIA Area

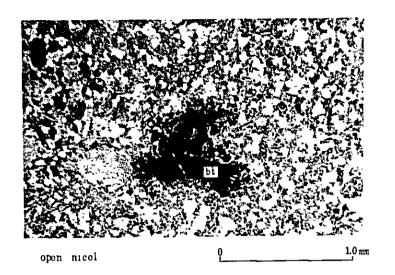


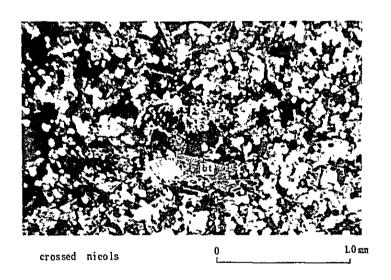
(5) KP-7 (Kdf)
Micritic limestone

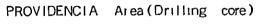

(6) KP-7 (Kdf)

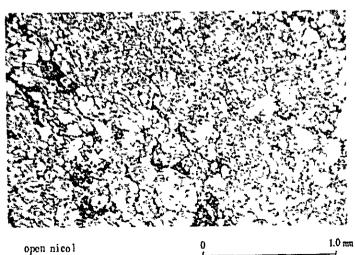


(7) KP-11 (Tiba)
Altered augite basalt


SAN CLEMENTE Area(Drilling core)


(8) DSI-2T(Tid1)
Altered diorite


(9) DSI - 2T (Tidi)



(id) DS2-1T(Trhy2-C) Rhyolite

(1) DS2-1T(Trhy2-C)

(12) DS4-1T(Kdf)
Calcarenite

Apx. 3 Microscopic Observations of Ore Polished Section

		5	am-				px. 3 Microscopic Observations of	016	FU.						-					~
Area	Ser	$\mathbf{r} _{\mathbf{p}}$	1e -		linates	Location	Occurrence				imary					1		y m	ineara	l Remarks
-	No.	71		Е	iN			el	ср	sp	ру	he	ru	zr	-*1	hm	goe	ce	_	
	1	SC	C-3	482577	2284669	C-C'	black minerals in quartz vein								•*1 •*2	0	0			*1 hausmannite? (MgO=75%, FeO=9%) *2 Pb-Ba-Mm mineral(corolite-hollandite?)
	2	SC	C-4	482565	2284634	C-C'	disseminated black minerals in rhyolite		•				•	•	. *1		0			*1 Mn mineral
	3	S	C-6	482484	2284411	C-C'	black minerals in quartz vein			•	•		•		*		0			* marcasite
111	4	SI	D-7	482519	2284657	D-D¹	black minerals in rhyolite						•		0	•	•			* hausmannite?
CLEMENTE	5	Sì	M-5	482470	2284409	M-M'	black minerals in cemented materials of brecciated rhyolite				•		•		*		0			* Fe-oxide
SAN C	Ł	SI	L-2	482452	2284468	D-D'	black minerals in cemented materials of brecciated rhyolite				•		•		•		* 2			*1 Mn mineral *2 rhythmic zoning
		' SI	D-1	482693	2284806	ים-ם	disseminated black minerals in rhyolite						•	·	•	0	0			
	8	S KI	D-2	482541	2284713	D-D*	a little amount of black minerals in rhyolite						•		• *	0	0			* Mn mineral
	9	NI	E-1	482693	2284753	E-E'	oxides ore filled with fissure	•*			•		•			0	0			* 5µ
	10	SI	H-1	482491	2284668	н-н'	quartz vein in rhyolite						•			0	0*			* rhythmic growth
	11	K	P-1	488048	2286242	P No.1	massive oxides ore				•					0	©*			* rhythmic growth
	12	? K1	P-3	488035	2286211	P No.1	disseminated oxides ore									0	9			
	13	K	P-5	487984	2286283	P No.2	brecciated oxides ore					• ?				0	©*			* rhythmic growth
	14	K	P-8	487793	2286396	T No.10	disseminated oxides ore				•	0?				0	0			zonal texture
	15	K	P-9	487822	2286305	P No.6	quarts-barite rock in the oxides zone				-	○?	•		• *	•	•			* Pb-Mn mineral (corolite?)
IA	16	5 V	L-a	487982	2286267	P No.2	brecciated oxides ore									0	0			botryoidal texture
ENCIA	17	7 V	L-2	487752	2286347	P No.8	brecciated oxides ore									0	0			botryoidal texture
PROVIDE	18	3 V.	L-3	487857	2286384	T No.8	brecciated oxides ore				(⊚?			*	•	•			* Mn mineral; botryoidal texture
PRO	19	V	L-5	487725	2286314	T No.11	brecciated oxides ore								0*		•			* Mn mineral
	20) V	L-8	487895	2286390	T No.6	brecciated oxides ore							1		0	•			
	21	. V	L-11	487975	2286508	T No.2	brecciated oxides ore									0	•	ot		
	22	NI	P-3	487977	2285837	P No.14	porous oxides ore									©*	0			* zonal growth, botryoidal texture
	23	N	P-4	487975	2285841	P No.14	porous oxides ore				•				0	0	0			* barite
	24	N	P-6	488051	2285965	P No.11	brecciated oxides ore									0	0			botryoidal texture
	25	NI	P-10	488084	2285969	P No.12	brecciated oxides ore									0	0			spheroidal texture

Abbreviations

el; electrum, cp; chalcopyrite, sp; sphalerite, he; hemimorphite, ru; rutile zr; zircon, hm; hematite, goe; goethite, ce; cerussite, py; pyrite O... common • ... rare

PROVIDENCIA Area; open pit and tummnel number

Apx. 4 Microscopic Observations of Ore Polished Section from Diamond Drilling Holes

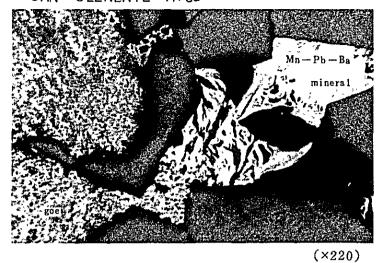
Area	illing No.	Ser. No.	Sample No.	Depth (m)	Occurrence						miner			-la	m	condar	,	Remarks
	占					ср	sp	ga	ру	mt	tr	po	ru	gh	hm	goe	bor	
	;	1	DS1-1P	63.65	tuffaceous conglomerate, ga,sp,py,cp disseminate in matrix	0	©*	0	0					<u> </u>	0			* strong inner reflection
		2	DS1-2P	171.60	cp veinlets in rhyolite	•			0				•		0			
		3	DS1-3P	196.85	tuffaceous conglomerate py,sp disseminate in matrix	0	0	(i)	0						•			
	MJM-1	4	DS1-4P	238.80	bleached rhyolite., py disseminate	•			0		•		0		•			
	~	5	DS1-5P	245.10	veinlets in altered diorite	•	0	0	0	•					•			
TE		6	DS1-6P	247.00	tuffaceous conglomerate, ga,sp,py disseminate in matrix	•	0	0	0						•	•		
CLEMENTE		7	DS1-7P	271.45	black minerals in brecciated rhyolite				0	•?		1			0*			* like ophitic texture
SAN CL		8	DS2-1P	54.90	tuffaceous conglomerate, sp,py,ga disseminate in matrix	0	0	0	0	•		•		*1 *?			*2	*1 c= 80% *2 lattice intergrowth
SA		9	DS2-2P	70.55	sp,cp filled with fissure in rhyolite	0	0	0	0		•	•			•			with cp
	-2	10	DS2-3P	74.50	sp.cp.ga filled with fissure in rhyolite	0	0	0	•		•				•			
	MJM	11	DS2-4P	88.00	strongly silicified rhyolite	0	0	•	0		*	•						*in cp
		12	DS2-5P	176.80	strongly silicified tuffaceous conglomerate	•	0	0	0									
		13	DS2-6P	202.50	rhyolitic tuff, sp,ga disseminated in matrix	•	0	0	0						•			
CIA		14	DS4-1P	58.00	lenticular oxides ore in sedimentary rock										0	©		botryoidal texture
PROVIDENCI	MJM-4	15	DS4-2P	67.50	lenticular oxides ore in sedimentary rock										0	0		
PRO	~	16	DS4-3P	97.00	lenticular oxides ore in sedimentary rock											©*		* rhythmic growth

Abbreviation cp; chalcopyrite, sp; sphalerite, ga; galena, py; pyrite, mt; magnetite tr; tetrahedrite, po; pyrrhotite, ru; rutile, gh; graphite, hm; hematite goe; goethite, bor; borite

Omabundant Omcommon • mare

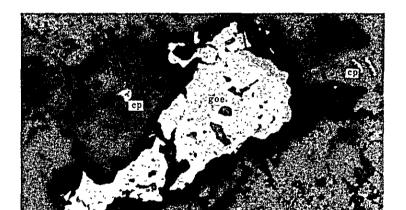
Apx.5Photomicrographs of the Representative

Ore Polished Section

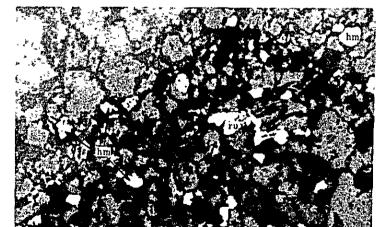

Abbreviation

bor: bornite hm: hematite
ce: cerussite mt: magnetite
cp: chalcopyrite py: pyrite
cl: electrum ru: rutile
ga: galena sp: sphalerite
goe: goethite tr: tetrahedrite

he : hemimorphite


EPMA1: point of analysis by Electron Probe Microanalyzer(sec Apx.8)

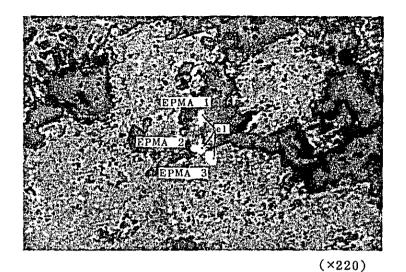
SAN CLENENTE Area


(1) SC - 3

Mn-Pb-Ba mineral and goethite in quartz vein-

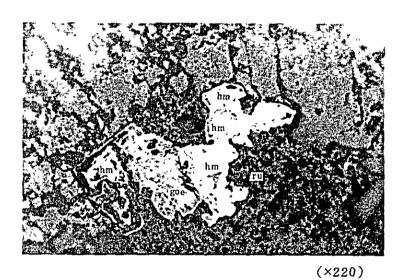
(2) SC-4

Dissemination of hematite and chalcopyrite in rhyolite.


(3) KD-2

(×220)

(×220)

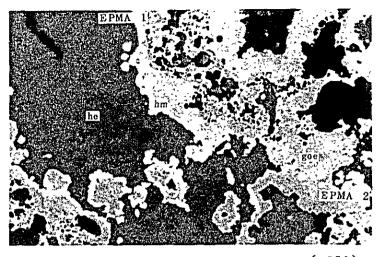

Dissemination of hematite and rutile in rhyolite

(4) NE-1

Electrum in oxides ore

(5) SH-1

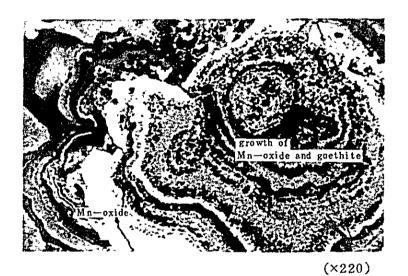
Hematite core surrounded by goethite showing rhythmic growth and rutile



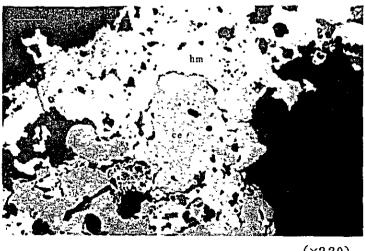
(1) KP-1

 $\label{eq:Rhythmic} R\, hythmic \quad growth \quad of \quad goethite \\ \text{and } hematite$

(×220)

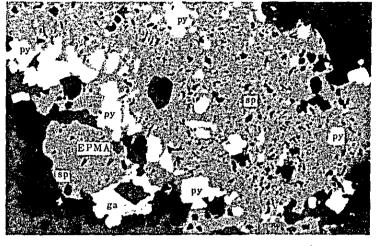


(2) KP - 8


Zonal texture of hemimorphite, hematite and geothite

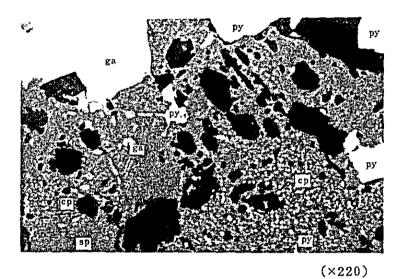
(3) V L - 3

Rhythmic growth of Mn-oxide and goethite

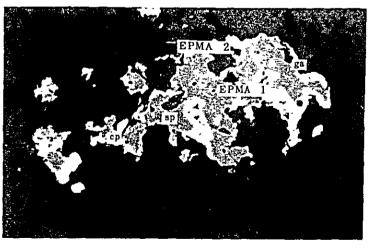

(4) VL-11

Cerussite core surrounded by hematite

(×220)

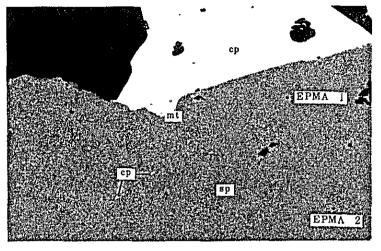

Drilling Core

(1) DS1-1P


Sphalerite includes
galena and subhedral pyrite
grain

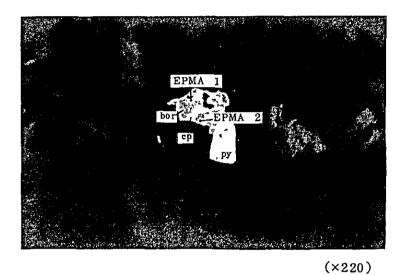
(×220)

(2) DS1-3P

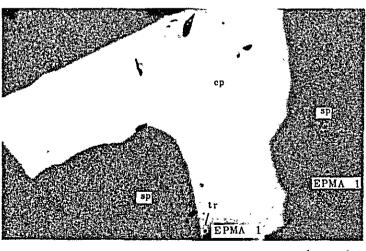

Sphalerite, galena, pyrite, and chalcopyrite in conglomerate

(3) DS1-5P

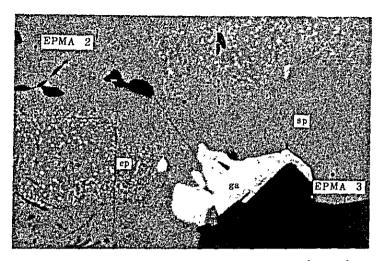
S phalerite with galena and chalcopyrite marginally


(×220)

(4) DS2-1P

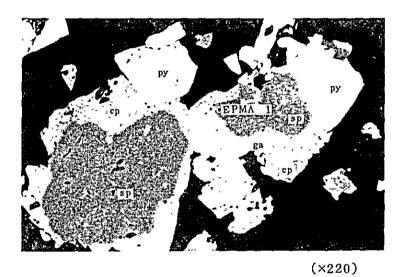

Large sphalerite and chalcopyrite with magnetite

(5) DS2-1P

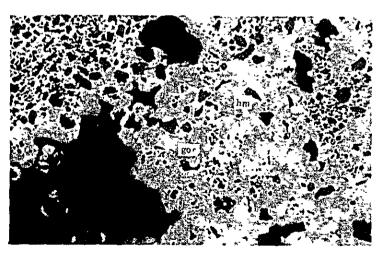

Lattice intergrowth of chalcopyrite and bornite

(6) DS2-2P

Large sphalerite and chalcopyrite which includes tetrahedrite


(×220)

(7) DS2-2P


Intergrowth of chalcopyrite and sphalerite

(×220)

(8) DS2-4P

Crowded grain of sphalerite, chalcopyrite, galena and pyrite

(9) DS4-1P

Botryoidal texture of goethite and hematite

(×220)

Apx. 6 Chemical Composition of Rhyolite in the SAN CLEMENTE Area

Ser.	Sample	Coord	inates		· · •			 _	C	hemic	al Cor	nposit	ion	 (%)									
No.	No.	Е	N	SiO ₂	TiO ₂	A1 ₂ 0 ₃	Fe ₂ 0 ₃	MnO	MgO	Ca0	Na ₂ 0	K ₂ 0	P205	BaO	Cr ₂ O ₃	ZrO ₂	Cu0	LOI	Total	H ₂ O(+)	H ₂ O(-)	Fe0	Fe ₂ 0 ₃
1	S 1W	482632	2284775	79.96	0.06	11.29	0.61	0.06	0.06	0.08	6.81	0.01	0.12	0.00	0.01	0.01	-0.00	0.66	99.73	0.46	0.89	0.10	0.50
2	S 2W	482662	2284764	76.88	0.08	12.04	1.11	0.04	0.14	0.14	2.43	3.62	0.02	0.05	0.01	0.02	0.00	2.10	98.68	1.96	1.29	0.10	1.00
3	S 3W	482706	2284748	78.15	0.06	11.45	0.79	0.01	0.08	0.12	3.05	3.90	0.06	0.05	0.01	0.01	0.00	1.21	98.96	1.15	0.69	0.20	0.57
4	S 4W	482555	2284750	78.19	0.09	11.57	1.35	0.03	0.05	0.09	5.62	0.13	0.05	0.00	0.01	0.01	0.00	1.63	98.85	1.36	0.99	0.20	1.13
5	S 5W	482603	2284733	78.93	0.06	11.46	0.92	0.02	0.11	0.12	4.25	0.12	0.03	0.00	0.01	0.01	0.01	2.29	98.35	1.22	1.10	0.15	0.75
6	S 6W	482645	2284718	80.41	0.07	9.92	1.00	0.01	0.07	0.07	4.67	0.37	0.05	0.00	0.01	0.01	0.01	1.41	98.07	1.19	0.78	0.15	0.83
7	S 71V	482678	2284705	84.77	0.07	9.39	1.07	0.05	0.20	0.13	0.69	0.91	0.09	0.02	0.01	0.01	0.02	2.18	99.62	2.24	0.99	0.20	0.85
8	S 8W	482707	2284695	76.29	0.06	11.73	1.21	0.01	0.16	0.16	2.85	4.78	0.02	0.06	0.01	0.01	0.00	1,23	98.58	0.96	1.10	0.20	0.99
9	S 914	482484	2284723	77.95	0.11	12.68	0.80	0.06	0.10	0.09	4.43	0.37	0.00	0.00	0.01	0.02	0.00	2.62	99.25	1.74	1.39	0.10	0.69
10	S 10W	482538	2284703	79.04	0.08	11.39	0.63	0.01	0.07	0.15	6.43	0.38	0.01	0.00	0.01	0.02	0.00	0.58	98.82	0.60	0.69	0.25	0.35
11	S11W	482586	2284686	79.29	0.06	10.03	2.14	0.19	0.17	0.19	4.55	0.74	0.29	0.02	0.01	0.01	0.03	1.23	98.95	1.00	1,30	0.20	1.92
12	S12W	482628	2284671	77.01	0.08	11.79	1.12	0.01	0.08	0.11	3.83	3.74	0.01	0.04	0.01	0.02	0.01	1.28	99.13	1.23	0.99	0.15	0.95
13	S13W	482665	2284657	78.08	0.06	11.34	1.27	0.02	0.14	0.14	5.15	1.74	0.04	0.03	0.01	0.01	0.00	0.87	98.89	0.62	0.59	0.20	1.05
14	S14W	482469	2284675	80.26	0.07	10.13	0.91	0.10	0.04	0.06	5.74	0.01	0.08	0.01	0.01	0.01	0.00	0.84	98.29	0.74	0.99	0.20	0.69
15	S15W	482522	2284656	81.06	0.06	10.35	0.91	0.06	0.08	0.10	5.79	0.20	0.37	0.02	0.01	0.01	0.03	0.87	99.89	0.66	1.07	0.15	0.74
16	S16W	482610	2284623	78.26	0.07	11.61	0.97	0.02	0.12	0.13	3.21	3.82	0.01	0.05	0.01	0.01	0.01	1.10	99.39	0.94	1.03	0.10	0.86
17	S17W	482656	2284607	76.90	0.06	12.05	0.90	0.01	0.13	0.11	2.65	4.21	0.08	0.05	0.00	0.01	0.00	1.53	98.70	1.27	1.00	0.20	0.68
18	S18W	482505	2284609	80.15	0.06	10.19	0.66	0.03	0.11	0.09	6.36	0.07	0.02	0.00	0.01	0.01	0.00	0.92	99.42	0.77	0.70	0.10	0.55
19	S19W	482594	2284577	78.90	0.07	11.43	0.69	0.02	0.09	0.06	4.07	2.79	0.02	0.04	0.01	0.01	0.00	1.25	99.45	0.91	0.94	0.15	0.52
20	S20W	482630	2284564	79.85	0.05	11,03	0.72	0.04	0.16	0.03	2.18	3.07	0.04	0.05	0.01	0.01	0.00	2.56	99.80	1.53	0.76	0.10	0.61
21	S21W	482487	2284562	81.05	0.09	12.59	0.30	0.03	0.05	0.05	0.01	0.08	0.16	0.00	0.01	0.01	-0.00	4.81	99.23	2.00	0.92	0.20	0.08
22	S22W	482525	2284548	78.11	0.07	10.31	1.30	0.13	0.14	0.20	4.17	2.29	0.03	0.04	0.03	0.02	0.01	1.29	98.12	1.27	1.06	0.10	1.19
23	S23W	482576	2284530	78.11	0.07	10.56					4.77					0.01			98.54	1.01	1.43	0.10	0.53
24	S24W	482622	2284513	82,55	0.05	9.74	0.53								f			2.63	99.15	1.91	0.97	0.10	0.42
25	S25W	482517	2284498	81.70	0.06	9.93	0.73	0.02	0.18	0.09	5.43	0.40	0.02	0.00	0.02	0.01	0.00	1.08	99.68	0.92	1.49	0.25	0.45
26	S26W	482560	2284482	84.47	0.08	9.07	0.45	0.01	0.06	0.07	0.08	0.54	0.05	0.01	0.02	0.01	0.00	3.85	98.76	2.07	0.50	0.10	0.34
27	S27W	482581	2284474	75.41	0.08	11.87	1.30	0.03	0.13	0.19	3.32	4.90	0.05	0.06	0.03	0.01	0.00	1.06	98.44	0.64	0.52	0.10	1.19
28	S28W	482454	2284467			11.93	 							 		0.01	0.00	5.08	100.40	1.99	0.79	0.10	2.66
29	S29W	482501	2284451		<u> </u>	11.54	 				6.43			ļ-—	0.02	0.01	0.00	0.80	99.01	0.91	0.87	0.10	0.50
30	S30W	482541	2284436	80.41	0.08	11.06	l				5.80			[0.01	0.00	1.17	99.88	0.69	0.76	0.10	0.61
31	S31W	482385	2284439	79.53	0.07	11.47					6.78					0.01	0.00	0.49	99.60	0.54	0.57	0.20	0.45
32	S32W	482435	2284421	80.39			 				 					0.01	0.00	0.72	99.60	0.77	0.44	0.10	0.46
33	S33W	482368	2284398	79.84	0.08	11.07	0.94	0.02	0.12	0.18	5.79	0.36	0.07	0,00	0.01	0.01	0.00	1.49	99.98	0.86	0.80	0.25	0.66

The Fe₂O₃ listed in the Whole Rock Analysis is based on Total Iron.

(Apx. 6 - Continued)

Ser.	Sample	Coordi	nation									Cl	nemica	1 Com	positi	on (%)							
No.	No.	Е	N	SiO ₂	TiO ₂	A1 ₂ 0 ₃	Fe ₂ 0 ₃	MnO	Mg0	Ca0	Na ₂ 0	K ₂ 0	P ₂ 0 ₅	BaO	Cr ₂ 0 ₃	ZrO ₂	Cu0	LOI	Total	H ₂ 0(+)	H ₂ 0(-)	Fe0	Fe ₂ 0 ₃
34	S34W	482421	2284383	77.95	0.08	11.45	0.91	0.02	0.06	0.10	6.26	0.06	0.10	0.00	0.01	0.01	-0.00	1.11	98.12	0.88	0.81	0.20	0.69
35	S35W	482471	2284522	78.83	0.09	11.48	0.43	0.02	0.11	0.15	6.21	0.36	0.09	0.00	0.02	0.01	0.00	0.98	98.78	1.00	0.90	0.15	0.26
36	S36W	482564	2284778	77.70	0.08	11.72	1.33	0.01	0.07	0.07	6.15	0.02	0.12	0.00	0.01	0.01	-0.00	1.00	98.29	0.86	0.80	0.20	1.11
37	S37W	482462	2284351	81.21	0.08	9.27	1.86	0.11	0.11	0.14	1.65	0.28	0.08	0.00	0.01	0.01	0.00	3.22	98.04	2.78	0.72	0.15	1.69
38	S38W	482551	2284596	77.98	0.08	11.52	0.81	0.01	0.12	0.10	2.38	3.92	0.04	0.05	0.01	0.01	0.00	1.73	98.75	1.28	0.97	1.10	0.70
39	S39W	482569	2284645	80.76	0.07	10.65	0.90	0.02	0.06	0.10	3.44	0.41	0.03	0.01	0.01	0.01	0.00	2.28	98.76	2.08	0.69	0.25	0.62
40	S40W	482686	2284836	79.15	0.06	11.13	0.76	0.02	0.10	0.08	6.52	0.11	0.02	0.00	0.03	0.01	0.00	0.50	98.50	0.47	0.89	0.20	0.54
aver	age valı	ue of 40	Samples	79.35	0.08	11.05	0.96	0.04	0.10	0.11	4.16	1.40	0.08	0.02	0.02	0.01	0.00	1.62	99.01	1.19	0.90	0.16	0.78

Ser.	Sample	Drill	Sample									CI	nemica	1 Com	positi	on (%)						·	· · · · · · · · · · · · · · · · · · ·
No.	No.	No.	depth (m)	SiO ₂	TiO ₂	A1 ₂ 0 ₃	Fe ₂ 0 ₃	MnO	MgO	Ca0	Na ₂ 0	K20	P ₂ O ₅	Ba0	Cr ₂ 0 ₃	ZrO2	Cu0	LOI	Total	H ₂ 0(+)	H ₂ 0(-)	Fe0	Fe ₂ 0 ₃ *
1	DS1-1W	MJM-1	20	77.64	0.07	11.43	0.67	0.03	0.04	0.08	7.07	0.52	0.04	0.00	0.04	0.01	0.00	0.38	98.02	0.35	0.38	0.20	0.45
2	DS1-2W	MJM-1	57	79.37	0.07	10.56	1.80	0.02	0.04	0.13	6.35	0.78	0.04	0.00	0.04	0.01	0.00	0.69	99.92	0.36	0.61	0.10	1.69
3	DS1-3W	MJM-1	258	74.85	0.08	10.96	0.73	0.10	0.21	3.41	5.32	0.55	0.01	0.00	0.04	0.01	0.00	2.04	98.33	0.92	0.56	0.15	0.56
4	DS2-1W	мјм-2	18	79.41	0.07	11.45	0.74	0.03	0.05	0.07	6.97	0.35	0.03	0.00	0.03	0.01	0.00	0.55	99.77	0.39	0.44	0.20	0.52
5	DS2-2W	мјм-2	45	77.91	0.07	11.24	0.99	0.01	0.13	0.18	6.48	0.47	0.05	0.00	0.04	0.01	0.00	0.72	98.31	0.47	0.83	0.15	0.82
6	DS2-3W	MJM-2	211	79.91	0.08	10.63	1.21	0.04	0.17	1.06	5.04	0.33	0.04	0.00	0.03	0.01	0.00	1.79	99.35	1.36	0.68	0.10	1.10
7	DS2-4W	MJM-2	235	79.08	0.07	11.35	0.67	0.02	0.24	0.82	5.44	0.43	0.03	0.00	0.03	0.01	0.00	1.59	99.80	1.11	1.36	0.15	0.50
8	DS2-5W	мјм-2	254	78.30	0.07	11.36	0.90	0.03	0.26	2.24	3.90	0.59	0.05	0.00	0.03	0.02	0.00	2.43	100.19	1.70	1.38	0.20	0.68
9	DS2-6W	МЈМ-2	268	77.14	0.07	11.36	1.01	0.04	0.22	0.85	5.95	0.45	0.05	0.01	0.03	0.02	0.00	1.21	98.42	0.78	0.69	0.36	0.61
10	DS2-7W	МЈМ-2	295	75.60	0.07	11.70	1.37	0.03	0.18	0.60	4.20	4.17	0.07	0.06	0.04	0.01	0.00	0.65	98.74	0.57	0.46	0.48	0.84
ave	rage val	lue of 1	0 Samples	77.82	0.07	11.20	1.01	0.04	0.15	0.94	5.67	0.86	0.04	0.01	0.04	0.01	0.00	1.21	99.08	0.80	0.74	0.21	0.78

The $\mathrm{Fe_2O_3}$ listed in the whole Rock Analysis is based on Total Iron.

Apx. 7 Chemical Analysis of Ore Samples

(Ore Showing)

Area	Ser	Sample	Coore	dinates	-	A			Metal Content	S	
1100	No.	No.	Е	N	Location	<u></u>	Au g/t	Ag g/t	Cu %	Pb %	Zn %
	1	VL-2M	487752	2286347	PNo.8	brecciated oxides ore	0.03	3	0.01	0.06	0.72
1 1	2	VL-3M	487857	2286384	TNo.8	brecciated oxides ore	<0.01	14	0.02	0.55	44.78
1	3	VL - 5M	487725	2286314	TNo .11	brecciated oxides ore		4	Tr.	0.04	37.77
1 1	4	VL-8M	487895	2286390	TNo. 6	brecciated oxides ore	_	10	0.01	6.66	0.90
	5	VL-11M	487975	2286508	TNo. 2	brecciated oxides ore		7	Tr.	7.90	1.91
1 1	6_	VL-aM	487982	2286267	PNo. 2	brecciated oxides ore	< 0.01	12	0.02	1.18	7.61
	7	NP-2M	487972	2285791	PNo .14	brecciated oxides ore	0.05	15	0.01	2.34	18.96
[. [8	NP-3M	487977	2285837	PNo 14	porous oxides ore	0.01	8	0.01	1.63	4.08
l 🖺 L		NP-5M	488049	2285965	PNo.11	brecciated oxides ore	< 0.01	6	0.02	1.98	4.65
	10	NP-7M	488047	2285964	PNo.11	brecciated oxides ore	_	7	0.02	1.93	3.97
DENC	11_	NP-8M	488107	2285953	PNo .13	brecciated oxides ore	_	4	0.02	1.33	2.62
151	12	NP-9M	488083	2285969	PNo .12	brecciated oxides ore	_	5	Tr.	0.93	23.76
·	13_	NP-10M	488084	2285969	Pno.12_	brecciated oxides ore	< 0.01	3	Tr.	0.91	6.41
-						oxided shale	_	3	0.01	0.01	0.22
	15	KP-1M	488048	2286242	PNo. 1	massive oxides ore	0.01	11	0.01	6.06	0.52
I L	16	KP-2M	488048	2286242	PNo. 1	massive oxides ore	_	10	0.03	2.56	2.63
) L	17	KP-3M	488035	2286211	PNo. 1	disseminated oxides ore		13	0.08	1.38	41.78
. ⊢	18	KP-4M	487915	2286292	PNo. 2	brecciated oxides ore	0.01	19	0.01	0.94	32.87
	19	KP-6M	487951	2286337	PNo. 3	brecciated oxides ore	0.03	21	0.05	8.80	33.39
	20	KP-8M	487793	2286396	TNo .10	disseminated Oxides ore	_	18	0.01	10.28	25.71
	21	KP-9M	487822	2286305	PNo. 6	quartz-barite rock in the oxide zone	_	8	0.04	0.24	43.25
	22			2284632		brecciated quartz vein	0.02	0.2			-
SAN CLE- MENTE	23	SHQ-1	482535	2284652	H-H'	silicious brecciated rhyolite	0.10	1.0	 		

*SAN CLEMENTE Area; trench number PROVIDENCIA Area; open pit and tunnel number

(Core Sample)

Area	Ser	Sample	Depth	Thick-	0	· 		Metal Content	ts	
ATC	I NO.	No.	(m)	ness(m)		Au g/t	Ag g/t	Cu %	Pb %	Zn %
	24	DS1-1M			strongly py.diss,62.80~62.82;qtz.vein with sp.,cp.,py.		4	0.04	0.14	0.49
1	25	DS1 - 2M	$63.00 \sim 64.0$	0 1.00	strongly py.diss., sp. spot		3	0.01	0.14	0.53
	26		244.00~245.0		strongly py.diss., 244.80~245.10; sheared zone		3	0.08	0.30	0.94
一巴	27		298.00~299.0		strongly py.diss., weakly sp. diss.		3	Tr.	0.08	0.25
CLEMENTE	28		$70.00 \sim 71.0$	1.00	70.50~70.55; ga., sp., cp., spot, 70.70~70.33. white clay		3	Tr.	0.12	0.06
\ \text{\tint{\text{\tin}\text{\ti}}\\ \text{\text{\text{\text{\text{\text{\text{\text{\text{\texi}\text{\tex{\ti}\}\til\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi}\text{\text{\text{\text{\text{\text{\text{\text{\texi}\text{\texi}\text{\text{\texit{\texi}\til\text{\text{\texit{\texi}\text{\texit{\text{\tex{	29 30	DSZ - ZM	74.00 ~ 75.0	00.1.00	weakly silicified 74.25~74.65; sp.,ga.,cp. spot	<u> </u>	5	0.02	0.16	0.59
1 3	31	DS2 - 3M	$174.00 \sim 175.0$	1.00	174.70~179.65; strongly py.diss.,sp.,ga.,cp., diss.	<u></u>	3	0.01	0.48	0.81
1 -	32	DC2 FM	$1/3.00 \sim 1/0.0$	0 1.00	177.00~179.65; strongly sp., ga. diss.		2	Tr.	1.48	3,74
SAN	33	DS2-5M	$177.00 \sim 177.0$	1.00	178.30~178.70; strongly silicified		2	0.01	0.33	0.78
1	34	DC2 7M	$178.00 \sim 178.0$ $178.00 \sim 179.0$	0 1 00	-		3	0.02	1.63	3.45
1	35	DC2 9M	$202.00 \sim 203.0$		202 00 204 00 7 11: 16: 1		3	0.03	1.50	4.68
ì	36	DC2 OM	$202.00 \sim 203.0$ $203.00 \sim 204.0$	0 1.00	202.00~204.00 strongly silicified and py.diss.		1	Tr.	0.14	0.47
 	37	DP4-1			weakly sp., ga., diss.			Tr.	0.16	0.12
IA	38	DP4-1	$18.05 \sim 18.2$		massive oxides ore		6	Tr.	0,02	0.11
SS	39	DP4-2 DP4-3	57.85 ~ 58.1		massive oxides ore with calcite vein		7	Tr.	1.69	1.84
DE L	40	DP4-3	58.10 ~ 58.4		massive oxides ore	·	7	Tr.	0.58	0.76
PROVIDENSIA	41	DP4-4	$67.00 \sim 67.7$ $67.70 \sim 68.7$		massive oxides ore		12	0.01	1.32	0.64
&	42	DP4-6	$72.35 \sim 72.6$		brecciated oxides ore		14	0.01	2.25_	0.70
Δ.	43	DP4-0			slime		6	0.01	0.32	0.71
L	143	DF4-7	$96.72 \sim 97.1$	2 0.40	massive oxides ore with calcite veinlets		4	0.01	0.13	29.16

Apx. 8 Quantitative Analysis of Ore Minerals by Electron Probe Microanalyzer

S	sample Electrum Tetrahedrite										Sphale:	rite					Born	ite				
			NE-1		DS1-4P	DS2-2P	DS2-3P	DS2-4P	DS1	·1P		DS1	-5P		DS2	-1P	Γ)S2-2P		DS2 -4P	DS2-	1P
elemen	nt	1	2	3	1	1	1	1	1	2	1	2	3	4	1	2	1	2	3	1	1	2
	Au	76.3	77.0	76.7																		
	Ag	23.2	21.8	21.8	0.3	13.1	4.3	12.0					 								0.5	0.3
	Cu				36.1	28.2	36.2	29.4	0.2	0.2	0.5	0.5	0.3	1.5	0.5	0.4	0.2	0.2	0.2	1.6	62.5	61.9
5	Zn			,	6.3	7.6	3.6	2.2	65.1	64.4	64.5	65.2	65.4	63.3	64.3	63.4	65.0	66.4	64.0	61.9	<u> </u> 	
Weight	Fe				4.8	1.8	1.0	7.1	2.1	1.5	1.4	0.1	1.0	0.8	1.4	1.8	1.1	1.2	2.4	2.8	11.8	12.0
8	Mn								-	_	_	_	_	-	_	_	_	_	_	_		
	Cd						į		0.5	0.5	0.5	0.7	0.5	0.4	0.6	0.6	0.6	0.6	0.6	0.6		
	As				2.1	1.3	1.5	1.4		:			}								<u></u>	
 	Sb				26.7	26.6	26.4	26.6					}						<u> </u>			
	S				24.7	22.5	25.2	22.8	32.8	32.8	33.0	31.7	32.9	32.6	33.5	33.0	33.4	32.6	32.8	32.6	25.8	25.5
	Total	99.4	98.8	98.5	101.0	101.2	98.2	101.5	100.6	99.4	99.9	98.1	100.1	98.6	100.3	99.2	100.3	100.9	100.1	99.4	100.5	99.7
	Au	64.3	65.9	65.8			•															
	Ag	35.7	34.1	34.2	0.2	7.4	2.3	6.6						<u>.</u>							0.2	0.2
	Cu				32,1	26.9	33.5	27.5	0.1	0.1	0.4	0.4	0.2	1.2	0.4	0.3	0.1	0.1	0.2	1.2	49.1	49.1
	Zn				5.4	7.0	3.2	2.0	48.3	48.3	48.1	49.8	48.7	47.8	47.6	47.5	48.2	49.3	47.6	46.4		
Atomic	Fe			į	4.9	1.9	1.0	7.5	1.8	1.3	1.2	0.1	0.9	0.7	1.2	1.6	0.9	1.0	2.1	2.4	10.6	10.8
%	Mn								_	-	ł		_	}	Ì	•						
	Cd								0.2	0.2	0.2	0.3	0.2	0.2	0.3	0.3	0.3	0.3	0.3	0.3		. }
	As				1.6	1.0	1.2	1.1														
	Sb				12.4	13.2	12.7	13.0														
	S				43.6	42.6	46.1	42.2	49.6	50.1	50.2	49.4	50.0	50.1	50.6	50.4	50.5	49.4	49.9	49.8	40.1	40.0

\sam- ple	Zn-S	ilicat	e(weigl	nt%)
1.1	KP-	8	KP~	9 —
ele\ ment\	1	2	1	2
SiO ₂	23.55	23.35	22.99	23.28
TiO ₂	-	0.01	0.01	_
A1 ₂ O ₃	0.09	0.09	0.09	0.10
Fe0	0.04	0.03	0.03	0.02
ZnO	67.64	68.82	67.94	66.68
MnO	0.05	0.02	_	0.01
Ca0	0.28	0.42	0.03	0.03
Total	91.66	92.73	91.08	90.11

Apx. 9 Analytical Value of Rock Samples for Geochemical Exploration in the SAN CLEMENTE Area

Ser.No.	Samp.No.	Au	Ag	Sa^_No.	Samp.No.	Au	Ag	Ser.No.	Samp.No.	Au	Ag	Ser.No.	Samp.No.	–––– Au	Ag
1 2 3 4 5	A - 1 A - 2 A - 3 A - 4 A - 5	1.60 0.58 0.01 0.47 0.28	35.4 14.3 0.2 9.8 6.5	52 53 54 55	A - 51 < A - 52 A - 53 A - 54 A - 55	0.01 0.01 0.01 0.02 0.02	0.2 0.1 0.2 0.5 0.2	101 102 103 104 105	B - 43 B - 44 B - 45 B - 46 B - 47	0.10 0.20 2.15 0.05 2.70	0.6 0.1 0.3 0.1	151 152 153 154 155	B - 93 < B - 94 B - 95 < B - 96 B - 97	0.01 0.01 0.01 0.31 0.45	0.2 0.2 0.1 6.5 3.2
6 7 8 9 10	A - 6 A - 7 A - 8 A - 9 A - 10	0.40 0.02 0.01 0.20 0.36	13.4 0.1 0.4 4.1 5.9	56 57 58 59 60	A - 56 A - 57 A - 58 B - 1 < B - 2 <		0.3 0.3 < 0.1 0.1 0.1	106 107 108 109 110	B - 48 B - 49 B - 50 B - 51 B - 52	0.01 0.01 0.19 0.01 0.01	0.1 0.1 0.2 0.6 0.1	156 157 158 159 160			0.1 0.1 0.3 0.1
11 12 13 14 15	A - 11 A - 12 A - 13 A - 14 A - 15	0.17 0.34 0.25 0.18 0.14	1.8 8.7 5.9 4.0 1.6	61 62 63 64 65	B - 3 B - 4 < B - 5 B - 6 < B - 7	0.05	0.1 0.1 0.1 0.1	111 112 113 114 115	B - 53 B - 54 B - 55 B - 56 B - 57	0.01 0.03 0.09 0.04 0.07	0.1 0.2 0.1 1.1 0.2	161 162 163 164 165	B -105 < C - 1	0.01 0.01 0.01 0.02 0.01	0.1 0.1 0.1 0.1
16 17 18 19 20	A - 16 A - 17 A - 18 A - 19 A - 20	0.09 0.23 0.03 0.05 0.02	1.5 3.2 0.1 < 0.1 0.1	66 67 68 69 70	B - 9 <	0.01 0.03 0.01 0.01 0.01	0.1 0.1 0.1 0.2 0.1	116 117 118 119 120	B - 58 < B - 59 B - 60 B - 61 B - 62	0.01 0.06 0.10 0.01 0.02	0.1 0.3 0.3 0.1	166 167 168 169 170	C - 3 C - 4 < C - 5 C - 6 C - 7	0.01 0.01 0.01 0.01 0.03	2.1 0.3 1.2 0.5 1.9
21 22 23 24 25	A - 21 A - 22 A - 23 A - 24 A - 25	0.03 0.01 0.03 0.09 0.01	< 0.1 0.1 0.4 < 0.1 0.1	71 72 73 74 75			0.1 0.1 0.2 0.1 0.1	121 122 123 124 125	B - 63 B - 64 B - 65 B - 66 B - 67	0.03 0.07 0.02 0.09 0.16	0.3 0.1 0.4 0.1	171 172 173 174 175	C'- 8 < C- 9	0.01 0.01 0.01 0.02 0.03	0.1 0.2 0.1 0.1
26 27 28 29 30	A - 26 A - 27 A - 28 A - 29 A - 30 <	0.04 0.04 0.01 0.01 0.01	0.7 0.3 0.3 0.5	76 77 78 79 80	B - 18 < B - 19 B - 20 < B - 21 < B - 22	• • • •	0.1 0.2 0.1 0.1 0.1	126 127 128 129 130	B - 68 B - 69 B - 70 B - 71 B - 72	0.02 0.04 0.04 0.45 0.05	0.2 0.1 0.1 0.1 0.2	176 177 178 179 180	C - 13 C - 14 < C - 15 < C - 16 C - 17	0.01 0.01 0.01 0.04 0.02	0.3 0.2 0.5 1.9
31 32 33 34 35	A - 31 A - 32 A - 33 A - 34 A - 35 <	0.02 0.04 0.01 0.07 0.01	2.7 0.4 0.1 0.1 0.2	81 82 83 84 85	8 - 23 8 - 24 8 - 25 < 8 - 26 8 - 27 <	0.22 0.05 0.01 0.10 0.01	0.4 0.1 0.1 0.3 0.1	131 132 133 134 135	B - 73 B - 74 B - 75 B - 76 B - 77	0.07 0.15 0.01 0.02 0.01	0.2 0.1 0.1 0.3 0.1	181 182 183 184 185	C - 18 < C - 19 < C - 20 C - 21 < C - 22 <	0.01 0.01 0.01	0.5 0.5 0.6 0.5
36 37 38 39 40	A - 36 A - 37 A - 38 A - 39 A - 40	0.01 0.04 0.01 0.02 0.02	0.1 1.1 0.1 0.1 0.3	86 87 88 89 90	B - 30 <	0.03 0.01 0.01 0.01 0.01	1.6 0.2 0.2 0.1 1.0	136 137 138 139 140	B - 78 B - 79 B - 80 B - 81 B - 82 <	0.03 0.45 0.65 0.03 0.01	0.2 0.1 0.2 0.1	186 187 188 189 190	C - 23 < C - 24 < C - 25 < C - 26 < C - 27 <	0.01 0.01 0.01	0.3 0.6 0.2 0.1
41 42 43 44 45	A - · 41 A - 42 A - 43 A - 44 < A - 45	0.03 0.02 0.02 0.01 0.03	1.6 < 0.1 0.1 0.2 0.2	91 92 93 94 95	B - 33 B - 34 < B - 35 < B - 36 B - 37	0.01 0.01 0.01 0.01 0.03	0.2 0.7 0.6 0.1	141 142 143 144 145	B - 83 < B - 84 < B - 85 < B - 86 < B - 87 <	0.01 0.01 0.01	0.1 0.3 0.1 0.1	191 192 193 194 195	C - 28 < C - 29 C - 30 < C - 31 < C - 32 <	0.01 0.01 0.01	0.1 0.5 0.2 0.1
46 47 48 49 50	A - 46 A - 47 A - 48 A - 49 A - 50	0.03 0.02 0.02 0.02 0.01	0.1 0.1 0.1 0.1 0.2	96 97 98 99 100	B - 38 B - 39 B - 40 B - 41 B - 42	0.02 0.04 0.10 0.02 0.07	0.6 0.1 0.1 0.1	146 147 148 149 150	B - 88 < B - 89 B - 90 < B - 91 B - 92 <	0.10 0.01 0.01	0.1 4.5 0.1 0.1	196 197 198 199 200	C - 33 < C - 34 < C - 35 < C - 36 < C - 37 <	0.01 0.01 0.01	0.1 0.1 0.4 0.1

Ser _« No.	Samp.No.	Áu	Ag	Ser.No.	Samp.No.	Au	Ag.		Ser.No.	Samp.No	0.	Δu	Ag	San No.	Samp	.No.	Au	Ag
201, 2 202 203 204 205	C - 38 C - 39 < C - 40	0.01 0.01 0.01	0.2 0.2 0.2 0.2	251 252 253 254 255	C - 88 < C - 89 < C - 90 < C - 91 C - 92	0.01	0.3 0.4 0.3 0.3		301 302 303 304 305	D - 38 D - 39 D - 40 D - 41 D - 42	3	0.01 0.01 0.01	0.1 0.1 0.6 0.3 0.1	351 352 353 354 355	D - 1 D - 1 D - 1	89 < 90 < 91 <	0.01 0.01 0.01 0.01 0.01	0.6 1.3 0.1 0.1
206 207 208 209 210	C - 44	0.01 0.01 0.01 0.01 0.04	0.1 0.1 0.1 0.2 0.1	256 257 258 259 260	C - 93 C - 94 < C - 95 C - 96 C - 97	0.08 0.01 0.01 0.01 0.01	0.1. 0.1 1.3 1.3 3.0		306 307 308 309 310	D - 43 D - 44 D - 45 D - 46 D - 47	1	0.01	0.1 0.1 0.1 0.1	356 357 358 359 360	D -	94 <	0.01 0.01 0.01 0.08 0.01	0.1 0.1 0.1 4.1
211 212 213 214 215	C - 48 < C - 49 C - 50 C - 51 C - 52 <	0.01 0.02 0.02 0.02 0.01	0.1 0.2 0.1 0.1 0.1	261 262 263 264 265		0.06 0.01 0.04 0.01	0.4 0.1 0.1 0.3 0.3		311 312 313 314 315	D - 49 D - 50 D - 51 D - 52	3	0.01 0.01 0.01	0.1 0.1 0.1 0.1	361 362 363 364 365	E - E		0.01 0.05 0.01 0.01 0.01	0.1 1.8 0.1 0.1
216 217 218 219 220	C - 53 C - 54 C - 55 C - 56 < C - 57 <		0.1 0.4 0.1 0.3	266 267 268 269 270	D - 4 <	0.01 0.01 0.01 0.01 0.02	0.2 0.3 0.6 0.8 0.7		316 317 318 319 320		<	0.01	0.1 0.1 0.4 0.1 0.1	366 367 368 369 370	E -	9 < 10 < 11	_0.01 0.01 0.01 0.01 0.02	0.1 0.1 0.1 0.1
221 222 223 224 - 225	C - 59 <	0.01 0.01 0.16 0.07 0.01	0.2 0.3 0.3 0.1 0.1	271 272 273 274 275			0.9 0.4 0.4 0.3		321 322 323 324 325) (0.1 0.1 0.1 0.1	371 372 373 374 375	E - E -		0.01 0.01 0.01 0.02 0.01	0.5 0.2 0.4 1.3 0.3
226 227 228 229 230	C - 63 C - 64 < C - 65 < C - 66 < C - 67 <	0.01	0.1 0.1 0.1 0.1	276 277 278 279 280	D - 15	0.02 0.01 0.01 0.01 0.08	0.7 0.3 0.8 0.3		326 327 328 329 330		} 5	0.01 0.01 0.01 0.01 0.03	0.1 0.7 0.1 0.6 0.1	376 377 378 379 380	E E E -	18 19 20 21 22	0.04 0.21 0.30 0.03 0.02	0.3 0.2 1.3 0.1
231 232 233 234 235	C - 68 < C - 69 < C - 70 < C - 71 C - 72		0.1 0.2 0.1 0.1	281 282 283 284 285	D - 18 D - 19 D - 20 D - 21 D - 22	0.01	2.4 2.1 0.5 0.5		331 332 333 334 335	D - 69 D - 69 D - 70 D - 71 D - 72	}	0.01	0.1 0.1 0.1 0.1	381 382 383 384 385	E -	23 24 25 26 27	0.10 0.04 0.04 0.03 0.23	0.1 0.2 0.1 0.1
236 237 238 239 240	C - 74	0.01 0.02 0.01 0.04 0.03	0.1 0.1 0.2 0.3 0.1	286 287 288 289 290	D - 23 (D - 24 D - 25 D - 26 D - 27	0.01 0.03 0.02 0.16 0.02	0.4 0.6 1.0 6.8 0.6	١	336 337 338 339 340	D - 73 D - 74 D - 75 D - 76 D - 77	; ;	0.03 0.01 0.01	0.1 0.1 0.1 0.7 0.1	386 387 388 389 390	F - F - F -	2 3	0.01 0.04 0.02 0.01 0.01	0.3 2.2 2.1 0.2 0.2
241 242 243 244 245		0.02 0.02 7.90 0.01 0.01	0.1 0.1 1.5 0.4 0.2	291 292 293 294 295	D - 28 D - 29 D - 30 D - 31 D - 32	0.01	12.9 0.1 0.1 0.1 0.5		341 342 343 344 345	D - 78 D - 80 D - 81 D - 82	3	0.01 0.01 0.01	0.1 0.1 0.1 0.1	391 392 393 394 395	F - F - F -	6 7 8 9	0.02 0.02 0.01 0.02 0.07	0.5 0.3 1.9 0.3
246 247 248 249 250		0.03 0.02 0.01 0.01 0.02	0.1 0.1 0.2 0.1 0.1	296 297 298 299 300	D - 33 D - 34 D - 35 D - 36 D - 37	< 0.01 < 0.01 < 0.01	0.1 0.1 0.2 0.1 0.2		346 347 348 349 350	D - 83 D - 85 D - 86 D - 86	4 5 3	0.01 0.10 0.13 0.05 0.01	0.1 2.7 4.5 1.1 0.5	396 397 398 399 400	F - F -	11 12 13 14 15	0.01 0.01 0.02 0.02 0.04	0.2 0.7 0.1 0.1 1.8

(Apx.9 Continued)

				<u> </u>	_	· Apx									
Ser.No.	Samp.No.	Au	Ag	Ser.No	Samp.No.	Au	Ag	Ser.No.	Samp.No.	Au	Ag	Ser.No.	Samp.No.	Au	Ag
401 402 403 404 405	F - 16 F - 17 F - 18 F - 19 F - 20 <	0.08 0.16 0.11 0.02 0.01	0.7 1.9 0.7 0.3 0.1	451 452 453 454 455	G - 17 G - 18 G - 19 < G - 20 < G - 21 <		0.1 0.3 0.1 0.1	501 502 503 504 505	H - 15 H - 16 H - 17 H - 18 H - 19	0.01 0.01 0.05 0.03 0.01	0.5 0.3 0.1 0.1	551 552 553 554 555	1 - 11 I - 12 < I - 13 < I - 14 < I - 15 <	0.01	0.7 0.3 0.1 0.1
406 407 408 409 410	F - 21 F - 22 F - 23 F - 24 F - 25	0.01 0.02 0.01 0.02 0.02	0.4 0.1 0.1 0.1 0.3	456 457 458 459 460	G - 22 G - 23 G - 24 G - 25 G - 26	0.02 0.01 0.40 0.65 0.02	0.1 0.1 1.8 0.4 0.1	506 507 508 509 510	H - 20 H - 21 H - 22 H - 23 H - 24	0.01 0.02 0.01 0.01 0.01	0.3 1.0 0.4 0.6 0.6	556 557 558 559 560		0.02 0.01 0.01 0.02 0.04	0.3 0.1 0.1 0.1 0.7
411 412 413 414 415	F - 26 F - 27 F - 28 F - 29 F - 30 <	0.01 0.01 0.01 0.03 0.01	0.1 0.1 0.1 0.1 0.1	461 462 463 464 465	G - 27 G - 28 G - 29 G - 30 G - 31	0.04 0.01 0.03 0.04 0.05	0.4 0.1 0.1 0.1 0.2	511 512 513 514 515	H - 25 4 H - 26 H - 27 H - 28 H - 29	0.01 0.01 0.01 0.18 0.03	1.2 0.2 0.1 0.3 0.6	561 562 563 564 565	1 - 21 1 - 22 1 - 23 < 1 - 24 1 - 25	0.06 0.03 0.01 0.03 0.06	0.1 0.1 0.1 0.1
416 417 418 419 420	F - 31 F - 32 F - 33 F - 34 F - 35	0.02 2.25 0.58 0.60 0.01	0.5 0.1 0.1 0.1	466 467 468 469 470	G - 32 G - 33 G - 34 G - 35 G - 36	0.01 0.03 0.34 0.03 0.02	0.5 0.2 0.1 0.1	516 517 518 519 520	H - 30 H - 31 H - 32 H - 33 H - 34	0.75 0.09 0.06 0.09 0.29	0.8 0.3 1.0 0.4 0.1	566 567 568 569 570	I - 26 I - 27 I - 28 I - 29 I - 30	0.02 0.02 0.02 0.03 0.07	0.1 0.1 0.1 0.2 0.1
421 422 423 424 425	F - 36 F - 37 F - 38 F - 39 F - 40	0.04 0.03 0.08 0.08 0.10	0.1 0.1 0.1 0.6 0.1	471 472 473 474 475	G - 37 G - 38 G - 39 G - 40 G - 41	0.01 0.01 0.02 0.03 0.05	0.3 0.1 0.1 0.1	521 522 523 524 525	H - 35 H - 36 H - 37 H - 38 H - 39	4.35 0.80 0.01 0.07 0.02	1.9 0.8 0.3 0.1 0.1	571 572 573 574 575	1 - 31 1 - 32 1 - 33 1 - 34 1 - 35	0.38 0.16 0.06 0.07 0.06	0.2 .0.1 0.1 0.1 0.6
426 427 428 429 430	F - 41 F - 42 F - 43 F - 44 F - 45	0.07 0.02 0.02 1.13 0.04	0.1 0.1 0.6 0.2 0.1	476 477 478 479 480	G - 42. G - 43 (G - 45 (G - 46	0.03	- 12 0.1 0.1 0.2 0.3	526 527 528 529 530	H - 40 H - 41 H - 42 H - 43 H - 44	0.02 0.04 0.14 0.06 0.03	0.5 0.1 0.1 0.2 0.6	576 577 578 579 580	I - 36 I - 37 I - 38 I - 39 I - 40	1.15 0.06 0.45 0.14 0.50	0.2 0.2 0.1 0.2 0.3
431 432 433 434 435	F - 46 F - 47 F - 48 F - 49 < G - 1	6.60 0.01 0.01 0.01 0.02	0.1 0.1 0.1 0.1 0.1	481 482 483 484 485	G - 47 G - 48 G - 49 G - 50 G - 51	0.03 0.01 0.05 0.04 0.02	0.1 0.3 2.1 0.2 0.1	531 532 533 534 535	H - 45 H - 46 H - 47 H - 48 H - 49	0.01 0.02 0.04 0.02 0.03	0.6 0.2 0.2 0.2 0.1	581 582 583 584 585		0.60 0.01 0.01 0.02 0.02	0.1 0.2 0.2 0.6 0.1
436 437 438 439 440	G - 2 G - 3 G - 4 G - 5 G - 6	0.09 0.10 0.02 0.01 0.02	0.7 0.1 0.1 0.1	486 487 488 489 490	G - 52 H - 1 H - 2 H - 3 H - 4	0.04 0.05 0.07 0.01 0.01	0.1 3.5 2.2 0.1 0.1	536 537 538 539 540	H - 50 H - 51 H - 52 H - 53 H - 54	0.01 0.04 0.04 0.02 0.02	0.1 0.1 0.1 0.1 0.1	586 587 588 589 590	J - 6 < J - 7 J - 8	0.01 0.01 0.02 0.04 0.01	0.1 0.3 0.5 0.2 0.1
441 442 443 444 445	G - 8	0.01 0.04 0.01 0.03 0.01	0.1 0.3 0.1 0.1 0.2	491 492 493 494 495	H - 8	0.01 0.01 0.01 0.01 0.01	0.1 0.1 0.1 0.1	541 542 543 544 545	1 - 2 1 - 3 1 - 4	< 0.01 < 0.01 < 0.01 0.01 < 0.01	0.1 0.1 0.1 0.3 0.1	591 592 593 594 595	J - 10 < J - 11 < J - 12 < J - 13 < J - 14 <	0.01 0.01 0.01	0.2 0.1 0.2 0.1 0.1
446 447 448 449 450	G - 13 G - 14 G - 15	0.01 0.04 0.04 0.01 0.01	0.1 0.3 0.8 0.1 0.1	496 497 498 499 500	H - 10 H - 11 H - 12 H - 13 H - 14	0.02 0.03 0.01 1.00 0.05	0.2 0.1 0.6 0.7 0.1	548 547 548 549 550	1 - 7	< 0.01 < 0.01 < 0.01 0.01 < 0.01	0.1 0.1 0.1 0.3 0.1	596 597 598 599 600	J - 15 < J - 16 J - 17 J - 18 J - 19	0.01 0.04 0.02 0.02 0.03	0.1 0.1 0.5 0.1 0.1

(Apx.9 Continued)

Ser.No.	Samp.No.	Au	Ag	Ser.No. Samp.No. Au Ag
601 602 603 604 605	J - 20 J - 21 J - 22 J - 23 J - 24	0.06 0.02 0.02 0.02 0.01	0.1 0.1 0.3 0.2 0.5	651 K - 30 < 0.01 0.2 652 K - 31 < 0.01 0.2 653 K - 32 < 0.01 0.1 654 L - 1 < 0.01 0.1 655 L - 2 0.02 0.1
606 607 608 609 610	J - 25 J - 26 J - 27 J - 28 J - 29	0.23 0.07 0.03 0.02 0.01	0.5 0.4 0.3 0.1 0.1	656 L - 3 0.02 0.3 657 L - 4 0.01 0.1 658 L - 5 < 0.01 0.1 659 L - 6 0.02 0.1 660 L - 7 0.01 0.1
611 612 613 614 615	J - 30 J - 31 J - 32 J - 33 J - 34	0.02 0.03 0.07 0.04 0.33	0.2 0.3 1.5 1.4 0.1	661 L - 8 < 0.01 0.1 662 L - 9 0.01 0.1 663 L - 10 0.01 0.1 664 L - 11 0.01 0.1 665 L - 12 0.05 0.2
616 617 618 619 620		0.38 0.03 0.02 0.01 0.01	0.1 0.1 0.1 0.1	666 L - 13 0.02 0.1 667 L - 14 0.01 1.3 668 L - 15 0.03 0.1 669 L - 16 0.04 0.1 670 L - 17 0.04 0.3
621 622 623 624 625	K - 2 < K - 3 <	0.01 0.01 0.01 0.01 0.01	0.3 0.1 0.1 0.1 0.3	671 L - 18 0.11 17.7 672 L - 19 0.01 0.5 673 L - 20 0.01 0.3 674 L - 21 < 0.01 0.2 675 L - 22 < 0.01 0.1
626 627 628 629 630	K - 6 <	0.01 0.01 0.01 0.03 0.10	0.1 0.1 0.1 1.5 3.0	676 L - 23 < 0.01 0.1 677 L - 24 < 0.01 0.1 678 L - 25 0.02 0.1 679 L - 26 < 0.01 0.2 680 L - 27 < 0.01 0.1
631 632 633 634 635	K - 12 < K - 13 <	0.02 0.01 0.01 0.01 0.01	0.8 0.1 0.1 0.1	681 L - 28 < 0.01 0.1 682 L - 29 0.02 0.9 683 L - 30 0.01 0.2 684 L - 31 0.02 0.1 685 L - 32 < 0.01 0.2
636 637 638 639 640	K - 16 < K - 17 K - 18 <	0.01 0.01 0.01 0.01 0.01	0.1 0.1 0.1 0.1 0.1	686 M - 1 < 0.01 0.4 687 M - 2 0.01 1.0 688 M - 3 0.01 0.2 689 M - 4 0.01 0.3 690 M - 5 < 0.01 0.1
641 642 643 644 645		0.03	0.1 0.7 0.1 0.1 0.2	691 M - 6 < 0.01 0.4 692 M - 7 < 0.01 0.5 693 M - 8 < 0.01 0.4 694 M - 9 < 0.01 0.1 695 M - 10 < 0.01 0.1
646 647 648 649 650	K - 25 < K - 26 < K - 27 K - 28 < K - 29 <	0.01 0.02 0.01	0.1 0.1 0.1 0.2 0.1	696 M - 11 0.01 0.4 697 M - 12 0.02 0.4 698 M - 13 < 0.01 0.1 699 M - 14 < 0.01 0.1 700 M - 15 0.01 0.3

ntinueo			
Ser.No.	Samp.No.	Au	Ag
701 702 703 704 705	M - 16 < M - 17 < M - 18 < M - 19 M - 20 <		0.3 0.1 0.2 0.9 1.0
706	M - 21 <	0.01	0.1
707	M - 22	0.01	0.2
708	M - 23 <	0.01	0.1
709	M - 24	0.21	4.6
710	M - 25	0.11	2.3
711	M - 26 <	0.01	0.3
712	M - 27	0.01	0.5
713	M - 28	0.03	0.3
714	M - 29	0.05	0.8
715	M - 30	0.05	1.4
716 717 718 719 720	M - 31 M - 32 < M - 33 M - 34 M - 35	0.03 0.01 0.03 0.06 0.01	0.3 0.3 2.2 1.5
721	M - 36 <		0.4
722	M - 37 <		0.7
723	M - 38		0.4
724	M - 39		1.4
725	M - 40 <		0.2
726	SQ- 1	0.74	23.5
727	SQ- 2	0.22	10.0
728	SQ- 3	0.21	9.2
729	SQ- 4	0.11	4.5
730	SQ- 5	0.15	5.7
731	SQ- 6	0.48	11.8
732	SQ- 7	0.18	6.5
733	SQ- 8	0.43	8.2

Apx.10 Analytical Value of Core Samples for Geochemical

Exploration by Drilling Holes in the SAN CLEMENTE Area, (ppm)

Ser.No.	Samp.No.	Au	Ag	Ser No.	Samp.No.	Au	Ag
1 2 3 4 5	MJM-1- 1 MJM-1- 4 MJM-1- 7 MJM-1- 10 MJM-1- 13	0.39 0.14 0.10 0.06 0.08	14.8 4.0 5.0 2.6 2.5	51 52 53 54	MJM-1-151 MJM-1-154 MJM-1-157 MJM-1-160	0.03 0.01 0.02 0.01	0.4 0.4 0.6 0.5
6 7 8 9	MJM-1- 16 MJM-1- 19 MJM-1- 22 MJM-1- 25 MJM-1- 28	0.05 0.05 0.05 0.05 0.05	2.1 1.9 2.0 1.5	55 56 57 58 59	MJM-1-163 MJM-1-166 MJM-1-169 MJM-1-172 MJM-1-175	0.02 0.02 0.14 0.02 0.04	1.0 0.5 0.7 0.4 0.9
11 12 13 14 15	MJM-1- 31 MJM-1- 34 MJM-1- 37 MJM-1- 40 MJM-1- 43	0.02 0.02 0.05 0.04 0.05	1.9 1.7 1.5 1.9	60 61 62 63 64	MJM-1-178 MJM-1-181 MJM-1-184 MJM-1-187 MJM-1-190	0.08 0.04 0.02 0.10 0.02	1.4 0.8 0.7 1.1 0.6
16 17 18 19	MJM-1- 46 MJM-1- 49 MJM-1- 52 MJM-1- 55	0.04 0.04 0.04 0.04	1.4 1.5 1.1 1.7	65 66 67 68	MJM-1-193 MJM-1-196 MJM-1-199 MJN-1-202	0.05 0.06 0.09 0.22	0.9 3.0 2.5 2.7
20 21 22 23	MJM-1- 58 MJM-1- 61 MJM-1- 64 MJM-1- 67	0.07 0.08 0.07 0.03	1.5 1.5 1.9	69 70 71 72 73	MJM-1-205 MJM-1-208 MJM-1-211 MJM-1-214 MJM-1-217	0.23 0.02 0.01 0.01 0.02	3.5 0.6 0.4 0.5 0.4
24 25 26 27 28	MJM-1- 70 MJM-1- 73 MJM-1- 76 MJM-1- 79 MJM-1- 82	0.03 0.03 0.03 0.01 0.01	0.5 0.8 0.6 0.7 0.8	74 75 76 77 78	MJM-1-220 MJM-1-223 MJM-1-226 MJM-1-229 MJM-1-232		0.4 0.5 0.5 0.6
29 30 31 32	MJM-1- 85 MJM-1- 88 MJM-1- 91 MJM-1- 94	0.01 0.02 0.01 0.06	0.7 0.5 0.7 2.4	79 80 81 82 83	MJM-1-235 MJM-1-238 MJM-1-241 MJM-1-244 MJM-1-247		0.6 0.7 0.4 1.7
33 34 35 36 37 38	MJM-1- 97 MJM-1-100 MJM-1-103 MJM-1-106 MJM-1-109 MJM-1-112	0.02 0.06 0.02 0.02 0.02 0.02	0.8 0.9 1.0 0.7 0.7	84 85 86 87 88	MJM-1-250 MJM-1-253 MJM-1-256 MJM-1-259 MJM-1-262	0.01 0.01 0.01	2.5 1.2 1.6 0.5 0.4
39 40 41 42 43 44	MJM-1-115 MJM-1-118 MJM-1-121 MJM-1-124 MJM-1-127 MJM-1-130	0.03 0.02 0.02 0.04 0.07 0.03	0.6 0.8 0.9 1.0 1.4 0.8	89 90 91 92 93	MJM-1-265 MJM-1-268 MJM-1-271 MJM-1-274 MJM-1-277	0.02 (0.01 0.01	1.1 0.4 0.5 0.5
45 46 47 48 49	MJM-1-133 MJM-1-136 MJM-1-139 MJM-1-142 MJM-1-145	0.03 0.03 0.02 0.02 0.01	0.6 0.5 0.6 0.5	94 95 96 97 98	MJM-1-280 MJM-1-283 MJM-1-286 MJM-1-289 MJM-1-292	0.01 <0.01 <0.01	0.5 0.5 0.3 0.4 0.9
50	MJM-1-148	0.03	0.8	99 100	MJM-1-295 MJM-1-298		0.6 0.7

				١.				
Ser.No.	Samp.No.	Au	Ag		Ser.No.	Samp.No.	Au	Ag
101 102 103 104 105	MJM-2- 1 MJM-2- 4 MJM-2- 7 MJM-2- 10 MJM-2- 13	0.01 0.01 0.05 0.02 0.02	0.6 1.0 3.0 1.9 0.4		151 152 153 154	MJM-2-151 MJM-2-154 MJM-2-157 MJM-2-160	0.03 0.02 0.01 0.03	0.2 0.2 0.1 0.3
106 107 108 109	MJM-2- 16 MJM-2- 19 MJM-2- 22 MJM-2- 25 MJM-2- 28	0.01 0.02 (0.01 0.01	0.3 0.4 0.2 0.3 0.2		155 156 157 158 159	MJM-2-163 MJM-2-166 MJM-2-169 MJM-2-172 MJM-2-175	0.03 0.03 0.02 0.03 0.03	0.8 0.3 0.4 0.5 2.3
111 112 113 114 115	MJM-2- 31 MJM-2- 34 MJM-2- 37 MJM-2- 40 MJM-2- 43	0.01 <0.01 <0.01 <0.01	0.4 0.1 0.1 0.2 0.1		160 161 162 163 164	MJM-2-178 MJM-2-181 MJM-2-184 MJM-2-187 MJM-2-190	0.02 0.03 0.01 0.01 0.03	3.1 2.0 0.7 0.5 0.5
116 117 118 119	MJM-2- 46 MJM-2- 49 MJM-2- 52 MJM-2- 55 MJM-2- 58	<0.01 <0.01 0.01 0.03	0.2 0.2 0.1 0.3		165 166 167 168 169	MJM-2-193 MJM-2-196 MJM-2-199 MJM-2-202 MJM-2-205	<0.01 0.01 <0.01	0.6 0.7 0.4 0.3
120 121 122 123 124	MJM-2- 61 MJM-2- 64 MJM-2- 67 MJM-2- 70	<0.01	0.3 0.3 0.2 0.5 0.8		170 171 172 173	MJM-2-208 MJM-2-211 MJM-2-214 MJM-2-217 MJM-2-220	<0.01	0.3 0.1 0.7 0.3
125 126 127 128	MJM-2- 73 MJM-2- 76 MJM-2- 79 MJM-2- 82	0.01	1.0		174 175 176 177 178	MJM-2-223 MJM-2-226 MJM-2-229 MJM-2-232	<0.01 <0.01 0.01	0.3 0.7 2.0 0.9 0.6
129 130 131 132	MJM-2- 85 MJM-2- 88 MJM-2- 91 MJM-2- 94	0.10 0.02 (0.01	2.0 4.3 0.8 < 0.1		179 180 181 182 183	MJM-2-235 MJM-2-238 MJM-2-241 MJM-2-244 MJM-2-247	0.02 0.01 0.04	0.1 0.1 0.2 0.2 0.3
133 134 135 136 137	MJM-2- 97 MJM-2-100 MJM-2-103 MJM-2-106 MJM-2-109	<0.01	< 0.1		184 185 186 187	MJM-2-250 MJM-2-253 MJM-2-256 MJM-2-259	0.02 <0.01 0.02	0.6 0.2 0.3 0.2 0.3
138 139 140 141	MJM-2-112 MJM-2-115 MJM-2-118 MJM-2-121	0.03 0.04 0.02	0.3 0.3 1.9		188 189 190 191	MJM-2-262 MJM-2-265 MJM-2-268 MJM-2-271	0.02 0.01 (0.01	0.3 0.3 0.1 0.2
142 143 144	MJM-2-124 MJM-2-127 MJM-2-130 MJM-2-133	0.03 0.01 0.01	0.4 0.4 0.1		192 193 194 195	MJM-2-274 MJM-2-277 MJM-2-280 MJM-2-283	0.01 <0.01 <0.01	0.4
146 147 148 149	MJM-2-136 MJM-2-139 MJM-2-142 MJM-2-145	0.02 0.01	0.2 0.2 0.4 0.5		196 197 198 199	MJM-2-286 MJM-2-289 MJM-2-292 MJM-2-295	0.01 <0.01 <0.01	0.2 0.1 0.2
150	MJM-2-148	0.02	0.5		200	MJM-2-298 	<0.01	0.2

Ser.No.	Samp.No.	Au	Ag	Ser.No.	Samp.No.	Au	Ag
201	MJM-3- 1	0.02	0.1		MJM-3-151		0.1
202	MJM-3- 4		0.1	252	MJM-3-154		0.1
203	MJM-3- 7		0.1	253	MJM-3-157		0.1
204	MJM-3- 10	0.04	0.1		MJM-3-160	<0.01	0.1
205	MJM-3- 13	0.06	0.1				í
				255	MJM-3-163		0.1
206	MJM-3- 16	0.01	0.7	256	MJM-3-166	<0.01	0.1
207	MJM-3- 19		0.1	257	MJM-3-169		0.1
208	MJM-3- 22	0.03	0.1	258	MJM-3-172	<0.01	0.1
209	MJM-3- 25	0.03	0.1	259	MJM-3-175	<0.01	0.1
210	MJM-3- 28	0.03	0.1	[\ \ \
				260	MJM-3-178		0.1
211	MJM-3- 31	0.08	0.1	261	MJM-3-181		0.1
212	MJM-3- 34	0.05	0.1	262	MJM-3-184		0.1
213	MJM-3- 37	<0.01	0.1	263	MJM-3-187	<0.01	0.1
214	MJM-3- 40	<0.01	0.1	264	MJM-3-190	<0.01	0.3
215	MJM-3- 43	<0.01	0.1				
				265	MJM-3-193		0.3
216	MJM-3- 46	(0.0)	0.1		MJM-3-196		0.1
217	MJM-3- 49	<0.01	0.1		MJM-3-199		0.1
218	MJM-3- 52		0.1		MJM-3-202	0.50	0.1
219	MJM-3- 55	<0.01	0.1	269	MJM-3-205	0.47	0.1
220	MJM-3- 58	<0.01	0.1	270	MJM-3-208		0.1
1				271	MJM-3-211		0.1
221	MJM-3- 61	<0.01	0.1	272	MJM-3-214		0.1
222	MJM-3- 64	<0.01	0.1	273	MJM-3-217		0.1
223	MJM-3- 67	0.02	0.1	2/3	MOM-2-217	(0.01	0.1
224	MJM-3- 70	<0.01	0.1	274	MJM-3-220	0.01	0.1
225	MJM-3- 73	<0.01	0.1	275	MJM-3-223		0.1
				276	MJM-3-226		0.1
226	MJM-3- 76	<0.01	0.1	[977	MJM-3-229		0.3
227	MJM-3- 79		0.1	279	MJM-3-232	0.01	0.2
228	MJM-3- 82	<0.01	0.1	~ ~ ~	11011 0 202	0.01	~ ~ ~
229		0.02	0.1	279	MJM-3-235	0.02	0.2
230	MJM-3- 88	<0.01	0.1	280	MJM-3-238		0.1
				291	MJM-3-241		0.1
231	MJM-3- 91	<0.01	0.1	282	MJM-3-244		0.1
232	MJM-3- 94		0.1	283	MJM-3-247		0.2
233	MJM-3- 97		0.1	l l		1 -	
234	MJM-3-100	<0.01	0.1	284	MJM-3-250	0.33	0.4
235	MJM-3-103	<0.01	0.1	T I	MJM-3-253	0.11	0.1
236	MJM-3-106		0.1		MJM-3-256		0.1
237	MJM-3-109		0.1	287	MJM-3-259		0.1
238	MJM-3-112		0.1		MJM-3-262	0.28	0.1
239	MJM-3-115		Ŏ. 1				
-55		• •	J	289	MJM-3-265		0.1
240	MJM-3-118	<0.01	0.1	290	MJM-3-268		0.1
241	MJM-3-121		0.1	1 1	MJM-3-271	0.16	0.1
242	MJM-3-124		0.1		MJM-3-274	0.25	0.1
243	MJM-3-127		0.1	293	MJM-3-277		0.1
244	MJM-3-130		4.0		•		
· - · ·				294	MJM-3-280	0.04	0.1
245	MJM-3-133	<0.01	0.1	295	MJM-3-283		0.1
246	MJM-3-136		0.1		MJM-3-286	0.07	0.1
247	MJM-3-139		0.1		MJM-3-289	0.02	0.1
248	MJM-3-142		0.1	1 1	MJM-3-292	0.08	0.1
249	MJM-3-145		0.1	1 1			
			- · ·	299	MJM-3-295	<0.01	0.1
250	MJM-3-148	<0.01	0.1	l I	MJM-3-298	0.03	0.1
				ــــــــــــــــــــــــــــــــــــــ			

	•		
-			

Apx.11 Analytical Procedure of CHEMEX LARS LTD.

A. Sample Preparation

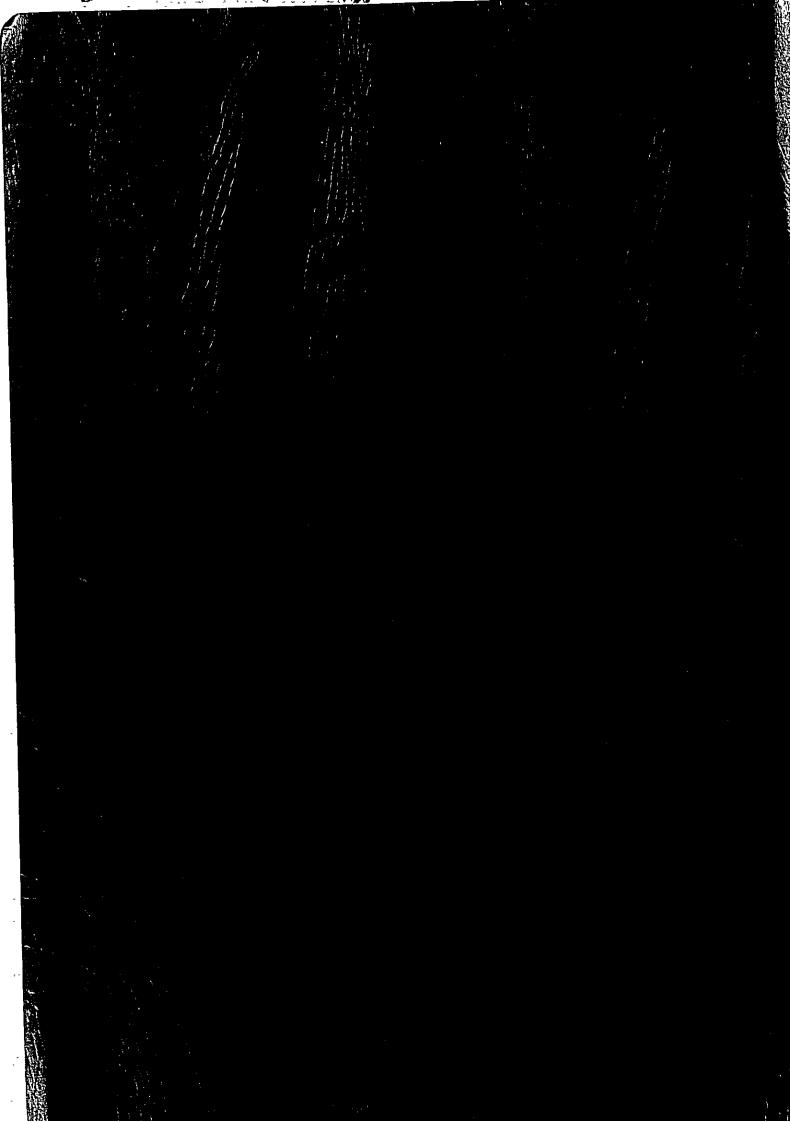
Materials received from your mineral exploration project in Mexico have been of two types:

- 1) Prepared geochemical soil samples.
- 2) Crushed rock materials.

The soil samples have not required further preparation before analyses. Rock chips (crushed to approximately 1/4 inch) are pulverized to -100 mesh in a ring grinder. Samples are homogenized and packaged in kraft envelopes for analyses.

B. Geochemical Analyses Procedures

F.A. - A.A. Gold Combo Method


For low grade samples and geochemical materials 10 gram samples are fused in litharge, carbonate and siliceous flux with the addition of 10 mg Au-free Ag metal and cupelled. The silver bead is parted with dilute HNO3 and then treated with aqua regia. The salts are dissolved in dilute HC1 and analyzed for Au on an atomic absorption spectrophotometer to a detection of 5 ppb.

PPM Silver_

A 1.0 gram portion of sample is digested in conc. perchloric-nitric acid ($HC10_4-HN0_3$) for approximately 2 hours. The digested sample is cooled and made up to 25 mls with distilled water. The solution is mixed and solids are allowed to settle. Silver is determined by atomic absorption technique using background correction on analysis to a detection limit of 0.1 PPM.

