2. 輸入原油

新製油所は、生産量の大幅を伸びが期待されているグァテマラ産原油を基本的K処理することで計画されるが、製油所の稼動時グァテマラ産原油だけでは不足すると予想される。この不足分は、グァテマラ近隣の産油国より輸入してまかなりこととなるが、輸入原油の油種、性状および 価格につき述べる。

21 輸入原油の油種

輸入可能な原油としてNBMIり将来の原油の重質油化傾向を踏まえ、メキシコ産マヤ原油が提示された。しかしながらマヤ原油は、API度22度-23度の重質原油であり、ガソリン、軽油の需要が多いグナテマラの需要構造を考えるときわめて処理し難い原油である。これを処理する場合 原油処理能力比比して大きな能力の分解装置が必要となり非経済的である。 グナテマラの Bscuintla K ある既設製油所 Texas Petrolenm Co. では、グナテマラ政府とメキシコ政府およびベネスエラ政府間の協定 K 1 りメキシコ産マヤおよびイスマス原油、ベネスエラ産オリッパノ原油を処理している。とく K マヤ原油は重質で高粘度のためパイプラインでの輸送でも問題となり、イスマス原油と原油基地で混合して粘度を調整し、製油所へ移送しているとのことであった。

したがって、現境調査時のMBMの指摘によりマヤ原油に加えて同じくメキシコ産の軽質原油イスマスを輸入原油として考慮し、新製油所の基本計画では、国産原油が不足する分はメキシコ産のマヤ、イスマス両原油を50:50で混合して国産原油の不足分に充当することとした。

2.2 輸入原油の性状

新製油所の基本計画で採用する設計原油としての輸入原油をメキシコ産のマヤおよびイスマ メ原油とし、それぞれの性状をTable III - 6 K示す。

Table III-6 Assay of Maya & Isthmus

Maya, Mexico Pajaritos, Veracruz and Salina Cruz (Pacific), Oaxaca

Crode
Gravity, "Api & 60'F.: 22.0
Solfur, wt %: 3.32
Pour test. "F.: 0
Vis., SUS & 70'F.: 1,024.57
Vis., SUS & 100'F.: 333.62
Npp, pet & 100'F.: 4.7
Eydrogen sulfide. ppm: 199
EC, % lighter, vol %: 1.5

Fight straight run
Range, 'F.: 60-200
Tield, vol 1: 5.2
Total sulfar, vt 1: 0.025
FOS clear: 57.7
ROS 1 3 ml TELfgal: 69.9

Naghtha Faige, 'F.: 60-100 Yield, tol 1: 19.7 Feraffins, vol 1: 60.60 Espèthères, vol 1: 27.03 Asocatics, vol 1: 12.37 Total sulfur, vt 1: 0.213 PON clear: 38.1 ECN + 3 ml TEL/gel: 57.6

Teresere Pange, 'F.: 400-500 Tield, vol 1: 9.6 Gravity, 'API: 39.6 Preeding pt, *r.: -29
P/X/A, vol 1: 45.4/33.7/20.9
Total sulfur, vt 1: 1.16
Aniline pt; *E.: 142.2 Soote pt. see: 20

Light gas oil Pange, "P.: 500-650 Field, wol 1: 12.8 Cravity, "API: 30.6 Pour gt. "P.: + 30 P/N/A, vol %: 36.8/34.1/29.1 Total selfer, vt 1: 2.17
Carbon residue, Fans., vt 1: 0.03
Aniline gt. *F.: 152.8
Catane IoSex: 51.0

Topped crude Range, "F.: 650 + Tield, vol %: 56.4 Gravity, 'AFI: 7.7 Vis., SUS # 216' F.: 3,370.63 Vis., SUS # 172' F.: 23,755.60 Four pt. 'F.: 1115 Total sulfer, wt %: 5.04 Carbon reside Bars., vt 4: 17.83 Nitrogen, 4: 0.4245 Ni/V, ggn: 87.8/535.0

Victim que oil Range, *F.: 650-1,100; Tield, vol 1 (of cruse): 25.2 Crivity, "API: 18.3 Anilize pt. "F.: 16).4 Vis., SIS \$ 130°F.: 270.17 Four pt. "F.: 1165 Sulfer. at 1: 3,14 Carbon residie, Fazz., vt 1: 0.69 N1/V, pga. 0.9/1.9

Vecum residue
Rabge, "fr 1,160;
Field, wol 1 (of crude); 31.2
Gravity, "API: 0.5
Vis., SUS @ 275" P.: Too hard
Sulfur, vt 1: 5.78
Carbon residue, Fame., vt 1: 26.2
Ni/V, Fon: 149/93)

isthmus, Kexico

最为地 海绵路区 Pajaritos, Veracruz, and Sall-na Cruz (Pacific), Caxaca

Cruse Gravity, "API & 60°F.: 32.8 Sulfor, vt %: 1.51 Pour test, "F.: -15 Vis., SUS @ 70°F.: 65.53 Vis., SUS @ 100°F.: 41.91 hip, get \$ 100°F.: 6.4 Bydrogen salfide, year 102 BC, \$ lighter, st \$: 1.2

Light straight ren Pange, *F.: 60-200 Tield, vol %: 9.1 Total sulfur, et 1: 0.046 ACN clear: 62.6 SCS + 3 al TEL/gal: 82.4

Naghtha Range, 'F.: 60-400 Yield, vol 1: 29.9 Paraffics, vol 1: 64.40 Arcelics, vol 1: 21.02 Arcelics, vol 1: 14.58 Total sulfer, wt 1: 0.654 ECS + 3 ml TEL/gal: 67.0

Range, 'F.: 400-500 Tield, vol %: 12.5 Gravity, 'API: 41.2 Freezing point, 'F.; -16
2/x/A, vol 4: 41.4/30.9/21.7
fotal solfur, vt 4: 0.23
Antiline pt, 'F.: 143.2
Socke pt, ma: 22

£19ht gas oil Pange, *F.: 500-650 Yield, vol %: 16.0 Gravity, 'API: 32.3 Poor pt. 'P.: 4 25 P/N/A, vol 1: 41.2/33.3/25.5 Total solfer, vt 1: 1.19 Carbon residue, Raza, wt t: 0.01 Anilise pt. 'F.: 156.1 Cetate index: 52.5

Topped crude Farge, 'F.: 650: Yield, vol 1; 42.4; Gravity, 'Apr: 15.5; Vis., SSS @ 210° F.: 145.47 Vis.; SSS @ 122° P.: 143.53 Four pt. 'F.: 455 Total suffer. wt 1. 2 0: Foot pt. 'F.: 455 Total sulfur, vt 8: 2.94 Carton residue, Razs., vt 8: 8.08 Nitrojen, 4: 0.2065 Bi/V, gga: 14.8/67.1

Vacum cas oil
Pance, 'F.: 650-1,100:
Tield, vol % (of cruse): 28.5
Cravity, 'Apr: 19.7
Anilize pt, 'F.: 181.1
Vis., SS & 130' F.: 207.09
Foar pt. 'F.: 110
Sulfer, vt % 1 1.45
Carbon resides. Carbon residue, Pars., vt 1: 0.97 Si/V, ppa: 4.3/-

Vacuum residue Pange, "P.: 1,100; Yield, vol 1 (of crose): 11.9 Gravity, "API; 4.2 Vis., SIS 8 27.5° F.: 235.8 Salfur, vt V: 4.18 Carbon residue, vt %: 23.08 Ni/V, ppm: 37/210

Source: Oil & Gas Journal

2.3 輸入原油の価格

第21節にて検討した輸入原油のマヤおよびイスマスについて原油価格の予測を行なう。尚本検討結果は、財務分析で参考ケースとして実施するエスカレーションを考慮した1ケースで使用する。

2.3.1 現状の原油価格

1983年代おけるアラピアンライト、メキシコ産のマヤ原油、イスマス原油のCI P価格をTable II-7原油価格対比(その2)にまとめる。アラピアンライトとメキシコ産のマヤ原油は米国Hous Ion港におけるCI F価格であり、メキシコ産のイスマス原油の同港におけるCI F価格データが得られなかったので品質を考慮しアラピアンライトと同価格とした。

		<u>-</u> <u>-</u>	
Ĉrude Óil	°API	S (%)	Price (US\$/bbl)
Arabian Light	34	1.7	30.41
Mexican Oil (Maya)	22	3.3	23.49
Mexican Oil (Îsthmus)	33	1.5	30.41

Table III-7 Crude Oil Prices (Part 2)

232 将来の原油価格

アラビアンライトとノキシコ産のマヤ原油とイスマス原油の将来の価格予測を行なり。価格 は名目価格とした。価格予測を行なうにあたり、前提とした事項は次のとおりである。

(1) プラピアンライトの優格予例

今後のアラピアンライトの賃格予測については、本調査では世界銀行の出した予測値を採用した。

1990年 プラピアンライト実質価格 37.0 US\$/bbl 2000年 41.0 US\$/bbl

(2) プラピアンライトとメキシコ産原油のエスカレーション率

アラピアンライトとメキシコ産原油のエスカレーション率化ついては、第1.4節同様 米国の卸売物質上昇率と同率で上昇するものとし、米国の卸売物質上昇率は日本経済センター予測の5%/yを採用した。

(3) プラピアンライトとメキシコ産マヤ原油の価格差

Table II-7 で示したアラピアンライトとメキシコ産マヤ原油の価格は、西原油の品質の差を反映した妥当な価格と考えられるので、今後共との価格差(いわゆるディファレンシァル)が接続するものとした。

(I)-(3)の前提条件を考慮して、1989年-2008年におけるアラピアンライトとメキシニ産マヤ原油、イスマス原油の価格予網結果をTable II-8原油価格予測(その2)に示す。

Table III-8 Forecast on Crude Oil Prices (Part 2)

Year	Arábian Light	Maya Crude Oil, Mexican	Isthmus Crude Oil, Mexican
1989	42.50	32.83	42.50
1990	46.70	36.07	46.70
1991	50.00	38.62	50.00
1992	53.50	41.33	53,50
1993	57.20	44.18	57.20
1994	61.20	47.27	61.20
1995	65.50	50.60	65.50
1996	70.10	54.15	70,10
1997	75.00	57.93	75.00
1998	80.20	61.95	80,20
1999	85.90	66.35	85.90
2000	91.90	70.99	91.90
2001	98.30	75.93	98.30
2002	105.20	81.26	105.20
2003	112.60	86.98	112.60
2004	120.40	93,00	120.40
2005	128.90	99.57	128.90
2006	137.90	106.51	137.90
2007	147.50	113.94	147.50
2008	157.90	121.97	157.90

Source: Estimate by Study team

(៤)ម

1.18

上表化おける年平均価格上昇率は、第1.4節と同様も8%であるととから

である。

第1/編 石油製品の需要予測

	11 1
마이트 보고 있는 사람들은 마음이 되었다. 이 사람들은 사람들은 사람들은 사람들은 사람들은 사람들이 되었다. 	
으로 보는 사람들이 되었다. 이 사람들은 사람들이 되었다. 그런 사람들은 사람들이 되었다. 그런 사람들은 사람들이 되었다. 	
그 이 하는 이 눈이 아니는 이 나는 사람들이 하면 하는 이 아이들은 이를 통해 되었다.	
는 사람들이 되었다. 그는 사람들은 사람들이 가는 사람들이 되었다. 그는 사람들이 되었다. 그는 사람들이 되었다. 그는 사람들이 되었다. 그는 사람들이 되었다. 	
그리는 물이 하시는 문이라고 있는 것 같아 보이라고 있었다. 그리고 말하는 말리 생각을 받았다. 그리고 말하는 말리 그리고 있다.	
- 레이트 - 사이 항상 - 레이크 아이트 스트로 프로젝트 - 스트를 크게 다른 프로젝트 - 스트를 보게 해보고 보고 있다. 	
으로 보고 있는 것이 되었다. 그는 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은	
는 사용하는 사용하는 사용하는 사용하는 사용하는 사용하는 사용하는 사용하	
그는 이 사람이 되는 사람들은 이 사람들이 하면 하고 있는 이 사람들이 얼마를 하는데 없을까?	
	umen i Pili Pilipin Na
그 이 그 집에 이번 이번 나는 사람이 되었다. 그리고 그 말이 하는 것이 되었다. 그는 사람들이 없는 사람들이 없다.	
이 그는 그들이 그 그리는 말이 되었다고요? 그렇게 한 번째 회사를 하고 함께를 하고 있다.	
그 그 이 회가는 그 이렇면도 그러면 말을 맞면 느그런 [하스토론 말하고 (중심)] 말한	
그는 경기 보는 이 사람들은 경우 가는 사람들이 하네요. 하는 사람들은 사람들은 사람들이 되었다.	
그는 이 이 사는 이번 아이나 이 아내가 이 아들이 생각을 하는 사람들은 살이 살아 있다.	
가는 사람들이 되는 것이 되는 것이 되었다. 그런 사람들이 되는 것이 되었다. 그런 사람들이 가장 그런 것이 되었다. 그런 사람들이 되었다. 그런 사람들이 되었다. 	
으로 보고 있는 것이 되었다. 그는 그는 그는 그는 그는 사람들이 되었다. 그는 그를 보고 있는 것이 그는 작년에 가장 가장 가장 가장 가장 가장 가장 하는 것이다. 	n sani Takh
그는 그는 그 그들이 들면 그리는 이 사람이 가능하고 한 경기를 들었다. 그리는 바람들은 함께	
그는 이 그는 그는 그들이 이를 하고 사이를 즐기는 생활을 모고 있는 얼굴하는 것이 없었다.	
는 사용하는 사용하는 사용하는 것이 되었다. 그런 사용하는 사용하는 사용하는 사용하는 사용하는 사용하는 사용하는 것이 되었다. 	
그 이 이 이 그는 그들은 이 문을 하는 사람들의 독대는 생물 하늘 하고를 만든 수가를 만든 수 있다.	
그는 그리다 그는 그리다는 나는 그들이 살아가지 않아 얼마로 토를 살아왔다고 말았다. 나는 그들은	
그는 그 그 그 그는 그리고 있는 그들은 것은 아들을 하고 한 물리고 생각했다. 불만한 기를 받는 것은	
그리는 그는 그는 그들의 그는 이번 그는 그는 사람들이 되었다. 그는 사람들이 얼마를 가득하는 것이다.	
그는 그는 그리는 그는 그는 그들은 그를 받는 그림의 사람들이 모든 사람들이 가장 하는 것이다.	
도 보고 있는 것이 되는 것이 되는 것이 되는 것이 되었다. 그 사람들이 한 사람들은 사람들이 다른 사람들이 되었다. 	
으로 보고 있는 것이 되었다. 그는 사람들은 사람들에 가장 가장 보고 있는 것은 경기를 받는 것이 되었다. 그 것이 없는 것이 없는 	
	1= 1.1.1

第1V編 石油製品の需要予測

1. 需要予測手法

石油製品の需要予測の方法としては、産業達関分析による方法と、計量経済モデルによる方法 が一般的に用いられている。

産業連関分析は、産業連関表を用いて各産業の生産額や価格の改及効果などを分析、予測する 手法であり、計量経済モデルは消費関数や生産関数を組合わせることにより経済動向をシュミュ レートする手法である。

今回の需要予測は,新製油所の財務計算期間が1989年-2009年の20年間と長く,この 期間の需要予測を行なう必要がある。

従って、本調査では巨視的な視点から需要予測でよく用いられる計量経済モデルによる弾力性 分析で各石油製品の需要予測を行なうとととし、弾性値算出の手段として回帰分析を使用した。 予測は次の手類によって実施した。

- 。 過去の需要,價格動向
- 。 需要構造と経済指導
- 。 需要動向分析
- 。 需要予例

2. 過去の需要,価格動向

グァテマラの過去10年間にわたる石油製品の需要動向をTable IV-1 K, 資格動向をTable IV-2 Kまとめる。

TableN-1代示す石油製品の需要動向をみるとLPO、打油は1975-1982年の間、類調 化需要が伸長しているが、ガソリン、ジェフト燃料、軽油、重油、その他については1979年頃 まで需要は伸びているが、1980-1982年の間は需要は減少傾向を示している。この理由とし て、原油価格上昇により、ガソリン、ジェフト燃料、軽油、重油、その他製品の価格が上昇し、 で、原油価格上昇により、ガソリン、ジェフト燃料、軽油、重油、その他製品の価格が上昇し、 需要が抑えられたこと、およびグフテマラの経済が1980年以降やや停滞していることがあげら れよう。

Table IV - 2 化示す石油製品の質格動向をみると、1973-1981年まで LPG、ガソリン、灯油、軽油、重油、その他の全石油製品の価格が上昇しており、1982年は1981年の各質格よりやや低下した。この理由としては、当然のことながら各石油製品の質格が原油価格の影響を大きく受け原油価格ド連動して変化しているためと考えられる。

Table IV-1 Trend of Demands for Petroleum Products

	ರಿಚಿತ	Premium Gasoline	Reg. Gasoline	Xerosono	Jet Fuel	Cas Oll	Fuel Oil	Others	Remarks
1972		678-9	2.966			1,775.2			
1973		698.6	1,090.3		1	1,905.7			
1974		580.6	1,221.9		: [1,672.4			
1975	385.5	690.0	1,263.6	358.3	211.5	1,943.2	1,942.6	337.1	
1976	390.4	802.4	1,350.8	363.8	234_2	2,262.8	2,291.4	344.9	
1977	462.0	1,006.0	1,481.6	391.7	264.7	3,087.8	2,738.8	363.3	an (85)
1978	457.6	1,179.5	1,379.4	417.8	1.818.	3,579.2	2,695.1	386.7	
1979	513.1	1,077.6	1,478.6	424.4	359.8	3,562.4	3,162.8	351.6	
1980	509.4	967.4	1,263.2	483.6	251.7	3,661.8	3,313.7	293.8	
1961	543.7	944.4	1,064.4	562.2	212.6	3,409.1	2,314.8	260.1	
1982	572.0	921.0	9.76.8	534.3	176.0	3,047.8	1,817.8	262_7	

Source: Primarily the 1983 edition of Actualidad Potrologa en Guatemala, with partial additions.

Note I: "Others" include such products as asphalt, lubrication oil and aviation gasoline.

Table IV-2 Trend of Prices of Petroleum Products

10.500 0.513 10.500 0.742 12.500 0.782 17.738 0.969 17.738 0.969 19.472 1.390 20.400 1.895 20.400 2.078		Dai	Premium	Reg.	Kerosene	Gas Oil	Fuel Oil	Gasoline AV. Price	Remarks	9
10.500 0.513 0.460 0.250 0.370 0.108 10.500 0.742 0.703 0.514 0.559 0.256 12.500 0.782 0.743 0.543 0.559 0.303 12.500 0.782 0.743 0.543 0.559 0.303 17.738 0.969 0.926 0.550 0.362 0.346 17.738 0.969 0.926 0.550 0.562 0.346 19.472 1.390 1.330 0.680 0.723 0.457 20.400 1.895 1.850 0.860 0.965 0.616 20.400 2.078 2.029 1.042 1.292 0.929 20.375 2.002 1.120 1.210 0.861								- αν · ο		
10.500 0.742 0.703 0.514 0.535 0.256 12.500 0.782 0.743 0.543 0.559 0.303 12.500 0.782 0.743 0.543 0.559 0.303 17.738 0.969 0.926 0.550 0.562 0.346 17.738 0.969 0.926 0.550 0.562 0.346 19.472 1.390 1.330 0.680 0.723 0.457 20.400 1.895 1.850 0.860 0.965 0.965 20.400 2.078 2.029 1.042 1.292 0.929 20.375 2.002 1.120 1.210 0.861		10.500	0.513	0.460	0.250	0.370	801.0	; ;	<u> </u>	
12.500 0.782 0.743 0.543 0.559 0.303 12.500 0.782 0.743 0.543 0.559 0.303 17.738 0.969 0.926 0.550 0.562 0.346 17.738 0.969 0.926 0.550 0.346 19.472 1.390 1.330 0.680 0.723 0.457 20.400 1.895 1.850 0.860 0.965 0.616 20.400 2.078 2.029 1.042 1.292 0.929 20.375 2.002 1.120 1.210 0.861	· · ·	6	0.742	0.703	0.514	0.535	0.256	0.716		
12.500 0.782 0.743 0.543 0.559 0.303 17.738 0.969 0.926 0.550 0.562 0.346 17.738 0.969 0.926 0.550 0.562 0.346 19.472 1.390 1.330 0.680 0.723 0.457 20.400 1.895 1.850 0.860 0.965 0.616 20.400 2.078 2.029 1.042 1.292 0.929 20.375 2.002 1.120 1.210 0.861	* ') ()) ()	0 782	0.743	0.543	0.689	0.303	0.757	* ,	
17.738 0.969 0.926 0.550 0.562 0.346 17.738 0.969 0.926 0.550 0.562 0.346 19.472 1.390 1.330 0.680 0.723 0.457 20.400 1.895 1.850 0.965 0.616 20.400 2.078 2.029 1.042 1.292 0.929 20.375 2.002 1.935 1.120 1.210 0.861	n y	12,500	0.782	0.743	0.543	0.559	0.303	0.758		
17.738 0.969 0.926 0.550 0.562 0.346 19.472 1.390 1.330 0.680 0.723 0.457 20.400 1.895 1.850 0.860 0.965 0.616 20.400 2.078 2.029 1.042 1.292 0.929 20.375 2.002 1.935 1.120 1.210 0.861	5	17.738	0.969	0.926	0.550	0.562	0.346	0.0 849.0		
19.472 1.390 1.330 0.680 0.723 0.457 20.400 1.895 1.850 0.860 0.965 0.616 20.400 2.078 2.029 1.042 1.292 0.929 20.375 2.002 1.935 1.120 1.210 0.861		0 0	696.0	0.926	0.550	0.562	0.346	0.946		
20.400 1.895 1.850 0.860 0.965 0.616 20.400 2.078 2.029 1.042 1.292 0.929 20.375 2.002 1.935 1.120 1.210 0.861	20	0 0		1.330	0.680	0.723	0.457	1.355		
20.400 2.078 2.029 1.042 1.292 0.929 20.375 2.002 1.935 1.120 1.210 0.861	φ. S	20-400	, 68 , 68 , 68	1.850	0.860	0.965	0.616	1.870		
20.375 2.002 1.935 1.120 1.210	3 : 라 6 : 8	20.400	2.078	2.029	1.042	1.292		2.052		•
	1982	20.375	2.002	1.935	1.120	1.210	1			-

Source: The 1983 edition of Actualidad Petrolexa en Guatemula

promium gasoline and rogular gasoline, each being multiplied by the quantity Note 1: The gasoline average prices listed for reference are the average prices of and divided by the total quantity.

3. 需要構造と経済指標の検討

グフテマラドおける石油製品の主な用途をTableIV-3ドまとめる。製品別に主な用途と関係 する経済指標を考察すると次のとおりとなる。

· L P G

民生用として89%使用されている。従って相関する経済指標としては個人消費支出が妥当 と考えられる。

·ガソリン(プレミアムガソリンおよびレギュラーガソリン)

輸送用として95%使用されている。従って関連する指標としては乗用車保有台数に相関するととが予想され、さらに乗用車保有台数が相関する経済指標としては個人消費支出が妥当と考えられる。

•灯 油

民生用,輸送用,工業用,食業用に広く使用されているが,民生用が57%と大半を占めている。従って相関する経済指標としては個人消費支出が妥当と考えられる。

o ジェフト燃料

航空機用が100%を占める。従って相関する経済指標としては個人消費支出が妥当と考えられる。

○軽 油

輸送用が63%を占める。軽油を使用する車種ほトラック等工業用、商業用に使用されることから相関する経済指標としてはグァテマラのONPが妥当と考えられる。

○重 油

工業用として87%使用されており、大部分が火力発電所用として使用されていることから 関連指標は発電量と相関することが予想され、さらに発電量が相関する経済指標としては ON Pが妥当と考えられる。

○その他(プスファルト、積滑油、アピエーションガソリン) 相関する経済指標はONPが妥当と考えられる。

Table IV-3 Consumption Ratios of Petroleum Products

Product	Use	Ratio (%)	Related Item	Macroscopic Economic Index
LPG	Residence	89		Personal consumption
. Fara Triple	Transportation	.3		· · · · · · · · · · · · · · · · · · ·
á Eiliteir (1911)		41.44		(1)
1	Industry	8		
Gasoline	Transportation	95	Number of passenger	Personal consumption
	a transcription of the second	e (177)	cars owned	· 中国中国的中国中国的
	Industry	5		
Kerosene	Résidence	57		personal consumption
1-1-14 5 E.J.K	Transportation	21		
			ļ	
	Agriculture	5	18 18 18	
	Industry	15		
	Others	2		。 [1] [2] [2] [3] [4] [4] [4] [4]
Jet Fuel	Aviation	100	1	Personal consumption
Gas Oil	Transportation	63		GNP
		12		
	Agriculture			
i e i	Industry	25		
Fuel Oil	Industry	87	Power	GNP
W			generation	
	Agriculture	7		
	Résidence	4		
2 11 12 12 12 12 12 12 12 12 12 12 12 12	10.5 February 1.1.	2		
	Transportation			
Others		1 - 3 -		GNP
	Courses Anna	rio Esta	distico, 198	2 edition
	Source: Anua		•	
				and the second s

4. 需要動向分析

グフテマラド於ける石油製品の需要分析を製品別だ行なった。相関する経済指標は製品別の用途から想定して選定した。各製品共選定した経済指標と良い相関関係を示した。製品別詳細は次のとおりである。

41 LPG

LP Qと灯油社民生用として燃料等に共通して使用されるため、LP Qと灯油の熱量換算合計量と実質個人消費支出との関連性を調べた。その結果次の構造式で相関係数が 0.97であった。一般に相関係数が 0.95以上は非常に良い相関関係を示すといわれている。

 $\log(DLK) = -2900 + 1.182 \times \log(DPRC)$ (1)

ことで DLK: LPOと灯油の熱量換算合計量 (10° Kcal/y)

DPRC: 実質額人消費支出 (106 Quetzales/y)

実質個人消費支出は名目個人消費支出をデフレーターで除した値であり、Table IV - 4化示す。

LPGの量とLPGと灯油の熱量後算合計量との関係を次の(2)式に示す。相関係数は 0.9 8 で非常に良い相関関係を示す。

ととで DLPO: LPOの角費量 (103 bbl/y)

D L K: LPGと灯油の熱量換算合計量 (10 Kcal/y)

Table IV-4 Trend of Real Personal Consumption

(Unit: 106 Quetzales, Index)

Year	Nominal Personal Consumption Expenditure	Deflator	Real Personal Consumption Expenditure
1972	1,682	40.7	4,133
1973	2,034	46.6	4,365
1974	2,470	53.9	4,583
1975	2,875	61.0	4.713
1976	3,396	68.0	4,994
1977	4,127	79.2	5,211
1978	4,675	3.5 6 m	5,599
1979	5,432	90.7	5,989
1980	6,217	100.0	6,217
1981	7,037	110.0	6,397

Source: International Financial Statistics Year Book, 1983

4.2 ガリリシ(ブレミアムガソリン+レギュラーガソリン)

ガソリンの需要量を分析するに当り、プレミアムガソリンとレギュラーガソリンの合計量を 分析した。ガソリンは乗用車用として広く使用されており、乗用車保有台数およびガソリン実 質価格が需要に影響を与えるものと予想される。

との関連性を調べた結果を次の(3)式ド示す。相関係数社 0.97 で非常ド負い相関関係を示している。

 $\log (DOAL) = -1.538 + 1.433 \times \log (AUT)$

$$-0.7730 \times \log \left\{ \frac{POAL(-1) + POAL}{DF} \right\} \dots (3)$$

ととで DOAL: プレミアムガソリンとレギュラーガソリンの合計量 (103 bbl/y)

AUT: 莱用車保有台数 (10°台)

POAL(-1): 当年度一年前のガソリン平均価格 (Quetzal/1)

POAL: 当年度のカソリン平均価格 (Quetzal/I)

D P: デブレーター (1980年度を100とした指数)

ガソリンの合計量化ついてはTable IV-1の値を用いた。また、乗用車の保有台数の動向をTable IV-5 K示した。ガソリン平均価格化ついて、当年度1年前と当年度価格を加え、デフレーターで除した理由は、価格の影響は約半年遅れて需要化反映されると考えられること、およびデフレーターで除したのは実質価格を出すためである。

ガソリン平均価格は TableIV-2の値を用いテフレーターは TableIV-4の値を用いた。

Table IV-5 Trend of Number of Passenger Cars Owned

(Unit: 10³ cars)

	No. of Passenger Cars Owned
Year	No. of Passenger Cars owner
1971	43.0
1972	54.1
1973	65.5
1974	70.8
1975	76.1
1976	82.7
1977	83.7
1978	90.5
1979	96.1
1980	99.7

Source: Statistical Yearbook, 1979/80, United Nations

4.3 灯油

4.1節で前述した通り、LPOと灯油の熱量換算合計量は、実質個人消費支出と良い相関関係を示している。

灯油の量とLPGと灯油の熱量換算合計量との関係を次の(4)式に示す。相関係数は 0.9 7 で 非常に良い相関関係を示している。

ことで DKBR: 灯油の消費量 (10° bbl/y)

DLK: LPOと灯油の熱量換算合計量 (106 Kcal/y)

4.4 ジェット燃料

ジェフト燃料は航空機用として100%使用されており航空機の航銭距離およびジェフト燃料の価格が需要に影響を与えるものと予想される。現地調査の結果、航空機の航銭距離のデータは得られなかったので、この指標を国民1人当りの実質個人消費支出を代りに用いて関連性を調べた結果、次の(5)式で示す通り相関係数 0.88 でかなりの相関が認められた。

log (DTUR) = -1252+1.836 × log (DPRC/POP) - 1.195 × log (PKER/DF)

. ことで 、DTUR: ジェクト燃料消費量 (10° bbl/y)

DPRC: 実質個人消費支出 (10 Quetzales/y)

POP: 人 B (106人)

PKBR: 灯油の価格 (Quetzal/1)

D F: デフレーター

DTURはTable IV-1,DPRCはTableIV-4,PKBRはTable IV-2,DFはTable IV - 4の値を各々用いた。人口動向に関してはTable IV-6 にまとめる。

Table IV-6 Trend of Population in Guatemala

(Unit: 106 persons)

Year Year	Population
1971	5.42
1972	5.58
1973	5.74
1974	6.05
1975	6.24
1976	6.43
1977	6.63
1978	6.84
1979	7.05
1980	7.26
1981	7.48
1982	7.70

Source: International Financial Statistics
Year Book, 1983

45 軽 油

軽油は輸送用として63%、工業用として25%使用されており、関連する軽済指標はグァ テマラの実質国民総生産および軽油価格が需要化影響を与えると予想される。

関連性を調べた結果、次の(6)式で示す適り相関係数 0.99で非常化良い相関関係が得られた。 kg(DOAS)=-15.39+2408×kg(DONP)-0.4314×kg(POAS/DF)…(6)

ととで DOAS: 軽油消費量 (10° bbl/y)

DONP: グラテマラ実質国民核生産 (10 Quelzal/y)

POAS: 軽油の価格 (Quelzal/1)

p Fi デクレーメージ

DOAS は Table IV-1 , PGAS は Table IV-2 , DPは Table IV-4の値を各々用いた。 グナテマラの実質国民総生産化関しては Table IV-7 にまとめた。

4.6 重 油

重治は工業用(火力発電用)として87%使用されており、発電量との相関が予想される。 との関連性を調べた結果を17式に示す。相関係数は0.97で非常ド良い相関関係を示してい

CCC DFUL:

D B L: 発電量 (10 KWH)

DPULはTable IV-1の値を用いた。発電量に関してはTable IV-8にまとめた。

Table IV-7 Real GNP of Guatemala

106 Quetzales/y) (Unit:

Year	Real GNP	
1972	5,047	
1973	5,410	1 42 D
1974	5,774	Ī
1975	5,864	7.7
1976	6,310	
1977	6,879	
1978	7,240	
1979	7,598	
1980	7,809	e de de la companya della companya de la companya d
1981	7,782	

Source: International Financial

Year Book, 1983

·日有物质系统系统 医腹膜

(Unit: 106 kwh)

Year	Power Generation
1975	1,167
1976	1,275
1977	1,564
1978	1,726
1979	1,914
1980	1,970

Source: Statistical Yearbook, 1979/80 United Nations

47 その他(アスファルト、潤滑油、アピエーションガソリン)

その他の石油製品としてアスファルト、縄滑油、アピエーションガソリンの総量の需要分析を行なり。関連する経済指標はグァテマラの実質国民総生産および重油価格との関連性を調べた。その結果を(8)式に示す。相関係数は 0.98 である。

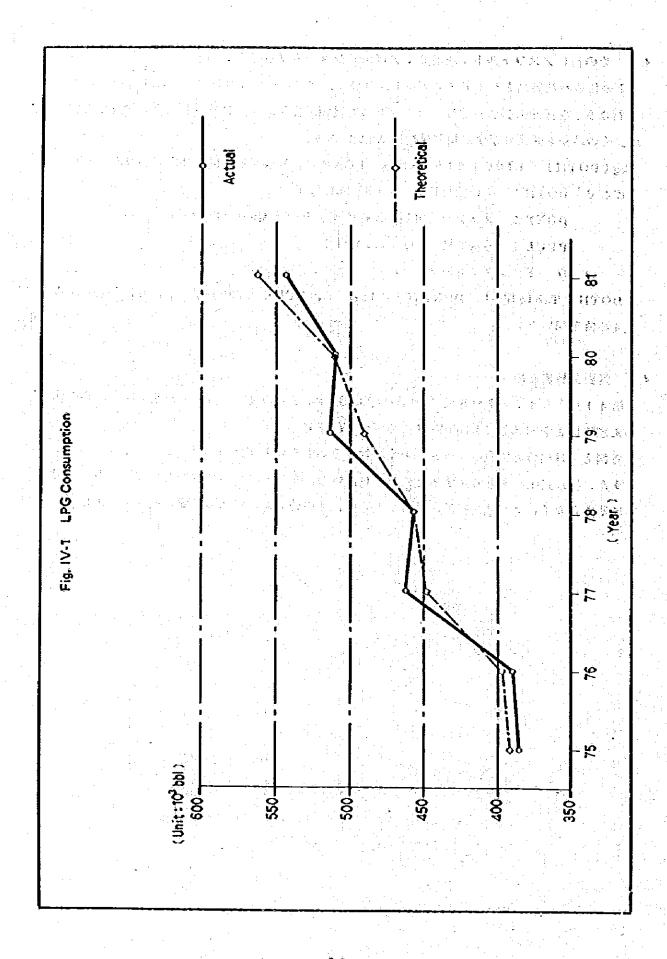
 $\log (DOTH) = 1.406 + 0.1595 \times \log (DONP) - 0.5678 \times \log (PFUL/DF) \cdots (8)$

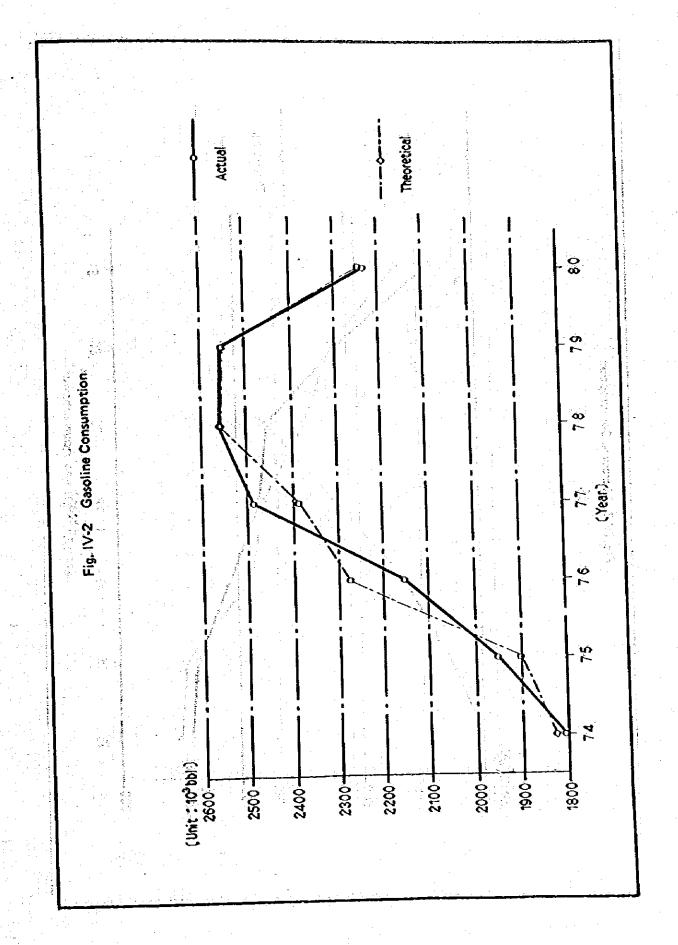
ことで DOTH: その他消費量 (103 bbl/y)

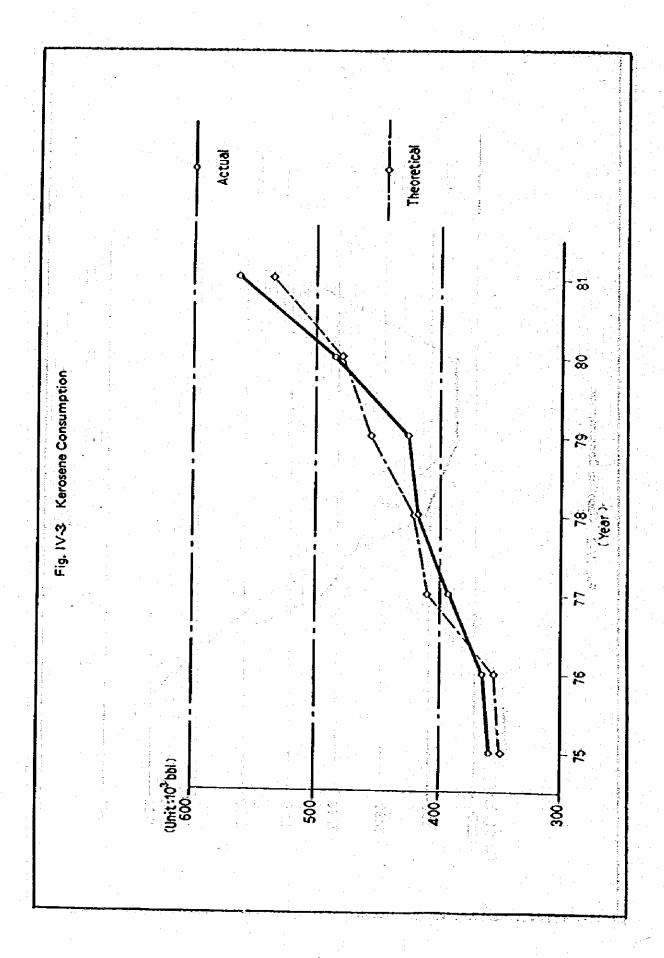
DONP: グァテマラ実質国民総生産 (10 Quetzales/y)

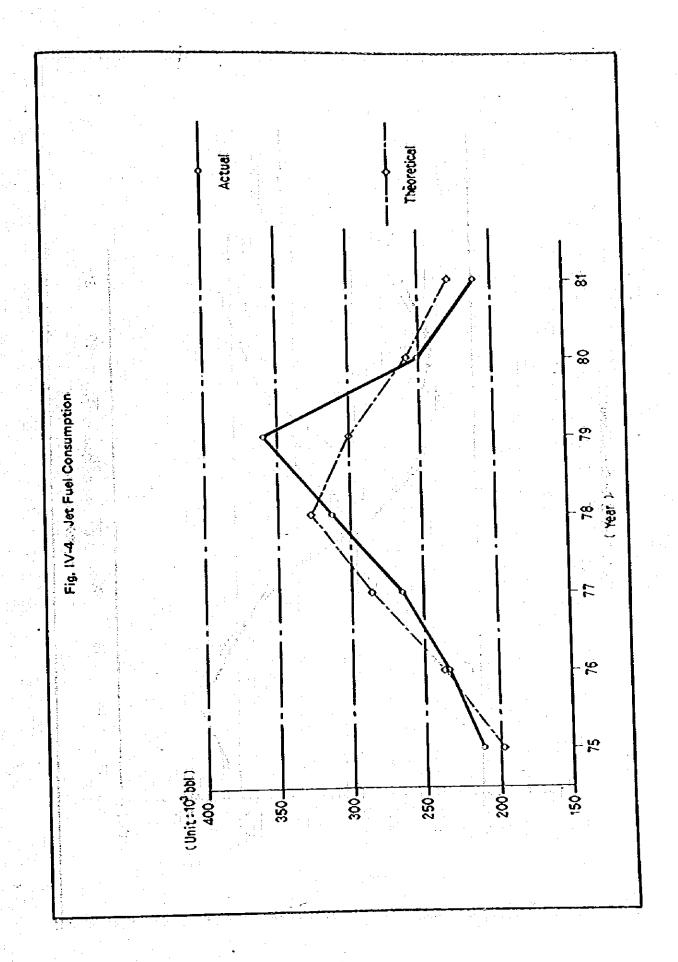
PPUL: 重油価格 (Quetzal/1)

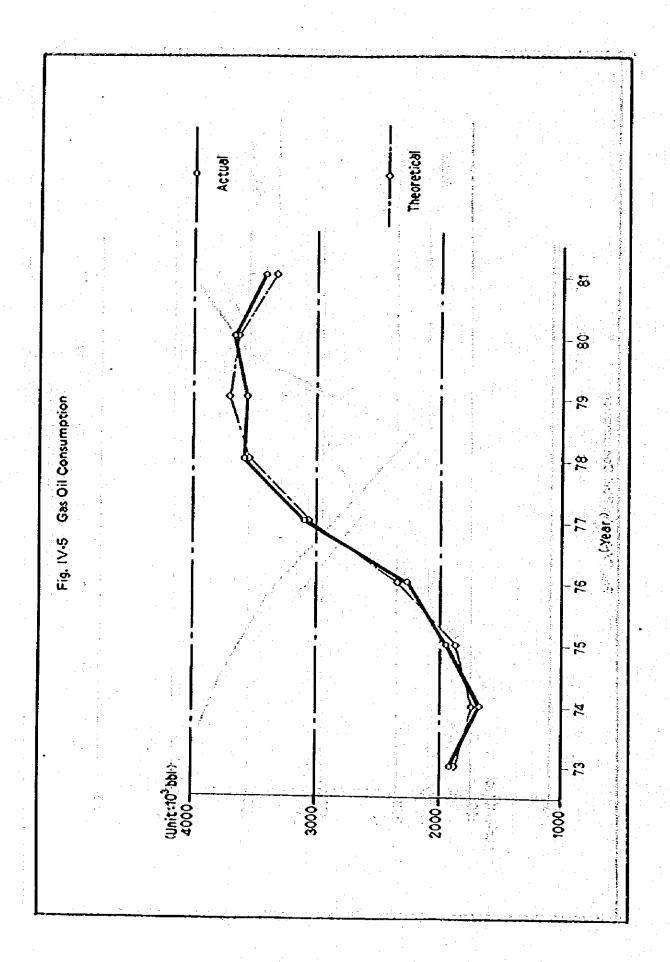
D F: デフレーター

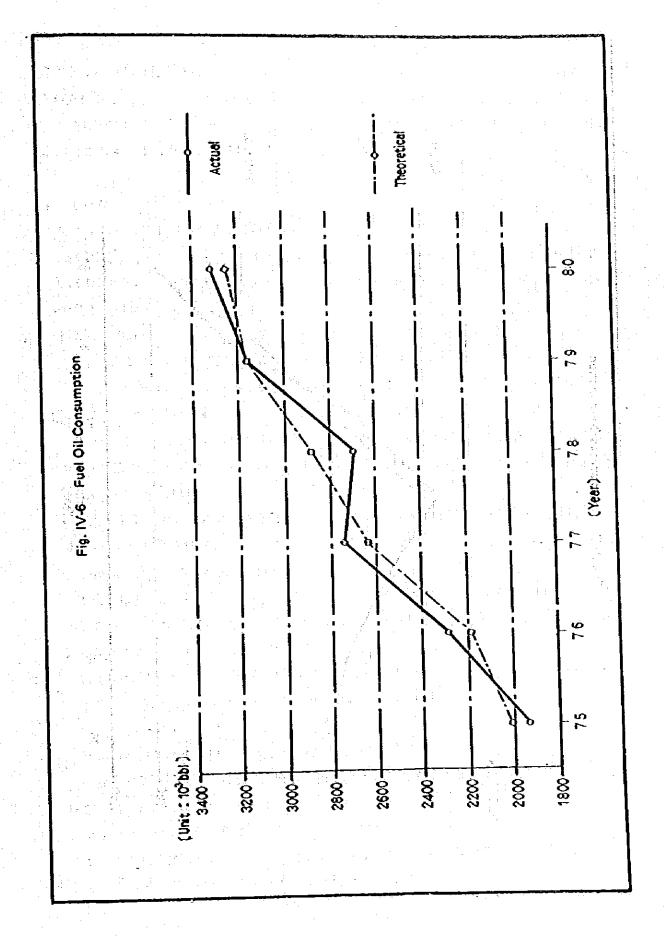

DOTHR Table IV-1, DONPはTable IV-7, PFULはTable IV-2, DFはTable IV 4の値を用いた。

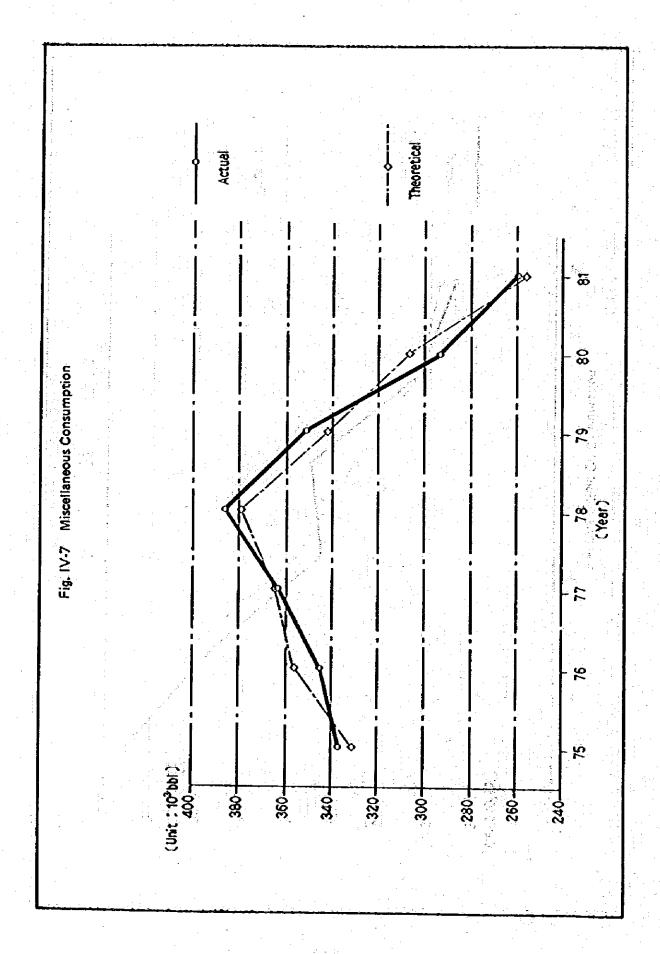

4.8 需要分析まとめ


第4.1節から4.7節まで各製品の需要分析の結果を,過去の実績消費量と構造式(I)-(8)から求めた理論値とを対比して Fig.IV-1から Fig.IV-7 に示す。


各図とも理論値と実績値が非常によく一致することを示している。


また、構造式(I)-(8)を考察すると、LPQ、灯油、重油等については価格の需要に与える影響は殆んどなく、ガソリン軽油、ジェフト燃料、その危製品は価格の影響に敏感であるのが解





5. 需要予測

第4章で検討した需要分析結果を利用し、クァティラにおける石油製品の需要予測を行なり。 すなわち各石油製品と各々の経済指標の間には式(II-(8)まで非常に良い相関関係が得られている が、たの相関関係は過去のデータに相関関係が認められるのであり、これがそのまま将来の予測 に適用できるかどうかを十分考察し、予測式を作成することとした。

SI LPG

第4.1節からLPOの需要を求める式は

 $\log(DLK) = -2900 + 1.182 \times \log(DPRC)$ (1)

 $\log(DLPG) = -0.6351 + 0.9282 \times \log(DLK)$ (2)

の(1)式と(2)式から求める。

ととで DLK: LPQと灯油の熱量換算合計量 (10 Kcal/y)

DPRC: 実質個人消費支出 (10 Quetzales/y)

DLPQ: LPQの消費量 (103 bbl/y)

(1) 需要を求める式の考案

(I)式社実質個人消費支出が仮りに1%件びた場合に、LPGと灯油の熱量換算合計量が1% × 1.18倍(1.18%) 伸びることを示しており、将来に適用しても妥当と考えられる。すなわら(I)式の1.182 はいわゆる弾性値といわれる数値である。

(2)式もLPOと灯油の熱量換算合計量が仮りに1%伸びた場合, LPOの消費量は1%×0,93倍(0.93%)伸びるととを示しており、将来に適用しても妥当と考えられる。

(2) 予測式作成のための前提経済指標

(I)式にはDPRCすなわちクァテマラドおける実質個人消費支出が含まれており、この将来の値を予測する必要がある。このため過去のクァテマラドおける実質個人消費支出と実質国民総生産の関係を調べた。

ととで DPRC: 実質個人消費支出 (10 Quetzales/y)

DONP: 実質国民総生産 (10 Quetzales/y)

(9)式の相関係数は0.99で非常に良い相関関係が得られる。

(9)式からグナテマラの実質個人消費支出の停びを予測するためには、実質国民総生産の停びを予測すれば良いことがわかる。

クフテマラの実質国民総生産の伸びの予測を現地調査で調査したが、グフテマラ経済省からもこの予測値は得られなかった。グフテマラはコヒー、線の輸出で米国経済化かなり依存 しているので、グフテマラと米国の実質国民総生産の関係を調べた。 ことで DONP : クァテマラ実質国民総生産 (10 Quet zales/y)

DUONP: 米国実質国民総生産 (10°US\$/y)

00式の相関係数は 0.99で非常化良い相関を示している。また、00式は米国の実質国民総生産が1%上昇した場合 グフテマラの実質国民総生産は約1.4%上昇することを示している。米国の実質国民総生産の過去のデータをTable IV-9 化示す。

Table IV-9 Real GNP of USA

(Unit: 10° US\$/y)

Year	Real GNP, USA
1971	2,002.6
1972	2,115.9
1973	2,237.9
1974	2,223.7
1975	2,197.4
1976	2,316.3
1977	2,443.8
1978	2,566.8
1979	2,639.6
1980	2,631.7
1981	2,700.9
1982	2,650.3

Source: International Financial Statistics
Year Book, 1983

以上からグナテマラの実質個人消費支出の予測は、米国の実質国民総生産の予測値が得られれば良いことがわかる。

米国の実質国民総生産の今後の停びに関しては、各種の報告があるが

2.5%/y 経済審議会

3.6%/y Chase Econometrics

27%/y 日本経済研究センター

本調査では米国の近年の実績値を参考とし25%/yを採用した。 従って LPOの需要は(1),(2),(9),60式に1 り予測できる。

5.2 ガソリン(プレミアムガソリンモレギュラーガソリン)

第4.2節からガソリン(プレミアムガソリン+レギュラーガソリン)を求める式は $\log(DOAL) = -1.538 + 1.433 \times \log(AUT)$

$$-0.7730 \times \log \left\{ \frac{PGAL(-1) + PGAL}{DF} \right\}(3)$$

ととで DOAL: プレミアムガソリンとレギュラーガソリンの合計量 (101 bbl/y)

AUT: 桑用車保有台数 (103台)

POAL(-1): 当年度 - 年前のガソリン平均価格 (Quetzal/1)

POAL: 当年度のガソリン平均負格 (Quetzal/1)

TOOL OF DEFY デブレーター

(1) 需要を求める式の考察

(3)式は乗用車の保有台数化対するガソリンの消費量の常性値は1.433であり、乗用車保有台数が1%停びると約1.4%ガソリン消費量が停びることを示しており、道路事情等の改善化より今後乗用車1台当りの走行距離が停びること等を考慮すると、将来化適用しても妥当と考えられる。またガソリン平均価格が1%上昇した場合、消費量が約0.8%減少する価格・算力性も妥当であると考えられる。

(2) 予測式作成のための前提程済指標

(3)式化はAUTすなわち乗用車保有台数が含まれており、この将来の値を予測する必要がある。このため過去の乗用車保有台数と実質個人消費支出の関係を調べた。

ととで AUT: 乗用車保有台数 (103台)

DPRC: 実質個人消費支出 (10 Quetzales/y)

卯式の相関係数は0.98で非常に良い相関関係を示す。

以上により第51節で述べた(9)式と砂式により米国の今後の実質国民総生産の伸び予測値 2.5%を代入すれば良い。

(3)式ドおける第3項のPOALすなわちガソリン質格の予測を行なり必要がある。ガソリン 質格は当然原油質格と相関し、過去のデータで相関関係を調べると

ここで POAL: ガソリンの平均価格 (Queizal/1)

C R D: プラピアンライト原油価格 (US\$/bbl)

02式の相関係数は0.98で非常化良い相関関係を示している。

今後の原油価格の予測について社、世界銀行、国際エネルギー機関等の予測値があるが、 本調査では世界銀行の出した 1990年 アラピアンライト実質価格 37.0 US\$/bbl 2000年 41.0 US\$/bbl

を採用した。

(3)式における第3項に含まれるクナテマラのデフレーターについて過去の米国卸売物価指数との相関関係を調べると

ととで D F: クァテマラデフレーター

UDF:米国卸売物価指数

の式の相関係数は0.99で非常に良い相関関係を示している。

今後の米国の卸売物価指数の予期値ドついては、日本程務研究センター「世界の中の日本 経済」から5%/yの上昇を総続するものとした。

米国卸売物賃指数の過去の動向をTable IV-10K,原油価格の基準となるアラビアンライトの原油価格の過去と将来の予選値をTable IV-11K示す。

Table IV-10 Wholesale Price Index, USA

(Unit: 1980 = 100)

Year	US Wholesale Price Index
1972	44.3
1973	50.1
1974	59.6
1975	65.1
1976	68.1
1977	72.3
1978	77.9
1979	87.7
1980	100.0
1981	109.1

Source: International Financial Statistics
Year Book, 1983

Table IV-11 Crude Oil Nominal Price

(Unit: US\$/bbl)

Year	Price	Year	Porecasted Price
1976 1977	11.510 12.395		Pigures in parenthèses arè real prices forecastèd.
1978 1979	12.700 17.259	1990	46.700 (37.0)
1980 1981	28.667 32.500	2000	91.900
1982	34.000	an in In diguyaan Pulati	· Balaganiaisiniae

Source: World Bank

以上によりガソリン(プレミアムガソリン+レギュラーガソリン)の合計需要は (31,(9), 01,00,03,03式により予測できる。

プレミアスガソリンとレギュラーガソリンの振り分けについて検討する必要があるが、参 考としてグラテマラの過去におけるプレミアガソリンのガソリン全体に占める割合をTable IV-12に示す。

Table IV-12 Ratio of Premium Gasoline

Year	Premium Gasoline/Whole Gasoline		
1973		0.391	
1974		0.322	
1975	gartherinal careful	0.353	
1976		0.373	
1977		0.404	
1978		0.461	
1979		0.422	
1980		0.434	
1981		0.470	

Source: Actualidad Petrolera en Guetemala, 1983

Table IV-12 K示す如く、プレミアムガソリンのガソリン全体化占める割合技年々上昇 しており、1981年で47名まで上昇している。従って将来の予測については プレミアムガソリン 50% レギュラーガソリン 50% として各々の需要量を予測した。

- 137 // 30%				
として各々の需要量を予測した。				
5.3 灯 油			() () () () () () () () () () () () () (¥
第4.3節から灯油の需要を求める式は	ing a second of the second of			- Tarana
$\log(DLK) = -2900 + 1.182 \times \log(DLK)$	PRC)		e e e e e e e e e e e e e e e e e e e	. (1)
$\log (DKBR) = -1.955 + 1.097 \times \log ($	DLK)			
さこで DLK: LPOと灯油の熱量	換算合計量	(I 0 Kcal/y)		7.5
DPRC: 実質個人消費支出	(10 Quetz	ales/y)		i Paga t
DKBR: 灯油の消費量				
(11) 需要を求める式の考察				41, 4
(1)式の妥当性は第5.1節で考察した過り	妥当と判断さ	ns.		
(4)式はLPOと灯油の熱量換算合計量が)消费量计约	110%
伸びるととを示しており将来に適用しても	妥当と考えら	ns.		0 ,0
(2) 予期式作成のための前提経済指標				- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
第5.1節で述べた通り				
$\log (DPRC) = 0.2219 + 0.9486 \times 1$	og (DGNP)	*************	******	• (9)
ととで DPRC: 実質個人消費支出				(3)
DONP: 実質国民能生産		and the second of the second o		
$\log(DONP) = -2339 + 1.432 \times \log$			***************************************	40
ととて DONP: グァテマラ実質国E			/ _V)	9.0
DUONP:米国実質国民総生産	and the second s			
の相関関係が得られている。				
従って、今後の米国実質国民総生産の伸び	の予房値 2.5	%/v & 00 = 17	えわえとしゃ	.
(1),(4),(9),何式でグァテマラの灯油の今後	の需要が予測・	できる。		L y,
			state and	
5.4 ジェット燃料				
第4.4節からジェット感目の需要を求める	大比			
$kg(DTUR) = -1252 + 1.836 \times kg(1$	DPRC/POP) - 1195 Y L		ń n x
		· ····································		
ととで DTUR: ジェット燃料消費量	(10) 651/			(5)
DPRC: 実質個人稍費支出	(104 Oues	ales/v)	ျက ၂ ကမ္ဘာ့အများကို ကော မြော့ကြီး ၁၂၆ ခြောက်	- 1
		4100/1/		

POP: 人口 (106人)

PKBR: 灯油の価格 (Queizal/1)

1 (6) 4 (6) (6) **D** (6) **ア** (1) デラジョメニ

(1) 需要を求める式の考察

(5)式は1人当りの実質個人消費支出が仮に1%伸びると、ジェット燃料の消費量は約1.8%伸び、ジェット燃料の実質価格が仮りに1%上昇すると、ジェット燃料の消費量は約1.2%下降するととを示しており、将来の予測に適用しても妥当と考えられる。

(2) 予測式作成のための経済指標

DPRCすなわち実質個人消費支出については第5.1節で述べた通り

 $\log(\text{DPRC}) = 0.2219 + 0.9486 \times \log(\text{DONP})$ (9)

是記憶ととで『DPRC』、実質個人消費支出(104 Quelzales/y)

DONP: 実質国民総生産 (10 Quetzales/y)

ことで DGNP: グァテマラ実質国民総生産 (10 Quelzalcs/y)

DUGNP: 米国実質国民偿生産 (10° US\$/y)

で米国の実質国民指生産の伸びの予測値 25%/y をOI式に入れることにより予測できる。

POPすなわらグッティラの今後の人口の伸び率推定については、Table IV-6から過去

12年間の平均伸び率が30%/yであるので、今後もこの伸び率が経続するものとした。

PKERナなわち灯油価格の今後の予測を行なう必要がある。灯油価格は原油価格と相関

し、過去のデータで相関関係を調べると

ととで PKBR: 灯油価格 (Quetzal/I)

(14式の相関係数は 0.99で非常化良い相関関係を示す。従って 第5.2節で述べた通り、 今後の原油価格の予測値を続り込むととにより今後の灯油価格の予測ができる。

DPすなわちデフレーター化ついては、OS式により

② ととでED Pに、グラテマラデブレーター

UDP: 米国卸売物質指数

により、米国の卸売物価指数の今後の上昇予測値 5 %/y を験り込むことにより今後のグァ テマラデフレーメーの予測ができる。

従って、グラティラの今後のジェフト農料の需要は、(5),(9),00,03,00式化より予測でき

5.5 軽油

第4.5節から軽油の需要を求める式は

 $\log(DOAS) = -15.39 + 2408 \times \log(DONP) - 0.4314 \times \log(POAS/DF) \cdots (6)$

CCT DOAS: 軽油消費量 (10) bbl/y)

DONP: 実質国民総生産 (10 Quelzales/y)

POAS: 軽油の価格 (Quetzal/1)

Dort デブレーター and the last

(1) 需要を求める式の考察

(6)式は実質国民総生産が仮に1%伸びた場合に、軽油消費量は約24%伸びることを示して いる。通常エネルギー関係の消費量の実質国民総生産化対する弾性値は1.0 に近い値が普 通であるため、(6)式をそのまま将来の軽油の需要量を求めている式として使用するのは問題 があると考えられる。すなわら、クァテマラに於て過去10年間の統計によれば、実質国民 総生産の仲びに対し軽油の需要量は、約24倍仲びたが、将来もこの比率で仲ぴるとは考え られない。

网络黑雀 (海鄉)

従って、本調査ではこの発性値 2408が

現 在 - 1985年迄 20

1986年 - 2009年迄 1.4

として弾性値が将来は減少するものとした。

また、将来の軽油の需要は Chixoy 水力発電所の移動の影響で

235×103 bbl/yの減少

1984年以降 380×10³ 861/yの減少

という報告が Tratado General de Integración Económica Centroàmericana にあるので、これを採用し、(6)式で求める値から該当年度は需要量を差引くこととした。

(6)式の価格の項については、軽油の価格が仮に1%上昇した場合、需要は約0.4%減少す ることを示しており、村来に適用しても妥当と考えられる。

以上により軽油の需要を求める式は

現在 - 1985年迄

 $\log(DOAS) = -15.39 + 20 \times \log(DONP) - 0.4314 \times \log(POAS/DP) - 0.9$

但し 11983年度は上記式から求めた DOAS - 235 1984年-1985年は上記式から求めたDOAS - 380 J

1986年-2009年迄

 $\log (DOAS) = -15.39 + 1.4 \times \log (DONP) = 0.4314 \times \log (POAS/DP) = 0.6$ 但し(上記式から求めた DOAS-380)

	·
图 老此就 事意识出来1000年的第一章。	
(2) 予測式作成のための前提程済指標	
DONPすなわち実質国民管生産については、第5.1分	節で述べた通り
$\log (DONP) = -2339 + 1.432 \times \log (DUONP)$	
ととで DONP: グラテマラ実質国民総生産 (1	
DUGNP: 米国実質国民総生産 (10)	U\$\$/y);;:: - idiff);:::
で米国の実質国民総生産の伸びの予測値25%/yを、00	式に入れることにより予測できる。
PDISすなわち軽油価格の今後の予測を行なり必要	があるが、軽油価格は原油価格と相関
し、過去のデータで相関関係を調べると	
$\log (POAS) = -2474 + 0.7566 \times \log (CRD)$	
さとで POAS: 軽高価格 (Queizal/I)	e in heavy wareholder in a
CRD: 原油価格 (US\$/861)	
仍式は相関係数 0.9 9 で非常比良い相関関係を示して	いる。従って 第5.2節で述べた通
り、今後の原油価格の予測値を繰り込むことにより今代	支の軽油賃格の予制ができる。
DP すなわちデブレーターKついてはOS式により	ではまた。これでもまっていま
$\log(DF) = -0.6281 + 1.145 \times \log(UDF)$	
とこで D P: グラテマラデフレーター	
UDF: 米国卸売物值指数	通知的 医多种囊性神经病的
により米国の卸売物優指数の今後の上昇予期値 5%/)	を終り込むことにより、今後のグァ
テマラのアフレーターの予測ができる。	
従って グラテマラの今後の軽油の需要は、00,03,	M式,そしてOSまたはOS式により予則
· 「できる。 · · · · · · · · · · · · · · · · · · ·	
5.6. 董 油	
第4.6節から重油の需要を求める式は	

第46箇から重油の需要を求める式材 $\log (DFUL) = 1.203 + 0.9073 \times \log (DBL) \qquad (7)$ ことで、DFUL: 重油消費量 (10° bbl/y)
DBL: 発電量 (10° KWH)

(1) 需要を求める式の考察

(7)式は発電量が仮化 1%件びた場合化、重油消費量が約 0.9%件びることを示しており、将来に適用しても妥当と考えられる。

ただし、将来の重油の需要は Chixoy 水力発電所の段動の影響で、1984年以降 425×10 bbl/yの波少という報告が Tratado General de Intégracion Economica Centroamericana だあるのでとれを採用し、(7)式で求める値から該当年度は需要量を差引くこととした。

(2) 予例式作成のための前提程済指標

(7)式に含まれるDBレナなわち発電量の予測を行なり必要がある。発電量は実質国民総生産と相関するのでとの相関関係を調べると

ささで DBL: 発電量 (100 KWH)

DONP: 実質国民総生産 (10 Quetzales/y)

昭式の相関係数は、0.99で非常に良い相関関係を示している。

また、砂式のDGNPすなわち実質国民総生産については第5.1節で述べたとおり。

 $kg(DGNP) = -2339 + 1.432 \times kg(DUGNP)$

ととで DONP: クァテマラ実質国民総生産 (10 Quetzales/y)

DUGNP: 米国実質国民総生産 (10º US\$/y)

で米国の実質国民総生産の伴びの予選値25%/yを、CO式に繰り込むことにより予測できる。 従って、グァテマラの今後の重治の需要は(7)、60、68式で求めた結果に対し、1984年以降 は 425 × 10³ bb1/yの減少を終り込み予測できる。

5.7 その他(アスファルト,母滑油,アピエーションガソリン)

第4.7節からその色の需要を求める式は

 $kg(DOTH) = 1.406 + 0.1595 \times kg(DONP) - 0.5678 \times kg(PPUL/DP) \cdots (8)$

ことで DOTH: その他消費量 (103 bbl/y)

DONP: 実質国民総生産 (106 Queizales/y)

PFUL: 重福資格 (Quelzal/1)

D F: デフレーター

(1) 省要を求める式の考察

(8)式は実質国民総生産の伸びが仮に 1%伸びた場合、その他の需要は約0.2%伸びることを示しており、やや需要量の実質国民総生産に対する弾性値が低いが、震滑油等の需要量はそれほど実質国民総生産の伸びに対して大きく影響を受けないと考えられるので、将来の予測も(8)式を使うこととした。また、その他製品の資格が不明であるので代りに重油価格を用いたが、この弾性値約0.57 は妥当と判断される。

従って、(8)式全体としてその他製品の需要予測に用いるのが妥当と考えられる。

(2) 予測式作成のための前提経済指標

(8)式の DONPすなわち実質国民総生産については、第5.1 節で述べたとおり

			. •
	$\log (DONP) = -2.339 + 1.432 \times \log ($	DUGNP)	
	ととで DONP: グッテマラ実質国民	忠生産 (10 Quetzales	/y)
	DUONP: 米国実質国民総生資	울 (10 US\$/y)	
	で米国の実質国民総生産の伸びの予算値25%	%/yを、如に終り込むこと	により予測できる。
	PHEVすなわち重油価格の今後の予測を		and the second s
•	過去のデータで相関関係を調べると		
	log (PFUL) = -3.434+0.9283 × log	g (CRD)	
	ことで PFUL: 重油価格 (Queiz	al/l)	A A
	CRD: 原油価格 (US\$/	'bb1)	
	(時式は相関係数 0.9 8 で非常に良い相関関	係を示している。従って,	第5.2節で述べた通
	今後の原油価格の予測値を繰り込むととに	より今後の重油価格の予測が	ができる。
	DドすなわらデフレーターについてはObj	tki b	(1.4)
	$\log (D7) = -0.6281 + 1.145 \times \log (1)$	jpk)	03
1	ととで D F: グァテマラデフレー	3-	
	UDP: 米国卸売物賃指数		
1	K l り米国の卸売物価指数の今後の上昇予	関値5%/yを疑り込むこと	により、今後のグァラ
	マラのデフレーターの予測ができる。		
	従って、グァテマラの今後のその危製品の	の害要は(8),60,63,63大に」	しり予測できる。
			* :
	The second of the second of the second of		
			era en
•			

The second of th

taran da kabupatèn da kabupatèn

n de la companya del companya de la companya de la companya del companya de la companya del companya de la companya de la companya de la companya de la companya del companya de la companya dela companya de la companya de la companya de la companya de la companya dela companya de la companya dela companya dela companya dela companya dela companya dela companya dela companya dela

6. 需要予測結果まとめ

第1章から第5章まで各石油製品の需要予例結果をTable IV-13Kまとめる。

TableIV-13の一番下の複社参考値として LPQ, 灯油, プレミアムガソリン, レギュラーガソリン, ジェフト燃料油, 軽油, 重油, アスファルトの合計量を1日当りのパーレル量で示したものである。この量は需要予制量を合計したもので、新製油所のプラント能力決定のための基 役資料となりうるものである。

TableIV-13から1989-2008年における主な石油製品需要の平均伸び率は次のとおりである。

- · LPO \$ 3.7%/y
- カソリン4.3
- 灯 油 5.0 /
- 9 鞋 油 # 5.4 #
- ° 重油 1 6.8 1

また参考として、今までに述べた石油製品の需要予制算出に用いた(I)-(好式を次尺まとめて記す。

$$\log (DOAL) = -1.538 + 1.433 \times \log (AUT)$$

$$-0.7730 \times \log \left\{ \frac{POAL(-1) + POAL}{DF} \right\}(3)$$

$$\log(DKER) = -1.955 + 1.097 \times \log(DLK)$$
 (4)

$$\log (DGAS) = -15.39 + 2408 \times \log (DGNP) - 0.4314 \times \log \left(\frac{PGAS}{DP}\right) \dots (6)$$

$$\log (DOTH) = 1.406 + 0.1595 \times \log (DONP) - 0.5678 \times \log \left(\frac{PPUL}{DP}\right) \dots (8)$$

$$\log(DPRC) = 0.2219 + 0.9486 \times \log(DONP)$$
(9)

```
log(PKER) = -2.210 + 0.6412 \times log(CRD) ......
\log (DOAS) = -15.39 + 2.0 \times \log (DONP) - 0.4314 \times \log \left(\frac{POAS}{DP}\right) \dots 09
\log (POAS) = -2474 + 0.7566 \times \log (CRD) .....
 log (DBL) = -9.731 + 1.933 × kg (DONP)
 log (PPUL) = -3.434 + 0.9283 x log (CRD) ......
   DLPG
          : LPG消費量 (103 bbl/y)
   DLK
             LPOと灯油の熱量換算合計量 (10° Kcal/y)
   DGÁL
            プレミアムガソリンとレギュラーガソリンの合計量
   AUT
             乗用車保有台数 (103台)
   DOAL(-1):
            当年度一年前のガンリン平均価格 (Queizal/1)
   POAL
           当年度のガソリン平均価格 (Quelzal/1)
             デフレーター (1980年度を100とした指数)
   DF
             灯油の消費量 (103 bbi/y)
   DKER
             ジェット燃料消費量 (103 bbl/y)
   DTUR
             実質個人消費支出 (10 Quetzales/y)
   DPŔC
             人 口 (101人)
   POP
             灯油の質格 (Quetzal/1)
   PKER
             轻油消费量 (103 bbl/y)
   DOAS
            グナテマラ実質国民総生産 (10 Quetzales/y)
   DONP
             重油消費量 (103 bbl/y)
   DPUL
             発電量 (10° KWH)
   DEL
             その他消費量 (103 bbl/y)
   DOTIL
              重清價格 (Quetzal/I)
   PFUL
             米国奥質国民総生産 (10°US$/y)
   DUONP
              アラピアンライト原油価格
                               (US$/bbl)
   CRD
              米国卸売物質指数
   UDF
```

Table IV-13 Summary of Forecasted Demands for Petroleum Products

										(Unit.	10. pp1//	:	
YEAR	1985	1986	1987.	1988	5867	7990	1661	1992	1993	7661	1995	1996	
200	617.100	640,190	664	688,993	772	741.516	769.261	798.043	827.903	858-880	801.016	924 344	
Premium C.	1535,313	1632-459		1739.687	1792-078	1,848,347	1925.087	2022.528	2125.918	2234,608	2348,045	2467,016	<u></u>
Regular C.	1535.313	1632,459	1685	1739.687.	978	1848,347	1925,087	2022.528	2125.918	2234,508	2348,045	2467,016	<u>.</u>
Kerceene	674.945	704.024	734.346	765.963	3	833,305	869,147	906.518	245.483	986-110	1028, 469	1072.634	
100 Dec	309.784	309-313	310.943	310.598	5.7	311.177	317.984	325-096	332.567	340.022	347,561	355, 275	
170 33	4827,589	2017.854		5499.221.H	1	6017.291	6352.272	6706,229	7080-714	7473_138	7865, 366	8319, 319	
Tro Ten	2566.400	2758-427	2962.740	3180.124	ş	3657.507	3919.341	4197.928	4494.339	4809.713	5145,265	5502, 285	
Asphale	118,111	116.373	115.198	113.534	Š	110.390	110.718	110.883	111.094	111.264	111.415	111.568	
TOCAL	12184_560 12811.102	12811.102	13418.948	14037-811	14682.690	15368,0841	16188-901	17089.758	18043.939	19048334672	20105-185	21219-470	: h
bbl/day	36922.911 38821,523	38821,523	40663,480	42538,822	44493_000 46569_951		49057.278	51.787.146	546.78.604	\$7722.261	60924.804	64301.424	1
						WALLE A.							

	647-100	040-130	004.143	688,993	7.4.772	741.516	769.261	798.043	827.903	858-880	891,016	424.334
Premium C.	1535,313	1632,459	1685.269	1739.687	1792-078	1848.347	1925.087	2022528	2125.918	2234,608	2348-045	2467.016
Regular C.	1535-313	1632,459	1685-269	1739.687.	1792.078	1848,347	1925,087	2022.528	2125-918	2234,508	2348,045	2467,016
Kertosene	674.945	704.024	734.346	765.963	798.930	833,305	869,147	906.518	245.483	986.110	1028,469	1072 634
Coc Post	309.784	309-313	310.943	310.598	310.647	311.177	317.984	325.096	332.567	340,022	347.561	355.275
170 95	4827,589	4047-834	5261.037	5499.221.	5750-772	6017.291	6352.272	6706.229	7080-714	7473_138	7885, 366,	8319, 319
Puet out	2566,400	2758-427	2962.740	3180.124	3411-416	3657-507	3919.341	4197.928	4494.339	4809.713	5145, 265	5502, 285
Asphalt	118,111	116.373	115.198	113.534	111-993	110.390	110.718	110.883	111.094	111.264	111.415	111.568
Total	12184-560	12184-560 12811.102	13418.948	14037-811	14682.690	14682.690 15368.084	16188-901	17089.758 18043.939	18043.939	190481346 20105.185	20105,185	21219-470
bb./day	36922.911	36922.911 38821.523 40663.480	40663.480	42538,822	44493_0000 46569_951 49057_278 51787_146	46569.951	49057.278	51787, 146	546.78-604	57722,261 760924,804	60924,804	64301.424
												11 x 1 12 x 1 12 x 1
YZVK	1881	1998	386T	2000	2001	2002	2003	2004	2005	2006	2007	2008
IDC Premium C. Regular C.	958-940 2592,318 2592,318	994,819 2724,763 2724,763	2032 041 2862 850 2862 850	1070.656 3007.529 3007.529	1110.716 3160.920 3160.920	1152.275 3321.749 3321.749	1195.388 3489.999 3489.999	1240,115 3667,884	1286.515 3854.436 3854.436	1334,651 4049,851 4049,851	1384.589 4256.475 4256.475	1436.394 4472.621
Xerosene	1118,680 363,246	1166,688	379.565	388.096	396-877	1380.050	1439-184	1500.633	1565,104	1632 1107	1701.958	453.219
Cas off	5882.147	6266.312	9763_912 6716_336	10297.734	10860.362	11450.639	8729 727	9316.077	13415.607	141411720~14907.012 106031721~11309.968	11309-968	15708.247
Asphalt	111.740	111.943	112.050	112.226	112.413	112.569	112,718	112.926	113.061	113,239	113,429	113.570
TOCAL	22396-367	22396,367 23641,218 24946,349	24946.349	26326.569	27786.222	29323 367	30943.035	32658.796 34462.568	34462.568	36368,359 38383,160	38383,160	40502,852
ppT/qex	C7867.781	67867.781 71640.055 75594.997	75594,997	79777.483	84200-675	88858.688	93766 2774	98966.048.1	04432,025	93766 4774 - 98966 048 104432 025 110207 149 116312 607 122735 917	16312,607	122735-917
				推發大生 才表的相					\$ 100 miles	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		axoo)
					4 5) F				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		

7. 石油製品の流通

グナテマラにおける原油の生産・石油製品の生産・流通フローを Fig. IV-8 に示す。 石油製品の需要は、国内でただ 1 ケ所稼動している Texas Petroleum Co. からの石油 製品 と、あとの不足分は輸入で賄なわれている。この石油製品の生産量と輸入量について Table IV-14 に示す。

Table IV-14 Production and Import of Petroleum Products

(Unit: 103 bb1/y)

	19	B O	19	81	198	32
ng Pagalan ang Pagalan ang Pagalan ang Pagalan ang Pa	Prod.	Irp.	Prod.	Inp.	Prod.	Imp.
LPG	19	600	22	599	25	560
Premium Gasoline	402	539	421	518	405	545
Regular Gasoline	518	704	502	538	440	539
Kerosene, Jet Fuel	536	186	482	305	419	305
Gas Oil	1,751	1,883	1,602	1,675	1,476	1,598
Fuel Oil	2,070	1,165	2,211	131	1,627	147
Others		292		289		238
Total	5,296	5,369	5,240	4,055	4,392	3,932

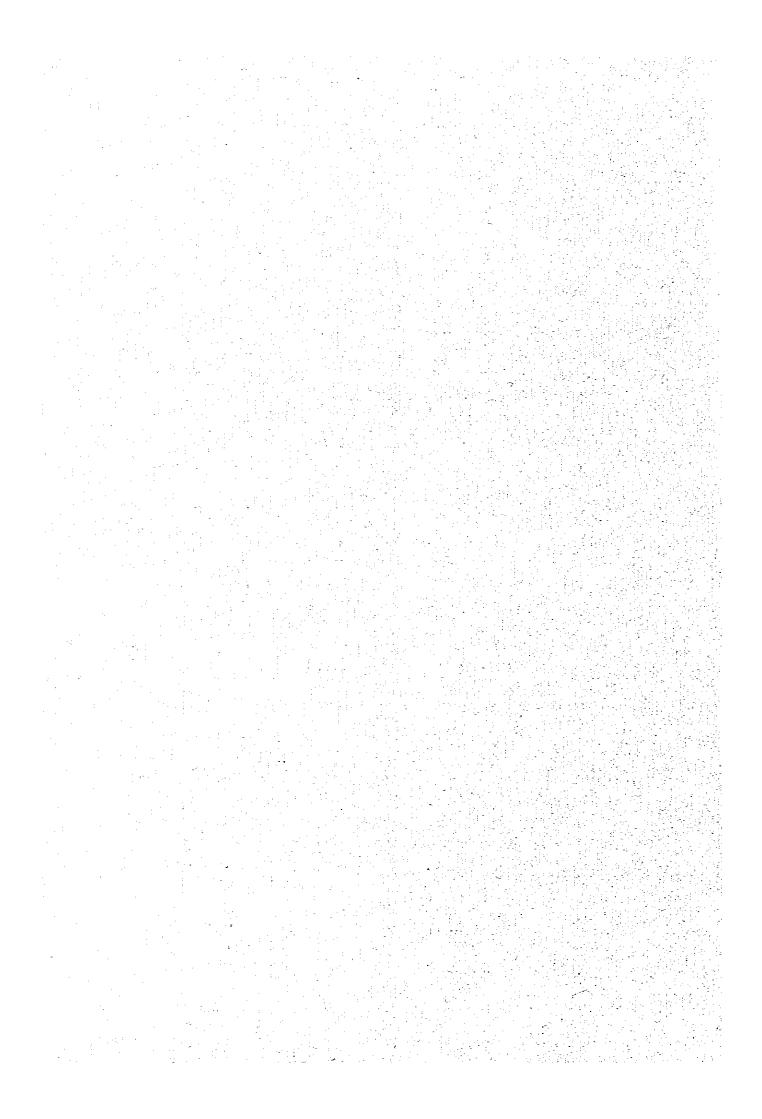

Source: HEM

Table IV-14からグナテマラの石油製品はおよそ国内生産と輸入が半々であるのがわかる。
Pig. IV-8 化示すとおり、石油製品輸入は、国際石油資本を中心とした民間企業が行なって
おり、Puerto Barrios, Puerto Santo Tomas de Castilla, San Jose 化基地をもって
おり、国内販売もかれらのブランドで行なわれている。

Production and Distribution Flow of Crude Oil and Petroleum Products in Gatemala Fig. 1V-8

第Ѷ編 立 地

1. 製油所立地

1.1 自然条件

(1) 気象

熱帯の気候に属し、年間降雨量は約800mとグァテマラ市と余り大きな差はないが、気温、 程度ともに高く、可成り蒸し暑い気候である。BI Ranchoから約15m盤れたMorazan剤 候所の1981年度を倒とした気象データをTable V-1k示す。この年度は特に年間降雨量 の多い年に当ってむり、平均的年間降雨量は800m程度である。

(2) 趋勢·趋質

製油所候請地である BI Rancho は BI Progreso 県 K 属し、太平洋岸と大西洋岸 を結ぶ 主要幹線道路である C A 9 が Coban からの国道 17号線と合流する三叉路付近に位置し、首都グァテマラの北東約80km、大西洋岸の港町 Puerto Barrios の南西約200kmの追点にある。

また、大西洋K注ぐMotagua川中流の海抜約280mの谷あいKある。なお、この辺一寄は主として堆積層からなっている。

Table V-1 Meteorological Data in El Progreso (1981)

		Jan.	rep.	Mar	văv.	May	May Jun.		Aug-	Sep.	Jul. Aug. Sep. Oct. Nov. Dec.	Nov.	Dec.	Annual
Atmosoberio	Av. Max.	31.5	32.9	36.2	35.8	37.7	37.7 33.5 33.5	32.1	33.5	33.6	33_6 33.0	32.7	33.2	33.8
remp.	AV	24.5	26.0	29.0	28.7	30.5	27.7	27.1	27.7	27.7	27.7 26.9 25.6 26.3	25.6	26.3	27.3
•	Av. Min.	15.6	9-61 2-61 0-21 9-51	19.7	19.6		20-7 21-3 20-6	20.6	21.5		21.5 21.3	17.4 18.7	18.7	19.6
500 3 4 4 5 4 G	Max.	-66	66	92	06	96	86	97	8	9.7	86	86	97	66
Humidity (%)	Av.	64	85	52	53	54	72	73	22	77	74	65	4	64
	Min	5 8	27	1.7	22	2.5	43	52	7.7	42	80	36	30	1.7
Total Rainfall (mm)	1.1 (mm)	2.4	1.8	9.6		168.6	8.3 168.6 266.9 174.9 253.9 185.7 253.4	174.9	253.9	185.7	253.4	O 10	11.3	1339.8
No. of Rainy Days	Days	3	3	4	4	77	23	: 3T	76	21	22	2	4	131

	N N
	Source: Dat
. 1978	Rec'd in Oct. 18, 1975
c.đ Mar	o.d Oct. 18
2 4	Re
57.6	97.2
1 hr. 57.6 nar. 3, 1978	3) in 24 hrs. 97.2 Rec'd in 0ct. 18, 197
r;	, ut
Î	2)
Marcimum Rainfall (mm)	(thrum 1973)
: 1	

1.2 社会,程済環境

(1) 人口,旁缀力

Bl Rancho社 Bl Progreso界の San Agustin 市民国し、その面積、人口等社 Table V-2のとおりである。

Table V-2 Area and Population of El Rancho, etc.

	Area (km²)	Population	Density of Population (No./km²)
El Progreso Dept.	1,922	81,100	42
San Agustin City	253	19,300	76
El Rancho	Approx. 18	Approx. 3,000	Approx. 17

Source: Hearing from mayor of the city

当地における失業率は約20%と非常に高く、労働力は豊富にあるが、簡単な機械の運転 員、自動車の運転手がよび単純作業員として使用可能な程度の労働力が大半であり、技術者、 熟練工等の質の高い労働力は期待出来ない。

(2) 工 葉

San Agustin市の産業はタパコの栽培等の農業を中心とした第一次産業が主体である。 主要な工業としては現在建設段階ではあるが、当地の森林資源を原料とする大規模な製紙工場が Bl Rancho K建設中である。この他Kは小規模な製材所および皮革産業がある程度で、 当地の雇賃額となる産業は極めて少ない。

1.3 用役,インフラストラクチャー

(1) 用 水

製油所候構造付近にはグナテマラの主要河川であるMotagua川が流れており、工場の用水は主としてといから取水することになる。また地下水位は大体のL下7ー8mであるので井水も容易に得ることが出来る。

(2) 電力

電力会社(INDE)の送電線が(69KV,60KL)が近くを走っているが、停電が多く信頼 性は低い。

(3) 通信手段(電話)

製油所候補地近くの国道CA9沿いを国営の Quatel が管理している電話線が走っており、

といから引込み可能である。

また、グラテマラ国内の主要な地区はグラテマラ市とマイクロウェーブ網で結ばれており、 主要地間の通信が可能である。

(4) 道 路

製油所候補地は大西洋岸のPuerto Barrios - グラテマラ市 - 太平洋岸の San Jose 間を結ぶ同国の主要幹線であるCA9 K面しており交通の便は良い。

(5) 教育機関および医療機関

周辺の教育機関としては小学校 1 校と補助小学校 2 0校があり、生徒教約 8,000人、また中学校 2 校で生徒教約 400人が通学している。

しかし、高校、大学および技術訓練校等、高等教育機関は存在しない。

(6) 公共消防設備

公共的に利用される消防車等の消防設備はない。

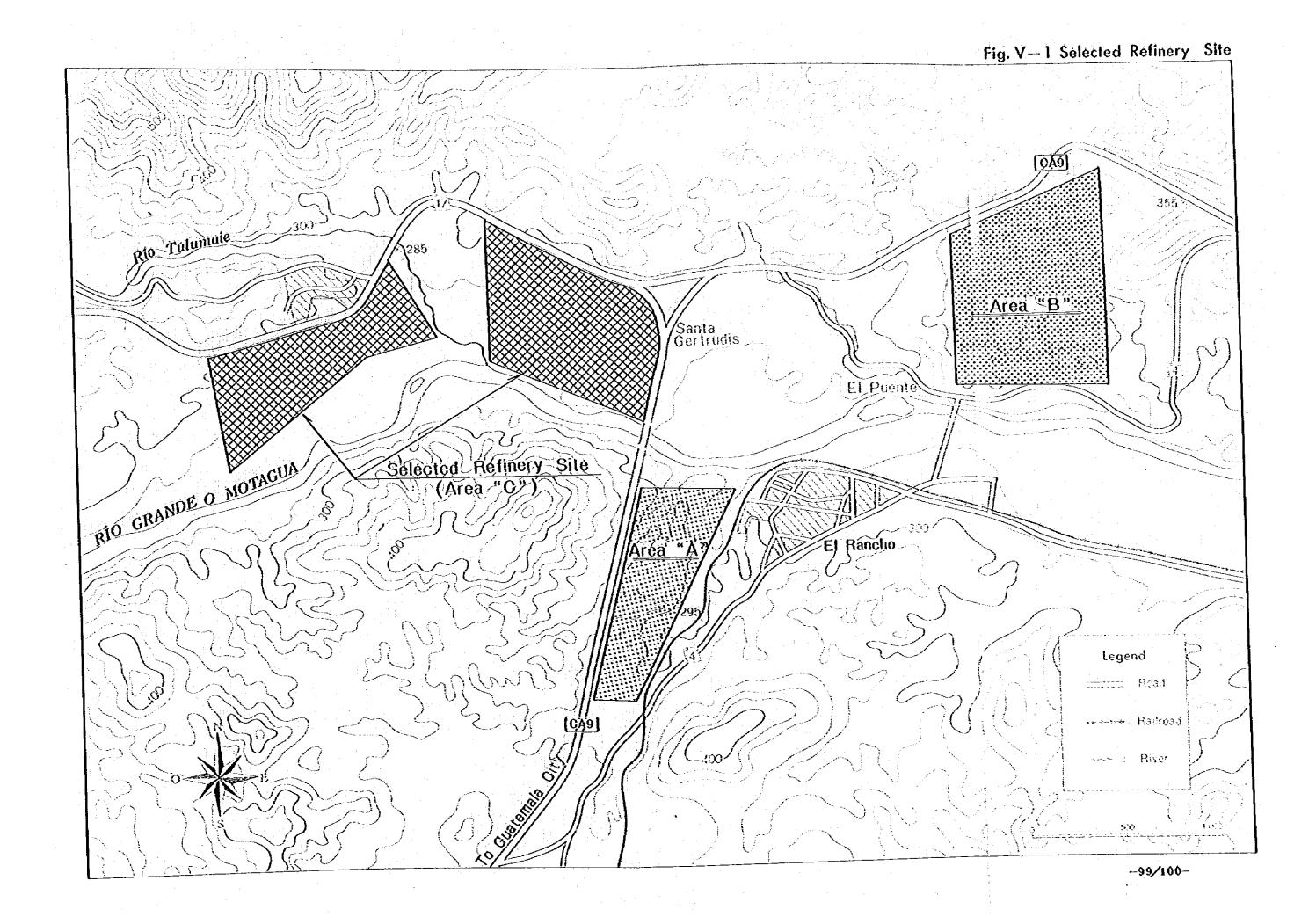
1.4 立地の選定

現境調査を行った際化、製油所の保持地としてBI Rancho地区と大西洋岸のPuerto Santo Tomas de Castilla地区間で比較検討をした。その結果をTable V-3 K示す。

Table V-3 Selection of Site

(Unit: US\$ million/y)

	El Rancho	Sto. T. Castilla
Annual Expenses Related to Equipment*	67	44
Annual Expenses Related to transportation	13	52
	: 	
Total	80	96


Depreciation 10%, Insurance 1%, Interest 4% and maintenance 3% are assumed.

上表に示す通り、設備費に関連する年間程費と製品を輸送するための年間輸送経費を合計すると B1 Ranchoが優れていたので同題区を製油所の立題として第1次選定した。

次化 BI Rancho 地区内で最適地域の検討をした。検討対象とした地域は次のとおりである。

。Area A : Motagua川の南倒

。Area B : CA9と4号線の間

◇ Area C : CA9と17号の交差点付近

上記3地域はMotagua川および国道CA9ド沿った近接地域である。このため用水の取水、重機器の散入、製品の輸送コスト等はほぼ同条件である。そこで3地域に対して地質および地形、整地費、並びに利用可能敷地ドついて検討した。

Table V-4 Location of Oil Refinery

	Area A	Area B	Area C
Geology	Sándy sóil	Rocky soil	Sandy soil
Topography	Gentle slope	Steep slope	Farm land
Cost of Land Development	Éxpensive	Expensive	Cheap
Available Land Size (10 ³ m ²)	325	712	985
Overall Evaluation			О

Table V-4に示したとおり、Area A、B均域は、傾斜地であり、Area CK較べ整均費用が多く必要である。さらに、本製油所の必要敷地は約980,000㎡であるため、この敷地を確保出来るのは、Area Cである。

以上から製油所の立地としてArea Cを選択した。

なお、Area A、B、C地区の関係をFig. V-1 K示す。

2. 原油受入れ基地(ターミナル)立地

1977年戻る 制計算計算数的報告が必須書

2.11 自然条件 (15) 15 (15) 15 (15)

(1) 気象

熱帯の気候に属し、気温、湿度が高く可成り蒸し暑い気候である。年間降雨量は3000-4000mと同国でも最も雨量の多い地区である。

Santo Tomas de Castilla K近い Puerto Barrios の1981年度を例とした気象データをTable V-5 K示す。

(2) 趋势, 趋質

Puerto Barrios と並びカリブ海に面するグナテマラの主要な貿易港であり、同国の主要幹線であるCA9の東端に位置する貿易および運輸上の重要地点である。 当地区は低限地帯のため地盤は弱く、地層は堆積層から成っている。

	1000000000000000000000000000000000000		Table V.	and the second second	Meteorological Data in Puerto Barrios (1981)		i Pue	to Barr		(H	American Black (B.)			
												1844		
		Jan.	Feb.	Mar	Agr.	May	cm.	Jul.	Aug.	Sep.	Oct.	Nov.	500.	Annua 1
	Av. Ma	25.6	27.2	30.6	30.0	32.4	31.8	1.5	30.5 31.2	30-7	30.7 29.8	28.9	27.3	29.7
Atmosphera Temp		20.9	22.22	24.9	25.1	26.8	26.7	27.1	27.4	27.1	26.3	24.7	23.8	25.2
3	Av. Man.	16.9	18.7	20.5	26.2	22.2	22.5	21.6	22.3	22.1	21.8	19.7	19.3	21.1
	Max	100	807	86	6	8	9.7	26	86	86	86	97	N.A	100
Relative Rumidity	AV	88	16	8,4	87	36	87	833	81	င်ဆို	85.	80	Z.A	98
(*) (*)	Min	93	ģ	37	84	47	55	89	62	52	65	5.2	K N	36.
Total Rainfall (mm)	all (mm)	179.9	546.1	157.3	179.7	44.6	342.8	320.0	270.0	326 - 3	428.2	185.2 693.7	693.7	3,673.8
No. of Rainy Days	v Days	44	ရ	7	20	80	24	56	27	22	26	18	16	221

Rec'd . 1981	Mec. d in Nov. 13, 1981
67.6 Rec'd	334.0 Rec'd
au t ut	in 24 hrs.
Maximum Rainfall (mm)	from 1973 thru. 1982)

Source: Data obtained from INSIVUMEN

2.2 社会,経済環境

(1) 人口, 勞働力

Puerto Santo Tomas de Castilla は Izabal 県民国し、その面積、人口等はTable V-6のとおりである。

Table V-6 Area and Population of Puerto Santo Tomas de Castilla

	Area (km²)	Population	Density of Population (No./km²)
Puerto Santo Tomas de	12	10,000	83
Castilla	12	10,000	83

Source: Hearing from mayor of the city

当地ドかける労働力は豊富であり、自動車の運転手や一般事務員等の労働力は得やすいが、 技術者、熟練工等の質の高い労働力は余り期待出来ない。

(2) 工 業

Puerto Santo Tomas de Castilla は30年の歴史を持つ貿易港であるさとから、主要な産業として港湾関連の荷役、輸送業および倉庫業が多く存在する。その他には小規模な清涼飲料工場や製材業がある程度である。

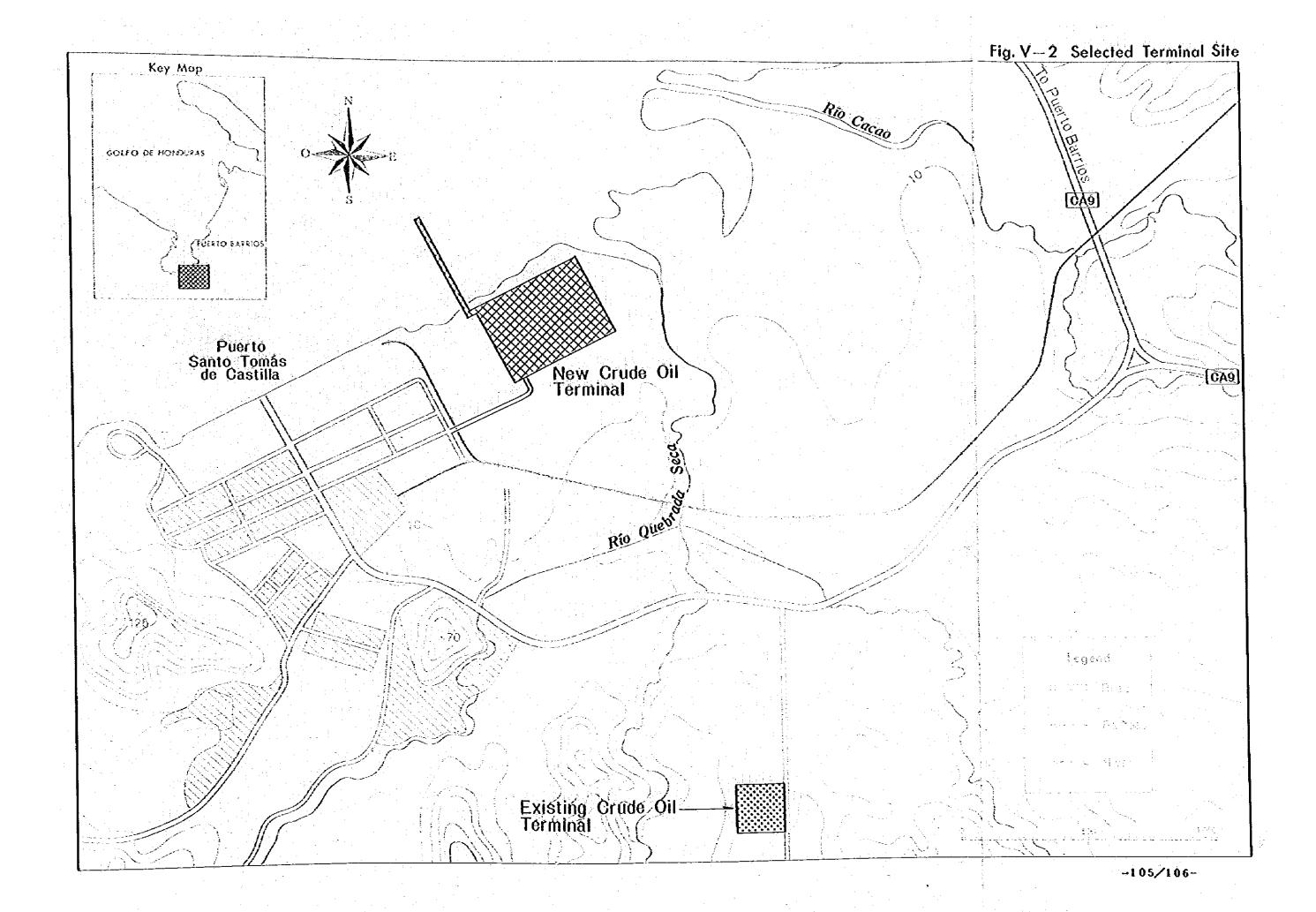
また、Guatemala California Oil Co.もあるが、1975年の下期以来停止しており、 現在は単に輸入石油製品の貯蔵基地として使われているに過ぎない。

2.3 用役・インフラストラクチャー

(1) 用 水

当地の用水源は専ら井水に依存するとととなる。なお、地下水位はOL下5加程度である。

(2) 電 力


電力公社(INDB)の電力を引込み可能だが、停電が多いため信頼性は低い。

(3) 通信手段(電話)

国営の電話公社(Quatel)より電話の引込み可能である。

(4) 道 路

グフテマラの幹線道路であるCA9がグノテマラ市および太平洋岸のSan Joseを通じており、交通の便は良い。

(5) 教育機関

近くの Puerto Barrios Kは小学校 11校があり、その生徒数は 418名である。しかし、高等教育機関は無く、高等教育は専ら首都グァテマラ市の教育機関に頼っている。

(6) 医療機関

国立および市立の病院がPuerto Barrios K 4ヶ所あり、それ等の総ペット数は 940K 達する。また、教急車1台を保有している。

(7) 公共消防設備

Puerto Barrios K消防自動車 2台を保有する。

2.4 立地の選定

原油ターミナルの候精態としてPuerto Santo Tomas de Castilla 地区とSan Prancisco del Mar 地区が上げられていた。現地調査した際、再地区のインフラストラクチャーを比較した結果、前者を選定した。この検討の対象とした Puerto Santo Tomas de Castilla の候構地は Pig. V-2 に示すように見設の港湾設備に隣接した平担な遊休地である。そして敷地は十分にあり、周辺のインフラストラクチャーも整備されている。さらに見設の原油ターミナルが近接してあるため、原油ターミナル及びパイプラインの運転にも移合がよい。

3. パイプラインルートの選定

前述したように、製油所とグーミナルの立地は、El Rancho と Puer to Santo Tomas de Castilla を選定した。そして両地点を結ぶパイプラインは、Motagua 川により開かれた渓谷に設置することとなる。

まず、この地区の地理的状況は次のとおりである。Motagua 川がChichicastenango 付近(原高約2000m)を源としてHonduras 育へ往ぐ途中に開かれた渓谷である。そしてFig.V-3 化示すようにMotagua 川に沿って国道CA9と鉄道が走っている。国道CA9はIzabal 渤省りの山宿沿いに位置している。また、Motagua 川は相当蛇行しており Los Anates 付近で鉄道と交差している。製造所となる El Rancho 付近の標高は約280mである。

また一般的にパイプラインは保安上の問題および、外力、温度変化、良雨、火災等の影響を該 らすため地下へ埋設する方式が普通である。そしてM B M も埋設方式を指摘したこともあり、パ イプラインは、地下埋設式を前提とした。

次KパイプラインのルートをMotagua 川の莨谷に3ヶ所想定した。

o Route 1 : 国铁CA9剂V

o Route 2 : 鉄道沿い

• Route 3 : Motagua川沿い

そして、3ルートに対し、建設費、運転および保全の難易性の面から比較検討をした。検討結果をTable V-7に示す。

Table V-7 Selection of Pipeline Route

化环霉素 医维克斯曼 医复数医医皮肤 建铁矿 化二

	Route 1	Route 2	Route 3
Construction Cost	Cheàp	Expensive	Expensive
Operation and Maintenance	0	×	
Overall Evaluation			

() () () () ()

一般的にパイプラインの建設費を低くするには、建設の容易な場所とパイプラインの距離を短かくする(直線)ルートの選定が必要である。そして上記3ルートに対し、これらの条件を比較すると距離面では余り差はない。しかし、工事の難易性からはRoute 2と3はアクセス道路の新設が必要なため、Route 1が有利であり、建設費が安くなる。

enteligien voorstaan ein van sterreining in die beschied van die beschied

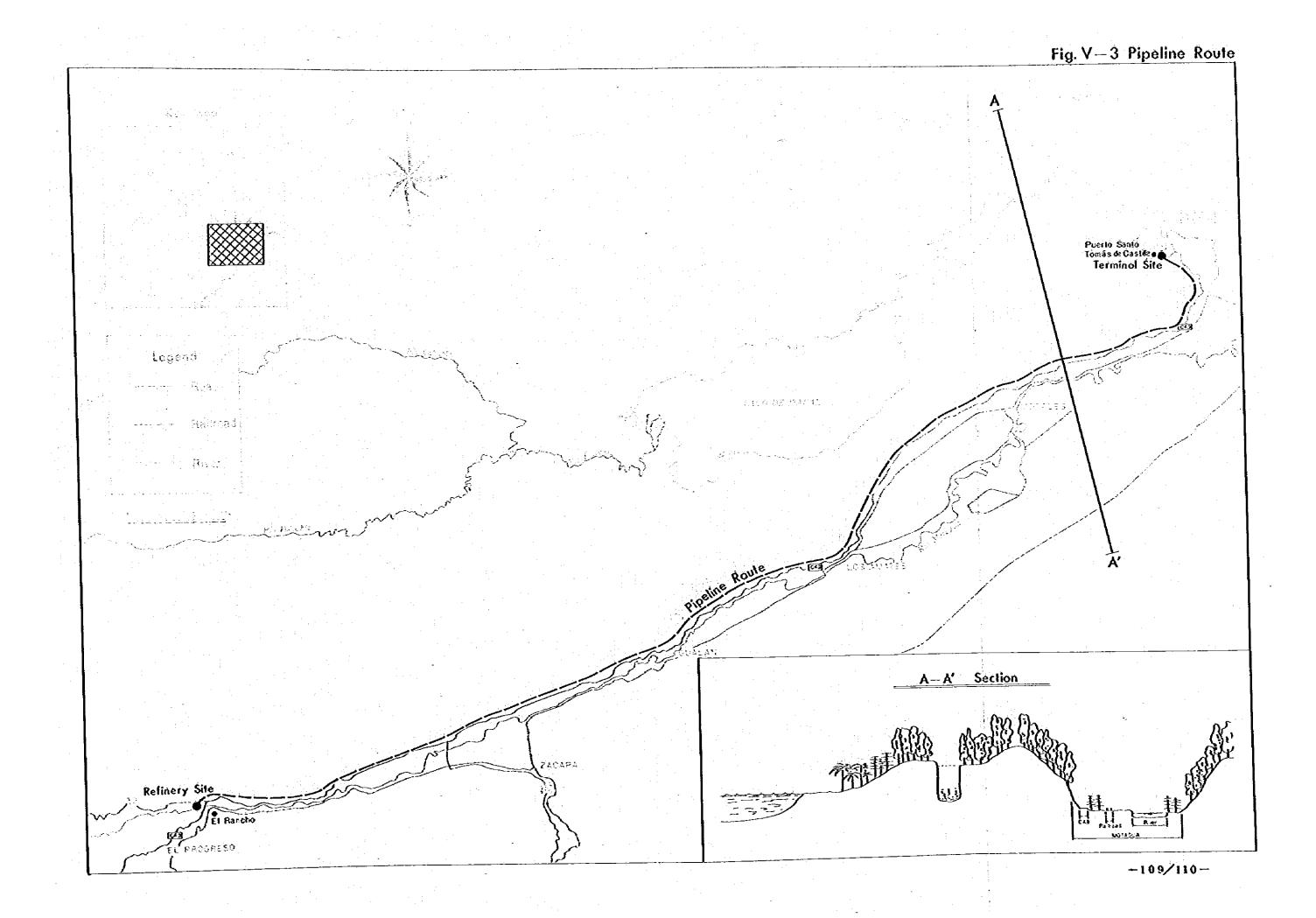
次に運転および保全菌から検討すると、日常の運転および保全が出来ると共化、万一の緊急時の対応が早急化出来る立地条件が必要であり、この面からも Route l は優れている。

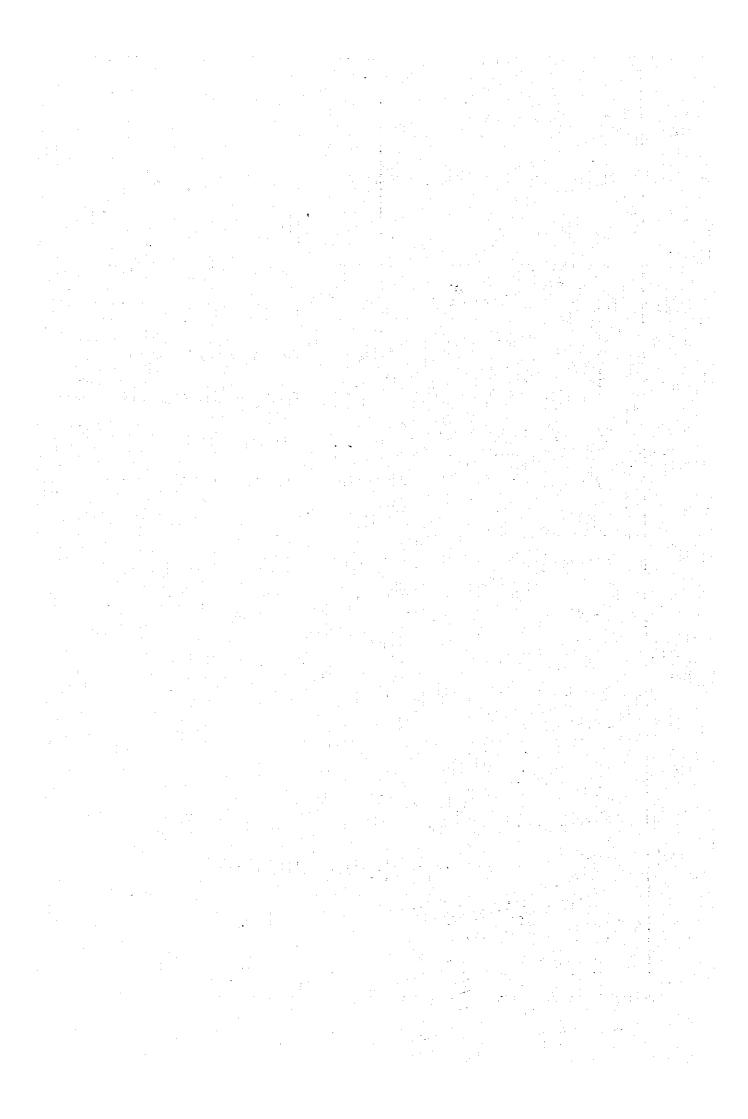
· [1] 14 · [1] · [1] · [1] · [1] · [2] · [2] · [3] · [4] ·

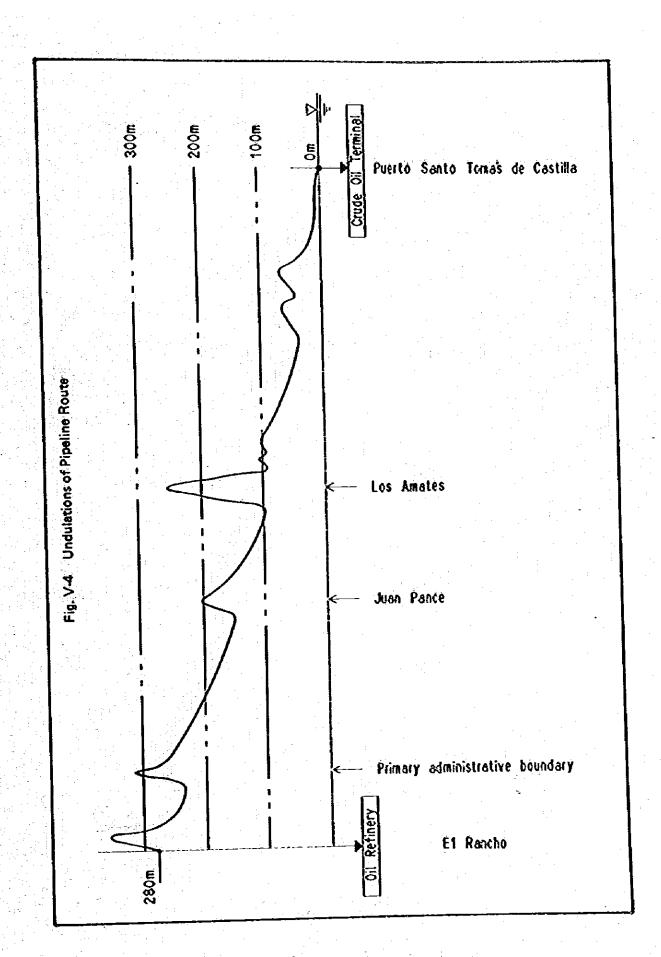
的过去式与形式 医克朗克氏学验尿炎 经保险额条款 医螺旋式多量操作

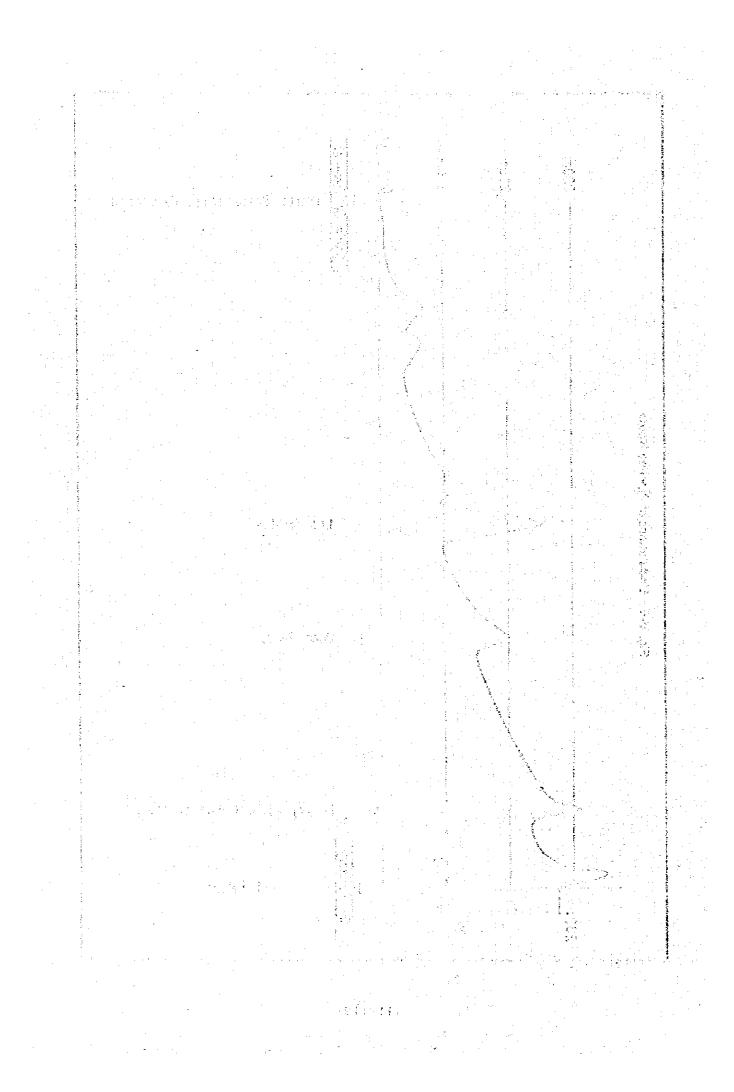
行为的现在分词 医多性原性 计工程程序 化氯化甲基甲基基

数 医复数人名法克尔特拉克氏炎 医乳管外毒 经收益贷款

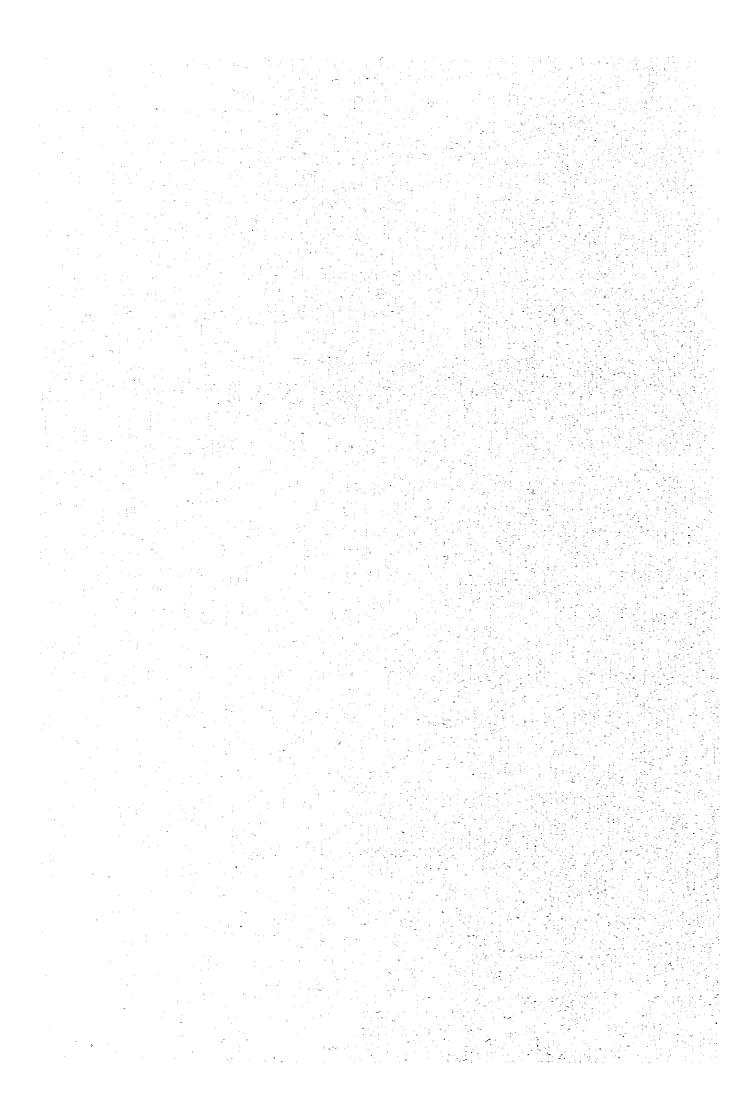

只要多位各种。12.11 **建海绵**基础


网络草属 自新设置 经销售额


1 51 51 51 51 5


以上によりパイプラインのルートは国道CA 9沿いのRoute 1を選定した。

尚、ターミナルより製油所までのパイプラインルートの高低図をFig. V-4K示す。



第VI編 設備基本計画

第71編 設備基本計画

1. 設備基本計画上の主要前提

1.1 設備基本計画の範囲

新製油所の計画の範囲は次のとおりとした。

(1) 复油所

製油所敷地内の製油プロセス本体の他、用役設備として発電・蒸気設備、冷却水設備、付帯 設備として原料、製品タンク、出荷設備、事務所、計器室、保安設備として預防車、各種消 火設備および環境設備として廃水処理設備等を範囲に含めた。この他製油所敷地外の設備と してアクセス道路、(主要道路から製油所への取り付け道路)取水配管、廃水設備等を範囲 に含めた。

(2) 原油受入れ基地(ターミナル)

ターミナルとして原油タンクの色、保安設備として水タンク、消火設備、付帯設備として事 務所、計器室、そして用役設備としてジーゼル発電機等を範囲に含めた。

(3) バイプライン

製油所とターミナルを結ぶパイプラインについては、パイプライン本体の他プースタース テーション (ジーゼル発電機、ポンプを含む)を範囲に含めた。

1.2 設備基本計酉主要前提

製油所、ターミナルおよびパイプラインの設備設計基準を決める主要前提として関連法規, 構造設計基準,原油油種,石油製品規格等について次のとおりとした。

1.2.1 関連法規・規格

次に列記する米国、日本の法規・規格に依り摂念設計を実施した。

(1) 土木・建築

Uniform Building Code

ANSI A581

(2) ポイラー・圧力容器

American Society for Mechanical Engineers または同等規格

(3) 回転級器

Japanese Industrial Standards または同等規格

(4) 電気設備

National Electrical Manufactures Association または同等規格

(5) 計装設備

Instrument Society of America または同等規格

(6) 消火設備

National Pire Protection Association または同等規格

(7) 材料

American Society for Testing and Materials 主大社 Japanese Industrial Standards 主大社同等規格

(8) 環境·保安関係設備

日本の関係法規

1.2.2 構造設計基準

米国または日本の規格により投震力、風圧力に対する設計基準は次のとおりとした。

Uniform Building Code の動的耐霞設計基準から次の式を用いた。

Y = Z I K C S W

とこて Y: 全水平せん新力(均震力)

2: 均域係数、この地域係数でグラテマラは地質の頻度が多いので最大の 1.0 とした。

1: 建物,構造物の重要度係数

K: 建物, 落造物の構造による係数

8: 妈包と建物の一次固有周期によって定める指数

W: 建物, 構造物の重量

(2) 萬田力

日本のJapan Petroleum Instituteの基準により

構造物の高さ H> 16mの場合 1207日 夏

接造物の高さ || ≤ 16mの場合 60 万| 覧 とした。

1.2.3 原油油種

第四朝原補第1.2 前原結生産量で既に述べた通り、グナテマラ産原結の可採埋蔵量は約40 百万 bbi と見込まれている。新石油法による今後の石油開発が活性化して仮りに可採埋蔵量が 2倍になったとして約80百万 bbi であり、本調査のプロジェクト対象期間の20年で割ると 約4百万 bbl/y となる。さらにこの4百万 bbl/y を年間稼動目数330 d/y で割ると約10,000 bbl/d となる。従って不足する原油については輸入する必要があり、M B M から提案のあった ノキシコ産マヤ原油を検討したが、マヤ原油は非常に重質の原油であり、石油製品の需要予測 と合致せず、又現在の技術ではこのように重質の原油を分解する技術が完成されているとはいえないので、同じメキシコ産イスマス原油を使用することとし、輸入原油はマヤ原油を50%、イスマス原油を50%使用することとした。

従って、プロジェクト対象期間の20年平均した使用原油らしては次のとおりと考えられる。

グリテマラ産原油

1 0.0 0 0 0 0 1/4

不足部分は マヤ・イスマス 各50%

但し、製油所および関連指数の基本計画前提としては、短期的にグラテマラ産原油のみを使用、または輸入原油であるマヤ、イスマス各50%の混合品のみを使用することが十分ありうるので

人ケース: グァテマラ産原油

100%

Bケース: メキシコ産原油; マヤ,イスマス 各 50%

とし、製油所および関連施設はAケース、Bケース共稼動できる施設を設計する事とした。

1.2.4 自然条件

設備を設計する場合、気温、雨量等自然条件のデータが、前提として必要となる。第V弱立 地で述べた如く、製油所はEl Rancho、ターミナル社 Puer to Santo Tomas de Castilla 化立地が定められたので この両地の自然条件をTable VI-1 化示す。この自然条件 に 関するデータは、グナティラの気象関係を担当する INSIVUMBH から聴取した1973-1982年の気象データを参考としてまとめたものである。

Table VI-1 Natural Conditions

Items	Unit	El Rancho	P.S.T. Castilla
Temperature Max.	°C	40	42
Ave.	°C	27.5	25.5
Hin.	°C	9.0	20.5
Relative Humidity	8	30 - 90	60 - 90
Rainfall			
Max. in 1 hour	Esta/h	58	68
Max. in 24 hours	rm/d	97	330

(Source: INSIVUMEH)

1.2.5 地耐力

製油所およびターミナルを建設する場合、地盤の強さ、すなわら地耐力のデータが設計前提 として必要となる。 BI Rancho および Puerto Santo Tomas de Castilla でポーリン グデータの有無を調査したが、データが得られなかったので、現地調査時持参したポータブ ルコーンによる測定結果から地耐力を推定した。この結果をTable VI-2 に示す。

Table VI-2 Bearing Capacity of the Soil

(Unit: t/m2)

El Rancho	P.S.T. Castilla
15	3

(Source: Study team's estimate)

1.3 石油製品規格

石油製品の種類およびその品質規格をグラテマラ規格、JISおよびASTMと対比してTable VI-3 K示す。本製油所の石油製品規格は、基本的にはグラテマラの石油製品規格を採用した。

グナテマラの石油製品規格は、ほとんどASTM規格化準拠しているが、一部独自の規格を 定めており、必ずしも実用的でない面も見受けられる。そこで諸外国の石油製品規格を参考と して、グナテマラの石油製品規格についてMEMと打合せを行なった結果、本製油所の製品規 格は、現在のグナテマラの石油製品規格を一部変更することにした。変更点は次のとおりである。

(1) ガソリン規格

定められている製品規格は、ほとんどASTM規格によっているが、比重についてはグラテマラ独自の規格を採用している。諸外国の規格をみても、比重が定められている国際的な規格はなく、ガソリン規格として機能上も必要ないこと、および本製油所のプロセス選定上大きな制料になることから、比重の規格をガソリン規格より削除することをMBMに提案し、基本的に了解を得た。

(2) ジェット燃料

ジェット燃料のグラテマラ製品規格もASTM規格を準用しているが、一窓の規格に相違が みられる、とくに燃料特性についてはグラテマラ規格は煙点のみで規定しており、ASTM、IP を始めとする国際規格が、煙点または輝度または煙点とナフタリン分のいずれか一つを満足 すればよいのに比してきわめて厳しい規格となっている。グラテマラ産原油の煙点は、それ 程高くないため、現状規格適りでは、ジェット燃料採取のために煙点改食装置が必要となる ため、MEMに燃焼特性の規格をASTMと同一とするように提案し、了解を得た。

Table VI-3 Product Specification

(1) Specification for Liquefied Petroleum Gas

	Guatemala	JIS	ASTH
	Oddecadia	(Grade 2-2)	(Grade P-8 Mixtures)
Specific Gravity, (60/60°F), (15/4°C)	0.500-0.560	0.50-0.63	Report
Sulfur Content, grains/100ft3, wt.8	15 max.	- 0.02 max	15 max.
Copper Strip Corrosion 1hr at 100°P	2 шах.	· · · · · ·	No. 1 max.
Vapor pressure at 100°F	210 max.	(225 max.)	200 max. or
ukut Arten. Lipati Aktoria - Jahoria			(1167-1880x Sp. Gravity)
Volatile Residue; evaporated temperature, 95%, °P	36 max.	: . -	36 max.
or			
pentane and heavier, max. vol.%		_	
Free Water Content	none	none	none
Propane Content, vol.%	40 - 70		, -
Propane & Propylene Content, vol.%	-	50~90	
Butane & Butylene Content,	-	<50	· -

(2) Specification for Automotive Gasoline

	Guatemala	JIS	ASTM
olor	Red/Orange	Orange	
ulfur, wt.8	<0.15	- 1	<0,15
opper Strip Corrosion 3hrs at 50°C	1 max.	1 max.	1 max.
xistent Gum mg/100ml	4.0 max.	5 max.	5 max.
oxidation Stability	240 min.		240 min.
eid Vapor Pressure, psi	10 max.	6.4-11.4	
Anti-knock Index		e Orași în Popole Sinif Orași Para	ong filosofie (n. 1925) Ong filosofie (n. 1925) On a politica (n. 1925)
RÓN	87/95	85/95	n mak interpreter n <u>L</u> ena n New Year session
(RON+190N)/2		one William (Propie) See E	87/89/93
Lead Content, g/U.S. gal	3.17 max.	1.1 max.	4.2 max.
API Gravity, 60°P	(58 min)*		de la co le gionar
	(-)**		TO BENTALLY OF THE STATE OF THE
Doctor Test	Negative		
Mercaptan Sulfur, wt.	0.005 max.		ang ter d ak belah Jeograpia
ASTH Dist., °C		il de la companya di salah di Salah di salah di sa	
101	65 max.		50-70 max.
50%	77 min.		77 min.
501	118 max.	125 max.	110-121 max.
90%	190 max.	180 max.	185-190 max.
978	v Nordania	205 max.	
End Point	221 max.	-	225 max.
Dist. Residue, vol.	2.0 max.	2.0 max.	2 máx.

(3) Specification for Kerosene

	Guatemala	JIS	ASTM
API Gravity, 60°F	50 max.	-	· -
Plash Point, °C	38 min.	40 min.	38 min.
Saybolt Color	+16 min.	+25 min.	+16 min.
Sulfur, wt. %	0.1 max.	0.015 max.	0.04 max.
Smoke Point, mm	19 min.	23 min.	
Viscosity at 40°C, cSt	1.0 min.	4	1.0 min.
	1.9 max.	<u></u>	1.9 max.
Copper Strip Corposion 3hrs at 50°C	No.3 max.	No.1 max.	No.3 max.
ASTM Dist., °C			Andreas (Sec. 27) The Committee (Sec. 27)
10%	205 max.		205 max.
97%		270 max.	
End Point	300 max.		300 max.

(4) Specification for Jet Fuels

	Guatemala		ASTH (Grade-Jet
			A-1)
API Gravity, 60°F	39-51	39-51	37-51
Flash Point, °C	38 min.	38 min.	38 min.
Viscosity, cSt at -34.4°C		15 max.	a Ali₹.asifb
at -20°C			8 max.
at -1 °C	15 max.		
Saybolt Color	21 min.		
Sulfur, wt.t	0.2 max.	0.3 max.	0.3 max.
Doctor Test	negative		
Copper Strip Corrosion 2hrs			
at 100°C	lb max.		No. 1 max.
Existent Gum, mg/100ml	7 max.	7 max	7 max.
Freezing point, °C	-47 max.	-50 max.	-47 max.
Combustion Properties			
(1) Luminomèter no.	(-)* (45 min.)**	45 min.	45 min.
or (2) Smoke Point, mm	25 min.	25 min.	25 min.
or (3) Smoke Point, rm	(-)* (20 min.)**	20 min.	20 min.
and Naphthalenes, vol.	(-) * (3 max.) **	3 max.	3 max.
Net Heat of Corbustion, Btu,	⁄1 Ъ -	18,400 min	. 18,400 min.
or Aniline-Gravity Product	5,250 min.	5,250 min.	5,250 min.
Aromatics, vol.1	22 max.	20 max	20 max.
Olefines, vol.	5 max.	5 max.	-

ASTH Dist., °C		(Grade-1)	(Grade-Jet A-1)
103	204.4 max.	204 max.	204.4 max.
20 %	•	report	aj Aleta Car
50 1		232 max.	report
90		report	report
End Point	288 max.	287.5 max.	300 max.
Residue \$	1.5 max.	1.5 max.	1.5 max.
Loss &	1.5 max.	1.5 max.	1.5 max.

Guatemala

ASTM

^{*/**} Revised through consultation with MEH.

(5) Specification for Gas Oils

A STATE OF THE STA	Guatemala	JIS	ASTH
		(Grade-2)	(Grade-No. 2-D)
Water and Sediment, vol.	0.05 max.	÷	0.05 max.
API Gravity, 60°F	30 min.		e di Persona
Plash Point, °C	52 min.	50 min.	52 min.
Viscosity cSt at 100°P	1.93-4.28		
at 30°C		2.5 min.	
at 40°C			1.9-4.1
Pour Point, °C	-7 max.	-10 max.	
Sulfur, wt. 8	0.5 max.	0.5 max.	0.5 max.
Copper Strip Corrosion 3hrs at 50°C	No. 3 max.		No. 3 max.
Cetane Index	45 min.	45 min.	40 min.
Conradson Carbon Residue on 10% Residuum, wt.%	0.35 max.	0.10 max.	0.35 max.
Ash Weight, wt.1	0.01 max.		0.01 max.
Neutralization No. mg KOH/g	0.5 max.	<u>-</u>	
ASTH Dist. °C, 90% min.	282	<u>.</u>	282
max.	338	350 max.	338

(6) Specification for Fuel Oils

·大学的基本的主要。1995年1996年1996年1996年1996年1996年1996年1996年	Guatemala	JIŠ	ASTM
		(Grade - No. 3-1)	(Grade - No. 6)
Water, vol.%	0.75 max.	0.5 max.	i r ii da
API Gravity, 60°P	12 min.		
Plash Point, °C	60 min.	70 min.	60 min.
Viscosity, (SSU at 122°F (SSP at 122°P	45-300) * 45-300) **		
cst at 50°C	-	<250	92-638
Pour Point, C	-1		
Ash Weight, wt. \$	0.1 max.	0.1 max.	ratu <u>k</u> seri) Kalikanak
Sulfur, wt.8	3.0 max.	3.5 max.	
Sediment by Extraction	0.5 max.		ings and see This process.
Water & Codiment : Vol. &		- · · · · - ·	2.0 max.

*/** Revised through consultation with MEM.