

FIG. 1.2.1 PROPOSED CROPPING CALENDAR

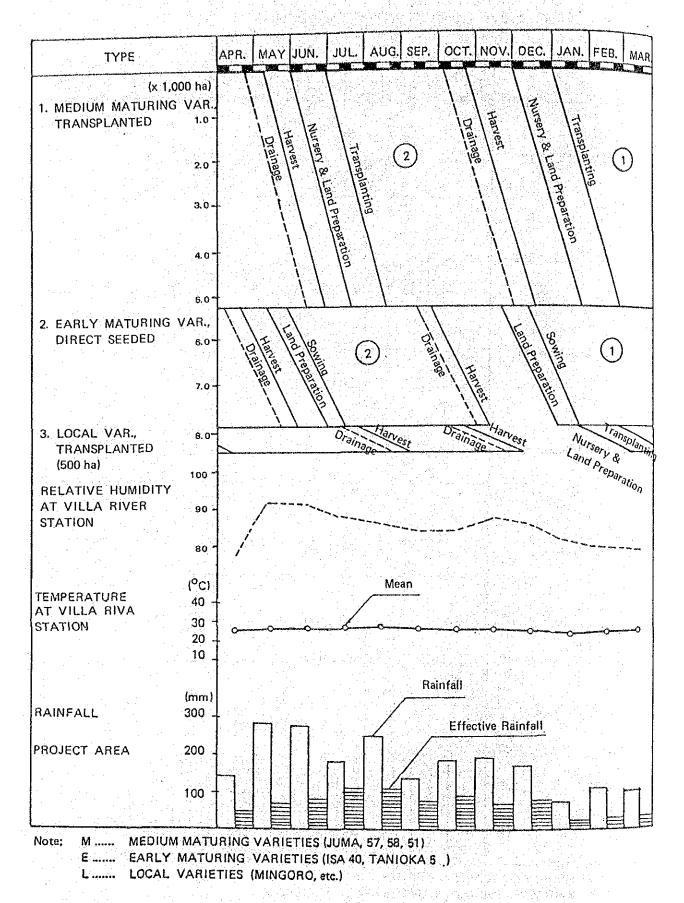
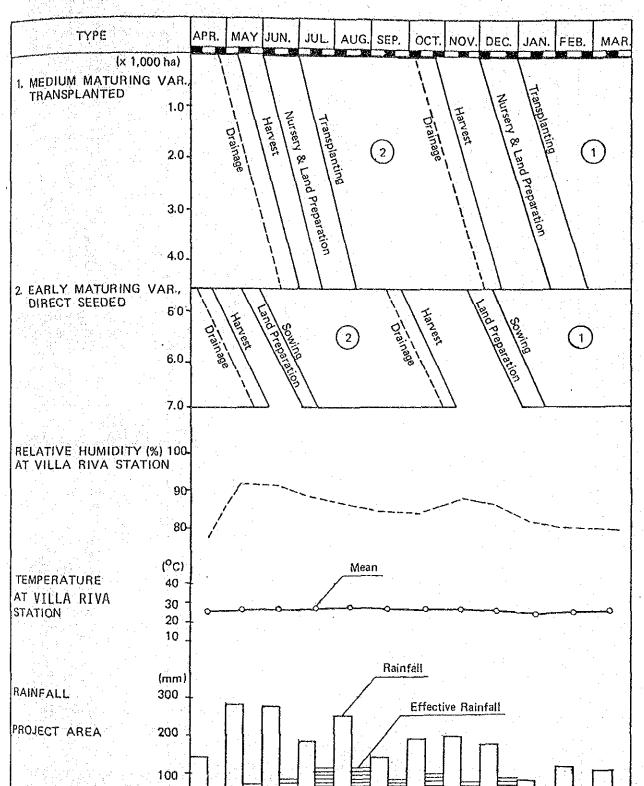
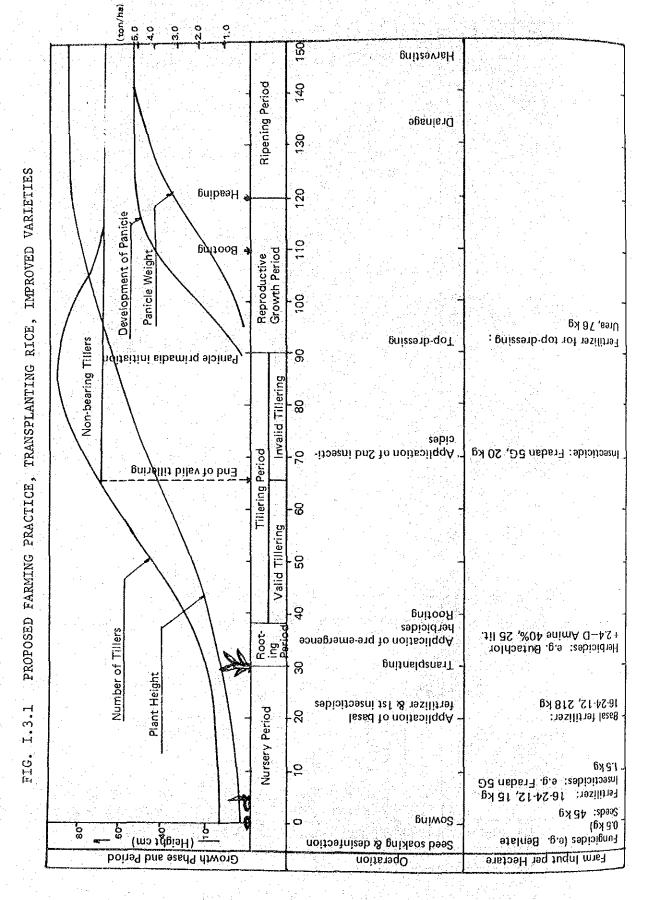




FIG. I.2.2 CROPPING PATTERN (ALTERNATIVE A)

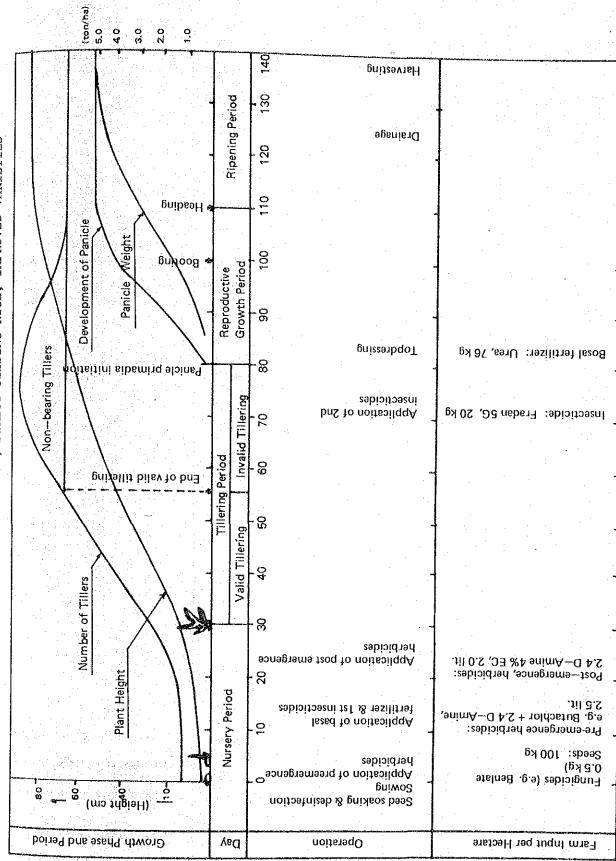
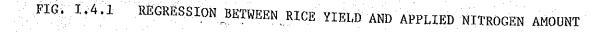
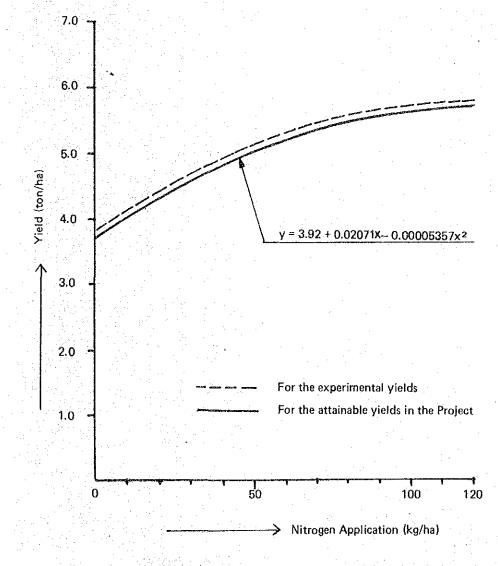
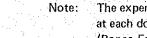


FIG. I.2.3 CROPPING PATTERN (ALTERNATIVE B)


Note: M MEDIUM MATURING VARIETIES (JUMA, 57, 58, 51) E EARLY MATURING VARIETIES (ISA 40, TANIOKA 5) L LOCAL VARIETIES (MINGORO, etc.)

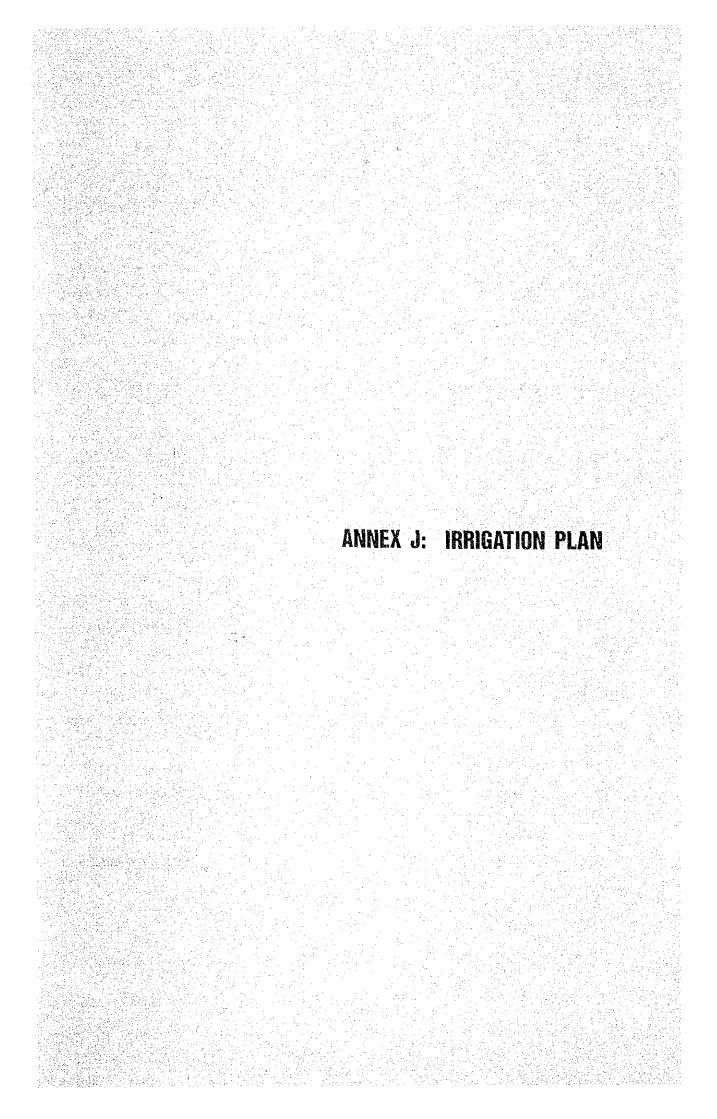




Ripening Growth Stage	Sed harvesting	
RIETIES Non-bering Enclose Benicle primadia Initiation Fring Stage Reproductive Growth Stage	230 240 250	
LOCAL VARIETIES Non-bering Development of Periote primad initiation Valid Invalid Gr	1st harvesting Budding arrangement Application of fertilizer & S herbicide Application of insecticide, 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Fertilizer: Urea, 82 kg Herbicid: 2,4–D Amine 40% EC 10 ilt. Insecticide: e.g. Fradan 5G, 10 kg
RICE, Ripenii Growti		
NSPLANTING	- Top dressarb qoT - 65 - 12 - 13 - 13 - 13 - 13 - 13 - 13 - 13 - 13	
NG PRACTICE, TRAN Non-bearing Tillers Panicle primadia initiation Stage		
PROPOSED FARMING PRACTIC Finitiation Tillering Stage	60 70 80	EC, 1 lit.
3.3 A tillers Stage	ය Application of basal fertilizer & 1st insecticide Application of pre-emergence & & & & & & & & & & & & & & & & & & &	Basal fertilizer: 16-24-12, 188 kg Insecticide: e.g. Fradan 5G, 20 kg
Rersery Stage	Seed soaking & desinfection 5	Fundariades: e.g. Benlate, 0.5 kg Seeds: 45 kg Fertilizer: 16-24-12, 15 kg Insecticide: e.g. Fradan 5G, 1.5 kg
Growth Phase and Period	T 37	Farm Inputs per Hectare
	1-34 	

The experimental data of yields and the applied nitrogen are indicated at each dots for the mean yields between Juma 57 and Fuma 58 (Bonao Experimental Station, CEDIA, Planted in January 1973) FARM OPERATION METHOD OF RICE CULTIVATION FIG. I.5.1

•
Ś
Plowing


& Soil Harrowing	Trans-					
Breaking & Leveling	planting	Spraying	Weeding	Harvesting	Threshing	Drying
1. 4-wheel Tractor + 1	Draft Animal					

Hauling

4-wheel	Draft Animal Manpower	Manpower	Manpower	Manpower	Manpower	Power	Sunshine	Draft	
Tractor	(Harrow &		(Hand	(Rotary		Thresher		Animal	
(Disc Harrow)	Leveler)		Sprayer)	Weeder)	(Sickle)			(Cart)	
7.07.1011									
2. Power Tiller	Tiller			•					
Power	Power Tiller	Manpower	Manpower	Manpower	Manpower	Power	Sunshine	Power	مىشىمۇر
Tiller	(Harrow & Leveler)		Hand Spraver)	(Rotary Weeder)	(Strk1e)	Thresher	& Dryer	Tiller (Trailer	

The farm operation method of the direct seeded rice is the same as the above method except for the operation of seeding No. of passing of each operation are indicated in Table I.5.1 Note: (1)

ଟି

CONTENTS

		Page
1.	Source for Irrigation Water	J-1
1.1	General	J-1
1.2	Available Irrigation Water from the Yuna River	J-2
	1.2.1 Minimum Discharge of Intake Site	J-2
	1.2.2 Discharge to Lower Stream	J-3
	1.2.3 Available Irrigation Water	J-4
	에게 되었다. 이번 것 같은 것이 있는 것이다. 특징 동안 동안 사람이 가지 않는 것이 같이 있는 것이 같은 것이 같은 것이 있는 것이 같이 있는 것이 같이 있다.	· · · · ·
2.	Net Irrigation Requirements	J-4
2.1	Reference Crop Evapotranspiration, ETo	J4
2.2	Crop Water Requirements, ETo	J-6
2.3	Field Water Requirements	J-6
2.4	Irrigation Water Requirements	J-7
		•
3.	Return Flow	J-13
		an a
4.	Design Intake Rate	J-14
		. •
5.	Division of Irrigable Area	J-15
6.	Main Irrigation Canal and Irrigation Network	J-17
7.	Irrigation Canal	J-20
7.1	Main Irrigation Canal	J20
	7.1.1 Canal Section	J-20
		J-22
7.2		J-24
o	Rural and In-farm Road Plan	J-25
8.	kural and in-iarm koad rian	
	Appendices	J28
9.	Appendices	5 25

LIST OF TABLES

Page

			-
TABLE	J.2.1	CALCULATION OF REFERENCE CROP EVAPOTRANSPIRATION	J5
TABLE	J.2.2	CALCULATION OF UNIT WATER REQUIREMENT (A)	J9
TABLE	J.2.3	CALCULATION OF UNIT WATER REQUIREMENT (B)	J-10
TABLE	J.2.4	CALCULATION OF UNIT WATER REQUIREMENT (C)	J-11
TABLE	J.2.5	UNIT IRRIGATION REQUIREMENT	J-12
		INTAKE RATE	
TABLE	J.5.1	DIVERSION OF IRRIGABLE AREA	J-15
TABLE	J.7.1	DIMENSION OF IRRIGATION CANAL	J-21
TABLE	J.7.2	RESULTS OF HYDRAULIC CALCULATION OF MAIN CANAL	J-23
TABLE	J.7.3	HYDRAULIC CALCULATION OF SECONDARY CANAL	J~24
TABLE	J.8.1	ROAD NETWORK PLANNING	J-27

LIST OF FIGURES

FIG. J.5.1	DIVISION OF THE PADDY FIELD BLOCK J-16
FIG. J.6.1	PLAN OF MAIN IRRIGATION CANAL J-18
FIG. J.6.2	PLAN OF IRRIGATION SYSTEM J-19
FIG. J.8.1	FARM ROAD NETWORKS J-26

J-ii

ANNEX J: IRRIGATION PLAN

1. Source for Irrigation Water

1.1 General

Water for irrigation within the study area and into circumference may be obtained from one or more of the following sources:

- The Yuna River

Tributaries within the study area: Caño Gran Estero, Caño Ponton, Caño Moreno, the Guayabo River

- Groundwater in marshes

The selection among these sources of the most appropriate one for the development area depends on their reserves, water quality, topographic and geological conditions, etc. After having studied these factors, the Yuna River has been selected as the principal source to supply the development area with irrigation water; others may be relied upon as supplementary sources of irrigation water to areas where the conduction of water from the Yuna River is technically unfavorable from topographical viewpoint. Technical factors are as mentioned below.

- (1) The Yuna River presents no constrains on volume and quality of water and diversion of irrigation water by gravity is technically feasible by constructing headworks with less operation cost.
- (2) Tributaries within the study area face with the deficiency of water during droughty season due to the limited extension of the catchment area and lower preservation capacity of their basin extended over marshes.
- (3) Groundwater existing marshes has such constraint as to be reduced water collecting capacity and to be acidificated by the resolution of peat soils with the progress of development.

(4) In case of all sources except the Yuna River, pumping will be the only proposal to obtain irrigation water; furthermore, the topographic condition forces to construct pumping station on poor foundation well as to conduct irrigation water from lower to higher lands.

1.2 Available Irrigation Water from the Yuna River

1.2.1 Minimum Discharge at Intake Site

According to the water balance study carried out for the detailed design of the El Pozo Project (see ANNEX B.5.3), the minimum discharges of the Yuna River at Arenoso for the return period of 5 years are as summarized in the table below.

MINIMUM DISCHARGE AT ARENOSO

Case	Discharge at the Hatillo Dam	Minimum Discharge for the Return Period of 1/5 (m ³ /s)
1	Regulated dischrge at 29.3 m ³ /s will be secured for the purpose of power generation	22.7
2	Regulated discharge at 20.0 m ³ /s will be secured for the purpose of power generation	17.1
3	Discharge will be made to satisfy the irrigation requirements of the lower catchment area	25.3
4	Discharge will be made to satisfy the irrigation requirements of the Yuna Canal	14.0

As mentioned above the minimum discharge at Arenoso varies according with the discharge at the Hatillo Dam. Though the discharge program at the Hatillo Dam has not been established, the Study Team consulted with the INDRHI and an agreement was made between the parties that the discharge of 29.0 m^3/s at the Hatillo Dam would be applied for this purpose. Accordingly, the irrigation scheme will be established on the assumption that the minimum discharge at Arenoso is to be secured at 22.7 m^3/s for the return period of 5 years.

1.2.2 Discharge to Lower Stream

Water discharge from the study area to the lower catchment area has not been regulated. In the cases of the North Yaque Irrigation Project and the AGLIPO Agricultural Development Project, this volume had been determined equivalent to the minimum discharge in the past; for the AGLIPO (El Pozo) Project it was established to be 5.5 m^3/s . This discharge may be determined considering the following factors.

a. Preservation of the irrigation water for the lower catchment areab. Environmental conservation of resources in the river-mouth areac. Maintenance of the river operation

Among three factors cited above, b. and c. can be disregarded their influence being negligible. On the contrary, preservation of the river flow to the paddy field which is located on the right bank should be taken into account.

In order to supply the total paddy field ranging 2,000 - 3,000 ha with irrigation, the irrigation water requirement is estimated to be at between 2 m^3/s and 3 m^3/s .

The discharge of 5.5 m^3/s which was established in the El Pozo Project will be also applied in planning the irrigation scheme of the study.

1.2.3 Available Irrigation Water

The available irrigation water from the Yuna River to the development area is calculated by substracting the water requirement for the El Pozo Project and the preservation dischrge to the lower stream from the minimum discharge at Arenoso.

Minimum Discharge at Ar	enoso $22.7 \text{ m}^3/\text{s}$
Water Requirement for t	he El Pozo Project (-) 5.5 m ³ /s
Preservation Discharge	(-) 5,5 m ³ /s
Available Irrigation Wa	$11.7 \text{ m}^3/\text{s}$

2. Net Irrigation Requirements

2.1 Reference Crop Evapotranspiration, ETo

Reference crop evapotranspiration has been computed by applying the Penman Method. Climate data for this purpose are collected at the Barraquito Station which is located adjacent to the study area and provides more reliable data.

The form of the equation used in this method is:

	radiation term	aerodynamic term
where,	ETo :	reference crop evapotranspiration in mm/day
	W :	temperature-related weighting factor
	Rn :	net radiation in equivalent evaporation in mm/day
	f(u) :	wind-related function
	(ea-ed):	difference between the saturation vapour pressure at mean air temperature and the mean actual vapour pressure of the air, both in mbar
	c :	adjustment factor to compensate for the effect of day and night weather conditions

ETo computation is summarized in Table J.2.1.

	NUC	н ЦЦ Ц	MAR	APR	MAY	JUN	Ъŗ	AUG	SEP	ocT	NON	DEC	Reference
(1) T mean °c	23.5	23.8	24.6	25.6	26.5	27 4	27.2	27.2	27.1	26.7	25.5	23.7	Appendix J.2.1
(2), RH mean X	85.1	83.8	81.7	79.3	8.19	83.1	83.6	84.2	84.3	97.58	86.0	86.3	Appendix J.2.2
(3) ea mbar	29.0	29.5	30.9	32.8	34.7	36.5	36.1	36.1	35.9	35.1	32.7	29.3	Appendix 3.2.5
(4) ed=(2)x(3) mbar	24.7	24.7	25.2	26.0	28.4	30.3	30.2	30.4	30.3	29.7	28.1	25.3	
(S) ea-ed mbar	£.4	4.8	5.7	6.8	6.3	6.2	5-5	5.7	5.6	5.4	4-6	4-0	
(6) Wind U km/day	1.5	138	147	164	147	138	130	104	112	104	104	104	Appendix J.2.3
(7) £(u)=0.27(1+100)	0.62	0.64	0.67	0.71	0.67	0.64	0.62	0.55	0.57	0.55	0.55	0.55	
(3) Weighting factor (1-4)	0.27	0.27	0.26	0.25	0.24	0.24	0.24	0.24	0.24	0.24	0.25	0.27	Appendix J.2.7
(9) Weighting Eactor (W)	0.73	0.73	0.74	0.75	0.76	0.76	0.76	0-76	0.76	0.76	0.75	0.73	Appendix J.2.8
(10) Ra mm/day	11.2	12.7	14.4	15.6	16.3	16.4	16.3	15.9	14.8	13.3	11.6	10.7	Appendix J.2.9
(11) n/N Ratio	0.60	0.64	0.64	0,62	0.57	0.58	0.58	0.58	0.59	0.59	0.59	0.59	Appendix J.2.4
(12) (0.25+0,5n/N)	0.55	0.57	0.57	0.56	0.54	0.54	0 54	0.54	0.55	0.55	0.55	0.55	
(13) Rs=(12)x(10) mm/day	6.2	7.2	8.2	8.7	8.8	8.9	8.8	8.6	1.8	7.3	6.4	5.9	
	4.7	5,4	6.2	. é. 5	6.6	6.7	é.6	6.5	6.1	5.5	4.8	7 7	¢ =0.25
(15) £(T)	15.3	15.4	15.6	15.8	16.0	16.2	16.1	16.1	16.1	16.0	15-8	15.3	Appendix J.2.11
(16) f(ed)	0.12	0.12	0.12	0.12	0.12	0.11	0.11	11.0	11.0	0.12	0.12	0.12	Appendix J.2.12
(17) f(n/N)	0.64	0.68	0.68	0.66	0.62	0.62	0.62	0.62	0.63	0.63	0.63	0.63	Appendix J.2.13
(18) 8n1=(15)×(16)×(17)	1.2	1,3	1.3	1.3	1.2	1.1	1-1	1.1	1.1	1.2	1.2	1.2	
(19) Rn=(14)-(18)	3.5	4 . 1	4.9	5.2	5.4	5.6	5.5	5.4	5.0	4.3	3.6	3.2	
(20) Adjustment factor (C)	1.05	1.07	1.08	1.13	1.14	1.14	1.14	1.12	1.08	1.07	1.05	1.05	Appendix J.2.14
(21) (9)x(19)	2.56	2.99	3.63	3.90	4.10	4.26	4.18	4.10	3.80	3.27	2.70	2.34	
(22) (8)x(7)x(5)	0.72	0.83	66.0	1.21	1.01	0.55	0.88	0.75	0.77	0.71	0.63	0.59	
(23) (21)+(22)	3.28	3.82	4.62	5.11	5.11	5.21	5.06	4.85	4.57	3.98	3.33	2:93	
(24) ETo=(20)x(23) mm/dav	3.4	4 . 2	5.0	5.8	5.8	5.9	5.8	5.4	4.9	4		3.1	
(25) For Project F	1.10	1.12	1.13	1.15	1.15	1.15	1.15	1.15	1.13	1.12	1.11	1.10	
(26) ETo mm/dav	3.7	4.6	5.7	6.7	6.7	6.8	6.7	6.2	5.5	4.8	3.9	3.4	
(27) ETo mm/month	114.7	128.8	176.7	201.0	207.7	204.0	207.7	192.0	165.0	148.8	0.211	105.4	
* ETO Of Elnozo mu/monsth	¢.11.	6 6 L	177	192	901	192	198	192	171	146	117	109	

TABLE J.2.1 CALCULATION OF REFERENCE CROP EVAPOTRANSPIRATION

2.2 Crop Water Requirements, ETcrop

Crop water requirements have been estimated by the equation as follows:

```
ETcrop = Kc x ETo
```

where, Kc : crop coefficient

ETo : reference crop evapotranspiration

and the results are shown in Tables J.2.2 - J.2.4.

The crop coefficients, which have been obtained according with FAO's guideline, are as follows:

Period of Growth	Crop Coefficient
lst month 2nd month	1.1
Mid-season	1.05
Last 4 weeks	0.95

2.3 Field Water Requirements

Field water requirements may be obtained by adding deep percolation and water requirement for land preparation and nursery to crop water requirement to respond the proposed cropping patterns. The calculation is summarized in Tables J.2.2 - J.2.4.

(1) Proposed Cropping Patterns

In compliance with the prevailing farm conditions, the following three proposals on cropping patterns have been presented:

나는 것을 물러 이렇게 다니는 것을 가지 못 못 하는 것을 가지 않는 것을 하는 것을 수 있다.

Cropping Pattern A :	Medium maturing improved varieties will be
	sowed twice a year by means of
	transplanting
Cropping Pattern B ;	Medium maturing improved varieties will be
	sowed twice a year by means of direct
같은 그는 것 같은 것 같은 것을 많을 것 같이 많을 것이다.	seeding

Cropping Pattern C :

Traditional varieties will be sowed by transplanting for the first stage and by ratooning for the second stage

(2) Water Requirements for Land Preparation and Nursery

Water requirements for land preparation and nursery are calculated to be 100 mm for both first and second harvests.

2.4 Irrigation Water Requirements

Irrigation water requirements are calculated by means of the formula:

I.W.R. = F.W.R. - Effective Rainfall Crop Coefficient

where, I.W.R. = Irrigation Water Requirements F.W.R. = Field Water Requirements

(1) Effective Rainfall

Effective rainfall for the return period of five years has been estimated employing 15 years (1969-1983) rainfall data with the computation of their probability.

In estimating the effective rainfall, the following equation has been applied to meet the height of levee.

 $Re = R \times 0.8 - (ETcrop + P) < 100 mm$

where,	Re	;	Effective rainfall		
	R		Rainfall	N	
	ETcrop	:	Crop water requirem	ent	
	P	:	Deep percolation	0.5	mm/day

The results of this estimation is presented in Appendix J.2.16.

(2) Irrigation Efficiency

Irrigation efficiency has been calculated as follows:

- E = Ec.Eb.Ea = 0.58
- where, E : Irrigation efficiency
 - Ec : Conveyance efficiency = 0.9
 - Eb : Field canal efficiency = 0.8
 - Ea : Field application efficiency = 0.8
- (3) Irrigation Water Requirements

Irrigation water requirements for each month have been calculated after obtaining field water requirements, effective rainfall and irrigation efficiency (see Table J.2.5).

and and <th>IST CROP MANAGE 1.10 1.10 1.10</th> <th></th> <th></th> <th></th> <th></th> <th>130</th> <th>1</th> <th></th>	IST CROP MANAGE 1.10 1.10 1.10					130	1	
rr Requirement paration for Cultivation for Cultivation (mm/month) 204.0 / 207.7 192.2 (mm/month) 204.0 228.5 211.4 (mm/month) 15.1 72.7 186.9	IST CROP MANAGE 1.10 1.10 1.10					05	¥۴	
for Cultivation 204.0 207.7 (mm/month) 1.00 1.10 (mm/month) 204.0 728.5 (mm/month) 15.1 72.7	NAGE					SECOND	CROP	イ、ジ
(mm/month) 204.0 207.7 (mm/month) 204.0 207.7 (mm/month) 204.0 228.5 0.074 0.318 (mm/month) 15.1 72.7				//		한 글말을 모으는	MANAGEMENT	***** \$
(mm/month) 204.0 207.7 1.00 1.10 1.10 (mm/month) 204.0 228.5 (mm/month) 204.0 228.5 (mm/month) 15.1 72.7								
1:00 1:10 (mm/month) 204.0 228.5 2 (mm/month) 0.074 0.318 ((mm/month) 15.1 72.7 1	· · · · · · · · · ·			114.7	128.8	176.7	0-102	207.7
(mm/month) 204.0 228.5 0.074 0.318 (mm/month) 15.1 72.7				1.10	1.10	1.10	1-05	0.95
0:074 0.318 (mm/month) 15.1 72.7				126.2	141.7	194.4	212.0	197.3
(mm/month) 15.1 72.7		8		0.318	0.871	1.000	0.992	0.590
	181.5 1			40.1	123.4	194.4	210.3	116.4
(7) Area Factor of L.P and N 0.200 0.620 0.180			0.200	0.620	0.180		· 	1
(8) Water Requirement L.P and N (mm/month) 20.0 62.0 18.0	1		20.0	62.0	18.0	1	•	I
Field Water Requirement (mm/month) 35.1 134.7 204.9	181.5 1:	139.8 37	.8 21.0	102.1	141.4	194.4	210.3	116.4
(10) Effective Rainfall (mm/month) 74.3 113.0 114.8	85.0 10	102.1 67.7	.7 39.0	32.4	37.6	37.3	57.0	77.0
(11) Area Factor of Effective Rainfall 0.207 0.718 1.000	1 000 0	0.895 0.340	40 0-138	0.718	1.000	1.000	0.992	0*590
(12) Weighted Effective Rainfall (mm/month) 15.4 81.1 114.8	85.0 9	91.4 23.0	0 5 4	23.3	37.6	37.3	56.5	45.4
(13) Net Irrigation Requirement (mm/month) 19.7 53.6 90.1	96.5	48.4 14	8	78.8	103.8	157.1	153.8	71.0
(14) Irrigation Efficiency 0.58 0.58 0.58	0.58	0.58 0.	0.58 0.58	0.58	0.58	0.58	0.58	0.58
(15) Irrigation Requirement (mm/month) 34.0 92.4 155.3	166.4 8	83.4 25	25.5 26.9	135.9	179.0	270.9	265.2	122.4
(mm/day) 5.469 4.152 5.011	5.546 3.	3.006 2.5	-502 6.287	6.104	6.392	8.737	8.883	6.693
" (1/s/ha) 0.633 0.481 0.580	0.642 0	0.348 0.2	.290 0.728	0.706	0.740	1.011	1.028	0.775
1 (4) = (2) x (3)	(6) = (6) + ((8) (15)	(13)/(14)					
(6) = (4) × (5) (6) = (4) × (5) (6) = (100.0 × (7) (6)	(12) =(10) x ((13) = (9) - ((11) (16) (12) (17)	IF H	<pre>(15)/(Days of Month x ((16)/8.64</pre>	((II)			

L.Y. : Land Freparation F.G. : Nursery N : Nursery F.G. : Flooding for Cultivation F.G. : Flooding for Cultivation F.G. (2) Ef (mm/month) 204.0 (3) Crop Vater Requirement (mm/month) 204.0 (4) Crop Vater Requirement (mm/month) 204.0 (5) Maighted C.W.R (mm/month) 204.0 (5) Maighted C.W.R (mm/month) 234.4 (5) Maighted C.W.R (mm/month) 68.0 (7) Area Factor of L.P and N (mm/month) 68.0 (7) Area Factor of L.P and N (mm/month) 51.0 (9) Field Water Requirement I.P and N (mm/month) 74.3 (10) Effective Rainfall (mm/month) 74.3 (11) Area Factor of Effective Rainfall (mm/month) 74.3 (12) Wet Irrigation Requirement (mm/month) 71.3 (13) Net Irrigation Requirement (mm/month) 75.1 (14) Irrigation Requirement (mm/month) 75.1 (15) Irrigation Requirement (mm/month) 0.56 (15) Irrigation Requirement (mm/month) 75.1

			300	5) 1 1		0 1 1			¢
(1) Cropping Fattern		Сл. Г			Uo					Ç		C u	
	<u> </u>		UT UT	ų	× ~ ~	U Y			<u> </u>		C,	100	
	<u> </u>				X		×				<u>M</u>		
Note - Cros Mater Barritemone		CRCT CRCB	7			BATOONING						T.OCT	aça,
										347	₹Î Î		
••		ξ				MARAGE HEAL		, A		<u>;</u> /			MANAGEMEN
	iton			V			y						
Water	L									1 - 2 (2) 			
							- 						
(2) ET. (mm/month)	ch)	204.0	207.7	192.2	165.0	148.8	117.0	105.4	114 7	128.8	176.7	201.0	207.7
(3) Crop Coefficiency		1.05	1.00	1.00	1.10	1.05	0.95	0.95	1-10	0T'T	1.10	1.10	01.1
(4) Crop Water Requirement (mm/month)	(4:	214.2	207.7	192.2	181.5	156.2	111.2	1001	126.2	141.7	194.4	221.1	228.5
(5) Area Factor of C.W.R		1.000	0.895	0.445	0.661	788 0	0.320	0.000	0.002	010.0	0.315	0.880	000-1
(6) Weighted C.W.R (mm/month)	ch)	214.2	185.9	85.5	120.0	1.36.1	35.6	0.0	0.3	1.4	61.2	194.6	228.5
(7) Area Factor of L.P and N		1	1	1	. •	ł	i		0 00T	0.299	0.580	0.120	•
(8) Water Requirement L.P and N (mm/month)	Eh)	1	- 1	1	•	-	1	1	0 1	29.9	58.0	12.0	ï
(9) Area Factor of F.C		I	 I	0.410	0.582	0.008	1	-	1	1	1	1	ı
(10) Flooding for Cultivation Water (mm/month)	ith)	: 1	:	41.0	58.2	0.8	1	-	-	1	•	-	
(11) Field Water Requirement (mm/month)	ith)	214.2	185.9	126.5	178.2	138.9	35.6	0.0	0.4	30.4	119.2	206.5	228-5
(12) Effective Rainfall (mm/month)	th)	74.3	113.0	114.8	85.0	102.1	67.7	39.0	32.4	37.6	37.3	57.0	77.0
(13) Area Factor of Effective Rainfall		1.000	0.895	0.511	0.758	0.885	0.320	0.000	0.003	0.330	0.876	1.000	1.000
(14) Weighted Effective Rainfall (mm/month)	th)	74.3	1.101	1.82	64.4	90.4	21.7	0.0	1.0	12.4	32.7	57.0	77.0
(15) Net Irrigation Requirement (mm/month)	th)	139-9	84.8	67.8	113.8	48.5	13.9	1	0.3	18.0	86.5	149.6	151.5
(16) Irrigation Efficiency.		0.58	0.58	0.58	0.58	0.58	0.58	1	0.58	0.58	0.58	0.58	0.58
(17) Irrigation Requirement (mm/month)	th)	241.2	146.2	116.9	196.2	83.6	24.0	I	0.5	31.0	149.1	257.9	261.2
(18) (mn/day)	ay)	8.040	5.270	7.379	8 628	3 048	2.496	1	5 376	3 359	5.492	8-598	8.426
	ha)	0.931	0.610	0.854	666 0	0.353	0.289	0.0	0.622	0.389	0.636	0.995	0.975
	No	Note : (4)	- (2) x (3)		(10) = 100) x (9)	(15)	- (11) -	(14)	(13) = (18)/8.64	8)/8.64		
		(9)	* (†) × (2)	<u>,</u>	(11) - (11)	+ (8) +	(10) (11)	= (15)/(16))				
		(8)	- 100 × (1)		(14) = (12)	(ET) × (2	(18)	<pre>= (17)/(Days of</pre>	ys of Month	× (13))			

	Remarks	Transplanting	Direct Seeding	Ratooning	Transpianting	Direct Seeding	Ratooning	
	DEC	0-728	0.636	0	0.660	0.576	0	
	NOV	0.290	0.404	0.289	0.263	0.366	0.262	
	OCT	0.348	0.301	0.353	0.315	0.273	0.320	
LN3	SEP	0.642	0.587	666-0	0.582	0.532	0.905	
EQUIREN	AUG	0.580	0.622	0.854	0.526	0.564	0.774	
IRRIGATION REQUIREMENT	JUL	0.481	0.682	0.610	0.436	0.618	0-553	
TIRRIC	NUL	0.633	0.702	0.931	0.574	0.636	448.0	
2 DNIL	MAY	0.775	0.704	0.975	0.702	0.638	0.884	
EE J. 2.5	APR	1.028	0.954 0.958	0.995	0 • 932	0.868	0.902	
TABLE J	MAR	1.011	2 0.954	9.0.636	0.916	2 0.865	0.576	
	FEB	6 0-740	6 0.742	2 0.389	0.671	7 0.672	. 0.353	
	JAN	0.706	0.626	0.622	0.640	0.567	0.564	
	Cropping Pattern		PA	Ŭ	A	44 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	U	
	Irrigation Efficiency		ы 10-58 28			E = 0.64		
					J-1	2		

3. Return Flow

For the purpose of an efficient utilization of water resources, the use of return flow will be considered.

Given the field water requirements is 1.00 irrigation water requirement at intake point will be calculated as follows:

Field Water Requirem	enț	:	1.00
Conveyance Loss	(+)	:	0.16
Field Canal Loss	(+)	:	0.28
Field Application Lo	SS	:	0.28

Irrigation Water Requirements : 1.72

Available water for return flow will be calculated adding field canal loss to field application loss, and if 60% of this volume is to be utilized repeatedly, the return flow will be calculated as follows:

Return Flow = (Field Canal Loss + Field Application Loss) x 0.6 = $(0.28 + 0.28) \times 0.6 = 0.34$

If return flow should be used in the adjacent fields located in the lower catchment, the irrigation requirements to the adjacent field to the study area are calculated by subtracting conveyance loss from total irrigation requirement (I.R.):

I.R. = 1.72 - 0.16 = 1.56

Therefore, the project efficiency will become: $0.34 \div 1.56 = 0.22$, which indicates that if water is taken to irrigate 100 ha of field, another 22 ha of land will be irrigated by using return flow.

Taking return flow into account, the design intake rate is computed using the following equation:

$$Q = \frac{A \cdot q}{1 + R} \times 10^{-3}$$

where, Q = intake rate (m/s)

A = irrigable area (ha)

q = net water requirement (1/s/ha)

R = project efficiency = 0.22

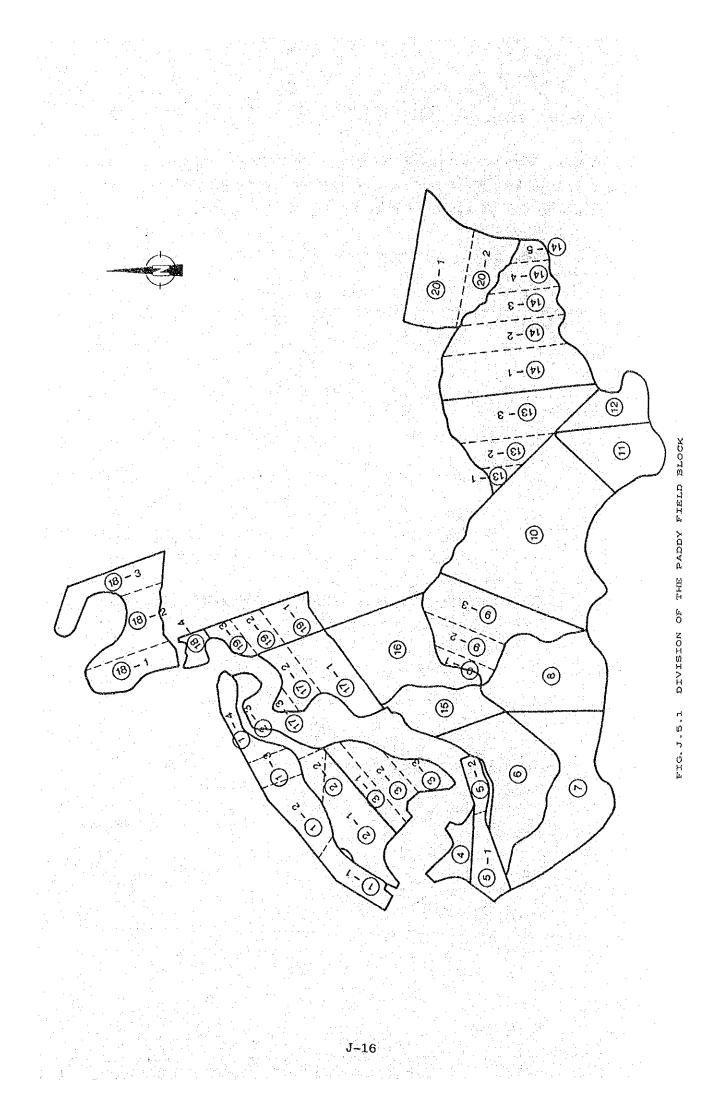
Then, the maximum intake rate with regard to each intake facility have been calculated as follows:

Heatworks (Yuna River) : $Q = 5.90 \text{ m}^3/\text{s}$ Pumping Station (Cruz de Rincon) : $Q = 0.46 \text{ m}^3/\text{s}$ Pumping Station (Rincon Molinillo): $Q = 0.21 \text{ m}^3/\text{s}$ Pumping Station (El Guayabo) : $Q = 0.41 \text{ m}^3/\text{s}$

Table J.4.1 shows the intake rate by month.

TABLE J.4.1 INTAKE RATE

Intake Facility	Location	Irrigabl Area (ha		КÅL	FEB	MAR	APR	HAY	JUN	JUL	AUC	SEP	001	ноч	ш
Headvork#	Yuns River	7,000	g 1/s/he	0.706	0.740	1.011	1.028	0.775	0.61)	0.481	0.580	0.642	0.348	0.290	0.71
·			Q == ³ /.	4.06	4.25	5.81	5.90	4.45	3.64	2.76	3.33	3.69	2.00	1.67	4.11
	Cruce de Rincon	550	g1/#/h#								0.580	0.642	0.348	0.290	0.12
			Q n ³ /s	a da fili da sea							0.26				
Pumping Station	Rincon Holínilla	250									0.580				
5181100			- 14	0.14	1.2.2.1.1.1.17		0.21			0.10			0.07		0.15
	El Gueyabo	500 _	9 1/s/ha	0.622	0.389	0.636	0,995				0.854			U.789	0.0
			Q m ³ /s	0.26							0.35				0.0


5. Division of Irrigable Area (Paddy Fields)

In accordance with topographic condition, networks of irrigation and drainage and in-farm road system, the proposed irrigable area has been divided into blocks as shown in Fig. J.5.1 and Table J.5.1.

Blocks	Irrigable Area	Blocks		Irrigable Area	Bloc	cks	Irrigable Area
Block 1 -1	(114)	Block	9 -1	(301)	Block	17 -1	(227)
" <u>1 -2</u>	(174)	n	9 -2	(117)	ti -	17 -2	(95)
" 1 -3	(83)	1 1	9 -3	(42)	Ĩŀ	17 -3	(28)
" 1 -4	(99)	Sub-to	tal	460	Sub-to	tal	350
Sub-total	470						
Block 2 -1	(272)	Block	10	840	Total	1 - 17	(7,000)
" 2 -2	(58)	Block	11	290	Block	18 -1	(152)
[#] 2 -3	(80)				D 1	18 -2	(162)
Sub-total	410	Block	12	190		18 -3	(180)
		:			11	18 -4	(56)
Block 3 -1	(90)	Block	13 -1	(330)	Sub-to	tal	550
" 3 -2	(126)	H	13 -2	(110)			
" 3-3	(74)	18	13 -3	(30)	Block	19 -1	(117)
Sub-total	290	Sub-to	tal	470	11	19 -2	(78)
					\$1	19 -3	(550
Block 4	100	Block	14 -1	(353)	Sub-to	tal	250
		. 11	14 -2	(186)			
Block 5 -1	(104)	11	14 -3	(139)	Block	20 -1	(365)
" 5 - 2	(76)	^т . н	14 -4	(95)	- Lê	20 -2	(135)
Sub-total	180		14 -5	(37)	Sub-to	tal	500
		Sub-to	tal	810			1
Block 6	490			· .	Total	18 - 20	(1,300)
	ang sa	Block	15	230		4 - 4 - 4	
Block 7	550	• • • •			Total	1 - 20	8,300
		Block	16	430			
Block 8	440		:				

TABLE J.5.1 DIVISION OF IRRIGABLE AREA

J~15

6. Main Irrigation Canal and Irrigation Network

Based on the division of irrigation area together with topographic conditions, etc., the main irrigation canal has been delineated as shown in Fig. J.6.1. Furthermore, irrigation network proposal is illustrated in Fig. J.6.2.

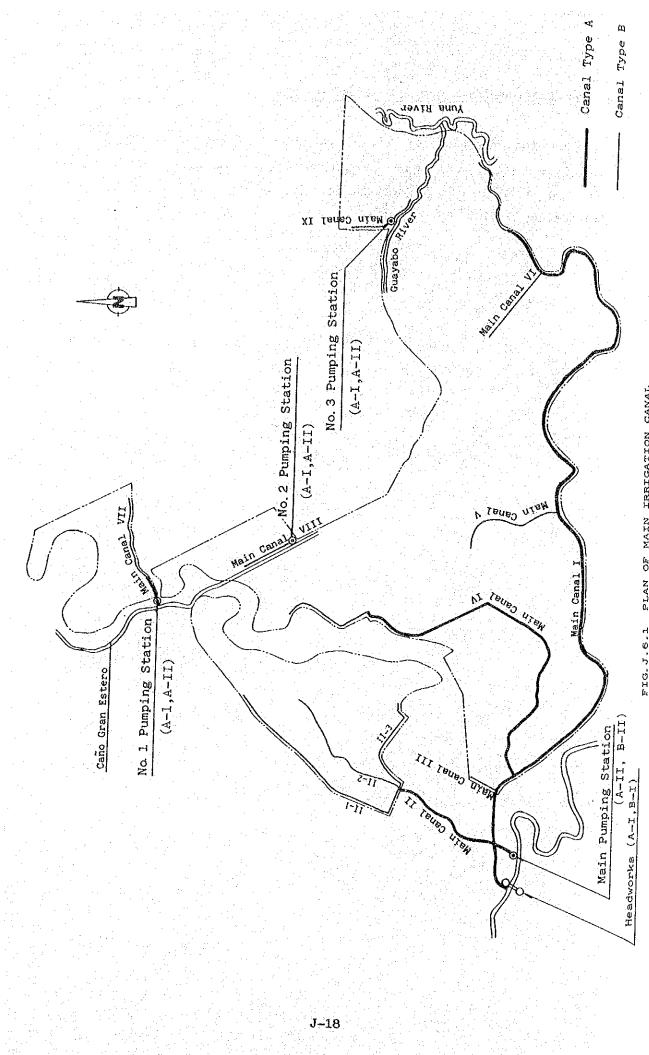
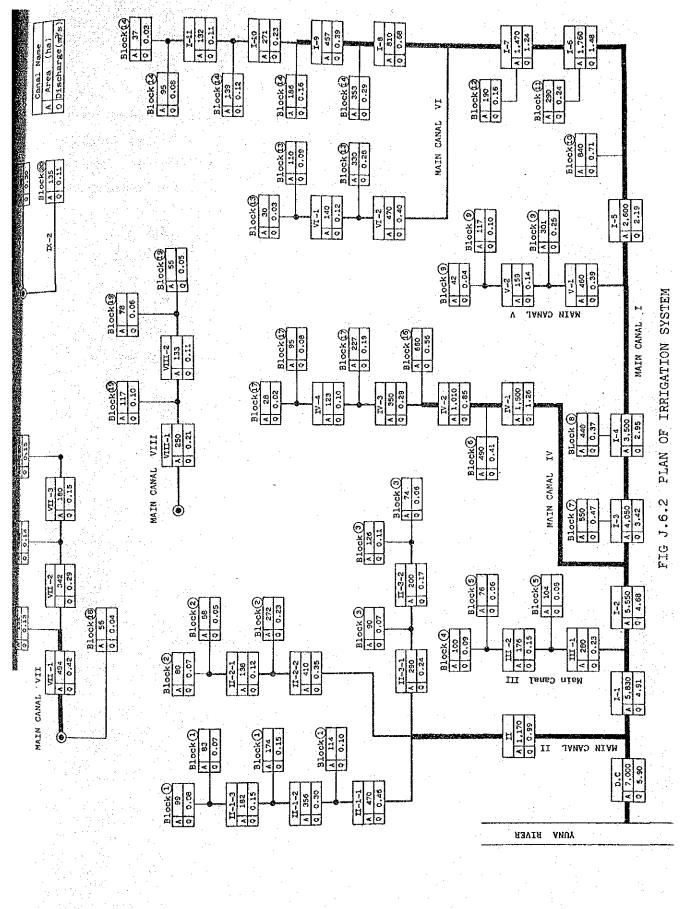
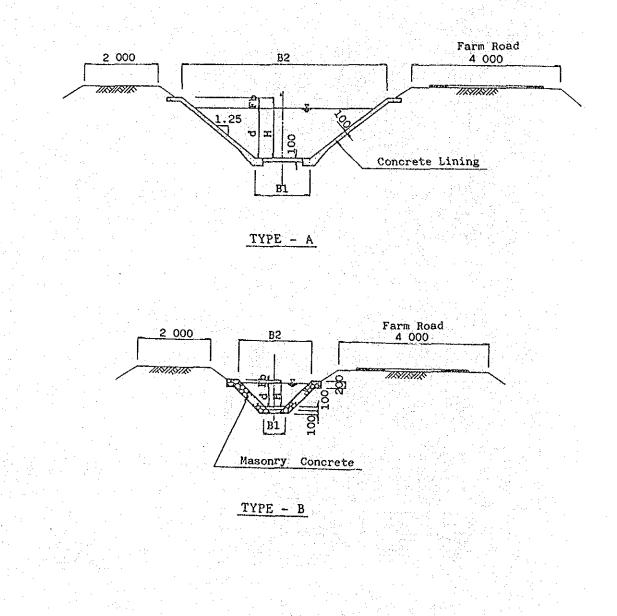



FIG.J.6.1 PLAN OF MAIN IRRIGATION CANAL


J--19

7. Irrigation Canal

7.1 Main Irrigation Canal

7.1.1 Canal Section

In relation to the section of main irrigation canals, concrete lining structure (TYPE A) has been proposed for canals with design discharge more than 0.4 m^3/s and masonary lining structure (TYPE B) for less than 0.4 m^3/s . Length and dimension of each canal are presented in Table J.7.1.

Canal Type	B1 (m)	B2 (m)	H (m)	Identification of Canal
A-1	2.00	7.00	2.00	Driving Canal
A-2	1.80	6.55	1.90	Main Canal I-1, I-2
A-3	1.60	5.85	1.70	" I-3
A-4	1.50	5.50	1.60	³³ I-4
A-5	1.40	5.15	1.50	" I-5
A-6	1.00	4.25	1.30	" I-6, I-7
A7	1.00	3.75	1,10	n II
A-8	0.80	3.55	1.10	יי וע-1
A-9	0.80	3.30	1.00	" I-8, IV-2
A-10	0.80	3.05	0.90	" VII-1
A-11	0.80	2.80	0.80	" I-9
	an a			
B-1	0.60	2.20	0.80	" II-1-1, IV-3, VII-2, IX-1
B2	0.60	2.00	0.70	" I-10, II-2-1, II-3-1, V-1, VI-1, VIII-1
B-3	0.60	1.80	0,60	" II-1-2, VII-3
B4	0.50	1.70	0.60	" I-ii, II-3-2, VIII-2, IX-2, III-2
B5	0.50	1.50	0.50	" II-1-3, III-1, IV-4, V-2, VI-2
B6	0.40	1.40	0.50	" II-2-2

TABLE J.7.1 DIMENSION OF IRRIGATION CANAL

7.1.2 Hydraulic Calculation

Manning formula is employed to calculate the canal velocity as follows:

$$V = \frac{1}{n} \cdot R^{2/3} \cdot I^{1/2}$$
 (m/sec)

 $Q = A \cdot V$

(m³/sec)

where, $V = mean \ velocity \ (m/sec)$

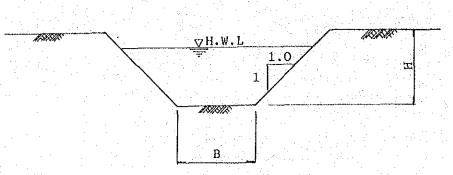
n = coefficient of roughness
 (Assumed to be 0.03 for earth canal)
R = hydraulic mean depth (m) = A/P
A = cross-sectional area of flow (m)
P = wetted perimeter (m)
I = hydraulic gradient (= bed slope)
3

 $Q = discharge (m^3/sec)$

B = width of canal invert (m) d = water depth (m) hv = velocity head (m) F.b = free board Type A: Fb = 0.05d+hv+0.15 (m) Type B: Fb = 0.05d+hv+0.05 (m) H = Height of sidewall (m)

The result of this calculation is as presented in Table J.7.2.

مېرىيى			معمد									6								·.	~~~ ~						. '	~~~		<u>.</u>	in a stati		:				
Remarks	A-1	8-2 8	¥	A-3	¥,	Å-5	A-6	2	A-9	A-11	B-2	4 1 1	A-7	1-8	8-3	8-5 8	B-2	B-6	B2	B-4	B-5	B-4	A-8	A-9	B-1	B-5	B-2	8-5 -5	B-2	B-5	A-10	8-1	8-3	B~2	B-4	B-1	8-4
82 (1)	7-000	6.550	6.550	5.850	5.500	5.150	4.250	4.250	3.300	2.800	2.000	1.700	3.750	2.200	1.800	1.500	2.000	I.400	2.000	1.700	1.500	1.700	3.550	3.300	2.200	1.500	2.000	1.500	2.000	1.500	3.050	2.200	1,800	2.,000	1,700	2.200	001
н (п)	2.000	1.900	1.900	1.700	1-600	1.500	1.300	1.300	1.000	0.800	0.700	0.600	1.100	0.500	0.600	0.500	0.700	0.500	0.700	0.600	0.500	0.600	1 100	1.000	0.800	0.500	0.700	0.500	0.700	0.500	0.900	0.800	0.600	0.700	0.600	0.800	
4 (I	0.271	0.263	0.260	0.247	0.242	0.230	0.222	0.215	0.201	0.189	0.086	0.076	0.205	0.101	060.0	0.080	0.095	0.078	0.085	0.081	0.095	0.078	0.228	0.210	0.089	0.075	0.096	0.078	160.0	0.076	061.0	0.089	0.079	0.084	0.076	060.0	
हे मि	0.035	0.032	0.031	0.027	0.025	0,021	0.018	0.016	0.012	0.009	0.005	0.003	0.014	0.019	0.015	0.011	0.019	0.011	0.008	0.007	0.026	0.006	0.037	0.023	0.006	0.004	0.017	0.010	0,016	600.0	600.0	0.005	0.004	0 004	0.003.	0.005	
۲ (۵/۶)	0.831	0.794	0.784	0.725	0.699	0.649	0.589	0,563	0.485	0.421	0° 303	0.252	0.532	0.607	0.544	0.457	0.615	0.471	0.397	0.365	0.717	0,353	0.854	0.665	0.344	0.263	0.582	0.449	0.586	0.431	0.429	0.322		. *	0.252	0.324	
ж (в	4	0.887	0.870	0.774	0.732	0.654	0.567	0.530	0.423	0.342	0.322	0.244	0.486	0.322	0.274	0.211	0.278	0.186	0.287	0.252	0.208	0.241	0.434	0.404	0.339	0.227	0.303	0.205	0.305	0.1.93	0.352	0.352	0.273	0.311	0.244	0.356	•
ъ)	7.491	6.983	6.862	6.101	5.771	5.171	4.439	4.157	3,323	2.721	2:359	1.795	3.830	2.359	2.020	1.563	2.048	1.373	2.110	1.852	1.547	1.767	3.403	3.176	2.484	1.677	2.221	1.527	2.240	1.445	2.791	2.571	2.017	2.280	1.793	2.603	
А (m ²)	7.107	6.191	5.970	4.721	4.225	3.384	2.516	2.201	1.407	0.930	0.760	0.439	1.861	0.760	0.553	0.329	0.569	0.256	0.606	0.467	0.322	0.425	1.477	1.282	0.843	0.381	0.672	0.313	0.684	0.279	0.981	0.904	0.552	0.709	0.437	0.926	•
р Р	1.715	1.619	1.581	1.406	1 334	1.178	1.074	0.956	0.788	0.600	0.622	0.458	0.584	0.622	0.502	0.376	0.512	0 344	0 534	0.478	0.370	0.448	0.813	0.742	0.666	0.416	0.573	0.363	0.580	0.334	0.622	0.697	0.501	0.594	9.457	0.708	
19 19	2.000	1.800	1.800	1.600	1.500	1.400	1,000	1.000	0.800	0.800	0.600	0.500	1.000	0.600	0.600	0.500	0.600	0.400	0.600	0.500	0.500	0.500	0.800	0.800	0.600	0-500	0.600	0.500	0.600	0.500	0.800	0.600	0.600	0.600	0.500	0.600	
н	1/6,000	-	=	H				Ŧ	=	=		=	1/6,000	1/1,500		z	1/1,200	2	1/3,000	z ·	1/600	1/3,000	1/2,000	1/3,000	1/5,000	=	1/1,500	۰ <u>ـ</u> ـــــــــــــــــــــــــــــــــــ	1/1,500	=.	1/6,000	£	F	=	11	= .	
đ	0.015	×		=	÷.	-		=	: =	<u></u>	0.020	=	0.015	0.020	-	Ξ	z	F	=	Ŧ	- .	:	0.015	=	0.020	=	=	Ŧ.	= '	:=	0.015	0.020	F	۲.	=	=	
Type	A		*	2	-	=	=	=	=	=	9 4	-	A	FQ	=	÷	3	=	:	2	-	=	Y	-	£ 3	•	2	Ξ	=	-		ب م	=	=	=	-	
ຊ (m3/s)	05.5	4.91	4.63	3.42	2.95	2.19	1.48	1.24	0.68	0.39	0.23	0.11	0.99	0.46	0.30	0.15	0.35	0.12	0.24	0.17	0.23	0.15	1.26	0.85	0.29	0.10	0.39	0.14	07.0	0.12	0.42	0.29	0.15	0.21	0.11	00	
Lengch (m)	1.00	1,250	500	5,950	2,100	4,100	2,850	2,650	850	1,000	850	800	2,900	2,000	1,100	2,150	2,150	1,350	1,550	1,000	750	1,700	5,500	3,300	800	1,500	1.900	750	1,000	1,000	1,250	800	800	650	800	1.100	
Canal Name 1	Driving Canal	Main Canal I-1	11 T-2	" I-3	1 I-4	" I-5	9-I	1-1 "	83 T J	6-T "	" I-10	TT-I	II .	II-I-J	11-1-2	II-I-3	11-2-1	II-2-2	IL-3-1	11-3-2	1-III	III-2	IV-1	IV-2	E-VI	1V-4	T-7	. V-2	L-1		T-IIA	VII-2	VII-3	I-IIIA	VIII-2	- 1-XI	


TABLE J.7.2 RESULT OF HYDRAULIC CALCULATION OF MAIN CANAL

J-23

.

7.2 Secondary Canal

Secondary canals will be constructed in earth structure as illustrated in the figure below.

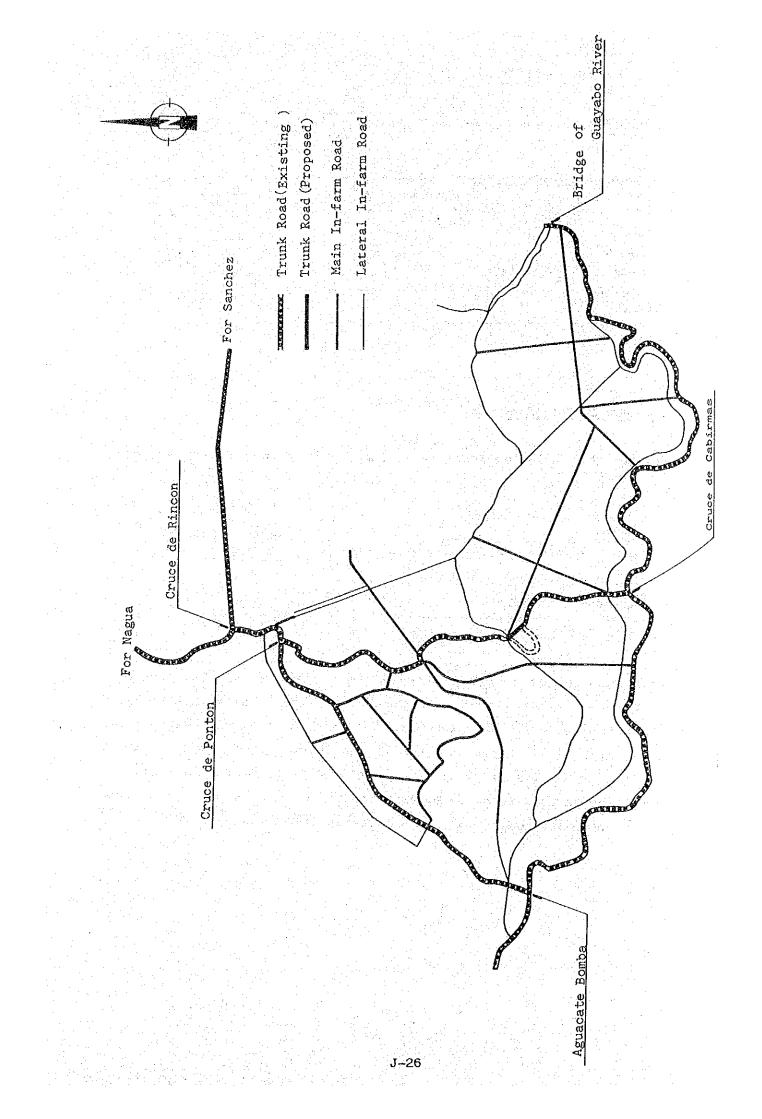
TYPICAL CROSS-SECTION

Given the hydraulic gradient to be at 1:5,000 and the coefficient of roughness at 0.03, the discharges for each type of canal are as summarized in table below:

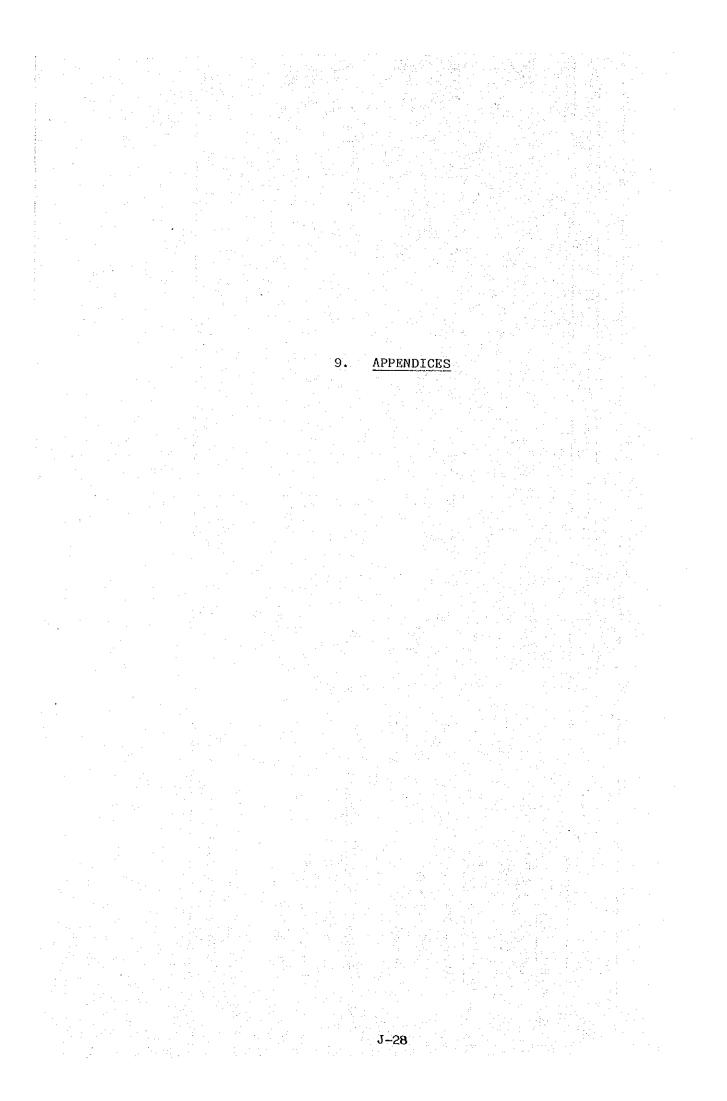
Туре	Width of Opening Canal Bed (m)	Wdith of Opening Canal (m)	Depth of Water (m)	Height of Side Wall (m)	Discharge (m /s)	Cover Hectarage (ha)
A.	0.60	1.80	0.50	0.60	0.109	129
В	0.50	1.50	0.40	0.50	0.062	74
C	0.40	1.20	0.30	0.40	0.030	36
				<u>ى يې زې سالم د او و وسالم کې او والمان کې د د د او </u>		

TABLE J.7.3 HYDRAULIC CALCULATION OF SECONDARY CANAL

And, the length of canal for each type is as calculated below: (Unit: km)


	Alternative A	Alternative H
Туре А	102.7	86.1
Type B	112.1	90.9
Туре С	27.8	23.9
Total	242.6	200.9

8. Rural and In-farm Road Plan


Actually the following three rural roads are existing within the study area.

Route	Length (km)
Cruce de Rincon - Aguacate Pumping Station	11.8
Cruce de Ponton - Cruce Las Cabirmas	12.8
Arenoso - La Mata	30.3
Total	54.9

These roads (width : 8.0 m) are constructed with gravel finish and the maintenance is left in the charge of SEOPC/IAD. In the road network planning, the existing road will be left as they are except such improvement works as to cut-off of meandering part of the Cruce de Ponton - Cruce Las Cabrimas Route. A road network has been proposed connecting in-farm roads with rural roads (see Fig. J.8.1). The length of this proposed road network is summarized in Table J.8.1.

	WIDTH AI	Alternative A-1 A	Alternative A-2 Alt	cernative B-1	Alternative B-2
Trunk Road	8.0 m				
To be Constructed		700	200	700	002
Trunk In-farm Road	6.0 ш				· · ·
To be Constructed	•	18,400	18,400	18,400	18,400
To be Improved		28,300	28,300	25,500	25,500
Sub-total		46,700	46,700	43,900	43,900
· · ·					•
Maintenance Road for Canal	4.0 m		· .		
To be Constructed		64,250	63,700	56,850	56,300
To be Improved		3,600	3,600	1,800	1,800
Sub-total		67,850	67,300	58,650	58,100
				• • •	
Lateral In-farm Road	4.0 8	•			
To be Constructed		97,300	97,300	79,050	79,050

APPENDIX J.2.1 MONTHLY MEAN TEMPERATURE AT BARRAQUITO

						iun teb	IF ENALU	RE AT	BARRAQ	OTTO	. ÷.,	•
4.6				· · ·			- 	•		· · ·	(°C)	n line Line
Month Year	Jan	Feb	Mar	Ap1	May	Jun	Ju1	Aug	Sep	Oct	Nov	Dec
1975	23.0	23.4	24.2	26.1	26.7	28.1	27.5	27.2	26.5	26.0	24.8	22.3
1976	21.7	23.0	23.6	24.7	26.3	26.3	26.9	27.0	27.1	26.5	26.0	24.1
1977	23.5	24.4	25.0	27.5	27.5	27.7	27.1	26.8	27.0	26.5	25.6	24.4
1978	23.8	23.6	25.0	25.5	26.8	27.2	26.8	*	*	*	*	23.7
1979	23.0	23.6	23.8	25.0	26.0	26.9	27.4	26.8	26.9	*	25.1	23.3
1980	23.8	24.3	*	26.4	*	28.1	27.6	27.4	27.4	27.4	26,4	24.5
1981	23.6	24.0	25.0	24.9	26.5	27.0	27.2	27.0	27.7	27.0	25.8	24.3
1982	23.9	23.9	24.9	26.9	26.4	27.4	27.0	27.6	27.5	27.5	25.2	23.5
1983	24.5	24.6	26.3	26.4	27.2	28.3	27.6	27.5	27.4	26.9	26.1	*
1984	24.9	24.0	24.8	26.4	25.9	26.8	26.9	27.2	26.7	25.7	24.5	22.8
1985	22.9	23.2	23.7	24.9	*	*	*	*	*	*	*	*
Mean	23.5	23.8	24.6	25.6	26.5	27.4	27.2	27.2	27.1	26.7	25.5	23.7

J--29

Month Year	Jan	Feb	Mar	Apr	Mar	Jun	Ju1	Aug	Sep	0ct	Nov
1868	-	_	-	.			79	82	81	78	Nov 86 84 78 82 86 87 89 97 92 88 97 92 88
1869	85	81	82	84	86	88	86	84	82	82	84
1970	78	80	75	71	78	79	79	80	81	80	78
1971	77	82	82	79	79	78	82	82	83	84	82
1972	89	86		85	79	83	82	84	82	82	86
1973	89	84	82		82	80	78	86	86	86	87
1974	89	86	83	82	81	83	86	88	86	88	89
1975	89	85	84	74	79	77	89		89	97	97
1976	92	97	90	82	82	84	84	84	84	86	92
1977	85	81	78	84	81	82	84	88	86	89	88
1978	84	85	85	85	84	85	86	4		-	- ,
1979	84	81	78	81	85	86	85	86	85		88
1980	85	81	-	80		93	85	86	85	85	83
1981	87	83	81	83	85	85	87	85	82	83	85
1982	88	86	78	75	83	85	85	83	87	82	85
1983	82	79	78	75	82	80	83	84	83	82	81
1984	81	87	89	73	-	82	81	81	87	85	85
1985	82	80	81	76	-	-	-		-	-	
Mean	85.1	83.8	81.7	79.3	81.9	83.1	83.6	84.2	84.3	84.6	86.0

APPENDIX J.2.2 MONTHLY MEAN RELATIVE HUMIDITY AT BARRAQUITO

												:			
(m/s)	Dec	0.7	1•1	191 		Ĩ	1	7•7	1.2	1	l	1.9	1	1.2	104
	Nov	0.7		1.2		1.0	i	I.3	1.2	I	1	1.6		1.2	104
	t O	6.0		1.2	1.0	0.1	ł	1.5	1.3	1.4	1	ц. С.	ł	1.2	104
	Sep	0.5	1.3	1.2	1-3	1•1	I	1.4	1.7	1.3	1	1.5	I	ю 	112
	Aug		1.7	I.3	ľ	1.4	I	0.2	Ч Ч С	1.3	I	1.3		1.2	104
	Jul	l	2.0	1.4	ł	1.6	1	1•8	0.2	1.5	1	2.0	1	1.5	130
	Jun	1.3	2.1	1.6	1 • •	1.2	I .	1.8	1.0	1.7	. 1	1.9	1 	1.6	138
	May	1.4	1.5	2.1	1	1.4 1	ł	I	1.6	1.7	1	2.2	1	1.7	147
	Apr	1.4	2.0	6 1		1.7	I	I	2-3	2.5	1	1.8	1.5	1.9	164
	Mar	1.3	1.2	1.9	- 1	1.7	1	I	2.3	2.0	1		1.4	1.7	147
	С, С Щ	- 3 - 3	1.4	1.4	·. 1	1.4	I	1	80 	2.2	l	I.	1.4	Т. б.	138
	Jan	1.4	1.2	1-2	1	1.3	I ^{° s}	ł	1.6	2.1	I	1	1-4	1.5	130
	Month Year	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	Mean (m/sec)	" (km/day)
	V		····						<u></u>			-		. 5	.

APPENDIX J.2.3 MONTHLY MEAN WIND VELOCITY AT BARRAQUITO

APPENDIX J.2.4 MONTHLY MEAN CLOUDINESS OKTAS AT BARRAQUITO PENDIX J.2.4 PIONIMIA HIMAN CLOCOLOGI

• •	5											193
Month	Jan	Feb	Mar	Apr	Мау	Jun	Jul.	Aug	Sep	Oct	Nov	De 6 4 3
1968	-	_	- 	-	•4		5	6	6	6	6	6
1969	6	4	4	5	7	5	6	6	4	4	4	4
1970	3	3	4	4	4	4	3	3	3	3	3	
1971	4	3	4	3	3	4	3	3	3	4	4	- A
1972	4	4		4	4	4	4	. 4	4	4	4	E E
1973	5	3	4	-	4	4	4	4	4	2. .4.	4	
1974	3	4	4	-	4	3	4	4	4	4	5	4
1975	4	2	2	1	2	2	2	2	3	3	3	4
1976	2	3	3	3	3'	4	4	3	3	4	4	4
1977	4	3	4	4	4	4	4	4	4	4	4	4
1978	4	4	4	4	4	4	4	4	4	4	4	3
1979	3	2	3	3	4	4	3	4	4	-	4	-
1980	3	3	-	3		3	3	3	3	3	3	3
1981	3	3	2	3	4	4	4	3	3	3	3	4
1982	3	3	2	4	3	4	4	4	4	2	2	-
1983	3	3	2	3	4	3	3	3	3	2	2	-
1984	3	3	2	2	3	3	3	3	3	3	3	3
1985	2	3	3	3	-	-	_	-		-	_	J -
Mean	3.5	3.1	3.1	3.3	3.8	3.7	3.7	3.7	3.6	3.6	3.6	3.
n/N	0.60	0.64	0.64	0.62	0.57	0.58	0.58	0.58	0.59	0.59	0.59	0.

SATURATION VAPOUR PRESSURE (ea) IN MEAR AS FUNCTION OF MEAN AIR TEMPERATURE (T) IN °C APPENDIX J.2.5

		771	r	7 7	
•	5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	22.0	25 26 27 28 29 30 31 32 33 34 35 36 37 38 39	69:99	
•	18	20.6*	38	66.3	
	17	19.4	37-	62.8	
	16	16.2	36	59.4	. '
	15	17.0	35	56.2	
	14	16.1	34	53.2	t data.
	13	15.0	33	50.3	wpoin
	12	14.0	32	47.6	le Tde
	τī	13.1	31	44.9	vailab
•	10	12.3.	30	42.4	sing a
	ດ	11.5	29	40.1	able u
	ω.	10.7	28	37.8*	this t
	2.7	10.0	27	35.7	l from
	و	9.3	26	33.6	btaince 5 mbar
	ມີ	8.7	25	31.7	n be o s 20.6
	210		24	29.8	ed) can ; ed i
	ຕ	7.6	23	28:1	sure (180C
	N)	7.1	22	26.4	r pres oint is
	۲,	9.6	21	24.9	vapou: Tdewp
	0	6.1	20	23.4	sctual ple:
	<i>Temper-</i> ature ^o C	ea mbar 6.1 6.6 7.1 7.6 8.1	[emper- ture oC 20 21 22 23 24	eambar 23.4 24.9 26.4 28.1 29.8	Also actual vapour pressure (ed) can be obtained from this table using available Tdewpoint data. (Example: Tdewpoint is 189C; ed is 20.6 mbar)
	, tei atu	ea	a tu atu	ea	<u>-</u>

APPENDIX J.2.6 VAPOUR PRESSURE (ed) IN MBAR FROM DRY AND WET BULB TEMPERATURE DATA IN 'C

.

.

52	a nari ri nan	444511	*****	
E 02	00000	6.0		
2 000 18	5:00.27 2:00.27 2:00.27	000		
000-	01140	501970		
ude 1 14	007400 1181-00	73002	1.3	
altitud 12 14	00080 100080	01000 04040	67.29 0.79	
T°C 10	41.8 36.7 24.1 22.7	14408 199000	44000 150000	0.4
bulb 8	000010	200000 000-00	010070 1001000	011.0
n wet G	49.8 449.8 39.0 34.4 30.2 2 30.2 2	20064	000000 00000	000111
ssio	557.14 50.94 50.13 55.53 35.53	01470	801020	553550
Depre 2 2	36122 96122	00404 00404	51967	020001 020001
	44 20 20 20 20 20 20 20 20 20 20 20 20 20	500375 600375	4602 66264	000000
ToC	4000044 080044	000040 200040	54680	0.00400
22 d	6.0	<u></u>		· · · · ·
20	1.0.1			
о 18 1	4 4 9 9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7			
-1 000 16 1	00000 00000	50 10 10		
ude 0 14	24.3 17.51 17.01 11.3	40778 - 10408		
altitud 12 14	00-00 00-00 00 000 00 00 00 00 00 00 00	12.6 8.0 4.3	15.7	
T°C 10	5.8 29.8 1.1 25.6 6.9 21.8 3.2 18.4 9.8 15.4			
t bulb T ^o C 8 10 1	2.2 35.8 29.8 7.1 31.1 25.6 2.5 26.9 21.8 8.3 23.2 18.4 4.5 19.8 15.4	6.7 12. 7.55 10. 7.55 10. 7.55 7.55 7.55 7.55 7.55 7.55 7.55 7.	2710	1. 0.9
n wet bulb T ^o C 6 8 10 1	9.2 42.2 35.8 29.8 3.6 37.1 31.1 25.6 3.4 32.5 26.9 21.8 3.8 28.3 23.2 18.4 9.6 24.5 19.8 15.4	1.1 16.7 12. 8.0 14.0 10. 5.3 11.5 8. 2.8 9.3 6.	80497 1246	• •
ression wet bulb T ^o C 4 6 8 10 1	8 49.2 42.2 35.8 29.8 5 43.6 37.1 31.1 25.6 9 38.4 32.5 26.9 21.8 8 33.8 28.3 23.2 18.4 1 29.6 24.5 19.8 15.4	5.821.116.712. 22415.014.010. 9415.311.58. 6612.89.36.	2.0 8.7 5.6 2. 0.0 6.9 5.6 2. 6.7 5.4 2.7 1. 5.3 2.8 1.5 5.3 2.8	
ession wet bulb T ^o C 4 6 8 10 1	49.2 42.2 35.8 29.8 43.6 37.1 31.1 25.6 38.4 32.5 26.9 21.8 33.8 28.3 23.2 18.4 29.6 24.5 19.8 15.4	0.9 25.8 21.1 16.7 12. 7.2 22.4 18.0 14.0 10. 3.8 19.4 15.3 11.5 8. 0.7*16.6 12.8 9.3 6. 8.0 14.2 10.6 7.4 4.	5.5 12.0 8.7 5.6 2. 3.3 10.0 6.9 7.6 2. 1.4 8.3 5.4 2.7 9.6 6.7 4.0 1.5 8.1 5.3 2.8 1.5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

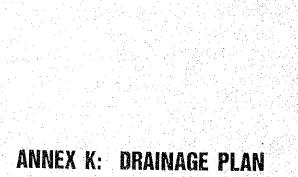
.

ភូ .14 £1. .12 - 10 .35 86 9 . 87 88 80 40 8 15 13 .16 .14 .12 85 .86 .84 .87 38 38 8 .16 ភូរ , .13 14 12 - 82 .85 .86 5 8 80 30 87 68 VALUES OF WEIGHTING FACTOR (1-W) FOR EFFECT OF WIND AND HUMIDITY ON ETO AT DIFFERENT TEMPERATURES AND ALTITUTDES 61. . 18 .17 ស្តុ .14 . Ц 85 82 83 .85 86 2 37 87 OF RADIATION . 20 61. : 18 . 16 ប្រុ .14 8 81 .82 10 80 .86 23 33 28. .16 30 .18 51. .78 22 5 61. 8 82 58 8 8 23* *11. . 22 51. .18 .16 21 28 38 67 28 WEIGHTING FACTOR (W) FOR THE EFFECT 8 82 AND ALTITUDES 8 25 24 23 21 61. 18 .75 26 .76 26 11. 62 $\tilde{\omega}$ 82 27 .25 .23 б Г .2] . 73 74 .75 81 3 .77. 79 27 . 28 53 27 25 .23 22 21 . 72 . 73 75 22 .71 77 62. TEMERATURE 32.32 . 29 27 .25 23 6 . 70 20 2 .75 7. 44: 20 . 69 34 .33 25 .27 ထူ .67 8 တ္သ 73 75 DIFFERENT .36 33. 29 91 34 31 27 16 ŝ 5 .66 .71 5 .38 36 ဗ္ဗ .31 .34 29 14 14 5 ŝ .66 69. 8 12 .40 66. .36 ОF АТ 42 27 .34 .31 28 12 8 13 ષ્ઠ :66 69 APPENDIX J.2.8 VALUES ON ETO 57. .36 .43 .42 39 61 ò 34 ŝ 53 2 64 ဖ္ပ .46 .48 57 66 42 36 ω 3 ង 3 APPENDIX J.2.7 ယ 3 6.4. 45 42 68, .48 ភ Q 64. 52 53 58 ഗ 5 5 5 48 57. ង 42 4 .46 6 48 3 55 58 4 <u>5</u> 20 48 0.57 46 5 2 0.43 .40 6. 52 3 2 2 (1-W) at altitude m 0 ö ဂ္ဂ ဂ 1.000 2 000 3.000 4 000 ξO 1 000 2 000 3.000 4-000 Ö Temperature Temperature W at altitude

	·						
	a la la superiore de la superi	S S	00000	MONNH	~~ 00 m m	10005	001470
		A	000000	888888	077770 077770	1007	00000
		, <u>v</u>	500000	000000	0 n p h n	000004	
		Z	99999	20000	~~~~~	10.000	ດີດີນີ້ມີດີດີ
	• •	ö	01440	2444	70010	ထကကကတ	0,00,00,4
		ept(0.00000		លាកលាក់	លូលលំលំពុំ	ហហហហ៍ហ៍ហ៍
	n de la de Reference	Se	60000	04104	14 201	0-056	800408
	- × .	ຣີຄ	100004 10	0/00/00	00067	00000	1220002
	*.	<	ายออก	raaaa	000	~~~~	823075
		July	100404	awaur	-00-00	40000	
	e l		044.40	00000	တိတ်တူတိုင်	20112	4733359
	her	June	- 50 V 0		0/17-110	010010	0400100
	S	⊳.	00444	กกรงก	$ \sim 0.000 $	22011	2222000
	emi	Ma	44000	88776	60000	040-0	$\omega - 4\omega - 4$
	H	r	010040	00-100	· · · · · · · · · · · · · · · · · · ·		14400022
	ern	Λp	11100	00000	00000 888577	04000	0.44020
	outh	1. 13	กลุ่มจุญ	บองเกอ	00400	0-004	
	- S	X	07772	N N N N N N N N N N N N N N N N N N N	77777	ហហហហ	ហ់ហ់ហំហំហំ
		¢þ	L @ - UN	1000-14	44400	1)1)440	0-00-M
		្អ្ន	44000	NNOOO	00000	0.000.0	<u></u>
۰ ۱	•	an	20702	55566		5-51-9	4-00000
		<u> </u>			フロクフレ	1000	<u>2000000</u>
		Lat	57700 77700 7772	NF 000	55030 555030	1210	0004700
1.1							
	-	υ		40000			
		Dec	24400	210000	00000 000000	22.00	<u>000-40</u>
		De	ururu	20000	000000	11.1 11.6 12.5 0	0.007 0.00
		e	00.440	27000	ფფდდე აფი৮4	1.6 10.7 2.6 11.1 2.8 11.6 3.3 12.5	54.44 54.44 54.44 54.44 54.44 54.44 54.44 54.44 54.44 54.44 54.44 54.44 54.44 54.44 54.44 54.44 54.54 54
		ov De		000000 77660	00.3 00.3 00.3 00.3 00.3 00.3 00.3 00.3	.610.7 .610.7 .611.6 .812.0	7 13.6 12.9 8.73.9 13.6 0.14.2 13.7 1.14.5 14.1 3 14.6 14.6 4 15.1 14.8
		t Nov De	988777 988775 975555 975555 975555 975555 975555 975555 9755555 9755555 9755555 9755555 9755555 9755555 9755555 97555555 9755555 97555555 97555555 9755555555		00000000000000000000000000000000000000	11.6 10.7 12.0 11.1 12.6 11.6 12.8 12.0 13.3 12.5	13.6 12.9 13.6 12.9 12.3 5 13.3 14.5 14.1 14.6 14.4 15.1 14.8 15.1 14.8
		ct Nov De	295729 29572 295725 297255 2972 2972 297	.810.06 7.0 5.7 10.06 8.0 6.6 11.2 9.0 7.8 6.11.2 9.0 7.8	911.6 9.5 8.3 112.0 9.9 8.8 1312.3 10.3 9.3 5 12.6 10.7 9.7 6 13.0 11.1 10.2	.813.311.610.7 913.612.011.1 013.912.411.6 114.112.812.0	3 14.7 13.6 12.9 3 14.8 13.9 13.3 3 15.0 14.2 13.7 3 15.1 14.5 14.1 3 15.4 15.1 14.8
	re	Sept Oct Nov De	10.9 7.4 4.5 3.2 11.5 8.3 5.5 4.3 11.9 8.7 6.0 4.7 12.2 9.1 6.5 5.2	32.5 9.6 7.0 5.7 12.8 10.0 7.5 6.1 13.1 10.6 8.0 6.6 13.4 10.8 8.5 7.2 13.6 11.2 9.0 7.8	13.911.6 9.5 8.3 14.1 12.0 9.9 8.8 14.3 12.3 30.3 9.3 14.5 12.6 10.7 9.7 14.6 13.0 11.1 10.2	14.813.311.610.7 14.913.612.011.1 15.013.912.411.6 15.114.112.812.0	15.3 14.7 13.6 12.9 15.3 14.8 13.9 13.3 15.3 15.0 14.2 13.7 15.3 15.0 14.5 14.1 15.3 15.4 15.1 14.8 15.3 15.4 15.1 14.8
	pher	ug Sept Oct Nov De	4.1 10.9 7.4 4.5 3.2 4.3 11.2 7.4 4.5 3.2 4.5 11.5 8.3 5.5 4.3 4.7 11.9 8.7 6.0 4.7 5.0 12.2 9.1 6.5 5.2	5.2 12.5 9.6 7.0 5.7 5.3 12.8 10.0 7.5 6.1 5.4 13.1 10.6 8.0 6.6 5.5 13.4 10.8 8.5 7.2 5.6 13.6 11.2 9.0 7.8	5.7 13.9 11.6 9.5 8.3 5.7 14.1 12.0 9.9 8.8 5.7 14.3 12.3 10.3 9.3 5.8 14.5 12.6 10.7 9.7 5.8 14.6 13.0 11.1 10.2	5.9 14.8 13.3 11.6 10.7 5.8 14.9 13.6 12.0 11.1 5.7 15.0 13.9 12.4 11.6 5.7 15.1 14.1 12.8 12.0 5.6 15.2 14.4 13.3 12.5	5:5 3 4:7 13:6 12:9 3 5:4 15:3 3:5:0 14:8 3:3:3 4 4 8 3 4 8 3 4 8 3 4 8 3 4 8 3 4 8 3 4 8 3 5 3 5 3 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 <t< th=""></t<>
	spher	Aug Sept Oct Nov De	.110.97.453.2 .311.27.45.03.7 .511.58.35.54.3 .711.98.76.04.7 .012.29.16.555.2	2 3 2 5 9.6 7.0 5.7 .3 12 8 10.0 7.5 6.1 .4 13.1 10.6 8.0 6.6 .5 13.4 10.8 8.5 7.2 .6 13.6 11.2 9.0 7.8	7 13.9 11.6 9.5 8.3 7 14.1 12.0 9.9 8.8 7 14.5 12.3 30.3 9.3 8 14.5 12.6 10.7 9.7 8 14.6 13.0 11.1 10.2	.9 14.8 13.3 11.6 10.7 .8 14.9 13.6 12.0 11.1 .7 15.0 13.9 12.4 11.6 .7 15.1 14.1 12.8 12.0	15.5 15.3 14.7 13.6 12.9 15.5 15.3 14.7 13.6 12.9 15.2 15.3 15.0 14.2 13.7 15.1 15.3 15.0 14.5 14.1 14.9 15.3 15.4 15.1 14.8 14.8 15.3 15.4 15.1 14.8
	pher	Aug Sept Oct Nov De	14.1 10.9 7.4 4.5 3.2 14.3 11.2 7.4 4.5 3.2 14.5 11.5 8.3 5.5 4.3 14.7 11.9 8.7 6.0 4.7 15.0 12.2 9.1 6.5 5.2	15.2 72.5 9.6 7.0 5.7 15.3 12.8 10.0 7.5 6.1 15.4 13.1 10.6 8.0 6.6 15.5 13.4 10.8 8.5 7.2 15.6 13.6 11.2 9.0 7.8	6.8*15.7 13.9 11.6 9.5 8.3 6.7 15.7 14.1 12.0 9.9 8.8 6.6 15.7 14.3 12.3 10.3 9.3 6.5 15.8 14.5 12.6 10.7 9.7 6.4 15.8 14.6 13.0 11.1 10.2	15.9 14.8 13.3 11.6 10.7 15.8 14.9 13.6 12.0 11.1 15.7 15.0 13.9 12.4 11.6 15.7 15.1 14.1 12.8 12.0 15.6 15.2 14.4 13.3 12.5	5.3 15.5 15.3 14.7 13.6 12.9 5.1 15.4 15.3 14.8 13.9 13.3 4.9 15.2 15.3 15.0 14.2 13.7 4.6 15.1 15.3 15.0 14.5 14.1 4.3 14.9 15.3 15.4 15.1 14.8 4.1 14.8 15.3 15.4 15.1 14.8
	rn Hemispher	e July Aug Sept Oct Nov De	.1 16.4 14.1 10.9 7.4 4.5 3.2 2 16.5 14.3 11.2 7.8 5.0 3.7 2 16.6 14.5 11.5 8.3 5.5 4.3 2 16.6 14.7 11.9 8.7 6.0 4.7 3 16.7 15.0 12.2 9.1 6.5 5.2	6.7 15.2 72.5 9.6 7.0 5.7 6.7 15.3 12.8 10.0 7.5 6.7 6.7 15.4 13.1 10.6 8.0 6.6 6.8 15.5 13.4 10.8 8.5 7.2 6.8 15.6 13.6 11.2 9.0 7.8	.8*15.7 13.9 11.6 9.5 8.3 .7 15.7 14.1 12.0 9.9 8.8 .6 15.7 14.3 12.3 10.3 9.3 .5 15.8 14.5 12.6 10.7 9.7 .4 15.8 14.6 13.0 11.1 10.2	6.3 15.9 14.8 13.3 11.6 10.7 6.1 15.8 14.9 13.6 12.0 11.1 5.9 15.7 15.0 13.9 12.4 11.6 5.7 15.7 15.1 14.1 12.8 12.0 5.5 15.6 15.2 14.4 13.3 12.5	.3 15.5 15.3 14.7 13.6 12.9 .1 15.4 15.3 14.8 13.9 13.3 .9 15.2 15.3 15.0 14.2 13.7 .6 15.1 15.3 15.1 14.5 14.1 .3 14.9 15.3 15.4 15.1 14.8 .1 14.8 15.3 15.4 15.1 14.8
	ern Hemispher	June July Aug Sept Oct Nov De	16.4 14.1 10.9 7.4 4.5 3.2 16.5 14.3 11.2 7.8 5.0 3.7 16.6 14.5 11.5 8.3 5.5 4.3 16.6 14.7 11.9 8.7 5.0 4.7 16.7 15.0 12.2 9.1 6.5 5.2	16.7 15.2 72.5 9.6 7.0 5.7 16.7 15.3 12.8 10.0 7.5 6.1 16.7 15.4 13.1 10.6 8.0 6.6 16.8 15.5 13.4 10.8 8.5 7.2 16.8 15.6 13.6 11.2 9.0 7.8	16.8*15.7 13.9 11.6 9.5 8.3 16.7 15.7 14.1 12.0 9.9 8.8 16.6 15.7 14.3 12.3 10.3 9.3 16.5 15.8 14.5 12.6 10.7 9.7 16.4 15.8 14.6 13.0 11.1 10.2	16.3 15.9 14.8 13.3 11.6 10.7 16.1 15.8 14.9 13.6 12.0 11.1 15.9 15.7 15.0 13.9 12.4 11.6 15.7 15.7 15.1 14.1 12.8 12.0 15.5 15.6 15.2 14.4 13.3 12.5	15.3 15.5 15.3 14.7 13.6 12.9 15.1 15.4 15.3 14.8 13.9 13.3 14.9 15.2 15.3 15.0 14.2 13.7 14.6 15.1 15.3 15.0 14.2 13.7 14.6 15.1 15.3 15.1 14.5 14.1 14.3 14.9 15.3 15.4 15.1 14.8
	orthern Hemispher	ay June July Aug Sept Oct Nov De	.8 17.1 16.4 14.1 10.9 7.4 4.5 3.2 9 17.2 16.5 14.3 11.2 7.8 5.0 3.7 0 17.2 16.6 14.5 11.5 8.3 5.5 4.3 1 17.2 16.6 14.7 11.9 8.7 6.0 4.7 2 17.3 16.7 15.0 12.2 9.1 6.5 5.2	.4 17.3 16.7 15.2 12.5 9.6 7.0 5.7 .4 17.2 16.7 15.3 12.8 10.0 7.5 6.1 .4 17.2 16.7 15.4 13.1 10.6 8.0 6.6 .5 17.1 16.8 15.5 13.4 10.8 8.5 7.2 .5 17.0 16.8 15.6 13.6 11.2 9.0 7.8	.5 17.0 16.8*15.7 13.9 11.6 9.5 8.3 .5 16.8 16.7 15.7 14.1 12.0 9.9 8.8 .4 16.7 16.6 15.7 14.3 12.3 10.3 9.3 .4 16.6 16.5 15.8 14.5 12.6 10.7 9.7 .3 16.4 16.4 15.8 14.6 13.0 11.1 10.2	.3 16.4 16.3 15.9 14.8 13.3 11.6 10.7 .1 16.1 16.1 15.8 14.9 13.6 12.0 11.1 .0 15.9 15.9 15.7 15.0 13.9 12.4 11.6 .8 15.7 15.7 15.1 14.1 12.8 12.0 .7 15.5 15.5 15.6 15.2 14.4 13.3 12.5	5 15.3 15.3 15.5 15.3 14.7 13.6 12.9 .3 15.0 15.1 15.4 15.3 14.8 13.9 13.3 .1 14.7 14.9 15.2 15.3 15.0 14.2 13.7 .9 14.4 14.6 15.1 15.3 15.1 14.5 14.1 .6 14.2 14.3 15.3 15.3 15.3 14.8 14.4 .4 13.9 14.1 14.8 15.3 15.4 15.1 14.8
	rthern Hemispher	May June July Aug Sept Oct Nov De	15.8 17.1 16.4 14.1 10.9 7.4 4.5 3.2 15.9 17.2 16.5 14.3 11.2 7.8 5.0 3.7 16.0 17.2 16.6 14.5 11.5 8.3 5.5 4.3 16.1 17.2 16.6 14.7 11.9 8.7 6.0 4.7 16.2 17.3 16.7 15.0 12.2 9.1 6.5 5.2	16.4 17.3 16.7 15.2 12.5 9.6 7.0 5.7 16.4 17.2 16.7 15.3 12.8 10.0 7.5 6.1 16.4 17.2 16.7 15.4 13.1 10.6 8.0 6.6 16.5 17.1 16.8 15.5 13.4 10.8 8.5 7.2 16.5 17.0 16.8 15.6 13.6 11.2 9.0 7.8	16.5 17.0 16.8*15.7 13.9 11.6 9.5 8.3 16.5 16.8 16.7 15.7 14.1 12.0 9.9 8.8 16.4 16.7 16.6 15.7 14.3 12.3 10.3 9.3 16.4 16.6 16.5 15.8 14.5 12.6 10.7 9.7 16.3 16.4 16.4 15.8 14.6 13.0 11.1 10.2	16.3 16.4 16.3 15.9 14.8 13.3 11.6 10.7 16.1 16.1 16.1 15.8 14.9 13.6 12.0 11.1 16.0 15.9 15.9 15.7 15.0 13.9 12.4 11.6 15.8 15.7 15.7 15.7 15.1 14.1 12.8 12.0 15.7 15.5 15.5 15.6 15.2 14.4 13.3 12.5	15.5 15.3 15.3 15.5 15.3 14.7 13.6 12.9 15.3 15.0 15.1 15.4 15.3 14.8 13.9 13.3 15.1 14.7 14.9 15.2 15.3 15.0 14.2 13.7 14.6 14.4 14.6 15.1 15.3 15.1 14.5 14.1 14.6 14.2 14.3 14.9 15.3 15.3 15.1 14.8 14.4 14.4 13.9 14.1 14.8 15.3 15.4 15.1 14.8
	orthern Hemispher	pr May June July Aug Sept Oct Nov De	2.7 15.8 17.1 16.4 14.1 10.9 7.4 4.5 3.2 3.0 15.9 17.2 16.5 14.3 11.2 7.8 5.0 3.7 3.3 16.0 17.2 16.6 14.5 11.5 8.3 5.5 4.3 3.7 16.1 17.2 16.6 14.7 11.9 8.7 6.0 4.7 4.0 16.2 17.3 16.7 15.0 12.2 9.1 6.5 5.2	4.3 16.4 17.3 16.7 15.2 12.5 9.6 7.0 5.7 4.5 16.4 17.2 16.7 15.3 12.8 10.0 7.5 6.1 4.7 16.4 17.2 16.7 15.4 13.1 10.6 8.0 6.6 4.8 16.5 17.1 16.8 15.5 13.4 10.8 8.5 7.2 5.0 16.5 17.0 16.8 15.6 13.6 11.2 9.0 7.8	5.2 16.5 17.0 16.8*15.7 13.9 11.6 9.5 8.3 5.3 16.5 16.8 16.7 15.7 14.1 12.0 9.9 8.8 5.3 16.4 16.7 16.6 15.7 14.3 12.3 10.3 9.3 5.4 16.4 16.6 16.5 15.8 14.5 12.6 10.7 9.7 5.5 16.3 16.4 16.4 15.8 14.6 13.0 11.1 10.2	5.6 16.3 16.4 16.3 15.9 14.8 13.3 11.6 10.7 5.6 16.1 16.1 16.1 15.8 14.9 13.6 12.0 11.1 5.6 16.0 15.9 15.7 15.0 13.9 12.4 11.6 5.7 15.8 15.7 15.7 15.7 15.1 12.8 12.6 5.7 15.7 15.7 15.7 15.1 12.8 12.6 5.7 15.7 15.7 15.7 15.7 13.3 12.8 12.6	5.5 15.3 15.3 15.5 15.3 14.7 13.6 12.9 5.3 15.0 15.1 15.4 15.3 14.8 13.9 13.3 5.1 14.7 14.9 15.2 15.3 15.0 14.2 13.7 4.9 14.4 14.6 15.1 15.3 15.0 14.5 14.1 4.6 14.2 14.3 14.9 15.3 15.1 14.8 14.4 4.4 13.9 14.1 14.8 15.3 15.4 15.1 14.8
	orthern Hemispher	ar Apr May June July Aug Sept Oct Nov De	7 15.8 17.1 16.4 14.1 10.9 7.4 4.5 3.2 015.9 17.2 16.5 14.3 11.2 7.8 5.0 3.7 3 16.0 17.2 16.6 14.5 11.5 8.3 5.5 4.3 7 16.1 17.2 16.6 14.7 11.9 8.7 6.0 4.7 0 16.2 17.3 16.7 15.0 12.2 9.1 6.5 5.2	.3 16.4 17.3 16.7 15.2 12.5 9.6 7.0 5.7 5 16.4 17.2 16.7 15.3 12.8 10.0 7.5 6.1 7 16.4 17.2 16.7 15.4 13.1 10.6 8.0 6.6 8 16.5 17.1 16.8 15.5 13.4 10.8 8.5 7.2 0 16.5 17.0 16.8 15.6 13.6 11.2 9.0 7.8	2 16.5 17.0 16.8*15.7 13.9 11.6 9.5 8.3 3 16.5 16.8 16.7 15.7 14.1 12.0 9.9 8.8 3 16.4 16.7 16.6 15.7 14.3 12.3 10.3 9.3 4 16.4 16.6 16.5 15.8 14.5 12.6 10.7 9.7 5 16.3 16.4 16.4 15.8 14.6 13.0 11.1 10.2	4 15.6 16.3 16.4 16.3 15.9 14.8 13.3 11.6 10.7 6 15.6 16.1 16.1 15.8 14.9 13.6 12.0 11.1 7 15.6 16.0 15.9 15.9 15.7 15.0 13.9 12.4 11.6 9 15.7 15.8 15.7 15.7 15.7 15.7 15.1 14.1 12.8 12.0 1 15.7 15.7 15.5 15.5 15.6 15.2 14.4 13.3 12.5	7 15.5 15.3 15.3 15.5 15.3 14.7 13.6 12.9 6 15.3 15.0 15.1 15.4 15.3 14.8 13.9 13.3 4 15.1 14.7 14.9 15.2 15.3 15.0 14.2 13.7 5 14.9 14.4 14.6 15.1 15.3 15.0 14.5 14.1 3 14.4 13.9 14.1 14.8 15.3 15.4 15.1 14.8 3 14.4 13.9 14.1 14.8 15.3 15.4 15.1 14.8
	orthern Hemispher	Apr May June July Aug Sept Oct Nov De	12.7 15.8 17.1 16.4 14.1 10.9 7.4 4.5 3.2 13.0 15.9 17.2 16.5 14.3 11.2 7.8 5.0 3.7 13.3 16.0 17.2 16.6 14.5 11.5 8.3 5.5 4.3 13.7 16.1 17.2 16.6 14.7 11.9 8.7 6.0 4.7 14.0 16.2 17.3 16.7 15.0 12.2 9.1 6.5 5.2	14.3 16.4 17.3 16.7 15.2 12.5 9.6 7.0 5.7 14.5 16.4 17.2 16.7 15.3 12.8 10.0 7.5 6.1 14.7 16.4 17.2 16.7 15.4 13.1 10.6 8.0 6.6 14.8 16.5 17.1 16.8 15.5 13.4 10.8 8.5 7.2 15.0 16.5 17.0 16.8 15.6 13.6 11.2 9.0 7.8	15.2 16.5 17.0 16.8*15.7 13.9 11.6 9.5 8.3 15.3 16.5 16.8 16.7 15.7 14.1 12.0 9.9 8.8 15.3 16.4 16.7 16.6 15.7 14.3 12.3 10.3 9.3 15.4 16.4 16.6 16.5 15.8 14.5 12.6 10.7 9.7 15.5 16.3 16.4 16.4 15.8 14.6 13.0 11.1 10.2	15.6 16.3 16.4 16.3 15.9 14.8 13.3 11.6 10.7 15.6 16.1 16.1 15.8 14.9 13.6 12.0 11.1 15.6 16.0 15.9 15.9 15.7 15.0 13.9 12.4 11.6 15.7 15.8 15.7 15.7 15.7 15.1 14.1 12.8 12.0 15.7 15.7 15.5 15.5 15.6 15.2 14.4 13.3 12.5	15.7 15.6 15.3 15.3 15.3 15.3 15.3 15.3 15.3 12.9 13.6 12.9 15.6 15.3 15.0 15.1 15.4 15.3 13.6 13.3 13.3 15.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5 15.5 14.5 14.5 14.5 15.3 15.3 15.2 13.7 15.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.6 15.3 15.3 15.3 14.5 14.6 15.3 15.3 14.6 14.6 15.3 15.3 14.6 14.6 15.3 15.3 14.6 14.6 15.3 15.3 14.6 14.6 15.3 15.3 14.6 14.6 15.3 15.3 14.6 14.6 15.3 15.3 14.6 14.6 14.6 15.3 15.3 14.6 14.6 14.6 15.3 15.3 14.6 14.6 15.3 15.3 14.6
	orthern Hemispher	eb Mar Apr May June July Aug Sept Oct Nov De	9.4 12.7 15.8 17.1 16.4 14.1 10.9 7.4 4.5 3.2 9.8 13.0 15.9 17.2 16.5 14.3 11.2 7.8 5.0 3.7 0.2 13.3 16.0 17.2 16.6 14.5 11.5 5.3 5.5 4.3 0.6 13.7 16.1 17.2 16.6 14.7 11.9 8.7 6.0 4.7 1.0 14.0 16.2 17.3 16.7 15.0 12.2 9.1 6.5 5.2	.6 11.4 14.3 16.4 17.3 16.7 15.2 12.5 9.6 7.0 5.7 .0 11.8 14.5 16.4 17.2 16.7 15.3 12.8 10.0 7.5 6.1 .4 12.1 14.7 16.4 17.2 16.7 15.4 13.1 10.6 8.0 6.6 .8 12.4 14.8 16.5 17.1 16.8 15.5 13.4 10.8 8.5 7.2 .2 12.8 15.0 16.5 17.0 16.8 15.6 13.6 11.2 9.0 7.8	7 13.1 15.2 16.5 17.0 16.8*15.7 13.9 11.6 9.5 8.3 113.4 15.3 16.5 16.8 16.7 15.7 14.1 12.0 9.9 8.8 5 13.7 15.3 16.4 16.7 16.6 15.7 14.3 12.3 10.3 9.3 9 13.9 15.4 16.4 16.6 16.5 15.8 14.5 12.6 10.7 9.7 .3 14.2 15.5 16.3 16.4 16.4 15.8 14.6 13.0 11.1 10.2	4.4 15.6 16.3 16.4 15.9 14.8 13.3 11.6 10.7 4.6 15.6 16.1 16.1 15.8 14.9 13.6 12.0 11.1 4.7 15.6 16.0 15.9 15.7 15.0 13.9 12.4 11.6 4.7 15.6 16.0 15.9 15.7 15.0 13.9 12.4 11.6 4.9 15.7 15.7 15.7 15.7 15.7 12.8 12.6 5.1 15.7 15.7 15.7 15.7 15.2 12.8 12.6 5.1 15.7 15.7 15.7 15.7 13.3 12.5	2 15.3 15.7 15.5 15.3 15.3 15.5 15.3 14.7 13.6 12.9 5 15.3 15.6 15.3 15.0 15.1 15.4 15.3 14.8 13.9 13.3 8 15.4 15.6 15.1 14.7 14.9 15.2 15.3 15.0 14.2 13.7 0 15.5 15.5 14.9 14.4 14.6 15.1 15.3 15.0 14.5 14.1 3 15.6 15.3 14.6 14.2 14.3 14.9 15.3 15.4 15.1 14.8 14.4 5 15.7 15.3 14.4 13.9 14.1 14.8 15.3 15.4 15.1 14.8
	orthern Hemispher	b Mar Apr May June July Aug Sept Oct Nov De	9.4 12.7 15.8 17.1 16.4 14.1 10.9 7.4 4.5 3.2 9.8 13.0 15.9 17.2 16.5 14.3 11.2 7.8 5.0 3.7 10.2 13.3 16.0 17.2 16.6 14.5 11.5 8.3 5.5 4.3 10.6 13.7 16.1 17.2 16.6 14.7 11.9 8.7 6.0 4.7 11.0 14.0 16.2 17.3 16.7 15.0 12.2 9.1 6.5 5.2	6 11.4 14.3 16.4 17.3 16.7 15.2 12.5 9.6 7.0 5.7 0 11.8 14.5 16.4 17.2 16.7 15.3 12.8 10.0 7.5 6.1 4 12.1 14.7 16.4 17.2 16.7 15.4 13.1 10.6 8.0 6.6 8 8 12.4 14.8 16.5 17.1 16.8 15.5 13.4 10.8 8.5 7.2 2 12.8 15.0 16.5 17.0 16.8 15.6 13.6 11.2 9.0 7.8	10.7 13.1 15.2 16.5 17.0 16.8*15.7 13.9 11.6 9.5 8.3 11.1 13.4 15.3 16.5 16.8 16.7 15.7 14.1 12.0 9.9 8.8 11.5 13.7 15.3 16.4 16.7 16.6 15.7 14.3 12.3 10.3 9.3 11.9 13.9 15.4 16.4 16.6 16.5 15.8 14.5 12.6 10.7 9.7 12.3 14.2 15.5 16.3 16.4 16.4 15.8 14.6 13.0 11.1 10.2	7 14.4 15.6 16.3 16.4 16.3 15.9 14.8 13.3 11.6 10.7 0 14.6 15.6 16.1 16.1 16.1 15.8 14.9 13.6 12.0 11.1 3 14.7 15.6 16.0 15.9 15.9 15.7 15.0 13.9 12.4 11.6 6 14.9 15.7 15.8 15.7 15.7 15.7 15.1 14.1 12.8 12.0 9 15.1 15.7 15.7 15.5 15.5 15.6 15.2 14.4 13.3 12.5	2 15.3 15.7 15.5 15.3 15.3 15.5 15.3 14.7 13.6 12.9 5 15.3 15.6 15.3 15.0 15.1 15.4 15.3 14.8 13.9 13.3 8 15.4 15.1 14.7 14.9 15.2 15.3 15.0 14.2 13.7 0 15.5 15.5 14.9 14.4 14.6 15.1 15.3 15.0 14.5 14.1 3 15.6 15.3 14.4 13.9 14.1 14.8 15.3 15.4 15.1 14.8
	orthern Hemispher	an Feb Mar Apr May June July Aug Sept Oct Nov De	.8 6.1 9.4 12.7 15.8 17.1 16.4 14.1 10.9 7.4 4.5 3.2 .3 6.6 9.8 13.0 15.9 17.2 16.5 14.3 11.2 7.8 5.0 3.7 .9 7.1 10.2 13.3 16.0 17.2 16.6 14.5 11.5 8.3 5.5 4.3 .3 7.6 10.6 13.7 16.1 17.2 16.6 14.7 11.9 8.7 6.0 4.7 .9 8.1 11.0 14.0 16.2 17.3 16.7 15.0 12.2 9.1 6.5 5.2	 4 8.6 11.4 14.3 16.4 17.3 16.7 15.2 12.5 9.6 7.0 5.7 9 9.0 11.8 14.5 16.4 17.2 16.7 15.3 12.8 10.0 7.5 6.1 4 9.4 12.1 14.7 16.4 17.2 16.7 15.4 13.1 10.6 8.0 6.6 9 9.8 12.4 14.8 16.5 17.1 16.8 15.5 13.4 10.8 8.5 7.2 3 10.2 12.8 15.0 16.5 17.0 16.8 15.6 13.6 11.2 9.0 7.8 	.8 10.7 13.1 15.2 16.5 17.0 16.8*15.7 13.9 11.6 9.5 8.3 .3 11.1 13.4 15.3 16.5 16.8 16.7 15.7 14.1 12.0 9.9 8.8 .8 11.5 13.7 15.3 16.4 16.7 16.6 15.7 14.3 12.3 10.3 9.3 .2 11.9 13.9 15.4 16.4 16.6 16.5 15.8 14.5 12.6 10.7 9.7 .7 12.3 14.2 15.5 16.3 16.4 16.4 15.8 14.6 13.0 11.1 10.2	2 12.7 14.4 15.6 16.3 16.4 16.3 15.9 14.8 13.3 11.6 10.7 6 13.0 14.6 15.6 16.1 16.1 16.1 15.8 14.9 13.6 12.0 11.1 0 13.3 14.7 15.6 16.0 15.9 15.9 15.7 15.0 13.9 12.4 11.6 4 13.6 14.9 15.7 15.8 15.7 15.7 15.7 15.1 14.1 12.8 12.0 8 13.9 15.1 15.7 15.7 15.5 15.5 15.6 15.2 14.4 13.3 12.5	2 14.2 15.3 15.7 15.5 15.3 15.3 15.5 15.3 14.7 13.6 12.9 6 14.5 15.3 15.6 15.3 15.0 15.1 15.4 15.3 14.8 13.9 13.3 9 14.8 15.4 15.1 14.7 14.9 15.2 15.3 15.0 14.2 13.7 3 15.0 15.5 15.5 14.9 14.4 14.6 15.1 15.3 15.0 14.5 14.1 7 15.3 15.6 15.3 14.4 13.9 14.1 14.8 15.3 15.4 15.1 14.8
	orthern Hemispher	n Feb Mar Apr May June July Aug Sept Oct Nov De	.8 6.1 9.4 12.7 15.8 17.1 16.4 14.1 10.9 7.4 4.5 3.2 .3 6.6 9.8 13.0 15.9 17.2 16.6 14.1 10.9 7.4 4.5 3.2 .9 7.1 10.2 13.3 16.0 17.2 16.6 14.5 11.5 8.3 5.5 4.3 .3 7.6 10.6 13.7 16.1 17.2 16.6 14.7 11.9 8.7 6.0 4.7 .9 8.1 11.0 14.0 16.2 17.3 16.7 15.0 12.2 9.1 6.5 5.2	8.6 11.4 14.3 16.4 17.3 16.7 15.2 12.5 9.6 7.0 5.7 9.0 11.8 14.5 16.4 17.2 16.7 15.3 12.8 10.0 7.5 6.1 9.4 12.1 14.7 16.4 17.2 16.7 15.4 13.1 10.6 8.0 6.6 9.8 12.4 14.8 16.5 17.1 16.8 15.5 13.4 10.8 8.5 7.2 10.2 12.8 15.0 16.5 17.0 16.8 15.6 13.6 11.2 9.0 7.8	10.7 13.1 15.2 16.5 17.0 16.8*15.7 13.9 11.6 9.5 8.3 11.1 13.4 15.3 16.5 16.8 16.7 15.7 14.1 12.0 9.9 8.8 11.5 13.7 15.3 16.4 16.7 16.6 15.7 14.3 12.3 10.3 9.3 11.9 13.9 15.4 16.4 16.6 16.5 15.8 14.5 12.6 10.7 9.7 12.3 14.2 15.5 16.3 16.4 16.4 15.8 14.6 13.0 11.1 10.2	2 12.7 14.4 15.6 16.3 16.4 16.3 15.9 14.8 13.3 11.6 10.7 6 13.0 14.6 15.6 16.1 16.1 16.1 15.8 14.9 13.6 12.0 11.1 0 13.3 14.7 15.6 16.0 15.9 15.9 15.7 15.7 15.0 13.9 12.4 11.6 4 13.6 14.9 15.7 15.8 15.7 15.7 15.7 15.1 14.1 12.8 12.0 8 13.9 15.1 15.7 15.7 15.5 15.5 15.6 15.2 14.4 13.3 12.5	14.2 15.3 15.7 15.5 15.3 15.3 15.5 15.3 14.7 13.6 12.9 14.5 15.3 15.6 15.3 15.0 15.1 15.4 15.3 14.8 13.9 13.3 14.8 15.4 15.1 14.7 14.9 15.2 15.3 15.0 14.2 13.7 15.0 15.5 15.5 14.9 14.4 14.6 15.1 15.3 15.0 14.5 14.1 15.3 15.6 15.3 14.4 13.9 14.1 14.8 15.3 15.4 15.1 14.8 15.5 15.7 15.3 14.4 13.9 14.1 14.8 15.3 15.4 15.1 14.8

,

APPENDIX J.2.9 EXTRA TERRESTRIAL RADIATION (Ra) EXPRESSED IN mm/day


1.0 ŝ 1.0 17.7 18.1 .06 8 97 ŝ Ŋ 5 ы. 90 .07 34 38 8 ß н Ц σ, 16.3*16.7 17.2 EFFECT OF THE RATIO ACTUAL AND MAXIMUM BRIGHT SUNSHINE HOURS $f(\pi/N)$ on Longwave radiation (rml) 80-36 33 ເດ ຜູ ក្ម OF 0.25 . 00 .82*.87 CONVERSION FACTOR FOR EXTRA-TERRESTRIAL RADIATION (Ra) TO AND DIFFERENT RATIONS OF ACTUAL TO MAXIMUM SUNSHINE HOURS EFFECT VAPOUR PRESSURE f(ed) ON LONGWAVE RADIATION (Rnl) *67 8.08 80 ON LONGWAVE RADIATION (Rnl) 3 30 ထု .75 47 6 .75 . 78 32 28 NET SOLAR RADIATION (Rns) FOR A GIVEN REFLECTION .70 :45 - 73 15.9 10 8 0 26 .65 :43 . 69 50 15.0 15.4 28. 77 17. .55.60 .64 φ. 12 26 66. 22 ហ ហ 60 12 24 50 14.6 .37 ເກ ິນ ເກິ 2 *..... 40 EFFECT OF TEMPERATURE F(T) 36 22 10 V ក្ 14.2 ဗ္ဗ -40 .34 .14 .46 30 .35. 4 13.8 $(1-\alpha)(0.25 + 0.50n/N)$ 19 . 35 .32 .42 ς Γ ŝ 13.5 .30 ð N 27 37 . 16 .25 .3 9 - 25 13.1 28 .33 12 . 18 7 .20 .26 12.7 .28 \sim 0E <u>.</u> 12 .10 .15 .24 ភ្ន 24 12.4 တ် .20 .22 ្អ APPENDIX J.2.10 APPENDIX J.2.11 APPENDIX J.2.12 . 19 APPENDIX J.2.13 -12.0 ŝ Q .21 .22 ŝ ភ្ន တ 11.7 0.19 0.10 0.0 4 0.23 io 0 11.4 2 f(ed) = 0.34 - 0.044 Ved $(1-\infty)(0.25 + 0.50 n/N)$ f(n/N) = 0.1 + 0.9 n/N 11.0 0 f(T) = o Tk⁴ ed mbar N/u <u>Л</u> Г

		RHn	nax =	30%		RH	nax = (50%		RHm	ax = 90)%
Rs mm/day	3	6	9	12	3	6	9	12	3	6	9	12
Uday m/sec				·	Vda	y/Unigl	nt = 4.()	L			
0 3 6 9	.86 .79 .68 .55	. 90 . 84 . 77 . 65	1.00 .92 .87 .78	1.00 .97 .93 .90	.96 .92 .85 .76	.98 1.00 .96 .83	1.05 1.11 1.11 1.02	1.05 1.19 1.19 1.14	1.02 .99 .94 .88	1.06 1.10 1.10 1.01	1.10 1.27 1.26 1.16	1.10 1.32 1.33 1.27
					Uda	y/Unigl	nt = 3.()	l			
0 3 6 9	.86 .76 .61 .46	. 90 . 81 . 68 . 56	1.00 .88 .81 .72	1.00 .94 .88 .82	.96 .87 .77 .67	.98 .96 .88 .79	1.05 1.06 1.02 .88	1.05 1.12 1.10 1.05	1.02 .94 .86 .78	1.06 1.04 1.01 .92	1.10 1.18 1.15 1.06	1.10 1.23 1.22 1.18
			·		Uda	/Unigl	nt = 2.()	1_			
0 3 6 9	.86 .69 .53 .37	. 90 . 76 . 61 . 48	1.00 .85 .74 .65	1.00 .92 .84 .76	. 96 . 83 . 70 . 59 .	. 98 . 91 . 80 . 70	1.05 .99* .94 .84	1.05 1.05* 1.02 .95	1.02 .89 .79 .71	1.06 .98 .92 .81	1.10 1.10*. 1.05 .96	1.10 1.14* 1.12 1.06
					Uday	/Unig	nt = 1.0)				
0 3 6 9	.86 .64 .43 .27	.90 .71 .53 .41	1.00 .82 .68 .59	1.00 .89 .79 .70	. 96 . 78 . 62 . 50	. 98 . 86 . 70 . 60	1.05 .94* .84 .75	1.05 .99* .93 .87	1.02 .85 .72 .62	1.06 92 .82 .72	1.10 1.01* .95 .87	1.10 1.05* 1.00 .96

APPENDIX J.2.14 ADJUSTMENT FACTOR (c) IN PRESENTED PENMAN EQUATION

			.	•						-			
	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NON	DEC	ANUAL
1968							102.8	122.3	103.6	52.9	435.0	300,2	1,116.8
1969	84.6	19.9	18.0	151.0	363.4	250.5	126.8	104.8	107.7	184.1	72.0	81.2	1,564.6
1970	40.9	159.9	57.7	41.4	279.8	160.4	161.9	351.8	180.3	551.8	116.4	256.9	2,359.2
1971	64.2	210.2	84.3	234.2	114.9	43.1	213.5	161.0	112.7	81.8	78.7	120.8	1,519.4
1972	79.1	171.3	178.7	129.7	175.3	214.5	186.3	258.6	198.8	182 3	105.7	137.3	2,017.6
1973	60.2	127.7	210.8	77.4	11.8	171.8	154.8	218.5	157.7	155.3	131.7	196.8	1,674.2
1974	163.2	212.6	85.7	142.3	189.1	234.2	141.9	246.6	173.6	235.4	85.8	205.2	2,115.6
1975	17.4	22.3	89.5	0.6	256.4	49.6	103.4	61.0	166.1	175.5	374.2	237.7	1,562.1
1976	31.4	167.1	124.4	229.3	165.9	310.8	138.9	162.3	64 - 6	248.6	129.9	79.0	1,752.2
1977	25.8	19.9	40-1	371.1	206.5	72.5	291.9	317.1	101.6	176.0	381.1	289.3	2,292.9
1978	121.6	71.2	172.1	201.6	281.8	145.1	191.3	176.4	219.3	116.9	154.4	86.9	1,938-6
1979	92.8	48.2	116.2	254.7	654.2	244.3	189.7	491.9	190.1	251.6	350.9	211-6	3,096.2
1980	91.7	85.0	60.4	121.5	423.8	189.8	218.4	300.1	104.9	158.6	40.0	220.6	2,014.8
1981	189.2	255.3	150.7	180.6	348.6	133.4	269.5	220.8	107.4	159.8	117.1	219.8	2,352.2
1982	96.9	137.8	29.8	42.7	409.9	310.1	177.7	160.6	157.8	99.5	230.1	139.4	1,992.3
1983	66.3	51.3	32.1	101.8	343.9	264.9	289.1	243.8	169.4	195.3	220.3	113.1	2,141.1
1984	1001	163.1	91.3	82.8	275.0	386.0	147.2	59.7	113.6	161.6	221.2	34.0	1,886.1
1 0 1 1	55.6	4-46	164.8	59.4						_	*		378.2

									· .		·				·		•	
IANUAL	1,232.0	1,437.4	1,216.8	1,595.0	I,330.I	I,648.3	1,040.7	1,372.7	1,461.9	1,548.7	1,669.4	1,536.5	1,787.9	1434 . 8	1,589.6	1,446.9	1,283.6	1,205.7
DEC	65.0	129.5	96.9	109.8	157.4	164.2	74.6	63.2	105.2	69.5	89.0	176.5	163.5	107.2	90.2	104.9	78.0	66.8
NON	57.6	93.1	63.0	84.6	I05.4	68.6	215.7	103.9	205.1	123.5	136.4	32.0	111.9	182.4	121.9	104.3	67.7	52.8
OCT	147.4	159.2	65.4	145.8	124.2	188.1	140.4	198.9	140.8	93.5	185.8	126.9	127.8	79.6	156.5	133.0	102.1	0-68
SEP	86.2	121.4	90.2	159.0	126.2	138.9	132.9	5.7	81.3	174.2	110.9	83.9	86.2	126.2	135.5	111.6	85.0	72.2
AUG		233.5	128.8	188.6	174.8	197.3	48.8	129.8	210.9	141.0	232.4	239.7	176.6	128.5	195.0	161.4	114.8	93.7
JUL	101.4	129.5	170.8	149.0	123.8	115.1	82.7	11.1	228.4	153.0	141.7	174.7	215.6	142.2	231.3	145.0	113.0	98.7
JUN	200.4	128.3	34.5	170.9	137.2	187.4	39.7	168-6	58.0	116.1	175.0	151.8	105.1	165.0	197.9	120.3	74.3	57.7
MAY	271.1	201.0	6.16	140.2	9.4	151.3	1.95.4	121.0	165.2	224.5	231.2	264.1	266.5	258.0	220.4	156.3	77.0	53.2
APR	11.2	33.1	187.4	103.8	31.9	113.0	7.2	166.2	198.5	161.3	161.2	97.2	144.5	34.2	81.4	103.6	57.0	36.7
MAR	14.4	46.2	68.2	143.0	159.4	39.2	71.6	5. 66	32.0	137.7	93.0	48.3	120.6	23.8	65.7	67.8	37.3	25.5
FEB	15.8	127.9	168.2	137-0	102.2	153.5	17.8	133.7	15.9	57.8	38.6	68.0	118.3	110.2	41.0	75.8	37.6	22.7
NAL	67.7	34.7	51.8	63.3	48.2	130.9	13.9	25.1	20.6	97.3	74.2	73.4	151.4	77.5	53.6	56.7	32.4	23.4
	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	2YEAR P.E.R.	5YEAR P.E.R.	1 OYEAR P.E.R.

CONTENTS

		Page
ni je Leto se		
1.	Basic Consideration	K~1
	in the dependence of the second s Received second	
2 •	Planning Methodology	K-1
3.	Design Criteria	
		K-2
3.1	사람이 있는 것 같은 것 같	K-2
3.2		K-3
3.3	Design Outer Water Level	K-4
	3.3.1 Tide Level	K4
	3.3.2 Water Level of the Yuna River	K-4
		n Na Star Na Star
4.	Drainage Plan	K-6
4.1		K-6
4.2		
		К-б
4.3	이 방법 집에 가지 않는 것이 같아. 이 것이 아이지 않는 것이 아이지 않는 것이 가지 않는 것이 같이 했다.	K-7
		K-7
	4.3.2 Division of the Drainage Basin	K-7
	4.3.3 Design Drainage Discharge	к-9
•	4.3.4 Section of Drainage Canal	K-9
- 1. j.	4.3.5 Main Drainage Canal	K-10
121		K-13
n de la composition a composition de la c		
	LIST OF TABLES	
		an An Anna
TABLE	K.4.1 CALCULATION OF DESIGN DISCHARGE	K-11
TABLE	K.4.2 DETERMINATION OF CANAL SECTION	K-12
	LIST OF FIGURES	

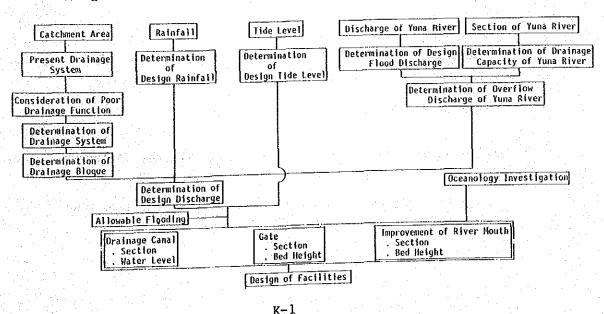
FIG. K.4.1	DRAINAGE	CANAL N	E TWORK	• • • • • • •	 •••••	K-7
FIG. K.4.2	DIVISION	OF THE	DRAINAGE	BASIN	 *******	к-8

K-i

ANNEX K: DRAINAGE PLAN

1. Basic Consideration

Basic consideration on the drainage plan is the timely removal of surplus water from the land so that damage to crops is minimized. This surface drainage will be made through actual systems of the Yuna River and the Caño Gran Estero until it will discharge to the Samana and Escocesa Bays.


The improvement of present pour drainage constitutes the principal objective of the plan which has been designed to remove excess rainfall produced by a 1 : 5 year return period.

In view that the development plan does not aim at Flood Mitigation of the Yuna River but at the Agricultural Development of the study area, the improvement works of the Yuna River has not been considered.

The drainage plan covers only the proposed development area and the rest of area will be left without any improvement works.

2. Planning Methodology

The establishment of the drainage plan has been made in line with the following flow chart.

3. Design Criteria

3.1 Project Level

(1) Design Drainage Discharge

The design drainage discharge was established for 5 years return period which is currently employed by the INDRHI.

(2) Design Daily Rainfall

Design daily rainfall to determine the drain section was established based on the maximum daily rainfall for 5 years return period; daily rainfall is expected to be removed within the same day. For the design of tide gate, three days duration of rainfall was employed.

(3) Allowable Flooding Depth and Duration

Allowable flooding depth and duration are as follows:

Allowable flooding depth : 30 cm Allowable flooding duration : 24 hours

(4) Design Inner Water Level

Design inner water level at the flooding was determined as follows:

Design inner water level = Minimum elevation of the paddy field + allowable flooding depth

(5) Design Outer Water Level

Design outer water levels were determined in the following manner:

Cano Gran Estero System: design high tide level of the Escocesa Bay Guayabo River System : mean water level at the confluence of the Yuna River and the Guayabo River

(6) Inflow from Outside the Development Area

The proposed inflow of excess water from outside the development area was estimated to be equivalent to the overflow which was determined by the flood discharge of the Yuna River for 1 : 5 return period and the draining capacity of the Yuna River.

3.2 Design Daily Rainfall

(1) Design Daily Rainfall

Maximum consecutive rainfall for 5 years return period at different pluvial stations are as follows:

Continuous maximum rainfall for 5 years return period (mm)

Consecutive Rainfall	Sanchez	Nagua	Villa Riva	Barraquite	Study Area
Maximum Daily	151.3	164.9	124.8	136.7	141.6
Maximum Two Days	206.3	201.6	161.8	169.2	183.7
Maximum Three Days	229.7	229.2	173.1	190.1	204.5

Consequently, design daily rainfalls for drainage plan were established as follows:

Daily	:	141.6	mm
Two consecutive days	:	183.7	mm
Three consecutive days	:	204.5	mm

(2) Rainfall Pattern

Rear mountain type rainfall pattern was employed for the sake of

safety.

(3) Distribution of Rainfall

Distribution of rainfall are in the followings:

First day	•	20.8	nun
Second day		42.1	mm
Third day	:	141.6	mm

(4) Hourly Distribution of Rainfall

Hourly distribution of rainfall was computed using following formula:

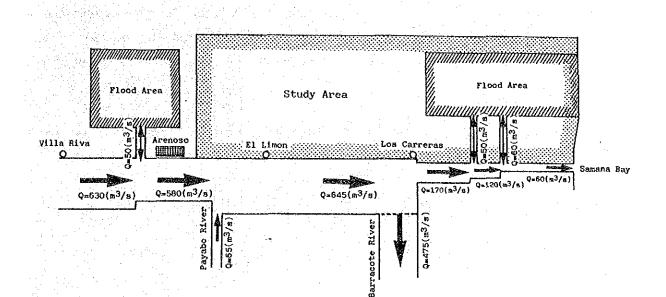
$$R_{t} = R_{24} \left(\frac{t}{24}\right)^{K}$$

where, R_t : Total Rainfall on T hours R₂₄ : Daily Rainfall K : Coefficient (employed 0.5 which was estimated by Sharman)

3.3 Design Outer Water Level

3.3.1 Tide Level

Design outer water level applied for the Caño Gran Estero System was determined based on data obtained from the Playa El Diamante Station.


$$HWL = +0.40 \text{ m}$$

3.3.2 Water Level of the Yuna River

Design outer water level for the Guayabo River System was determined by present water level at the confluence of the Yuna River with the Guayabo River. In the course of the field works, water level of at the said confluence was observed, which is summarized as below:

Mean Water Level ... +0.89 m High Water Level ... +1.46 m Low Water Level ... +0.58 m (Oct. 1985 - Dec. 1985)

Flood discharge of the Yuna River for 5 years return period is illustrated as follows:

4. Drainage Plan

4.1 General Description of the Plan

For the purpose of improving actual poor drainage system, a drainage plan has been formulated, which is composed of:

- To construct a main drainage canal, which will collect excess water of development area to drain into the Escocesa Bay through the Caño Gran Estero.
- To improve and cut off the Caño Gran Estero so that its draining capacity may be improved. The construction of a tide gate and a training dike is also considered so as to prevent the outlet of the Caño Gran Estero from being closed with the accumulation of drifting sand.
- To improve the Guayabo River together with the installation of a drainage gate at the confluence with the Yuna River.

4.2 Description of Structures

The following structures are included in the drainage plans.

e-A Alternative-I	Structures
44.3 km	ain Drainage Canal
19.2 km	econdary Drainage Canal
1	rainage Gate
-	ide Gate
1	raining Dike
	raining Dike

K-6

4.3 Drainage Canal

4.3.1 Canal Network

Drainage canal network, as illustrated in Fig. K.4.1, has been delineated in accordance with following considerations.

Actual rivers and drains will be used as far as possible and these systems will constitute the trunk of the network.

4.3.2 Division of the Drainage Basin

The division of the drainage basin is as shown in Fig. K.4.2.

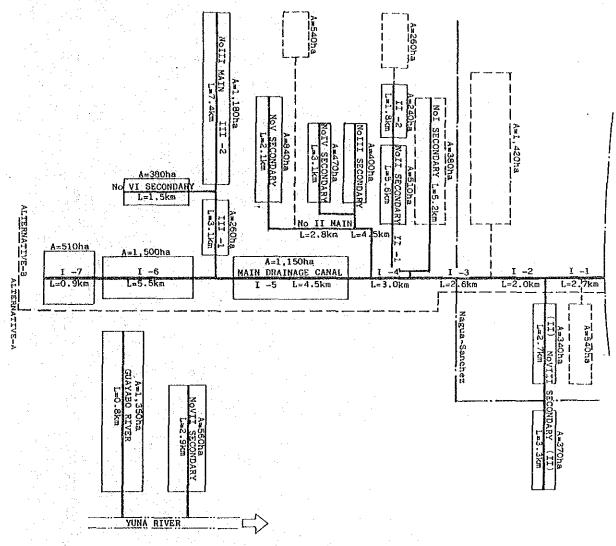
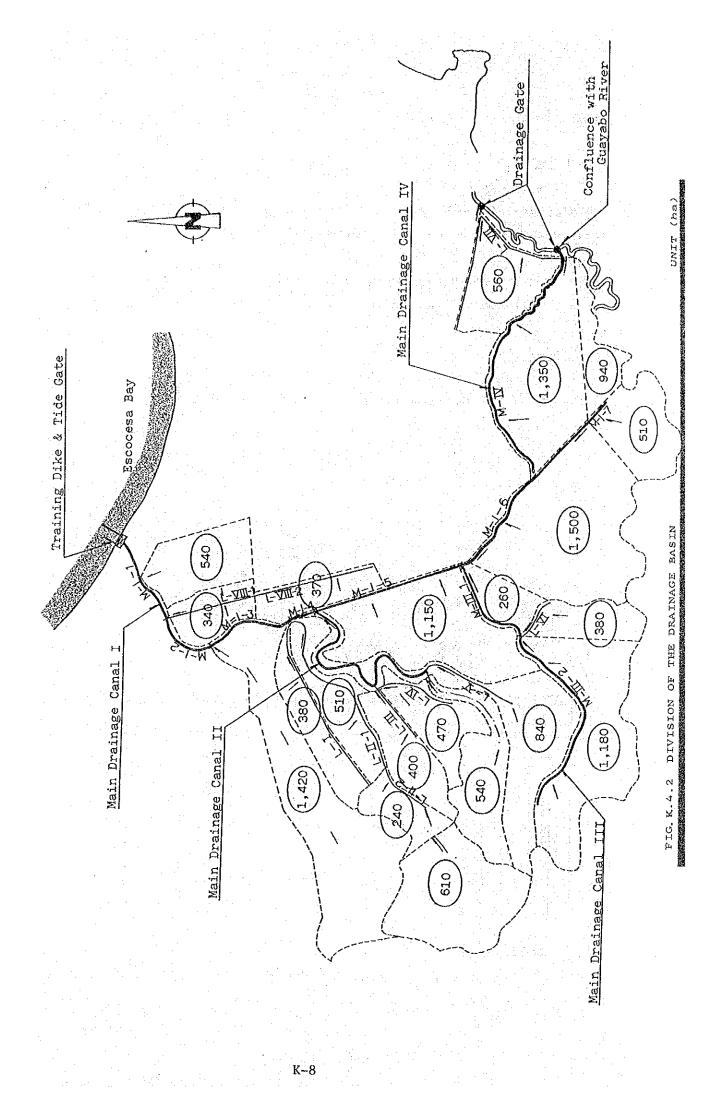
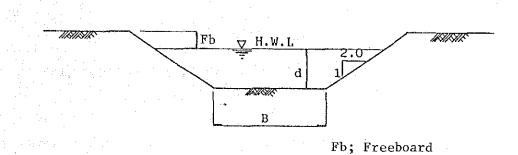



FIG. K.4.1 DRAINAGE CANAL NETWORK

4.3.3 Design Drainage Discharge

The rational formula was applied for the establishment of design drainage discharge.


$Q = \frac{1}{3.6} \cdot f \cdot r \cdot A$

where, Q : peak discharge (m^3/s)

- f : runoff coefficient
- r : average rainfall intensity for the duration of flooding (mm/hr)
- A: area to be drained (km^2)

4.3.4 Section of Drainage Canal

The standard section of a drainage canal is as illustrated below.

The freeboard will be maintained as high as 30 cm or more.

4.3.5 Main Drainage Canal

(1) Longitudinal Plan of the Main Drainage Canal No. 1

For the purpose of efficient utilization of water resources as well as protection of salt wedge, the installation of a tide gate at the outlet of the Cano Gran Estero has been proposed for Alternative A-I and Alternative A-II; the bottom of the gate which will be a fixed structure is to be determined its elevation within the longitudinal plan of the canal.

The gradient of the river bed was designed to be at 1 : 15,000, which had been determined aiming at adequate removal of excess water stagnated within swamps of El Guayabo.

The elevation of river bed was set out to be -3.0 m, equivalent to that of the Cano Gran Estero.

(2) Other Main & Secondary Drainage Canal

Gradient of others main and secondary drainage canals were determined, depending on actual land slope.

In Table K.4.1 drainage basin and design discharge are summarized.

Discharge (m ³ /s)	н н н н н н н н н н н н н н н н н н н	10.00 0.7 7.2 2.6 2.6 2.5 7.7 7.7 7.7 7 7 7 7 7 7 7 7 7 7 7 7 7
Intensity Rainfall (um/hr)	๛๛๛๛๛๛๛๛๛๛ ๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛	10.2 8.5 17.0 124.1 10.2 22.2 22.2 5.9 9 5.9 9 5.9
E Concentration Time (hr)	$\begin{array}{c} 7.2\\ 11.3\\ 20.4\\ 33.9\\ 45.3\\ 45.3\\ 45.3\\ 45.3\\ 26.5\\ 26.5\\ 24.0\\ 35.2\\ 6.7\\ 6.7\\ 10.8\\ 30.2\\ (24.0)\\ 35.2\\ $	8.1 11.5 19.1 2.9 4.2 8.1 1.7 (24.0) (24.0) (24.0)
GN DISCHARGE Land Elevation of Lower Reach (m)	∞ ∞ ∞ ∞ ∞ ∞ ∞ ⊂ ∞ ⊂ ⊂ ∞ – – – – – – – – – – – – – – – – – – –	4466666444 89800900000
ON OF DESIGN Land Elevation El of Upper o Reach (m)		8.000444400 9.00444400 0.0000000000000000
CALCULATION Maximum of Length R (km)	4 - 0 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	, 8 4 9 3 3 3 3 4 8 8 5 9 3 3 4 1 1 1 1 4 8 8 5 9 3 3 5 1 1 1 1 1 2 6 8 5
TABLE K.4.1 1 ent (km)	104400080400 20000000400	2921999999 292199997 292199997
TABI Total Catchment Area (ha)	510 2,010 4,980 7,400 8,870 8,870 1,270 1,450 1,450 1,180 1,180 1,350 1,350	380 850 850 400 470 840 380 370 710 710
Catchment Area (ha)	1,500 1,150 1,150 1,120 1,120 1,180 1,350	380 510 510 470 840 380 370 340
Mair Canals		Secondary Canal I II-2 III-1 III IV VI VII VIII-2 VIII-2 VIII-2

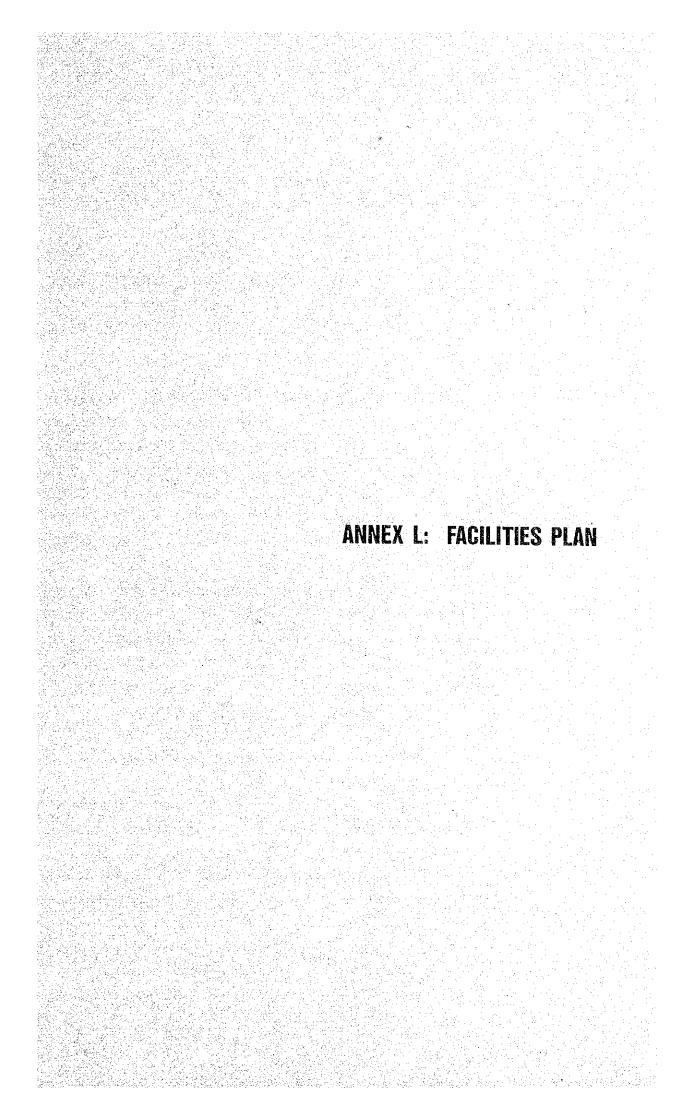
Capacity of Canal (m ³ /s)		м. 8	0.1	5.1	0.4	8.1	9-6	3.9	9.8	6.7	5.6	0.J	9.1		4.8	%. 7	0.3	7.9	8.2	6. 8	0.0	3.8	4.1	5.0
CapeVelocityof ((m/s)				- 				· .		· ·	:		0.24		53	0.62	64	60	69	41	71	21	34	35
<u>Perimeter</u> (m)		16.7	25.2	35.2	45.2	50.2	57.7	60.2	16.9	23.9	14.9	31.2	23.9		9.7	11.9	12.9	11.4	10.9	16.9	11.9	L3.9	10.9	б • Н
Area $\frac{\text{Area}}{(m^2)}$		28.2	57 1	1.10	125.1	142.1	167-6	176.1	24.0	38 0	20.0	62.5	38.0		0.6	14.0	16.0	13.0	12.0	24.0	14-0	18.0	12-0	14.0
Width of Canal Bed (B)		1.5	10.0	20.0	30-0	35.0	42.5	45.0	8.0	15.0	6.0	20.0	15.0		3.0	3.0	4.0	2.5	2.0	8.0	о С	5.0	2.0	0.
Depth (m)		3.4	3.4	3.4	3.4	3.4	3.4	3.4	2.0	2.0	2.0	2.5	2.0		· · · ·	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Gradient	· · ·	1/15,000	/15,0	1/15,000	15,0	15:0	/15,0	115,0	/: 6,0	0.9./	/ I ,5	1/15,000	1/20,000		1/ 2,000	1/ 2,000	1/ 2,000	/ 2,0	1/ 1,500	/ 6.0	/ 1,5	1/20,000	/ 6,0	1/ 6,000
Length of Canal (km)		1°5	٠	4.5	. .				1 •	÷.		٠	÷.			1.8	- 1 a -		÷.		1 ; 4 1			÷ •
Design Discharge (m ³ /s)				35.4	٠			٠		1 B			1 a -		4.3	0 . 8		7.5				3.7		4.7
Canals	Main Canal	I-7	I-6	I5	T-4		I-2	I-1	II-2	I-II	III-2	III-1	IV (Guayabo)	Secondary Canal	1	II-2	II-1	TII		Δ	ΛI	TIA	VIII-2	L-IIIV
n an		•									K	-1	2							•	:			•

4,3.6 Tertiary Drainage Canal

Tertiary drainage canal will be installed at the interval of every 700 ha and the section was determined based on daily removal of collected rainfall. The following four types have been proposed.

Туре	Width of Canal Bed	width of X Canal Top	x	Depth
Type I	⇒ 0 . 5	2.5		1.0 m
Type II	1.0	3.0		1.0 m
Type III	1,5	3.5		1.0 m
Type IV	2.0	4.0		1.0 m

Discharge by the gradient of canal are as follows:


			:		(m ³ /s)
	Туре	1/1,000	1/2,000	1/3,000	1/5,000
	Туре І	1.03	0.73	0.59	0.45
	Type II	1.37	0.97	0.79	0.61
÷,	Type III	1.73	1.22	1.00	0.77
•	Type IV	2.09	1,48	1.21	0.92
1		~			–

Therefore, the section of canal was determined according to gradient of canal and drain basin.

(ha)

Туре	1/1,000	1/2,000	1/3,000	1/5,000
Type I	150	110	90	60
Type II	200	140	120	90
Type III	260	180	150	110
Type IV	310	220	180	140

K-13

CONTENTS

		Page
1.	Outline of Facilities	L~1
	Irrigation Works	L~1 L~1
1.2	Drainage Works	ь-т г-з
	Road Works	L-3 L-4
		<u></u> 1-4
2.	Preliminary Study of Main Intake Facilities	L-5
2.1	Regulating Reservoir Proposal	L-5
	2.1.1 Location	L-5
	2.1.2 Full Water Level	L-7
	2.1.3 Storage Volume	L-7
	2.1.4 Volume of Sediment	L-7
	2.1.5 Dam	L-8
	2.1.6 Spillway	
	2.1.7 Water Balance Study	L-13
2.2		L-29
	2.2.1 General	L-29
	2.2.2 Design Intake Water Level	L-29
	2.2.3 Driving Canal	L-32
	2.2.4 Design Flood Discharge	L-37
	2.2.5 Scouring Sluice	L-38
	2.2.6 Flood Sluice	L-42
	2.2.7 Intake	L-45
	2.2.8 Construction Gost	L-46
	2.2.9 Summary	L-46
ar ta Alta		
3.	Headworks	L-51
3,1	General	L-51
3.2	Туре	L-51
3.3	Gates	L-51
3.4	Design Intake Water Level	L-51
3.5	Hydraulic Calculation of Intake	L-51

Page

1.1.1.1.1.1.1	그는 것 같은 것 같	
3.6	Free-board at a Time of Raising a Gate	L-53
3.7	Countermeasures in Case of No Functioning of Gates	
4.	Pumping Station	L-56
4.1	Location	L-56
4.2	Design of Pumping Equipment	
4.3	Pumping Station and the Related Facilities	
4.4	Constant Intake of Water	
4.5	Operation and Maintenance of Pump	L-62
4.J		: · · · ·
5.	Tide Gate	L-64
5.1	General	L-64
5.2	Cross-section	L-64
5.3	Gate	L-65
J•J		
6.	Training Dike	L-65
6.1	General	
6.2	· · · · · · · · · · · · · · · · · · ·	L-66
6.3	Location of Head for Training Dike	L-70
6.4	Structure	L-70
0.4	Structure	11 . 0
1		
•		
. ¹	에는 사람이 있는 것이 가지 않는 것이 있는 것이 있는 것이 있다. 것이 가지 않는 것이 가지 않는 것이 있는 것이 있는 것이 있다. 이 사람이 있는 것이 같은 것이 있는 가	
100 B	计算机 化丁基基苯基 化化学学 化化学学 化化学学 化分子子 化分子子 化分子子 化分子子 化分子子	1

LIST OF TABLES

TABLE L.2.1	DESIGN	CRITERIA	FOR THE	PROPOSAL	H-2	• • • • • • • • • • • • • • • • • • •	L-31
		at a second				••••••	
TABLE L.3.1	HYDRAUI	LIC CALCU	LATION OF	F INTAKE			L-52

LIST OF FIGURES

7. · · ·			
FIG.	L.2.1	PLAN OF REGULATING RESERVOIR	L-6
FIG.	L.2.2	LOCATION OF HEADWORKS	L-30
FIG.	L.2.3	OUTLINE OF DRIVING CANAL	L-36
FIG.	L.2.4	LONGITUDINAL SECTION OF SCOURING SLUICE	ե-41
FIG.	L.2.5	GENERAL PLAN OF PROPOSAL H-2	L-49
FIG.	L.2.6	GENERAL PLAN OF PROPOSAL H-3	L-50
FIG.	L.3.3	EMERGENCY FLOODWAY	L-55
FIG.	L.4.1	LOCATION OF PUMPING STATION	L-56
FIG.	L.4.2	GENERAL PLAN OF MAIN PUMPING STATION	L-61

ANNEX L: FACILITIES PLAN

1. Outline of Facilities

1.1 Irrigation Works

1.1.1 Main Intake Facilities

Main intake facilities to be included within the development plan are as featured below:

(1) Headworks

Alternatives in which this	:	A-1, B-1
installation is proposed		
Location	:	Arenoso
Туре	:	Floating type
Height of weir	:	3.9 m
Length of movable weir		68.5 m
Intake rate	:	5.9 m ³ /s

(2) Pumping Station

Alternatives in which this	:	A-II, B-II
installation is proposed		
Location	:	Arenoso
Туре	:	Vertical type mixed flow pump
Diameter and quantity	:	6900 x 3
Actual pump head		4.3 m
Discharge capacity	. 1	$5.9 \text{ m}^3/\text{s}$

1.1.2 Secondary Intake Structures

Secondary intake facilities are proposed in Alternatives A-I, A-II, Irrigation water will be taken exclusively by means of pumps (inclined axial mixed flow pump). Design criteria of these pumps are as presented below:

		Discharge (m3/s)	Actual Head (m)	Diameter and Quantity
No. l	Pumping Station	0.46	5.5	6350 mm x 2
No. 2		0.21	4.8	6350 mm x 1
No. 3		0.41	3.1	6350 mm x 2

1.1.3 Irrigation Canals

The length of irrigation canal for each Alternative is as summarized in the table below:

				Unit: m
		Altern	atives	
	A-I	A-11	B-1	B-II
Main Canal	62,650	<u>62,100</u>	56,550	56,000
Туре А Туре В	35,450 27,200	34,900 27,200	34,200 22,350	33,650 22,350
Secondary Canal	242,600	242,600	200,900	200,900
Туре А Туре В Туре С	102,700 112,100 27,800	102,700 112,100 27,800	86,100 90,900 23,900	86,100 90,900 23,900
Total	305,250	304,700	257,450	256,900

1.1.4 Diversion Works and Check Gate

The quantity of diversion works and check gate to be included in each Alternative is as follows:

Works	Alternatives						
WOIKS	A-1	A-II	» B-1	B-II			
Diversion Works	<u>95</u>	<u>95</u>	80	80			
large size small size	6 89	6 89	6 74	6 74			
<u>Check Gate</u>	<u>30</u>	<u>30</u>	25	25			
large size small size	5 25	5 25	5 20	5 20			

1.2 Drainage Works

1.2.1 Drainage Canals

The length of canals for each Alternative is as listed below:

.

				Unit: m
		Altern	atives	
	A-1	A-II	B-1	B-11
Main Canal Secondary Canal Tertiary Canal	44,300 31,300 114,700	44,300 31,300 114,700	44,300 22,400 99,900	44,300 22,400 99,900
Total	190,300	190,300	166,600	166,600

1.2.2 Tide Gate

The installation of tide gate is proposed in Alternatives A-I and A-II.

Loc	ation:	Outlet	of the	Caño	Gran	Estero
Ga	te :	в 13.50) m x H	4.00	m x 3	sets

1.2.3 Training Dike

The installation of training dike is proposed in all Alternatives.

Location: Outlet of the Caño Gran Estero Length : Right bank - 120 m Left bank - 200 m Total: 320 m

1.2.4 Outlet of Drainage Canal

The outlet of drainage canal is proposed in the following two types. The quantity of works is the same for each Alternative.

Outlet with gate :	17
Outlet without gate :	19
Total	36

1.3 Road Works

1.3.1 Roads

The length of road to be constructed is summarized in each Alternative as below:

Unit: m

	and the second second			
	Alternatives			
	A-I	A-II	B-I	B-11
Trunk Road	700	<u>700</u>	<u> </u>	700
Trunk In-farm Road	46,700	46,700	43,900	43,900
To be constructed	18,400	18,400	18,400	18,400
To be improved	28,300	28,300	25,500	25,500
Lateral In-farm Road I	67,850	67,300	58,650	58,100
To be constructed	64,250	63,700	56,850	56,300
To be improved	3,600	3,600	1,800	1,800
<u>Lateral In-farm Road II</u>	97,300	97,300	79,050	79,050
Total	212,550	212,000	182,300	181,750

1.3.2 Bridges and Culverts

The quantity of bridges and culverts to be proposed in each Alternative is presented in the table below.

0	Alternatives			
Component	A-I	A-II	B-I	B-II
Bridge	9	9	8	8
Box Culvert	15	15	12	12

2. Preliminary Study of Main Intake Facilities

Preliminary study has been made with respect to the following three proposals of irrigation water intake method, namely:

- Regulating reservoir,
- Headworks and
- Pumping station

In this section, technical justification for the withdrawal of regulation reservoir proposal as well as comparative study on the location of headworks proposal is described.

2.1 Regulating Reservoir Proposal

2.1.1 Location

The location of a regulating reservoir was proposed near the existing El Aguacate Pumping Station, in the western part of the study area and in close vicinity to Arenoso (refer to Fig. L.2.1).

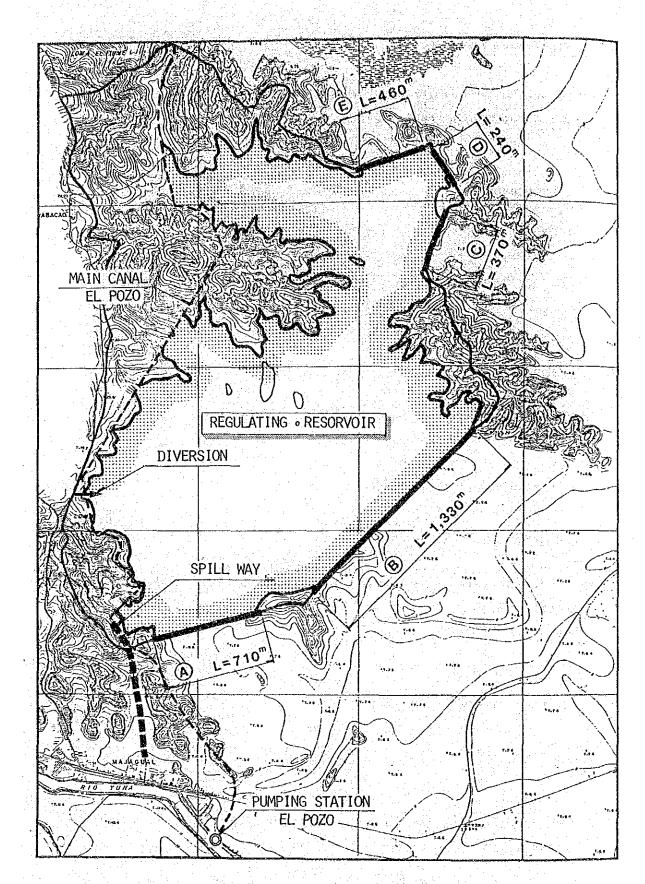


FIG L.2.1 PLAN OF REGULATING RESERVOIR

2.1.2 Full Water Level

In due consideration of embankments of main canals designed for the E1 Pozo Project and for the purpose of alleviating uplift pressure to be expected to the lining structure of main irrigation canal, the full water level was set out to be 14.00 m.

2.1.3 Storage Volume

The storage volume to comply with water level in consultation with the topographic map with a scale 1/10,000.

Water Level (m)	Height (m)	Area (x10 ³ m ²)	Average Area (x10 ³ m ²)	Volume (x10 ³ m ³)	Cumulative Volume (x10 ³ m ³)
7.6	0	0	0	0	0
8.0	0.4	350	175	70	70
9.0	1.0	2,270	1,310	1,310	1,380
10.0	1.0	3,220	2,745	2,745	4,125
12.0	2.0	3,540	3,380	6,760	10,885
14.0	2.0	4,100	3,820	7,640	18,525

2.1.4 Volume of Sediment

Given annual volume of sediment to be $100 \text{ m}^3/\text{km}^2$, the total sediment to be accumulated for 100 years was calculated as follows:

 $V = 100 \text{ m}^3/\text{km}^2/\text{year} \times 6.61 \text{ km}^2 \times 100 \text{ years} = 66,100 \text{ m}^3$

As a result, the design sediment level was established to be EL 8.00 m.

2.1.5 Dam

(1) <u>Type</u>

In view that impervious materials are easily available around the location and the height of dam is supposed comparatively low, a homogeneous type earth dam was proposed.

(2) Slope Gradient

In compliance with height of dam, embankment materials, geological structure of sub-base, etc., the following slope gradients were considered:

1) Dams to be constructed on poor ground : A, B, C

Upper part - 1 : 3.5 Lower part - 1 : 3.0

2) Dams to be constructed on favorable ground: D, E

Upper part -1:2.5Lower part -1:2.0

(3) Width of Crest

According to the "Design of Small Dam" prepared by Bureau of Reclamation, United States Department of the Interior, the width of crest is calculated in the following manner:

 $W \ge 0.2H + 3.0$ (m)

where, W : width of crest

H : height of dam, 16.0 - 7.0 = 9.0 (m)

Then,

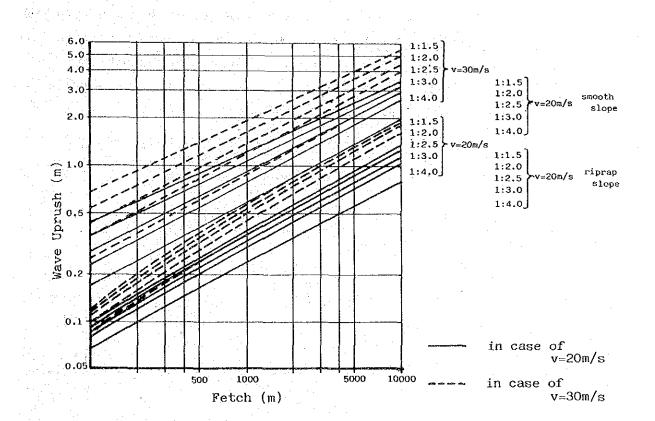
 $W \ge 0.2 \times 9.0 + 3.0 = 4.8$ (m)

Considering that the crest would be also used as a road, the width of 6.0 m was proposed.

(4) Freeboard

The freeboard of a dam with its height less than 10 m is computed as below:

Fb = 0.05H + wave height


where, Fb: freeboard

H : height between design flooding level and sub-base (14.60 - 7.00 = 7.60 m)

If the wave height will be less than 1 m, it will be raised to 1 m.

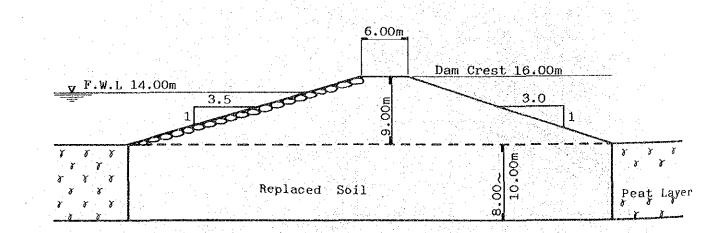
The wave height is computed by means of the S.M.B. and the Saville Methods as illustrated below:

HEIGHT OF WAVE CAUSED BY WIND

Given, V = 30 m/s, fetch = 1,750 m, slope gradient = 1 : 3.5 and the slope = riprap slope.

Then, the wave height of 0.65 m is gotton to consult with the above graph. This value, being less than 1 m, becomes 1 m as mentioned above.

As a result, the freeboard is computed as follows:


 $Fb = 0.05 \times 7.60 + 1.00 = 1.38 m$

Finally, the freeboard from the normal water level is:

Fb = 1.38 + 0.60 = 1.98 = 2.00 cm

(5) Standard Profile and Improvement Works on Sub-Base

Three dams of A, B and C were proposed to be constructed on poor ground formed principally be peat soils. In this connection, the standard profile of these dams were delineated including improvement works of the said poor ground; improvement works by applying displacement method was proposed taking the thickness of peat soil layer (8 - 10 m) and the coefficient of water permeability $(10^{-2} - 10^{-3} \text{ cm/sec})$ into account. Then, the standard profile is illustrated as below:

2.1.6 Spillway

(1) Design Flood Discharge

In establishing the design flood discharge, a return period of 1 : 200 was employed. The Rational Formula was applied for the calculation.

$$Qp = \frac{1}{3.6} \cdot f \cdot Rt \cdot A$$

where, Qp : peak runoff discharge (m^3/s)

f : runoff ratio

Rt : rainfall intensity during the time of

concentrate (mm/hr)

: catchment area (km²)

1) Runoff Ratio (f)

A

The runoff ratio composed of that at hill area and water surface area was computed as below:

	Area (km ²)	Runoff Ratio
Hill Area	2.56	f1 = 0.5
Water Surface Area	4.05	f2 = 1.0
Total	6.61	,

Then, f = $\frac{2.56 \times 0.5 + 4.05 \times 1.0}{6.61}$ = 0.8

2) Rainfall Intensity (Rt)

Rainfall intensity is computed as follows:

where, R₂₄ : daily rainfall = 214 mm/day T : time of concentration n : coefficient 0.5

$$T = 1/W$$

W

Rt 🖛

24

where, 1 : length from hyraulically most distant point of damsite

: velocity (km/hr)

$$W = 72 (H/1)^{0.6}$$

 $= 72 (0.082/5.0)^{0.6}$
 $= 6.11 \text{ km/hr}$

H : height from hydraulically most distant point to damsite

= 0.090 - 0.008 = 0.082 km

$$\therefore T = 5.0/6.11 = 0.82 \text{ (hr)}$$

$$\therefore Rt = \frac{214}{24} \left(\frac{24}{0.82}\right)^{0.5} = 48.2 \text{ (mm/hr)}$$

3) Design Flood Discharge

$$Qp = \frac{1}{3.6} \times 0.80 \times 48.2 \times 6.61 = 70.8 \text{ m}^3/\text{s}$$

The design flood discharge was summed up the design discharge of the El Pozo Project to the said unit runoff discharge.

Then,
$$Op' = 70.8 + 5.5 = 76.3 = 77.0 \text{ m}^3/\text{s}$$

(2) Overflow Depth and Length of Crest

The relation between the overflow depth and the length of crest was presented as below: