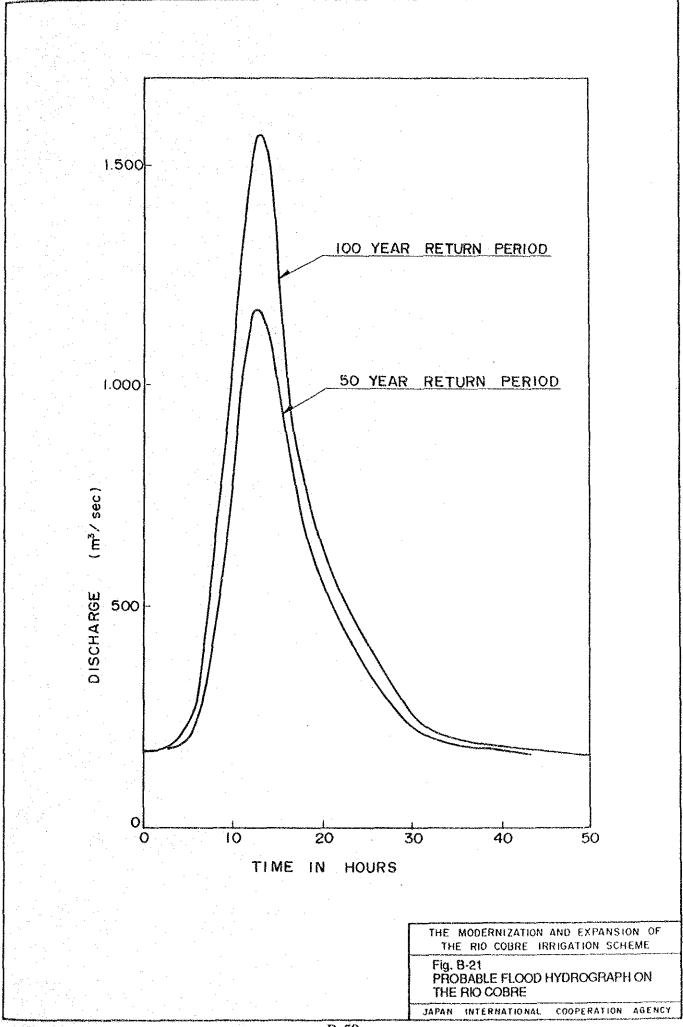
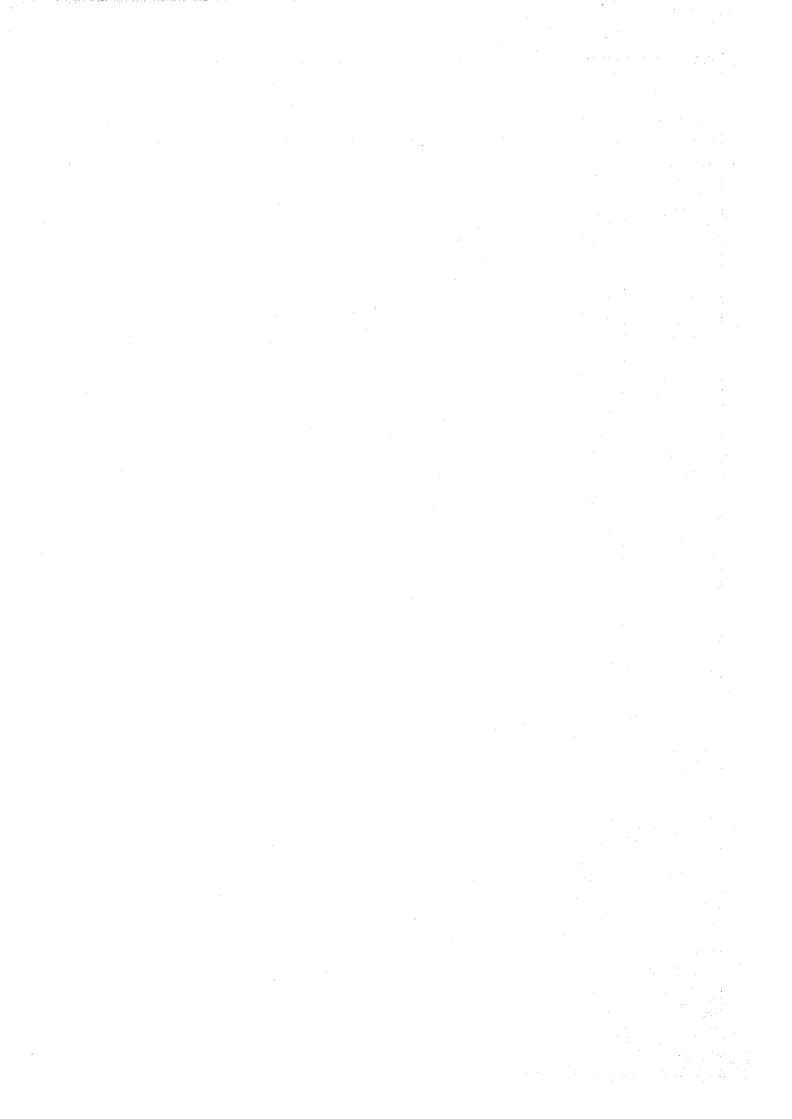


THE MODERNIZATION AND EXPANSION OF THE RIO COBRE IRRIGATION SCHEME

Fig. B-18 PEAK DISCHARGE FREQUENCY

JAPAN INTERNATIONAL COOPERATION AGENCY




--- 4 - 7 Oct . 1958 --- 30 - 1 June 1963 --- 27 - 29 June 1966 --- 22 - 23 Oct . 1974

THE MODERNIZATION AND EXPANSION OF THE RIO COBRE IRRIGATION SCHEME

Fig. B-20 DIMENSIONLESS FLOOD HYDROGRAPHS

JAPAN INTERNATIONAL COOPERATION AGENCY

ANNEX - C GEOLOGY AND HYDROGEOLOGY

ANNEX C

GEOLOGY AND HYDROGEOLOGY

		TABLE OF CONTENTS
		TABLE OF CONTENTS
	* : - :	
ĺ.	INT	RODUCTION
	GEC	DLOGY
	2.1	Geomorphology
	2.2	
	-	2.2.1 Stratigraphy
		2.2.2 Structure
	2.3	
		2.3.1 Result of drilling and laboratory test
		2.3.2 Conclusion of investigation
	2.4	Geology of the Canal Network
4		
١.	HYI	DROGEOLOGY
	3.1	General
Å-	3.2	Outline of Groundwater
	3.3	Hydrogeological Features
		3.3.1 Springs
		3.3.2 Sinks
	3.4	
••		3.4.1 Lithofacies
	Ť	3.4.2 Water levels
4.	4.1	3.4.3 Aquifer characteristics
Ċ		3.4.4 Well production
		3.4.5 Water quality
	3.5	Alluvial Aquifer
		3.5.1 Lithofacies
		3.5.2 Water levels
		3.5.3 Aquifer characteristics
		3.5.4 Well production
		3.5.5 Water quality
	3.6	Problem of Groundwater
		3.6.1 Saline water intrusion
-		3.6.2 Fresh saline water boundary
	3.7	Artificial Recharge
		3.7.1 Purpose and previous study
. :		3.7.2 Artificial recharge in the study area
j.;	3.8	
		3.8.1 Approach and procedure of simulation
: · ·		3.8.2 Simulation model of the lower Rio Cobre basin
		DIVING SPANNINGSVIX EXPUNDS WE HAV AVITAL IND SOUTH CHURCH AND STATE OF STATES OF STAT

3.9	Evaluation of Groundwater	C-25
3 10	Groundwiter Basin Management	C-26
4	3.10.1 Appropriate usage and maintenance of groundwater	C-26 C-27
	3.10.2 Groundwater management	C-21
REFERE	NCES	C-29
	LIST OF TABLES	
Table C-1	RESULT OF LABORATORY TEST	C-31
Table C-2		C-32
Table C-3	ALLUVIAL AQUIFER (WELL LIST)	C-34
Table C-4	LIST OF SPRINGS	C-35
Table C-5		C-35
Table C-6	AQUIFER CHARACTERISTICS, LIMESTONE WELLS (2)	C-36
Table C-7	ANNUAL ABSTRACTION FROM LIMESTONE AQUIFER	C-37
Table C-8	RESULTS OF WATER QUALITY ANALYSES FOR WELLS AND SPRINGS IN THE LIMESTONE AQUIFER	
		C-37
Table C-9	AQUIFER CHARACTERISTICS, ALLUVIAL WELLS	C-38
Table C-1		C-38
m.11.01	RECOVERY TESTS, ALLUVIAL AQUIFER	
Table C-1		C-38
Table C-1	·	C-39
Table C-1		C-40
Table C-1		C-40
Table C-1		C-40
Table C-1	6 MONTHLY RECHARGE FROM RIO COBRE TO ALLUVIAL AQUIFER	C-41
Table C-1		₩ TX
	RIO COBRE BASIN	C-41

LIST OF FIGURES			
Fig. C-1	GEOLOGICAL MAP 1:250,000	C-43	
Fig. C-2	STRATIGRAPHIC FRAMEWORK OF RIO COBRE	C-4:	
Fig. C-3	LOCATION MAP OF DRILLING POINT	C-40	
Fig. C-4	GEOLOGIC CROSS SECTION OF THE EXISTING DAM SITE	C-4	
Fig. C-5	GEOLOGIC CROSS SECTION OF THE ALTERNATIVE DAM SITE	C-48	
Fig. C-6	WELL LOCATION MAP	C-49	
Fig. C-7	WATER LEVEL CONTOURS IN THE LIMESTONE AQUIFER JAN. 1972	C-5	
Fig. C-8	WATER LEVEL CONTOURS IN THE LIMESTONE AQUIFER AUG. 1972	C-52	
Fig. C-9	WATER LEVEL CONTOURS IN THE LIMESTONE AQUIFER FEB. 1986	C-5	
Fig. C-10	WATER LEVEL CONTOURS IN THE LIMESTONE AQUIFER JUN., SEP. 1986	C-5	
Fig. C-11	WELL HYDROGRAPHS	C-5.	
Fig. C-12	ANNUAL ABSTRACTION FOR EACH GRID FROM LIMESTONE AQUIFER	C-5	
Fig. C-13	LOCATION OF WATER SAMPLE	C-5	
Fig. C-14	TRILINEAR DIAGRAM OF GROUNDWATER QUALITY	C-5	
Fig. C-15	HYDROGEOLOGIC SECTION OF ALLUVIAL AQUIFER	C-5	
Fig. C-16	CONTOURS ON THE BOTTOM OF THE ALLUVIUM	C-6	
Fig. C-17	WATER LEVEL CONTOURS IN THE ALLUVIAL AQUIFER JAN. 1972	C-6	
Fig. C-18	WATER LEVEL CONTOURS IN THE ALLUVIAL AQUIFER AUG. 1972	C-6	
Fig. C-19	WATER LEVEL CONTOURS IN THE ALLUVIAL AQUIFER FEB. 1985	C-6	
Fig. C-20	WATER LEVEL CONTOURS IN THE ALLUVIAL AQUIFER JUN SEP. 1986	C-6.	
Fig. C-21	ANNUAL ABSTRACTION FOR EACH GRID FROM ALLUVIAL AQUIFER	C-6	
Fig. C-22	ISOCHLORIDE CONTOURS SEP OCT. 1972	C-6	
Fig. C-23	ISOCHLORIDE CONTOURS DEC. 1980	C-6	
Fig. C-24	EXTRAPOLATED SECTION ACROSS ELECTRICAL CONDUCTIVITY PROFILE	C-69	
Fig. C-25	DISTRIBUTION OF GROUNDWATER BASIN	C-7	
Fig. C-26	TRANSMISSIBILITY MAP OF THE LIMESTONE AQUIFER	C-7	
Fig. C-27	TRANSMISSIBILITY MAP OF THE ALLUVIAL AQUIFER	C-7	
Fig. C-28	RAINFALL STATION MAP	C-7	

Fig. C-29	GRAPH OF NATURAL REPLENISHMENT VS ANNUAL RAINFALL FOR THE LIMESTONE OUTCROPS	C-77
Fig. C-30	GRAPHS OF MONTHLY VOLUMES OF RECHARGE VS MONTHLY AREAL GROSS WATERGIFT FOR THE ALLUVIAL PLAINS	C-78
Fig. C-31	IRRIGATION AREA MAP	C-79
Fig. C-32	MAP OF TRANSMISSIBILITY AFTER IDENTIFICATION OF THE LIMESTONE AQUIFER	C-80
Fig. C-33	MAP OF TRANSMISSIBILITY AFTER IDENTIFICATION OF THE ALLUVIAL AQUIFER	C-81
Fig. C-34	IDENTIFIED WATER LEVEL CONTOURS IN THE LIMESTONE AQUIFER AUG. 1972	C-82
Fig. C-35	IDENTIFIED WATER LEVEL CONTOURS IN THE ALLUVIAL AQUIFER AUG. 1972	C-83
Fig. C-36	OPTIMAL ABSTRACTION FOR EACH GRID FROM THE LIMESTONE AQUIFER	C-84
Fig. C-37	OPTIMAL ABSTRACTION FOR EACH GRID FROM THE ALLUVIAL AQUIFER	C-85
Fig. C-38	CALCULATED GROUNDWATER LEVEL OF THE LIMESTONE AQUIFER	C-86
Fig. C-39	CALCULATED GROUNDWATER LEVEL OF THE ALLUVIAL AQUIFER	C-87

1. INTRODUCTION

The study area is composed of alluvium of the Rio Cobre and small rivers and covers approximately 27,400 ha of which about 12,000 ha is presently irrigated in net by both the Rio Cobre Irrigation Scheme and the St. Dorothy Irrigation Scheme.

The Rio Cobre basin located in the central part of Jamaica lies within the Parish of St. Catherine. It is located between 76°48' and 77°10' west longitude and 17°50' and 18°14' north latitude. The basin is about 40 km in length in the east - west direction and about 45 km from north to south. It covers an area of approximately 1,180 km² and can be divided into two district parts, the Lower Rio Cobre basin in the south and the Upper Rio Cobre basin in the north. (see Annex-B) The area lies in the North East Trade Belt and has a tropical oceanic climate.

Tertiary White Limestone Formation predominates over 50% of the Rio Cobre basin and alluvium occupies the study area. The highly karstic nature of the White Limestone Formations, i.e. the close surface depressions, the absence of surface drainage and well developed sub-surface drainage, made definition of the exact position of the surface water boundaries uncertain.

The main focus of this Annex is the Lower Rio Cobre basin, but the other sub-catchments which drain directly into the Lower Rio Cobre basin are also surveyed.

2. GEOLOGY

2.1 Geomorphology

The three major geomorphological features identified in and around the area include:

- dissected highlands (volcaniclastic areas)
- karstlands (limestone outcrops)
- flat areas (alluvial plains)

The dissected highlands include impermeable Cretaceous deposits. Surface run-off has denuded the area to form steep sided 'V' shaped valleys. During floods there is direct drainage to the sea but normally, river channels are dry as flow is lost to the limestone aquifer at the impermeable boundary. The karstlands comprise the Tertiary carbonate formations and include all the area north of the plains and also the Hellshire and Port Henderson Hills, which have very rugged topography, formed by numerous deep dolines, collapse structures, sinkholes and solution cavities. Considerable surface flow is therefore percolates into the ground. The alluvial plains form a gently sloping area between the limestone foothills in the north and the shore in the south excluding the Hellshire and Port Henderson Hills. The numerous irrigation channels contribute to drainage by the Rio Cobre and Ferry rivers in the east, the Salt Island Creek in the central area, and the Coleburns Gully in the west.

2.2 Geology

The most complete works on geology of the Lower Rio Cobre basin have been officially reported by V.A.Zans et al. (1962) and UNDP/FAO (1974), which were quoted in this chapter.

2.2.1 Stratigraphy

Fig. C-1 and C-2 provide maps of the geology and stratigraphic sequence around the Rio Cobre basin as used in this study, and a correlation of these units with the traditionally accepted units used by previous writers.

The Cretaceous rocks outcrop in the northwest near Bartons and Macca Tree and in the north central area around Giblatore. They are overlain unconformably by the Tertiary rocks, mostly limestone, the oldest of which is of Middle Eocene age and outcrop over much of the area north of Spanish Town. The Tertiary rocks are overlain by limestone, marls and sandy clays of Plio-Pleistocene age, constituting the Liguanea Formations.

(1) Cretaceous rocks

Rocks of Cretaceous age outcrop around Bartons and Water Mount and in the small inlayer at Giblatore. The rocks are primarily reworked volcaniclastics and subsidiary intrusives. Erosion of these sediments provided the bulk of the sediment in the lowest part of the overlying Tertiary rocks.

(2) Tertiary rocks

(a) Yellow Limestone Group

The part of the Yellow Limestone which occurs in this area is called the Chapleton Formation and comprises the lower Guys Hill member and the Ham Walk member. The upper unit is continuous and consists primarily of hard shelly limestones, yellow to brownish marls and patchily dolomitized limestones. Rocks belonging to the Yellow Limestone Group outcrop around the Cretaceous Inliers. The total thickness of the group varies from about 15 m where the lower member is missing to a maximum of about 150 m.

(b) White Limestone Group

Rocks belonging to the White Limestone Group are exposed in the northern hilly areas and the southern Hellshire and Port Henderson Hills and are covered by alluvium in the coastal plain. This group of limestones has been subdivided into five members by other writers but will be treated as two units, the Lower White Limestone, primarily of Eocene age, and the Upper White Limestone, of Oligocene to Middle Micocene age.

(i) Lower White Limestone

The Lower White Limestone includes the Troy and Somerset Limestone. The Troy is the most distinctive of the group and represents the basal sediments of the White Limestone Group. For the most part it overlies the Yellow Limestone rocks conformably. The Troy sediments are essentially dolomites, often well-bedded but sometimes massive. Bedding in the lower part is usually good, but becomes much less marked in the upper part. Jointing is one of the most important characteristics of the Troy Limestone and the texture varies from a very dense fine-grained dolomite to rubbly and coarse grained. The Troy Limestone ranges in thickness from 100 m to 250 m. The post Troy Limestone consists of hard, fine-grained biomicrites and coarse-grained biosparites to soft, chalky rubbly limestones. It is believed that these Limestones vary in thickness between about 30 m to 200 m.

(ii) Upper White Limestone

The Upper White Limestone includes the Brown's Town and Newport Limestones. The sequence consists of chalky, poorly bedded, mainly massive, partly recrystalized, and rubble limestones. Accurate measurement of the thickness of the Upper White Limestone sediments is unavailable but it is obvious that there are variations in thickness of the sequence. Comparing the Oligocene-Miocene limestones with the Clarendon sequence it is possible that there may be as much as 1,200 m of this limestone beneath the St. Catherine Plains near the southern edge.

(c) Alluvium

The alluvium represents fluviatile deposition from Pleistocene times in response to the rapid denudation of the newly exposed Cretaceous rocks. The alluvial deposits consist of a thick sequence of intercalated sands, sandy gravels and clays. The bulk of the sediments is made up of igneous derived material with a very small fraction of limestone grains. The alluvium has been deposited on a strongly karstified limestone surface, hence there are considerable variations in thickness from only a few meters at the border of the plain to about 180 m.

2.2.2 Structure

Structure in and around the area is quite simple. The old Cretaceous depositional surface had much relief, the Giblatore and Lazareito Inliers being obvious positive areas during much of the depositional cycles from Eocene through to the present. Post-Cretaceous rocks dip off the Cretaceous remnant hills in all directions, the dominant direction of dip in and around the area being to the south from the edge of the central and Blue Mountain Inliers. It appears that this dip is due to supratenous folding and post depositional earth movements, with the former dominant immediately around the inlayer areas. Several faults dissect the area. The unconformity at the top of the Cretaceous is the most pronounced in the area. There is evidence to suggest earth movements at the end of Miocene times and again, locally, during the Pliocene.

(1) Faults

The hilly area of the Lower Rio Cobre basin is dissected by faults, primarily normal tension faults with little throw. There are two major sets; a dominant northwest-southeast set including the Red Ground-Marlie Mount Fault, the Caymanas, Glade, Wreck Point and Manatee Bay Faults; and an east-west set including the Half Moon Bay, Molynes Mountain and Bog Walk Faults. The faults seem to fall naturally into groups based on mode of origin, as described below:

(a) Group 1: Basement faults

These are rejuvenated pre-Eocene faults along which movement has taken place possibly during and after the deposition of the carbonate sediments. The resulting faults or fractures are usually expressed as rather long linear features with small scarps and prominent gullying along the line of strike. The Bog Walk, Cudjoe Hill and Caymanas Faults seem to be of this origin although the first one seems to have nearly 500 m of throw around the centre.

(i) Bog Walk Fault

This fault forms the most imposing topographical feature seen in the Rio Cobre basin. Trending west to east the main fault is marked by a very steep scarp slope, some 300 m at its highest point. In the east the faults split up into a series of splayed smaller faults.

(ii) Cudjoe Hill Fault

This fault is marked by a sinuous linear feature extending from Spring Vale to Cocoa Walk. There is an impression of down faulting on the south side, the north block sometimes having a very marked scarp as at Cudjoe Hill.

(iii) Red Ground-Marlie Mount Fault

This fault is expressed as a marked scarp east of Bannister but passes into a valley feature near Marlie Mount. There are smaller faults associated with this fault near Red Ground. At Bartons it can no longer be identified.

(iv) Molynes Mountain Fault

This is a very marked linear feature extending from Belvedere to Caymanas Bay. It takes the form of a narrow "V" having a thin cover of alluvium.

(v) Ferry Hill Fault

This is a very distinct east-west trending structure passing north of Ferry Hill. It forms the scarp, bounding the Liguanea Plains, around the Duhaney river area, then passes north towards the Queen Hill. It probably extends westwards beneath the alluvium. The throw on this fault is not great, probably of the order of 60 m.

(b) Group 2: Tension faults

The second group of faults seems to have been generated by tensional forces in response to uplift after deposition. The Hellshire Hills Faults are prime examples of this mode of fault origin. These faults have been developed mainly in the two prominent directions, one north-south trend dominating in the west and east-west in the east.

2.3 Geology of Headworks

Core drilling was carried out by JICA Team on the existing dam site and the proposed dam site about 170 m downstream of the existing dam to investigate the geological and hydrogeological, soil and foundation conditions of the existing dam and for design purposes of the proposed alternative dam. Standard penetration tests and permeability tests were also carried out at both sites.

2.3.1 Result of drilling and laboratory test

The following field works and laboratory tests were carried out by the Contractor in Jamaica.

Work item	Unit	Quantity
1) Field works	-	
Drilling works	site	/
Drilling depth	m	181.6
Standard penetration test	Nos.	33
Permeability test	•	
- Falling head test	Nos.	2
- Packer test	Nos.	23
2) Laboratory test	:	
For alluvial deposit		
- Specific gravity test	Nos.	4
- Grain size analysis	No.	1
For limestone formation and dam concrete		
- Specific gravity test	Nos.	10
- Unit weight test	Nos.	10
- Uniaxial compression test	Nos.	10

The field works commenced on 3rd August and ended 21st September 1986. The locations of drilling points are shown in Fig. C-3.

(1) Drilling works

Seven holes were drilled to a total depth of 181.6 m. Geologic sections at the existing dam and the proposed alternative dam sites are shown in Fig. C-4 and C-5. It is found that the typical formation consists of alluvium and limestone formation.

(a) Existing dam site

The existing dam at B-3 consists of boulders and gravels covered with concrete. No cement mortar could be observed between the mounded boulders and gravels, but foundations of brick and concrete were observed between 8.0 m and 9.1 m. At B-2 the dam construction consists of concrete both of limestone gravels and bricks. The thickness of the concrete material is 9.6 m at which depth there is an iron plate about 10 mm in thickness. The total thickness of the dam construction varies from 9.1 m to 9.6 m. The surface concrete ranges in thickness from 3 cm to 60 cm at the crest.

The alluvial deposit mainly consists of gravel and sand with N value over 40. Clay with sand is found up to 4 m in thickness from the surface at B-1 and a clay bed of 9.1 m having a range of N values from 9 to 23 at B-4. The top portion of the sediment at B-4 is considered to be recent dam sediments. Drilling investigations have indicated that the left side of the dam is founded on the alluvium. At B-2 and B-3 the dam is founded on alluvial gravel and sand bed or Tertiary sheared limestone.

The bedrock is the Tertiary limestone, well fractured and having many cavities filled with clay.

(b) Alternative dam site

The alluvial deposit comprises gravel and sand on the riverbed. The N values show a wide scatter from four (4) to over 50. Red clay with gravel is found at the surface of B-5 on the left bank. The deposit is from 7.6 m to 14.0 m in thickness on the riverbed and about 3.1 m at B-5. The alluvial deposit overlies the Tertiary limestone formation.

The bedrock is limestone which outcrops at the left bank of the river. It is well fracture, jointed and cavernous.

(2) Standard penetration test

Standard penetration test is performed on each bore hole at one and half meter intervals principally in the alluvium. The result are shown in Fig. C-4. The average N value at each layer is as follows:

Sand and gravel 10 to 50 Clay with sand 19 to 24

Fractured limestone 24 to over 50 (at B-2 and B-4)

(3) Permeability

The results of field permeability tests indicate that coefficient of permeability of each part of the formation as shown in Fig. C-4 and Fig. C-5. The groundwater level of each bore hole is below the water level of reservoir or river.

The average permeability of each formation is estimated as follows:

Sand gravel and boulder 5×10^{-3} to 5×10^{-1} cm/sec Limestone formation 1×10^{-4} to 5×10^{-2} cm/sec

(4) Laboratory tests

Rock and soil samples were taken by drilling in the dam site and subjected rock and soil tests in the laboratory. The results of tests are shown in Table C-1.

(a) Rock tests

(i) Concrete material of dam

The dam concrete was sampled at B-2 and B-3. The specific gravity is in the range of 2.16 and 2.50. The unit density is in the range between 2.16 and 2.50 g/cm³. The uniaxial compression strength is 46 to 152 kg/cm².

(ii) Limestone (bed rock)

The specific gravity of the limestone shows a wide range from a low 2.19 in the cavernous state, to a high 2.89 in the solid compact state. The unit density has a same tendency of the specific gravity, the value is from 2.19 to 2.88. The uniaxial compression strength is 152 to 527 kg/cm².

(b) Soil tests

The specific gravity of sand is 2.66 and 2.77. The value of silt/clay is 2.55 and 2.57. The grain size of the sample (B-1, Depth from 3.2 to 3.5 m) indicates coarse to very coarse sand.

2.3.2 Conclusion of investigation

The investigations lead to the conclusion that the geological and hydrogeological, soil and foundation conditions of the existing dam site are better than the proposed alternative dam site. As compared with the later, the alluvium of the former is thinner, the permeability is smaller, etc. The condition of the existing dam may be summarized as follows:

- (1) The existing dam, constructed about 100 years ago, seems to be sound but its upstream slope could not be observed due to deposit of sediments in the reservoir.
- (2) The dam is founded on Tertiary sheared limestone or alluvial gravel and sand, some of which is very permeable (permeability $K = 1 \times 10^{-4}$ to 5×10^{-2} cm/sec). The amount of leakage through the dam foundation however is small.
- (3) The sediment in the reservoir reduces the pondage but reduces leakage.
- (4) If the sediment is to be dredged leakage must also be prevented, for which it will be necessary to reduce the permeability of the foundation to less than 1 x 10⁻⁴ cm/sec by grouting after detailed investigation. Suitable treatment will have to extend to a depth of about 10 m and over a length of about 120 m along the crest and abutments.

2.4 Geology of the Canal Network

Most of the canal network is located on the alluvial plain where the top soil consists mainly of silt and clay. Sticky clay soil is found especially around the ends of the Old Harbour Branch and the Hartlands Branch in the west of the study area.

The upper part of main canal is located at the apex of the alluvial fan where the Rio Cobre enters the plains from the hills. More coarse material is found in this part of the alluvial fan.

Some parts of the Old Harbour and Caymanas Branch canals pass through the limestone foothills where there are many sink holes, Where the canals are not lined some water is lost as leakage which recharges the groundwater table.

3. HYDROGEOLOGY

3.1 General

The studies on hydrogeology of the Lower Rio Cobre basin are published by UNDP/FAO (1974), Botbol (1982), etc., which give the information of hydrogeological features, aquifer lithofacies, aquifer characteristics, etc.

3.2 Outline of Groundwater

The area of the Lower Rio Cobre basin is about 650 km². It is drained mainly by the Rio Cobre and the Ferry river in the east which flow into Kingston Harbour. There are also a number of less important and intermittent streams in the west which discharge into Old Harbour Bay.

The study area has two principal aquifers, the limestone aquifer and the alluvial aquifer from which water is produced by wells.

The hydrogeological basement rocks outcrop in Giblatore and around Bartons and Water Mount to the northwest of the study area. These rocks are the Cretaceous volcaniclastics and the Tertiary yellow impure muddy limestones. These older rocks are usually impermeable and are unimportant as aquifers and no successful wells have been developed in this type of rock. The limestone aquifer consists mainly of the White Limestone. The White Limestone outcrops occur in the upland areas, north of the alluvium except for the isolated Hellshire and Port Henderson Hills which lie south of the alluvium and border the coast. The White Limestone outcrop region is noted for the absence of any well-developed surface drainage pattern. Instead there are many closed depressions within which water is channelled underground through centrally located sinks or laterally draining caverns and eventually infiltrated to the groundwater table. This area is therefore one of the primary recharges.

The alluvial plain region is important agriculturally because of favourable soil development and is therefore the area over which agricultural use is greatest. Water is withdrawn both from the limestone and alluvial aquifers for irrigating the alluvial plains.

There are about 230 wells in the South St. Catherine area most of which have been drilled for abstraction of groundwater. At present, most of the wells are used for irrigation. The location and names of the wells are shown in Fig. C-6 and Table C-2 and C-3.

3.3 Hydrogeological Features

Springs and sinks are prominent surface expressions of connection between surface water and groundwater.

3.3.1 Springs

Spring flow forms a fairly large part of the groundwater discharge from the basin. Details of all known springs in the area are given in Table C-4 (from FAO, 1974). The springs of the Spring Garden and the Resource Spring are famous gravity springs.

3.3.2 Sinks

Closed depressions are a conspicuous feature of the karstified landscape. The depressions range from 1 meter to 100 m from the lowest part to the top of the surrounding hills. They may be sub-circular or elongate and cover up to 1 km². After heavy precipitation transient ponding of water may take place, usually all surface water has disappeared within a few hours.

A source of recharge to the limestone is water which flows off the highly dissected impermeable rock, on the north highlands. A well developed dendritic surface drainage system is developed on these impermeable rocks and the runoff flows via well-developed river channels into the limestone where some of all the water usually sinks underground. In many rivers in this area through-flow to the river mouths is sustained only as long as precipitation on the impermeable rocks is high. In a number of cases during low flow the entire streamflow is absorbed into the river bed and percolated to the limestone aquifer close to the boundary between the impermeable rocks and the limestone. The Myttins river, Old Harbour river and St. Faith's river all behave in this manner.

3.4 Limestone Aquifer

3.4.1 Lithofacies

The limestone aquifer consists exclusively of rocks of the White Limestone Group, divided into a lower and an upper stratigraphic unit. There is no well production from the older Yellow Limestone Formation which is, for the most part, impure and has little secondary permeability development. However, only a small amount of water yields from the Yellow Limestone as a spring. Two units in the White Limestone Group consist of a complex series of bio- and litho-facies which reflect different depositional conditions and those result in local variations in the hydraulic properties of the aquifer. The upper limestone units are mainly rubbly or chalky and consequently more likely to develop secondary permeability through solution than through fracturing. This results in a more even distribution of permeability. The lower units are hard, recrystalized and dolomitized and fracturing controls the development of secondary permeability. In the upper units there may be some primary permeability, but little in the lower units.

Basically the White Limestone Rock acts as a single hydrological unit which is non-homogeneous and non-isotropic. However, the properties of the aquifer may vary by many order of magnitudes over short distances so that water levels often appear inconsistent. For example, in the upland areas water level elevations rise steeply and the water table stands a few meters above the sea level in the lowlands.

In a horizontal plain the development of secondary permeability is controlled not only by the lithology of the rocks but also by previous sea level stands. Because sea levels were both below and above the present levels at various times in the past, there are discrete horizontal zones with appreciably higher permeability than the intervening layers.

3.4.2 Water levels

Water levels and changes in levels reflect aquifer characteristics and changes in storage. The water level contours in limestone aquifer for January and August 1972 is presented by on Fig. C-7 and Fig. C-8 and the contour for February 1986 on Fig. C-9 and the contours between June and September 1986 on Fig. C-10.

In the southern part of the aquifer the groundwater gradient is relatively uniform trending south to south-easterly toward the sea. Superimposed on this regional gradient are local variations in outflow directions caused by local abstraction centres.

Water levels in the limestone aquifer fluctuate in response to variation in recharge and discharge and the amount of fluctuation is also related to differences in the hydraulic characteristics of the aquifer. The well hydrographs were drawn by using the data of automatic water level recorders on Crescent well and Hartlands Exploratory well between March and September 1986 as shown in Fig. C-11. At Hartlands in the southern part of the aquifer the fluctuation is about 1 m, while at Crescent in the limestone hills the fluctuation is more than 10 m. Both water levels were raised after the heavy rain in early June 1986. The response of the water level in the upper area to recharge from rain is much more rapid than in the lower area.

3.4.3 Aquifer characteristics

The ability of the aquifer to transmit and store water is assessed quantitatively in terms of its coefficient of transmissibility (T) and storage coefficient (S). To determine values of T and S, ten pumping tests were run and analysed by FAO (1974). The results of these, together with values obtained from previous investigations, are shown in Table C-5 and C-6.

It is apparent that there is wide variation in the transmissibility of the unconfined section of the aquifer. Geological investigations indicate that the highest transmissibility values are confined to fault and fracture zones where secondary permeability is enhanced by solution phenomena as, for example at Bamboo where $T = 15,000 \text{ m}^2/\text{day}$. The intervening areas have low transmissibility, for example $T = 20 \text{ m}^2/\text{day}$ at Crescent. The ranges of aquifer characteristics are as follows:

Transmissibility $T (m^2/day)$: 20 to 15,000

Storage coefficient S : 1.1×10^{-6} to 3.8×10^{-4}

3.4.4 Well production

There are about 80 producing wells in the limestone aquifer in the study area. The wells are listed in Table C-2 and the locations are shown in Fig. C-6. According to Botbol

Report (1982), the total discharge from 77 wells was 91.5 million m³ in 1980 and an average of 1.19 million m³ per well annually. The location of the production wells and the annual production in 1980 of each grid mesh on the map are shown in Fig. C-12. The annual total production for the years between 1970 and 1980 is listed in Table C-7 and the average ten (10) years is calculated 85.9 million m³/year.

Abstraction is localized around heavily irrigated areas of sugar cane cultivation. The Caymanas, Bernard Lodge and Innswood Estates and the St. Dorothy Irrigation Scheme are the principal water users. The agricultural abstraction is roughly 134,000 m³/day, about 53% of the total limestone abstraction. Domestic supply is the next in importance, accounting for 95,000 m³/day which is 38% of the total abstraction. A relatively small amount of water is used for industrial purposes.

According to FAO (1974), the volume of water in usable storage is about 860 million m³, while from Botbol (1982) the safe yield is about 197,000 m³/day (72 million m³/year), the value being a little smaller than the 235,000 m³/day (85.9 million m³/year) average 10 years abstraction (1970 to 1980).

3.4.5 Water quality

Samples were collected from 13 wells and three (3) springs in the limestone aquifer shown as in Fig. C-13. The results of their analysis are presented in Table C-8 and Fig. C-14. There are seven groundwater samples (Free Town, Whim, New Market Pen, Bushy Park Hendrick, Mango Walk No.5, White Marl No.2 and Ferry Spring) which contain chloride more than 250 ppm.

3.5 Alluvial Aquifer

3.5.1 Lithofacies

The alluvial aquifer overlies the limestone aquifer in the central part of the study area, and is about 6 km wide running between Old Harbour and Caymanas. The northern boundary is formed by the limestone outcrop and the southern boundary by Kingston Harbour and Old Harbour Bay in the east and west and centrally by the Hellshire and Port Henderson Hills. The total surface area is about 130 km² and the elevation ranges from sea level to about 50 m.

The materials forming the aquifer are unconsolidated deposits consisting of interstratified clays, sands and gravels. The hydrogeologic sections around the Bernard Lodge area are shown in Fig. C-15 which shows how the two aquifers are distributed almost horizontally with a thickness of 10 m to 30 m. Below these aquifers salty aquifers are presumed to exist.

The alluvium was deposited on the limestone basement when karstification was well advanced and there is much variation in the thickness of alluvium as shown in Fig. C-16. At Amity Hall a thickness of over 170 m of alluvium was penetrated while at Hartlands the thickness was 126 m.

3.5.2 Water levels

The groundwater level contour maps for January and August 1972 are shown in Fig. C-17 and C-18, which give the general pattern. The highest water levels occur around the Sydenham/Innswood area, extending as far south as Fellowship Hall as shown in the above map. From this high ground, water flows very gently due south, southeast and southwest

The groundwater level contour map for February 1986 is shown in Fig. C-19. This shows some depressions around heavily pumping wells. The most important depressions are seen at Bernard Lodge, Caymanas and Braeton. The contours between June and September 1986 give the pattern of high water level for the non-pumping condition after the heavy rains in early June 1986, as shown in Fig. C-20.

The Fig. C-11 shows the well hydrograph at Cookson #2 in Bernard Lodge area. The gentle water levels arose by about 2 m immediately after the heavy rains.

According to FAO (1974) the water level of the aquifer varies from ground level to over 9 m, but in more than 75 % of the area the water table is less than 3 m below the surface. There are localized areas within the aquifer where confined conditions exist and water levels are above ground level or at ground level. These areas are found at Caymanas and in the east Gregory Park area.

3.5.3 Aquifer characteristics

Pumping tests were performed and analysed by FAO (1974) and Versley (1962). The results of these tests are shown in Tables C-9 and C-10.

Calculated transmissibility values (T) range from 160 m²/day to 8,200 m²/day. These values are representative of what may be regarded as successful wells in the aquifer, and no doubt more clayey areas are characterized by lower values. The calculated values of storage coefficient (S) vary from 3.3×10^{-1} to 1.8×10^{-2} .

Generally speaking, there are three areas where high yields and accompanying high values of T and S are experienced. These are the plains encompassing the Bernard Lodge and South Caymanas area, the Cherry Gardens/Bushy Park areas and the Whim area.

3.5.4 Well production

There are about 60 production wells in the alluvial aquifer. The name and the location of the wells are shown in Table C-3 and Fig. C-6. The wells are concentrated mainly in the Bernard Lodge and Caymanas areas, on the right bank of the Rio Cobre, downstream of Spanish Town. The annual production in 1972 of each grid mesh on the map is shown in Fig. C-21.

Table C-11 shows the total annual abstractions from the alluvial wells for the years from 1970 to 1972 (after FAO, 1974). The total annual abstraction from the aquifer has increased over this three year period from 35.71 million m³ to 40.04 million m³,

According to FAO (1974) the total volume of water in storage in the alluvial aquifer is calculated as 1,300 million m³.

3.5.5 Water quality

Groundwater samples from the alluvial aquifer were collected from three wells shown in Fig. C-13. The result of these analysis are indicated in Table C-8 and Fig. C-14. The samples from well at Amity Hall contains chloride more than 250 ppm.

3.6 Problem of Groundwater

3.6.1 Saline water intrusion

According to Botbol (1984) and White (1980), the limestone aquifer has been contaminated by subsurface saline inflow in response to the development of the groundwater resources of this aquifer since the year 1930. Uncontrolled development has resulted in deteriorating groundwater quality, and all the south coastal area - almost all the confined section - contains poor quality water for domestic or irrigation usage (chlorides as high as 20,000 ppm).

In the active production zone, the groundwater salinity lies in the range 20 to 300 ppm chlorides. The salinity is higher in the Innswood and Woodlands areas (300 to 600 ppm) and in the Caymanas - Ellis - White Marl areas (500 to 1,000 ppm). Fig. C-22 and C-23 show isochloride contours for September - October 1972, and December 1980. There are two main mechanisms of salt water intrusion and contamination; frontal intrusion (Caymanas - Half Way Tree) and upconing (Innswood wells). Frontal intrusion is caused by overpumping, low water levels and small seaward flow. Upconing is caused by high drawdowns.

3.6.2 Fresh saline water boundary

For investigating saline water intrusion condition and fresh saline water boundary, electrical conductivity measurement were carried out on several wells by using an electrical conductivity meter with a 150 m long cable. The sharp interfacial boundary between fresh and saline water could not be observed in the results of field survey and a brackish transition zone of finite thickness separated the two (2) fluids. The electrical conductivities and its profiles are very different at each well and the brackish transition zones are also dissimilar. This all seems to indicate that the above mentioned saline water intrusion, is caused by upconing and pre-existing brackish water springs.

The results of measurements shows only four wells namely Hartlands Expl. Well, Little Windsor Expl. Well, Half Way Tree Expl. II Well and Caymanas Expl. Well were able to pick up the saline water face. Extraporated sections across electrical conductivity profiles are shown in Fig. C-24. This work indicates that more electrical conductivity profile must be made across the St. Catherine Plains to get a clearer understanding of the position of the fresh water saline water interface. In other words, more wells must be made available for this electrical conductivity profiling exercises.

3.7 Artificial Recharge

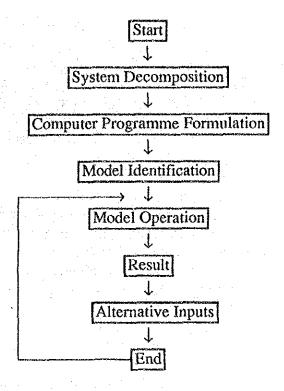
3.7.1 Purpose and previous study

Artificial recharge is generally performed in order to increase the natural supply of groundwater, and artificial recharge projects are designed to serve one or more of the following purposes:

- to maintain or augment the natural groundwater as an economic resource,
- to coordinate operation of surface and groundwater reservoirs.
- to overcome adverse conditions such as progressive lowering of groundwater level, unfavourable salt balance, and saline water intrusion.
- to provide subsurface storage for local or imported surface water.

In the study area artificial recharge studies were carried out by Water Resources Division (1980-1982) at Innswood on the artificial recharge of surplus surface water into the limestone aquifer through sinkholes. A pilot plant at Innswood has been in operation since September 1981. During the year May 1981 to March 1982, 3.2 million m³ (9,700 m³/day) surface water was recharged through two sinkholes by gravity as a result of which a 0.5 to 1 m groundwater mound had been created near some recharge area and apparently as a consequence some regression of the saline front has been observed.

3.7.2 Artificial recharge in the study area


Artificial recharge is considered to be necessary in the study area to make use of surplus surface water that can be recharged through sinkholes by gravity in rainy season, unused time, etc. The sinkhole method is most economical one but silting above the hole limits the recharge capacity. The well method which is now used in Cuba and other countries is another suitable method in the area. Recharge of dirty or polluted water will contaminate the groundwater, therefore it is necessary to investigate the volume available for recharge, the quality of the recharge water, and existing groundwater conditions beforehand and to assess the impact of one on the other. When recharge is undertaken the operation has to be managed.

3.8 Groundwater Simulation

3.8.1 Approach and procedure of simulation

In order to evaluate the groundwater potential of the Lower Rio Cobre Basin the analysis must be performed by using a simulation model on the basis of hydrogeological investigation. Simulation can be defined as reproducing the essence of a system without reproducing the system itself. The essential characteristics of the system are reproduced in a model which is studied in an abbreviated time scale.

A general procedure of simulation is shown in following chart and the procedure of the Lower Rio Cobre Basin is explained in order of the chart:

(1) System decomposition

To use a simulation approach on a system. The first step is to decompose the system into components and subsystems which are held together by linkage. Before the behaviour of an aquifer can be examined using a simulation model, a great deal of information must be specified. Though there may be considerable difficulty in obtaining reliable data, yet the problem must be completely formulated with estimates made of relevant parameters. The following parameters are distilled in this study and explained in following chapter.

- (a) Boundary and conditions of the groundwater basin
- (b) Unit condition and its area of groundwater basin
- (c) Transmissibility of aquifer (T)
- (d) Storage coefficient of aquifer (S)
- (e) Initial water level (Initial water head) of aquifer (ho)
- (f) Discharge (Qd)
- (g) Recharge (Precipitation (P), Evapotranspiration (E), Irrigation efficiency (I)
- (h) River flow (A)

(2) Computer programme formulation

The second step is to formulate the computer programmes for each subsystem and their linkages. This may involve writing computer programmes for the algebraic and logical relationships of subsystems and linkages.

There are two principle aquifers in the Lower Rio Cobre basin. The limestone aquifer and the alluvial aquifer, which are considered to be hydrogeologically discontinuous. Therefore two different simulation models were formulated for the two aquifers. These models were programmed using the finite element method for a digital computer.

(3) Model identification

The third step is to identify the model. This is accomplished by using known inputs and outputs for each subsystem. Inputs and outputs must be received and sent through the correct linkages and must be acceptable to their appropriate subsystems. In this study the hydrological and hydrogeological data in 1972 by FAO were considered to be the most reliable of the observational records and groundwater levels in August 1972 were adopted for the identification.

If the good conformity is not achieved through the inspection of interpretation, the parameters must be adjusted in the model. Generally the adjustment is carried out on recharge from precipitation, transmissibility, etc. Such trials with adjustment of parameters has to be made many times until the model conforms with the groundwater configuration of the basin. When conformation is achieved between the observations and calculated results, the model, its parameters and the boundary conditions are fixed to obtain prediction of future trends.

(4) Model operation and results

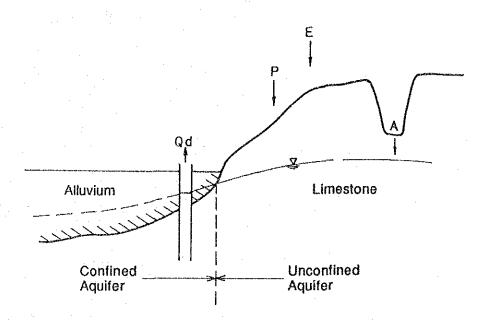
The completed simulation model is now ready for processing the input parameters of the system.

The parameters (probable precipitation, future abstraction, etc.) are set in the fixed model and the future groundwater level is predicted.

(5) Alternative inputs and evaluation

Groundwater levels are changed in accordance with the discharge rate input. In the simulation the optimal yield is the estimated the annual abstraction for which the groundwater level after one year's abstraction is almost same (less than ± 1 m) of the primary water level. After several trials of discharge rate input, the annual discharge rate will be analysed.

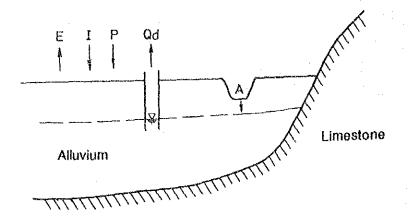
3.8.2 Simulation model of the lower Rio Cobre basin

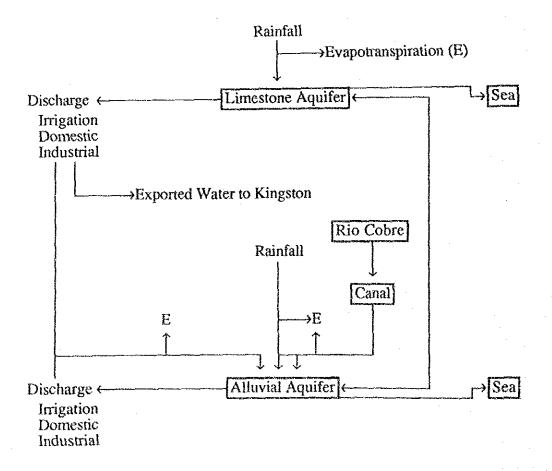

Two simulation models were formulated on the basis of above mentioned basic procedure: for the limestone aquifer and the alluvial aquifer in the Lower Rio Cobre Basin.

(1) Conceptional models of the aquifers

(a) Limestone aquifer model

The limestone aquifer, which extends almost throughout the Lower Rio Cobre Basin, is considered as continuous aquifer which is recharged by surface water (precipitation, river flow, etc.).


- (i) The limestone aquifer is hydrogeologically discontinuous from the alluvial aquifer.
- (ii) The aquifer is presumed as be unconfined in the hilly area and confined in the alluvial area.
- (iii) The aquifer is regarded as being recharged with surface water (precipitation, river flow, etc.).


(b) Alluvial aquifer model

In the model the alluvial aquifer is distributed only on the coastal alluvial flat plain and is considered as a continuous aquifer.

- (i) The alluvial aquifer is hydrogeologically regarded as discontinuous from the limestone aquifer.
- (ii) The aquifer is considered to be recharged with surface water (precipitation, irrigation water, river flow, etc.).

The hydrologic cycle is illustrated schematically by the flow chart shown below:

(3) Simulation equation

The simulation models of the two basins are two dimensional plain distributed parameter models and are analysed numerically using the finite element method.

The groundwater flow is expressed by the following equation based on Darcy's Law and the condition of continuity of flow.

S dh/dt = $\partial/\partial x$ (T $\partial h/\partial x$) + $\partial/\partial y$ (T $\partial h/\partial y$) + W (x,y,t)

where, T: Transmissibility

S: Storage coefficient

h: Hydraulic head (water level) in aquifer

W: Recharge rate

The above equation is modified in the Lower Rio Cobre Groundwater Basins as follows:

 $S dh/dt = \partial/\partial x (T \partial h/\partial x) + \partial h/\partial y (T \partial h/\partial y) - Qd + P + I + A$

where, Qd: Discharge rate or pumping rate

P: Recharge rate from precipitation
I: Recharge rate from irrigation water

A: Recharge rate from river flow

(4) Data processing for simulation

(a) Boundary and its condition of groundwater basin

The area of groundwater basin is considered as the area of the continuous aquifer and the in and out flow of groundwater from the basin is limited on the boundary.

The limestone groundwater basin is almost same area of the Lower Rio Cobre Basin. The north boundary runs mostly on the hydrological watershed through around Bog Walk. The some of the east and west boundaries are along almost same line of the parish boundary. The south boundary is coast line and the boundary between the plains and the Hellshire and Port Henderson Hills. The groundwater level of the south boundary is almost zero in altitude.

The alluvial groundwater basin has the same area of alluvial coastal basin surrounded by north limestone hills, south coast line and the Hellshire and Port Henderson Hills. The groundwater level of coast line is almost zero in altitude.

(b) Element grid

The groundwater basin is divided into unit areas. The scale of dividing unit areas depends on the purpose, the accuracy of the data and the capacity of the computer. In this case, the form of the unit area is the square element grid with 1.5 km sides as shown in Fig. C-25.

(c) Aquifer characteristics

(i) Transmissibility (T)

The existing aquifer characteristics are shown in Table C-5, C-6 and C-9. The numbers of the data are limited in the study area. The information is used together with information on stratigraphy and specific capacity (the ratio of discharge rate to drawdown) to estimate the distribution of transmissibility.

- Limestone aquifer:

A lineament map of the limestone outcrop area was drawn by air photographic interpretation and was used to subdivide the area of transmissibility. The transmissibility map was made as shown in Fig. C-26.

- Alluvial aquifer:
The transmissibility man of alluv

The transmissibility map of alluvial aquifer was made as shown in Fig. C-27.

(ii) Storage coefficient (S)

The data was not enough for deriving the storage coefficients. These were therefore estimated as follows:

- Limestone aquifer

Confined area 1×10^{-4} Unconfined area 1×10^{-2} - Alluvial aquifer 5×10^{-2}

(d) Initial condition

Groundwater levels (ho) of the aquifer as initial condition in each grid element were read from the groundwater contour maps made from observations of groundwater level in the wells.

In model identification the groundwater level for each aquifer on January 1972 was set as the initial water level as shown in Fig. C-7 and C-17.

(e) Discharge rate

Annual discharge from the limestone and alluvial aquifers are shown in Fig. C-12 and C-21. Data on monthly discharge being inadequate, monthly discharge rates of two or three portions had been estimated by using the monthly discharge data as shown in Table C-12.

(f) Parameters of recharge

Groundwater of the Lower Rio Cobre Basin is considered to be recharged partly by precipitation, partly by river flow and partly by irrigation water.

(i) Precipitation

The areal distribution of precipitation is determined by the use of Thiessen networks. The stations and data on rainfall were those from Botbol report (1982), which are shown in Fig. C-28 and Table C-13.

(ii) Recharge to limestone aquifer

FAO (1974) and Botbol (1982) correlated annual rainfall and natural replenishment from rainfall and produced the function shown in Fig. C-29. It is used for the simulation. The recharged-area is assumed to be the limestone outcrop area. Recharge from the river Rio Cobre seems to be relatively small and is omitted in the study. As regards recharge from the Rio Minho Basin, although the details were obscure after several trials the groundwater level of the boundary between the two basins was given a constant head to represent groundwater flow from the Rio Minho Basin.

(iii) Recharge to alluvial aquifer

Recharge from surface water was assumed to follow the relationship shown in Fig. C-30 as derived by FAO investigation (1974). The recharged water includes irrigation water, industrial water and domestic water, which are obtained from the limestone and alluvial wells, as well as from canal water as shown in above flow chart. But some of the domestic water exported to the Kingston is not included. The quantity of the above mentioned water is shown in Table C-14. The recharge area is assumed to be the irrigated area as shown in Fig. C-31.

In addition there was leakage water to the alluvial aquifer from the river Rio Cobre between the dam and Crum Ewing in 1972 to 1973 as shown in Table C-15. This is put into the recharge of alluvial aquifer directly.

3.8.3 Model identification and operation

(1) Model identification

For the model identification the observed groundwater data in 1972 were used. The observed recharge and discharge parameters in each element grid from January to August are put in the groundwater condition in January on each limestone and alluvial groundwater basin. After operation the calculated groundwater levels in August were obtained. When there was any difference between the observed and calculated groundwater levels, the parameter of transmissibility was adjusted in the model and it was operated again. After the number of iteration of the adjustment, conformation was

achieved between the observed water levels and the calculated water levels. And then the model, its parameters and the boundary conditions were fixed.

The identified transmissibility and groundwater levels in the models are shown in Fig. C-32 and C-33 and Fig. C-34 and C-35 respectively. The boundary which has a constant head of groundwater is shown in Fig. C-34 and C-35.

(2) Operation and alternative input

The simulation was operated as follows:

- (a) The purpose of the simulation was to obtain the optimal yield of each element grid in a probable drought year.
- (b) Groundwater level were changed in the simulation model in relation to discharge. The optimal yield, also called the safe yield or the perennial yield in terms of the water balance was determined as the annual abstraction after which the groundwater is almost same of the primary water level, and the difference between the primary water level and the water level after one year discharging will be less than ± 1 m after several trials.
- (c) In the limestone aquifer system a further criteria was that the water level should always be above sea water level, because saline water will be abstracted when discharge water level is below sea water level.
- (d) For inspecting the recharge to the aquifers in the rainy season, the operating year was assumed to begin from September.
- (e) The calculated groundwater levels on August 1972 were used as the initial water levels at each element as shown in Fig. C-34 and C-35.
- (f) The discharge volume was investigated from the designed irrigation water volume monthly on each element grid.
- (g) The rainfall in 1975 was used in the calculation as provable rainfall.
- (h) The canal flow is shown in Table C-16.
- (i) The industrial and domestic water was assumed as shown in Table C-17, referring for the Reports of Water Resources Inventory, Water Demand Inventory and Analysis of Water Balance and Developments Alternatives by UNDP (1985/1986).

(3) Results of operation

The result of the simulation indicated optimal annual discharge volumes for each element grid from both aquifers as shown in Fig. C-36 and C-37. The total monthly abstraction is summarized as follows:

(Unit: $10^3 \text{ m}^3/\text{month}$)

	Limestone Basin	Alluvial Basin
September	7,690	1,690
October	7,110	1,670
November	7,890	1,730
December	8,410	2,200
January	8,410	2,630
February	9,300	3,960
March	9,510	4,050
April	9,410	4,050
May	8,270	3,970
June	8,950	3,970
July	9,650	4,040
August	9,150	2,130
Total	103,750	36,090

The water levels after one year discharge are shown in Fig. C-38 and C-39. In the limestone basin the abstractable areas are Old Harbour, Innswood, etc. along the boundary between limestone hills and plains. On the other hand the main abstracting area in the alluvial basin is around the Bernard Lodge area.

The annual water supply volumes for agriculture demand on wells include supplies for outside the study area for Agricultural, Industrial and Domestic use in the Lower Rio Cobre Basin estimated as shown in following table:

(Unit: million m³/year)

Agriculture	Industrial	Domestic*	Total
60.7	5.9	37.2	103.8
31.0	2.6	2.5	36.1
91.7	8.5	39.7	139.9
	60.7 31.0	60.7 5.9 31.0 2.6	60.7 5.9 37.2 31.0 2.6 2.5

Remarks:

; includes the exported water to the Kingston 17 million m³

3.9 Evaluation of Groundwater

(1) Present condition of groundwater

There are two aquifers (Tertiary limestone and alluvial aquifers) in the study area and from which about 130 million m³ of groundwater seems to be produced. But the saline water intrusion is caused by upconing and frontal intrusion in Old Harbour, Innswood, etc. The groundwater salinity from several limestone wells is over 300 ppm in dry season.

(2) Evaluation of groundwater simulation result

From the results of the groundwater simulation 103.6 million m^3 of optimal discharge from the limestone aquifer and 36.1×10^3 m³ from the alluvial aquifer are calculated annually. At present the abstraction wells are concentrated in certain areas (Innswood, Caymanas, etc. on the limestone wells and Bernard Lodge on the alluvial wells) and to avoid interference it is recommended that the well field must be reconstructed in order to reduce pumping depressions and to have a uniform well field.

(3) Application of simulation model

Since good correlation has been obtained for the groundwater levels and discharges between present conditions and simulation results in both aquifers it is considered that fluctuation of groundwater levels should provide the judgement data in planning future groundwater abstraction.

The simulation model may also be used as a valuable tool for expressing future groundwater conditions and should be modified regularly with results of observation and monitoring data.

(4) About UNDP/Water Resources Development Master Plan Report No. 4 (1986)

The subtitle of the report is Analysis of the Water Balance and Development Alternatives for the Lower Rio Cobre Sub-Basin by a Simulation Model. The volume of surface and groundwater was predicted using the data of two rainfall stations and river flow data by probability theory, after which the water balance was analysed with the provided water and several water demands. The prediction of rainfall and river flow was based on data from only a few data, but it is noteworthy that the authors state that the best prospects for development of the area will lie in crop diversification and improvement of the main canal.

3.10 Groundwater Basin Management

3.10.1 Appropriate usage and maintenance of groundwater

- (1) The safe yield of the groundwater basin is the amount of water which can be withdrawn annually without causing an undesirable influence in the Basin (Todd, 1959). The undesired influence means usually increase of pumping costs due to decline of groundwater level, sea water intrusion and subsidence. It is noticed that this definition includes perennial water balance, no risk to economical use, and no trouble to groundwater development. This definition is called as perennial yield by the characters of perennial water balancing.
- (2) In the Lower Rio Cobre Basin, rainfall distribution is strongly seasonal and the rainfall pattern is intensely localized. Therefore unrestricted usage of groundwater at any time would lead to a fall groundwater level and saline water intrusion to the aquifer in the part of the Basin.

(3) The irrigation water must be used effectively by:

- (a) Economy and management of irrigation water use.
- (b) Maximizing the use of canal water.
- (c) Conservation of excess surface water in reservoirs and recharging some of it into the aquifers especially in the rainy season.
- (d) Keeping drawdown levels above sea water level, to preventing saline water intrusion.
- (e) Formulating a system that by which well owners must observe their wells and submit the groundwater data to UWA.
- (f) Better management of the groundwater well field by reconstruction.

3.10.2 Groundwater management

The groundwater management should include:

(1) Collection of observational data

This needs to be carried out continuously including the observation of groundwater levels, pumping water levels, discharge and water quality of the index wells. Many more observation wells must be installed in addition to the present monitoring system as shown below:

- (a) Increase the numbers of the monthly groundwater observation wells on both limestone and alluvial aquifers.
- (b) Set more than 5 automatic water level recorders on the limestone wells of Old Harbour, Innswood and Caymanas, etc. and on the alluvial wells of Bushy Park and Bernard Lodge etc.
- (c) Take and analyze the water quality samples from 25 limestone wells and 15 alluvial wells in dry and wet seasons a year for monitoring saltwater intrusion and groundwater contamination.
- (d) Investigate the fresh-saline water boundary on several wells in dry and wet season each year. Now only 4 wells can be observed and more 5 wells must be made available for electrical conductivity profiling exercises. Sites of new observation wells are proposed in Old Harbour, Longville Park, Brampton Farm, Bushy Park and Salt Pond.

(2) Hydrogeological investigation

The groundwater conditions in the Lower Rio Cobre Basin are so complex that much more hydrogeological investigation should be carried out before new wells are constructed, in order to grasp the continuity of aquifers, the aquifer characteristics, the relationship between limestone and alluvial aquifers, conditions of saline water intrusion, effects of artificial recharge, groundwater sub-basins, etc.

(3) Obligatory system of groundwater data submission

To establish a reliable monitoring system for the groundwater system, it is necessary to systematize an obligatory system of well data and groundwater observation from the well owners or users. The items of data required are: Name of well, Name of orner, Place (coordinate), Drilled date, Drilled method, Depth, Datum level, Well structure (diameter and depth of casing and screen), Well condition (water level, pumping water level and discharge on the constructed and each month, water quality semi-yearly), Pump (name, type, stage, diameter of discharge pipe, HP (kwA), discharge, capacity and total head) Trouble (sady, salinity, etc.).

(4) Filing system of groundwater data

Above-mentioned data must be filed in a data bank accessible by computer at any time.

(5) Intensive groundwater monitoring

Intensive groundwater monitoring is necessary not only to detect critical groundwater levels but to provide more detailed data for the purpose of improving groundwater simulation models, planning and management.

REFERENCES

1. UNDP/FAO (1974) Development and Management of Water Resources, Jamaica, Rio Cobre Basin

Annex I

Geology

Annex II

Water Resource Appraisal

Annex III

Water Quality

List of Table

List of Plates

2. Water Resources Division (Botbol, M. Netherlands Technical Assistance) (1982) Lower Rio Cobre Limestone Aquifer

Part 1

Hydrogeology

Part 2

Hydrogeological Data

- 3. Urban Development Corporation (Hydrology Consultant) (1981), The Alluvial Aquifer in South East St. Catherine, A Source of Water for Hellshire Bay
- 4. NWA (Howard Versey) (1971) Groundwater Resources of Old Harbour Area
- 5. White M. (1980) Saline Intrusion of the Karstic Limestone Aquifer in the Lower Rio Cobre Basin, Jamaica, Jour. Geol. Soc. Jamaica, Vol. XIX
- 6. Ministry of Mining & Natural Resources (1977) Geological Map, Jamaica 1:250,000, Preliminary Edition
- 7. Geological Survey Department, Jamaica (V.A. Zans, L.J. Chubb et al.) (1962) An Explanation of the 1958 Provisional Geological Map of Jamaica, Synopsis of the Geology of Jamaica, Bulletine No. 4
- 8. Ministry of Mining and Natural Resources (1974) Geological Sheets 1:50,000, 15, 16, 22, 23, 24 and 25
- 9. Government of Jamaica (Howard Humphreys & Sons) (1972) South East St. Catherine Water Supply Survey, Water Resources Study, Final Report
- Government of Jamaica (Howard Humphreys & Sons) (1972) South East St. Catherine Water Supply Survey, Water Resources Study Final Report, Vol. 2, Appendices
- 11. MOA (1985) Sugar Industrial Studies of Irrigation, Phase 2 Review
- 12. Water Resources Division (Botbol, M., Netherlands Technical Assistance) (1980) Lower Rio Cobre Limestone Aquifer, Artificial Groundwater Recharge, Progress Report No. 1: Objective and Theoretical Background

- 13. Water Resources Division (Botbol, M., Netherlands Technical Assistance) (1981)
 Lower Rio Cobre Limestone Aquifer, Artificial Groundwater Recharge, Progress
 Report No. 2: Planning the Innswood Experimental Field
- Water Resources Division (Botbol, M., Netherlands Technical Assistance) (1981)
 Lower Rio Cobre Limestone Aquifer, Artificial Groundwater Recharge, Progress
 Report No. 3: The Innswood Experimental Field, First Recharge Period: Oct. 1980
 to Mar. 1981
- 15. Water Resources Division (White, D.) (1981) Lower Rio Cobre Limestone Aquifer, Artificial Groundwater Recharge, Progress Report No. 4: The Innswood Experimental Field, Drilling and Observation Wells - Geology
- 16. Water Resources Division (Botbol, M., Netherlands Technical Assistance) (1981) Lower Rio Cobre Limestone Aquifer, Artificial Groundwater Recharge, Progress Report No. 5: The Innswood Experimental Field Second Recharge Period: Apr. 1981 to Sep. 1981
- 17. Water Resources Division (White, D.) Lower Rio Cobre Limestone Aquifer, Artificial Groundwater Recharge Progress Report No. 6: The Innswood Experimental Field, Third Recharge Period: Oct. 1981 to Mar. 1982
- 18. Water Resources Division (Botbol, M., Netherland Technical Assistance) (1982) Lower Rio Cobre Limestone Aquifer, The Lower Rio Cobre Limestone Aquifer, Groundwater Levels in the years 1969 to 1979
- 19. White M. (1985) Groundwater Movement and Storage in Karstic Limestone Aquifer of Jamaica, Jour. Geol. Soc. Jamaica Vol. XXIII
- 20. UNDP (1985) Water Resources Development Master Plan, Jamaica, Report 1: Water Resources Inventory
- 21. UNDP (1985) Water Resources Development Master Plan, Jamaica, Report 2: Water Demand Inventory
- 22. UNDP (1986) Water Resources Development Master Plan, Jamaica, Report 4: Analysis of the Water Balance and Development Alternatives for the Lower Rio Cobre Sub-Basin by a Simulation Model
- 23. Todd K. (1980) Groundwater Hydrology, 2nd edition, John Wiley & Sons.
- 24. Shibasaki T. et al. (1976) Groundwater Basin Management, Tokai Univ. Press

Table C-1 RESULT OF LABORATORY TEST

(1) Unaxial Compression Test of Core Sample, Rio Cobre Dam, 6 Oct., 1986

				Sample 5	Size	Anda	Weight	Unit	Unitatial Comp	ressin Strength	
Z	į			Diameter	 ⊶		Y I.	Weignt	Load	Strength	
(Depth	in mm)			(E		(cm2)	(%)	(g/cm3)	(Kg)	(kg/cm)	:
ュ	(26.2 - 27.4)		limestone	4.445	10.16	15.52	430.83	2.73	8,181.14	527.14	
3	(3.0 - 4.6)	•	concrete	4.445		15.52	213.15	2.16	1,269.80	81.82	
7	(6.1 - 7.6)		concrete	4.445		15.52	308.38	2.24	725.60	46.75	
2	(213 - 22.9)		limestone	4.445		15.52	399.08	2.89	6,711.80	432.41	
က္	(TOP)		concrete	4.445		15.52	344.66	2.50	2,358.20	151.95	
ņ	(23.2 - 24.1)		limestone	4.445		15.52	453.50	2.88	7,074.60	455.84	
4	(24.4 - 25.0)		limestone	4.445		15.52	453.50	2.88	6,167.60	397.40	
Š.	(9.1 - 12.2)		limestone	4.445		15.52	421.76	2.68	3,664.28	263.10	
X	(122 - 15.2)		limestone	4.445		15.52	344.66	2.19	3,628.00	233.76	
7-1	(15.5 - 17.0)		limestone	4.445		15.52	448.97	2.85	5,442.00	350.64	

(2) Specific Gravity of Rock, Rio Cobre Dam, 2 Oct., 1986

	The second secon									
Bore Hole No.	B-1	B-2	B-2	8-2	B-3	8-3	B-4		1.	B-7
Depth of Sample (m)	26.2-27.4	3.04.6	6.1-7.6	21.3-22.9	ŢŌĎ	23.2-24.1	24.4-25.0	9.1-12.2	12.2-15.2	15.2-17.0
Weight of Sample in Air A	430.8	213.2	308.6	399.1	344.7	453.7	453.5			449.0
Weight of Sample in Water B	272.9	113.9	170.5	260.3	206.8	296.1	294.7			291.2
A-B	157.2	98.0	138.1	137.4	139.9	157.6	158.8			157.5
Specific Gravity	1.735	2,162	2.235	2.894	2.500	2.878	2.878			2.849

(3) Specific Gravity of Soil Solids (Gs), Rio Cobre Dam Site, 3 Oct., 1986

Sample No.	. BJ		B-2		B-4		ь	ษา
	Sanc	•	Sand		Silt		Clay	>
Depth of Sample	(3.20 - 3.	SO m)	(13.87 - 14.17 m)	.17 m)	(12.35 -	12.65 m)	(1.68 - 1	.98 m)
Test no	;=4	2	7	2		2		2
Wt. Flask + water + soil = W bws	993.80	997.80	980.00	984.00	87.53	87.56	88.87	88.92
Wr. Flask + water b = W bw	868.00	868.00	868.00	268,00	71.56	71.56	71.56	71 56
Wtevap dish + dry soil	506.40	510.50	486.60	490.70	47.97	48.00	50.33	50.38
Wt. of evap. dish	305.90	305,90	305.90	305.90	21.82	21.82	21.82	21.82
Wt. of dry soil = W s	200.50	204.60	130.70	184.80	26.15	26.18	28.51	28.56
Ww = Ws + Wbw - Wbws	74.70	74.80	68.70	68.80	10.18	10.18	11.20	11.20
Gs = ~ Ws/Ww (for 15oC)	2.68	2.74	2.63	2.69	2.57	2.57	2.55	2.55
Specific gravity (for 15oC)	Average	2.71	AVCTOR	2,66	Average	2.57	Average	2.55

(4) Grain Size Distribution, Rio Cobre Dam B-1, Depth 3.2-3.5 m, 2 Oct., 1986

0.074	21.6
0.105	24.6
0.25	37.5
0.42	46.3
0.84	59.5
2,00	77.3
4.76	21.7
9.52	96.1
16.1	100.0
25.4	100.0
38.1	100.0
50.8	100.0
Diametre (mm) 50.8 38	

53		9.7-34.2		72.27		12782	50-100.1		72.77		10.68	24.750	1000				2		72,000		33.683	1.17	. 90				019531	120		122	, .	8.7-65.8	51.2.67.4 64.767	66.730					17.0.61.0	204-79-0	9.1-19.2		52,2769		17.2.36.2	152.55.8	40.113	16.9.19.2 11.0.75.0			03.310.1	
		×		*	**	¥ ;	S	:	*		7 10	· VA	*					•	y n	1			•	•			•	•		, v		Ç.		, ,,						•	-		æ. ∷	•	-	-			-		* ;	•
Demotre (see)	2 27	a:	- : 2	2			. ,	1.1	92		9 9	5	. 93			a	. 9		9.			9	90	90	9		33	S		3	9	3	22	13		g.	· 3		ā	90	8	1 .	97.	9'0'8	32	3:	5 2	Q S	į ,	. *	`	
å		**							•			•					•						` \$	ļ -							.,					-								₽								
														٠	. •							1:																														
	4 91		3 ₹	: n				7			<u>,</u>	-	3			~ 1	5					3	1,447	9	99	:	פו	מ			£.	5	5 3	: 3		3	3		0.	ä	•	5	. 970	3.36	5- X	9.	n ":	45	3	_		
125	4	8 4 X	48.8.7	2000				25.42	'n		35.4.61	200	, o	٠		65.4.63	f. 73	٠	8 8	•	٠.	447.7	(1979) (1979) (1979)	44.46	77.76	•	1 1 1	K A	•	N.	47.0.74	7	24.6.5	A		800	×		X	Š	Ř.		77.2.7	10,195,0	10.74	4	4,0	4		, <u>3</u>	•	
3	3 5	ą.	: =	9	ž	30.5 254	, <u>2</u>	H 36.1, 5.1	, Ş	,	ģ	40.6	. 60	ý	3	¥,	. 99		5 X	A.	Ž	×	4 6	ĝ	×	. ;	20, 20,	ğ.		Ş	g ·	ĝ	គឺ	å	٠.	Š	ğ	٠,	Ř	30.8.40.6	40.6		x S	61.0,40.0	\$ 6	5	2	₹ 9	} .	. <u>۾</u>	×	1
	•					Ġ		5.22																			5		;	7										80				9								
S E	986	0 0 0 0	j	A .		P. 25.048	0.040.70	14.0734.	. 223		25	0.366	· 60	•		2540	. 746		200	H	e e	C.346.7	90	7	513	. 5	621702	ž.		i i i i	į.	61.165	2 2	3		0.300	036.4	•	700	200	Sį		2000	0.104.019	19.0	ž	. 9 9	975	į	. 96	600	D. 1006.7
					٠			ò									•		٠										,											-					٠							
. i	38	4	1.1	2 2 2	 38	el e	 3 3	9	83	8	38	5	92	9	3 2	7	98	1	88	; }	3.00 E	i H	3	3.1	88		14	88 4.	.,	2 S	7	4	96	14	5 5 '1 .	2	35	2.5	7.01.7	83	1 09%	5	2, 26, 27	3	33	3	7.06	7.	. 0	98		-
2 E	i i	9	1	a i	1961	2		774.1	3 F 3 F 3 F	ž	2 Z	3	0.6	*		576				ì	6	71.9	ŗ.	. .	6.50 6.00 8.80		19	 		1530 1530 1530 1530 1530 1530 1530 1530	50	មែ	# 1 E	i ix	e e	3	R N	98	900	36	2	ž.	7.000	`- ¥		2	ล์ส	2	ì	. 1	218.1	
į,									1																																											
	086	4	98	7.6	Š	£		080	3 E	100	£ 5	25	6 6	•		23	. 8	} •	26	1	ž.	9:5	. 5		C 60	.	1961	2	. !	1	2	Ž	# S	3 20		(69)	g .		. 28.	, 28	25.63	<u></u>	£ £	, p	989	150	1833	60	To Ma	. 6	12	
z	13	Non	1		91.7	199			1211	-	5100	1	6 6			Ġ	42		RES	S)	A 10				: :						74.087				•					4078 46230					1001					74147		
Į,	22	8		9 6	2	2		200	2000	CAG	•					2	~ ^ * * * * * * * * * * * * * * * * * *	935	1989		90	960	060	2	88	5000		2000		1961		16	N C	200	716	151		2.5	2	9663	Star				ESEIA P		-,				6	
	¥ \$	ď.	, M	W.		, pa		2		4			7,0	7		E.		!~	i i	100	21	. FI	5	5	2						À	1	rog.	711	3	MO.1	T NO 1	CON 20	15	i i	. 24									_		
Section of West	NASWOOD OF A	GANGO WALK NO	POGEWOOD OILS	A TOTAL	KITCH INTE	MEL VIN PARE		ANDS EX	COMOR	341.150 370	ST. JOSEPH ROAD	ALCHE PA	MANAGOR E	CHUHOT	210010	TOP PIPE SOUTH	AMEDIAMANDA TEXTILES	ANGELS NO.	SALTIMONE.	LITTLE WINDSON DO	ANGLESI		MILION WE	ONE MEN	CROSS PEN	CONCEON	NOW I	THEOMORE PARK NO. 2	TESTOVIT	WOOD AND EXPL	IN WATERLOO VALUEY	MAKAGE	SALACHINE SALACH	THOSENBAK PARE	A 00752	NI.ACKT	AND MAKE	DOLASEPAL	TAL VILL	MS MODEL CONTRANCEL	ALT COUNTS	TOPETE	EWI. DOL NO.2	E MARLE!	PATENTE DECRETANDO 1	TE MARE,	11.55 NO. 1	F115 NO. 2	CATANANAS CINA	OLADA CR	CA YAKANAS IDO	
		160.70	ž	8*	4 **	Ĩ	3	3	į	ğ	t į	ž	K O		. 4	Ŗ,	ξŧ	, 2		į	ę	8	8	Ü		Ř	8 14	STATE OF	ő	ę e	×	įð	ð	Ť.	ž	3410	į	ğ	ð	NO.	8	K.	M (1 5	E S	H	_ ^		٥Ę	3	5	ì

	1
6	
끍	1
€,	į
12	1
ŧ	1
ş	i
3	Į
3	ı
3	ì
-1	į
₹	ı
7	1
ž	1
2	Į
F	Į

, ga-00	When his 2 Old Harbaudhanish Kally Pen MO. 2 Hume Pen	E 2012	27.00 27.00 24.00 28.00			*	7,27						
	21.4 Harboundbyanski Kulby Pen Prio. 2 Harbe Pres	15.00 15.10	NO-2720						٠.	•			٠.
3 ~ 0 0 ··	Marty Per NO. 2 Plante Per	51 22 22 22 22 22 22 22 22 22 22 22 22 22	BHO C			•							
¥~~00~	TATAL PARTY	# # 13 13 13 13			,								
¥×-00-			2			« •	•						•
[##UUB -	Miles	1000	127.57										
	Schools (Bushes Park)	1504	SEC	Š	. 12	¥	64-14 6-18 0-20-2	365	0.64,14,618,0	30.5	1135, 1362	12.5	9.4.11.0
00	Khore (Bustoy Park)	272	9		ì,	· <	,					,	
∵	Cheery Constant No. 1	E52#7	27.23			. -							,
м —	Coorty Control No. 2	E. 38	ELS.	188	36.0	4 47	03-13-1, 23 3-29.6	30.5	13,1-23,5,29,6-36.0	30.5	1324, 2002	26.5	7.9.72.3
	R. Melens Documents	82330	W1827			٠		1		•			,
_	Ansty Had CA: 1	N5330	27.52	ž	30.8	4 C.3	0,6-9.9	40.6	9.9.30.8	40.5	1366, 1450	24.4	13.1.22.9
-	Austry Hall Month	15031	25.	ž	0.10	10.4 A	484	40,6	8.5-45,7,45,1-62.0	40.6,30.5	114, 2245	ž	25,35,1
_	Sciethrood	はなる	ž Š			≺	•	•		,			
	Fendbathed Legs Co.	F.514	Ī		70.3	∢.							
	Late Windon Cl.	113533	2	- 1	. 1	· .	٠	i.	•	•		. :	
	Water Park	25.5	2	ž	5	21.E. A		•			1274 . 2097	16.5	2,1,7,9
	Print Caller	64663	6165%			< ·					-		
	Perconnector 12a. 1	66.5	7,5847			< ·	•		•				
* 2	W. John Mand Cr.	8000 H	4000			< -	•		98.18.5	. 4	477 1 754		
-	Thorn 1981 Chromoth	21003	77077		0.5	۲ • د • •	. 4	. 4	071.000 ·	9 6	100, 100 100, 100	2 2	1000
	Carl Ameri	2000	2000	8	7 5	10	***	Š	4 06 3 30 4 5 6	25.40	Series Const	À tr	1.0.10.1
	Wendlende No. 1	1	700	8	99		0.10	208	91.105	80%) La	7.5	200
	Woodlands No. 2	100	NYMEN	1862	24.0	200	0.24	20.2	24.25	808	1274, 3723	86	36.4.5
	Carrenthia	1,08	NO CHI	S	27.3	11.2	0.61.2	405	12:17	\$0.5	2002, 3785	22	40.73
_	Phoenty Park No. 4	H5693	200	9	33.6	4 6 51		ł .	0.633.6	50.8	2979. 4247	21.6	72.10
	Promis Puts No. 3	20,000	Z.	8	0	18.6	0.62.4	\$0.8	24.29.9	808	1274, 5097	4,5	1.2.4
_	Phoebix Pack No. 1	22723	N3H53	1979	10.7	٠			•		2000	ţ	3 0 , 11
_	Semina Longer (No. 1	12721	NJXES	1939	47.3	4 597	19-0	83	61-305, 30.5-46.7	50.8.30.5	23.8	13.6	10.1
,-E	Sutpend Ladge No. 2	13727	2	Ĉ.	47.3	163 A	19'0	\$0\$	61-30.5, 25.545.7	50.8,30.5	240	11.6	11
	Later Theo No.	27.53	S	Š	2	χ 4	0-6.1	200	61.274	20.8	27. 132	16.5	4,6,10.5
	New Person No. 3	23742	2000	ž	23.9	•			0.600	50.8	1274, 5097	10.7	2.7.10.7
	A Section of the sect	6267	2	- 1	. }	* ·		, ;	2 . 2 .	٠;	3	NOCKED IN	282
	A SAL LONG NO. 2	200	2357	2	2	4	2.65	2 5	2.5.5.1	9 80	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	170	5.0.0
	CONTRACTOR PORT	19/00	2000	200	, d	2 6	200	Q 5	A15.13	9 5	7465, AUST	7.0	0000
	China	900		ž	780	* *	91.21	r s	21.29.0	\$ \$	2777. 4775	17.	7 7 1 4
	344 Feed NO.1	25.778A	183807	8	30.5	11,6			03-14-9,13.4-30.5	50,8,40.6	3043, 5072	11.9	5.5,11.0
	Oranga Pan No. 5	H5774	22			∢ ,	,	•	•				
	Model's Pleas No. 1	CS17.031	H3#00	98	24.4	3	0.9.1	\$0\$	9.1-26.4	203	378, 1873	153	27,14.0
	Company No. 5	1872	2	2862	13.7	Κ.	•				1295	46	7
	Cratiga Pao No. 4	2	200		•	.		•					,
		20,00	200			•	•		•				
	Charles Per No. 2	N. C.	N387					. •				, ,	
	Keld's Pen No 2	257.25	N3805	288	52.6	٠	•				1003	10.7	10 K
	Cympge Pen No. 1	15.33	200	8	20.5	4 40	0.643	\$0\$	4,3-30.5	50.8	25, 72	3,0	2333
	Congress Pent 4	1157/59	37.50	£	25.	٠	0.50.6	\$0.5	C. 6-24.A	20.8	637, 3825	4.6	0.4.3.7
	Metro Par No. 3	25802	2		,	« ·	•	•				i	٠
	CONTRACTOR I	80863	70,00	. 60	, 7	< <	* F. C	Š	7 7 7 7	. 5	1925 2934		, 00
	Costone Me	23814	200				,			Trans.	1000	5	
	Contour No. 3	25814	N38775	1962	22.2	12.7 ★			0.623.8	Ş	1274 5097		. 0 7 1
 	MWT. 2	23316	2000			٠	•				,		
	North Sympleme	KSKZ	222	20	18.6	≺ 53 23	6.51.0.12.5	61.0,50.0	12.5.14.0	Š	602, 4436	11.7	15,95
	Conditions No. 2	H.SE.M	C		٠.	∢.		•				ŧ	•
٠.	N. W. T. No. A	300	2000	ĝ	×	< ·	0.62.6	202	24238	20.8	2638, 3604	3,8	Co.o.c
1.	Contract Con	223230	2 5			< ·			******	. 4	250		. 7
	Incorde Park No. 1	SPECIAL STREET	3	į.	, A6.	• •	. •		017.1	5 6	950	2 ,	1
** : **;	Bosth Byndlesto	F7.0	2		19.1	¥ 2.3	•		•		222	ķ	107
	Publish Pat 74.2	27.00.23	2	2	26,7	2	•		0.19.5	** 55	3346	5.8	S.
	Cathorne Ne.	200	200		0.5	\	•	•			200		
	Code Cross 140. 1	55.000	2000	•	•		,	•	•	•		•	•
	Confer Chose No. 2	1000	2000		26.2						37.00	,	
	Peny	1530	Ž	2	3	4.5	41-122213-229	301,30.5	193	30.3	191, 1146	15.8	30,30,3
	Cumbedend Pan	B.7013	200	282	2.5	7.0 A	0.4-12.5	SC 8	12.5.18.6	**************************************	632, 4436	11.7	15,99
	Perfession No. 1	117913	Maria	183	73.7	27.7	1.3.37.3	503	23.2.29.3	50.8	632, 4436	9.8	117.3

Location	Refe	Reference	Aquifer	Altitude	Discharged	Use	Remarks
	山	Z		(E)	(lit/min)		4
Resource	E5182	N3941	Troy Limestone	76.3	19,180	No used	Flows into Cab Gully
Spring Garden	E5255	N3942	Troy Limestone	76.3	1,591	Village supply	Head of Spring Garden River
				•		+ irrigation	
Red Ground	E5056	N4026	Troy Limestone	229.0	9.1-45.46	Water supply	
Salt Island	E5046	N3597	Young Limestone	30.5		Not used	Very salt water
Lagoon							only flows in
						٠	rainy season
Salt Island	E5050	N3610	Young Limestone	30.5		Not used	Very salt water
Lagoon							
Ferry Springs	E5798	N4128	Young Limestone	30.5	90.9-891	Supply main water	Head of Ferry River
Giblatore	E5418	N4300	Troy Limestone	305.0	13.6-45.46	Village supply	Head of Giblatore River
Cocoa Walk	E5020	N4026	Ipper Young Limeston	152.5	45.40-136.4	Local supply	Flows into Myttins River
Browns Hall	E5070	N4149	ower Young Limeston	427.0	22.7-90.9	Local supply	Source of St. Faiths River
Mooans Smino	こととは	N72016	Trost I imperiona	1		Transpiron	Diego in commence accede anominae

Table C-5 AQUIFER CHARACTERISTICS, LIMESTONE WELLS (After Howard Humphreys, Jamaica Ltd.)

Name of Well	Refe	Reference	Type of	Pumped Well	Observation	Well
	ш	z	Test	(m3/d/m)	Ľ	S
Believue	E5447	N4002	Recovery	1,490		1
St. Johns Road	E5531	N4015	Recovery	7,460	t	,
Chungs	E5550	N4092	Recovery	708		1
O'Toole's	E5553	N4056	Recovery	4,680	ı	1
Arignanabo Textile	E5554	N4121	Recovery	1,270	ŧ	
Angels	E5566	N4135	Recovery	2,100		ı
Headworkds Dam	E5567	N4150	Recovery	37.8		;
Content Expl.	E5580	N4149	Recovery	4,470	,	•
Cross Pen	E5623	N4115	Recovery	1,940	1	•
Cross Pen Expl.	E5640	N4114	Recovery	35.1	ŧ	ı
Waterloo Valley Expl.	E5697	N4087	Recovery	4,400	,	,
Twickenham No. 2	E5722	N3985	Recovery	2,010	ŧ	1
Twickelinham No. 3	E5724	N3979	Recovery	952	-	

Table C-6 AQUIFER CHARACTERISTICS, LIMESTONE WELLS (After FOA Project)

Name of Well	Refe	rence	Type of Test	Pumped Well T (m3/d/m)	Observation T
Bodles Livestock	E5033	N3786	Drawdown	5,800	-
Bodles Citrus	E5049	N3793	Drawdown	3,520	-
Old Harbour	F	* .			
Perrie's	E5085	N3762	Drawdown	32.1	
Bushy Park (Hend)	E5238	N3785	Recovery	31.9	•
St. Helens No. 4	E5305	N3864	Drawdown	312	1,690
			Recovery		155
St. Helens Expl.	E5305	N3864	Drawdown		175
			Recovery		175
Cotton Tree No. 2	E5352	N3965	Drawdown	204	•
			Recovery	294	-
Ariguanabo Expl.	E5550	N4130	Drawdown	3,970	A3.
Crescent Expl.	E5555	N4154	Recovery	20	*
Little Windsor Expl.	E5568	N3827	Drawdown	1,400	•
Bamboo Expl.	E5633	N4173	Recovery	15,100	•
Tredegar Park 1	E5660	N4032	Drawdown	680	*
Half Way Tree Expl.	E5805	N3916	Recovery	952	
Caymanas Expl	N5853	N4010	Drawdown	197	180
zaj mano zasp.			Recovery		245

Name of Well	Refe	erence	T (m3/d/m)	Q/d	Specific Capacity (m3/min/m)
Chungs	E5550	N4092	701	5.64/ 9.91	0.57
Ariguanabo Expl.	E5550	N4130	254	3.27/ 5.18	0.63
Crescent Expl.	E5555	N4154	16.9	0.77/31,39	0.02
Headworks Dam	E5567	N4150	82.0	2.27/22.71	0.10
Content Expl.	E5580	N4149	4,590	6.00/ 1.25	4.80
Cross Pen	E5623	N4115	1,940	6.14/ 2.13	2.88
Bamboo Expl.	E5623	N4173	13,600	7.82/ 0.73	10.71
Cross Pen Expl.	E5640	N4114	7,830	6.77/ 2.44	2.77
Waterloo Valley Expl.	E5697	N4087	3,670	7.82/ 5.97	1.31

Table C-7 ANNUAL ABSTRACTION FROM LIMESTONE AQUIFER

No	1970		1971 1972 1973	1973	1974	1975	1975 1976 1977	11977	1978	6/61	1980
1. Imigation											
Million US gallon	12,877	16,907	16.256	13,308	13,880	16,568	16,288	15,534	10,849	10,349	12,905
Million cubic metre	48.7	25	61.5 50.4	50.4	58.5	62.7	61.7	58.3	41.0	41.1 48.8	48.8
Number of Wells	8	\$	Ą.	7	#	\$	\$	4	43	4	8
2. Domestic											
Million US gallon	2,651	2,766		3,851	6,121	8,201	9,049	7,854	9,053	9,60	9,203
Million cubic metre	10.0	10.5		14.6	23.2	31.0	X	29.7	8	36.4	%
Number of Wells	\$1	17	17	17	গ্ন	23	33	প্র	23	83	8
3. Industrial	.*					٠					٠
Million US gallon	265	1,130	1,1%	2,455	2,335	1,790	2,706	2,510	2,510	2,510 2,510	2,060
Million cubic metre	2.3	4,2	4.6	9.2	8.8	6.8	10.3	9.4	9.4	4.0	
Number of Wells	•	7		٢	9	-		90	00	ο ν	
4. Total Abstraction								٠,			
Million US gallon	16,120	20,805	20,705	19,613	22,337	26,559	28,097	25,893	22,384	22,949	24,168
Million cubic mere	61.0	787	78.4	74.2	2	100.5	106.3	0.86	2	84.7 86.9 91.5	91.5
Number of Wells	89	89	8	65	75	80	80	8	ę.	78	F
Remarks: after Botboi (1982)									-		

Tane C-8 RESULTS OF WATER QUALITY ANALYSES FOR WIELLS AND SPRINGS IN THE LIMESTONE AQUITER

E	No Location	Coor	Coordinate	౮	Mg	Ž	×	1	Š	ರ	1		SiO2	ľ		fardress	Alkalini-	ì	COD	ដ	짼	H	Date
cr 4,971.0 3,700.0 92.0 29.7 172.0 5.7 26.8 311.0 48 26.1 60.0 720.0 149.0 29.0 770.0 149.0 29.0 770.0 149.0 29.0 770.0 149.0 29.0 770.0 149.0 29.0 770.0 149.0 29.0 770.0 149.0 29.0 770.0 270.0 149.0 29.0 770.0 270.0		ធ	z	(mdd)	(mod)	(mdd)	_		(mod)	(mdd)	(mod)	(bpm)			(mdd)	(mdd)	ty(porn)	8				Q	Collected
and 2 4,971.0 3,700.0 92.0 257.1 172.0 57.7 26.8 311.0 4.8 1.0 2.0 26.0 22.0 230.0 170.0 25.0 330.0 170.0 25.0 330.0 170.0 25.0 330.0 170.0 25.0 25.0 330.0 170.0 25.0 25.0 330.0 170.0 25.0 25.0 300.0	1. Limestone Aquifer																						
1 5,039.0 3,780.0 95.0 33.0 117.0 2.0 296.0 24.0 195.0 0.0 6.5 16.0 0.2 720.0 149.0 295.0 0.0 0.70 2.8 1 2,095.0 3,743.0 124.0 22.0 145.0 1.6 303.0 40.0 218.0 0.0 17.9 140.0 0.2 325.0 0.1/63 5.5 1 2,123.0 3,743.0 124.0 22.0 145.0 1.6 303.0 40.0 218.0 0.0 17.9 140.0 0.2 390.0 470.0 393.0 0.2/65 2.8 1 2,223.0 3,743.0 124.0 22.0 145.0 1.6 303.0 40.0 218.0 0.0 15.1 36.0 1 140.0 643.0 368.0 0/6 2.8 1 2,223.0 3,743.0 124.0 124.0 124.0 124.0 125.0 0.0 15.1 36.0 17.1 9.7 0.1 310.0 269.0 256.0 0/7 5.6 1 2,223.0 3,844.0 65.0 26.0 11.0 0.5 256.0 5.2 15.8 0.0 5.9 9.7 0.1 310.0 269.0 256.0 0/7 5.6 1 2,305.0 3,844.0 130.0 130.0 140.0 130.0 14	Free Town No 1 and 2	4,971.0	3,700.0	\$	7:57	172.0	5.7		8.92	311.0	•	4.8	•		•	•	,	•	•	1,800.0		30.0	7.9.86
5.5095.0 3,743.0 124.0 28.0 147.0 2.2 325.0 32.0 90.0 0.0 9.9 21.0 0.2 1,040.0 457.0 325.0 0.1/63 5.6 1 5.127.0 3,742.0 92.0 58.0 146.0 16.0 93.0 0.0 0.0 15.1 90.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Marine Terminal	5,039.0	3,780.0	95.0	33.0	137.0	50	296.0	24.0	195.0	0.0	6.5	16.0	0.2	720.0	149.0	296.0	0.00	2.8	1,300.0		28.0	9866
1 5,127.0 3,742.0 92.0 58.0 146.0 16 303.0 40.0 278.0 0.0 79 14.0 0.3 990.0 470.0 303.0 0,2/66 2.8 1 46/ck 5,238.0 3,785.0 152.0 64.0 122.0 0.7 288.0 90.0 315.0 0.0 151.1 36.0 1 1400.0 643.0 388.0 0/6.0 2.8 1 5,238.0 3,885.0 86.0 30.7 27.5 0.8 256.0 5.2 15.8 0.0 171.1 9.7 0.1 310.0 269.0 226.0 0/7 4 56 56 5.0 20.0 11.0 0.5 256.0 5.2 15.8 0.0 5.9 9.7 0.1 310.0 269.0 226.0 0/7 4 56 56 5.0 20.0 11.0 0.5 256.0 11.0 0.5 256.0 11.0 0.5 256.0 11.0 0.5 256.0 11.0 0.5 256.0 0/7 4 15.0 11.0 0.5	Whim (Railway)	5,095.0	3,743.0	124.6	28.0	147.0	2.2	325.0	32.0	300.0	0.0	6.6	21.0	0.2	1,040.0	457.0	325.0	0.1/63	5.6	1,570.0		29.0	9.6.6
5.257.0 3.885.0 64.0 122.0 0.7 368.0 90.0 315.0 0.0 151 360 · 1,400.0 643.0 260.0 07.4 5.6 1.2 5.2 1.2 0.8 256.0 3.6 42.0 0.0 17.1 9.7 0.1 310.0 269.0 256.0 07.4 5.6 1.2 5.5 1.2 0.8 256.0 3.6 42.0 0.0 17.1 9.7 0.1 310.0 269.0 256.0 07.4 5.6 1.2 5.5 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	New Market Pen	5,127.0	3,742.0	92.0	58.0	146.0	1.6	303.0	40.0	278.0	0.0	5.9	14.0	0.3	0.066	470.0	303.0	0.2/6.6	85	1,560.0		28.0	98.5.6
5.2570 3.885.0 86.0 30.7 27.5 0.8 256.0 3.6 42.0 0.0 17.1 9.7 0.1 310.0 269.0 256.0 077.4 5.6 5.905.0 3.884.0 65.0 26.0 11.0 0.5 256.0 5.2 15.8 0.0 5.9 9.7 0.1 310.0 269.0 256.0 077.4 5.6 5.905.0 3.884.0 11.0 0.5 256.0 5.2 15.8 0.0 5.9 9.7 0.1 310.0 269.0 256.0 077.4 5.6 5.0 5.3 0.3 0.3 0.3 0.0 10.4 0.6 5.0 0.0 10.4 0.6 5.0 0.0 10.4 0.6 5.0 0.0 10.4 0.6 5.0 0.0 10.4 0.6 5.0 0.0 10.4 0.6 5.0 0.0 10.4 0.6 5.0 0.0 10.4 0.6 5.0 0.0 10.4 0.6 5.0 0.0 10.4 0.6 5.0 0.0 10.4 0.6 5.0 0.0 10.4 0.0 0.0 10.0 1.0 1.0 1.0 1.0 1.0 1.0 1.	Bushy Park Headrick	5,238.0	3,785.0	152.0	2,0	122.0	0.7	368.0	0.00	315.0	0.0	15.1	36.0	•	1,400.0	643.0	368.0	0.9/0	7.8	1,860.0		29.0	9.6.6
5,305.0 3,864.0 65.0 26.0 11.0 0.5 256.0 5.2 15.8 0.0 5.9 9.7 0.1 310.0 269.0 256.0 077.4 5.6 yro.3 5,430.0 3,941.0 104.0 18.0 32.0 33.0 321.0 13.0 74.0 1.6 0.9 104 0.6 520.0 332.0 321.0 21/62 25.0 x.1 5,430.0 3,982.0 161.0 33.0 150.0 3.0 405.0 0.0 9.9 7.6 0.1 1,340.0 538.0 270.0 0/6.8 2.8 1 1.5 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Mount Moreland	5,257.0	3,885.0	86.0	30.7	27.5	0.8	256.0	3.6	42.0	0.0	17.1	6.7	0.1	310.0	269.0	256.0	0,77.A	5.6	811.0		28.0	7.9.86
yNo.3 5,430.0 3,941.0 104.0 18.0 32.0 33.0 321.0 13.0 74.0 1.6 0.9 104 0.6 520.0 332.0 321.0 21/6.2 25.0 5.1 5/48.0 15/8.2 15/10 33.0 15/10 30.0 16.0 30.0 405.0 0.0 9.9 7.6 0.1 1,340.0 538.0 270.0 0/6.8 2.8 1 5/48.0 1/15.0 77.0 11.6 10.0 1.0 - 4.6 13.0 - 3.6 - Nil 0.5 1/15.0 77.0 11.6 10.0 1.0 - 4.6 13.0 - 5.3 - Nil 0.0 1/15.0 2.0/4.7 - 2.0/4.7 - 5/15.0 11.5 1.4 - 2.0 11.0 1.0 - 6.2 - Nil 0.0 1/15.0 2.4 248.0 120.0 1180.0 0.1 4.0 6.8 0.2 2.720.0 643.0 248.0 0.2/7.8 1.4 4 5.182.0 3,941.0 78.0 14.6 10.0 0.6 - 6.0 12.9 - 6.9	St. Helens No.4	5,305.0	3,864.0	65.0	26.0	11.0	0.5	256.0	5.2	15.8	0.0	5,9	6.3	0.1	310.0	269.0	256.0	0,77.4	5.6	530.0		28.0	98.6.6
5.458.0 3,982.0 161.0 33.0 150.0 3.0 270.0 30.0 405.0 0.0 9.9 7.6 0.1 1,340.0 538.0 270.0 0668 2.8 1 5.640.0 4,028.0 161.0 20.4 57.5 1.4 - 20.0 110.5 - 5.3 - Nii - 0.5774 - 0.5774 - 0.5774 5.640.0 4,028.0 103.0 20.4 57.5 1.4 - 20.0 110.5 - 5.3 - Nii - 0.0 - 0.5774 - 0.5774 - 0.578.0 4,022.0 125.0 24.0 150.0 2.2 - 46.5 291.0 - 8.5 - 0.0 - 0.0 - 0.835.3	Innswood factory No.3	5,430.0	3,941.0	304.0	18.0	32.0	33.0	321.0	13.0	74.0	1.5	00	10,4	9.0	520.0	332.0	321.0	2,1/6,2	25.0	890.0		28.0	98.6.6
Well W) 5,623.0 4,115.0 77.0 11.6 10.0 1.0 - 4.6 13.0 - 3.6 - Nii - 2.04.7 - 2.04.7 - 5.640.0 4,028.0 103.0 20.4 57.5 1.4 - 20.0 110.5 - 5.3 - Nii - 2.04.7 - 2.04.7 - 5.640.0 4,028.0 125.0 24.0 125.0 2.2 - 46.5 291.0 - 8.5 - 0.0 0.0 0.385.3 - 1	Mango Walk No.1	5,458.0	3,982.0	161.0	33.0	150.0	3.0	270.0	30.0	405.0	0.0	6.6	7.6	0.1	1,340.0	538.0	270.0	0/6.8	2.8	1,850.0		28.0	98.6.6
5,640.0 4,028.0 103.0 20.4 57.5 1.4 - 20.0 110.5 - 5.3 - Nii	Cross Pen (Ric Well W)	5,623.0	4,115.0	77.0	11.6	10.0	1.0	3	4,6	13.0		3.6	1	Z	•	•	•	0.577.4		520.0	r.		2.9.86
tr. Well 5,724.0 3,979.0 77.0 14.8 85.0 2.5 27.6 87.0 6.2 Nii - 8.2/3.3 - 8.2/3.3 - 8.2/3.3 - 0.3/5.3 - 0.0 - 0.0 - 0.3/5.3 - 0.0 - 0.0 - - - - <t< td=""><td>Ensom City</td><td>5,640.0</td><td>4,028.0</td><td>103.0</td><td>8.4</td><td>57.5</td><td>1.4</td><td>1</td><td>20.0</td><td>110.5</td><td></td><td>, 5</td><td>٠</td><td>Z</td><td></td><td>•</td><td></td><td>2.0/4.7</td><td>. •</td><td>936.0</td><td></td><td></td><td>2.9.86</td></t<>	Ensom City	5,640.0	4,028.0	103.0	8.4	57.5	1.4	1	20.0	110.5		, 5	٠	Z		•		2.0/4.7	. •	936.0			2.9.86
2 5,816.0 4,002.0 125.0 24.0 150.0 3.2 - 46.5 291.0 - 8.5 - 0.0 0.3/5.3 - 1 5,298.0 4,128.0 113.0 88.0 656.0 24.4 248.0 120.0 1,180.0 0.1 4.0 6.8 0.2 2,720.0 643.0 248.0 02/7.8 1.4 4 5,182.0 3,941.0 78.0 14.6 10.0 0.6 6.0 12.9 - 6.9 -	Twickenham Park Well	5,724.0	3,979,0	Ç	14.8	85.0	2.5		27.6	87.0	4	6.2	•	ïŻ		1	٠	8.273.8		915.2		•	29.86
5,298.0 4,128.0 113.0 88.0 656.0 244 248.0 120.0 1,180.0 0.1 4.0 6.8 0.2 2,720.0 643.0 248.0 0,277.8 1,4 4 5,182.0 3,941.0 78.0 14.6 10.0 0.6 6.0 12.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6	White Mari No. 2	5,816.0	4,002.0	125.0	27.0	150.0	3.2	٠	46.5	291.0		8 2	٠		•	•		0.8/5.3		1,580.8		•	2.9.86
* 5,182.0 3,941.0 78.0 14.6 10.0 0.6 6.0 12.9 6.9	Ferry Spring *	5,298.0	4,128.0	113.0	88.0	656.0	24.4	248.0	120.0	1,180.0	0.1	4.0	8.9		2,720.0	643.0	248.0	0.2/7.8	1.4	4,380.0		27.0	98.66
No.1* 5,255.0 3,942.0 73.0 13.0 8.1 0.4 . 13.1 10.9 . 3.1	Colebum Gully	5,182.0	3,21.0	78.0	14.6	10.0	9.0	•	6.0	12.9		6.9	•		•		•			561.6			7.9.86
th 5,331.0 3,824.0 186.0 87.3 185.0 1.1 . 214.0 421.0 . 4.4	Spring Gardens No.1	5,255.0	3,942.0	73.0	13.0	æ. ₩.	0,4	•	13.1	10.9			•	1	•	,	•		•	4992		•	7.9.86
th 5,331.0 3,824.0 186.0 87.3 185.0 1.1 . 214.0 421.0 . 4.4	2. Alluvial Aquifer																						
2 5,675.0 3,833.0 74.0 17.0 67.0 0.6 305.0 31.0 38.0 0.0 2.3 37.0 0.3 470.0 257.0 305.0 04.8 - 5780.0 3,800.0 79.0 27.0 74.0 1.2 337.0 25.0 65.0 0.0 0,8 37.0 0.2 530.0 307.0 333.0 055.8 2.8	Amity Hall North	5,331.0	3,824.0	186.0	% 5.	185.0	Ξ.	٠	214.0	421.0		4	•	•		•	,			2.496.0		30	7.9.86
5.780.0 3.800.0 79.0 27.0 74.0 1.2 337.0 25.0 65.0 0.0 0.8 37.0 0.2 530.0 307.0 333.0 055.8 2.8	March Pen No.2	5.675.0	3,833.0	74.0	17.0	67.0	9.0	305.0	31.0	38.0	0.0	2.3	37.0	0,3	470.0	257.0	305.0	0/4.8		740.0	6,9	29.0	10.9.86
	Reid's Pen No.1	5,780.0	3,800.0	79.0	27.0	74.0	1.2	337.0	25.0	65.0	0.0	0.8	37.0	0.2	530.0	307.0	333.0	8.50	2.8	870.0		29.0	98.6.6

Table C-9 AQUIFER CHARACTERISTICS, ALLUVIAL WELLS (After FAO Project)

Name of Well	Refer	ence	Type of Test	Pumped Well	Obser	vation
LASING OF AACH	E	N	~ A L	T (m3/d/m)	T (m3/d/m)	S
Salt Pond No. 2	E5742	N3805	Drawdown	274	1,790	0.0180
Omit I ond 1 to 2			Recovery		3,070	0.3330
Half Way Tree No. 4	E5842	N3910	Drawdown		3,280	0.0436

Table C-10 TRANSMISSIVILITY VALUES CALCULATED FROM RECOVERY TESTS, ALLUVIAL AQUIFER

(A)	fter Versey, 190	52)	
Name of Well	Refe	rence	Pumping Well
	E	N	T (m3/d/m)
Amity Hall No. 1	E5331	N3824	177
March Pen No. 2	E5676	N3833	400-480
Blair Pen	E5698	N3877	370-670
Jones Dam	E5709	N3940	390-4000
Bemard Lodge	E5727	N3885	1509-2390
Government Park	E5748	N3860	6640
Lime Tree No. 2	E5761	N3922	1270-1550
Half Way Tree No. 5	E5808	N3892	1600
Cookson No. 1	E5814	N3875	162
Half Way Tree No. 2	E5818	N3907	768-1110
Half Way Tree No. 4	E5842	N3910	700-2100
Watson Grove	E5854	N3971	8200
Belmore No. 2	E5880	N3954	838

Table C-11 ANNUAL ABSTRACTION FROM ALLUVIAL AQUIFER

a marine to the supering the supering and the supering the supering the supering the supering the supering the	1970	1971	1972
1 Irrigation			
Million US gallon	8,984	10,287	10,136
Million cubic metre	34.00	38.90	38.40
Number of wells	50	51	52
2 Domestic			
Million US gallon	5	5	4
Million cubic metre	0.02	0.02	0.02
Number of wells	4	4	4
3 Industrial			
Million US gallon	447	450	438
Million cubic metre	1.70	1.70	1.70
Number of wells	2	2	2
4 Total Abstraction			
Million US gallon	9,436	10,742	10,578
Million cubic metre	35.70	40.70	40.00
Number of wells	56	57	58

Table C-12 MONTHLY RAINFALL DATA

Table C-12 MONTHLY F			anagair vanno escar		· photosiste budancia.	. Marine productions and the	ومنوعها إنجامتني	*****	Haranday provides		*****		nit: mm)
Staton	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Total
1. 1972	27.2	21.0	016	1057	289.1	90.2	127.5	1062	207.5*	180.3*	81.54	218.08	1704.2*
Above Rocks	77.7 24.1	31.0 57.2	81.5 101.3	122.7 29.0	40.4	122.0	3,3	20.1	96.0	122.9	15.5	108.5	740.5
Bodles Agr	8.9	106.7	64.8	27.9	146.1	165.1	33.0	72.4	81.8*	225.3	94.0		1100.4*
Caymanas C Cocoa Walk	103.9	47.0	94.7	52.1	245.9	147.1	5.8	136.1	129.0	140.2	35,6	143.3	1,280.7
Guanaboa Valo	75.7	85.1	135.6	112.0	89.7	193.0	0.0		150.4*	239.3	12.7	136.1	1354.6*
Hamony Pen	11.9	101.9	106.2	18.3	85.6	206.2	0.0	0.0	11.4	263.4	31.8	38.4	875.1
Innswood 2	27.2	65.3	126.7	79.5	44.7	130.3	0.0	33.8	122.7	259.3	11.4	230.9	1,131.8
Innswood 5	6.4	66.0	53.8	25.9	48.8	94.5	0.0	48.8	78.7	178.1	0.0	152.7	753.7
Kensingtan	26.2	61.2	137.2	35.8	216.2	176.3	51.6	297.9	165,9	219.5	104.1	185.4	1,677.3
Old Elarbour	27.9	69.6	124.2	40.9	43.9*	101.1	0.0	12.7	96.5	87.1	5.6	96.0	705.5*
Sligoville	35,3	56.6	28.7	139.2	225.3	151.6	77.0	263,7	189.0	161.5	61.2*	200.7	1589.8*
Spanish T. Woodlands	4.3	46.7	99.3	100.0	65.5	146.6	0.0	19.3	63.5	141.2	0.0	188.2	874.6
Springvale	70.1	32.0	44.5	73.9	155.4	170.9	149.1	173.2	150.9	142.5*	101.3		1466.7
Watermont	62.2	51.6	90.9*	45,2	128.3*	174.5*	27.7*	51.6*	75.4ª	45.0*	106.7*	196.3*	1055.4*
Brown's Hall School	45.2	57.7	62.0	79.8	153.2	215.9	64.8	78.5	152.9	249.7	25.9		1,369.0
Innswood 1	21.3	80.3	103.9	65.8	56.1	153.7	0.0	31.5	99.3	222.3	22.9	225.0	1,082.1
Bernard Lodge	7.9	47.0	35.6	73.9	75.9	153.9	0.0	36.8	23.6	189.7	0.0	93.0	737.3
Bodies Rose Hall	22.1	69.9	149.6	64.8	41.7	138.9	1.8	17.5	117.6	134.4	8.9	109.5	876.7
Bybrook	98.3	40.9	26.4	118.9	151.4	125.2	225,6	157.5*	157.2	174.8	146.1	183.1	1605.4*
Dawkins Dawkins	15.0	66.0	73.7	34.3	96.34	111.8	22.9 17.8	33.0	96.5 73.2	135.4	39.4 60.2	96.5 72.6	820.8*
Dawkins Bog	12.7	76.2	45.0	87.6	59.7	127.0	30.5	20.3		181.4			833.7
Fann 2	7.6 12.2	59.7 46.2	57.2 9.7	45.7 26.4	94.0 18.3	. 163.8 155.2	0.0	17.8	69.9 18.0	187.5 123.4	35.6 0.0	83.1 56.4	852.4 479.5
Great Salt pond	22.9	13.5	94.0	8.4	23.1	126.5	0.0	0.0	30.7	80.3	9.1	99.6	508.1
Hartlands 2	21.6	129.5	85.1		148.6*	148.6	10.2	115.6	87.6	237.0	100.3		1197.1*
Lagoon Little Windsot	27.7	66.8	92.2	30.2	86.1	170.9	0.0	0.0	19.6	168.9	5.8	69.3	737.5
March pen	26.7	79.5	40.9	45.2	86.1	174.0	0.0	5.1	18.8	209.6	8.9	112.0	806.8
South syndicate	6.4	57.7	6.6	18.0	45.0	140.7	0.0	22.1	44.7	151.6	20.1	31.2	544.1
Tulloch Estate	73.7	33.0	58.2	78.5	207.8	123.7	120.9	146.8	177.5	183.7	169.2	191.3	1,569.3
Warwick Cartles	24.4	46.5	93.2	47.0	57.7	162.1	0.0	36.6	137.2	210.3	13.2*	147.6	975.8*
Ferry	12.7	114.3	119.4	111.8	114.3	137.2	27.9	22.9	68.34	188.20	65.5*	78.0*	1060.5*
Half way tree	6.6	47.8	27.2	54.6	71.1	212.9	0.0	34.0	27.9	253.2	3.0	45.0	783.3
2. 1975													
Above Rocks	0.0	0.0	0.0	5.8	127.8	102.1	157.5	241.0	578.9	195.6	191.8	28.4	1,628.9
Bodles Agr	9.7	1.5	9.4	17.5	33.0	0.0	66.5	70.6	157.2	118.4	75.4	47.0	606.2
Саутапав С	5.1	0.0	6.4	25.4	22.9	8.9	82.6	53.3	194.3	138.4	95.3	47.0	679.6
Cocos Walk	12.7	24.6	28.4	39.1	78.2	1.3	64.3	212.6	259.1	151.6	83.6	60.7	1,016.2
Chianabos Vale	10.4	30.5	14.5	69.1	70.4	9.1	116.3	143,0	214.1	184.4	119.1	27.9	1,008.8
Hannony Pen	11.4	0.0	0.0	5.1	27.9	0.0	40.4	0.0	270.3	87.6	31.2	34.3	508.2
Innswood 2	0.0	1.3	0.0	35.8	44.7	0.0	93.2	113.3	190.0	106.9	55.9	47.2	688.3
Innswood 5	0.0	1.0	0.0	24.6	51.3	0.8	48.5	55.1	152.4	68.8	50.3	65.8	518.6
Kensingtan	2.8	87.9	56.4	103.1	173.7 42.9	34.8 0.0	172.5 78.0	161.5 113.3	373.4 162.8	204.0 82.6	268.2 61.5	80.0 39.9	1,718.3
Old Harbour	16.0 8.4	5.1 68.1	21.1	23.6 126.5	95.5	119.4	234.7	113.3	317.0	312.2	376.2	49.0	1,884.6
Sligaville	9.9	0.0	0.0	9.1	66.3	0.0	17.0	11.7	163.8	116.3	22.9	18.0	435.0
Spanish T. Woodlands	7.6	57.7	30.0	79.0	53.3	94.0	135.9	133.4	184.9	137.4	89.4	31.0	1,033.6
Springvale Waterment	17.8	51.1	38.4	33.3	80.5	17.0	76,7	106.7	224.8	183.1	5.1	39.1	873.6
Brown's Hall School	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	485.4	268.2	12.2	58.4	824.2
Innswood I	6.1	2.5	0.5	23.1	56.4	2.8	86.1	56.6		89.2	41.4	50.0	602.7
Benund Lodge	2.8	0.0	0.0	2.0	33.3	0.0	13.5	16.8	156.5	79.2	83.8	20.1	408.0
Bodles Rose Hall	16.3	3.0	22.9	20.1	32.3	8.0	58.2	88.9	194.8	130,6	56.9	46.5	671.3
Bybrook	24.1	49.5	47.5	67.1	54.9	91.7	202.2	131.3		121.4	146.1	38.4	1,157.3
Dawkins	1.3	0.0	6.4	16.5	20.3	19.1	78.7	29.2	147.3	97.8	81.3	26.7	524.6
Dawkins Bog	4.1	2.5	3.8	19.1	20.3	0.0	53.8	15.2	188.7	161.8	104.1	41.9	615.3
Farm 2	4.1	2.5	3.8	14.0	8.9	0.0	50.8	25.9	193.0	129.5	99.8	41.9	574.2
Great Salt pond	0.0	0.0	0.0	8.9	21.1	0.0	36.6	23.6	193.3	30.2	21.3	34.0	369.0
Hartlands 2	8.9	0,0	10.2	6.4	50.8	0.0	40.6	15.2	176.3	115.3	29.5	55.9	509.1
Lagoon	0.0	0.0	6.4	31.8	14.0	7.6	86.4	69.9	223.5	146.1	120.7	48.3	754.7
Little Windsot	10.2	0.0	0.0	9.1	50.8		56.9	12.7	218.2	139.7	35.6	41.9	575.1
March pen	5.1	0.0	0.0	7.6	27,4	0.0	27.2	13.2	208.3	67.6	40.6	17.3	414.3
South syndicate	0.0	0.0	0.0	6.9		1.5	27.4	3.0	190.2	91.2	73.9	33.0	438.5
Tulloch Estate	5.3	26.9	32.0	108.7	58.9	84.1		147.8	188.0	176.0	177.0	36.1	1,248.8
Warwick Castles	2.5	30.5	1.3	31.0	42.7	0.0	113,8	96.5	210.3	67.3	48.8	64.3	709.0
Ferry	5.1	3.8	3.8	11.4	19.1	0.0	34.3	17.8	193.0	167.6	108.0	45.7	609.6
Half way tree	4,1	0.0	0.0	4.1	24.1	0.0	15.7	12.4	151.9	81.8	67.1	30.2	391.4

Remarks: 4; Calculated rainfall after Botbol Report (1982)

MONTHLY DISCHARGE RATE IN 1972 Table C-13

***************************************)	137.
Aquifer	Arca*	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	ö		Des.
Limestone	A	11.4	7.8	8.5	11.6	5.9	5.7	96	10.4	9.2	5.7		6.5
:	æ	6.6	7.9	5.1	5.6	10.3	9.6	8.3	10.3	9.6	7.2		13.3
ı	O	∞	00	3.4	6.3	7.5	12.3	10.6	9.6	8.5	8.7		8.8
=	Ω	7.6	8.4	8.4	8.7	7.3	6.2	9.3	9.8	6	8.4		œ
Alluvial	∢	Q 6.3	7.6	9.4	9.5	6.5	6.3	7.2	10.7	10.5	5.1	7.7	8.4
z	Э	7.1	9.6	8.9	11.4	7.3	7.7	6.3	10.2	10.1	5.3		8.2
Remarks.	I impectone Amilia	r Area.											

A; N-Coordinate 5600-6000, Simulation Grid Number 16-24 B; N-Coordinate 5300-5600, Simulation Grid Number 10-15 C; N-Coordinate 5150-5300, Simulation Grid Number 7-9 D; N-Coordinate 4900-5150, Simulation Grid Number 2-6

Alluvial Aquifer Area:

A; N-Coordinate 5500-6000, Simulation Grid Number 14-24 B; N-Coordinate 4900-5500, Simulation Grid Number 3-13

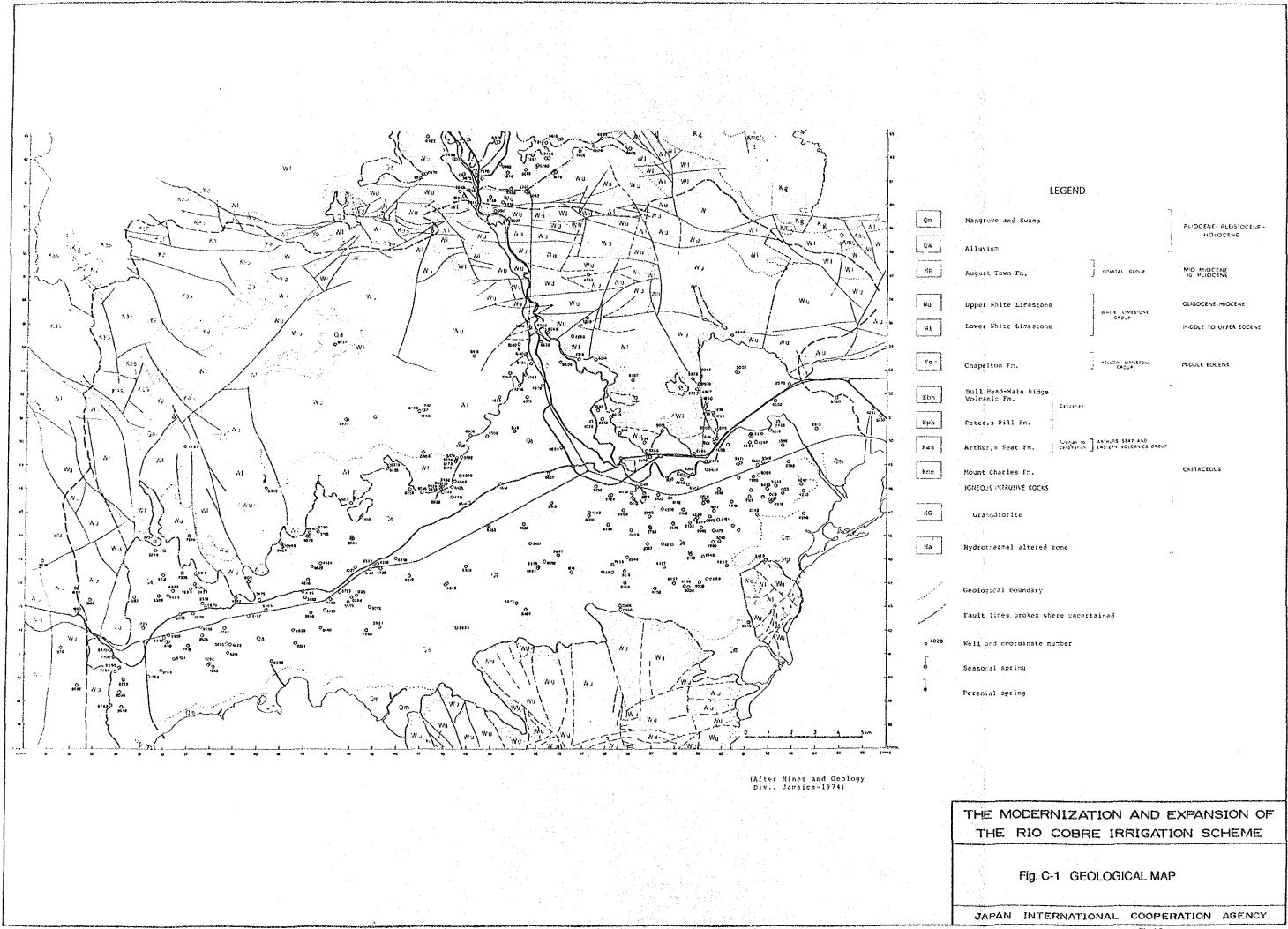
WATER SUPPLY IN THE LOWER RIO COBRE BASIN IN 1972 Table H-14

				(Unit: milli	(Unit: million m3/year)	
	Agriculture	Industrial	Domestic	Export	Total	
River Rio Cobre	141.1		2.7	•	143.8	
Limestone Wells	61.5	4.6	*.3 *	4.0*	78.4	
Alluvial Wells	38.4	1.6	0.02	•	40.0	
Total	241.0	6.2	11.0	4.0	262.2	•
Remark: *: Esun	Estimated value					

MONTHLY STREAMFLOW DATA AT RIO COBRE CANAL Table C-15

	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	O t	Nov.	D SS	Armual million m3
Obeserved in 1972	4.42	4.85	4.75	4.11	4.88	3.77	4.65	4.57	8,	4.29	4.94	4,46	143.8
Planned Flow*	7.13	5.92	4.0	4.00	4.67	4.82	4.8	5.48	5.18	4.74	6.35	727	169.3
		ı						*					

*; Estimated on Water Balance Study for Imgation.

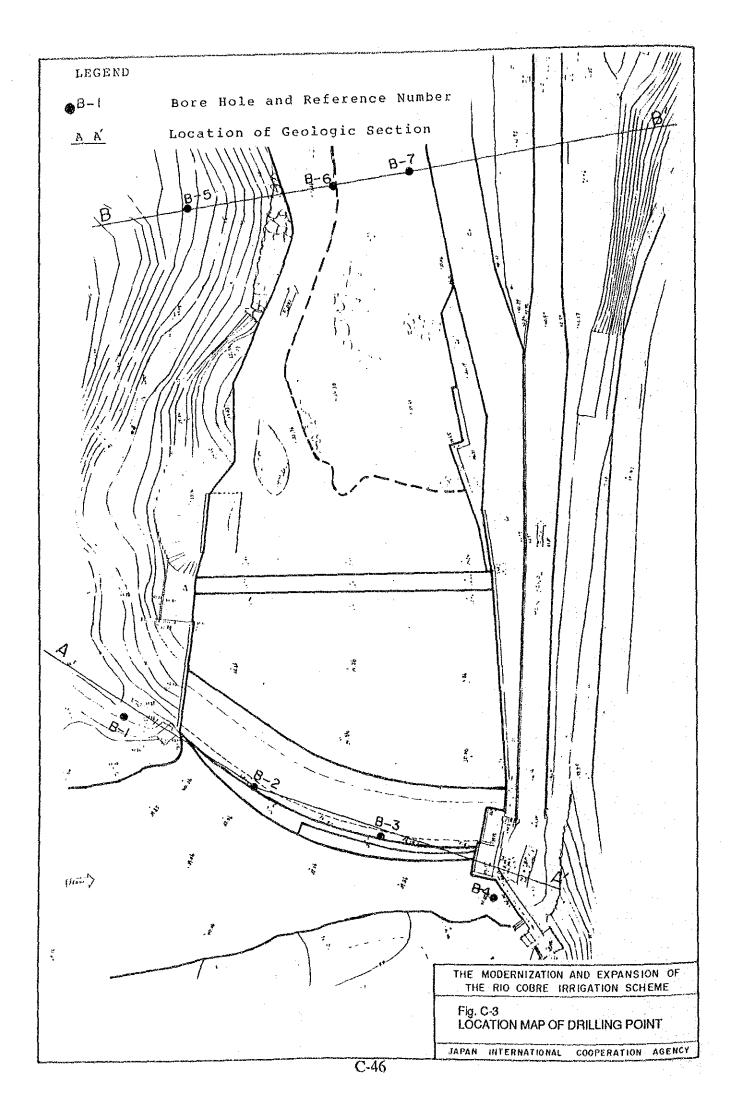

MONTHLY RECHARGE FROM RIO COBRE TO ALLUVIAL AQUIFER Table C-16

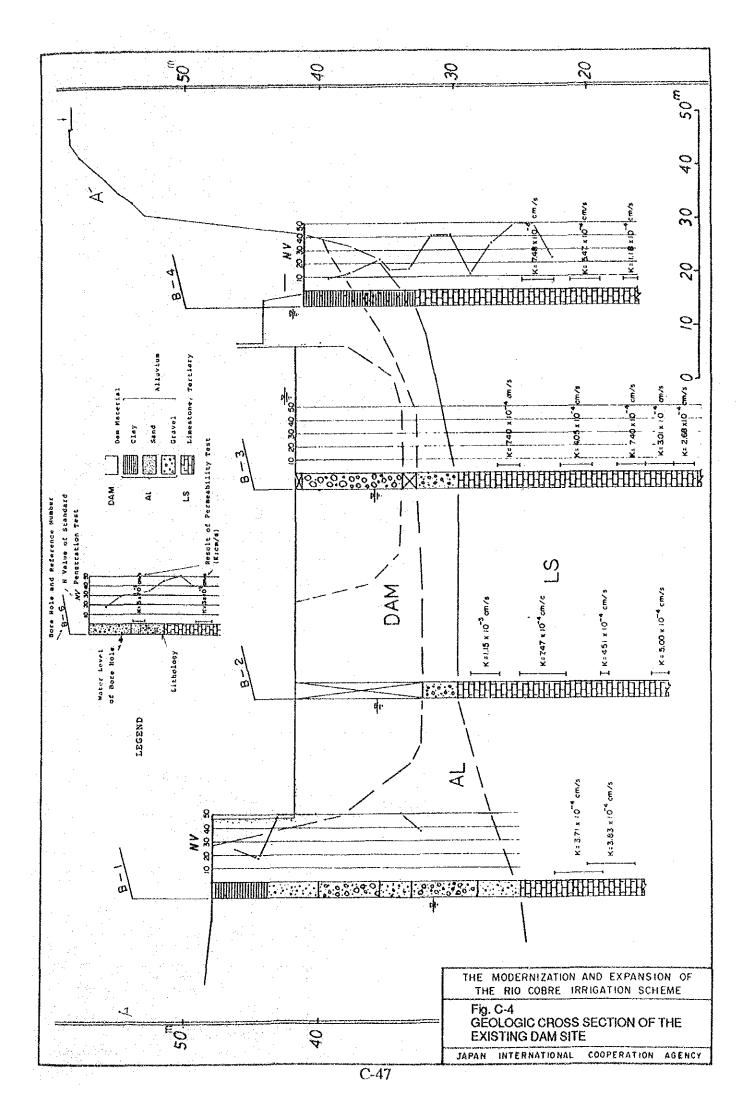
													Z Z
	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Mean
A. Headworks	7.64	7.64 5.93 5.71 5.44 6.59 6.83 5.65 7.35 11.10 39.87 12.94 15.09	5.71	5.44	6.59	6.83	5.65	7.35	11.10	39.87	12.94	15.09	10.85
(03BY002-03BA003)											.*	-	•
B. Crum Ewing	2.9	0.90	0.82		0.81 1.94	2.69	0.00	0.90 2.28 5.83 32.84 6.79 10.81	5.83	32.84	6.79	10.81	5.79
(03BA11)												:	
C. Rio Cobre Main Canal	4.51	51 4.96 4.90 4.36 4.47	4.90	4.36		4.03 4.48 4.65	4.48	4,65	4.66	4.66 4.02 4.88 4.04	4.88	4.02	4.50
(03BY002)													
Recharge Rate (A-B-C)	0.23	0.07	-0.01	0.27	0.18	0.11	0.27	0.42	0.61	3.01	1.27	0.24	0.56
Remarks: A&B	After Table B., Comparative Table of Mean Streamflow (1972-1973) for Rio Cobre River.	Se B-, C	omparat	ive Table	of Mea	n Stream	flow (19	72-1973) for Ri	Cobre	River.		
౮	Monthly Mean Streamflow (1972-1973)	Mean St	reamflow	(1972-)	(673)					•	d V		÷
Recharge; 1	Recharged to Alluvial Aquifer from Rio Cobre River betwen A and B	d to Allu	vial Aqu	ifer fron	Rio Col	ore River	betwen.	A and B					
	for Calib	ration an	d Operat	ion of Si	mulation								

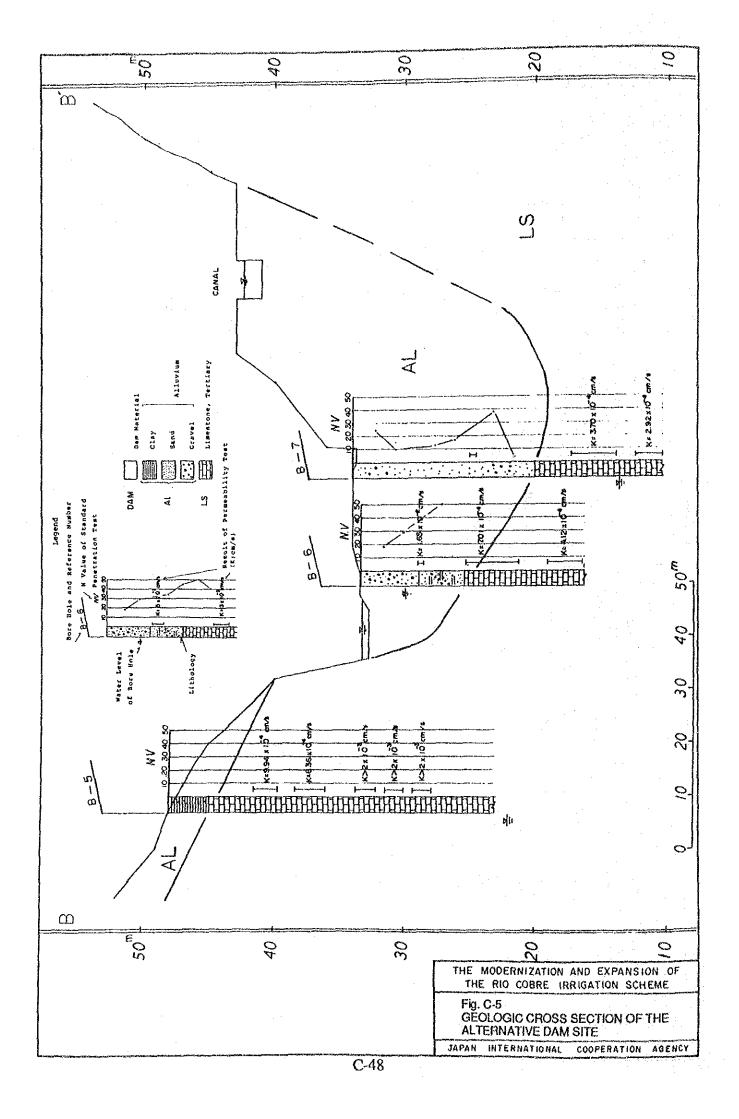
Table C-17 ESTIMATED WATER SUPPLY IN THE LOWER RIO COBRE BASIN

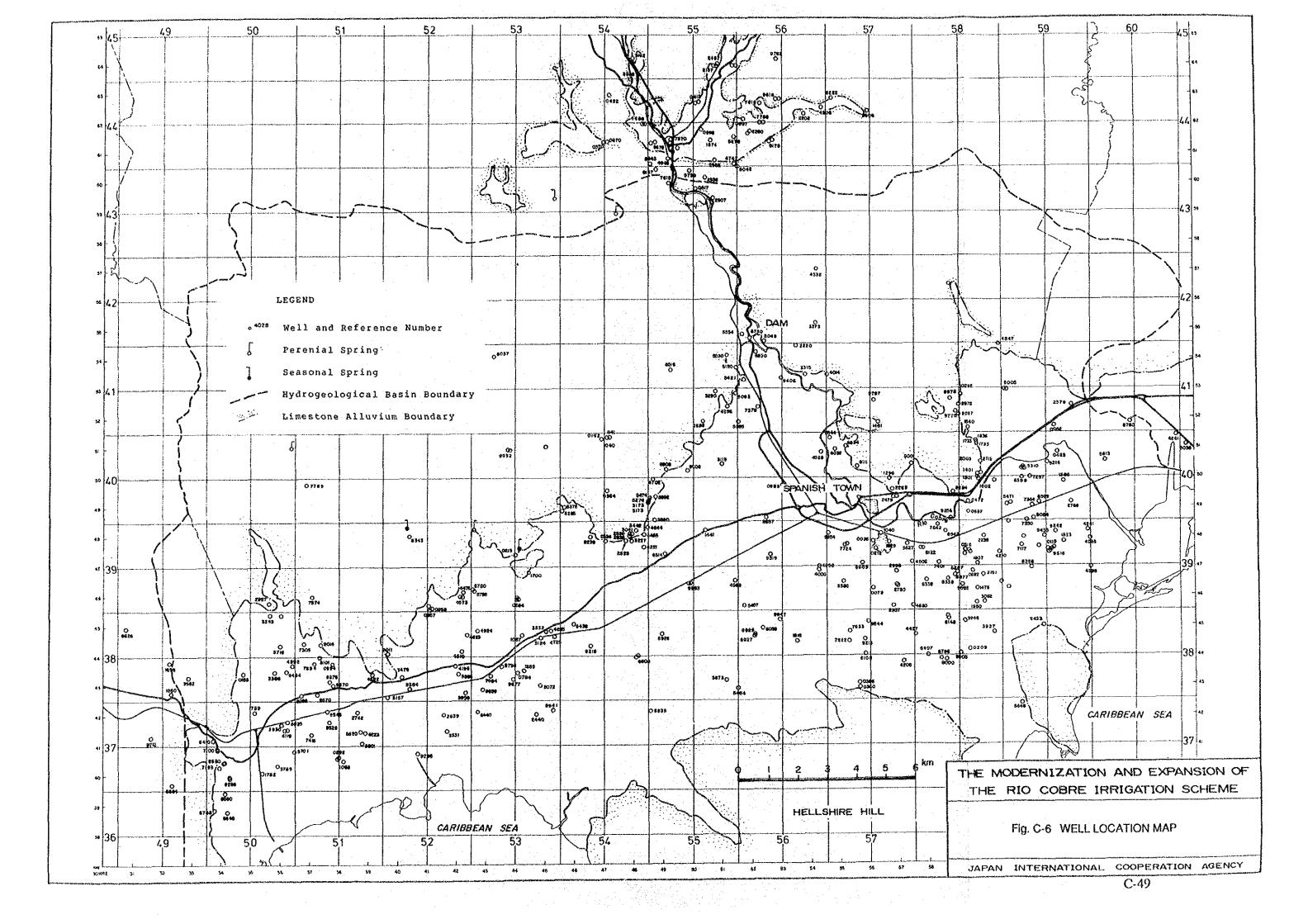
					Just, million molycar)	
Source	Agriculture	Industrial	Domestic	Export	Total	
River Rio Cobre	157.6	က	8.7	ı	169.3 *2	
Limestone Wells	60.7	5.9	20.2	17.0	103.8 *3	
Alluvial Wells	31	2.6	2.5	i	36.1 *3	
Total	249.3	11.5 *1	31.4 *1	17.0 *1	309.2	

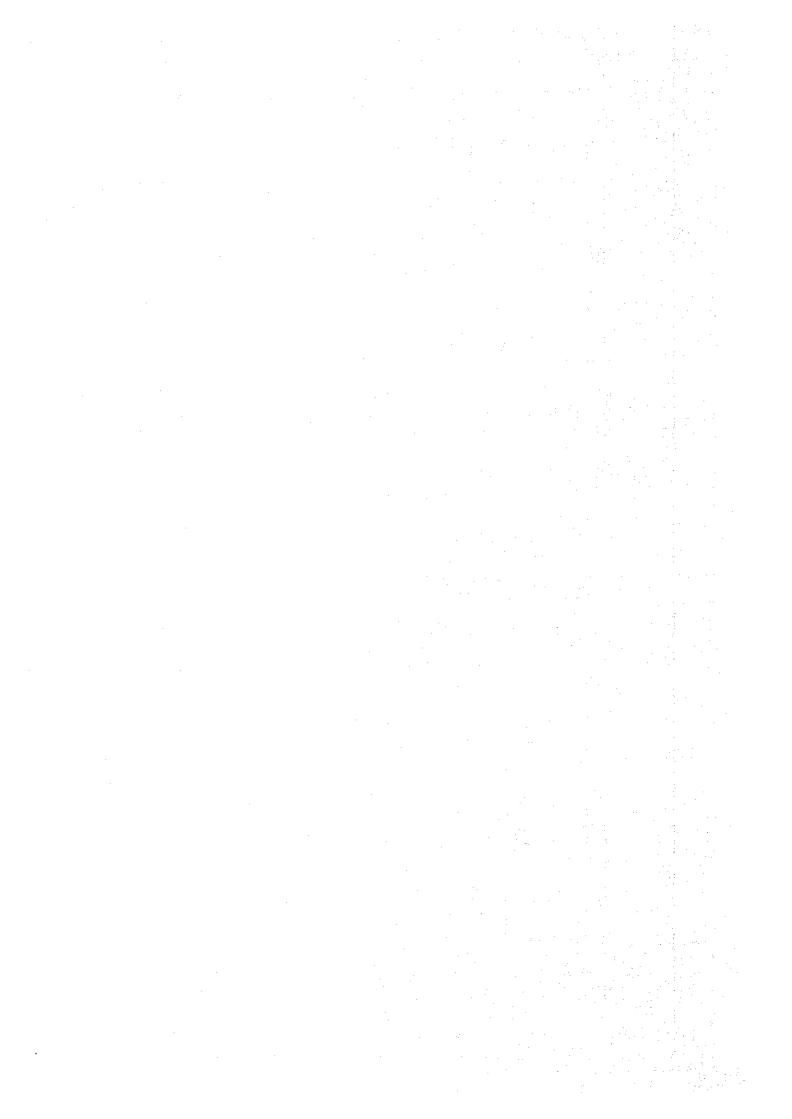
^{*1;} Estimated from the data of UNDP (1986)
*2; Based on the Result of Water Balance Study.
*3; Based on the Result of Groundwater Simulation.

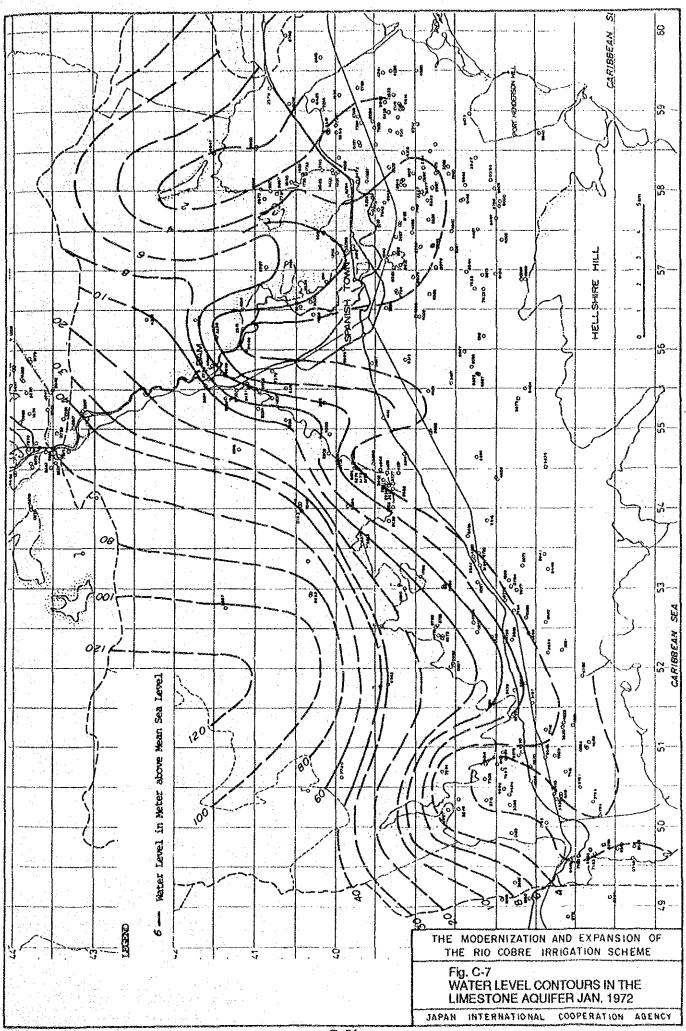


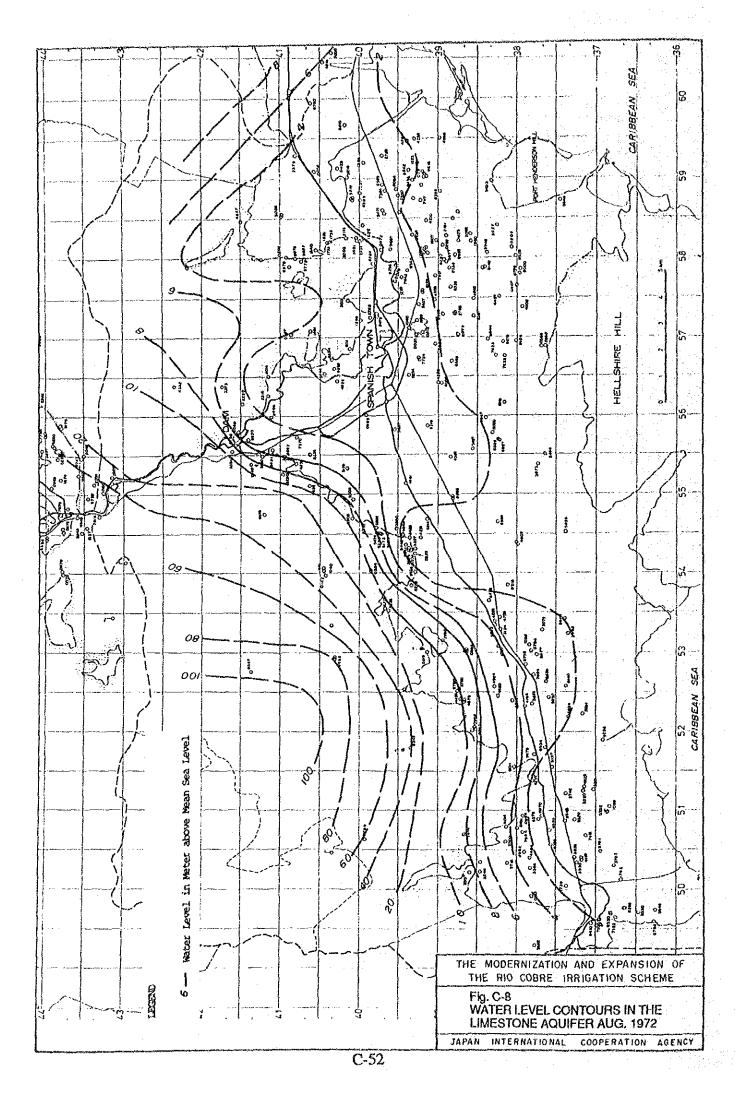

Air	·c		EODMATIC	ON.	GROUP
AGE RECENT		FORMATION LIGUANEA FORMATION			
PLEISTOCENE		UNCONFORMITY			
PLIOCENE	UPPER	AUGUST TOWN			COASTAL GROUP
7,	LOWER				
ພ X ພ	UPPEN			ane	
MIOCENE	MIDDLE	UPPER WHITE			
គឺ	LOWER		WHITE		
OLIGOCENE	LOWER	UNCONFORMITY			LIMESTONE
	UPPER		LOWER		GROUP
EOCENE	MIDDLE	TROY	LIMESIONE CIMESIONE	FORMATION	
		CHAPELTON FORMATION		YELLOW LIMESTONE GROUP	
	LOWER				
PAL					
CRETACEOUS	uppen	MAIN YOL			

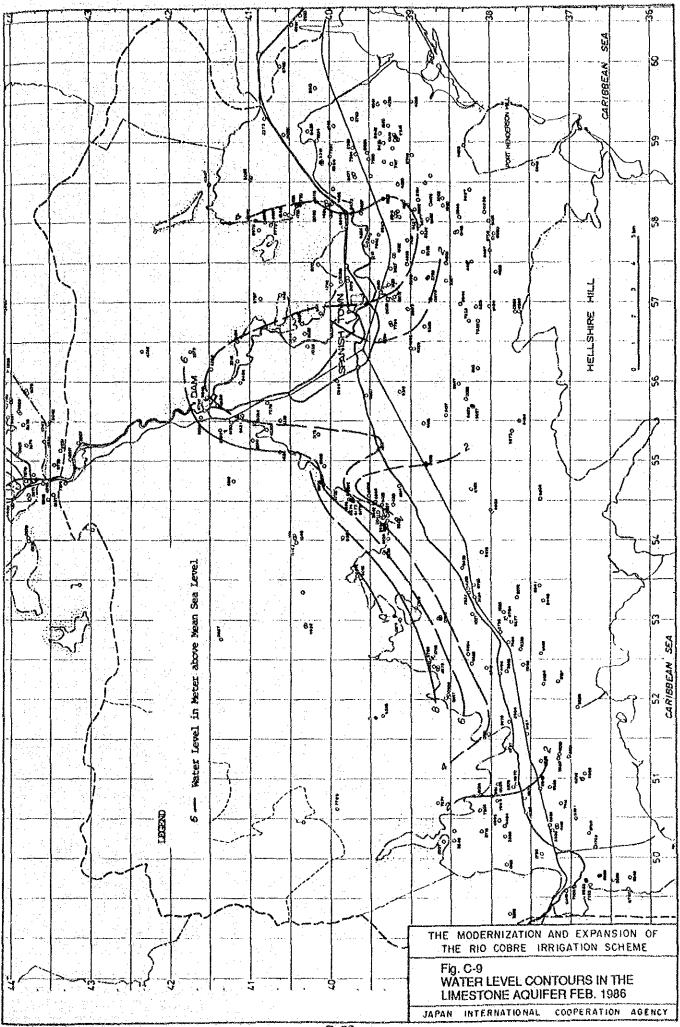

THE MODERNIZATION AND EXPANSION OF THE RIO COBRE IRRIGATION SCHEME

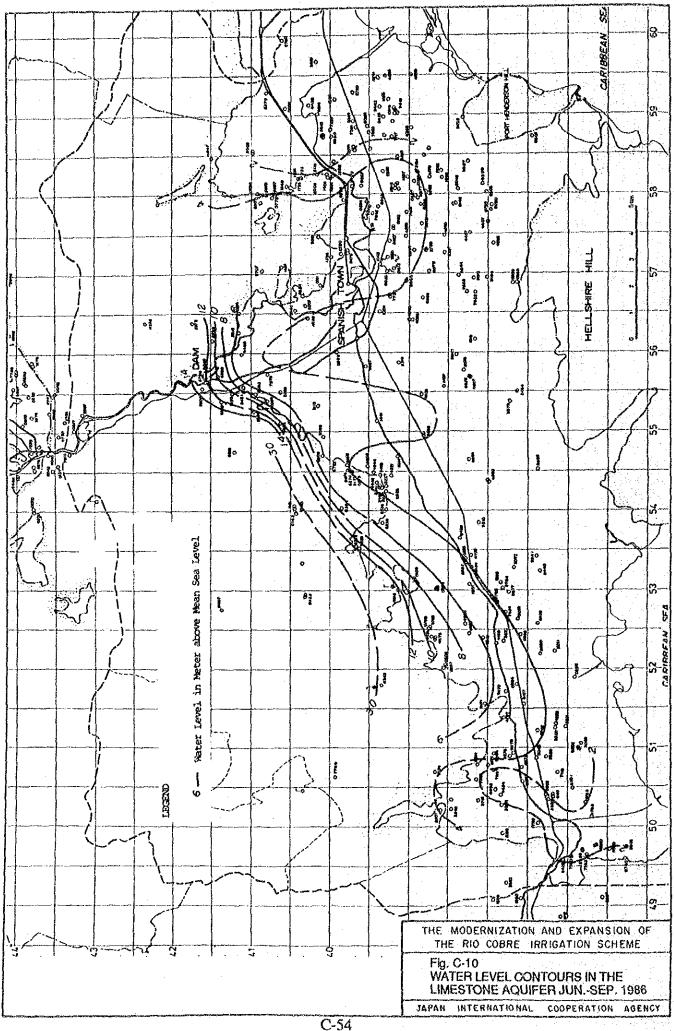

Fig. C-2 STRATIGRAPHIC FRAMEWORK OF RIO COBRE

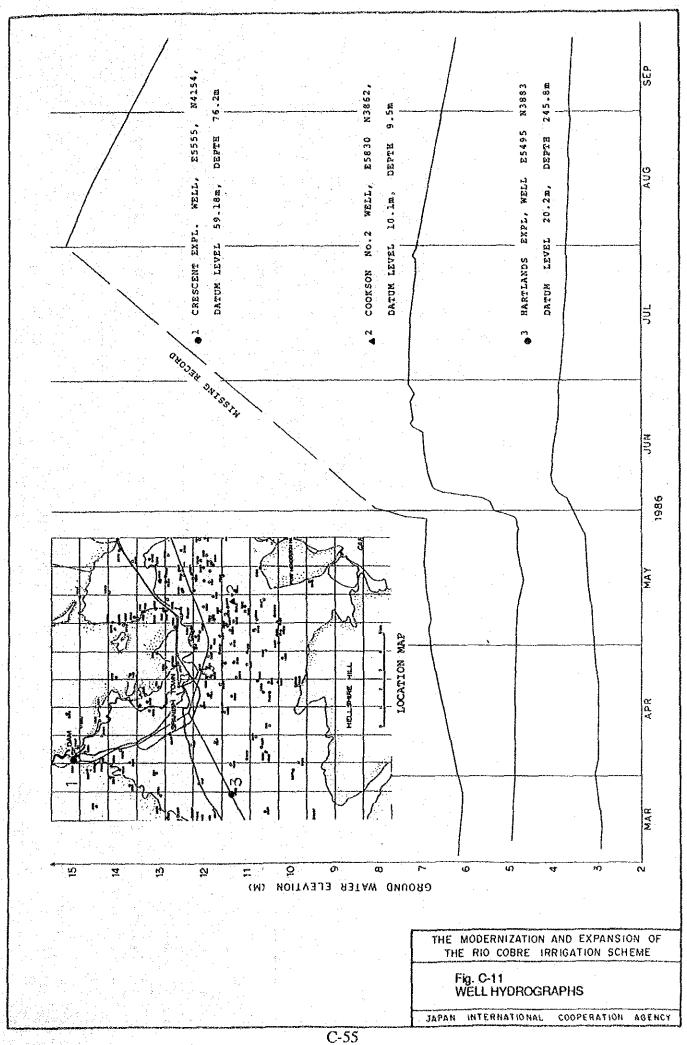

JAPAN INTERNATIONAL COOPERATION AGENCY

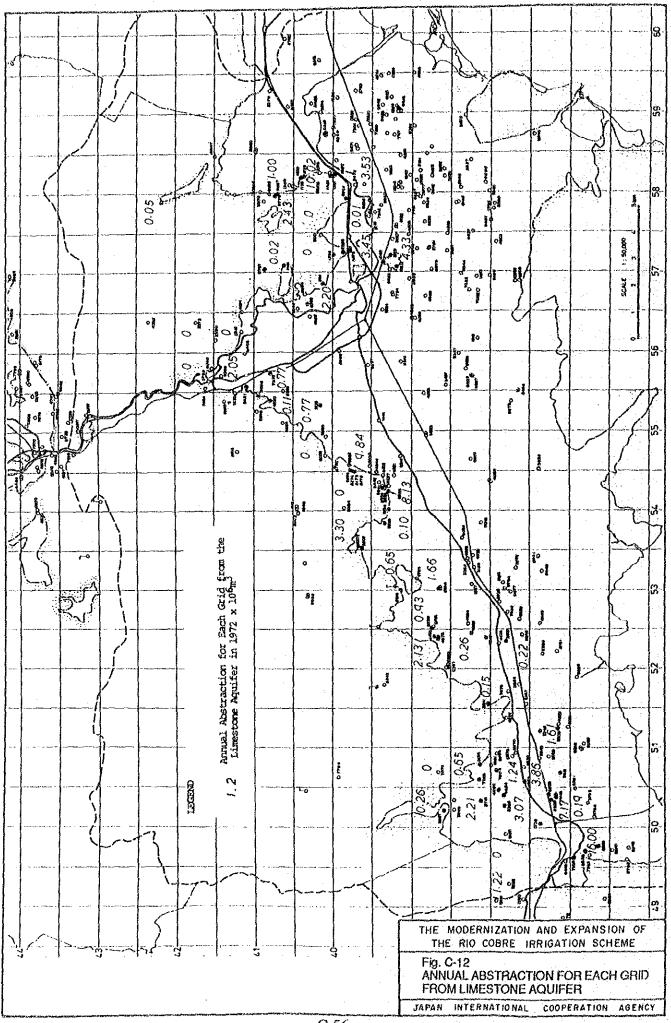


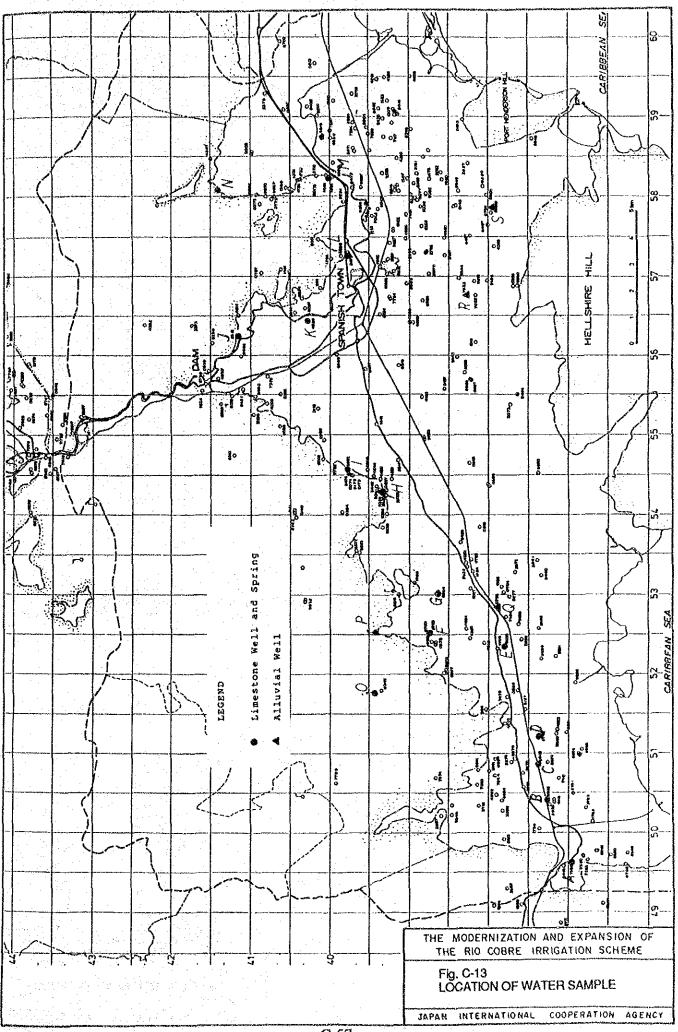


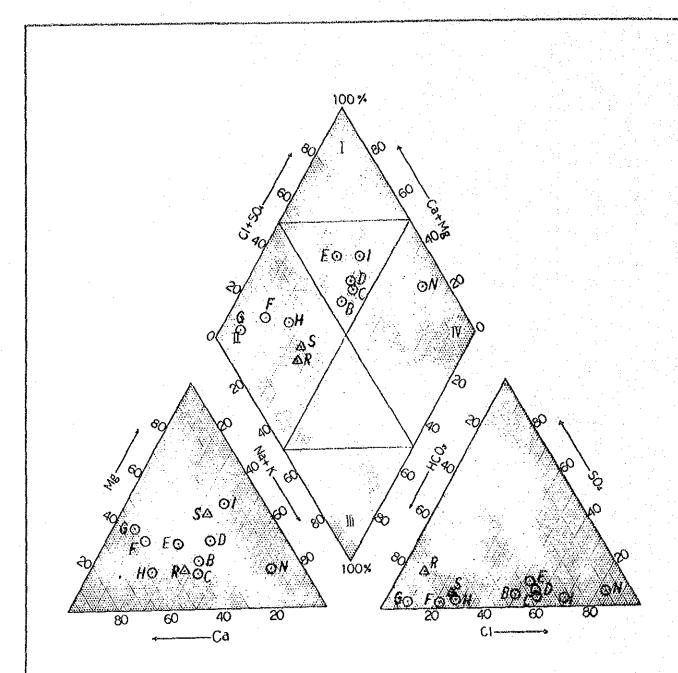


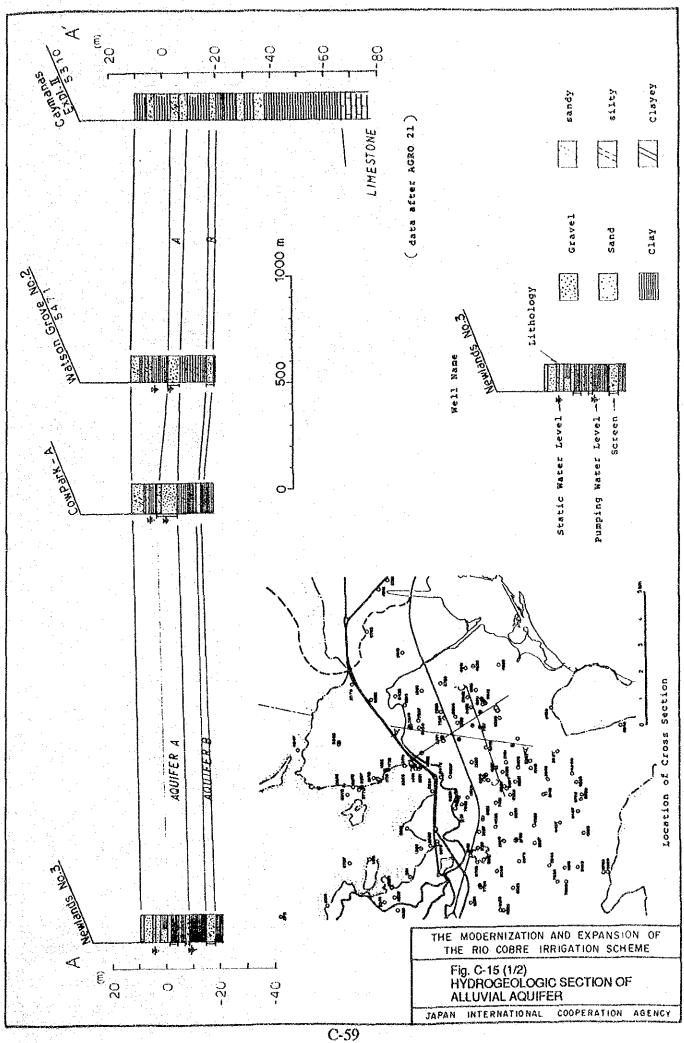


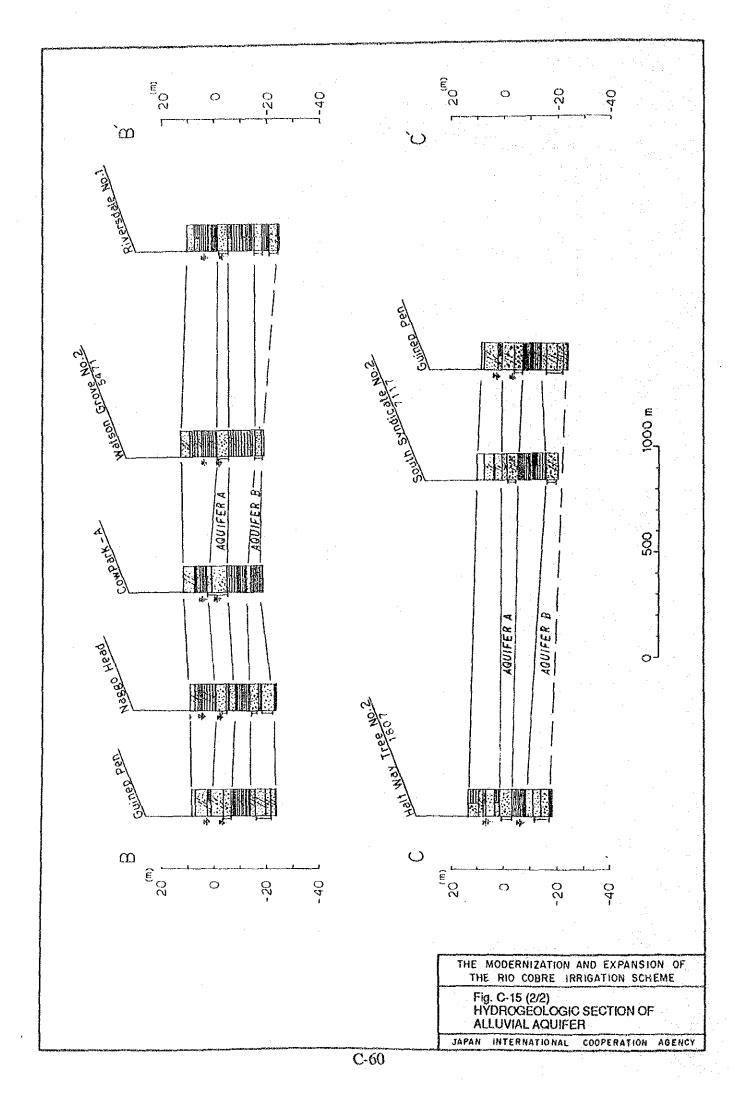


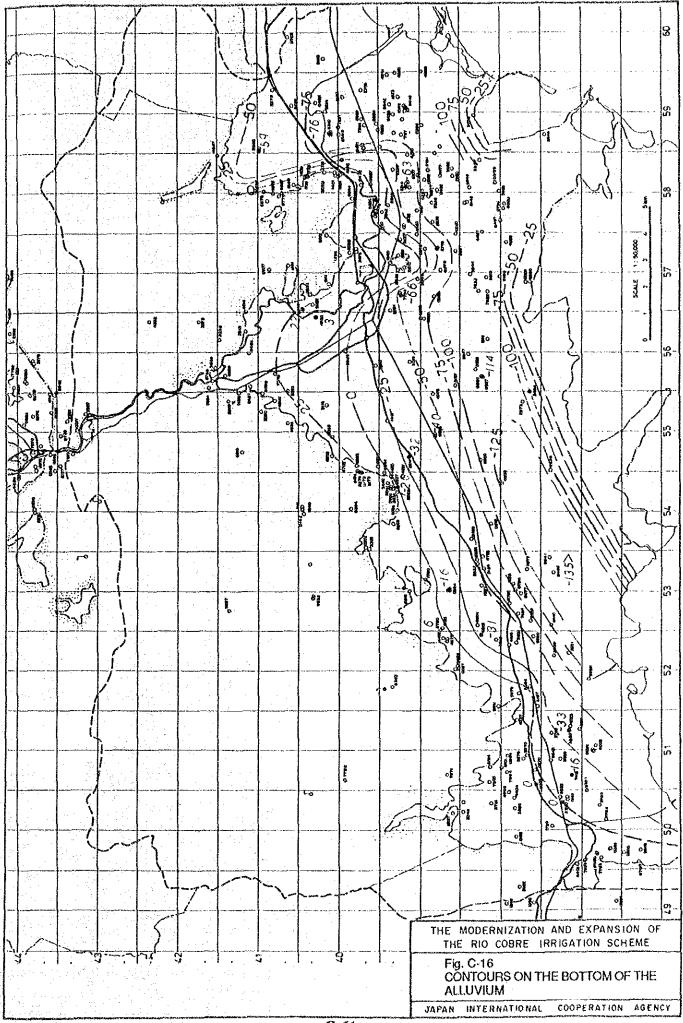


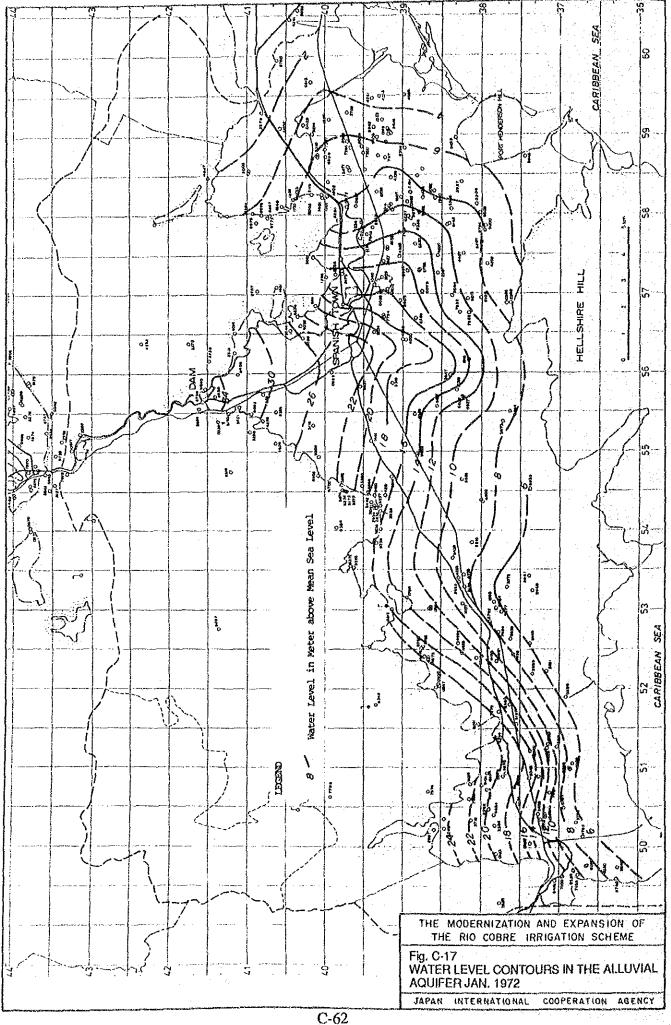





LEGEND


- O Groundwater from Limestone Aquifer
- △ Groundwater from Alluvial Aquifer
- I Noncarbonate Hardness
- □ Carbonate Hardness
- N Noncarbonate Alkali


THE MODERNIZATION AND EXPANSION OF THE RIO COBRE IRRIGATION SCHEME


Fig. C-14 TRILINEAR DIAGRAM OF GROUNDWATER QUALITY

JAPAN INTERNATIONAL COOPERATION AGENCY

