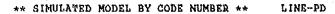
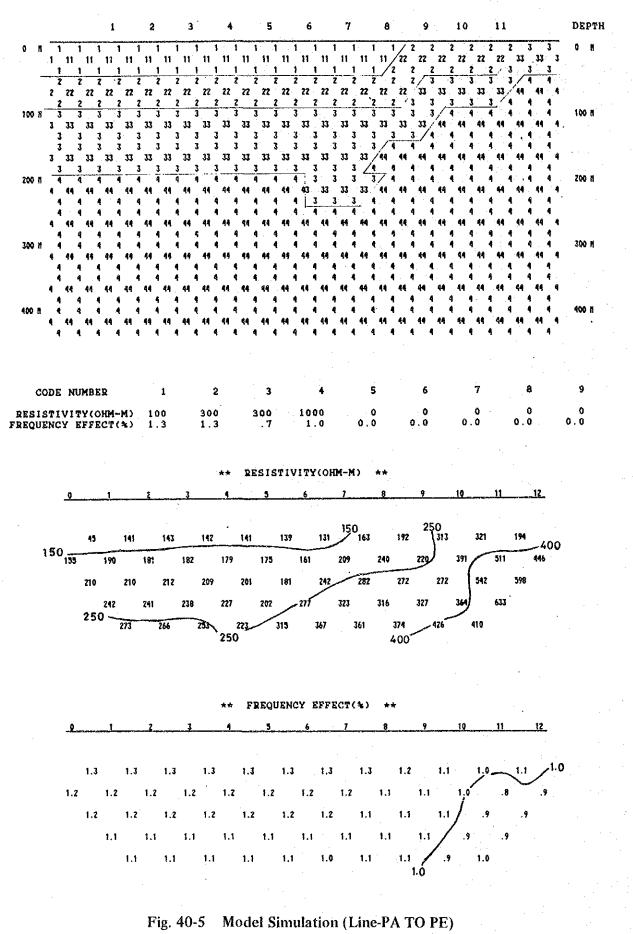
** SIMULATED MODEL BY CODE NUMBER ** LINE-PC


0 1	-	1	1	1	1	1	1	1	1	1	1	1	1		1	î	2	2	1	1	1	1	i	1	1	1	1	0
	1	11 1	11 1	11 [°] 1	- 11 1-	11 1	11 1	- 11 1	11 1		11 1	11 1			11 1			21	11- 1	- 11 1	11 1	11 1	- 11 1_	11 1	11 1	1! 1	1 	
		1 11	1 11	1 11	1 11	1 11	1 . 11	1 ' 11	1 11	1: 11	1 11	1 11	1 11	1	4 44	44	4 44	4	4 44	4 44	4	4 44	4	4 44	4 44	4	4	
160 N		-	1	1	1	1	1	1 · 1 ·	• • •	1	1	· .	1	1.	4 . ¢ .	4	4.	4	4	4	4 4	4	4	4	4	4	4	100
		11	11	11 1	11 1 1	1	11	11 1 '	1	31 1	11 1 4	11 1	11 1	<u> </u>	44 4 - 4 4 - 1	49. 4 4	4 4 4	44 4 7	49 4 4	् भ् र	4 4 8	4 4 4	4 4 4	् स्वः न	् भ म	4 4 4	1 4' 1	
	4	44 4] 44	્રેલ	े दव न	44	े नव ब	44 4	44	े बन न	44 4	44	49 4	49 4	44 4	`44 4	े । 4	े 44 4	े बब ब	4 4 4	े बन ब	4 4] 44 4	े 44 १	े 4 4 4	े २ २	(] 4 4	
200 N	4	4 41	4. 	4 44	4 44	4 44	4 49	4 44	4 	4 44	4 . · 44	4 44	4 49	4 . – ¹ * 44	4 44	4 44	4	4 44	4 44	4	4 44	4	4 44	4 - 44	4 44	4	4 1 4	200
	1	4 4	4 - 4 - 1	4	4	4	4	4	4	4	4	4	4	4 4 4 1	4	4	4	4	4	4	4	4 4	4	4 4	4 4	4	4	
	4	44 4	44	44	41	44 4	44 9	44 4 (44 4	44	44 4	44	44	44 4	44	44 9	44	4	41	44	44	44	44 4	41 9	44 4	- 仲 - 4 	4	
390 H	4	44	4 _ 44	۹٩. 1	4 : 44	۹ 44	4 44	44	44	۹. 44.	9 44 4	, 44	44	44	4	२ ६२ ४	ब - 44 - 4	44	4 4 4	, 44	, 44	្នំ៖	3 49	व ्वव्	द ्रवर	۹ ۹	•	300
	4	-, 4 65	4 4 8	4	4 4 44	4	4	4 · · · 44	4 4		- 4 - 44	4 4 44	4 . 44	م م 44	4	- 4 46	4	4	4 44	4	4	4 64	4 4 64	4	-1 4 68	4	4 4 4 4	
490 B		€ €	€ `` 4	4 4	4 4	4 i	4	4	4	4	4 4	4	4	4 i 4 i	4	4 4	4	4	4	4	4	4	4 4	4	4 4	4	्म म	400
	4	ં લ	41	ंस ब	(41) 4	44	44	44 4	49 9	44	44 4	44 4	44 4	44 4	44 4	44 4	44 4	44	44	44 4	41 4	44	44	41 4-	ं १ १ ४	ં ન ન	4	
C ESI		1.		er ohm		3	1		20			3 300		100				5 0		6	,		7 0			8 0		9 0
	ST:	IVI	TY (онм	-M)					0	;				-		° 0 .	Û			,	Ċ			O.	0		
ESI	st: En	IVI	TY (онм	-M)		00		200 1.3	0		300 .7			00.0	1-M	0.	Û		0	,	Ċ	0		Q.	0		Ô
ESI	st: En	IVI	TY (онм	-M)		00	3	200 1.3	2		300 .7		1	00 . 0	1-M 7	0.	0 0		0)	C 10	0			0		Ô
ESI	st: En	IVI CY	TY(EFF	OHM ECT	-M) (%)	1	00.3	3	200	• • •	BE S	300 .7 3157 3	VIY:	1 (TY)	00 . 0 . 0	7 490	0. ()	0 0 **		0.0 9.0) } 		0			0		Ô
ESI	ST	0 0	TY(EFF	OHM ECT	-M) (%)	1	273		20(1.3	0 2 ** <u>*</u>	RE :	300 7 315 3	530	1 [TY(<u>6</u>]	оо . о сонр 315	7 400	0.	0 0 ** 8	359	• • •	474	<u>10</u>	0 . 0		106	0 0 12		Ô
ESI	ST	0 0 1A1	TY(EFF	0HM ECT 1 320	-M) (%)	1 2 314	273	512	20(1.3	0 2 *** 308	RE :	300 .7 315' 3	530	1 (TY) 6 (3) 317	оо . о сонр 315	7 400	0.	0 0 **	359	9 9 139	474	<u>10</u> 622	0 . 0	623	106	0 0 <u>12</u> 492	D	Ô
ESI	ST	0 1 1 1 1 1 1 1 1 1 1	TY(EFF 306	0HM ECT 1	-M) (%) 286	1 2 314	00 . 3 . 3 . 3 . 3 . 3	512	200 1.: 691	0 2 *** 308	RE 5	300 .7 315' 3	51V 530	1 (TY) 6 (3) 317	0 0 . 0 (OHD 315 512	7 400	0 . .) .)	0 0 *** 8 652-	359	9 9 00 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	474	<u>10</u> 622	0 . 0 449 712	623	106	0 0 <u>12</u> 492	0	Ô
ESI	ST	0 1 1 1 1 1 1 1 1 1 1	TY (EFF 306	0HM ECT 1 320	-M) (%) 286	1	200 . 3	512 J	200 1.: 99 1.:	0 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	RES 287	300 .7 5157 3	330 350	1 TY(6	00 0 0 315 315 512	7 4 00 549 562	0.	0 0 *** 8 652~ 673	359	9 9 100 100 100 100 100 100 100 100 100	474	10 672 578	0 . 0 449 712 24	623	106	0 0 <u>12</u> 492	0	Ô
ESI	ST	0 1 1 1 1 1 1 1 1 1 1	TY (EFF 306	0HM ECT 1 320	-)M) (%) 286	1 2 393	200 . 3	312 3	200 1.: 99 1.:	0 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	RES 287	300 7 5157 3	330 350	1 (TY) 6 317 354	00 0 0 315 315 512	7 4 00 549 562	0 . .)	0 0 *** 8 652~ 673	359	9 9 100 100 100 100 100 100 100 100 100	474	<u>10</u> 672	0 . 0 449 712 24	623	106	0 0 <u>12</u> 492	0	Ô
ESI	ST	0 1 1 1 1 1 1 1 1 1 1	TY (EFF 306	0HM ECT 1 320	-)M) (%) 286	1 2 393	200 . 3	312 3	200 1.: 99 1.:	0 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	RES 287	300 7 5157 3	330 350	1 (TY) 6 317 354	00 0 0 315 315 512	7 4 00 549 562	0.	0 0 *** 8 652~ 673	359	9 9 100 100 100 100 100 100 100 100 100	474	10 672 578	0 . 0 449 712 24	623	106	0 0 <u>12</u> 492	G	Ô
ESI	ST	0 1 1 1 1 1 1 1 1 1 1	TY (EFF 306	0HM ECT 1 320	-)M) (%) 286	1 2 393	200 . 3	512 3 100	200 1.: 331 351	0 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	BES 287	300 .7 3157 3	330 350	1 (TY) 6 317 554 354	0 0 . 0 315 512	7 400 549 562 6	0.	0 0 *** 673 0.	359 761	9 9 100 100 100 100 100 100 100 100 100	474	10 672 578	0 . 0 449 712 24	623	106	0 0 <u>12</u> 492	0	Ô


 1.3
 1.3
 1.3
 1.3
 1.3
 1.3
 1.2
 1.2
 1.2
 1.2
 1.2
 1.7

 1.3
 1.3
 1.3
 1.3
 1.3
 1.3
 1.2
 1.2
 1.2
 1.2
 1.2
 1.2
 1.2
 1.2
 1.7

 1.3
 1.3
 1.3
 1.3
 1.3
 1.2
 1.2
 1.2
 1.1
 1.2
 1.2
 1.2
 1.2
 1.2
 1.2
 1.2
 1.2
 1.2
 1.2
 1.2
 1.2
 1.2
 1.2
 1.2
 1.2
 1.2
 1.2
 1.2
 1.2
 1.2
 1.2
 1.2
 1.2
 1.2
 1.2
 1.2
 1.2
 1.2
 1.2
 1.2
 1.2
 1.2
 1.2
 1.2
 1.2
 1.2
 1.2
 1.2
 1.2
 1.2
 1.2
 1.2
 1.2
 1.2
 1.2
 1.2
 1.2
 1.2
 1.2
 1.2
 1.2
 1.2
 1.2
 1.2
 1.2
 1.2
 1.2
 1.2
 1.2
 1.2
 1.2
 1.2
 1.2
 1.2
 1.2
 1.1
 1.1
 1

Fig. 40-4 Model Simulation (Line-PA TO PE)

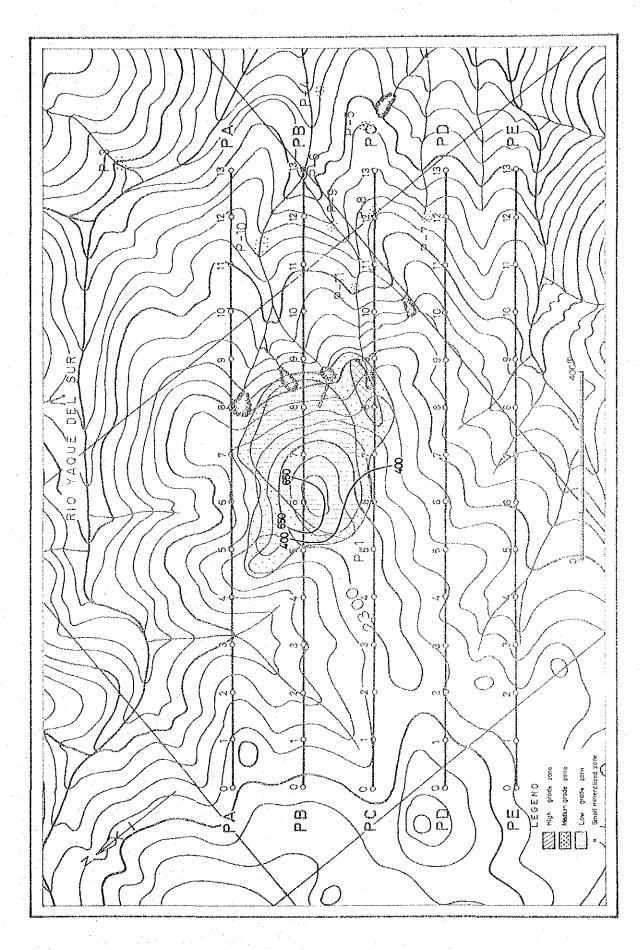


Fig. 41-1 Plan Map of Apparent Resistivity [2200 m Level]

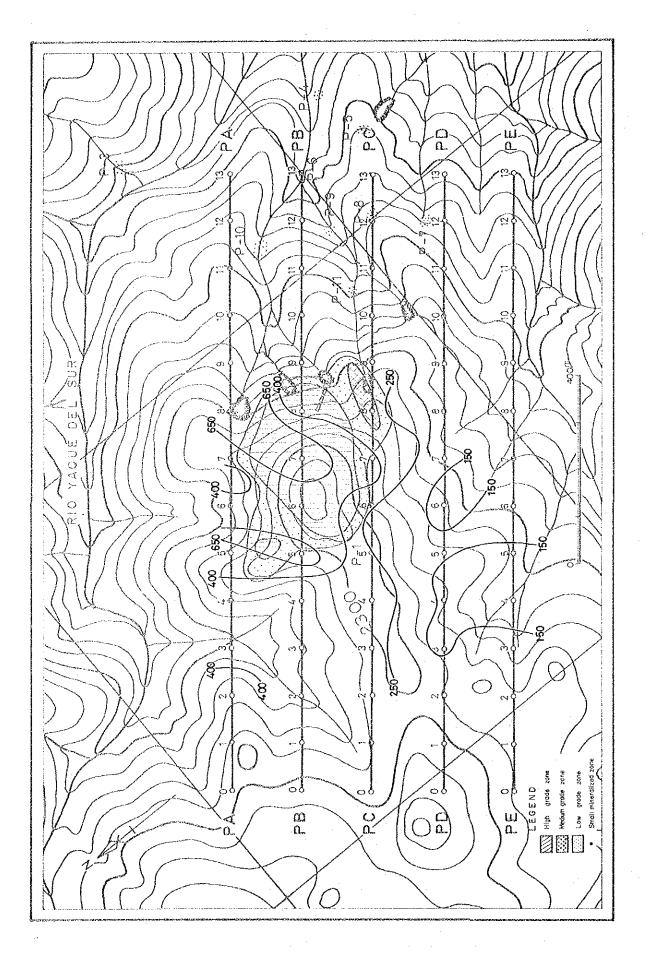


Fig. 41-2 Plan Map of Apparent Resistivity [2100 m Level]

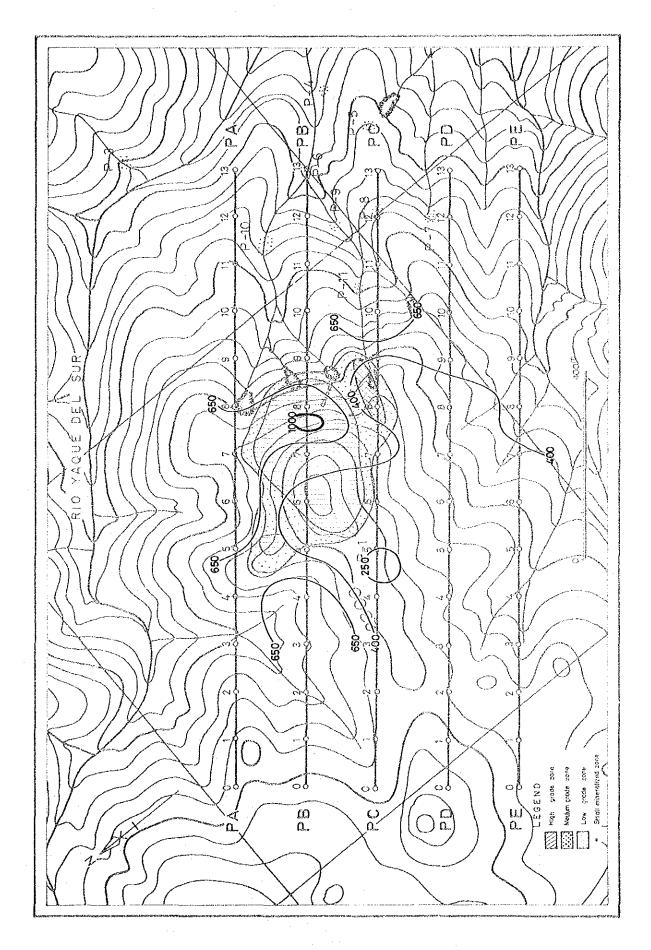


Fig. 41-3 Plan Map of Apparent Resistivity [2000 m Level]

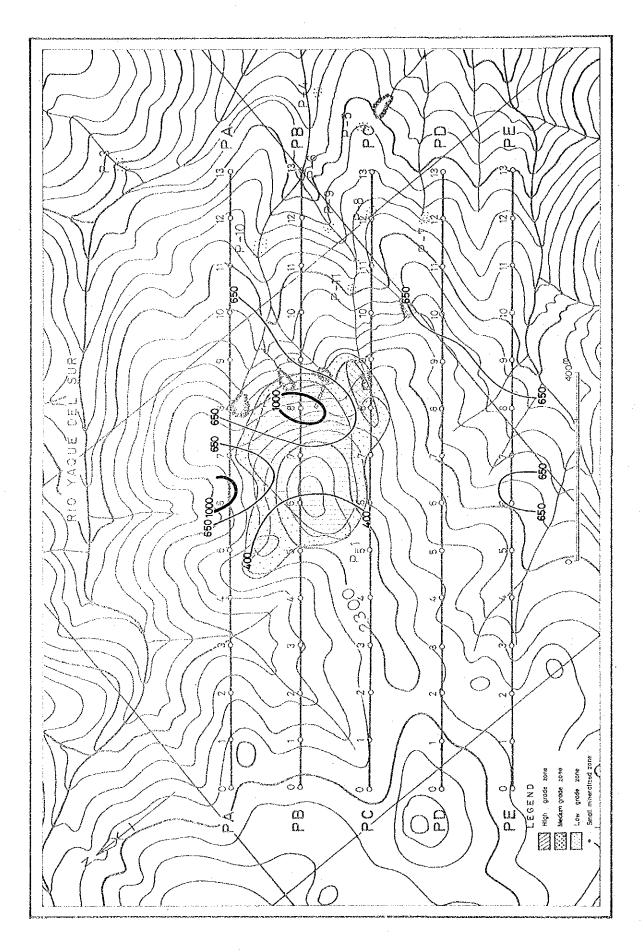


Fig. 41-4 Plan Map of Apparent Resistivity [1900 m Level]

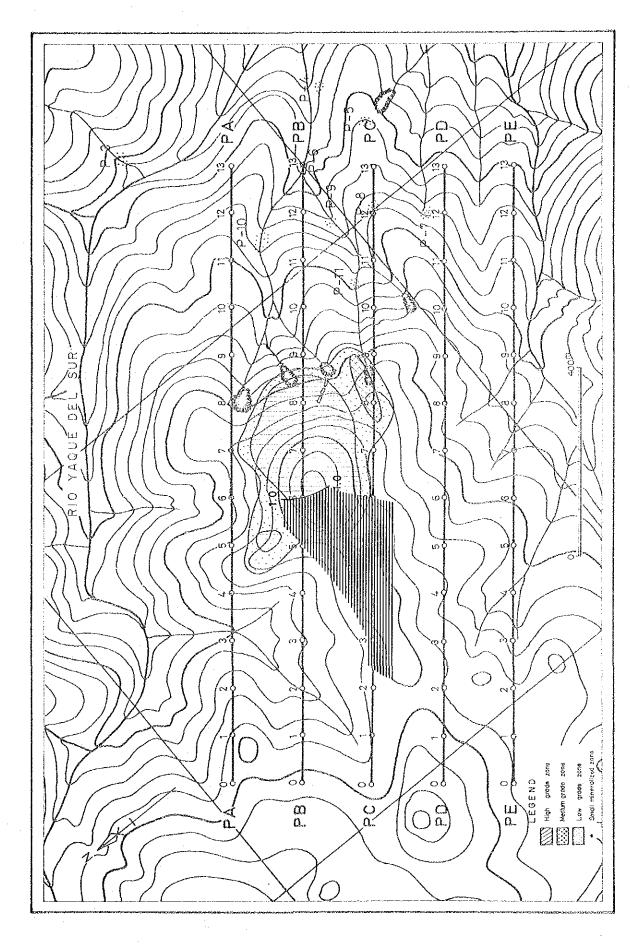


Fig. 42-1 Plan Map of PFE [2200 m]

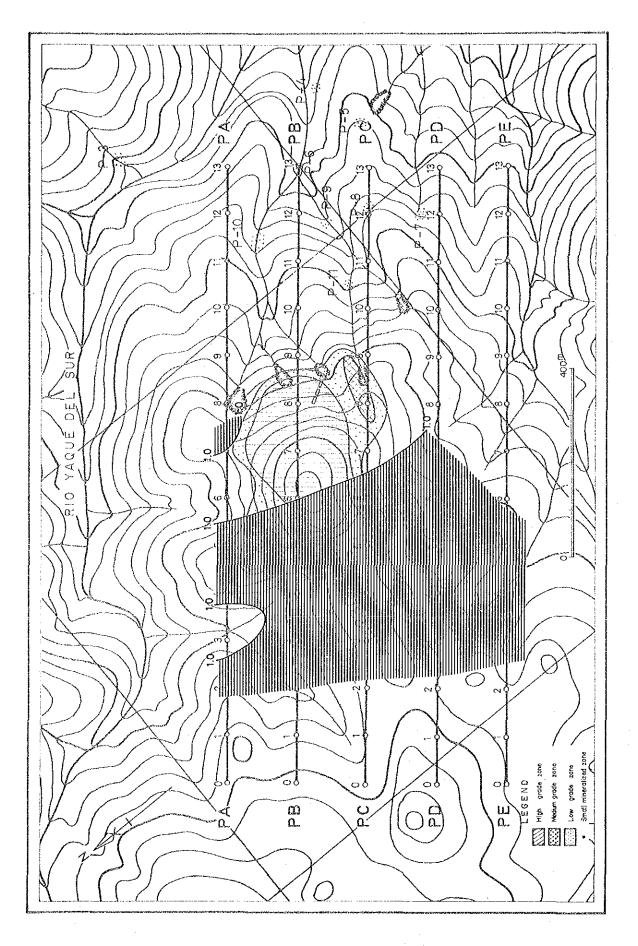


Fig. 42-2 Plan Map of PFE [2100 m]

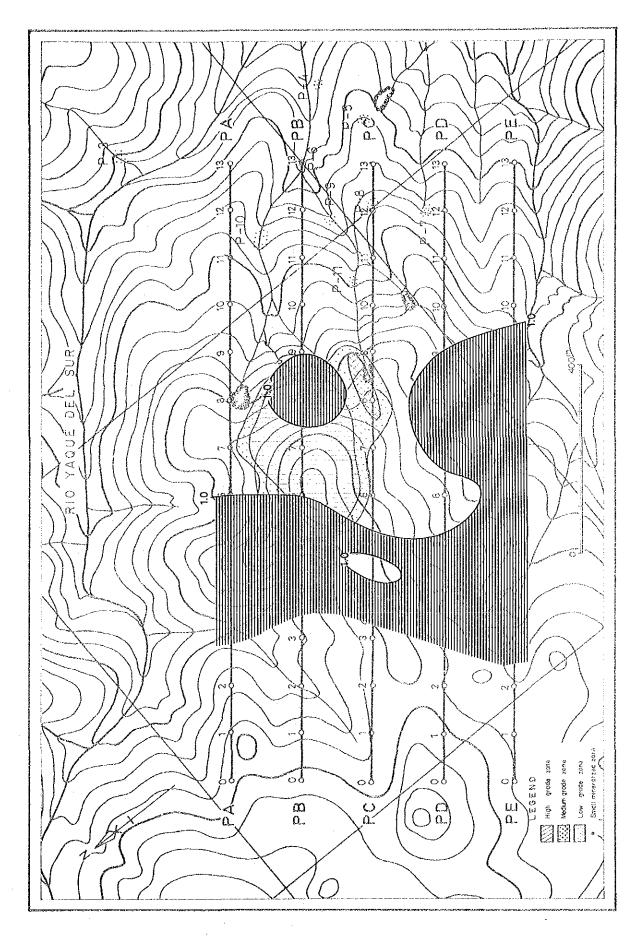
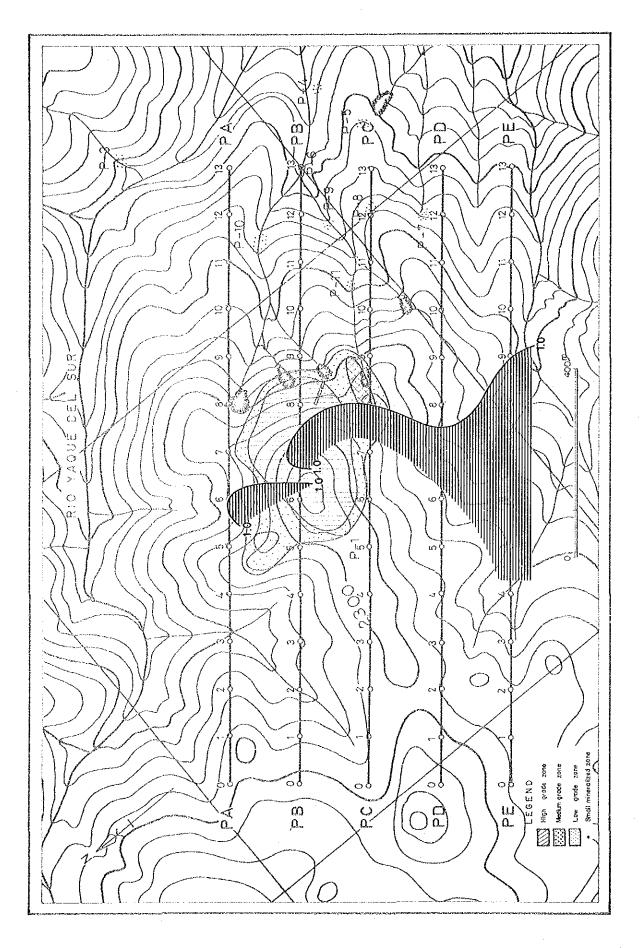
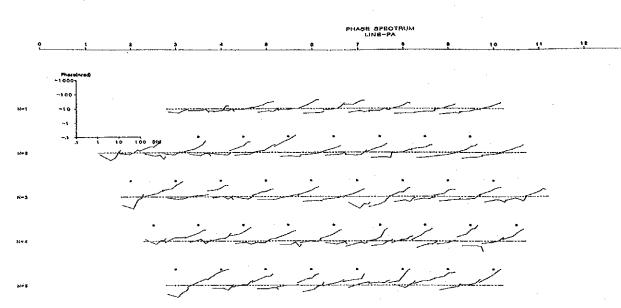
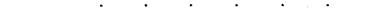
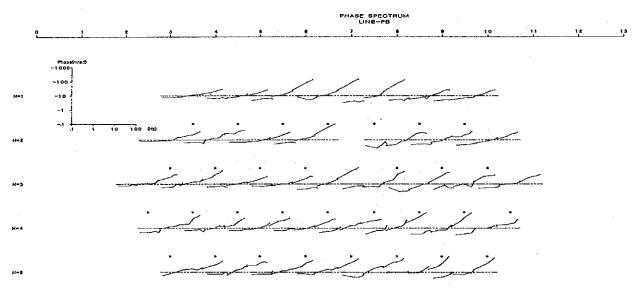
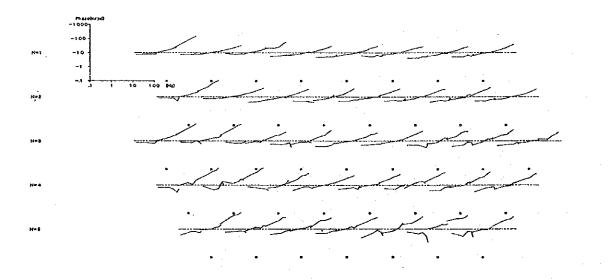
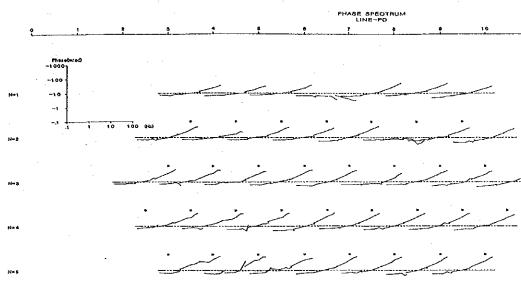


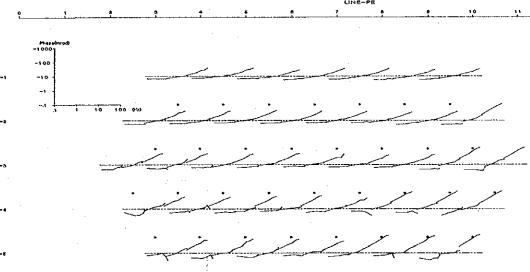
Fig. 42-3 Plan Map of PFE [2000 m]

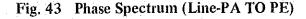






Fig. 42-4 Plan Map of PFE [1900 m]









12 13 N-140 ₩]

N=6

11

_____3

N≈1	 10 100 (-			-	
N=2	••••							
				•				
N-3						<u>.</u>	<u></u>	
		•	•	•		•	•	
N=4								
			•	•	-			•

.

MAGNITUDE SPECTRUM

								LINE-P	E
	0	1	Ę	à	1	۴	•	7	÷
	.	N-140							
N-1		,							
N=2		# [10 100	6H2)	•			•	
N-3	÷			•	•	-	•	•	•
				•	•	•	•		
1 /									

. -----

, . • . . .

. N-6 10 11 12 13

٠

10

· · · · · · · · ·	
· · · · · · · · ·	
· · · · · · · · ·	•
· · · · · · · · ·	
· · · · · · · ·	
and a start of the	•
	· · · ·

Fig. 44 Magnitude Spectrum (Line-PA TO PE)

					MAGNITUDE	-PO	
*	3	4	ę.	8	?	÷	

2---

N-1

N-2

K43

N=4

N-5

N=1

N-1 2

H+3

N=4

N- 5

ĉ

N-1440

. #]_____

1 10 100 100

11-2000 11

1 10 100 pm

......

MAGNITUDE SPEOTRUM

.

.

.

.

• • • • • • • •

.

.

MAGNITUDE SPECTRUM

.

MAGNITUDE SPECTRUM 10 18 13 ų

•

.

. . ------

12 13 <u>...</u>

.

.

. . .

. .

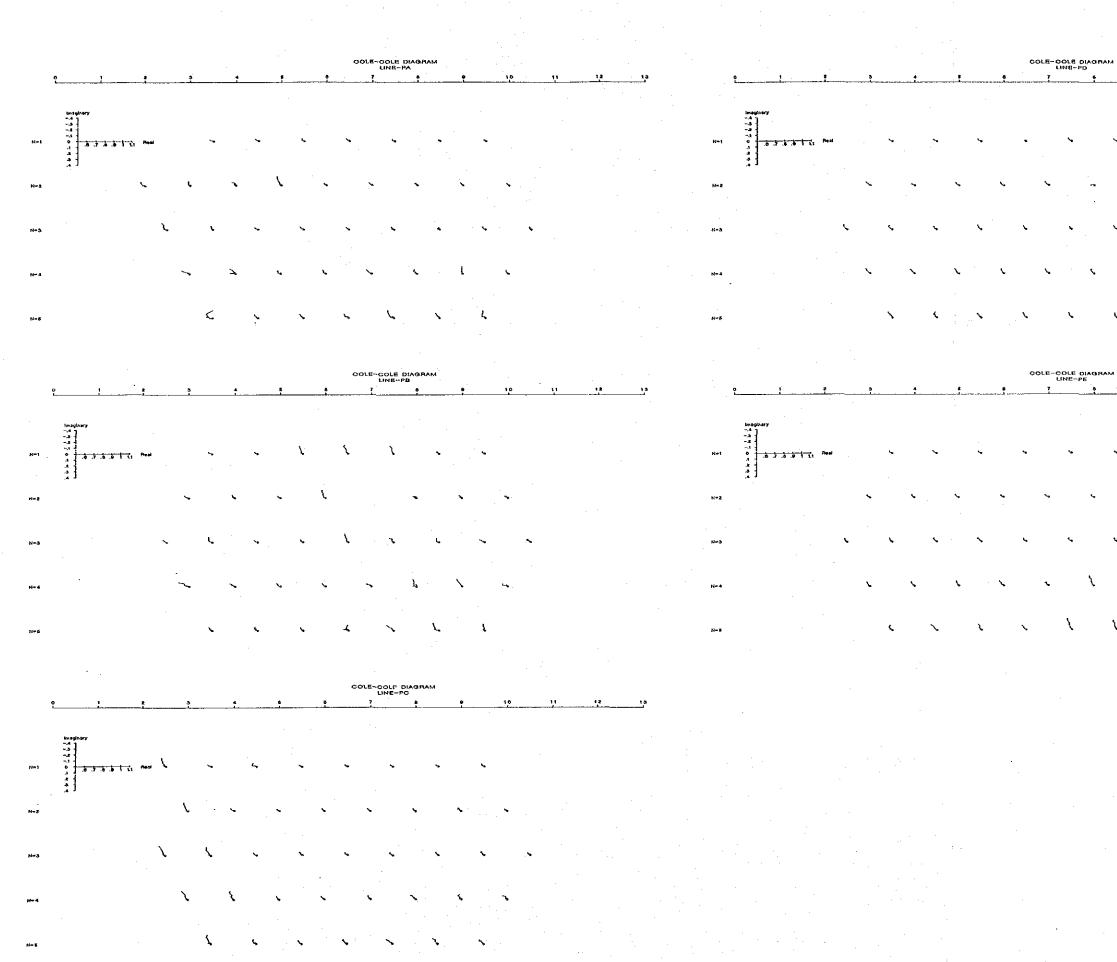


Fig. 45 Cole-Cole Diagram (Line-PA TO PE)

۲. ~ ∿ Ļ, ς. J 1 1 ι. ((1 1

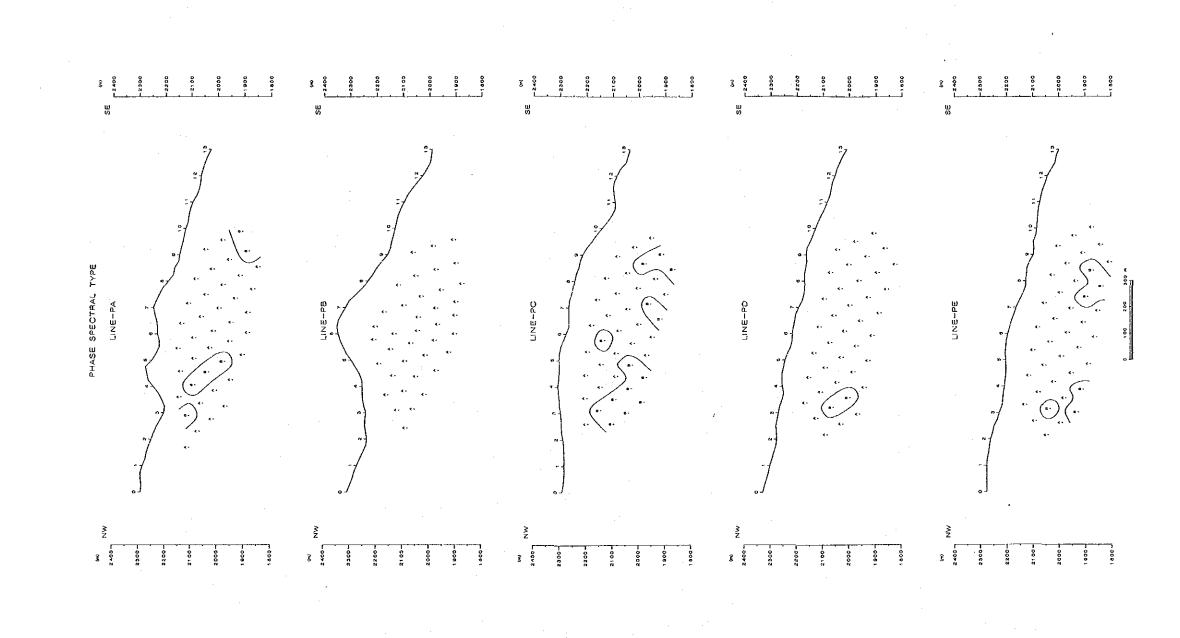


Fig. 46 Spectral Type (Line-PA TO PE)

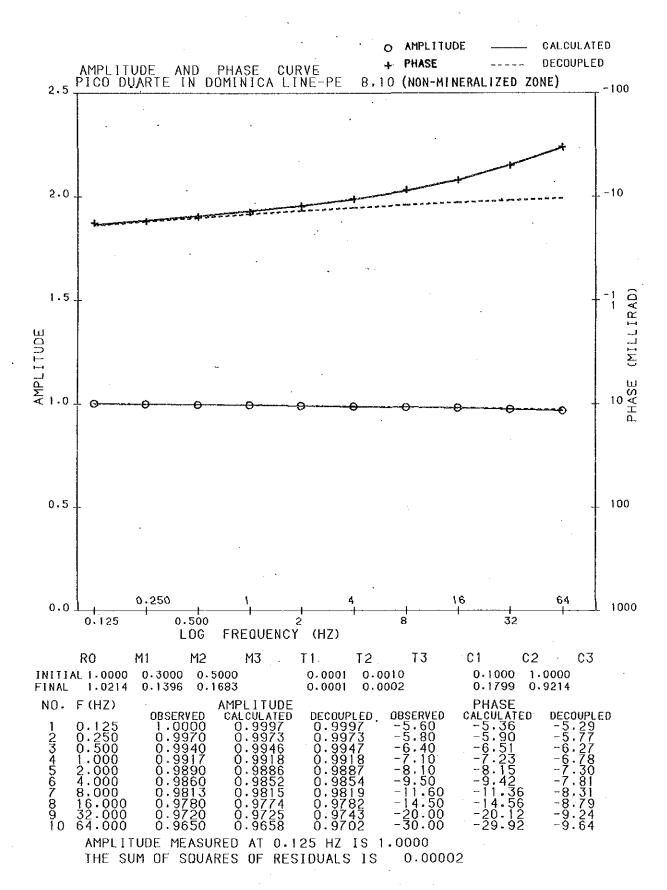


Fig. 47-1 Decoupled Spectrum

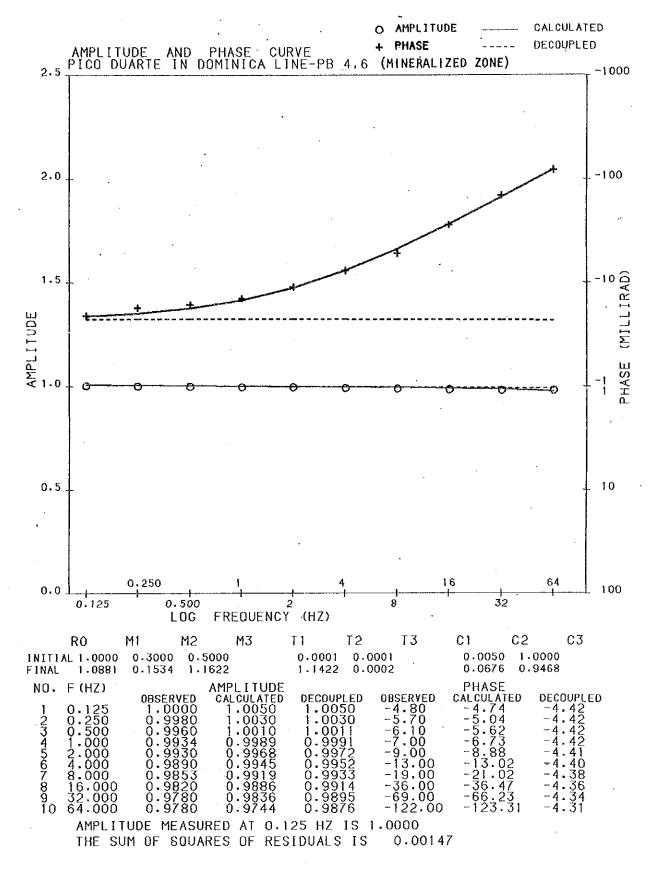


Fig. 47-2 Decoupled Spectrum

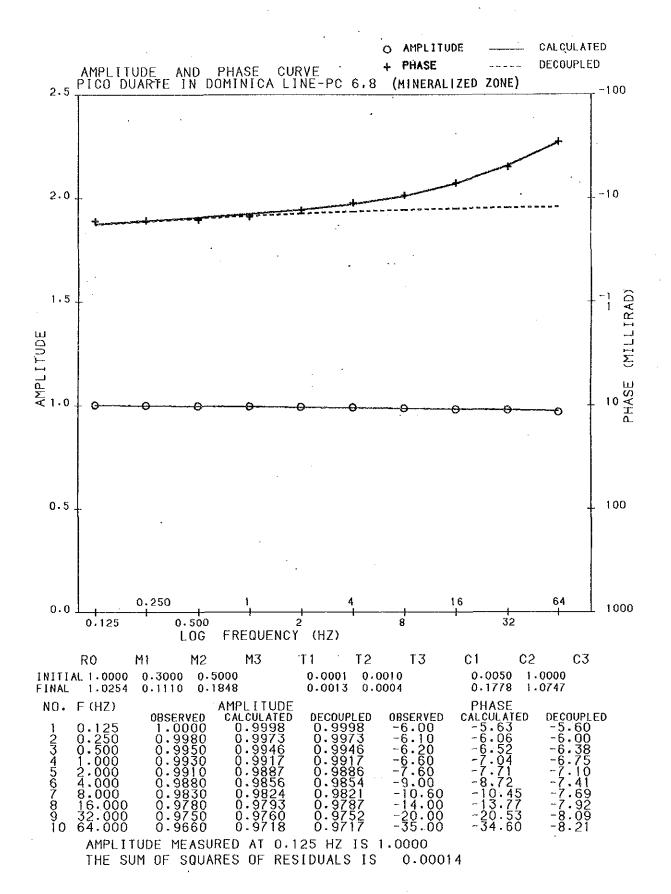


Fig. 47-3 Decoupled Spectrum

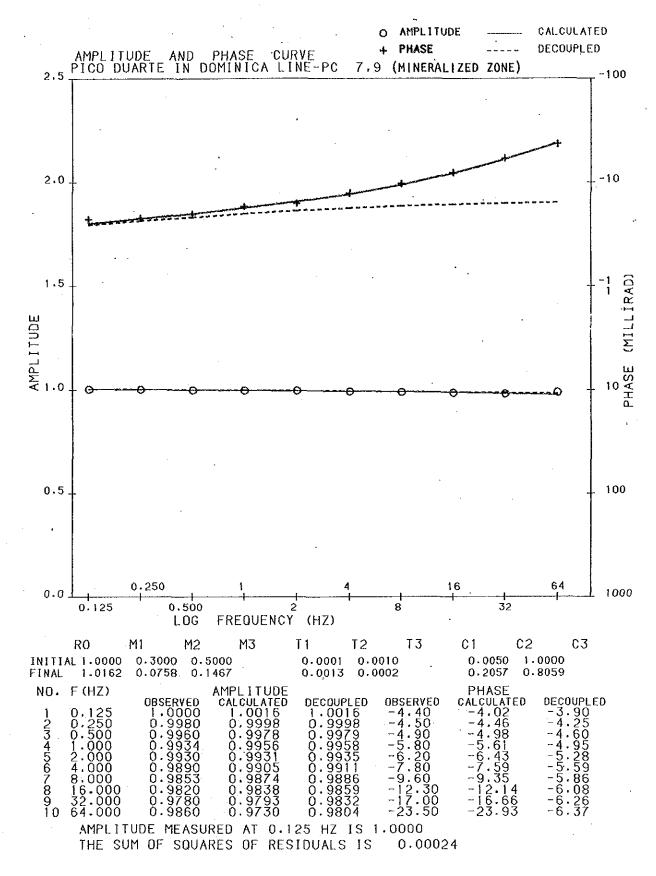


Fig. 47-4 Decoupled Spectrum

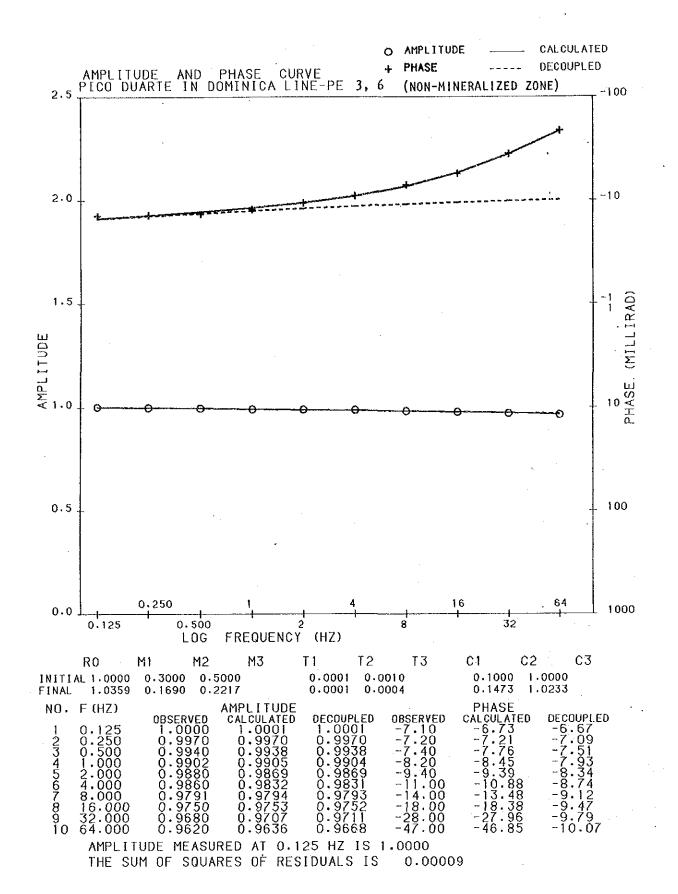
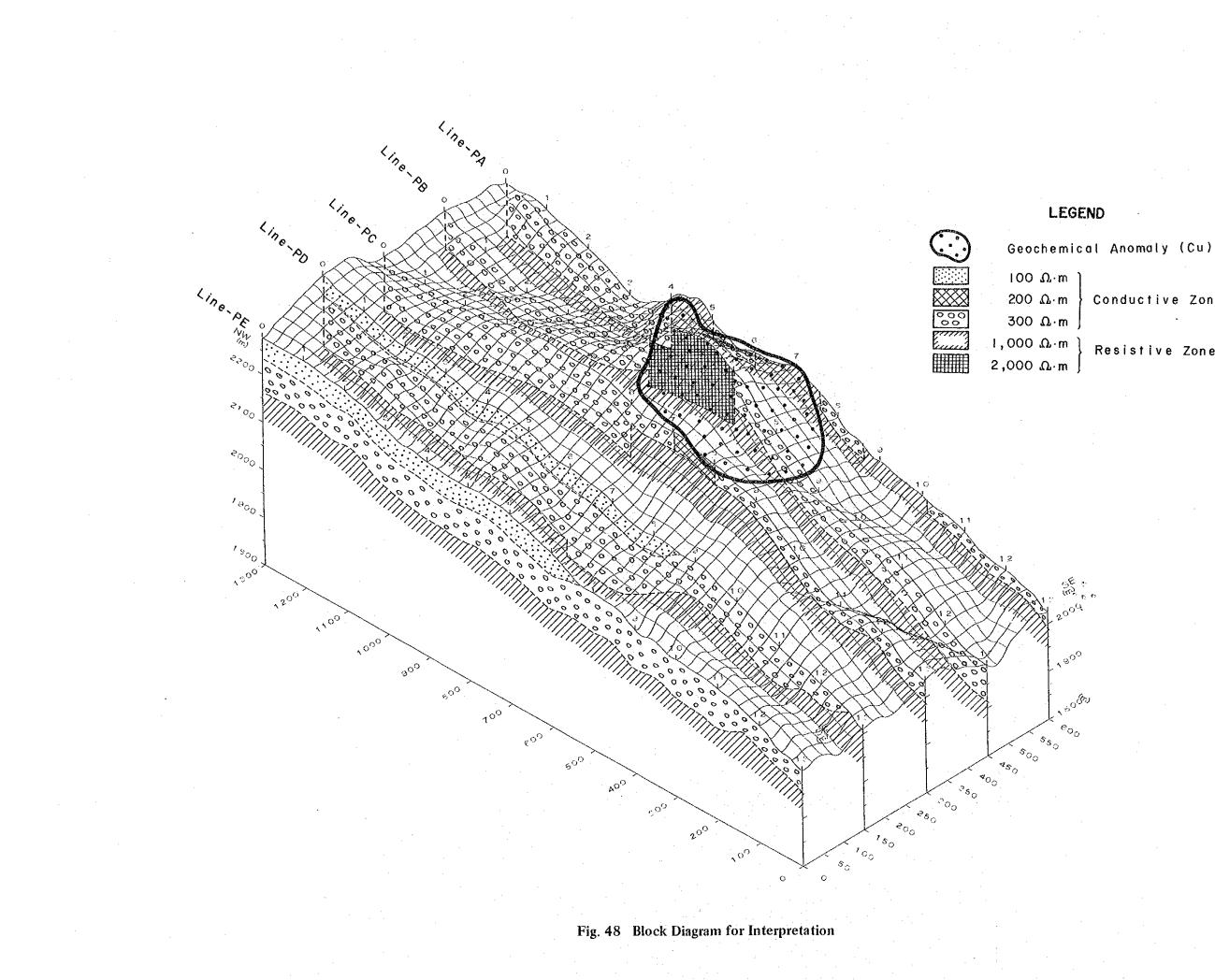



Fig. 47-5 Decoupled Spectrum

Conductive Zone

Resistive Zone

III. CONCLUSION AND RECOMMENDATION

CHAPTER 1 CONCLUSION

The conclusion obtained as the result of the survey conducted in the third phase such as geological survey (detailed survey) and drilling survey in the Constanza area, and geophysical survey (SIP method) in the Pico Duarte area, is as follows.

1. Copper bearing vein-type mineralization at El Gramoso in the Constanza area is the one related to the tonalite intrusive masses, and the center of mineralization seems to be in the vicinity of the top of Mt. Loma Sito Grande.

2. Among the five holes of drilling survey in the Constanza area, the veins which encountered in two holes were much the same quality as the outcrops.

3. As a result of geophysical survey (SIP method) in the Pico Duarte area for the mineralized zone P-1 in the porphyry copper-type mineralized zone emplaced in granodiorite showed small IP effect, but a high resistivity zone reflecting the silicified zone which seems to be due to mineralization was clearly defined. The size of the silicified zone appears to be 300 meters long, 300 meters wide and 150 meters deep.

44

CHAPTER 2 RECOMMENDATION

The following survey is recommended based on the conclusion of the third phase. The Northern Slope Area of Mt. Loma Sito Grande:

The area corresponds to the northern half of the copper vein-type mineralized zone centering on the top of Mt. Loma Sito Grande. The southern half, the zone centering on the El Gramoso settlement, was investigated, and the actual condition of the mineralized zone has been illuminated. However, the whole aspect of the northern half of the mineralized zone has not yet been made clear.

It is desired that geological and geochemical surveys be conducted in order to make clear the occurrence of the mineralized zone of the area.

REFERENCE

Barabas, A.H. (1982): Potassium-argon dating of magmatic events and hydrothermal activity associated with porphyry mineralization in west central Puerto Rico. Econ. Geol, 77, p109-126.

Bowin, C.O. (1960): Geology of Central Dominican Republic. Republic. Princeton Univ. Ph. D.

- Thesis, 211. Bowin, C.O. And Nagle (1980): Igneous and metamorphic rocks of northern Dominican Republic: An uplifted subduction zone complex. 9th Caribbean Geological Conference, Santo Domingo, Dominican Republic, p39-50.
- B.R.G.M. (1980): Exploracion minera del area Las Canitas. D.G.M., Santo Domingo, Republica Dominicana.
- D.G.M (1983): Estudio de Pre-factibilidad del Area Geotermica Yayas-Constanza. Santo Dominto, Republica Domicana.
- D.G.M.(1984): Resultados preliminares de los recientes trabajos de exploracion geotermica en la Republica Dominicana. Analysis de la demande Futura de expertos en esta area. Santo Domingo, Republica Dominicana.

Espaillat-Lamarche, J.E. (1981): The Mata Crande deposit. University College, Cardiff.

Harland, W.B. et. al. (1982): A geological time scale. Cambridge University Press.

- Kesler, S.E. et. al. (1977): Early Island-Arc Intrusive Activity, Cordillera Central, Dominican Republic. Cantrib. Mineral, Petrol. 65. p91–99.
- Khudoley, K.M. and Meyerhoff, A.A. (1971): Palaeogeography and geological history of Greater Antilles. Geol. Soc. America, Mem. 129, 199.
- Kurodo, H. (1973): Vein outcrops and their developments. Mining Journal of the Mitsubishi Metal Company, 112, p21-28 in Japanese.
- Lewis, J.F. (1980): Cenozoic tectonic evolution and sedimentation in Hispaniola. 9th Caribbean Geological Conference, Santo Domingo, Dominican Republic, p65-73.
- Lipeltier, C. (1964): A Simplified Statistical Treatment of Geochemical Data by Graphical Representation. Econ. Gcol., 64
- Malfalt, B.T. (1972): Circum-caribbean Tectonic and Igneous Activity and the Evolution of the Caribbean Plate, Geol. Soc. America Bull., 83, P 251 272.

Palmer, H.C. (1963): Geology of portion of NOrth-Central Dominican Republic. Princeton Univ.

Palmer, H.C. (1963): Geology of portion of North-Central Dominican Republic. Princeton Univ. Ph. D. Thesis, 256.

• •

Walper, J.L. (1980): Geologic evolution of the Greater Antilles. 9th Caribbean Geological Conferen

Ph. D. Thesis, 256.

- Walper, J.L. (1980): Geologic evolution of the Greater Antilles. 9th Caribbean Geological Conference, Santo Domingo, Dominican Republic, p11-21.
- Watanabe, W. et al. (1972): Geochemical investigation in the Cordillera Central Dominican Republic. Min. Geol. Japan, 22, p177-190 in Japanese.
- Watanabe, W. (1974): Geology and Copper Mineralization of the Island of Hispaniola, Greater Antilles, West Indies. Min. Geol. Japan, 24, p323-333 in Japanese.
- Woodring, W.P. (1954): Caribbean land and sea through the ages. Geol. Soc. America, Bull. 65, p719-732.

APPENDICES

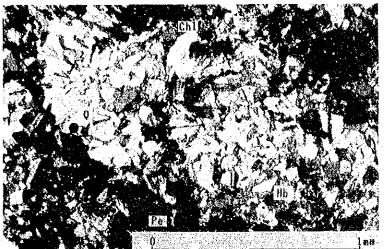
Photo. 1 Microphotograph of Thin Section

Abbreviation

Q : quartz

pl : plagioclase

Hb : hornblende


chl : chlorite

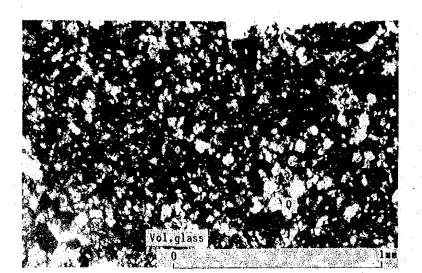
Im : iron mineral

And frag. : Andesite fragment

Vol. glass : Volcanic glass

(a) Geological Survey

(crossed polars)


(crossed polars)

Sample No. Location

: GK009 : El Gramoso Rock Name : Hb-tonalite (Tns) Texture : Halocrystalline, mylmekite

Sample No. Location : Rock Name Texture

: GK002 Ar. Alejandro : Hb-Dacite (Dd) : Halocrystalline, porphyritic

(crossed polars)

And. frag.

(crossed polars)

Sample No. Location Rock Name Texture

: GK005
: Ar. Alejandro
: Andesitic fine tuff (Tmatf)
: Pyloclastic

: GK008
: El Gramoso
: Andesitic coarse tuff (Tmatf)
: Pyloclastic

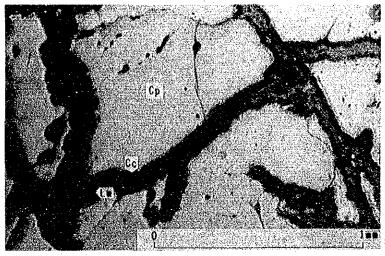

Sample No. Location Rock Name Texture (2)

Photo. 2 Microphotograph of Polished Section

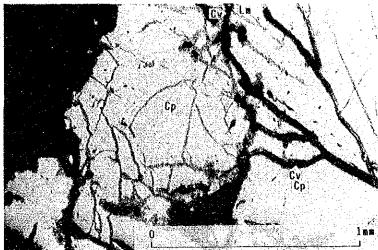
Abbreviation

- Cp : chalcopyrite
- Cc : chalcocite
- Cv : covelline
- Lm : limonite

(a) Geological survey

(only power polar)

(only power polar)


Sample No. Location Ore Name

Sample No. Location Ore Name

> : GK061 : El Gramoso (G-12) : Cp-Cc-Cv-Lm-Ore

(1) : GK058 : El Gramoso (G-12) : Cp-Cc-Lm-Ore

(b) Drilling survey

(only lower polar)

Hole No.:DJM-2Depth:103,40Ore Name:Cp-Cv-J

: DJM-2 : 103,40 m : Cp-Cv-Py-Lm-Ore

Table A-1 Result of Thin Section Examination

(a) Igneous rocks

	Remarks	Stock dyke	do.	do.	do.	lava	lava
Secondary Mineral	Quartz					ч	г
Min	Calcite				Г		
ry.	Sericite				ц.		
uda	Chlorite	C	U	U U	U	C	υ
Seco	910biq3	ч	U	L	L	ŗ	Г
	Icon Mineral	L L				ŗ	L
ss	Volcanic glass						
шa	ətişuA					T	L
pun	Plagioclase	A				A	∢
Groundmass	Quartz	۲					
	Iron Mineral		ы.			L.	L L
st	(uA) ətişuA					Ţ	L
Phenocryst	Hornblende (Hb)		L.	۲ ۲	r		
eno	Plagioclase (PI)	L	¥		C	T	F-
Ч	Quartz (Q)		۲		C		
	Texture	Halocrystalline, porphyritic	Halocrystalline. mylmekite	Halocrystalline, porphyritic	do.	An-andesite (Tma) Porphyritic, intergranular	do.
	Rock Name	Hb-Dacite (Dd)	Hb-tonalite (Tns)	Sito Grande Hb-tonalite (Tns)	Q-pl-porphry (Tns)	An-andesite (Tma)	An-andesite (Tma)
	Location	Ar. Alejandro	El Gramoso	Loma Sito Grande	El Gramoso	do.	đo.
	Sample No.	GK002	GK009	CL011	GP004	GL022	GP010
	Zo.	-	~	ε.	4	5	ę

(b) Pyroclastic rocks

ଟ Remarks Andesite Volcante Volcante Epidote Epidote Chiolite Chiolite FragmentMatrix Secondary Mineral ≮ 4 υ C C L υ υ Ö υ L L ы Ч г с C C υ **Pyloclastic** Texture do. do. do. Andestic coarse tuff (Tmati) Andestic fine tuff (Tmatf) Rock Name do. do. Ar. Alejandro El Gramoso Sample Location do. do. GK005 **GK008** GP001 GL014 °N N 1 ∞ 6 ĝ

Abundant : A Common : C Little : L

Ξ

Table A-2 Result of Polished Section Examination

(a) Geological survey

No.	Sample No.	Location (Mineralized Zone No.)	Ore Name	Pyrite (Py)	Chalcopyrite (Cp)	Chalcocite (Cc)	Covelline (Cv)	Malachite (Mal)	Specularite (Spc)	Limonite (Lm)
I I	GK007	El Gramoso	Cp-Mal-Lm-Ore		с			L		A
2	GK031	do. (G⊷19)	Mal-Cp-Lm-Ore		L			A		A
3	GK032	do. (G-19)	Mal-Cp-Lm-Ore		L			A		A
4	GK043	do. (G18)	Mal-Cp-Lm-Ore		L		т	L		L
5	GK047	do. (G-18)	Cp-Cc-Mal-Lm-Ore		с	L	Т	L		A
6	GK058	do. (G-12)	Cp-Cc-Mal-Lm-Ore		A	L		L		с
7	GK060	do. (G-12)	Mal-Spc-Lm-Ore					L	A	A
8	GK061	do. (G-12)	Cp-Cc-Cv-Lm-Ore		С	L	L		с	с
. 9	GL016	do.	Mal-Cp-Lm-Ore		L			A		A
10	GL018	do, (G-21)	Cp-Cc-Cv-Py-Lm-Ore	с	с	Т	Т			с

(b) Drilling survey

No.	Hole No.	Depth	Ore Name	Pyrite (Py)	Sphalerite (Sph)	Chalcopyrite (Cp)	Bornite (Bo)	Chaicocite (Ca)	Covelline (Cv)	Malachite (Mal)	Hematite (Hm)	Limonite (Lm)
1	DJM1	132.70 mm	Cp-Cc-Py-Lm-Ore	L		L		L				т
2	do.'	231.00 m	Cp-Cc-Ore			L		L				
3	DJM-2	90.50 m	Cp-Cc-Ore			L		L				
4	do.	103.40 m	Cp-Cv-Py-Lm-Ore	L		с			L			L
5	DJM 3	192.50 m	Cp-Bo-Py-Hm-Ore	L		с	L				L	
6	do.	228.47 m	Cp-Shp-Py-Ore	L	L	L		Т				
7	DJM-4	52.50 m	Cp-Ore			L						
8	do.	60.30 m	Cp-Shp-Py-Ore	L	L.	c						
9	DJM-5	42.50 m	Cc-Cp-Mal-Lm-Ore			L		с		L		L
10	do.	143.00 m	Cp-Cc-Lm-Ore	L		Α					L	

Abundant : A Common : C Little : L Trace : T

Table A-3 Result of X-ray Diffractive Analysis

(a) Geological survey

No.	Sample No.	Location		Chlorite	Epdote	Sericite	Quartz	Calcite	Plagioclase	Hornblende	Fe/Fe+Mg in chlorite	Remarks
	GK001	El Gramoso (north of G-16)	· · · · · · · · · · · ·	 A			 A	A			0.36	Andesitic coarse tuff with py dissemination
2	GK002	do.		L			A		A		0.80	do.
3	GK003	do.		с		L	A				0.20	do,
4	GK005	do.		с			С	С	L		0.48	Andesitic coarse tuff
5	GK007	do.		с	L		A				0.46	Wall rock of Cu vein (andesitic coarse tuff)
6	GK008	do.		c	L		С		с		0.36	Andesitic coarse tuff
7	GK009	do.		L			A		A		0.34	Tonalite
8	GK031-1	do, (G-	-19)	A	• •		A				0.88	Wall rock of Cu vein (andesitie tuff)
9	GK033	do. (do		A			Α				0.90	do.
10	GK037	do. (do	.)	A		• • •	 A				0.48	do.
11	GK040		th of G-19)	 С		•	Ä				0.58	Wall rock of Cu vein (andesitic lapilli tuff)
12	GK041	do. (do	 .)	Å			A				0.64	do,
13	GK048	do, (G-	-18)	A	L	•	A				0.56	Wall rock of Cu vein (andesitic tuff)
14	GK049	do. (do		 C	․․․ Լ		A				0.56	do.
15	GK050		: 12)	c	L.		A	Ā			0.48	Wall rock of Cu vein (andesitic tuff)
16	GK052	do, (do	 .)	A	L		Λ			•.	0.36	do.
17	GK056	do. (do		\overline{c}			A				0.56	do.
18	GK061	do, (do		c			A			•	0.38	do.
19	GK062	do. (do		Â	••••		Ā	-			0.60	do.
20	GK065		-17)				c				0.48	do.
21	GK066	do. (do	<u>.</u>	c		 	A				0.28	do.
22	GK082			L			A		A		0.36	Altered andesitic lapilli tuff
23	GK071		nch No.1)	A			A			~~~	0.60	Wall rock of Cu vein (andesitic fine tuff)
24	GK075	do. (Tre	nch No.4)	A			A	—			0.56	do. (andesitic lapilli tuff)
25	GK081	do. (do		A			A				0.60	do. (do.)
26	GK087		-21)	 A			A				0.78	do. (do.)
27	GK091	do. (da).)	 A			Α	-		-	0.80	do. (do.)
28	GK095	do. (Tre	nch No.5)	A	С		A		•	_	0.82	do. (do.)
29	GL001	do.		С			С	-	C		0.44	Andesitic lapilli tuff
30	GL011	do,	-	 L	 L		٨		Ĉ		0.20	Tonalite
:31	GL013	do.		с		•	Â	~			0.50	Wall rock of Cu-vein (andesitie tuff)
32	GL014	đo.		c			A			-	0.86	Andesitic coarse tuff
33	GL016	do. (G	-17) ,	c	A	•~	C				0.20	Wall rock of Cu-vein (andesitic tuff)
34	GL017	do. (da).)	A			A	L			0.50	Wall rock of Cu-yein (andesitic tuff)
35	GL020	· • • • • • • • • • • • • • • • •		A					A	С	0.52	Wall rock of Cu vein (andesitic coarse tuff)

.

(1)

No.	Sample No.	Location	Chlorite	Epdote	Sericite	Quartz	Calcire	Plagioclase	Hornblende	Fe/F e+ Mg in chlorite	Remarks
36	GL023	El gramoso	c	L		A	·			0.50	Wall rock of Cu vein (andesitie coarse tuff)
37	GL024	do.	С			A		С		0.54	Wall rock of Cu vein (Tonalite)
38	GP001	do.	С			A	L	L		0.40	Andesitic coarse tuff
39	GP004	do.	L			Α	L	A		0.48	Tonalite
40	GP006	do.	С			Ą	L	A		0.62	Dacite with py dissemination
41	GP007	do.	A	С			A			0.94	Wall rock of Cu vein (andesitie tuff)
42	GP009	do.	С	L		A		Α		0.80	Tonalite
43	GP010	do.	L	L		Α		A		0.52	Andesite
44	GP011	do.	С			A				0.62	Dacite
45	GP012	do.	I.			Α				0.16	Silicified rock
46	GP016	do.	с			A				0.42	Wall rock of Cu vein (andesitic tuff)
47	GP017	do.	A			A				0.64	do. (do.)
48	GP018	do.	С			A				0.70	do. (do.)
49	GP020	do.				A					do. (do.)
50	GG001	do.	с			Α	L			0.50	.do. (do.)
51	G G004	do.	с			A		A		0.50	Andesite

Abundant : A Common : C Little : L

(2)

.

									¹		
Νυ.	Sample No.	Depth (m)	Chlorite	Epdote	Sericite	Quartz	Calcite	Plagioclase	Hornblende	Fe/F e/ Mg in chlorite	Romerks
	DJM-1	132,70 m	A	С	 -	A				0.40	Wall rock of Cu vein (andesitic fine tuff)
2	do.	191.40 m	A	l c		Ā		•		0.42	do. (do.)
3	do.	230.85 m	A	c		À				0.20	do. (andesitic coarse tuff)
4	do.	240.70 m	A	c		Å				0.26	do. (do.)
5	do.	247,50 m	A				L			0.24	Ilematitized andesitic fine tuff
6	DJM-2	72.70 m	A	A		А				0.40	Wall rock of Ep-Q vein.(andestic lapilli tuff)
1	do.	88.30 m	A			A				0.38	Wall rock of Cu vein (andesitic fine tuff)
8	do.	103.30 m	A			A				0.36	do. (do.)
9	DIM-3	65.75 m	A	C		A	L			0.70	do. (andesitic coarse tuff)
10	do.	154.60 m	A	A.		Ł	L			0.42	Hematitized andesitic lapilli tuff
п	do.	192.50 m	A			A	L			0.42	Wall rock of Qv vein (andesitic lapilli tuff)
12	do.	194.60 m				A	L			0.44	do. (dv.)
13	DJM-4	60.20 m	A	С		A	L			0.32	do. (do.)
14	' do.` ''	92.40 m	A			A	L			0.20	Wall rock of Q-Hm vein (andesitic fine tuff)
15	do.	122.50 m	A			с	L			0.36	Heamtitized andesitic fine tuff
16	DJM-5	49.00 m	A			A				0.42	Strongly silicified andesitic coarse tuff
17	do.	70.80 m	A	A		A				0.68	Wall rock of Cu vein (andesitic coarse tuff)
18	do.	143.00 m	A	с		A				0.72	do. (do.)

Abundant : A Common : C Little : L

.

(3)

Table A-4 Result of Chemical Analysis of Ore Samples

(1)

No.	Sample No.	Location (Mineralized Zone No.)	Description	Au (g/t)	Ag (g/T)	Cu (%)	Pb (%)	Zn (%)
ł	GK001	El Gramoso	Py dissemination in andestic coarse	tr.	tr.	0.03	0.08	0.0
2	GK003	do.	tuff do.	tr.	tr.	0.02	0.02	0.Ů.
3	GK004	do.	ilm, Lm, Q.v	tr.	tr,	0.03	0.02	0.0
4	GK007	do.	Cp; Mal, Lm, Ep, Q.v	0.13	4.9	0.85	0.04	0.0
5	GK030	do. (G-19)	Mal, Cp, Lm, Q.v	0.20	19.3	2.81	0.07	0.0
6	GK031	do. (do.)	do,	0.67	45.9	7.24	0.09	0.0
7	GK032	do. (do.)	do.	0.30	28.2	2.55	0.04	0.0
8	GK034	do. (do.)	do.	0.20	18.1	4.50	0.05	0.0
9	GK035	do. (do.)	đo.	0.10	7.2	1.60	0.07	0.0
10	GK036	do. (do.)	đo.	0.40	17.9	5.13	0.09	0.0
H	GK038	do. (do.)	do.	0.50	18.4	1.29	0.02	0.0
12	GK039	do. (North et G-19)	Mal, Cp, Cc, Lm, Q.v	0.40	20.4	1.45	0.02	0.0
13	GK042	do. (G-18)	Mal, Cc, Lm, Q.v	0.10	2.2	1.94	0.02	0.0
14	GK043	do. (do.)	Mal, Cp, Lm, Q.v	0.30	4.3	2.99	0.04	0.0
15	GK044	do. (do.)	Q.v	0.20	3.6	0.93	0.02	0.0
16	GK045	do. (do.)	do.	0.10	0.9	0.04	0.02	0.0
17	GK046	do. (do.)	do.	0.10	1.2	0.19	0.02	0.0
18	GK047	do. (do.)	do.	0.50	15.0	2.37	0.02	0.0
19	GK051	do. (G-12)	Mal, Cp, Lm, Q.v	0.30	6.2	1.02	0.02	0.0
20	GK053	do. (do.)	Mal, Cp, Py, Q.v	0.40	8.0	2.61	0.03	0.0
21	GK054	do. (đo.)	Q.v	0.30	2.6	0.67	0.02	0.0
22	GK055	do. (do.)	Mal, Lm, Q.v	0.67	22.1	4.46	0.03	0.0
23	GK057	do. (do.)	Q.v	0.20	5.9	0.45	0.04	0.0
24	GK058	do, (đo.)	Mal, Cp, Py, Q.v	0.50	22.2	3.33	0.02	0.0
25	GK059	do. (dò.)	Mal, Cp, Lm, Q.v	0.30	10.8	4.84	0.02	0.0
26	GK060	do. (do.)	Mal, Cp, Lm, Q.v	0.10	4.1	1.95	0.03	0.0
27	GK061	do. (do.)	Strongly chloritized tuff	0.60	34.4	3.56	0.02	0.0
28	GK063	do. (South of G-12)	Mal, Q.v	0.10	2.0	0.18	0.02	0.0
29	GK064	do. (G17)	Py, Lm, Ep, Q.v	0.40	4.6	0.32	0.02	0.0
30	GK067	do. (do.)	Mal, Py, Lm, Ep, Q.v	0.10	1.2	0.08	0.02	0.0
31	GK069	do (Trench No.	1) Mal, Cp, Lm, Q.v	0.20	4.2	0.41	0.02	0.0
32	GK070	do. (do.)	Mal, Lm, Q, Epv	0.40	28.1	2.10	0.02	0.0
33	GK071	do. (do.)	Mal, Cp, Py, Lm, Q.v	0.20	17.2	0.85	0.07	0.0
34	GK076	do. (Trench No.	5) Mal, Cp, Cc, Q.v	0.10	5.4	0.64	0.02	0.0
35	GK077	do. (do.)	do.	0.20	12.4	0.87	0.03	0.0
36	GK078	do, (do.)	do.	0.20	71.9	6.61	0.08	0.0
37	GK079	do. (do.)	do.	0.50	20.9	2.86	0.09	0.0
38	GK080	do. (do.)	du,	0.20	55.1	5.94	0.04	0.0

⁽a) Geological survey

									(2)
No.	Sample No.	L (Mineral	ocation ized Zone No.)	Description	Au (g/T)	Ag (g/T)	Cu (%)	Рb (%)	Zn (%)
39	GK085	El Gram	oso (G-21)	Mal, Lm, Q.v		-			
40	GK086	do.	(do.)	Mal, Cp, Lm, Q.v	tr.	tr.	14.41	0.16	0.01
41	GK087	do.	(do.)	do.	0.10	2.8	2.16	0.17	0.01
42	GK088	do.	(do.)	do.	0.10	4.3	1.73	0.15	0.02
43	GK089	do.	(do.)	do,	0.30	117.9	6.03	0.20	0.21
44	GK090	do.	(dv.)	Mal, Cp, Lm, Q.v	0.50	40.6	4.03	0.22	0.05
45	GK094	do.	(Trench No.3)	Mal, Cp, Spc, Lm, Q, Ep.v	0.10	4.9	0.36	0.09	0.01
46	GK095	do,	(Trench No.4)	Lm, Q, Ep.v	tr.	tr.	0.19	0.02	0.02
47	GK096	do.	(Trench No.2)	Mal, Spc, Lm, Q, Ep.v	0.30	8.7	2.88	0.03	0.10
48	GK097	do.	(do.)	do.	tr.	tr.	0.21	0.02	0.05
49	GK098	do.	(do.)	do.	0.2	3.6	0.83	0.08	0.05
50	GL013	do,		Mal, Spc, Q.v	tr.	0.8	1.17	0.02	0.02
51	GL016	do.		Mal, Cp, Spc, Q.v	0.70	165.0	7.85	0.08	0.10
52	GL017	do.		Lm, Q.v	0.30	9.3	0.40	0.10	0.60
53	GL023	do.		Lm, Q.v	tr.	1.1	0.05	0.02	0.05
54	GL024	do.		Lm, Spc, Mal, Q.v	0.25	3.7	3.76	0.02	0.01
55	GP007	do.		Cp, Mal, Lm, Spc, Q.v	0.30	4.3	1.35	0.02	0.01
56	GP008	do.	(G-22)	Cp, Shp, Q.v	0.38	10.6	2.27	0.07	12.56
57	GP016	do.		Mal, Spc, Q.v	0.50	65.6	2.00	0.04	0.01
58	GP017	do.		Cp, Mal, Spc, Q.v	0.20	11,6	1.73	0.03	0.03
59	GP018	do.		do.	0.40	27.9	2.97	0.02	0.02
60	GP020	do.		đo.	0.88	90.7	5.44	0.02	0.01

•

.

(b) Drilling survey

1		٦
ų	υ	,

No.	Hole No.	Depth (m)	Description	Au (g/T)	Αg (μ/Τ)	Cu (%)	РЬ (%)	Zn (%)
1	DJM1	43.50 - 43.55	Ер,у	tr.	tr.	0.17	0,02	0.01
2	do.	125.00-125.55	Q, Ca,v	tr.	tr.	0.05	0.02	0.01
3	do.	132.45-132.65	Mal, Cp, Q, Ep,v	0.1	2.0	0.35	0.02	0.05
4	do.	132.75-132.80	Mal, Cp, Q, Ep,v	tr.	1.9	0.35	0.02	0.03
5	do.	143.60143.64	Ep, Q, Ca,v	tr.	0.2	0.04	0.02	0.01
6	do,	159.30 159.40	Cp, Sph, Py, Ep, Q,v	tr.	1.5	0.31	0.02	0.83
7	do.	168.30-168.35	Q, Ca,v	tr.	tr.	0.06	0.03	0.03
8	do.	191.30-191.40	Ep, Q,v	tr.	1.1	0.06	0.02	0.02
9	do.	192.90~193.00	Ср, Ру, Ер, Q,v	tr.	tr.	0.20	0.02	0.01
10	do.	222.70-222.80	Q, Ca,v	tr.	tr.	0.08	0.02	0.01
111	do.	230.75~231.05	Cp, Py, Ep, Q,v	tr.	1.3	0.24	0.02	0.01
12	do.	242.30-242.60	Hm, Py, Q,v	tr.	tr.	0.06	0.02	0.01
13	do.	245.50-246.30	Q,v	tr.	tr.	0.04	0.02	0.01
14	do.	247.55-247.65	Q, Ca,v	0.1	8.3	0.03	0.02	0.01
15	DJM-2	32.70- 32.80	Ep, Q,v	tr.	tr.	0.11	0.02	0.11
16	do.	50.15- 50.25	Ep,v	tr.	tr.	0.04	0.02	0.01
17	do.	72.55- 72.75	Ер,у	tr.	tr.	0.03	0.02	0.00
18	do.	73.00 73.10	Ep, Q,v	tr. ·	° г.	0.03	0.03	0.00
19	do.	74.50 - 74.60	Ep,v	tr.	1.1	0.04	0.04	0.00
20	do.	76.00 - 76.40	Q, Ca,v	tr.	. tr.	0.05	0.02	0.00
21	do.	87.50- 87.65	Cp, Py, Q,v	0.2	30.3	3.76	0.02	0.02
22	do.	88.65- 88.80	Cp, Py, Q,v	0.1	20.1	2.65	0.02	0.01
23	do.	89.45- 89.60	Cp, ₽y, Q,v	tr.	1.9	0.40	0.02	0.03
24	do.	89.90- 90.05	Cp, Py, Q,v	0.1	11.7	2.94	0.02	0.03
25	do.	90.40- 90.75	Cp, Py, Q,v	0.1	16.4	2.37	0.02	0.05
26	do.	91.35- 91.70	Cp, Py, Q,v	0.1	9.1	1.78	0.01	0.01
27	do.	95.30 - 95.40	Cp, Py, Q,v	tr.	1.7	0.41	0.03	0.01
28	do.	99.60 99.80	Cp, Py, Q,v	0.2	12.0	1.97	0.02	0.02
29	do.	100.80100.85	Cp, Py, Q,v	0.3	23,2	3.19	0.01	0.02
30	do.	101.20-101.30	Ср, Ру, Q,v	0.1	7.9	1.38	0.02	0.05
31	do.	101.50-101.70	Cp, Py, Q.v	tr.	8.4	0.97	0.02	0.02
32	đo.	103.20-104.05	Cp, Py, Sph, Q,v	0.2	22.3	2.71	0.02	0.73
33	DJM-3	35.10- 35.13	Cp, Py, Q,v	tr.	2.1	0.45	0.01	0.01
34	do.	65.80- 66.85	Cp, Py, Q, Ca, Ep,v	tr.	2.5	0.40	0.02	0.06
35	do.	113.0 -113.0	Cp, Py, Ep, Q,v	tr.	1.1	0.29	0.01	0.01
36	do.	139.15139.20	Cp, Py, Q,v	0.1	4.3	0.93	0.02	0.01
37	do.	156.85-156.88	Cp, Py, Hm, Ep,v	tr.	0.8	0.29	0.02	0.01
38	do,	165.60 166.00	Ср, Ру, О,ч	tr.	tr.	0.07	0.02	0.02

								(4)
No.	Hole No.	Depth (mm)	Description	Au (g/T)	Ag (g/T`)	Cu (%)	РЬ (%)	Zn (%)
39	DJM-3	174.60-174.80	Py, Q, Ca, Ep,v	tr.	tr.	0.05	0.02	0.03
40	do.	183.15-183.40	Cp, Py, Q, Ca,v	0.1	3.7	0.75	0.02	0.01
41	do,	189.40189.70	Mal, Py, Lm, Q, Ca,v	0.2	4.2	0.59	0.09	0.01
42	do.	192.30 192.80	Cp, Py, Q, Ca,v	tr.	1.4	0.17	0.04	0.05
43	do.	193.70-194.50	Cp, Py, Q, Ca,v	tr.	2,2	0.41	0.02	0.03
44	do.	197.70-197.75	Cp, Py, Q, Ca, Ep,v	tr.	tr.	0.23	0.02	0.01
.45	do.	228.45-228.50	Cp, Sph, Py, Q, Ca,v	tr.	tr.	0.16	0.04	2.09
46	DJM-4	52.45- 52.60	Cp, Py, Q, Ep,v	0.1	1.4	0.74	0.02	0.02
47	do.	60.20- 60.45	Cp, Py, Spc, Q, Ep, Ca,v	0.4	22.5	5.71	0.04	0.26
48	do.	74.80- 75.00	Q, Ca, Ep,v	tr.	tr.	0.06	0.03	0.02
49	do.	90.70- 90.85	Q, Hm, Ca,v	tr.	tr.	0.07	0.02	0.01
50	do.	93.00- 93.75	Q, Hm, Ca,v	tr.	tr.	0.24	0.02	0.01
51	do.	106.35106.50	Q, Ep, Ca,v	tr.	tr.	0.06	0.02	0.01
52	DJM-5	40.50- 40.70	Mal, Cp, Ce, Py, Q,v	0.3	-13.1	~ 2.74	0.02	0.03
53	do.	47.80- 48.20	Mal, Cp, Py, Q,v	0.2	7.8	1.03	0.02	0.02
54	do.	58.60- 61.00	Mal, Cp, Py, Lm, Q,v	tr.	1.3	0.43	0.02	0.03
55	do.	61.50- 61.90	Mal, Cp, Cc, Py, Lm, Q,v	0.6	25.8	5.41	0.10	0.05
56	do.	68.60- 68.70	Py, diss.	tr.	tr.	0.07	0.02	0.01
57	do.	71.40 71.60	Py, Cp, Q, Ep,v	0.1	2.0	0.92	0.02	0.01
58	đo,	72,20- 73.00	Cp, Py, Q, Ep,v	tr.	1.1	0.36	0.02	0.02
59	do.	121.90-123.00	Cp, Py, diss.	tr.	Ţr	0.20	0.02	0.01
60	do.	142.00 142.50	Py, diss.	tr.	tr.	0.04	0.02	0.01
6 i	do.	142.80143.80	Cp, Py, diss.	tr.	1.7	0.32	0.02	0.01

•

Table A-5 Generalized Drilling Results .

;

.

Lengh 250.20 ^m	Length	,						C anno 1 a
20 ^m		Recovery	Drilling	Casing etc.	Total	m/shift*	m/shift**	Remarks
-	247.20 ^m	100 %	53	-	54	4.63	4.72	
150.50	147.50	100	26		27	5.57	5.79	
250.40	246.40	100	50		30	8.35	8.63	
201.00	183.00	99.51	35	Provel	36	5.58	5.74	
150.40	147,40	100	14		15	10.03	10.74	
1002.50	971.50		157	s.	162	6.19	6.39	
			183.00 147.40 971.50	183.00 99.51 147.40 100 971.50	183.00 99.51 35 147.40 100 14 971.50 157	183.00 99.51 35 1 147.40 100 14 1 971.50 157 5	183.00 99.51 35 1 36 147.40 100 14 1 15 971.50 157 5 162	183.00 99.51 35 1 36 5.58 147.40 100 14 1 15 10.03 971.50 157 5 162 6.19

Drilling Length per one shift covering total works operated Drilling Length per one shift covering net drilling operations

¥ ¥ ¥

Table A-6-1 Summary Record of Drilling Results

			Períods		Number of Days	Actual Working Days	Pay off	Total Number of Workers
Preparation.	on.	Aug. 3, 1985 ~	Aug. 13,	1985	11	11	0	204
Drilling		Aug. 14, 19	Aug. 14, 1985 ~ Aug. 31, 1985	985	18	18	0	275
Removing	<u>ь</u> р	Sep. 1, 1985	5 ~ Sep. 2, 1985	è	2	2	0	34
Total		Aug. 3, 1985	5 ~ Sep. 2, 1985	5	31	31	0	513
Planned Len	Length	250.00mm	Overburden	3.00 m	ů	Core Recovery for Each 100 m Section	or Each 100 m	Section
Increase o in Length	Increase or Decrease in Length	+0.20 m	Core Length	247.20 m	Depth (m)	Section (%)	Total (%)	
lled]	Drilled Length	250.20 m	Core Recovery	100%	0-100	100	100	
Drilling		220°	51.64 %	31.70 %	100-200	100	100	
fino:	Accompanying Works	206°	48.36	29.68	200- 250.20	100	100	
Repairing	5 6	°°	0	. 0	300-400			
Total		426°	100 %	19.60	Drilli	Drilling Efficiency		
	Preparation	124°		17.87	250.20m/1	250.20m/18 days (Total Length (m))	ength (m) ₎ Period	13.90 m/Day
	Moving	8		1.15	250.20m/1	250.20m/18 days (Total Length (m)	ength (m)) g Days	13.90 m/Day
Others		136°			250.20m/1	250.20m/18 days (Total Length (m))	ength (m)) lling Days	13.90 m/Day
[pu	Grand Total	694°		100%	275men/25	275men/250.20m(Net Drilling Workers) Total Length (m)	lling Workers) ength (m)	1.10 men/m
Pipe size & Inserted I	Pipe size & Inserted Length (m)	Inserted Length Drilling Length	x 100%	Recovery of Casing Pipe(%)	Remarks	23		
NW CP	3.00	1.1	1.20	100				
BW CP	92.10	36.81	81	100				

Table A-6-2 Summary Record of Drilling Results

Total Number of Workers	102	81	51	234	1 Section							16.72 m/Day	16.72 m/Day	16.72 m/Day.	1.55 men/m				
Pay off	0	0	0	c	or Each 100 n	Total (%)	100	100			-	ngth (m) ₎ Period	ngth (m)) Days	ngth (m)) ing Days	llíng Workers) ength (m)		·		
Actual Working Days	Q	6.	ω	18	Core Recovery for Each 100 m Section	Section (%)	100	100			Drilling Efficiency	150.50m/9 days (Total Length (m)	days (Total Length (m)) Working Days	150.50m/9 days (Total Length (m)	234men/150.50m(Net Drilling Workers)				
Number of Days	9	6	ĥ	18	Ŭ	Depth(m)	0-100	100- 150.50	200-300	300-400	Drilli	150.50m/9	150.50m/9	150.50m/9	234men/11	Remarks		1	
		5	85	S	3.00 m	147.50 m	100 %	22.30 %	30.64	0		37.25	7.84	1.97	100 %	Recovery of Casing Pipe(%)	100	100	
Periods	~ Sep. 8, 1985	Sep. 9, 1985 ~ Sep. 17, 1985	5 ~ Sep. 20, 1985	Sep. 3, 1985 ~ Sep. 20, 1985	Overburden	Core Length	Core Recovery	42.13 %	57.87	0	100 %					x 100%			
I	Sep. 3, 1985	Sep. 9, 1985	Sep. 18, 1985 ~	Sep. 3, 1985	150.00m	+0.50 m	150.50 m	91°	125°	°0	216°	152°	32°	80	408°	Inserted Length Drilling Length	79.9	51.89	
	ion		52		Length	Increase or Decrease in Length	ength		Accompanying Works	ස		Preparation	Moving		otal	Pipe size & Inserted Length (m)	15.00	78.10	
	Preparation	Drilling	Removing	Total	Planned Length		Drilled Length	Drilling	Accomp	Repairing	o Total		L	Others	Grand Total		NW CP	BW CP	
	boi	19 ⁴ g	nillin	1	ជាងព	əJ gui	Drill			əmi	T gaix	Mork				əqi ^q gı	Ti260	betted i	sul

Table A-6-3 Summary Record of Drilling Resutts

			Perinde		Number	Actual Working	Pav off	Total Number of
			reitons		Days	Days		Workers
Preparation		Sep. 21, 19	1985 ~ Sep. 23, 1985	1985	3	3	0	43
		Sep. 24, 19	1985 ~ Oct. 3, 1985	985	10	10	0	06
		Oct. 4, 1985	5 ~ Oct. 6, 1985	85	ю	ŝ	0	36
		Sep. 21, 19	1985 ~ Oct. 6, 1985	985	16	16	0	169
Planned Length		250.00m	Overburden	4.00 m	Ŭ	Core Recovery for Each 100 m Section	or Each 100 m	Section
Increase or Decrease in Length	a)	+ 0.40 m	Core Length	246.40 m	Depth(m)	Section (%)	Total (%)	
Drilled Length		250.40 m	Core Recovery	y 100 %	0-100	100	100	
		141°	59.24 %	38.32 %	100-200	100	100	
Accompanying Works	ks	97°	40.76	26.36	200– 250.40	100	100	
		٥°	0	- 0	300-400			
		238°	100		Drill	Drilling Efficiency		
Preparation		88°		23.91	250.40m/1	250.40m/10 days(Total Length (m))	ength (m)) Period	25.04 m/Day
Moving		34°		9.24	250.40m/1	250.40m/10 days(Total Length (m))	ength (m)) g Days	25.04 m/Day
		°8		2.17	250.40m/1	250.40m/10 days(Total Length (m)	ength (m)) lling Days)	25.04 m/Day
Grand Total		368°		100 %	169 men/2	169 men/250.40m(Net Drilling Workers)	rilling Workers) Length (m)	0.67 men/m
Pipe size & Inserted Length (m)		Inserted Length Drilling Length	x100%	Recovery of Casing Pipe(%)	Remarks		· · ·	
4.00		1.60		100	r		-	
128.20		51.20		100				

.

Total	Number of Workers	51	45	30	126	Section							30.05 m/Day	30.05 m/Day	30.05 m/Day	0.84 men/m			
	Pay off	0	0	0	0	r Each 100 m	Total(%)	100	100				gth (m))	th (m) ays	th (m) g Days	líng Workers) ength (m)			
Actual	Working Days	. 6	5		10	Core Recovery for Each 100 m Section	Section(%)	100	100			Drilling Efficiency	150.40m/5 days (Total Length (m))	150.40m/5 days(Total Length (m))	150.40m/5 days(Net Drilling Days	125 men/150.40m(Net Drilling Workers)			
	of Days	ε	2	5	10	ပိ	Depth(m)	0-100	100- 150.40	200-300	300-400	Dr	150.40m/5	150.40m/5	150.40m/5	125 men/15	Remarks		
		85	5		5	3.00 m	147.40 m	100 %	42.13 %	20.79	0		4.49	32.59	0	100 %	Recovery of Casing Pipe(%)	100	100
	Periods	Oct. 28, 1985 ~ Oct. 30, 1985	, 1985 ~ Nov. 4, 1985	1985 ~ Nov. 6, 1985	Oct. 28, 1985 ~ Nov. 6, 1985	Overburden	Core Length	Core Recovery	66.96%	33.04	0	100 %					x 100%		1
		Oct. 28, 198	Oct. 31, 198	Nov. 5, 198:	Oct. 28, 198	150.00m	+ 0.40 m	150.40 m	75°	37°	°0	112°	ŝ	58°	0	178°	Inserted Length Drilling Length	1.99	66.62
						gth	Decrease	th		ing Works			Preparation	Moving			ıgth (m)	3.00	100.20
		Preparation	Drilling	Removing	Total	Planned Length	Increase or Decrease in Length	Drilled Length	Drilling	Accompanying Works	Repairing	Total	Pre	Wo	Others	Grand Total	Pipe size & Inserted Length (m)	NW CP	BW CP
L		poi	is Pei	nillin	Ι	վիՁւ	19. L gui	UihD				əmi	T gnið	ю₩			əqi¶ gı	nissO	pəì
. •	-					• • •													

Table A-6-5 Summary Record of Drilling Resutls

	Periods Number Actual Actual Pay off Number of Days Days Days	. 7, 1985 ~ Oct. 13, 1985 6 6 6 0 101	$.14, 1985 \sim Oct. 25, 1985$ 12 12 0 108	$.26, 1985 \sim \text{Oct.} 27, 1985$ 2 2 2 0 34	$.7, 1985 \sim \text{Oct.} 27, 1985$ 20 20 0 243	.00m Overburden 17.10 m Core Recovery for Each 100 m Section	00 m Core Length 183.00 m Depth(m) Section (%) Total (%)	.00 m Core Recovery 99.51 % 0-100 98.91 98.91	118° 41.84 % 33.52 % 100-200 100 99.51	164° 58.16 46.59 200-201 100 99.51	0°0 0 300-400	282° 100 % Drilling Efficiency	32° 9.09 201.00m/12 days (Total Length (m)) 16.75 m/Day	38° 10.80 201.00 m/12 days(Total Length (m)) 16.75 m/Day	$0^{\circ} \qquad 0 \qquad 201.00 \text{ m}/12 \text{ days}(\text{Total Length (m)}) \qquad 16.75 \text{ m/Day}$	552° [100 % 243 men/201.00m(^{Net} Drilling Workers) 1.21 men/m	ted Length x 100% Recovery of Remarks	8.96	24.73 100	
	Periods	Oct. 7, 1985 ~ Oct. 13, 1	Oct. 14, 1985 ~ Oct. 25,	$Oct. 26, 1985 \sim Oct. 27,$	Oct. 7, 1985 ~ Oct. 27, 1	200.00m Overburden	+ 1.00 m Core Length	201.00 m Core Recover	118° 41.84 %	164° 58.16		282° 100 %	32°	38°	°o	352°	Inserted Length × 100% Drilling Length	8.96	24.73	
		Preparation	Drilling	Removing	Total	Planned Length	Increase or Decrease in Length	Drilled Length	Drilling	Accompanying Works	Repairing	Total	Preparation	Moving	Others	Grand Total	Pipe size & Inserted Length (m)	NW CP 18.00	BW CP 49.70	
L		ſ	Perior	l gnii	İnd	կյՑւ	ıər gu	Drilli		I		ອເມ	T gnixi	oŴ			əqi¶ g	niseO	ted i	- 2

Table A-7 Drilling Equipments and Consumed Materials

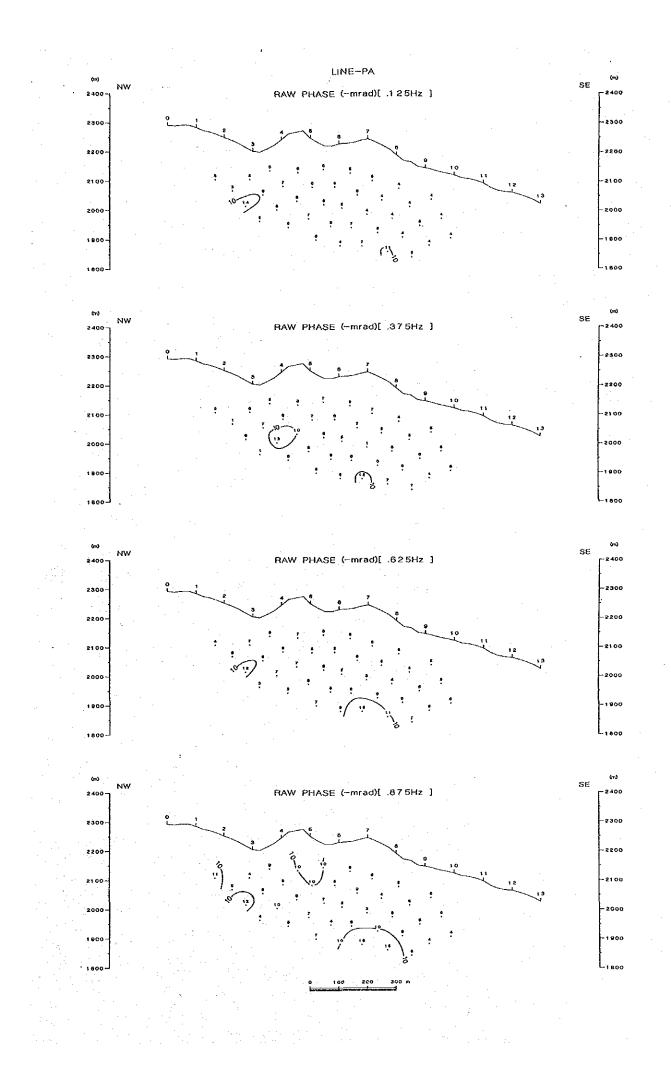
A. Model. "TOM-3"

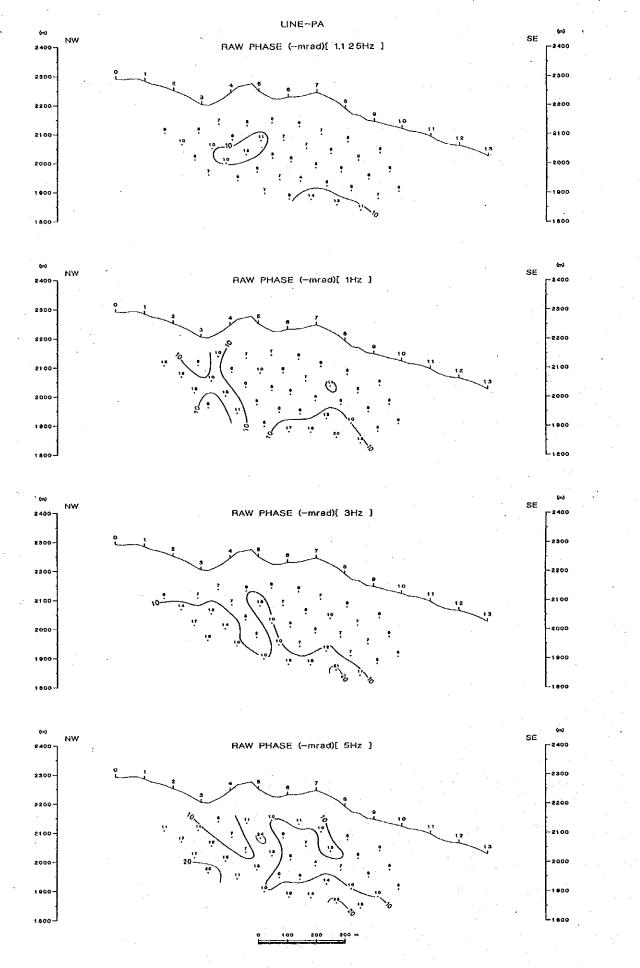
٠

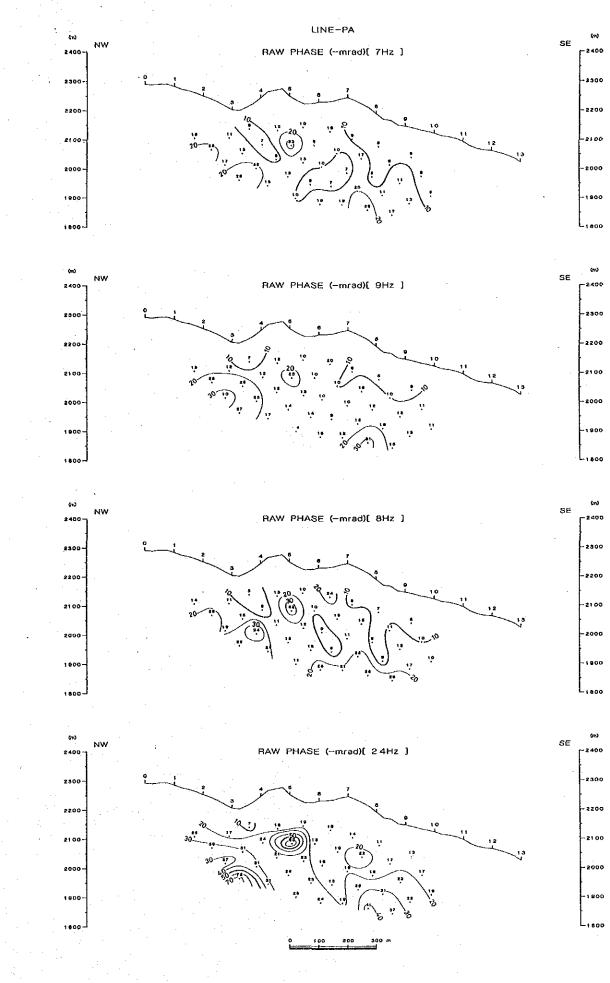
Article	Model	Specifications	Quantity
Drilling Machine	Model "TOM-3" (Tone Boring Co.)	Capacity: BQ-WL 790 m Dimensions: Height 1,550 mm Length 2,410 mm Width 960 mm Weight (without Power Unit): 1,350 kg) set
	Swivel Head	Spindle Speed: 120, 250, 600/R 120 r.p.m.	
	Hoist	Type: Planetary Gear Type (Power Up) Capacity: 2,500 kg	
	Oil Pump	Type: Hydraulic Capacity: 20/min Pressure: Max. 70 kg/cm ²	
Motor	Model "F3L"	Diesel Engine: 3 Cycle Air-cool Type Revolution: 1,500 ~ 2,000 r.p.m. Related Power: 35 P.S.	l set
Drilling Pump	Model "NAS-3T" (Tone Boring Co.)	Weight (without Power Unit):480 kgPiston Diameter:75 mmStroke:50 mmMax. Capacity:130 l/minMax. Pressure:32 kg/cm²	1 set
Water Supply Pump	Model "NAS-3B" (Tone Boring Co.)	Diesel Engine (Yanmar Co.) Revolution: 2,200 r.p.m. Related Power: 13 P.S.	l set
Mixer	Model "MCE- 100A" (Tone Boring Co.)	1002) set
Generator	Model "YSG- 1300B" (Yanmar Co.)	1.1 KVA	l set
Drill Rod		NQ - 3.0 m BQ - 3.0 m	36 Pcs 126 Pcs
Casing Pipe		NW – 1.5 m NW – 0.5 m BW – 3.0 m	6 Pcs 3 Pcs 45 Pcs
Wireline Hoist		Attached to Drilling Machine	l set
Rod Safety Clamps		RH Type	l set
· · · ·			
Water Swievel		ЕПТуре	i set
Hoisting Swivel		L Type	i set

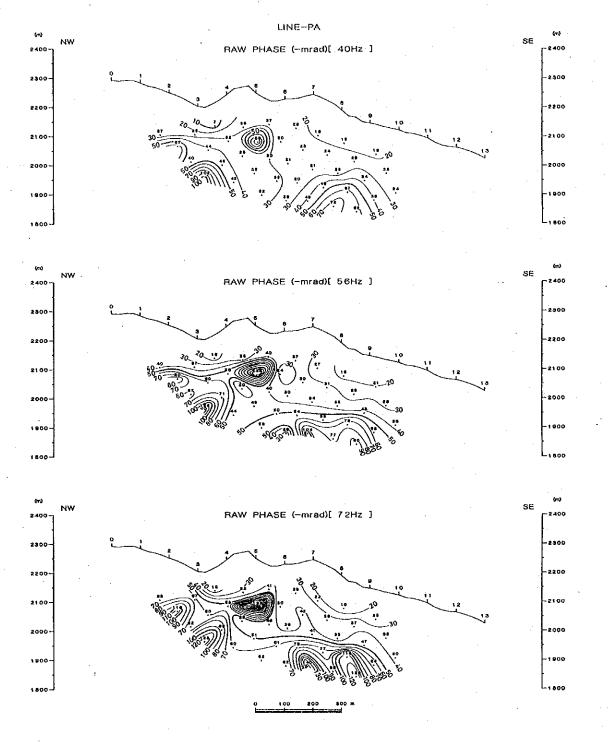
•

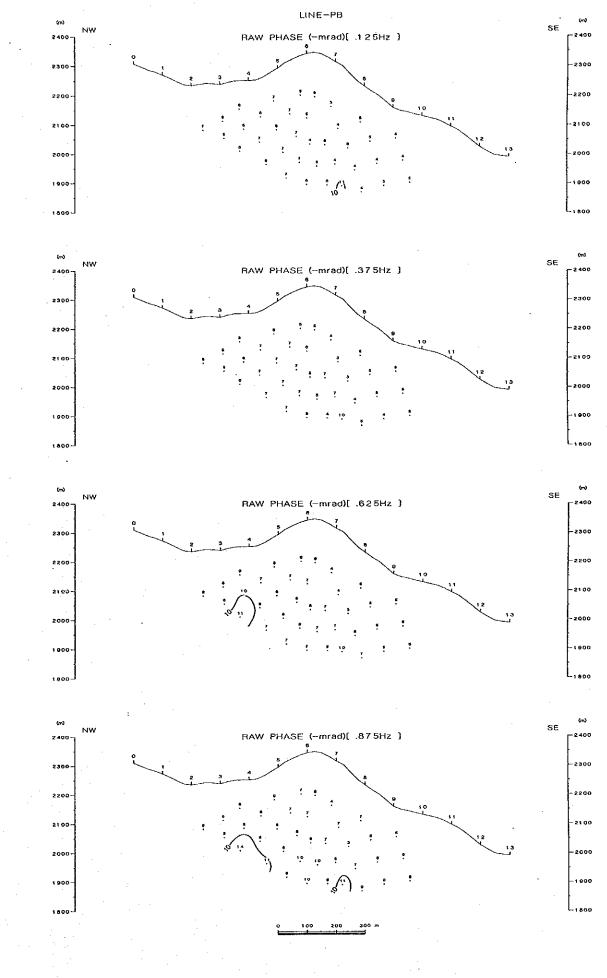
(1)

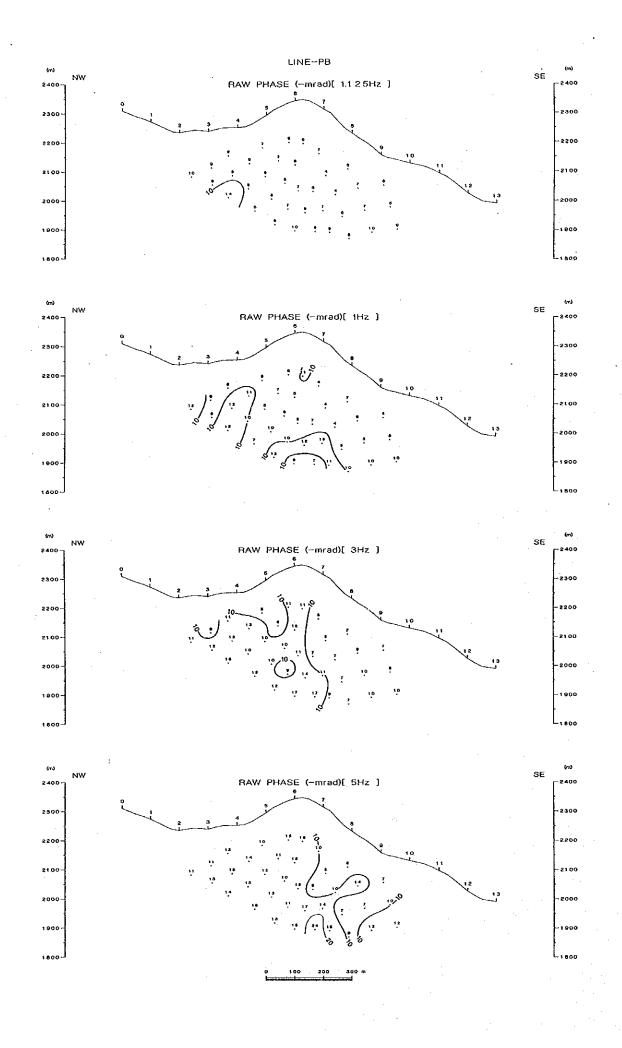

B. Consumed Materials

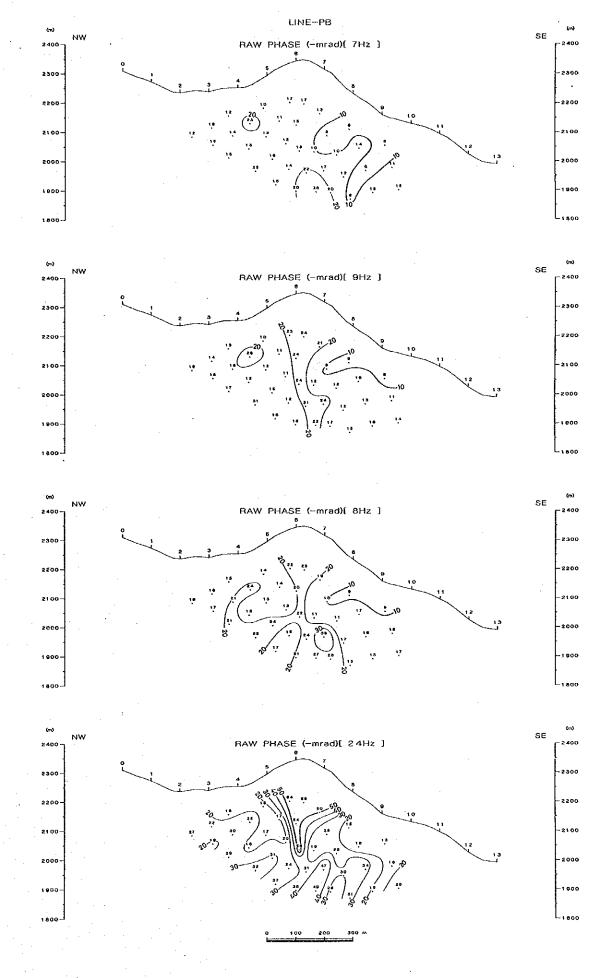

		r	1					(2)
d ritiala	Specification	Unit			Qua	ntity	• • •	
Article	specification		DJM-1	DJM-2	DJM-3	DJM-4	DJM-5	Total
Gasoline	Generator	L	120	160	350	275	630	1,535
Light Oil	Engine	1.	1,200	2,620	5,550	1,535	5,290	16,195
Mobil Oil	Engine	L	180	210	360	150	450	1,350
Mission Oil	Gear	L	20	15	15	25	20	· 95
Turbine Oil	Oil Pressure	L	40	20	35	40	45	180
Grease		kg	5	7	10	12	16	50
Cutting Oil		R	160	70	120	10	80	440
Metal Crown		pcs		\ ·	1		}	4 ·
Single Core Tube	99 m/m x 0.5 m	set						2
Double Core Tube	NQ-WL	set				· ·		2
do	BQWL	set		ł				2
Core Tube Head	99	pes						1
Casing Head	HQ	pcs						1 .
do	NQ	pcs						1
Casing Metal Shoe	HQ	pcs						1
do	NQ	pes						1
Cement		pack	5	3	2	4	2	16
Rag		kg	, in the second s					70
Core Box		pcs	33	21	34	21	24	133
Board	30 m/m	m ³						0.5
Wire	# 10	kg						90
do	# 12	kg						30
Nail	. 75 m/m	kg						30
do	38 m/m	kg						30
Wire Rope	12.5 m/m x 50 m	vol						1
Vinyl Rope	16 m/m x 30 m	vol						
V-Belt	Engine	set						5
do	Pump	set						2
Wire Rope	6 m/m x 300 m	vol						1
Core-Lifter	NQ-WL	pcs						10
do	BQ-WL	pcs						10
Core-Lifter Case	NQ-WL	pcs						5
do	BQ-WL	pes			ļ		Į	5
WL-Accessary	NQ-WL	set						1
	BQ-WL	set	ł					1
Working Dress	M, L	set						3
Working Gloves	···,	paír						120
Working Shoes	25 ~ 27 cm	раіт						- 3
Pressure Gauge	kg/cm ²	pcs						· · 2
Bentnite	<i></i>	kg						7,375
C.M.C.		kg			l			55
Libonite		kg						1,610
· ·	<u> </u>	L	l	<u> </u>	l <u>, </u>	L		

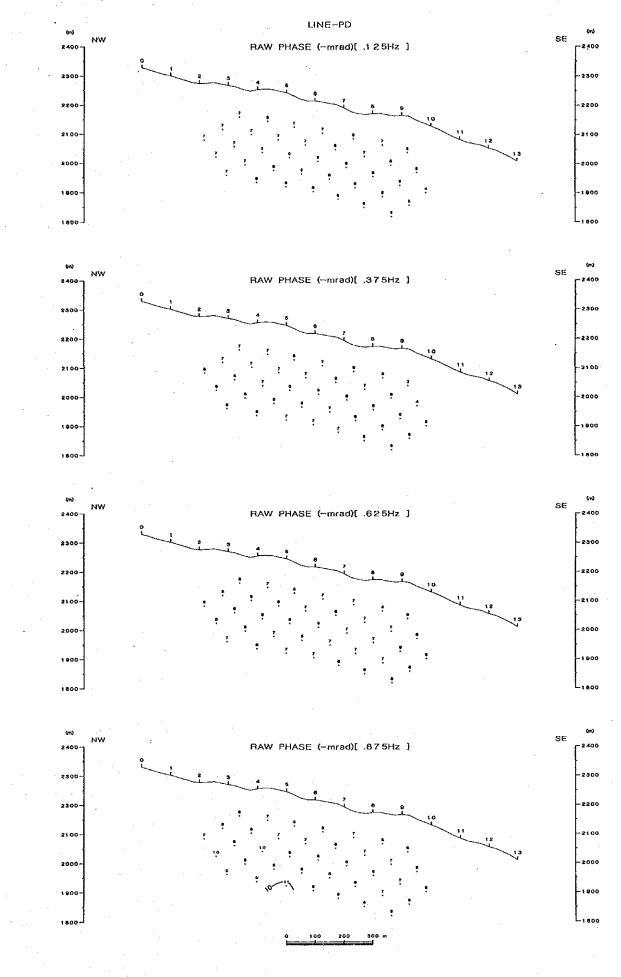

(2)

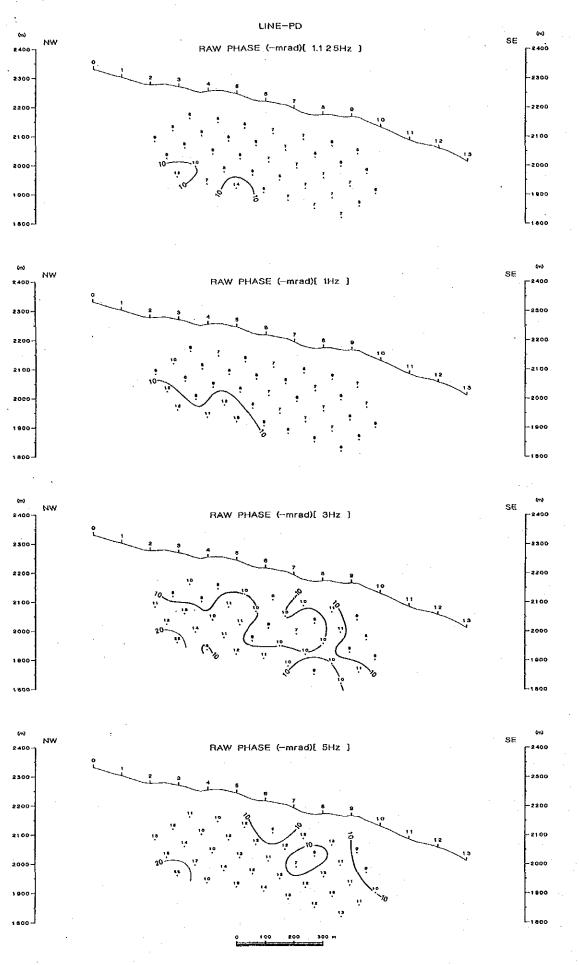

		(E)		کر حر	\$]		T	Ī		1 [•	۲۷. ۲۷										
			Total	Quantity	bcs				-			Total	Quantity	4 pcs	ŧ	2	m	6	щ				
				Drilled Length	ш								Drilled Length	43.00 m		421.30	421.30	550.20	550.20				
		·		Quantity	0 pcs		1	0	2	1			Quantity	bcs .									
		. ·	DJM-3	Drilled Length	t) 4.00 m	1	128.20	128.20	118.20	118.20		I	Drilled Length	æ									
				Quantity	0 pcs (used old Bit)	1	2	0	2	0			Quantity	1 pcs	I.	••••	1	-	1				
*			DJM-2	Drilled Length	15.00 m	I	75.10	75.10	72.40	72.40		DJM4	Drilled Length	3.00 m		97.20	97.20	50.20	50.20		·		
				Quantity	1 pcs		5	. [3	-			Quantity	2 pcs	1	1	1	F-1	0				•
			1-MLCI	Drilled Length	3.00 m		89.10	89.10	158.10	158.10		DJM-5	Drilled Length	18.00 m	1	31.70	31.70	151.30	151.30				
		d Bits	Dit Time	19.00	Bit (Metal)	Reamer	Bit	Reamer	Bit	Reamer		Bit Tyne	246	Bit (Metal)	Reamer	Bit	Reamer	Bit	Reamer				
		C. Consumed Bits	+:Q		101 Sincle	זטויט וטו	NO NU	711-721				Bit		101 Single		NOW	411-227	un Ca					
	· · ·		· .						· .						- I		1		-				

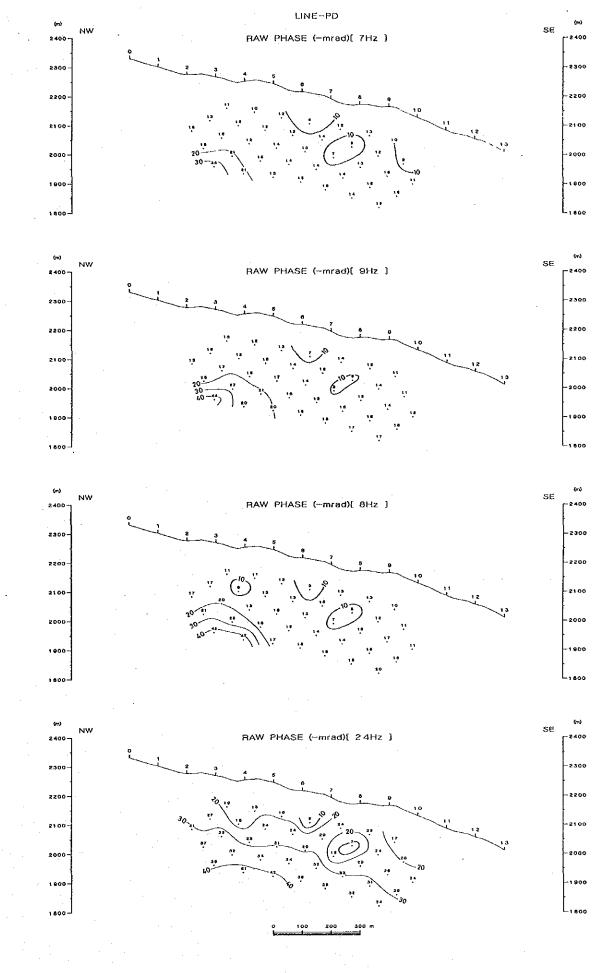

Fig. A-1 Location Map of the Survey Area

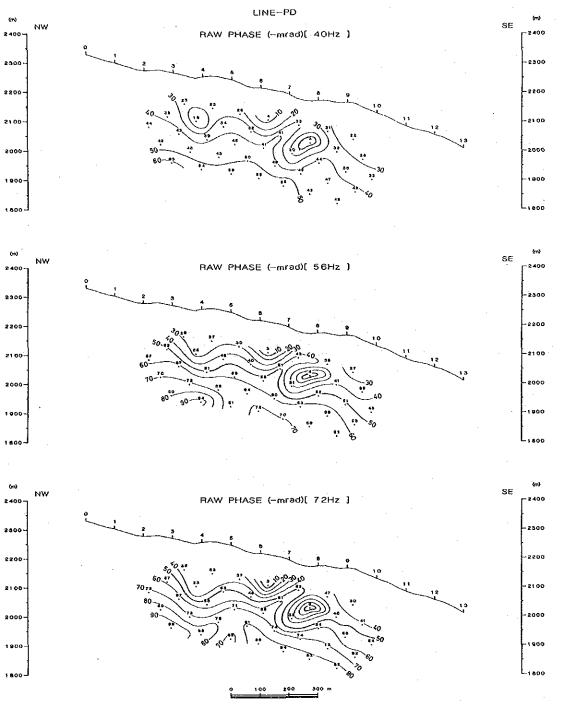


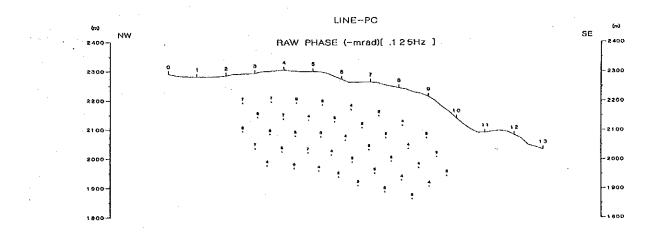


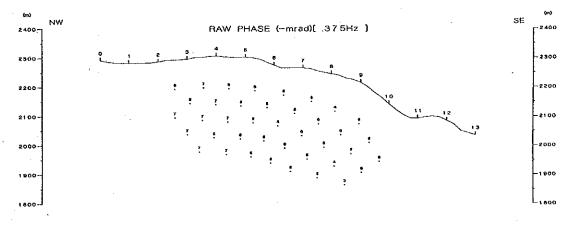


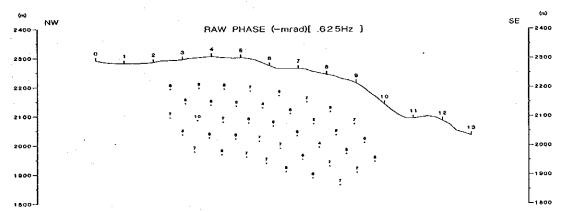


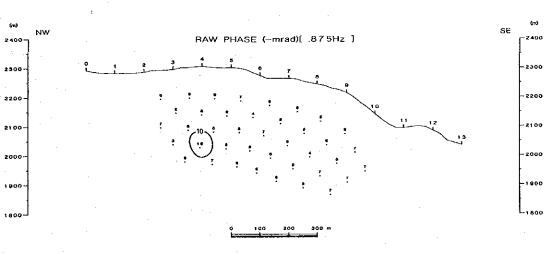

tere provide a second
· · ·

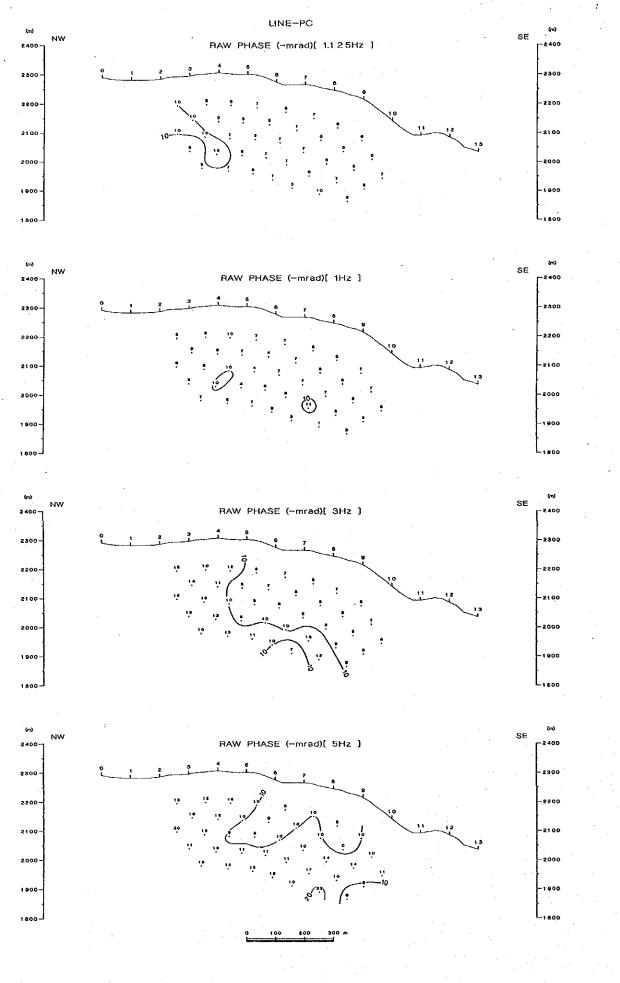


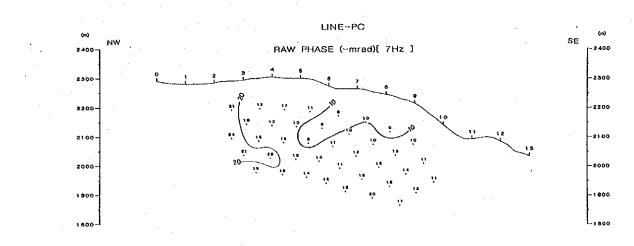

.

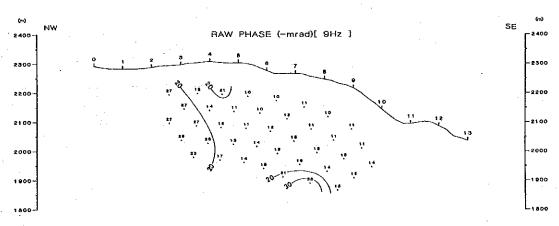


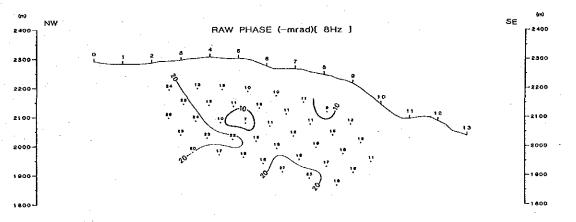


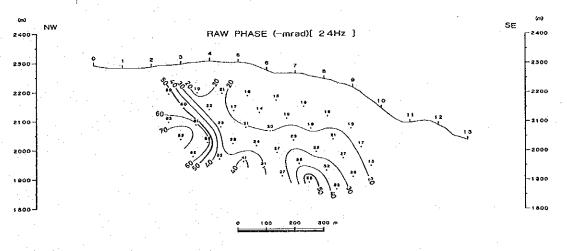


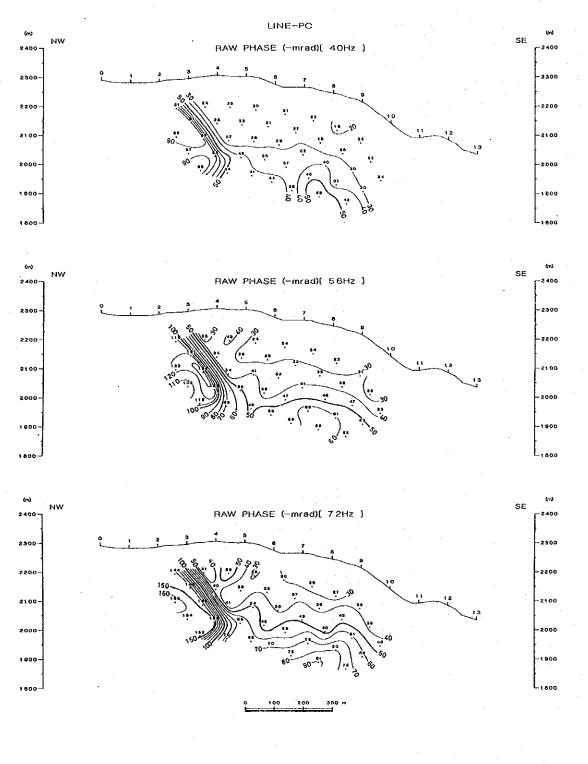


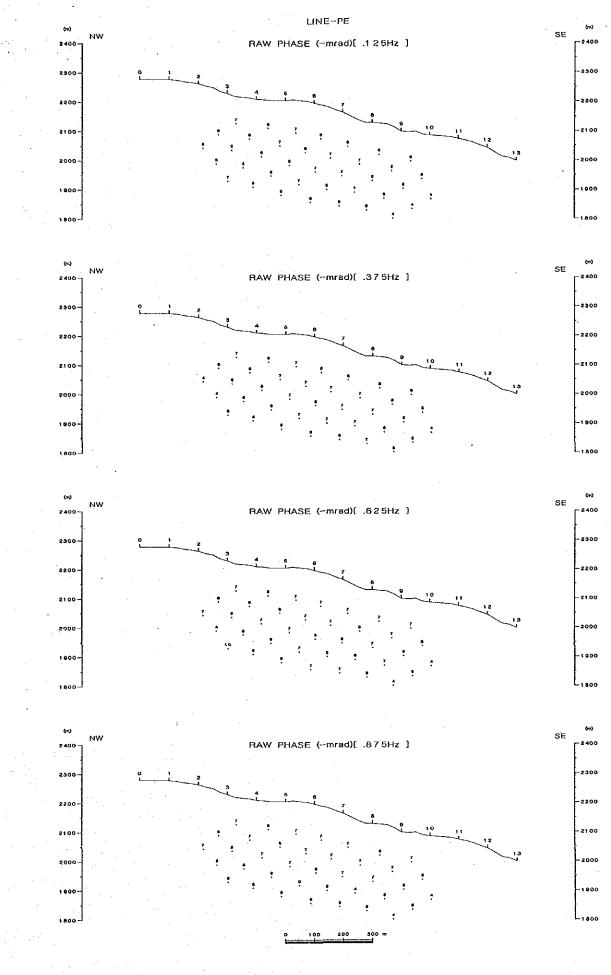


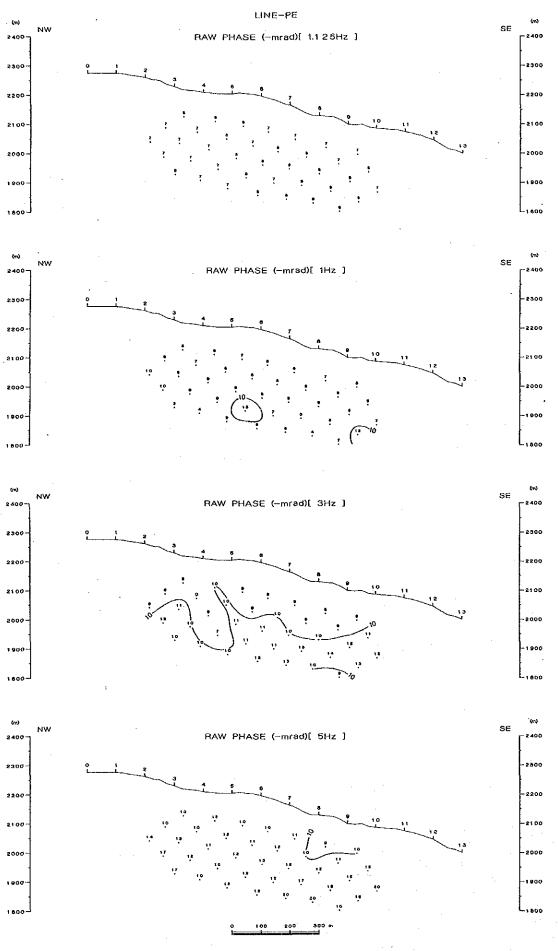


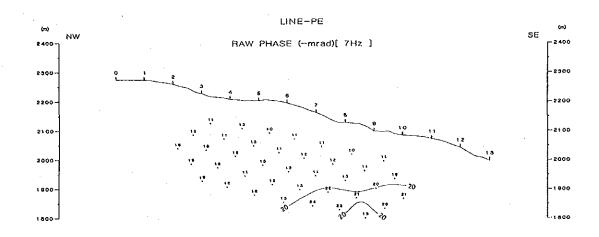


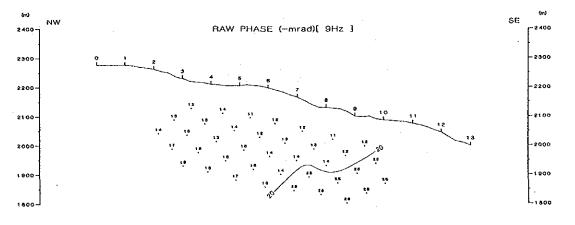


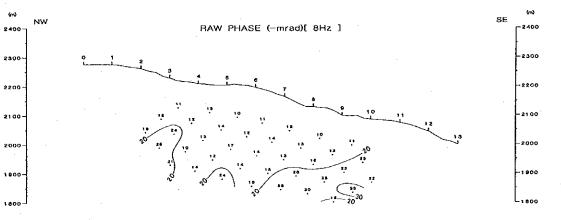


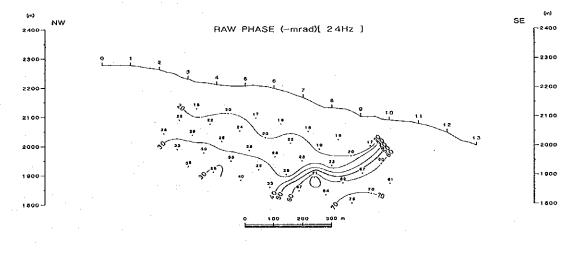


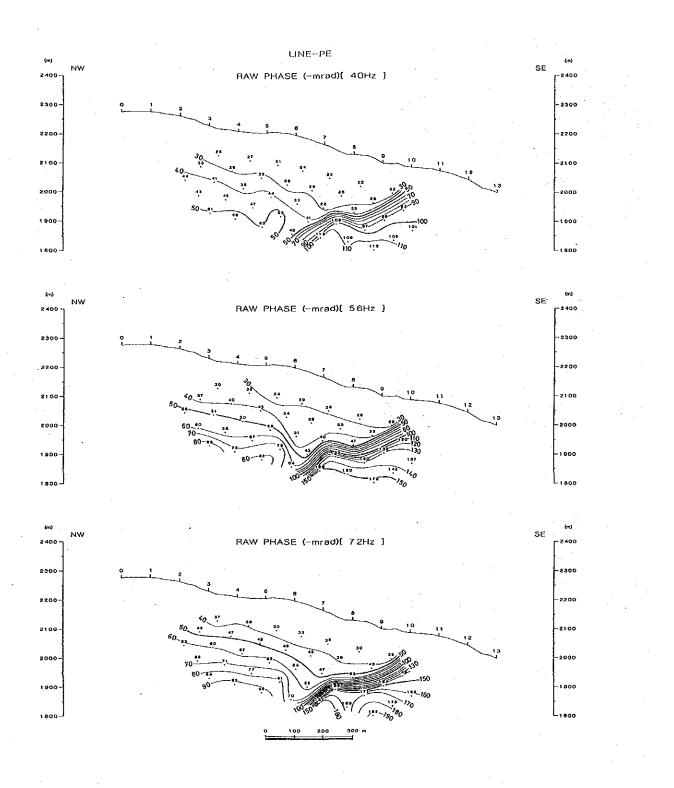









.


• • •

Ę