

SOIL AND MATERIAL SURVEY

(II)

II. SOIL AND MATERIALS SURVEY

2.1 Soil Sampling and Laboratory Test

2.1.1 Main Purpose of Laboratory Test

Main purpose of the laboratory test is to analyze the soil charactor of the available embankment materials along the road.

The analysis of the embankment materials was made in view of the importance for selecting new pavement structure which will be dtermined by the strength of subgrade on the newly constructed embankment portions rather than by the newly scraped roadbeds.

Therefore the simplified CBR test was conducted on the natural moisture soil samples which were compacted with 65 blows, soaked for four days, and penetrated, according to the JIS A1211 to judge the strength of embankment materials under the worst condition considered as the heavy rainy season.

2.1.2 Method of Investigation and Sampling

The method of the investigation and sampling to be applied was selected from the past experience of the Consultant in due consideration of the present study stage of this Project and the expected schedule that the detailed survey is to be made in the next design stage.

Under this concept, the soil samples were directly digged by shovels instead of the standard method using auger required by AASHTO. This method enabled us to collect enough soil samples (amounting to around 5 tons) with visual observation as conducted by the test pit method within a limited period. In the detailed design stage sampling will be conducted by using auger along the definite road alignment, the test results of which are to be compared with the results of the present test.

2.1.3 Location of Soil Sampling

After the visual classification of soils along the road, selection of the sampling point was made to get the comprehensive understanding of the whole road section.

The location of the soil sampling was determined in such a manner that soils to be taken are representative in the sampling zone and approximately the same intervals were kept for the sample zone.

The location of sampling points are shown in DWG-II-1.

2.1.4 Description of Soil Samples

Description of samples obtained on the existing road sides is given in Table II-1.

2.1.5 Items of Laboratory Test

The following tests were conducted on the collected samples.

Gradation test	(28 sa
Consistency test	(27 sa
Natural state test	(31 sa
Compaction test	(3 sa
CBR test	(16 sa

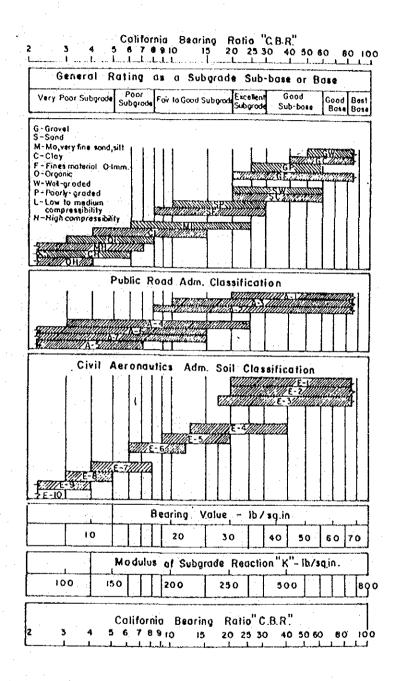
amples), amples), amples), amples), amples).

2.2 Analysis of Soil Laboratory Test Results

The results of soil laboratory test are shown in Table II-2. The analysis from the test results is briefly described hereunder.

2.2.1 Evaluation of the Soil as Subgrade Material

Soil classification of each sample was made by AASHTO M145-73. According to the AASHTO, M 57-64 Soil Evaluation for Subgrade, good or fair soils for subgrade are A-1, A-3 A-2-4, and A-2-5. Most of the samples carried from the site except G-2, Z-7 and V-9 are proved to be poor material for subgrade.


However, according to the Table II-3 Extended Unified Soil Classification System to Laterite Soils, most of the samples are classified into GM and GC which are identified to be good materials not only for subgrade but also for subbase.

Judging from the above two contradictory conclusions the soil character of the existing lateritic material is considered to be poor or fair for subgrade material during rainy season taking into account the soaked CBR values (4-11) which are shown in Table II-2. (see Fig. II-1)

In relation to the above analysis, the results of compaction tests were also checked. The optimum moisture contents (omc) are found out to be lower than that of natural moisture contents (Wn), because these tests were carried out during the rainy season. Therefore, if the earthworks for road improvement are carried out in dry season, it is expected that the field performance of subgrade will be completed with the good condition of the soil material.

II-2

Fig. II-1 CBR and Soil Classification

Source: Laterite Soil Engineering by M.D. Gidigasu

2.2.2 Comparison with "Problem" Laterite Soils

The general conditions of "Problem" laterite soils are as follows.

- A. Weathered soils formed in regious of recent volcanic activity,
- B. Continuous wet climate with an average annual rainfall generally above 1500 mm,
- C. Low natural densities between 0.320 g/cm3 and 1.121 g/cm^3 ,
- D. Friable and/or crumble structures.

Though the Project area have heavy rainfall more than 1500 mm, most of the natural densities of the soil even in the rainy season are higher values than the above 1.121 g/cm³. In the Project area, there is no volcanic activity and no friable and crumble material.

Considering this situation, it is judged that the laterite soil in the Project area does not belong to the soil group of "Problem" laterite soil.

2.2.3 Results of Soil Laboratory Tests

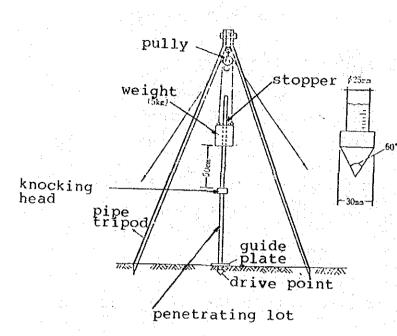
The summary of soil laboratory test are shown in Table II-1, and other results of test are shown hereinafter as Test Result (1) - (9).

/l Identified and classified as "Problem" laterite soil in Laterite Soil Engineering, M.D. Gidigasu, 1976.

2.3 Field Road Surface Test

2.3.1 Purpose of the Field Road Test

The field road surface tests such as field CBR test, deflection test by Benkelman beam and support layer thickness test by sounding equipment were carried out to get the supplemental data for understanding the existing laterite pavement.


2.3.2 Method of the Road Surface Test

The field CBR tests were done on the surface of the carriageway of laterite pavement by a common field CBR test equipment which was installed on a TOYOTA 6-ton truck and the natural moisture contents of the tested surface soils were also analyzed at MPW laboratory. The graph showing the correlation between penetration depth (mm) and load (kg) was drawn and the slope of the graph was modified in linear line. The corrected load value at 2.5 mm penetration was selected and compared with the standard load.

The deflection tests were conducted by using Benkelman beam and a truck which was loaded with soil in full. Initial dial reading was recorded at the maximum deflection point, and the final dial reading was recorded after the truck load had passed. The defference of the above two values was recorded as the total rebound deflection. The two times records of these reading values show the actual deflection.

The support layer thickness test was done by the special sounding equipment $\angle 1$ which was developed by the Road Research Institute of the Ministry of Construction, Japan. The dimention of the equipment is as follows:

^{/1}: This equipment is simple and handy compared with the core boring test equipment to judge the subsurface condition, however, there is no definite relation with other internationally authorized tests.

The test was carried out on the surface of carriageway and shoulder. The times of dropped hummer and their sunk depth were recorded and drawn. The reliable support layer thickness juded from this graph is around 20 cm.

2.3.3 Result of Road Surface Test

Summary of the field road surface test is shown in Table II-4. Some of the detailed test results of road surface tests are attached hereinafter as Test Result (10 - (12).

II-4

2.4 Borrow Pit and Quarry Site

2.4.1 Borrow Pit for Gravelly Laterite

Bowwow pit for selected laterite was investigated along the existing road. The results of the investigation are summerized below.

Gbarnga-St. Paul River: Good selected laterite was found in many portions within 5 km along the road.

St. Paul River-Zozor: The material found in this section was of poor condition along the road.

Zorzor Town Area: Good material was found only in the limited 5 km area around Zorzor town.

Konia-Lofa River: The material along the road was found to be poor condition.

Lofa-Voinjama: Only on some portion along the road, material found was of poor condition.

Voinjama-Kolahun: The material was poor along the road but rich along feeder road within 5 km from the junction to the main road.

Kolahun-Mendikoma: The condition of material was the almost same as that of Voinjama-Kolahun section, and good laterite was found near by Mendikoma but is does not include coarse aggregate.

The distribution of the gravelly laterite is shown in DWG-II-2.

2.4.2 Description of Quarry Site

Location and the reserve volume for the 10 proposed quarry sites are explained hereunder.

Site A, B & C - Belefuanai

These sites situated at Belefuanai Village on the right side of the existing road from Gbarnga with approximate distance of 1 km.

Site A is the largest in deposit, and B and C are about the same size. No over-burden problem, but with grass on the top.

Eestimated reserve in Site A: 400 meters in length, 150 meters in breast, and 80 meters in height. Volume $= 400 \times 150 \times 80 = 4,800,000 \text{ m}^3.$

Estimated reserve in Sites B and C: 180 meters length, 80 meters breast, and 60 meters height. Volume = 180 x 80 $x 60 = 864,000 \text{ m}^3$.

Site D - Gbanway

This site situates at Gbanway on both sides of the road. The deposit contains average over-burden, and should be considered as a spear side.

Estimated volume: 450 m length, 150 m breast and 80 m height. Volume = $450 \times 150 \times 80 = 5,400,000 \text{ m}^3$.

Site E - Zorzor

This site situates at 1.5 km from Zorzor after LPMC cocoa nursery garden on the left side of the existing road. It has a little over-burden, and is very economical site in terms of transportation for both sides.

Estimated deposit: 1.0 km in length, 500 m in breast and 200 m in height. Volume = $1,000 \times 200 \times 500 =$ $1 \times 10^8 \text{ m}^3$.

Site F - Tennabu

This site is located on the left side of the road from Zorzor with a distance of about 500 m from road side. This site is very suitable and economical because of no overburden, exposed homogeneous deposit.

Estimated quantity: 2 km length, 500 m breast and 100 m height. Volume = 2000 x 500 x 100 = 1 x 10^8 m³.

Site G - Voinjama

This site is located on the left side of Zorzor, and reached through the 1.0 km long one lane access road from the Project, about 7.0 km to Voinjama.

There are two quarry-mountains. A portable crushing plant had been operated, and provided the crushed aggregates for Voinjama town until 1978.

Estimated reserve: each length is 300 m, each breast is 100 m and height is 30 m. Volume = $2 \times 300 \times 100 \times 30$ $= 1.8 \times 10^6 m^3$.

Site H - Johnny Town

This site situates at Johnny Town on about 20 m right side of the road from Voinjama. This deposite also has no over-burden and homogeneous rock exposed. It can satisfy the economical supply located half way between sites G and I.

Estimated quantity: 1.5 km length, 500 m breast and 100 m height. Volume = 1,500 x 500 x 100 = 75 x 10^6 m^3 .

Site I - Foya

This site situates on 2.0 km right side of the road towards Mendikoma through a swampy area. It is a range of mountains with clean tops and exposed homogeneous rock and a suitable site for economical haulage of materials toward site H and site J.

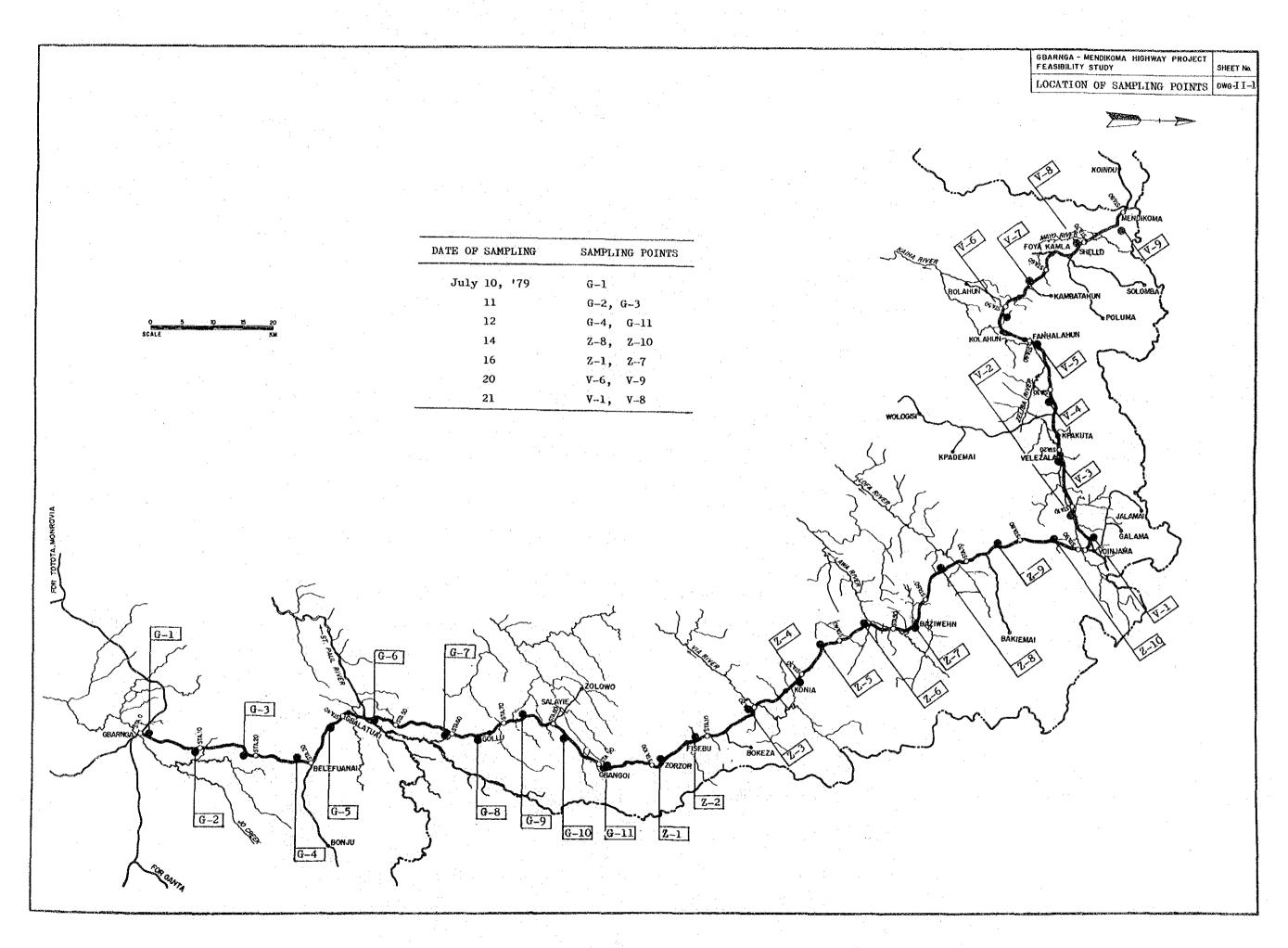
Estimated reserve: 1.0 km long, 200 m wide and 150 m height. Volume = 1,000 x 200 x 150 = $3 \times 10^7 \text{ m}^3$.

Site J - Mendikoma

This site is located on the left side of the existing road at Mendikoma from Foya with a distance of about 20 meters from the road.

Though free from over-burden with homogeneous rock, this quarry site should be considered to be a spear side, because it situates almost at the end of this highway.

Estimated reserve: 1.0 km length, 400 m breast and 50 m height. Volume = 1,000 x 400 x 50 = $2 \times 10^7 \text{ m}^3$.


The location of the above quarry sites is shown in DWG-II-2.

2.4.3 Specific Gravity of the Rock Specimen

The specific gravity was tested by MPW laboratory, and the results are shown as follows:

an a	
SAMPLE	SPECIFIC GF
A, B + C	2.61
D	2.63
Е	2.64
J & G	2.69
Н	2.64
I.	2.64
J	2.62
Average	2.64

II-7

SAMPLE	DISTANCE & INTERVAL	RIGHT OR LEFT FOR MENDIKOMA	DEPTH FROM CUT SLOPE TOP	DEPTH FROM ROAD SURFACE	DESCRIPTIONS ABOUT SAMPLES
G~1	10m from Gbarnga	LEFT	0.5m (no slope	0 – 0,2m	Lateritic material including fine gravel ($ otin 0.5 - 2.0cm$). Red clay with a little iron oxides and mica.
0-I	Juncti on G.S		section)	0.2m - 0.6m	Red plastic clay, hard milky red clay with silt, gravel ($p2.0$ cm) and mold i bottom layer.
		· · ·		0 – 0.2m	Dark brown wet surface soil with mold.
G~2	9km from G-1	RIGHT	1. Om	0.2m - 0.6m	Dark brown gravelly clay with mold.
	11011 0~1			0.6m - 1.0m	Dark brown gravelly silt with weathered rock.
G-3	9km from G-2	RIGHT	1.Om	0 – 0.5m	Moist brown medium to fine sand, some clay and silt, little medium to fine gravel, ($p0.5$ mm - 2.0mm), trace of decomposed rock fragments.
G-31	near by G-3	RIGHT	0 m	1.Om HIGHT	Existing quarry site for selected laterite, mixture from gravel $(0.5 - 2.0c)$ and clay.
	9km	* ****		0 – 0,2m	Red and hard lateritic material.
G-4	from G-3	LEFT	0.5m	0.2m - 1.0m	Wet tanish brown clayey silt and fine to coarse sand with mold.
G~5	9km from G-4	RIGHT	0.5m (embankment section)	0 - 0.5m	Moist light brown fine to coarse sand & clay and silt, trace of medium to fine gravel with mica, and mold.
G~6	9km from G-5	RIGHT	1.Om	0 - 0.5m	Moist tanish brown clay & silt, some fine to medium sand, little fine to medium gravel (ϕ 5.0cm).
G~7	9km from G-6	RIGHT	1.5m	0 - 0.5m	Moist tanish brown fine to coarse sand, some medium to fine gravel & silt & clay gravel ($$10.0$ cm) in bottom of side ditch.
G8	9km from G-7	RIGHT	2.Om	0 – 0.5m	Moist tanish brown fine to coarse sand, some silty clay & medium to fine gravel, trace of decomposed rock fragments.
G-9	9km from G~8	LEFT	4.Om	0 - 0.5m	Light brown silty clay with scoria (ϕ lmm - 3mm) gravel (ϕ l2cm) with mold in bottom of side ditch.
G-10	9km from G-9	RIGHT	1. Om	0 - 0.5m	Moist light brown medium sandy clay and silt some gravel (p 10cm - 1cm) on cut slope.
G~11	9km from G-10	LEFT	2.0m	0 - 0.5m	Moist tan and brown fine to medium sand, some clay & silt fine gravel from weathered rock.
Z-1	800m from Zorzor G.S	LEFT	2.Om	0 – 0.5m	Moist tanish brown fine to coarse sand & clay & silt, little fine to medium gravel from weathered rock.
2-2	9.3km from Z-1	LEFT	3.5m	0 - 0.8m	Moist red plastic clay, yellow harden silt, medium to coarse sand $(00.5 - 2 \text{mm})$.
Z-3	9.3km from Z-2	LEFT	0.5m	0 ~ 0.5m	Moist greyish brown fine to medium sand, little silt with mold.

Table II-1 Discription about Soil Sample (1)

2.0cm). Red clay with

- lt, little medium to fine fragments.
- re from gravel (0.5 2.0cm)

SAMPLE	DISTANCE & INTERVAL	RIGHT OR LEFT FOR MENDIKOMA	DEPTH FROM CUT SLOPE TOP	DEPTH FROM ROAD SURFACE	DESCRIPTIONS ABOUT SAMPLES
Z-4	9.3km from Z~3	RIGHT	3.Om	0 - 0.5m	Moist grey & brown fine to medium sand & clay & sil
2-5	9.3km from Z-4	LEFT	0.5m	0 - 0,5m	Moist tan & brown medium to fine sand & silt & clay
Z-6	9.3km from Z-5	LEFT	0.6m	0 - 0.3m 0.3m - 0.6m	Red plastic clay with fine sand and gravel. Moist tanish brown medium to coarse sand & silty cl gravel, trace of mold and milky siet.
2-7	9.3km from Z-6	RIGHT	0.8m	0 - 0.4m 0.4m - 0.8m	Moist reddish brown clay with fine gravel from weat Light yellow silt with sand and fine gravel from we
Z-8	9.3km from Z-7	LEFT	1.5m	0 - 0.5m	Wet reddish brown medium to fine sand, some silt &
Z-9	9.3km from Z-8	LEFT	1.On	0 - 0.3m 0.3m - 0.5m	Moist dark grey sandy clay. Moist reddish brown silt & clay and medium to find and roots, light milky silt in bottom layer.
Z-10	9.3km from 2-9	LEFT	2 . Om	0 – 0.5m	Moist tanish brown clay & silt, some fine to coarse & roots, milky red clay and yellow silt.
V-1	4.6km from Voinjama G.S	RIGHT	Оп	0 т	Existing quarry for selected laterite, wet dark bro some medium to coarse sand & silt & clay, trace of
V-2	8.6km from V-1	LEFT	1.Om	0 - 0.2m 0.2m - 1.0m	Dark grayish brown surface soil. Moist light milkyish gray sandy clay, trace of root
V-3	8.6km from V-2	LEFT	3.Om	0 – 0.5m	Moist dark red clay and fine to medium sand, trace
V-4	8.6km from V-3	LEPT	0.5m	0 - 0.5m	Moist red plastic clay with fine gravel ($ otiv 0.5-1.0$ cm milky coarse gravel ($ otiv 5$ cm).
V-5	8.6km from V-4	RIGHT	2 . Om	0 – 0.5m	Moist reddish brown medium to fine sand, some claye trace of roots and harden sand.
V-6	8.6km from V-5	RIGHT	0 m	0 m	Existing quarry for selected laterite. Moist tanis gravel, some silty clay & fine to medium sand, trac
V-7	8.6km from V-6	LEPT	2.0m	0 – 0.5m	Wet reddish brown silt & clay and medium to fine sa of sandstone and mica.
V-8	8.6km from V-7	LEFT	1.2m	0 - 0.3m	Moist red and brown medium to fine sand, some clay rock fragments, trace of fine to medium gravel, tra
V-9	8.6km from V-8	RICHT	От	0 m	Moist dark red fine to medium gravel (p 1.0 - 3.0cm) and silt, plastic red clay under 0.5m depth. Existing quarry for good lateritic material.

Table II-1 Discription about Soil Sample (2)

II-9

- contid -

ilt, trace of fine gravel. ay, trace of mold and scoria. clay, much medium to fine thered rock. eathered rock. clay, trace or roots & mica. sand, trace of fine gravel se sand, trace of fine gravel own fine to coarse gravel, mold & roots. ts and silt. of mica. m) trace of barden silt and vey silt, milkyish white clay, sh brown fine to medium ace of milky clay. and, trace of roots, trace y and silt, little decomposed race of roots and siltstone. m) some coarse to fine sand

Table II-2 Summary of Soil Laboratory Test

								· · · · ·	· · · · · · · · · · · · · · · · · · ·												
LOCATION	SECTION	SAMPLE NO.	SAMPLE DEPTH (m)	GRAVEL %	SAND %	SILT & CLAY	MAX DIAMETER (mm)	TYPE OF GRADING	LI QUID LIMIT LL (%)	PLASTIC LIMIT PL (%)	PLASTIC INDEX PI	SOIL CLASSIFICATION	NATURAL MOISTURE CONTENT Wn (%)	WET DENSITY t (g/cm ³)	DRY DENSITY d (g/cm ³)	TEST (AASHTO) CONDITION T 180	OPTIMUM MOISTURE CONTENT omc (%)	MAXIMUM DRY DENSITY dmax (g/cm ³)	TEST FOR SUBGRADE MATERIAL (%)	TEST FOR BASE MATERIAL %	DESIGN CBR
					GRADATIO	N			C	ONSISTE	ACX.		 	IATURAL ST	'ATE	COMPA	ACTION		CBR	TEST	
-ZORZOR	I	G-1 G-2 G-3 G-4 G-5	0.5 1.0 1.0 0.5 0.5	65.1 26.8 4.6 18.5	19.8 35.8 37.5 39.9	15.1 37.4 57.9 41.6	25.4 25.4 9.5 19.1	- (E) F (F)	43.7 49.3 26.8 54.0	35.8 	7.9 	A-5 A-1-b A-7 A-4 A-7	24.3 13.9 19.0 19.5 22.3	1,778 1,825 2,129 2,015 1,915	1.4 1.6 1.8 1.7 1.6				9.1 8.1		8
GBARNGA-Z(II	G-6 G-7 G-8 G-9 G-10	1.0 1.5 2.0 4.0 1.0	37.3 38.1 34.9 1.1 1.4	23.6 34.6 38.9 59.9 59.9	39.1 27.3 26.2 39.0 38.7	19.1 19.1 19.1 25.4 4.76 4.76	(F) (E ~ F) (E ~ F) (F) (F) (F)	36.4 37.8 42.2 35.6 32.5	23.6 22.3 18.1 21.8 20.8	12.8 15.5 24.1 13.8 11.7	A-6 A-2-6 A-2-7 A-6 A-6	25.1 13.2 13.3 27.7 20.5	1,884 2,050 1,897 1,836 1,859	1.5 1.8 1.7 1.4 1.5	C 	13.8	1.92	19.0 20.7 6.6		8
JAMA		G-11 Z-1 Z-2 Z-3	2.0 2.0 3.5 0.5	22.5 24.6 19.2 3.4	45.7 32.2 36.8 60.3	31.2 43.2 44.0 36.3	19.1 19.1 12.7 9.5	$\begin{array}{c} D \\ \hline (F) \\ (F) \\ (E \sim F) \end{array}$	37.5 51.1 46.4 26.8	26.9 34.5 27.1 16.4	10.6 16.6 19.3 10.4	A-2-6 A-7 A-7 A-4	24.8 22.7 20.2 12.9	1,694 1,983 2,000 2,019	1.4 1.6 1.7 1.8	- - C	 10.6	2.00		 	
ORZOR-VOINJ	III	Z-4 Z-5 Z-6 Z-7 Z-8	3.0 0.5 0.6 0.8 1.5	17.0 8.4 21.6 13.1 4.9	36.8 41.4 44.0 32.2 73.3	46.2 50.2 34.4 54.7 21.9	12.7 4.76 25.4 25.4 9.5	(F) (F) (F) (F) F	47.1 56.6 37.2 55.4	31.0 31.3 27.0 30.8	$- \\ 16.1 \\ 25.3 \\ 10.2 \\ 24.6$	A-7 A-7 A-2-7 A-2-4 A-2-7	20.8 21.6 16.7 21.9 26.7	2,015 2,004 2,017 2,006 1,848	1.7 1.7 1.7 1.7 1.5	-	-		6.6 8.3		7
Z	IV	Z-9 Z-10 V-1 V-2 V-3	1.0 2.0 0 1.0 3.0	16.5 57.0 0.4	35.1 19.6 58.1	48.4 	19.1 25.4 4.76	(F) D (F)	38.4 	24.1 23.5 21.9	14.3 29.3 16.9	A-6 A-2-7 A-6	17.8 21.9 14.9 17.5 26.1	2,057 1,955 2,095 1,933 1,752	$ 1.8 \\ 1.6 \\ 1.8 \\ 1.7 \\ 1.4 $	- - - -		- - 1.86 -	8.3 6.6 - 5.8		4
AMA-MENDEKOM/		V-4 V-5 V-6 V-7	0.5 2.0 0 2.0	16.3 2.9 41.9 2.4	40.9 67.7 28.2 34.5	42.9 29.4 29.9 63.1	9.5 9.5 19.1 4.76	F F D (F)	42.4 38.6 56.2 51.6	28.2 22.0 29.2 44.5	14.2 16.6 27.0 7.1	A-7 A-2-6 A-2-7 <u>A-5</u>	20.0 24.2 17.7 33.5	1,891 1,926 2,014 1,848	1.6 1.6 1.7 1.4 1.8				6.6 <u>4.6</u> 13.2		
VOINJAMA	v	V-8 V-9 V-9' G-3 & V-9	1.2 0 0.5 -	13.0 52:1 - 47.5	55.3 16.6 - 25.4	31.7 31.5 	19.1 25.4 	(D) (D)	38.9 36.8 - 42.1	25.5 27.7 - 29.7	13.4 10.1 - 12.4	A-2-6 A-2-4 	16.1 22.6 35.2	2,103 2,211 1,870 -	1.8 1.8 1.4	_ 				 63/49	11

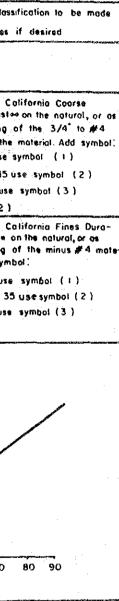
11-10

Table II-3 Extended Unified Soil Classifications System to laterite soils

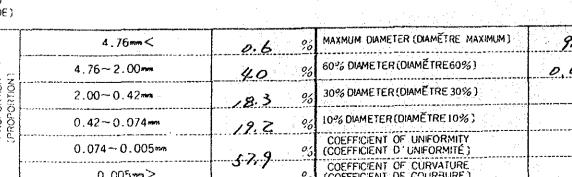
		CL	ASSIF	ICATION	IS	TO B	E MADE ON ALL SOIL MATERIAL	S	Soundnes on aggre
	ŏ.	Grovel or rock greate	than	8 inches		Boulder	Lorge trushed or weathered rock fragments		
Grovet or rock pred			3 inches	s and 8 mane	,	Cobble	Medium sized crushed or weothered rock frogments		
		Grovel or rock smaller	N N	= 5%	C. P 4 0 1 - C. 2 - 3	GW	Well graded gravels with very few fines		Perform
		than 3° in which the mojority of the material	<u><u></u></u>	Possing # 200		GP	Poorly graded gravels with very tew tines		Durability Tes used, grading
		retained on the # 200	۲. ۲	6 - 12%	C > 4 > 1 = C = 1	GW/	Well graded gravels with silt or clay fines	Clossify minus #40 material as for	traction
	3	sieve is also retained on the #4 sieve	Ğ	Possing # 200		GP/	Poorly graded gravels with silt or clay fines	clay and silt below. Add the appro- priote symbol in the location	5
	·].		EXCESS	> 12 %		GM	Gravel - sand - sill mixtures of variable plasticity	indicated by dashes; i.e., GW/CL	20 <u>≤</u> 0 _≤ 3
	\square		EXU	Possing # 200		oc	Gravel - sand- clay mixtures of variable plasticity	or GCI	, č. i.e., G
	. [AN	= 5% Possing	6-4 1294 3	SW	Well graded sands with very few fines		Perform
		Majority of the mote-	5	# 200		SP	Poorly graded sands with very few fines		bility Test used, grad
9		riol retained on the # 200 sieve passes the	Y	6 - 12%	८,≻ ७ ।≪ ८,< ३	S₩/	Well graded sands with cloy or silt fines	Clossify minus # 40 material as for	riol A
100		 A sieve A sieve 	AIO.	Possing # 200		SP/	Poorly graded sands with clay or silt fines	cloy ond sill below. Add the oppro- priate symbol in the location indi-	0 > 20
			CESS JES	> 12 % Passing		SM	Clayey - sitty sonds of variable plasticity	Cated by dashes; i.e., SP/ML or SMH	0,<
	<u> </u>		EX.	# 200		sc	Very sandy clays and clayey sands of variable plasticity		
		Non - Plostic	Atterbe	rg limits unob	oinable	SF	Very fine sonds, sondy - sills, sills		
			Afferbe	rg limits plot	obove 'A'	CL	Inorganic claysy silts, clays of low plasticity	60	
		LL of minus #40 motorial < 35	Atterber	g limits plot	balow A	ML	horganic silfs, and rack flour of law compressibility		
SILT			line or i	n holched ar	€.Q	OL	Organic silts and clays	× 50	J
QNI			Atterber	g limits plot o	bove "A"	CI	marganic clays of moderate plasticity	40	CH
AY A	1 I H	LL of minus # 40 material 35 to 50	Atterber	a limits plot	below A	MI	Inorganic silly clays, moderately compressible silts	≥ 30	1
3			line			01	Organic, clays and clays	2 30 CI	J
	Γ		Atterber	rg limits plo	t above	СН	Inorganic clays of high plasticity	CL HI	Мі Оі
	- 1	LL of minus # 40 material > 50		a limita plot	below	мн	Highly compressible silts, micaceous or diatomaceous sails		ł
			'A' line			ОН	Organic clays and clays	0 10 20 30 40	50 60
ying	019	onic soils usually brow	mor bla	ck possibly i	aith	P T	Fibrous organic soils with very high compressibility and moisture content	0 10 20 30 40	

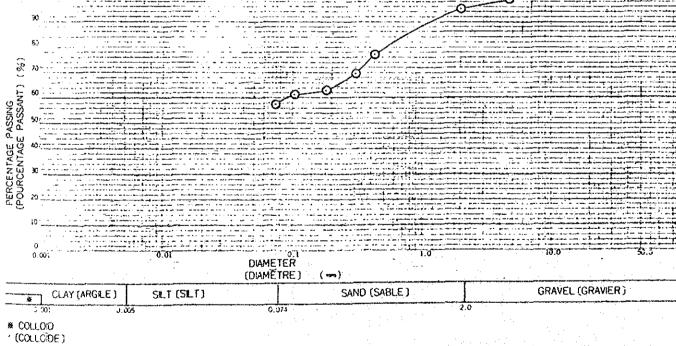
* $C_{0} = \frac{60}{0} \frac{1}{60} \frac{30}{0}$, the term D_{10} , etc., means the diameter of the particle corresponding to the 10% passing point 60 10

on the plot of grain size versus percent passing


** California State Highway Department, Materiols Division, Sacramento, California, Test Procedure 229

Dc + Coorse durability for grovels.


Dt = Fine durability for sonds. Cc = Coefficient of curvature.


Cu + Coefficient of uniformity.

Source: Laterite Soil Engineering by M.D. Gidigasu

	4.76mm<	0.6 %	MAXMUM DIAMETER (DIAMETRE MAXIMUM)	9.5 m	
- 0	4.76~2.00mm		60% DIAMETER (DIAMÉTRE60%)	0.091 m	
RTION	2.00~0.42mm	18.3 %	30% DIAMETER (DIAMÉTRE 30%)	7678	
ROPO	0.42~0.074mm	19.2 %	10% DIAMETER (DIAMĚTRE 10%)	ភាក	
с <u>с</u>	0.074~0.005mm	0.1	COEFFICIENT OF UNIFORMITY (COEFFICIENT D' UNIFORMITÉ)		
	0.005>	5.7,9 00	COEFFICIENT OF CURVATURE (COEFFICIENT DE COURBURE)]

ພູ່ຊີ	(GRANUROMÉTRIE)	50-8 38.1	+ 8 204	25.4	13:7	9.52	4.76	2.00	9-94- 0-4-Z	0.30	0.25	0.105	0.074	
SIEV	TOTAL PASSING(%) (TOTAL PASSANT)					100	99.4	95.4	77.1	69.9	63.0	61.5	57.9	
VETER (IRE)	GRAIN SIZE () (GRANULOMÉTRIE)													
HY DRO	TOTAL PASSING(%) (TOTAL PASSANT)									15				
				·			SIEVE (CRIBLAG	E)			• .	*. * . *		
1	GRAIN SIZE ACCUM				105µ 74µ	2504	420µ	840 u	2004	4750µ	9.52	25,1++3 	50.3** 	
•										-0E				

								(POIDS	s spécific	QUE 1 Gs				
/Ē	GPAIN SIZE () (GRANUROMÉTRIE)	50-8 38.1	3 8-+ 214	25.4	19-1 12:7	9.52	4.76	2.00	9-9-1- 0-4-Z	++2 0.30	0.25	0.105	0.074	
SIE	TOTAL PASSING(%) (TOTAL PASSANT)					100	99.4	95.4	77.1	69.9	63.0	61.5	57.9	
AETER Firefi	GRAIN SIZE () (GRANULÓMÉTRIE)					r.								
-YDRO ABEOM	TOTAL PASSING(%) (TOTAL PASSANT)													·

SPECIFIC GRAVITY	
(POIDS SPÉCIFIQUE) GS	

PARTICLE SIZE & WEIGHT PERCENTAGE OF PARTICLES UNDER THE SIZE (DIMENSION DES PARTICULES ET POURCENTAGE DE POIDS DES PARTICULES DE DIMENSION INFÉRIEURE AUX PRÉCÉDENTES)

PARTICLE SIZE & WEI	GHT PERCENTAGE OF PARTICLES UNDER THE SIZE
(DIMENSION DES PARTICUL	LES ET POURCENTAGE DE POIDS DES PARTICULES DE DIMENSION INFÉRIEURE AUX PRÉCÉDENTES)
	SPECEC GRAVITY

-07.1

DIAMETER-(DIAMETRE) (-----)

28.8

6.

<u>15.8</u>

23.1

26.2

0

0)

0.074

38:1

100

(A	GRADATION NALYSE GRANU			FOR REPORTING (POUR LE RAPPORT)
NAME OF SURVEY & LOCALITY DÉNOMINATION DE L'ENQUÊTE ET LOCALITÉS	G - 4	ары на 1964 ж. Тал и и и и и и и и и и и и и и и и и и и	DATE (DATE)	annangangan analan karang ng mangang panalan karang karang s
SAMPLE NO. & DEPTH (N'DE L'ÉCHANTELON ET PROFONDEUR)	· · · · · · · · · · · · · · · · · · ·	(m~	m ; (ESSAL PAR)	<u></u>

[A]	GRADATION ANALYSIS (ANALYSE GRANULOMÉTRIQUE)										
NAME OF SURVEY & LOCALITY (DÉNOMINATION DE L'ENQUÊTE ET LOCALITÉ)	G - 8			- 4 -77-4 () - 4 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	DATE I (DATE)	ian kuna ngan yapan, ngadonan anyapang kuna (1999).					
SAMPLE NO. & DEPTH (N'DE L'ÉCHANTILLON ET PROFONDEUR)		(m ~	m į	TESTED BY (ESSAL PAR)						
 		<u></u>									

Test Result (1)

GRAIN SIZE (----)

(GRANUROMETRIE) TOTAL PASSING(%)

(TOTAL PASSANT)

(GRANULOMETRIE) TOTAL PASSING(%) (TOTAL PASSANT)

뿚

ETER

100

ASSING

AGE F

PERCENTA (POURCEN)

II-12

301

0

0.001

0.001

ğ

PROPOR

* COLLOID (COLLOIDE)

CLAY (ARGILE.)

50.8 38.1

GRAIN SIZE ACCUMULATION CURVE

(COURBE"GRANULOMÉTRIQUE)

utit

10.0T

SLT (SLT)

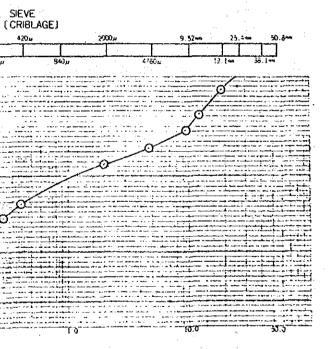
4.76 - <

4.76~2.00mm

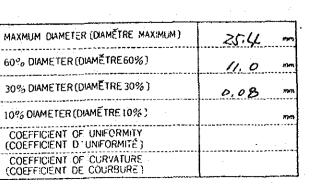
2.00~0.42mm

0.42~0.074=

0.074~0.005mm


0.005==

· · · ·


0.005

SPECIFIC GRAVITY (POIDS SPÉCIFIQUE) Gs

25 +	19-1	9.52	4.76	2.00	0.42	0.30	6-25	0.105	0.074
96 Z	844	282	21.2	65.1	49.3	43.9	36.7	339	26,2

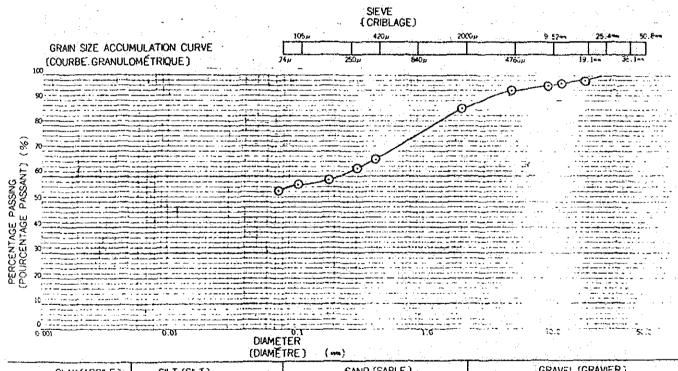
Test Result (2)

αχατατέτα το 	FOR REPORTING (POUR LE RAPPORT)		GRADATION NALYSE GRAN	ANALYSIS IULOMÉTRIQUE)	£	an an Maria an Anna Anna Anna A	FOR REPORTING (POUR LE RAPPORT)
DATE (DATE)		NAME OF SURVEY & LOCALITY (DÉMOMINATION DE L'EXQUÊTE ET LOCALITÉ)	V - 2	, <u>, , , , , , , , , , , , , , , , , , </u>	≈ ₀	DATE (DATE)	n Annowsky a gomba niemy i fance and syn CDA być sy <u>de skolet waar see s</u> ee C
TESTED BY (ESSAI PAR)		SAMPLE NO. & DEPTH IN DE L'ÉCHANTILLON ET PROFONDEURT		(m~	m;	TESTED BY (ESSAI PAR)	

PARTICLE SIZE & WEIGHT PERCENTAGE OF PARTICLES UNDER THE SIZE (DIMENSION DES PARTICULES ET POURCENTAGE DE POIDS DES PARTICULES DE DIMENSION INFÉRIEURE AUX PRÉCÉDENTES)

ጠ ~~

m,


SPECFIC GRAVITY

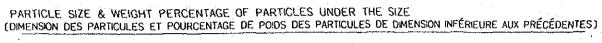
(

GRADATION ANALYSIS (ANALYSE GRANULOMÉTRIQUE)

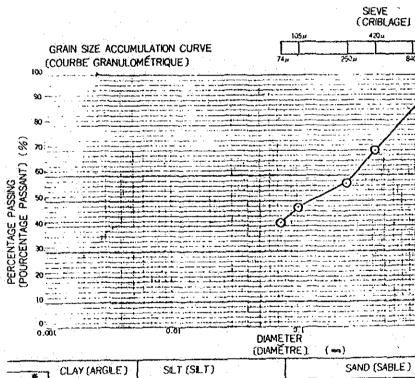
Z-7

						-		(POIDS	S SPÉCIFN	QUE) Gs			-	
ي بو بو	GRAN SIZE () (GRANUROMÉTRIE)	50-8 38.1	1-86 1-86	25.4 19.1	19-1 12-7	952	4.76	2.00	0.42	0.42	0.25	0.105	0.074	
SIEV	TOTAL PASSING(%) (TOTAL PASSANT)			· .	97.4	96.9	94.3	86.9				57.4	54.7	
AETER ÉTREJ	GRAIN SIZE (===) (GRANULOMÉTRIE)													
HYDRON	TOTAL PASSING(%) (TOTAL PASSANT)		-	-		-			-		:			

			(DIAMETRE)	(🚓)			<u> </u>	
*)	CLAY (ARGILE)	SILT (SILT)		SAND (SABLE)			GRAVEL (GRAVIER)
6.001	0.0	05	0.074		2.0	· · · · ·		•
	`					:	•	


末	UULLUU
	(COLLODE)
	11.12.11.08.05 1

NAME OF SURVEY & LOCALITY


SAMPLE NO & DEPTH IN DE L'ÉCHANTILION ET PROFONDEUR)

(DENOMINATION DE L'ENQUÊTE ET LOCALITE)

	4.76500		MAXMUM DIAMETER (DIAMÉTRE MAXIMUM)	25.4 m
	4.76~2.00mm	7.4 %	60% DIAMETER (DIAMETRE60%)	0.22
RTION NON	2.00~0.42****	20.2 %	30% DIAMETER (DIAMÊTRE 30%)	ו <i>ק</i> ור
20100	0.42~0.074	12.0 %	10 % DIAMETER (DIAMETRE 10" %)	
1 a a	0.074~0.005mm	A1. > %	COEFFICIENT OF UNIFORMITY (COEFFICIENT D'UNIFORMITÉ)	
·····	0.005mn>	54.7 °c	COEFFICIENT OF CURVATURE (COEFFICIENT DE COURBURE)	

									FIC GRAN	ATY QUE) Gs			
Ş	GRAIN SIZE () (GRANUROMÉTRIE)	50.8 38.7	38-1 25.4	25-4	19.1 18.7	9.52	4.76	2.00	0.84	0.42	0.25	0.105	0.074
(CRIBLAGE	TOTAL PASSING(%) (TOTAL PASSANT)			<u>ب</u>			100	99.6		70.0	57.2	47.9	41.5
(ARÉOMÉTRE)	GRAIN SIZE (
(AREOMETRIE)	TOTAL PASSING(%) (TOTAL PASSANT)												
10	GRAIN SIZE ACCUM			· · · · · · · · · · · · · · · · · · ·	105 <i>µ</i>	2504	4202	840 _{J4}		4750 _J	9.52	25.100 1.100 38	50.3
9	00							_/					
	0						/	/					
<u> </u>	0			· · · · · · · · · · · · · · · · · · ·			/ /						
E PASSANT)	0					\geq							
AGE P	0 =				δ		 					· · · · · · · · · · · · · · · · · · ·	
CENTAGE	0												

9.001	a 30
# COLLOID	
(COLLOIDE)	

		· · · · · · · · · · · · · · · · · · ·		
		4.76mm<	0 %	MAXM
		4.76~2.00mm	0,4 %	60 <i>°6</i>
	ROPORTION ROPORTION)	2.00~0.42***	29.6 %	
· · ·	ROPO ROPO	0.42~0.074	28,5 %	10%6
.4.1	a a	0.074~0.005mm	0.	COE (COE
•		0.005mm>	44,5 %	COE (COE
		······································	<u></u>	

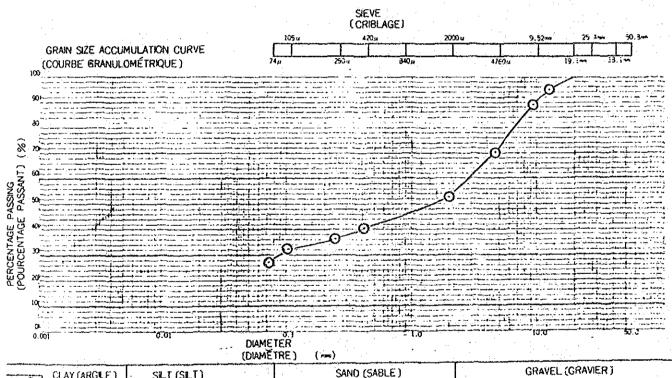
0.074

II-13

GRAVEL (GRAVIER) 2.0 MUM DIAMETER (DIAMETRE MAXIMUM) 4.76 ------DIAMETER (DIAMÉTRE60%) 0.29 DIAMETER (DIAMETRE 30%) DIAMETER (DIAMETRE 10%) EFFICIENT OF UNIFORMITY EFFICIENT D'UNIFORMITÉ) EFFICIENT OF CURVATURE EFFICIENT DE COURBURE)

1.1.0

Test Result (3)

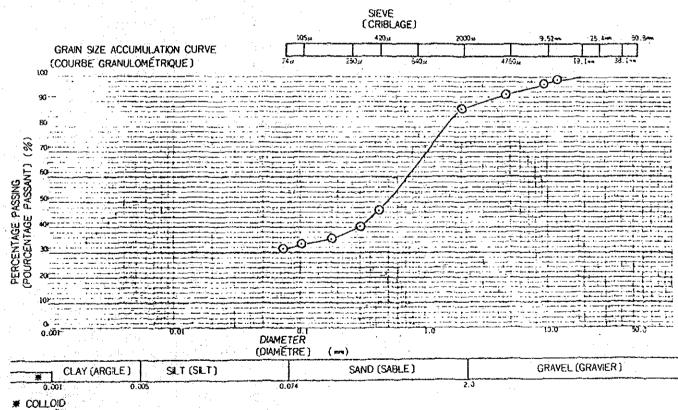

	GRADATI	ON ANA	LYSIS				· · }	FOR REPO	ORTING	
(A)	VALYSE G	RANULOM	ÉTRIQ	UE)			· [(POUR LE P	PAPPORT)	
NAME OF SURVEY & LOCALITY ICÉNOMINATION DE L'ENQUÊTE ET LOCALITÉ)	G-3	& V-9	-C-2004.277, <u>da</u> ya		<u>رون الشيخي من يشعر</u>	DATE (DATE)				
SAMPLE NO. & DEPTH (N° DE L'ÉCHANTILLON ET PROFONDEUR)	·····		(m ~	(m)	TESTED BY (ESSAI PAR)		<u> </u>		

	GRADATION AN	VALYSIS			\$	FOR PEPORTING
(A	NALYSE GRANULC	MÉTRIQ	UE)			(POUR LE PAPPORT)
NAME OF SURVEY & LOCALITY (DÉMOMINATION DE L'ENQUÊTE ET LOCALITÉ)	V - 8				DATE (DATE)	
SAMPLE NO. & DEPTH (N'DE L'ÉCHANTILION ET PROFONCEUR)		1	m ~	m;	TESTED BY (ESSAI PAR)	

PARTICLE SIZE & WEIGHT PERCENTAGE OF PARTICLES UNDER THE SIZE (DIMENSION DES PARTICULES ET POURCENTAGE DE POIDS DES PARTICULES DE DIMENSION INFÉRIEURE AUX PRÉCÉDENTES)

SPECIFIC GRAVITY (POIDS SPÉCIFIQUE) GS

							-	· · · ·		• • • • • • • • • • • • •		-
w y GRAIN SIZE (∞) (GRANUROMÉTRIE)	50.8	3 8. 1	25.4	19-1	9.52	4.76	2.00	0.84	0.42	0.25	0.105	0.074
H H TOTAL PASSING (%)			100	95,0	87.3	70.4	52.5		40.5	36.3	32.1	27.1
GRAIN SIZE (
CTOTAL PASSING(%)												



		DIAMETER (DIAMETRE)	(====)			
CLAY (ARGLE)	SLT (SLT)		SAND (SABLE)		GRAVEL (GRAVIER)	
0.001	0.005	0.075		2.3		

# COLLOID	1
(COLLOÏOE)	

	4.76mm <		MAXMUM DIAMETER (DIAMÉTRE MAXIMUM)	19.1 mm
	4.76~2.00mm	17.9 %	60% DIAMETER (DIAMĚ TRE60%)	Z19 mm
RTION	2.00~0.42mm		30% DIAMETER (DIAMĚTRE 30%)	D.09 mm
ROPO ROPO	0.42~0.074mm	13,4 %	10% DIAMETER (DIAMETRE 10%)	<i>15</i> 453
ه م	0.074~0.005mm		COEFFICIENT OF UNIFORMITY	
	0.005mm>	27.1	COEFFICIENT OF CURVATURE (COEFFICIENT DE COURBURE)	

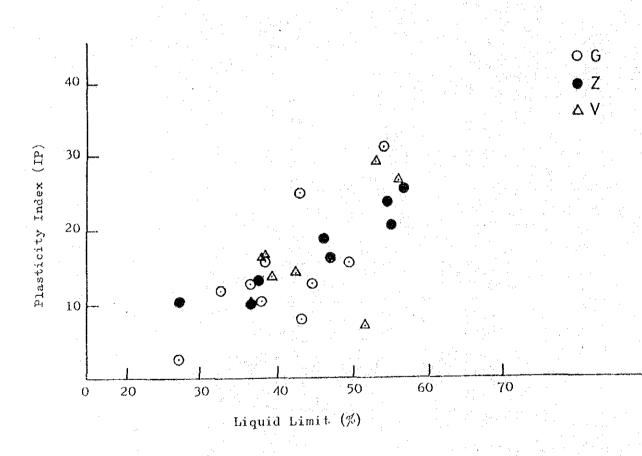
		en de la							FIC GRAV				
ω.	GRAIN SIZE ()	50-8 38-1	· 38. 1 21. 4	25-4	19-1	9.52	4.76	2.00	0-94 0-42	0-+2	0.25	0.105	0.0/4
SEV	DTAL PASSING(%)			100	98.8	97.1	93.4	87.0				[31.7
METER	GRAIN SIZE () (GRANULOMÉTRIE)												
N/DRO	TOTAL PASSING(%)												

(COLLOIDE)

	4.76mm <	6.6	%	MAXMUM DIAMETER (DIAMÉTRE MAXIMUM)	19.1	79 73
	4.76-2.00mm	6.4	10	60% DIAMETER (DIAMĚTRE60%)	0.73	547
RTION)	2.00-0.42***	40.4	%	30% DIAMETER (DIAMÉTRE 30%)		. 747
PROPO (PROPO	0.42~0.074m	14.9	%	10% DIAMETER (DIAMETRE 10%)		.79-77
ב פ	0.074~0.005mm	315	°,6	COEFFICIENT OF UNIFORMITY (COEFFICIENT D'UNIFORMITÉ)		
.	0.005mm>	3/7 /	%	COEFFICIENT OF CURVATURE (COEFFICIENT DE COURBURE)		

II-14

PARTICLE SIZE & WEIGHT PERCENTAGE OF PARTICLES UNDER THE SIZE (DIMENSION DES PARTICULES ET POURCENTAGE DE POIDS DES PARTICULES DE DIMENSION INFÉRIEURE AUX PRÉCÉDENTES)

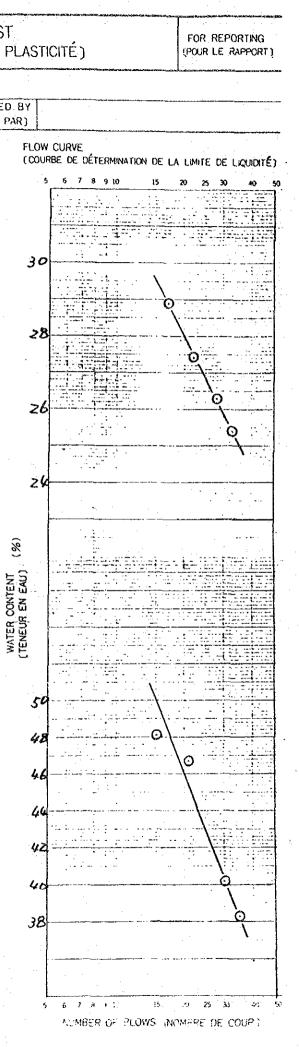

)	GRAVEL (GRAVIER)
2	3

Test Result (4)

The corelation of Liquid Limit (WL) and Plasticity Index (Ip) is given below.

Ip of the most of samples is over than 6 ranging 10 to 25, which is required for subbase course materials in AASHTO M 147-65.

Six (6) results from all test results are picked up and shown hereunder

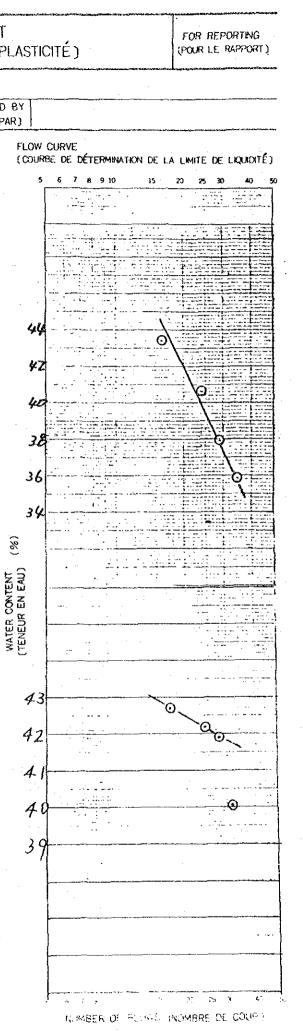


LIQUID LIMIT & PLASTIC LIMIT TEST (ESSAI DE LIMITE DE LIQUIDITÉ ET DE LIMITE DE PLASTICITÉ)

NAME OF SURVEY & LOCAL	 	 	******		MW-074
DATE (DATE)	 			TESTI (ESSAI	
			 لمستحص		

2	NO. & DEPTH	Na G-	4	(m ~ m)
	Liquid Limit 1 (Limite de Liq		š		ic limit test de plasticité)
TEST. NO	NO. OF BLOWS (NOMBRE DE COUP)	WATER CONTENT (TENEUR EN EAU)			WATER CONTENT (TENEUR EN EAU)
1	33	25.4 %	1		23.7 %
2	<u>28</u>	26.3 %	2		24.6 %
3	22	27.4 %	3		%
4	17	28.9%			
5		%			
6		%	MEAN (VAL (HO)	VALUE EUR ENNE) 242
liquid (Limite i		PLASTIC LIMIT IMITE DE PLASTICI	τÉ)		ASTICITY INDEX DE DE PLASTICITÉ)
ພ	26.8 % 0	24.7	%	D	2.6

	NO. & DEPT	1.1.1.1	Na ()-;	8	(m ~	-	m)
	Liquid Limi (Limite de-		5				ic limit De pla		ſÉ)
TEST. NO.	NO OF BLOW		ER CONT				WATER (TENEU	CONTE R EN E	
1	35	<u> </u>	83	0;ó		1	18	3, Z	%
2	30		40.Z	%		2	18	8. 0	%
3	21		267	%		3			%
. 4.	15		48.1	06					
5				%					
6				%	CVA	I VALUE LEUR MENNE		8.	1
Liquid (Limite , (limit De liquidité)		TIC LIMI DE PLAS	1.1.1.1.1	ΓÉ)		ASTICITY E DE PL		
ωι	43.0 %	w _o	18.	1	03	Ιp	70	1.9	

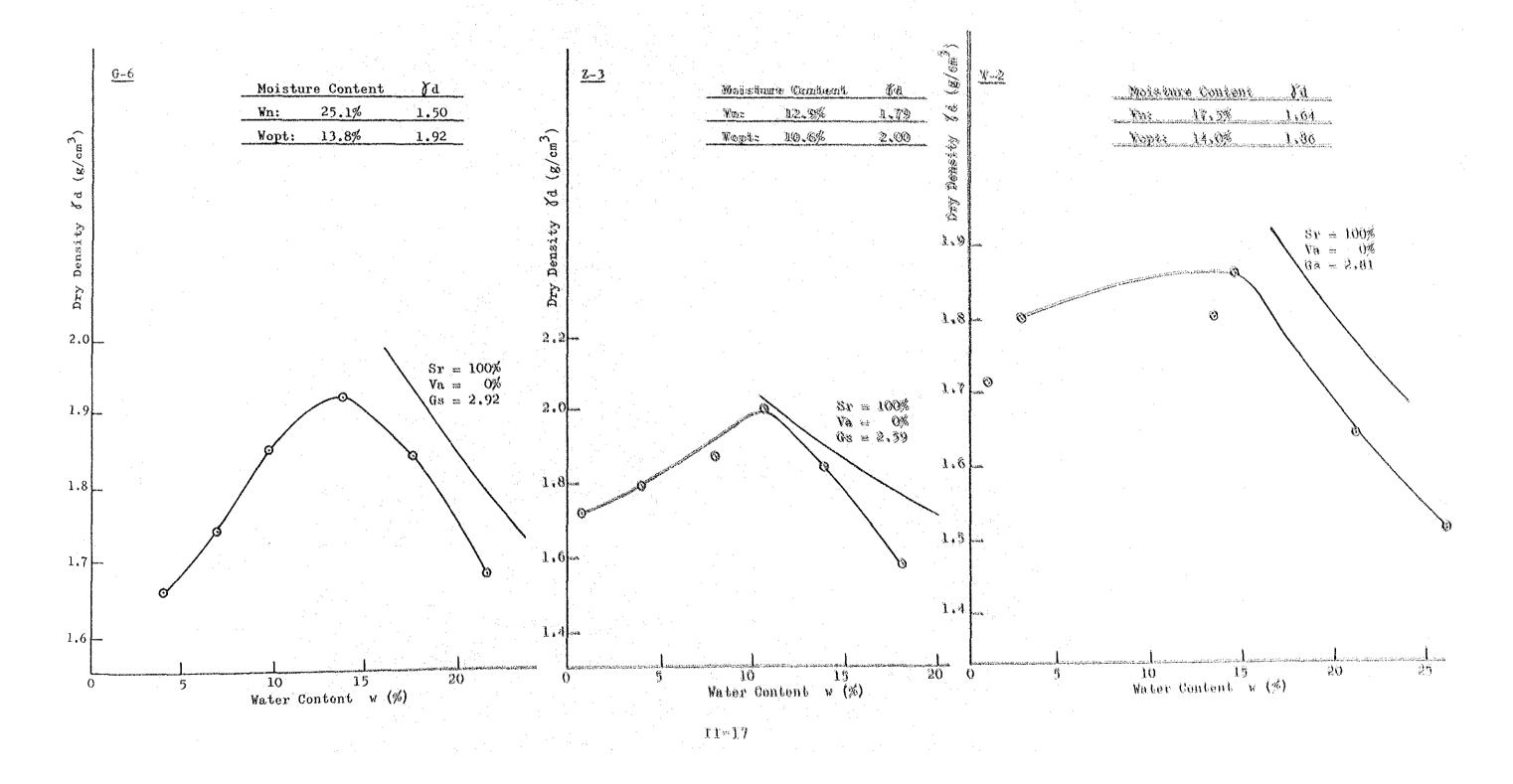

Test Result (5) LIQUID LIMIT & PLASTIC LIMIT TEST LIQUID LIMIT & PLASTIC LIMIT TEST FOR REPORTING (ESSAI DE LIMITE DE LIQUIDITÉ ET DE LIMITE DE PLASTICITÉ) (POUR LE RAPPORT) (ESSAI DE LIMITE DE LIQUIDITÉ ET DE LIMITE DE PLASTICITÉ) NAME OF SURVEY & LOCALITY NAME OF SURVEY & LOCALITY (DÉNOMINATION DE L'ENQUÊTE ET LOCALITÉ) (DENOMINATION DE L'ENQUÊTE ET LOCALITE) DATE TESTED BY DATE TESTED BY (DATE) (ESSAL PAR) (DATE) (ESSAL PAR) FLOW CURVE (COURBE DE DÉTERMINATION DE LA LIMITE DE LIQUIDITÉ) 6 7 8 9 10 15 20 25 30 40 50 SAMFLE NO. & DEPTH m) Na V - 8 (m ~ (N' DE L'ÉCHANTILLON ET PROFONDEUR) . . . 15-. LIQUID LIMIT TEST PLASTIC LIMIT TEST (LIMITE DE LIQUIDITÉ) (LMITE DE PLASTICITÉ) TEST. NO. NO. OF BLOWS WATER CONTENT TEST NO WATER CONTENT (N'DE L'ESSA' (NOMBRE DE COUP) (TENEUR EN EAU) IN DE L'ESSA (TENEUR EN EAU) 1 35 35.8% 1 25.3 % 2 2 25.6 % 29 37.9 % 3 3 % 40.6% 24 43,4% 4 16 % 5 MEAN VALUE (VALEUR (NOYENNE) 6 % 25.5 PLASTICITY INDEX PLASTIC LIMIT LIQUID LIMIT (LIMITE DE PLASTICITÉ) (INDICE DE PLASTICITÉ) (LIMITE DE LIQUIDITE) 39.4 25.5 % 10 13.9 wi % wa

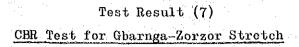
> SAMPLE NO. & DEPTH G - 3**m**) (- m No -IN" DE L'ÉCHANTILLON ET PROFONDEUR) &v-9 LIQUID LIMIT TEST PLASTIC LIMIT TEST (LMITE DE LIQUIDITÉ) (LIMITE DE PLASTICITE) TEST. NO: NO. OF BLOWS WATER CONTENT (N'DE L'ESSAI) (NOMBRE DE COUP) (TENEUR EN EAU) TEST NO WATER CONTENT N'DE L'ESSA) (TENEUR EN EAU) 38.5% 40:6% 32 1 1 41.9% 2 28.9 % 2 28 % 3 ·_3 42,2% 24 7% 4 42. %5 MEAN VAL 29.7 % (WALEUR) 6 PLASTICITY INDEX LIQUID LIMIT PLASTIC LIM T (LIMITE DE PLASTICITÉ) ((INDICE DE PLASTICITÉ) (LIMITE DE LIQUIDITÉ) C: | Fp $\rho_{o} | w_{p}$ $w_{\rm L}$

40		
	о).	
ļ	· · · · · · · · · · · · · · · · · · ·	
39		
. 31		
ł		
_`[0
38		<u>· \</u>
-	وكوبه بعداؤه الالتقاد المتعا	
·		
37	· · · · · · · · · · · · · · · · · · ·	
1	1	
}		
36		the second
	يتجيبون ورصف زيدتني والمرد لانترا	
	per l'est dats i 🚊 💷	O
ک3 ا		
	to the total in the	
	·	
<u>~</u>		
8 -		
~		
~		
WAIER CONTENT		
រីឃ័	····· ································	
z z	: . <u>.</u> .	· · · · · · · · · · · · · · · · · · ·
3	· · · · · · · ·	
ζ <u></u> ξ 1		· · · · · · · · · · · · · · · · · · ·
រាណ៍		
< ta 1		شايبته والبرم
^도 는		_
		· · · · · · · · · · · · · · · · · · ·
. 1		
	-	• · · · · · · · · · · · ·
	**···*	
tom		
40		\mathbf{X}
· · ·		⊙\
		~ \o
		\mathbf{N}
	t i transferit	N.
20		<u> </u>
- 38		X
	((1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2
		$(x_1, \dots, x_{n-1}) \in \mathbf{X}^n$. If
1997 - A.	. ·	\sim \sim
36		
× •	<u> </u>	
50	1	
50	1 .	
50	1 . · · · ·	
	[
	e ::	NUMBRE DE COUL

			· · ·	:		•				
	NO. & DEPT		ur) Na	Z	7	('n	1~	ņ	n
	LIQUID LIMIT	TES	T			PLAS	FIÇ" LIM	IT TES	5T	
	(umite de l	JQUIO	MTÉ)		(LIMITE	DE P	LASTIC	HTÉ:)
TEST. NO. DEL'ESSA I	NO. OF BLOW		NATER CON			T. NO.		ER CON		
1	30		35.	1 %		1	· · · · · · · · ·	26.	2	%
2	24	-	37.6			2		27.		%
3	20		38.0	4 %		3				%
4	15		39.	7 %						
5				%						
6				%	HEA (VI (MO	N VALU NLEUR	E	27.	0	
LIQUD			PLASTIC		,		PLAST			
	0: : : : : : : : : : : : : : : : : : :	ា អ	NTE DE PL	ASTIC	1É)	1 (WD	CE DE	- MLASI	11012	É١
	DE LIQUIDITÉ) 36-8%	(LM 200	e pl	ASTIO 7. 0		(IND) 1 p	CE DE	9. 8		
SAMPLE	36.8 %	wŋ H	2		%	h			:	
SAMPLE	36.8 %	WD TH FONDER	2 (187) No. 7 ST	7.0	%	lp { PLAS		9. 8	n	 n
SAMPLE SAMPLE COEL COM	36.8 % NO & DEPT ANTILION ET PRO LIQUID LIMI (LIMITE DE NO OF BLOY		Z No. ST DITÉ)	7. 0 V -	% 2	I p (PLAS (LIM:TE T NO	n TIC LIM DE F	9. 8	n ST CITÉ	
SAMPLE SAMPLE COEL COM	NO. & DEPT ANTILLON ET PRO LIQUID LIMI (LIMITE DE NO OF BLOY (NOMBRE DE CO		Z NO. ST DITÉ) WATER COI TENEUR E	7.0	% 2	I p (PLAS (LIM:TE T NO	TIC LIM TIC LIM TIC LIM	9. 8	n ST CITÉ NTEN V EAL	
SAMPLE SAMPLE DE L'ÉCH TEST. NO DE L'ESSA'S	36.8 % NO. & DEPT ANTIFLON ET PRO LIQUID LIMI (LIMITE DE NO OF BLOY (NOMBRE DE CO 33		Z NO. ST DITÉ) WATER COI TENEUR E 36.9	7.0	% 2	ID (PLAS (LIM:TE T NO LESSA	TIC LIM TIC LIM TIC LIM	9. 8	n ST CITÉ NTEN VEAL	
SAMPLE SAMPLE TEST NO DE L'ESAN 1	36.8 % NO. & DEPT ANTIFLON ET PRO LIQUED LIMI (LIMITE DE NO OF BLOY (NOMBRE DE CO 33 29		No. 1 ST DITÉ) WATER COU TENEUR E 36. 9 38. 1	7.0 V- NITENT NEAJ) 9 % 1 56	% 2	PLAS [LIM:TE T NO L'ESSAIL	TIC LIM TIC LIM TIC LIM	9. 8	n ST CITÉ NTEN B 2	n () () () () () () () () () () () () ()
SAMPLE SAMPLE STOEL FOO TEST NO DE L ESSA 1 2	36.8 % NO. & DEPT ANTIFLON ET PRO LIQUID LIMI (LIMITE DE NO OF BLOY (NOMBRE DE CO 33		No. ST DITÉ) WATER COI TENEUR E 36.9 38.1 39.7	7.0 V- NITENT NEAJ) 9 % 1 56	% 2	PLAS [LIM:TE T NO L'ESSAIL	TIC LIM TIC LIM TIC LIM	9. 8	n ST CITÉ NTEN B 2	n 1) 1) 9
SAMPLE SAMPLE DE L'ÉON TEST NO DE L'ESSAY 1 2 3	36.8 % NO. & DEPT ANTIFLON ET PRO LIQUED LIMI (LIMITE DE NO OF BLOY (NOMBRE DE CO 33 29		No. 1 ST DITÉ) WATER COU TENEUR E 36. 9 38. 1	7.0 V - NITENT NEAJ) 9 % 9 %	% 2	PLAS [LIM:TE T NO L'ESSAIL	TIC LIM TIC LIM TIC LIM	9. 8	n ST CITÉ NTEN B 2	n 1) 1) 9
SAMPLE SAMPLE STDE L'ÉOU TEST. NO DE L'ÉOU 1 2 3 4	36.8 % NO. & DEPT ANTIFLON ET PRO LIQUED LIMI (LIMITE DE NO OF BLOY (NOMBRE DE CO 33 29		No. ST DITÉ) WATER COI TENEUR E 36.9 38.1 39.7	7.0 V- NITENT NEAJ) 9 % 9 % 9 %	% 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PLAS [LIM:TE T NO L'ESSAIL	n TIC LIM DE F WAT	9. 8	n ST CITÉ NTEN B 2	n () () () () () () () () () () () () ()
ØL SAMPLE SAMPLE Sample Store Control TEST MO DE CONTROL 1 2 3 4 5 6 COURD COURD	36.8 % NO. & DEPT ANTIFLON ET PRO LIQUID LIMI (LIMITE DE NO OF BLOY (NOMBRE DE CO 33 29 23 29 23 18	WB H FONDEL LKQUII	No. ST DITÉ) WATER COI TENEUR E 36.9 38.1 39.7	7.0 V- NITENT NEAJ) 9 % 9 % 9 % 9 % 9 % 9 % 9 % 9 % 9 % 9 %	% 1ES NOZ	PLAS (LIMITE T NO LESSAU 1 2 3	n TIC LIM DE F WAT	9. 8 111 TES 20. 8 20. 8 22.	n ST CITÉ NTEN EAL 3 9 9	n

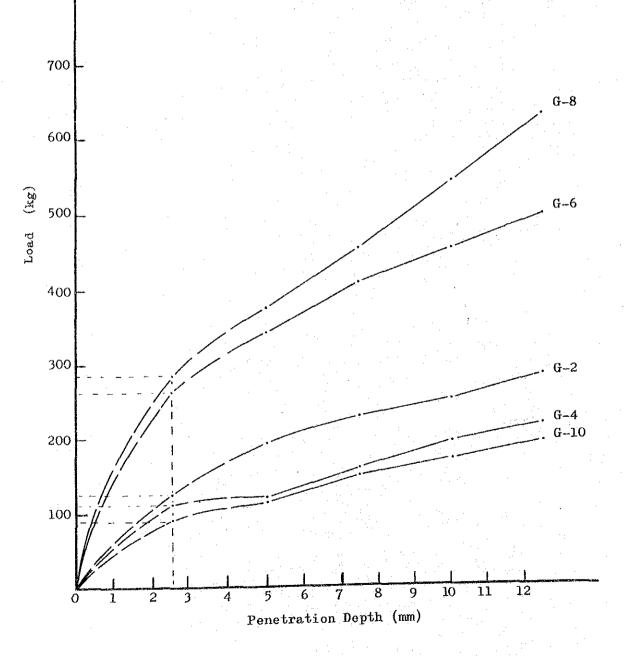
II-16

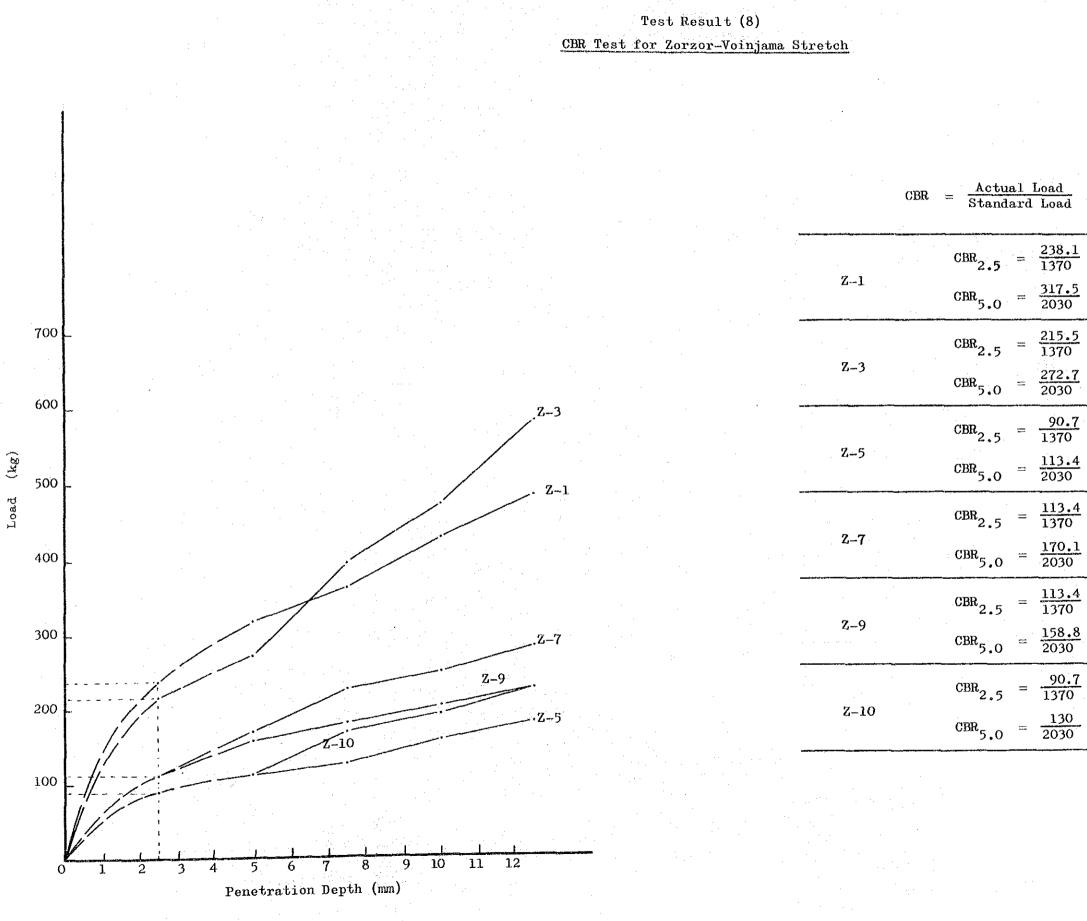



Test Result (6) Compaction Pest

The following three (3) samples were tested as the typical sample of each stretch;

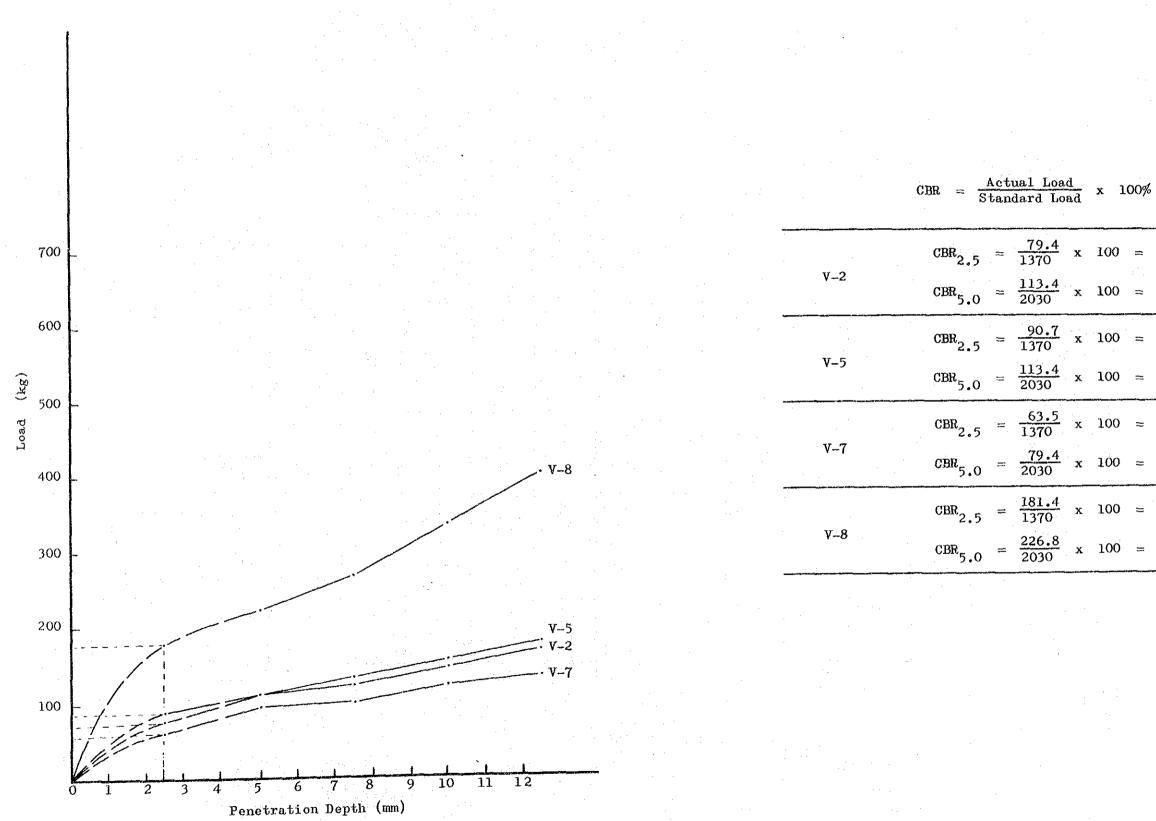
G-6 for Gbarnga-Zorzor, Z-3 for Zorzor-Voinjama,


V-2 for Voinjama-Mendikoma.



		$CBR = \frac{Actual Load}{Standard Load} \times 100\%$
•	G-2	$CBR_{2.5} = \frac{124.7}{1370} \times 100 = 9.1 \%$
÷	u- <i>k</i> ,	$CBR_{5.0} = \frac{192.8}{2030} \times 100 = 9.5 \%$
	G-4	$CBR_{2.5} = \frac{111.1}{1370} \times 100 = 8.1 \%$
·	.	$CBR_{5.0} = \frac{120.0}{2030} \times 100 = 5.9 \%$
		$CBR_{2.5} = \frac{260.8}{1370} \times 100 = 19.0 \%$
·	G6	$CBR_{5.0} = \frac{340.2}{2030} \times 100 = 16.8 \%$
	· · · · · · · · · · · · · · · · · · ·	$CBR_{2.5} = \frac{283.5}{1370} \times 100 = 20.7 \%$
	G8	$CBR_{5.0} = \frac{374.2}{2030} \times 100 = 18.4 \%$
		$CBR_{2.5} = \frac{90.7}{1370} \times 100 = 6.6 \%$
	G-10	$CBR_{5.0} = \frac{113.4}{2030} \times 100 = 5.6 \%$

Note: $CBR_{2.5}$ is value at 0.1 in(2.5) penetration, and $CBR_{5.0}$ is value at 0.2 in(5.0) penetration. The CBR is generally selected at 0.1 in(2.5) penetration.

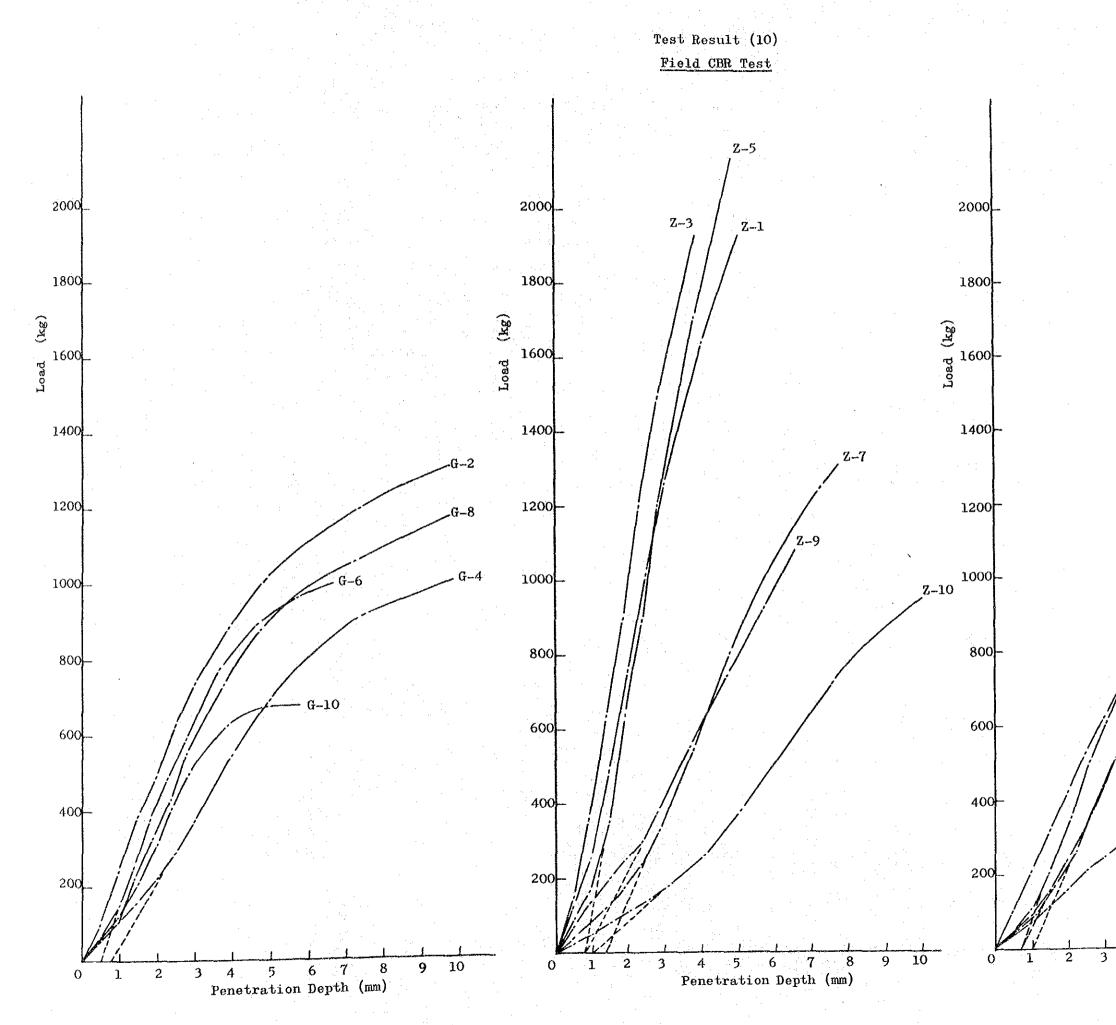


11-19

x 100%

-	x	100		17.4 %	
5	x	100	=	15.6 %	
	x	100	=	15.7 %	
• •	x	100	-	13.4 %	
-	x	100	=	6.6 %	
ŀ	x	100	-	5.6 %	
<u>+</u>	x	100	=	8.3 %	*
<u>L</u>	x	100	=	8.4 %	
ļ	x	100	=	8.3 %	
<u>3</u>	x	100	=	7.8 %	
<u> </u>	X.	100	=	6.6 %	
	x	100	=	6.4 %	

Test Result (9) CBR Test for Voinjama-Mendikoma Stretch


II-20

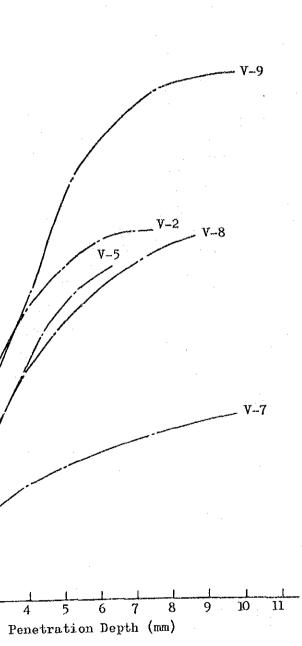

100	=	5.8 %	
100	=	5.6 %	
100	=	6.6 %	
100	=	5.6 %	
100	=	4.6 %	
100	12	3.9 %	
100		13.2 %	
100	=	11.2 %	

Table II-4 Summary of Road Surface Test

T	LOO EST ITEMS				G	barn	ga-Z	01, Z01								Zor	zor-V	/oin	jama								Voin	jama-	Mend	ekom	a.		
	Sample Po	int	G-2		G-4	G	6	G		G-	-10	Z-	·1	Z	L-3	Z-	-5	Z-	-7	Z-	-9	Z-	-10	v	-2	v	5	٧-	-7	V	8	V -	.9
	Sample De	pth (m)	0		0	0		0		0		0		0		0		0		0		0		0		0		0		0		0	
. R.	Natural Mo Content	oisture (☆)	10.7		15.0	10	.6	6.	1	8	.9	8	.9	3.	.3	6	.2	11	.1	10	.1	9.	.4	8	.0	8	.3	18.	0	8.		11.	8
C.B. Test	Field C.B.	.R. (5 ⁴)	46.4		30.7	46	.7	42.	4	38	.0	74	.6	94	.9	108	.0	42	.3	34	.3	16	.1	38	.9	39	.4	15.	4	35.	8.	49.	6
<u>د</u> ۲	Initial Di Reading	ial (mm)	2.3 2	.5	2.2 2.0	1.0	1.4	0.7	0.2	3.1	2.5	2.4	2.3	1.7	0.8	2.2	2.5	3.7	2.5	1.1	1.7	0.6	1.0	3.5	3.6	2.4	4.2	3.8	4.3	3.8	3.4	2.6	2.3
Benkelman Bean Test	Final Dia	l Reading (mm)	0.60	.9	1.2 1.0	0.7	1.4	0.7	0.2	2.6	1.8	2.4	2.0	1.3	0.8	1.5	2.4	2.2	1.0	0.6	0.7	0.2	1.0	3.1	2.7	2.4	4.2	1.6	2.3	2.2	2.1	1.8	1.7
a u	Total Rebo Deflection	· · · · · · · · · · · · · · · · · · ·	0.7 1	.6	1.0 1.0	0.3	0	0	0	0.5	1.4	0	0.3	0.2	0	0.7	0.1	1.5	1.5	0.5	1.0	0.4	0.1	0.4	0.9	0	0	2.2	2.0	1.6	1.4	0.8	0.6
00 11	N-Value per 10 CM	Carriage Way	150		104		58	5	8		75	167	125		98	1	36	1	25			2	50	2	.08	1	.39	ġ	91	12	7	· · · · ·	91
Sounding Test	Depth from Surface	Shoulder	36		25		17	2	:9		30		12		23	1	25		29		28				-		~	-	-	7	'8		45

II-21

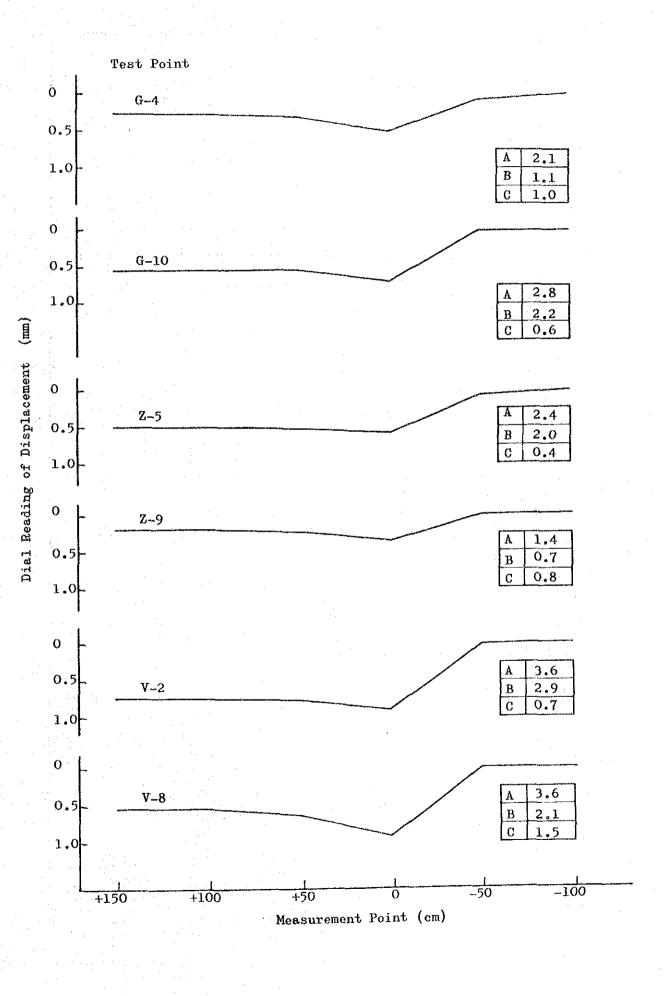
Test Result (11)

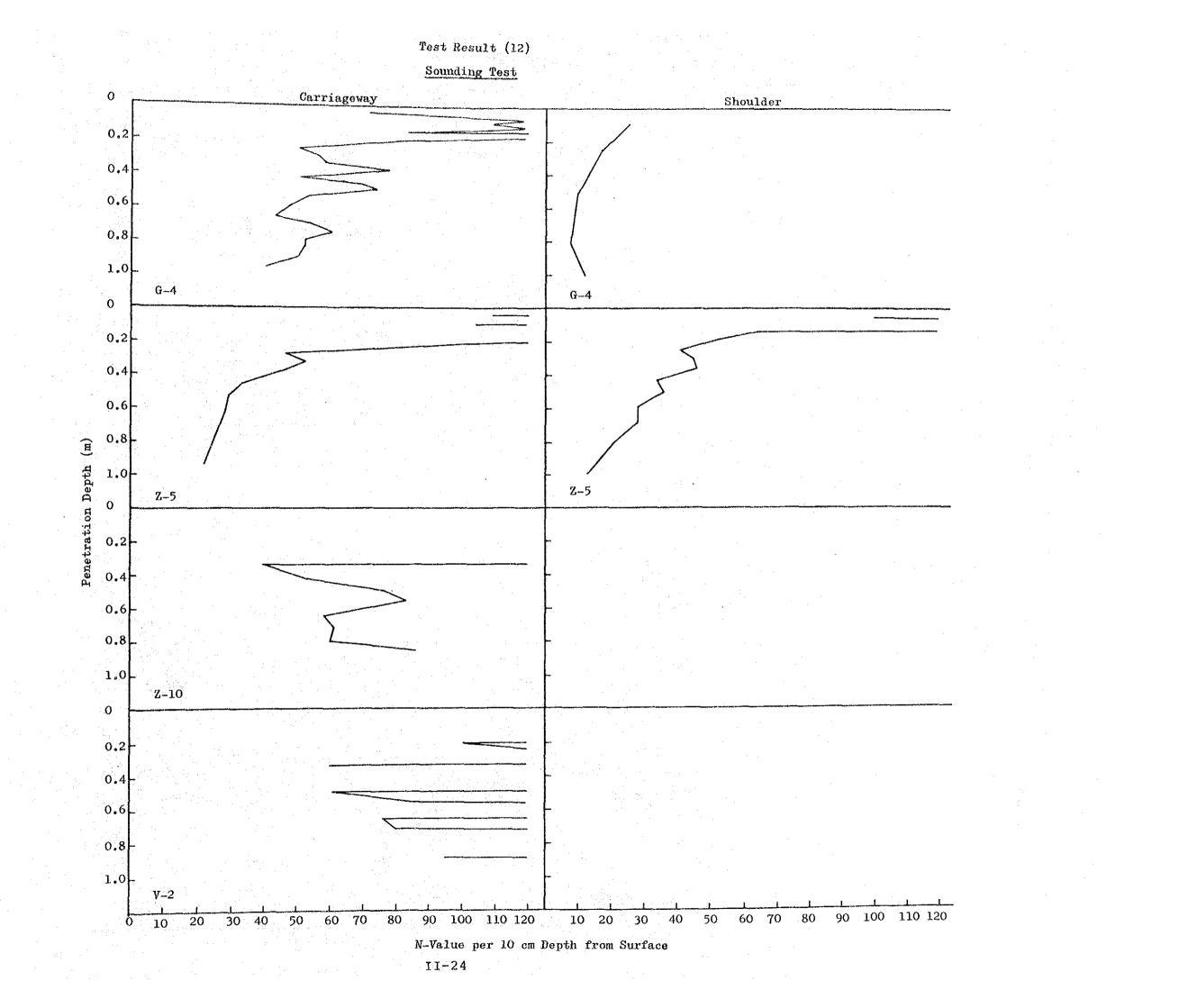
<u>Benkelman Beam Test</u>

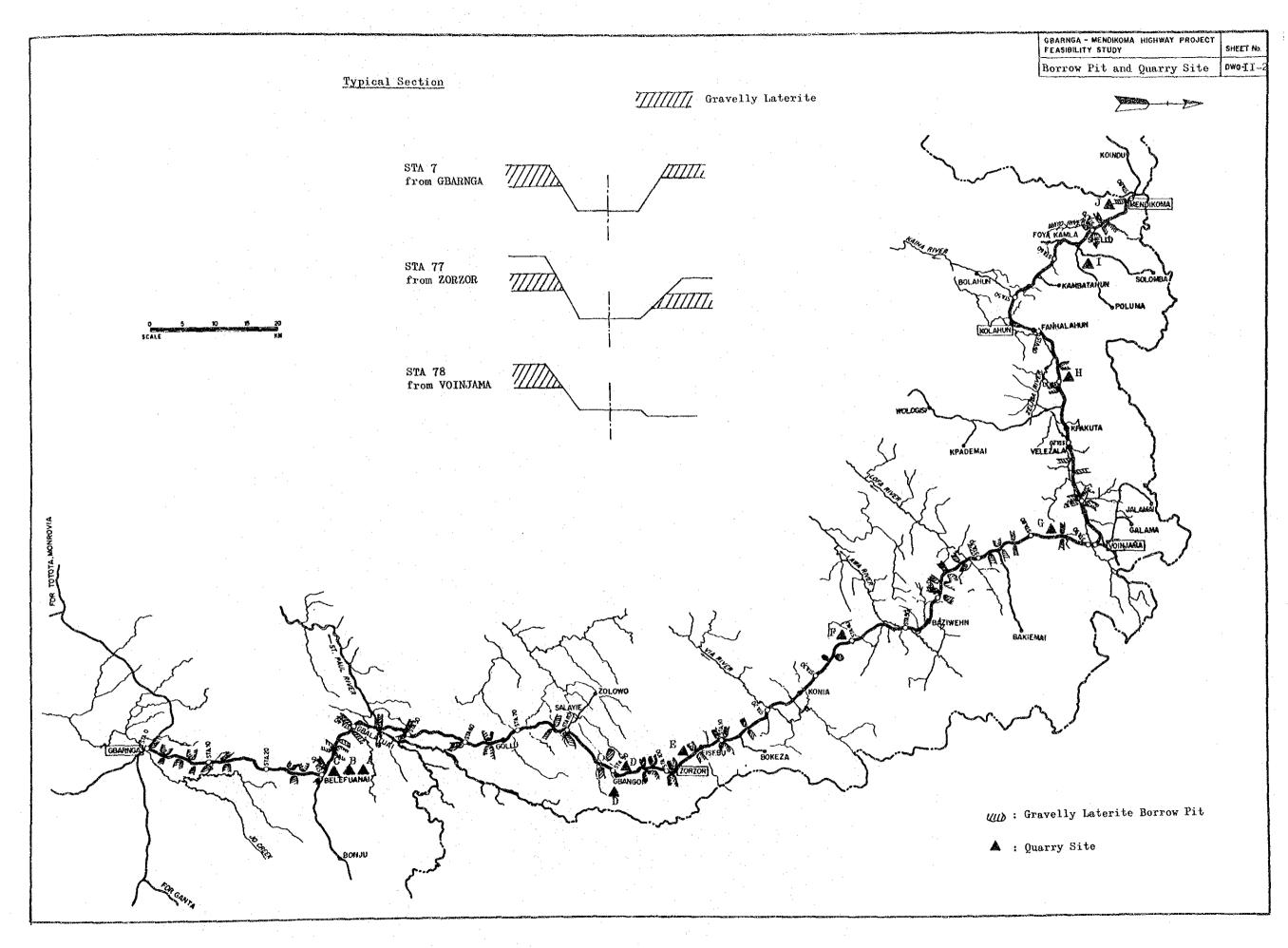
The 6.0 ton TOYOTA truck fully loaded with laterite soil which was checked to be 5.2 ton per wheel and 6.0 kg/cm² air pressure of tire was used as the test load.

The deflection test were tried at two points in one test point. Only six (6) test result are drawn in the following graphs.

A : Max deflection


= Initial Dial Reading x 2


B : Final deflection


= Final Dial Reading x 2

C : Total Rebound Deflection

= A - B

HYDROLOGIC STUDY OF DRAINAGE STRUCTURES

(III)

III. HYDROLOGICAL STUDY OF DRAINAGE STRUCTURES

3.1 Formula for Analysis

For the selection of the analysis method for hydrological analysis applicable to the Project area, various formulas were reviewed comparatively and the following was applied.

Rainfall intensity for frequency of 100 years, 50 years, 25 years, and 10 years is calculated using the formula stated below.

ht 100 = $33 t^{0.4}$ 100 years ht 50 = 22 t $^{0.54}$ 50 years ht 25 = 19 $t^{0.6}$ 25 years ht 10 = 17 $t^{0.58}$ 10 years

where, ht : rainfall intensity mm/h

t : duration of design rainfall or $t = (t'+1)^{-0.2}t'$ hours t': concentration time (hours)

These formulas were selected after comparison of the monthly rainfall records of the Project area and that of GANTA-TAPITA area which are shown in FIG. III-1.

Judging from the expected function of drainage structures, the rainfall intencity of 100 years was applied to calculate river discharges for bridge, the intencity of 50 years and 25 years for calculation of box culvert and pipe culvert, respectively, and the rainfall intencity of 10 years was only calculated as the reference data.

The formula for calculation of discharge is given below:

$$Q = \frac{0.28 \text{ ht x C x A x f}}{t} \quad (\text{m}^3/\text{sec})$$
where, Q : discharge (m^3/sec)
C : runoff coefficient (0.5)
A : basin area (km^2)
f : coefficient of shape of the hydrograph (0.6)
However, for large rivers such as St. Paul River, Weaher to the following Dicken's and Lofa River the following Dicken's and was applied.
$$Q = C \cdot \sqrt[4]{A^3} \quad (\text{m}^3/\text{sec})$$
where, C : coefficient of runoff in hilly area (3.46)
A : basin area (km²)
On the other hand, for the calculation of the existing mage capacity the following Manning's formula was used.

Howe River, Lo formula v

$$Q = C \cdot \sqrt[4]{A^3}$$
 (m³)
where, C : coefficient of run
billy area

On drainage

where,

$$Q = V \cdot A = \frac{1}{n} \cdot R^{\frac{2}{3}} \cdot I^{\frac{1}{2}} \cdot A$$

$$Q : \text{ capacity of drainage st}$$

$$V : \text{ velocity}$$

$$A : \text{ drainage section}$$

$$R : Hydrological mean radiuse$$

tructure (m³/sec) (m/sec) (m²) us (m) n : roughness coefficient of structure wall

I : slope of drainage structure

(%)

3.2 Hydrological Analysis of the Existing Structure

Hydrological analysis of the existing bridges, boxculverts and pipe culverts are made by comparing the drainages capacities and the expected discharges.

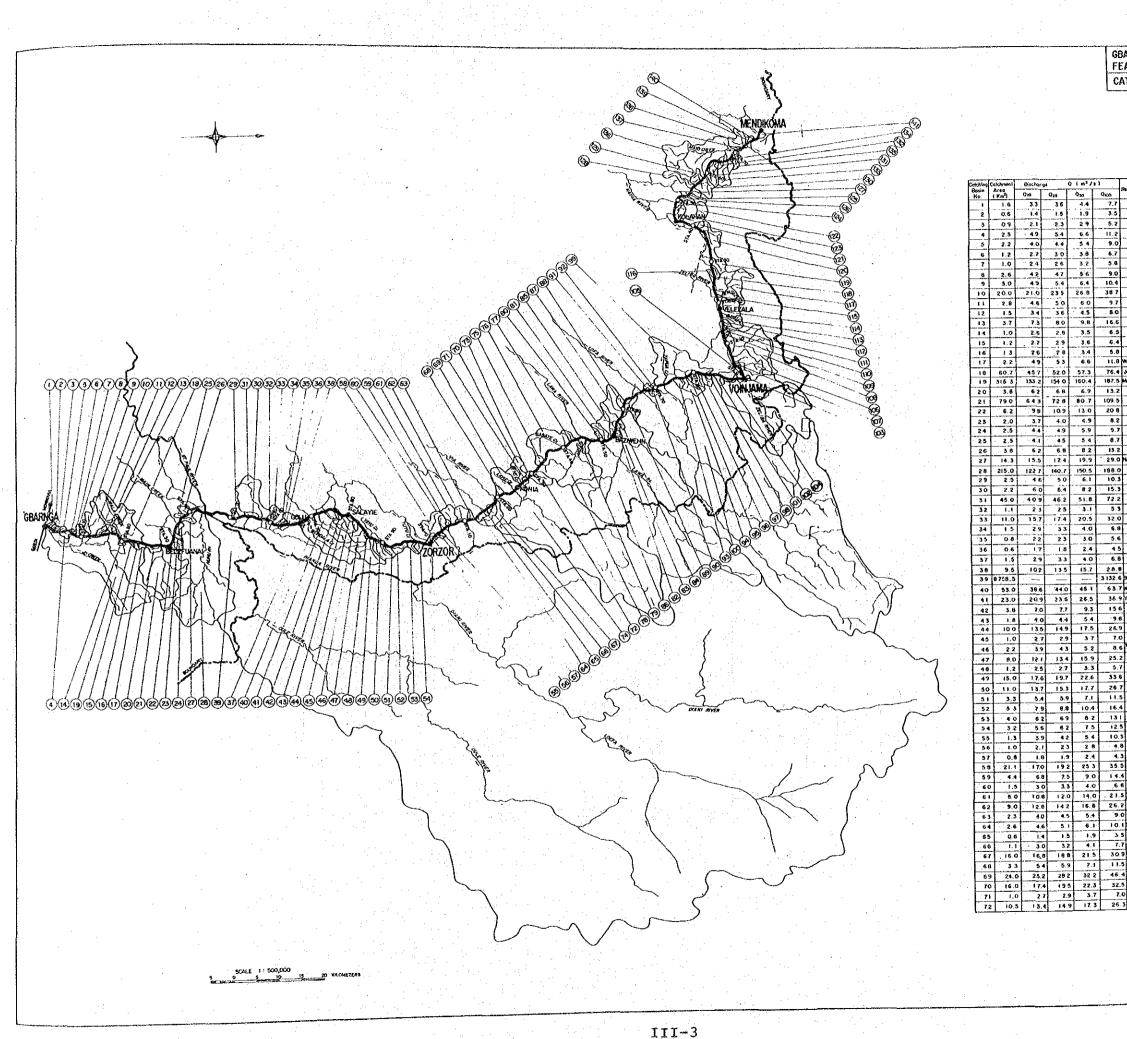
3.2.1 Analysis of Catchment Area

The catchment area for each river basin was calculated on the basis of the topographical map (scale 1:250,000) and hydraulic map available from the Land & Minning Ministry. Only, the catchment area of St. Paul River was calculated on the topographical map (scale 1:200,000) gained from the Republic of Guinea.

The summary of calculation and analysis is shown in DWG-III-1 CATCHMENT AREA.

3.2.2 Hydrological Study on Existing Drainage

1) Bridges


All bridges of the Project road were analyzed and found to be safe for the flood of 100 years rainfall intencity. The result of the hydrologic study on the existing bridges are shown in Table III-1.

The bridges on the rivers, the highest water level of which are near to the discharge capacity are presented in Analysis Result (1)-(5).

2) Box and Pipe Culverts

Other drainage structures are also analyzed and the results are shown in Table $III-2 \sim III-4$, some capacities of which were found not enough.

GBARNGA-MENDIKOMA HIGHWAY PROJECT FEASIBILITY STUDY	SHEET No.
CATCHMENT AREA	DWG-JII-i

-т		Colc hange	Conchronat	Disch	tront C	in1/s	, 1	
÷ l	Renaria	Bosia	Ares (Km²)	Que	0	0.0	0.00	Renorius
7.7		No. 73	12.2	17.4	19.3	22.6	35.5	
3.5		74	591.5					Vis Show
5.2		75		6.3	7.0	8.5	14.0	
		76	3.6		1			
1.2	~ .		34.0	33.5	37.7	42.8	60.7	
9.0	·	77	3.7	5.6	5.2	7,4	11.7	
6.7		78	126.3	53.0	90.1	97.Z	124.1	Loop Aner
5.8		79	3.9	5.9	6.5	7.8	12.3	
9.0		80	18	3.5	3.9	4.8		
0.4		₿1	6,7	7.8	8,8	10.1	15.0	
87		82	. 2.4	4.6	\$.0	6. I	10.2	
9.7		83	1.5	3.4	3.6	4.5	8.0	
8.0		84	1,8	3.3	3.6	4.4	7.4	
6.6		85	25.7	17.1	24.9	27.7	3B.I	
6.5		85	726.2				464.0	Lesigna
6.4		87	12.0	12.2	13.7	16.0	22.3	<u> </u>
5.8		88	4.3	7.0	1.7	9.2	14.9	
11.0	Vitsia Craelt	89	26.3	29.5	23.2	25.6	34.4	Leto River
6.4	Ja Craek	90	2.7	53	5.9	7.1	12.2	
97.5	Main Creak	91	4.9	3.3	3.7	9.7	15-5	
3.2		92	L.1	2.6	2.8	35	6.4	
)9.5		93	3.0	5.3	5.8	7.1	11.7	
0.8	•	94	10.0	11.7	\$3.1	15.1	22.4	*
8.2	•	95	1.3	2.7	3.0	3.7	6.4	
9.7		96	6.0	8.6	9.5	11.2	17.5	
8.7	· · · · · · · · · · · · · · · · · · ·	97	3.0	4,6	5.0	6.0	9.5	
13 Z	<u> </u>	98	1.3	2.8	2.8	3.4	5.9	1
9.0	Norse Pilerer	99	94.6	46.5	12.0	78,2	101	<u> </u>
_		100	8.018 1				\$79.7	che River
6.0 10.3	•	100	4.2	5.ê	7.5	9.0	14.5	Zafita River
10.3		102	2.1	4.1	4.6	6.3	9.5	
	 	102		2.6	2.8	3.5	8.4	<u>}∹</u> —
2.2		<u> </u>	1.1			144.0		Zel iba Phun
5.3	 	104	193.1	116.8	133.8		102.5	Parise cost
32.0	 -	105	80	2,1		2.0		1
6.8		106	27.8	24.8	28.8	32 4	43.2	Zelibs Rivar
5.6		107	1.3	2.9	3.1	3.9	7.0	· · ·
4 5	<u> </u>	108	67.0	50.5	57.4	63.2	84.3	<u> </u>
6.8	1	109	0.9	2.2	24	3.1	5.6	↓ •
8.8		1 10	0.7	1.9	2.0	2.6	4.9	
32.6	BLRVI Rive	111	08	2,4	2.5	3.3	6.3	
63.7	ALCOST CAR	112	0.5	3.7	4.0	4.9	8.2	<u> </u>
36.9	Yoro Cristi	113	· 6.0	7.5	8.5	9.9	15.1	<u> </u>
156	1 · _	114	15.0	17.9	20.0	23.1	34.4	
9.6		115	1.5	3.5	3.9	4.9	8.7	
26.9		116	· · · · ·	5.3	5.9	6.9	10.8	
7.0	•	117	43.7	34.9	39.5	43.7	54.1	Zeltasha
8.6	a war	118		2 0	22	2.5	3.3	· ·
25.2		119	· · · · · · · · · · · · · · · · · · ·	14.0	15.7	18.2	27.6	
5.7	1	120		17.6	19.7	22.7	33.6	
33.6		121	·	4.6	5.2	5.4	10.7	· [
26.7		122		22.4	25.2	28.5	40.5	•
11.5		123	· · · · · · · · · · · · · · · · · · ·	10.6	11.7	13.9		
		12	1	4.5	5.0	+	10.0	
16.4		123		45	5 0		9.3	
13	<u> </u>			6.4	7.1	8.3	+	
12.5	1	126	+	6.0	6 6	8.0		
10.1	+	+		1.7	5.6	-		
. 4.		128		81	9.0			
4,		129		t		1	28	
35.5		130		17.3			24.	
1,4.		13		12.9		- <u>j</u>		
<u>,6</u> (132		2.9	-			
21.	. .	133		12.9				
26.1		134		1.3				
9.0		13		3.3				
	Mari Rive	130	140.1	70.2	60.5			
3.		13	1 1.3	2.3	2.5			
7.		130	8.0	10.8	12.0	14.0		
	9 Marshar Film			4.2	-4.6	5.6	ş 9.	• •
11.		14	-	2.0		2 2.1	7 5.	0 .
46		14		3.1			2 7.	6 .
3Z.		1		1	1	1	1	
32.			1	1	1	1		-
	* I	1	1	+	1	_ }		
26			-1	3	1	1	1.	

Fig. III-1 (1963-1972) Monthly Rainfall Record

Bridge No.	Accum. Dis (mile)	st. (km)	River Name	Br. Length (m)	Span Composition (m)	Effective Width (m)	Type of Br.	Condition	Capacity (m3/s)	Discharge (m ³ /s)	C a tching Basin No.	Remarks
GBARNGA	0	0			an a		<u>, </u>	aria alda ay yang barta karanan aria ayan aran arang karanan		· · · · · · · · · · · · · · · · · · ·	an lana kari bara kana kari kari an kari ya ka	See
		28.7	Mem Creek	15.15	14.75	6.90	Steel Girder	Good	123.2	109.5	21	Hydrograph
1 2		42.9	Noom River	18.20	17.80	7.50	Concrete T-Beam	11	197.9	188.0	28	- do -
3		44.4	St. Paul River	123,45	14.80+12.20	7.40	Concrete T-Beam (5)	11	3543.2	3132.6	39	- do -
J	2110		NOT THAT DITOI	10,47	+15.25+49.60	1.40	Steel Truss (1)					
4	37.7	60.6		9.85	9.45	7.40	Concrete Slab	5 11 5 5	59.9	32.0	33	
4 5		64.0	Leya River	9.85	9.45	7.40	COUCLEDE DIED	n	59.9	28.8	38	
		69.2	Deya Miver	18.60	18.20	7.43	Concrete T-Beam	n ' '	224.4	63.7	40	
6		71.8		15.60	15.20	7.43	Concrete 1-Deam	H	124.2	36.9	41	
1			Conorros Divor	15.60	15.20		B B B B B B B B B B B B B B B B B B B	11	172.8	26.9	44	
.8		77.7	Sepayea River			7.45	Concrete Slab	11	34.0	33.6	49	- do -
9		87.9		9.60	9.20	7.40	II IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	R	48.9	26.7	50	
10		88.7		9.95	9.55	7.25	1	11	63.2	12.5	54	
11	63.2 10	01.7		10.25	9.85	7.45					2.	
									· .	1		
ORZOR	0	0	$\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$			F F 0	Concrete T-Beam	Good	119.1	35.5	58	
1	0.5	0.8		16.30	15.90	7.70		11	65.0	30.9	67	
2		18.6	Weaher River	10.50	10.00	7.45	Concrete Slab " (1)	11	1240.2	415.0	74	- do -
3	12.5	20.1	Via River	47.60	10.10+18.15	· · ·	Concrete T-Beam (2)		1240.2		1 4	- 40
		•			+18.15	11		ii ee	71.3	11.5	68	
4		22.7		9.50	9.10	tt.	Concrete Slab	B	95.1	46.4	69	
5		24.6	Layie Creek	15.70	15.30		Concrete T-Beam	- H	64.0	32.5	70	
6		27.3	Bene Creek	10.40	10.00		Concrete Slab	e e e e e e e e e e e e e e e e e e e	112.0	35.5	73	
7	17.9	28.8		16.50	16.10	17	Concrete T-Beam	*1	460.6	60.7	76	
8	25.7	41.4	Gabaryca River	31.25	15.30+15.15	7.40		" "		124,1	78	
9	28.6	46.0	Lueah River	49.95	24.65+24.50	11	Concrete Box girder	IT	1011.4	484.0	86	- do -
10	30.8	49.5	Lawa River	68.40	14.80+19.20 +18.00+14.80	11	Concrete T-Beam		1175.3	• •		- uo -
11	33.1	53.3	Zear River	49.10	17.40+18.30 +12.20	11	 Bit states and determined at the second states and second states at the second s	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	983.2	38.1	85	
12	42.3	68.0	Lofa River	93.20	30.40+30.75	7.45	Concrete Box girder	11	2939.3	879.7	100	- do
			· · · · · · · · · · · · · · · · · · ·		+30.85	7 10		*1	769.1	101.1	99	
13	45.3	72.9		31.45	12.10+18.55	7.40	Concrete T-Beam	n	484.9	182.5	104	
14		90.9	Zeliba River	37.60	18.30+18.50	1		· ·	404+2	10275	101	
0 INJAMA	0	0				7 45	Concrete T-Beam	Good	105.4	84.3	108	- do -
1	4.8	7.7	-	15,75	10 00	7.45	n ∩ouclere T⇔Dessm	0000	163.3	33.8	120	
2		38.0		18.90	18.90		n de la construcción de la constru Reconstrucción de la construcción de	11	82.6	40.9	122	- do -
3		43.2		12.60		lt _{andre} i	 A second s	11		104.0	136	- do -
4		70.1	Maiyo River	43.85	12.75+18.45 +12.65	. 0	11	11	244.7	104.0	1.70	

Table III-1 Bridge Inventory and Hydrological Study

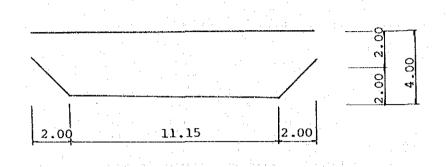
111-5

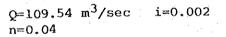
NO		Discharge	Existing Drainage	Structures	Remarks	No.		Discharge	Existing Drain		Remarks
	Area (km²)	Q (m ³ /sec)	Dimension (m)	Capa- city (m ³ /sec)		1.03	Area (km²)	Q (m ³ /sec)	Dimension (m)	Capa- (m ³ /sec) city	
L.	1.6	3.60	P(cor) Ø1.00 P(cor) Ø1.10	2.9	Out	26	3.8	8.16	C-Bx 3.50 x 3.05	38.9	
2,	0.6	1.54	P(cor) \$1.35	2.8		27	14.3	19.93	C-Bx 2-6.5 x 3.05	202.4	
	0.9	2.30	P(cor) \$1.20	2.2		28	215.0	187.98	Br 7.50 x 18.20	197.9	
	2.5	6.60	С-вж 2-3.00 ж 1.50	28.0		29	2.5	6.11	C-Bx 3.50 x 3.10	44.1	
	2.2	5.37	C-Bx 2.90 x 3.00	32.4		30	2.2	6.41	$P(cor) \neq 0.80$ 4 - $\neq 1.20$	9.4	
	1.2	3.01	P(cor) Ø1.25 P(cor) Ø1.00	3.6		31	45.0	51.83	P(cor) 2 - 01.50	7.6	
	1.0	2,57	P(cor) Ø1.40 P(cor) Ø1.00	4.4		32	1.1	2,47	P(cor) Ø0.90 Ø1.60	5.7	
	2.6	4.66	P(cor) \$1.20	2.2	Out	33	11.0	31.99	Br 7.40 x 9.85	59.9	
	3.0	6.44	C-Bx 2-2.45 x 1.60	23.3		34	1.5	3.25	P(cor) 2-\$1.00	2.6	
	20.0	26.82	C-Bx 2-3.50 x 3.50	102.4		35	0.8	2.33	P(cor) Ø0.60	0.6	
	2.8	6.01	C-Bx 3.10 x 2.20	24.1	· · ·	36	0.6	1.84	P(cor) 2-ø0.85	1.8	
	1.5	3.62	P(cor) \$1.40	3.1		37	1.5	3.96	C-Bx 3.00 x 2.50	27.1	
	3.7	9.76	С-Вх 3.10 х 2.20	24.1	•	38	9.5	28.83	Br 7.40 x 9.85	59.9	
	1.0	2.82	P(cor) Ø1.45 P(cor) Ø0.80	4.5		39	8,758.5	3,132.55	Br 7.40 x 123.45	3,543.2	
	1.2	2.90	P(cor) Ø1.05 Ø0.70 Ø1.40	5.1	· · · · · · · · · · · · · · · · · · ·	40	53.0	63.72	Br 7.43 x 18.60	224.4	
	1.3	2.81	P(cor) 2-ø0.60 ø1.60	5.8		41	23.0	36,89	Br 7.43 x 15.60	124.2	
	2.2	5.31	P(cor) Ø0.60 Ø1.40	3.7	Out	42	3.8	9.28	C-Bx 2-3.10 x 3.00	71.1	
	60 7	57.27	C-Bx 3.00 x 3.00	33.9	Out	43	1.8	4.35	P(cor) 4-\$1.20	9.0	
	60.7	187.46	Br 7.25 x 9.85	197.9		44	10.0	26,90	Br 7.45 x 15.60	172.8	
	315.3	6,80	P(cor) Ø0.80	0.8	Out	45	1.0	2.91	P(cor) 3-ø1.40	9.4	
	3,8	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Br 6.90×15.15	123.2		46	2.2	4,28	P(cor) 3-ø1.60	13.7	
	79.0	109.54	C-Bx 2-3.00 x 3.00	67.8		47	8.0	15.89	C-Bx 2-6.40 x 18.20	193.8	
	6.2	12.96	$P(cor) 2-\phi 1.40$	6.2		48	1.2	2.70	P(cor) 2-ø1.50	7,6	
	2.0 2.5	4.03 4.87	$P(cor) \neq 0.60$ $p(cor) \neq 0.60$ p(.50	4.5		49	and the second second	33.62	Br 7.40 x 9.60	34.0	
	2.5	4,48	₽(cor) Ø1.60	9.1		50	11.0	26.70	Br 7.25 x 9.95	48.9	

Table III-2 Discharge Calculation (1)

No.		Discharge	Existing Drainage	Structures	Remarks	No.		Discharge	Existing Drainag		Remarks
	Area (km ²)	Q (m³/sec)	Dimension (m)	Capa- (m ³ /sec) city	I.C.M.CLERES		Area (km ²)	Q (m ³ /sec)	Dimension (m)	Capa-(m³/sec) city	
51	3.3	5.92	P(cor) Ø0.80	0.8		76	34.0	60,68	Br 7.40 x 31.25	460.6	
52	5.3	10.41	C-Bx 2-6.40 x 3.00	193.8		77	3.7	6.19	P(cor) Ø1.40 Ø0.60	3.8	Out
53	4.0	6.86	P(cor) \$1.80	6.2		78	126.3	124.14	Br 7.40 x 49.95	1,011.4	
54	3.2	12.46	Br 7.45 x 10.25	63.2		79	3.9	6.52	P(cor) 2-ø1.60	9.1	·
55	1.3	4.20	P(cor) 2-ø1.20	4.5		80	1.8	3.90	P(cor) Ø1.20 Ø1.00	3.5	
56	1.0	2.25	P(cor) 2-ø1.20 ø0.90	3.3		81	6.7	10.10	C-Bx 2-3.00 x 3.00	67.8	
57	0.8	1.93	P(cor) Ø0.85 2-Ø0.80	2.4		82	2.4	4.98	P(cor) 2-ø1.20	4.5	
58	21.1	35.51	Br 7.70 x 16.30	119.1		83	1.5	3.62	P(cor) 2-ø1.50	7.6	
59	4.4	8.96	C-Bx 3.10 x 3.10	37.1		84	1.8	3.60	P(cor) Ø1.60	4.6	
60	1.5	3.25	P(cor) Ø0.60 2-Ø1.20	5,1		85	25.7	38.08	Br 7.40 x 49.10	983.2	
61	8.0	11,95	P(cor) 2-\$1.60	9.1	Out	86	726.2	484.03	Br 7.40 x 68.40	1,175.3	
62	9.0	14.24	P(cor) 5-ø1.60	22.8		87	12.0	13.73	P(cor) Ø1.20 2-Ø1.25	6.9	Out
63	2.3	4.48	P(cor) 2-01.60	4.5		88	4.3	7.71	P(cor) Ø1.20	2.3	Out
64	2.6	5.06	P(cor) 2-ø1.60 2-ø1.20	13.6	· · · · · · · · · · · · · · · · · · ·	89	26.3	23.17	P(cor) 4-ø1.20	9.0	Out
65	0.6	1.54	P(cor) Ø0.70 Ø1.00	1.9		90	2.7	5.85	P(cor) Ø0.80	0.8	Out
66	1.1	3.21	P(cor) 3-ø1.20	6.7		91	4,9	3.68	P(cor) \$1.15	1.8	Out
67	16.0	30.93	Br 7.45 x 10.50	65.0		92	1.1	2.82	P(cor) 2-ø1.40	6.2	
68	3.3	11.45	Br 7,45 x 9.50	71.3		93	3.0	5.84	P(cor) Ø1.20 2-Ø0.80 Ø1.00	4.8	Out
69	24.0	46.40	Br 7.45 x 15.70	95.1	an An an	94	10.0	13.11	p1.00 P(cor) Ø0.80 Ø1.20	3.0	Out
		•		64.0		95	1.3	2.98	P(cor) Ø0.90	1.0	Out
70	16.0	32.49	Br 7.45 x 10.40	64.0	Out	95	6.0	11.20	C-Bx 2-3.00 x 3.00	67.8	
71 72	1.0 10.5	2.91 14.94	P(cor) Ø0.80 P(cor) Ø1.20	0.8 2.2	Out	97	3.0	5.02	P(cor) $2-\phi 0.90$ $2-\phi 1.20$	2.1	Out
				112 0		98	1.3	2.82	5-ø1.60	27.3	
73	12.2	35.48	Br 7.45 x 16.50	112.0		99	94.6	101.11	Br 7.40 x 31.45	769.1	
74 75	591.5 3.6	414.99 8.48	Br 7.45 x 47.60 C-Bx 3.10 x 3.00	1,240.2 35.6		100		879,66	Br 7.45 x 93.20	2,939.3	

TABLE III-3 Discharge Calculation (2)

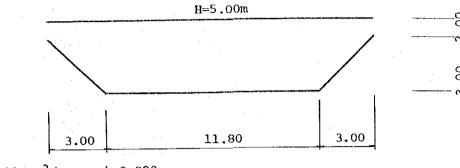

No.	Catchment		Existing Drainage	(c) A start of the start of	Remarks	No.		Discharge	Existing Draina	ge Structures	Remarks
- 	Area (km ²)	(m ³ /sec)	Dimension (m)	Capa-(m ³ /sec)			Area (km²)	Q (m ³ /sec)	Dimension (m)	Capa-(m ³ /sec) city	
101	4.2	7.53	P(cor) 2-ø1.60	9.1		126	4.5	8,31	C-Bx 3.00 x 2.00	20.4	
102	2.1	4,55	P(cor) 2-ø1.50 2-ø1.40	13.9		127	3.4	8.01	С-Вх 3.00 х 3.00	33.9	
103	1.1	2.82	P(cor) 3-ø1.20 ø0.60	7.3		128	8.0	9.75	C-Bx 3.00 x 2.50	27.1	
104	193.1	182.46	Br 7.40 x 37.60	484.9	: 	129	5.0	10.73	C-Bx 3.00 x 3.00	33.9	
105	0.8	2.26	P(cor) 2-ø1.60	9.1		130	23.0	21.70	C-Bx 2-3.00 x 3.00	67.8	
106	27.8	32.35	C-Bx 2-3.00 x 3.00	67.8		131	11.0	16.58	C-Bx 2-2.50 x 2.00	31.2	
107	1.3	3.14	P(cor) 2-ø1.60	9.1	· .	132	1.3	3.14	P(cor) ø1.20	2.2	Out
108	67.0	84.28	Br 7.45 x 15.75	105.4	:	133	11.0	16.58	C-Bx 2-2.30 x 1.80	24.6	
109	0.9	3.06	C-Bx 3.00 x 3.00	33.9	· · ·	134	0.6	1.45	P(cor) ø1.50	3.8	
110	0.7	2.04	P(cor) 3-ø1.40	9.1		135	2.2	3,68	P(cor) Ø0.80	0.8	Out
111	0.8	2.58	P(cor) 4-ø1.40	12.2	н. 1	136	140.1	103.95	Br 7.45 x 43.85	244.7	
112	2.0	4.00	P(cor) Ø1.40	3.0	Out	137	1.3	2.53	P(cor) Ø1.20	2.2	
113	6.0	9.91	C-Bx 2-3.00 x 3.00	67.8		138	8.0	13.98	C-Bx 2-2.40 x 1.80	26.2	
114	15.0	23.07	C-Bx 2-3.00 x 3.00	67.8		139	2.3	4.60	P(cor) 2-ø0.7	1.3	Out
115	1.5	3.85	P(cor) 2-ø1.60 ø1.00	10.5		140	0.8	2.17	P(cor) Ø0.75 Ø0.60	1.3	
116	3.7	6.91	C-Bx 3.00 x 3.00	33.9		141	1.3	3.33	P(cor) ø1.60	4.6	
117	43.7	43.73	C-Bx 2-3.00 x 3.00	67.8	1						
118	2.4	2.21	P(cor) \$1.60 \$1.20	6.7							
119	11.0	18,16	C-Bx 2-3.00 x 3.00	67.8			· · ·		4 ¹		
120	14.0	33.83	Br 7.45 x 18.9	163.3		· · ·					
121	2.6	5.24	P(cor) 2-ø1.60	9.1							
122	22.0	40.85	Br 7.45 x 12.60	82.6	· .	:	·				
1.23	7.0	13.91	C-Bx 3.00 x 3.00	33.9							
124	2.1	4.96	P(cor) 2-ø1.20 2-ø0.80	6.1	· · · · · · · · · · · · · · · · · · ·						•
125	3.1	5,90	C-Bx 3.00 x 3.00	33.9	. 4. ¹						


TABLE III-4 Discharge Calculation (3)

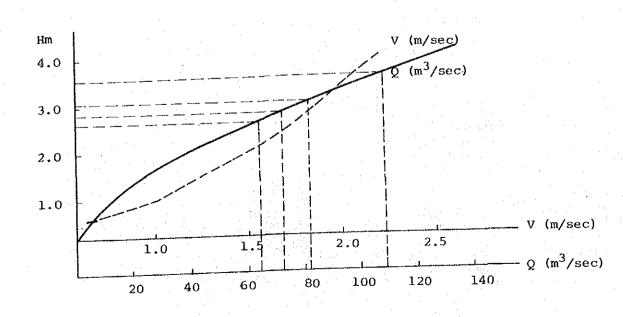
GBARNGA- ZORZOR

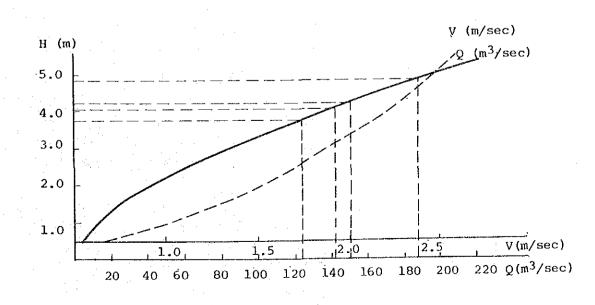
BRIDGE NO.1 (Mem Creek)

HYDRAULIC CROSS-SECTION OF THE CREEK FOR BRIDGE at 18.6km



			* * *	· · · · ·		in the second		
H (m)	A (m ²)	P (m)	R (m)	R-3	I- <u>1</u>	V (m/sec)	Q (m ³ /sec)	:
0.50	5.85	12.56	0.462	0.598	0.0447	0.668	3.91	
1.00	12.15	13.98	0.869	0.911	11	1.018	12.37	
1,50	18.98	15.39	1.233	1.150	and n in the	1.285	24, 39	
2.00	26.30	16.81	1,565	1.348	11	1.506	39,62	
2.50	33.88	17.81	1.902	1.535	- 18	1.715	58.12	
3.00	41.46	18.81	2.204	1.694	11	1.893	78,49	· .
3.50	49.03	19.81	2.475	1.830	11	2.045	100.27	
4.00	56,60	20.81	2,720	1.948	11	2.177	123.24	

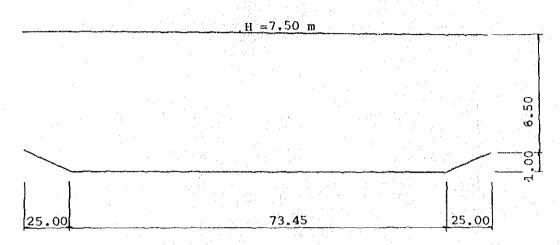

BRIDGE NO.2 (Noorn River)


HYDRAULIC CROSS-SECTION OF THE CREEK FOR BRIDGE at 42.9km

Q=1880 m³/sec i=0.002 n=0.04

H A	P	. D	$R\frac{2}{3}$	$I\frac{1}{2}$	V	Q .
(m) (m ²)	(m)	R	R3	1 2	(m/sec)	(m ³ /sec)
0.50 6.15	13.21	0.466	0.601	0.0447	0.672	4.13
1.00 12.80	14.63	0.875	0,915		1.023	13.09
1.50 19.95	16.04	1,244	1,157	68	1.293	25.80
2.00 27.60	17.46	1,581	1.357	.0	1.516	41.84
2.50 35.75	18.87	1.895	1.531	11	1.711	61.17
3.00 44.40	20.29	2.188	1.686		1.884	83.65
3.50 53.30	21.29	2.504	1.844	n	2.060	109.82
4.00 62.20	22.29	2.790	1,982	11	2.215	137.77
4.50 71.10	23.29	3.053	2.105	11	2.352	167,21
5.00 80.00	24.29	3.294	2.214	11	2.474	197.90
5.50 88.90	25.29	3.515	2.312	11	2.584	229.72

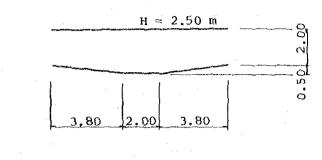
III-9


GBARNGA - ZORZOR

H (m)

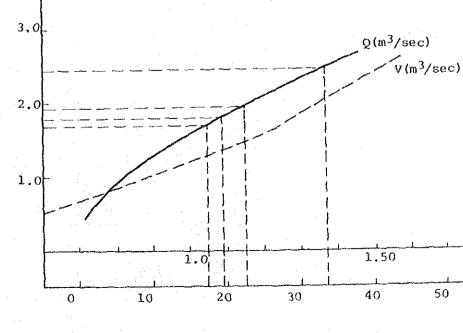
8:0 7.0

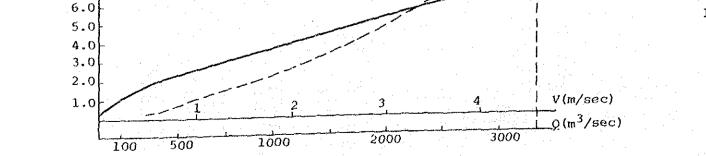
GBARNGA - ZORZOR


BRIDGE NO.9 HYDRAULIC CROSS-SECTION OF THE CREEK FOR BRIDGE at 87.9km

BRIDGE NO.3 (St. Paul River) HYDRAULIC CROSS-SECTION OF THE CREEK FOR BRIDGE at 44.4km

 $Q = 3,132.6 \text{ m}^3/\text{sec}$ i = 0.002 n = 0.04


					a da ta	an di sana An ang ang ang ang ang ang ang ang ang an		
-	H (m)	A (m ²)	P (m)	R	R 3	$1\frac{1}{2}$	V (m/sec)	Q (m ³ /sec)
	0.50	43.98	98.45	0.447	0.584	0.0447	0.653	28,72
	1.00	98.45	123.45	0.797	0.860	. I I	0.961	94.62
	1.50	160.18	124.45	1.287	1.183	11	1.322	211.76
	2.00	221.90	125.45	1.769	1.463	u	1.635	362.78
	3.00	345.36	127.45	2.710	1.944	81	2.172	750,27
~	4.00	468.81	129.45	3.622	2.358	U	2.635	1235.34
	5.00	592.26	131.45	4.506	2.728	"	3.049	1805.53
. –	6.00	715.71	133.45	5.363	3.064	11	3.424	2450.61
-	7.00	839.16	135,45	6.195	3.373	60	3.769	3163.07
	7.50	900.89	136.45	6.602	3.519))	3.933	3543.20



 $Q = 33.62 \text{ m}^3/\text{sec}$ i = 0.002 n = 0.04

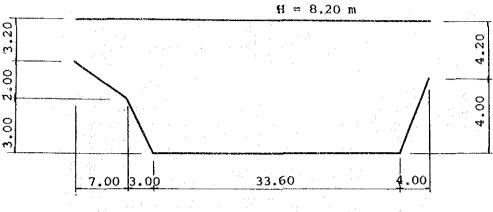
H (m)	A (m ²)	P (m)	R	$R\frac{2}{3}$		V (m/sec)	Q (m ³ /sec)
0.50	2.90	9.666	0.300	0.448	0.0447	0.501	1.45
1.00	7.70	10.666	0.722	0.805	"	0.899	6.92
1.50	12.50	11.666	1.071	1.047	u	1.170	14.62
2.00	17.30	12.666	1.366	1.231	. 11	1.376	23.80
2,50	22.10	13.666	1.617	1.378	51	1.540	34.03

H (m)

V(m/sec)

 $Q(m^3/sec)$

III-10

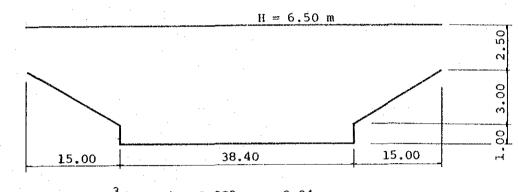

V(m/sec) -Q(m³/sec) 50

Analysis Result (3)

ZORZOR - VOINJAMA

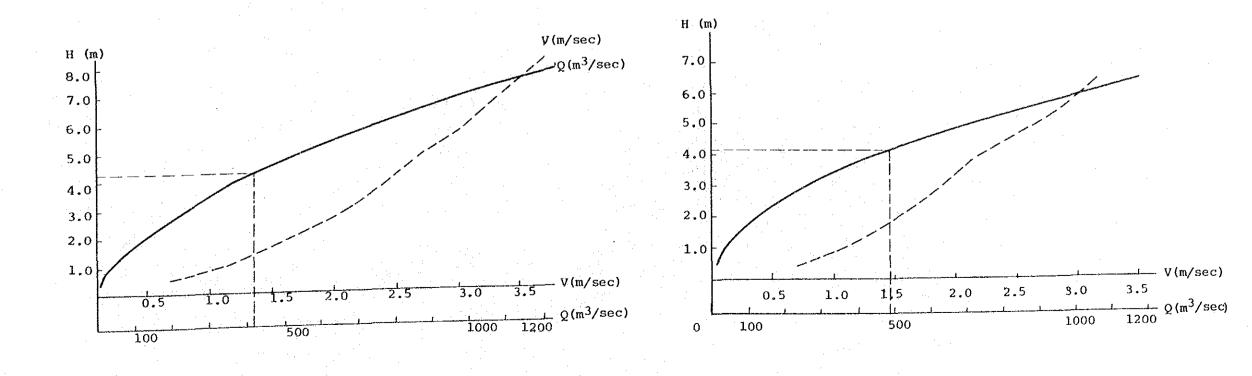
'BRIDGE NO.3 (Via River)

HYDRAULIC CROSS-SECTION OF THE CREEK FOR BRIDGE at 20.1km



 $Q = 415.0 \text{ m}^3/\text{sec}$ i = 0.002 n = 0.04

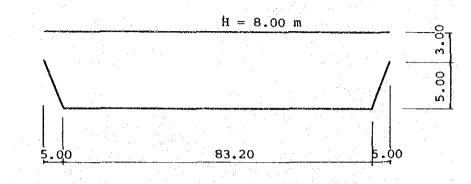
	100 N 100 N	and the second	1148 (K. 1974) 1170 - 1170 (K. 1974)	an an bhairte.	1. A.	ta na tanàn ar	and a second
H (m)	A (m ²)	P (m)	R	$R\frac{2}{3}$	$I \frac{1}{2}$	V (m/sec)	Q (m3/sec)
1.00	34.60	36.43	0,950	0.966	0.0447	1.080	37.37
1.50	52.65		1.391	1.246	11	1.393	73.33
2.00	71.20		1.814	1.487	H	1.662	118.33
3.00	109.80	42.09	and the second se	1.895	LI .	2.118	232.53
4.00		47.14		2,179		2.435	369.27
5.00	i i i i i i i i i i i i i i i i i i i	51.78		2.441	u	2.728	538,79
6.00	245.10	and the second se		2.749	u i	3.072	752.91
7.00	292.70		5.247	3.020	U.	3.375	987.72
8.00	340,30		5.890	3.261		3.645	1240.23
							-


ZORZOR - VOINJAMA

BRIDGE NO.10 (Lawa River) HYDRAULIC CROSS-SECTION OF THE CREEK FOR BRIDGE at 49.5km

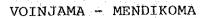
 $Q = 484.0 \text{ m}^3/\text{sec}$ i = 0.002 n = 0.04

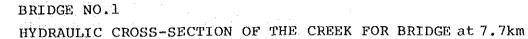
e Anna an an Anna Anna	· · · · · ·		1.1.1.1			· · · ·
$\begin{array}{c} H \\ (m) \\ (m^2) \end{array}$	P (m)	R	R 3	I 1/2	V (m/sec)	Q (m ³ /sec)
1.00 38.40	40.40	0.950	0.967	0.0447	1.081	41.51
2.00 81.80	50.60	1.617	1.377	. 11	1.539	125.89
3.00 135.20		2.224	1.704	19	1.904	257.42
4.00 198.60		2.798	1.985		2.219	440.69
5.00 267,00		3.658	2.374	11	2.653	708.35
6.00 335.40		4.473	2,715		3.034	1017.60
6.50 369.60		4.801	2.846	tř	3.180	1175.33
				1		

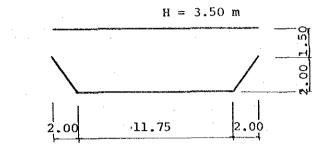


III-ll

ZORZOR - VOINJAMA

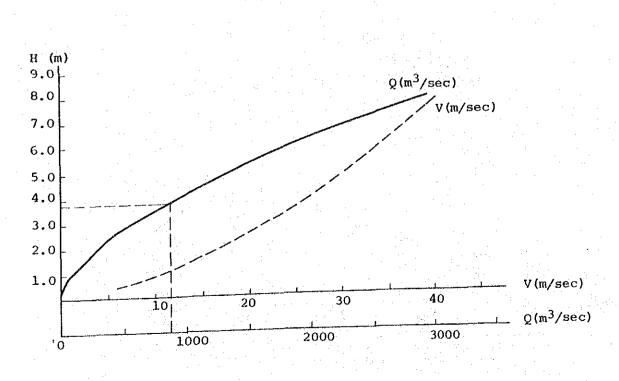

BRIDGE NO.12 (Lofa River)

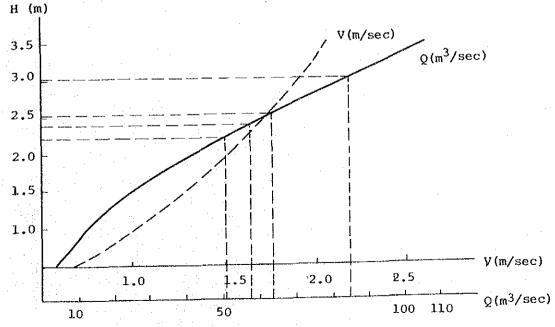

HYDRAULIC CROSS-SECTION OF THE CREEK FOR BRIDGE at 68.0km



 $Q = 879.70 \text{ m}^3/\text{sec}$ i = 0.002 n = 0.04

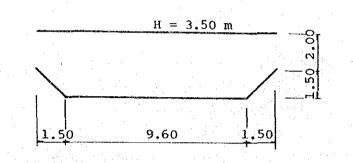
H	A	P.		2	1	v	0
(m)	(m ²)	(m)	R	R 3	I 2	(m/sec)	(m ³ /sec)
1.00	84.20	86.03	0.979	0.986	0.044	7 1.102	92.79
2.00	170.40	88.86	1.918	1.544	11	1.725	293.94
	258,60	91.69	2.820	1.996	11	2.231	576.94
	348.80	94.51	3.691	2.388	11	2.669	930.95
	441.00	94.34	4.531	2.738	"	3.060	1349.46
6:00	534.20	99.34	5.377	3.069	11	3.430	1832.31
State of the local division of the local div	627.40	101.34	6.191	3.372	11	3.768	2364.04
	720.60	103.34	6.973	3.650	\$1	4.079	2939.33





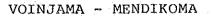
 $Q = 84.28 \text{ m}^3/\text{sec}$ i = 0.002 n = 0.04

	:							
•	H (m)	A (m ²)	P (m)	R	$R\frac{2}{3}$	$1 \frac{1}{2}$	V (m/sec)	Q (m ³ /sec)
•	0.50	6.13	13.16	0,466	0.601	0.0447	0.672	4.12
	1.00	12.75	14.58	0.874	0.914	'n	1.021	13.02
•	1.50	19.88	15.99	1.243	1.156	11	1.292	25.68
•	2.00	27.50	17.41	1,580	1,356	11	1.515	41.66
•	2.50	35.38	18.41	1.922	1.546	11	1.727	61.10
	3.00	43.25	19.41	2.228	1.706	98	1.906	82.43
	3.50	51.13	20.41	2.505	1.845	11	2.062	105.43

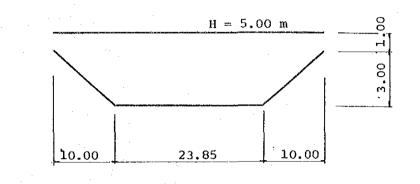


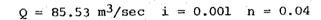
III-12

VOINJAMA - MENDIKOMA

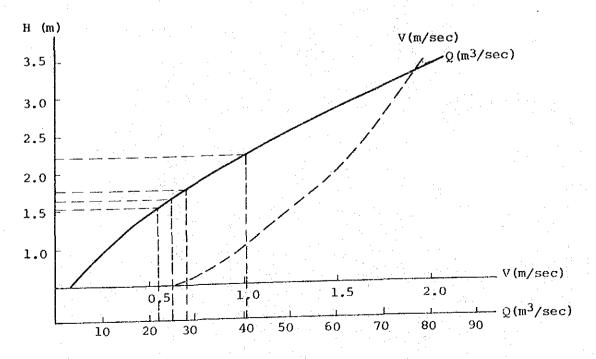

BRIDGE NO.3

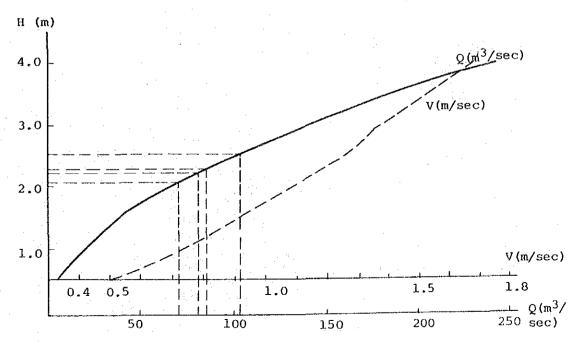
HYDRAULIC CROSS-SECTION OF THE CREEK FOR BRIDGE at 43.2km



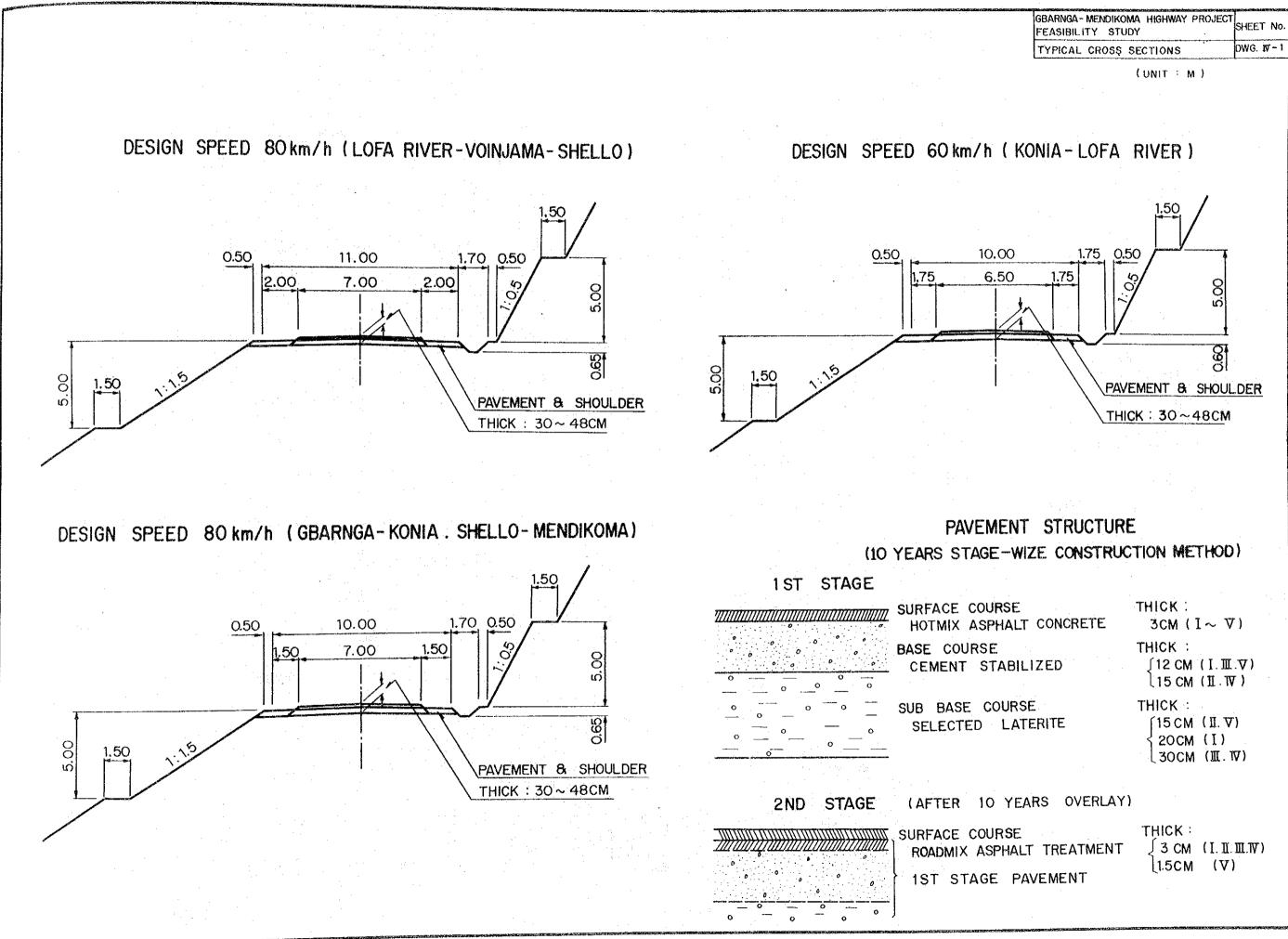

 $Q = 40.85 \text{ m}^3/\text{sec}$ i = 0.002 n = 0.04

Н	A	P		<u>2</u>	1	V	0
(m)	(m ²)	(m)	R	R ₃	I ₂	(m/sec)	(m ³ /sec)
0.50	5.05	11.01	0.459	0.595	0.0447	0.665	3.36
1.00	10.60	12.43	0.853	0.899	11	1.005	10.65
1.50	16.65	13.84	1.203	1.131	11	1.264	21.05
2.00	22.95	14.84	1.546	1.337	11	1.494	34.29
2.50	29.25	15.84	1.847	1.505	<u>81</u>	1.682	49.20
3.00	35.55	16.84	2.111	1.646	11	1.839	65.38
3.50	41.85	17.84	2.346	1,766	11	1.974	82.61

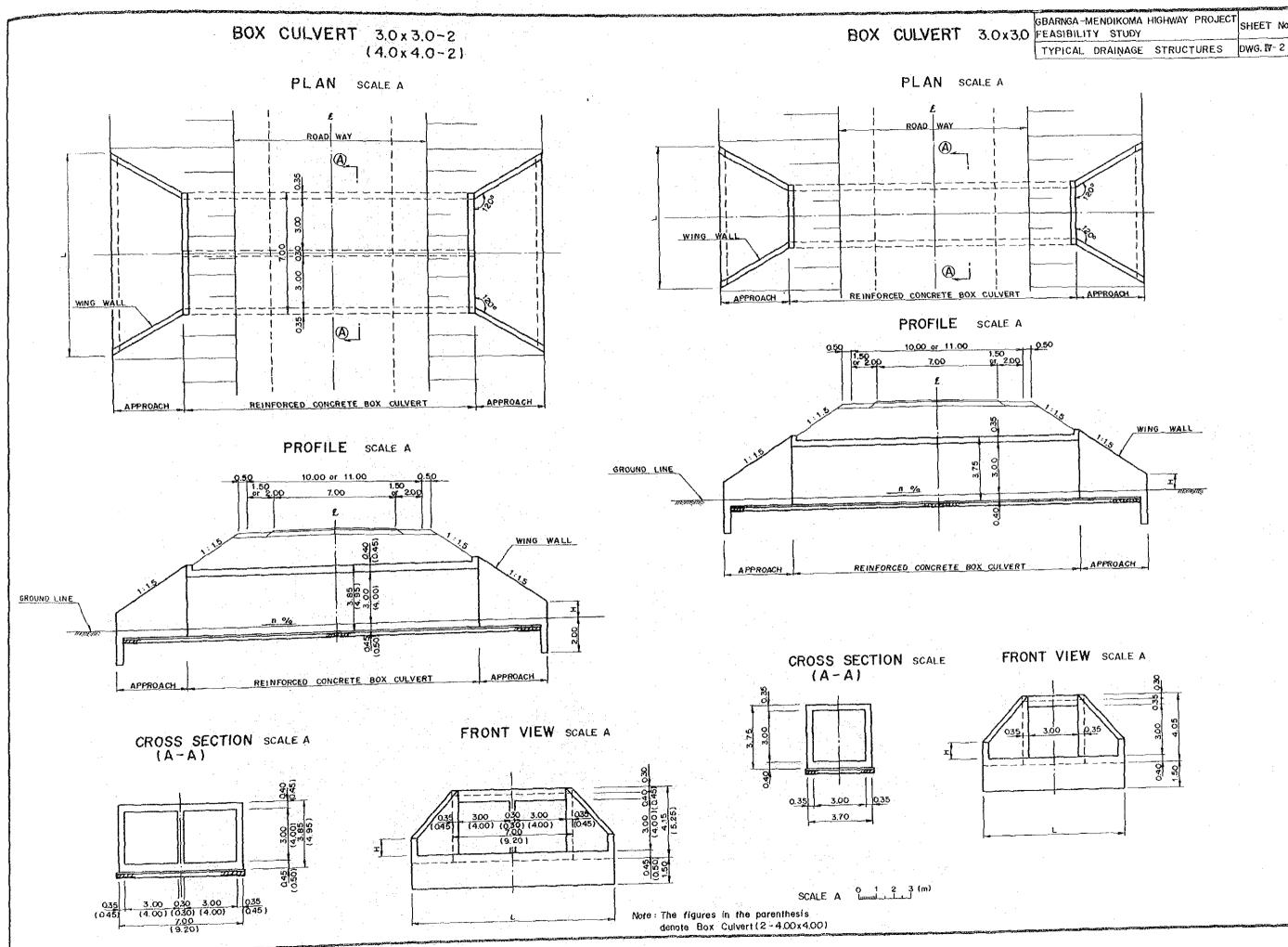



BRIDGE NO.4 HYDRAULIC CROSS-SECTION OF THE CREEK FOR BRIDGE at 70.1km

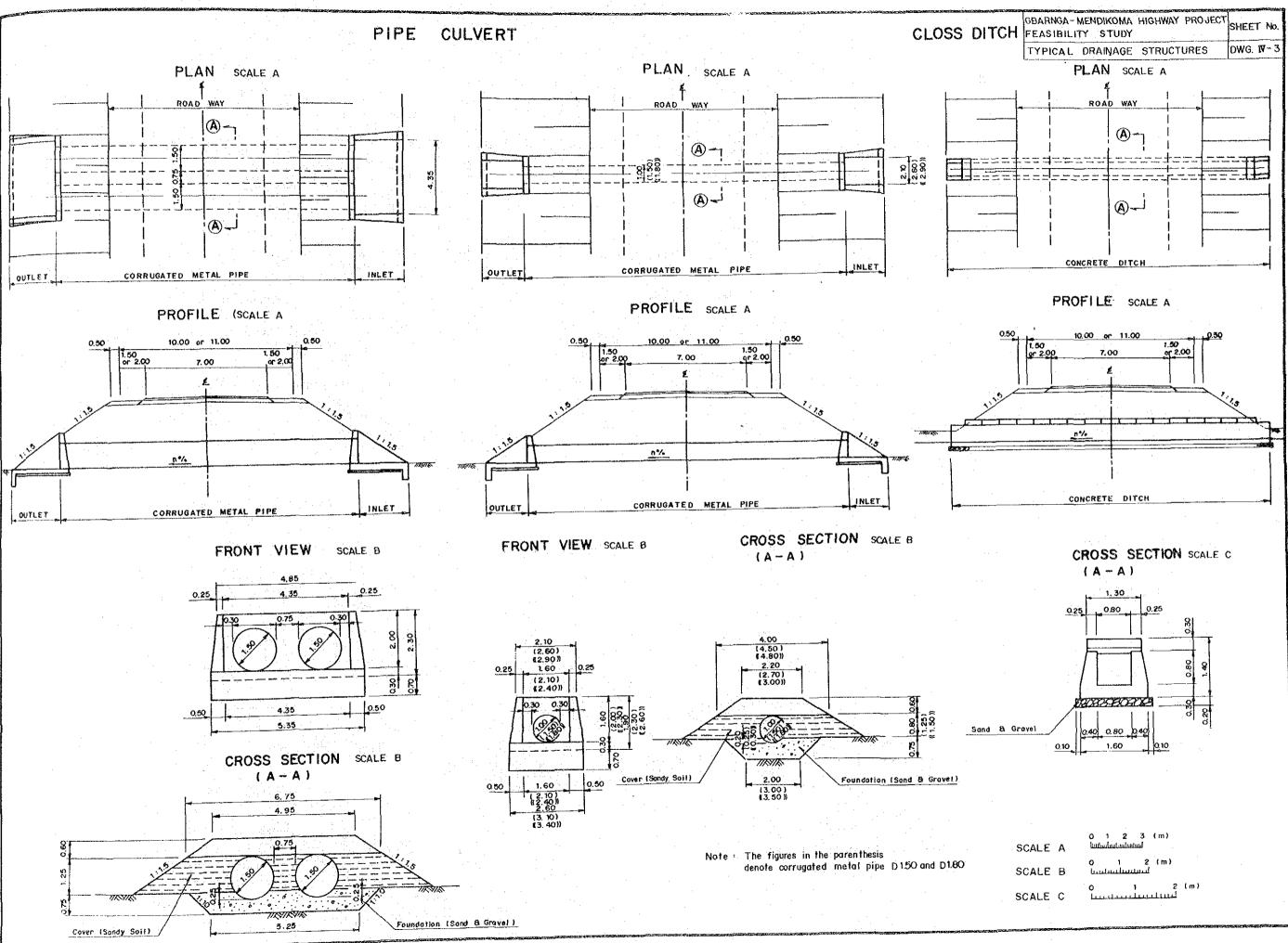
H (m)	A (m2)	P (m)	R	$R\frac{2}{3}$	$I \frac{1}{2}$	V (m/sec)	Q (m ³ /sec)
0.50	12.76	27.33	0.467	0.602	0.0316		6.07
1.00	27.18	30.81	0.882	0.920	11	0.727	19.76
1.50	43.28	34.29	1.262	1.168	u	0.923	39,95
2.00	61.03	37.77	1.616	1.377	11	1.088	66.40
2,50	80.46	41.25	1.951	1.561	11	1.233	99.21
3.00	101.55	44.73	2,270	1.727	11	1.364	138.51
4.00	145.40	46.73	3.111	2.131	11	1.683	244.71

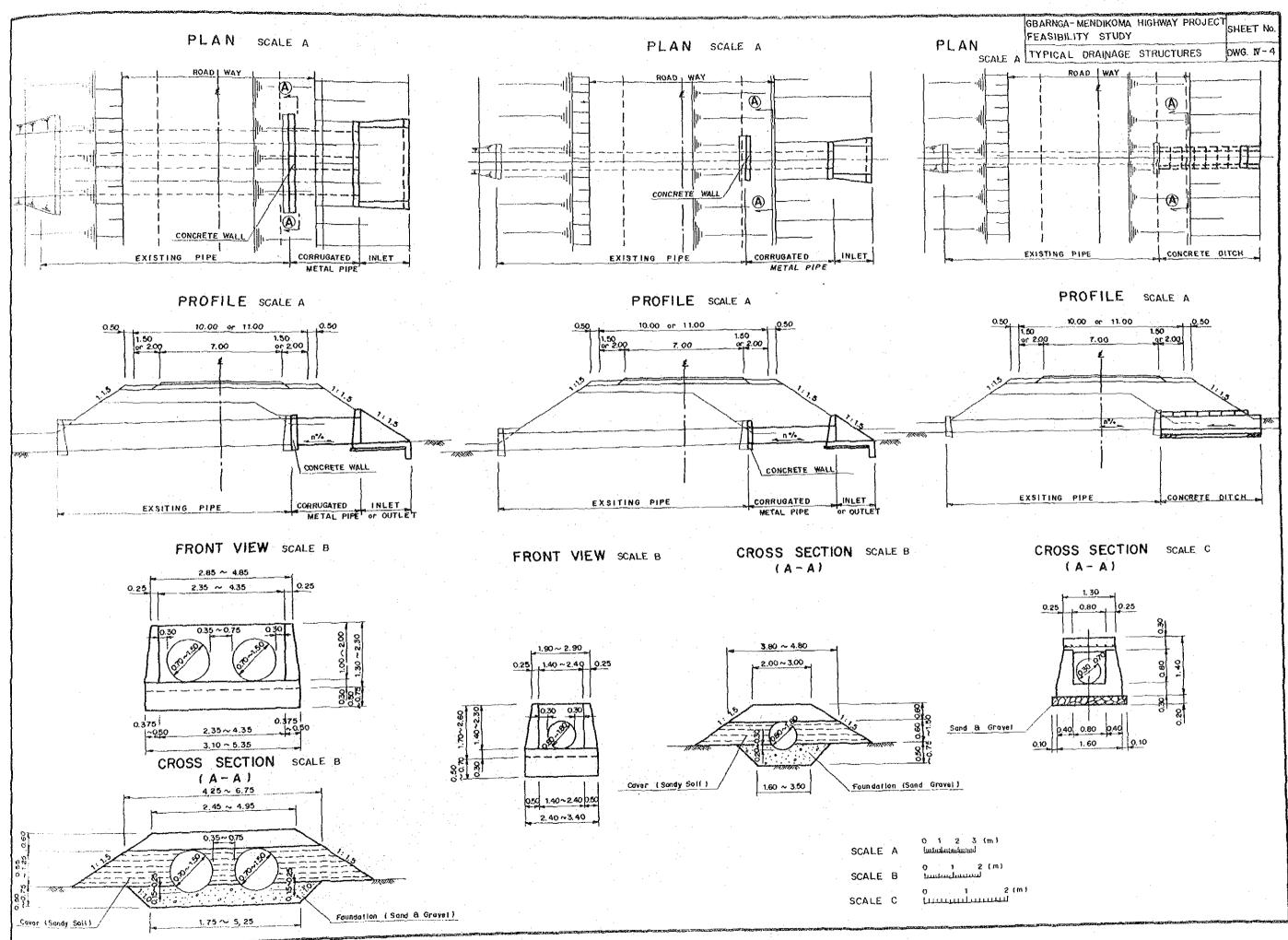


111-13

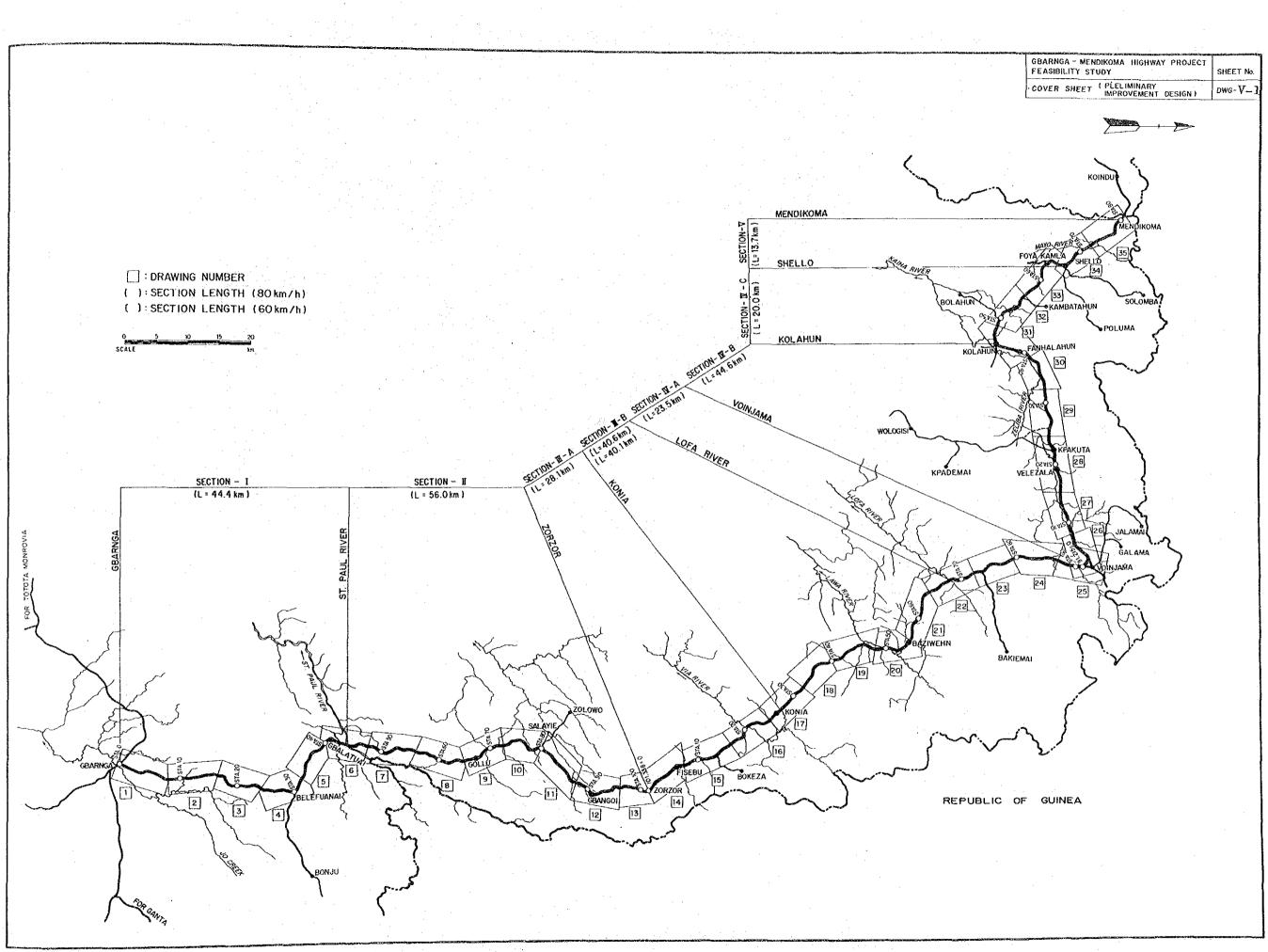


TYPICAL CROSS SECTION AND PAVEMENT STRUCTURE, AND DRAINAGE STRUCTURE


(IV)


IV-1

1V-2


IV-3

(V)

PRELIMINARY IMPROVEMENT

DESIGN

