2-2 Drilling operation

(1) Drilling method

The drilling was conducted by wireline method from the surface soil with an NX single bit, an NQ coring bit and a BQ coring bit.

The drilling and casing profile is as shown in Ap. Fig. 4.

Mainly bentonite mud water was used as the drilling fluid. Use was also made of mud oil (lubricant oil) mixed with this drilling fluid.

For the prevention of mud water loss, use was made, among other things, of Telstop (squeezed cottonseeds).

(2) Rig and Materials

The rig employed was a OE-8Bl (with a capacity of 300m) from Koken Boring Co., Ltd., Japan. The types and specifications of the machinery used and the quantities of diamond bits and other expendables are tabulated in Ap. Tables 4 to 7 classified by drill hole.

Of the expendable materials, the drilling fluids were brought from Japan, but the light oil, gasoline, oil and greases as well as the cement were purchased locally.

(3) Operation

The preparation of the drill sites, installation, the moving and dismantling of the machinery were carried principally in one shift a day with the drilling operation in 3 shifts a day, each shift lasting 8 hours.

The drilling crew for each shift consisted of a total of 4 persons: one Japanese technician and three local workers. Employed in addition to these were 1 to 2 persons for the first shift and 1 to 2 persons for the second shift for various purposes including the supplying of drilling water. The number of persons employed for moving the machinery from site to site was 4 to 5 persons.

The operation hours and the overall list of operations are as shown in ${\it Ap.Table~8.}$

The results of the drilling performance were as follows: the average rate of drilling for all drill holes 10.19 (11.14)m per shift; the actual core recovery rate 96.4 (99.4)%.

Note: The figures in parentheses refer to the vertical drilling.

(4) Results of drilling progress

The results of the drilling progress classified by drill hole are shown in Tables 2 to 5, the overall results of the drilling operations in Tables 6 to 9, and the drilling work schedule in Figs.18 to 21.

2-3 Geology and mineralization by the drill holes

The geological logs for MJZ-7, MJZ-8, MJZ-11 and MJZ-12 are shown in Figs.22 to 25. The results of a chemical analysis of ores, a microscopic observation of polished section and X-ray diffractive analysis of the minerals are tabulated in Ap. Table 9 to Ap. Table 11.

2-3-1 MJZ-7 Hole

Depth 0 - 10.40m Laterite
" 10.40 - 159.30m Mainly arenaceous rock (sandstone) with intercalated thin layer of limestone and shale

" 159.30 - 300.50m Mainly black shale with intercalated limestone and arenaceous rock (fine-grained

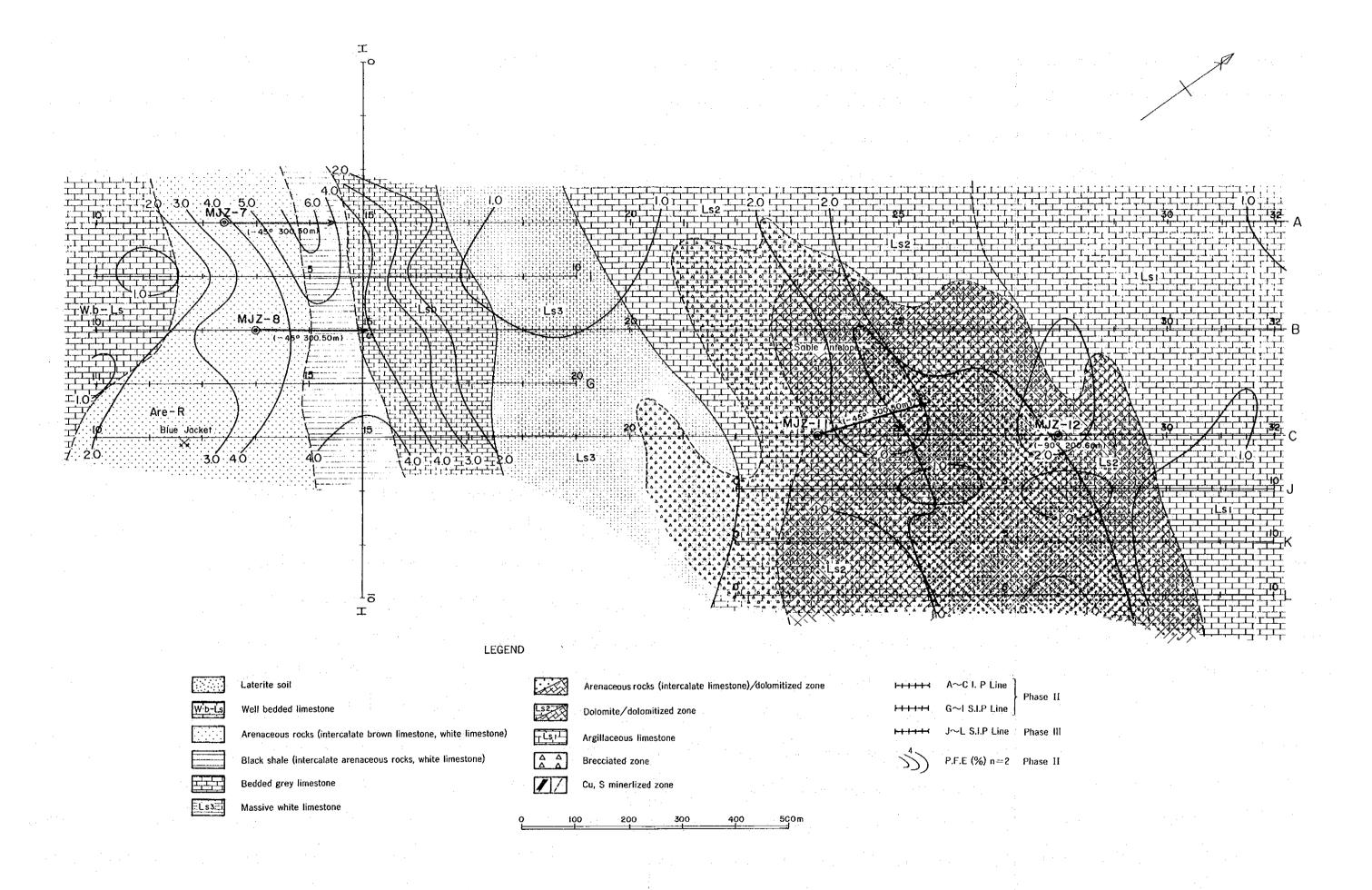
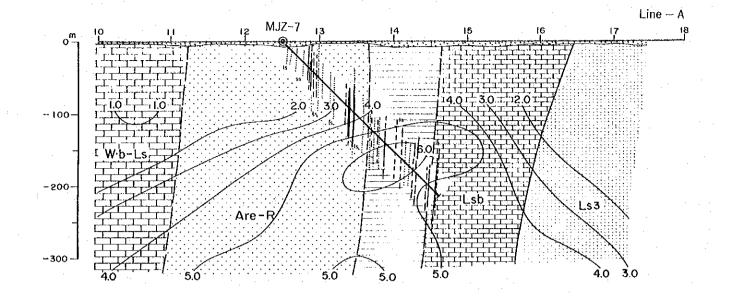
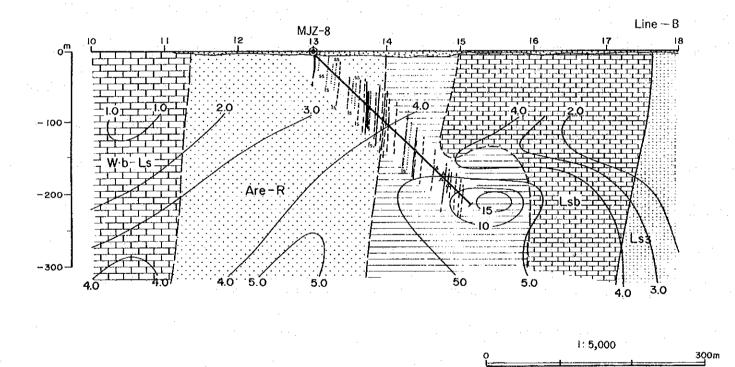
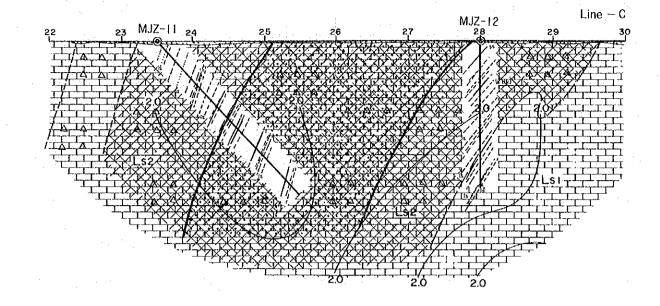





Fig. 16 Location Map of Drillings in Sable Antelope Area

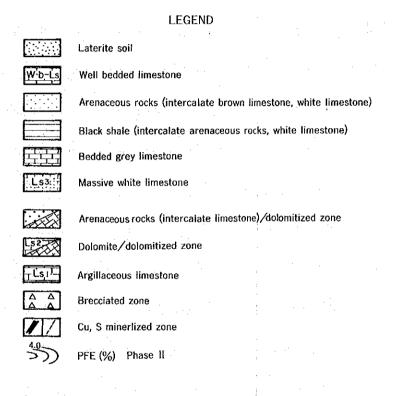


Fig. 17 Geological Section in Sable Antelope Area

Table 2 Record of the Drijling Operation on MJZ-7

	Dri1	ling lengt	h	Tota	ıL	Shif	t	Working	man
	Shift. 1	Shift, 2	Shift, 3	Drilling	Core length	Drilling	Total	Engineer	Worker
July	m	m	m	m	m	shift	shift	man	man
27	Pds.								
28	Pds.								
29	Pds.		l						
30	Reassemb.	·							. '.
31	Reassemb.								
August									
1	5.00			5.00	_				
2	5.50	7.40	10.10	23.00	14.20	4	9	28	81
3	. 2.40	15.30	12.20	29.90	27.40				
4	8.10	15.30	10.00	33.40	33.40				
5	13.00	14.00	12.00	39.00	39.00				İ
6	12.60	14.60	9.00	36.20	36.20				
. 7	10.80	1.80	8,40	21.00	21.00				
8	12.00	12.00	12.00	36.00	36.00				ļ
9	9.40	11.60	12.00	33.00	33.00	21	21	28	102
10	9.60	5.30	9.00	23.90	23.50		*		
11	12.00	8.10	Out-C.P.	20.10	20.10				
12	Dismant.						·		}
13	Waiting.								
14	Waiting.		•						
15	Waiting.								
16	Day off		.]						
Total	100.40	105.40	94.70	300.50	283.80	30	40	79	263

Abbreviation

Pds. : Preparation for drilling site

Transpor. : Transportation

Reassemb. : Reassemblage

Ins-C.P. : Inserting casing pipe

Out-C.P. : Taking out casing pipe

Dismant. : Dismantlement

Waiting. ! Waiting period

Packing. : Packing for mashine and

equipment

Table 3 Record of the Drilling Operation on MJZ-8

					-				
	Drill	ing length		Tota	1	Shif	t	Working	man
	Shift. 1	Shift. 2	Shift. 3	Drilling	Core length	Drilling	Total	Engineer	Worker
July	.· n	m	m	m	m	shift	shift	man	man
2	Pds.				<u>'</u>	ľ			
3	Pds.								
4	Transpor.		;	.*			* .		, pr. + 4
5	Transpor.						4	16	48
6	Transpor.								
7	Transpor.								
8	Transpor.					1 4			
9	Reassemb.								
10	Reassemb.								
11	Reassemb.							·	
12	9.60			9.60	4.10	1	7	28	104
13	6.30	9.10	9.00	24.40	12.90				
14	6,00	6.40	9.00	21.40	19.80				
15	5.00	11.60	8.20	24.80	24.80				
16	8.00	10.90	7.20	26.10	26.10				
17	9.50	14.60	9.00	33.10	32.80				
18	12.00	9.00	8.00	29.00	29.00			,	
19	3.70	7.40	Int-C.P	11.10	11.10	20	21	28	98
20	6.00	15.50	10.40	31.90	31.60				
21	8.40	7.60	8.00	24.00	24.00				
22	9.00	6.00	6.00	21.00	21.00	-			٠.
23	7.70	6.10	3.40	17.20	17.20			.	
24	7.40	8.10	7.70	23,20	23.20				
25	3.70	Out-C.P.		3.70	3.70				
26	Dismant					16	18	28	95
Total	102.30	112.30	85.90	300.50	281.30	37	50	100	345

Table 4 Recoard of the Drilling Operation on MJZ-II

	Dri	lling leng	th	Total	l	Shift		Working	man
	Shift. 1	Shift. 2	Shift. 3	Drilling	Core length	Drilling	Total	Engineer	Worker
September	m l	m	· m	m	M	shift	shift	wan	man
15 16 17 18	Day off Day off Transpor. Transpor.								
19 20	Reassemb. Reassemb.						4	16	72
21 22	5.50 9.00	11.00 12.00	9.00 12.00	25,50 33,00	17.10 26.00				
23 24 25	12.00 12.00 2.20	9.00 12.00 9.70	15.00 12.00 12.00	36.00 36.00 23.90	36.00 36.00 23.90				
26 27	12.00 15.00	12.00 15.00	9.00 12.00	33.00 42.00	33.00 42.00	21	21	28	101
28 29	12.00 12.00 Out-C.P.	12.00 12.00	12.00 11.10	36.00 35.10	36.00 35.10				
30	Dismant.					6	7	11	45
Total	91.70	104.70	104.10	300.50	285.10	27	32	55	218

Table 5 Record of the Drilling Operation on MJZ-12

	Dri	lling leng	th	Total		Shift		Working	man
	Shift. 1	Shift, 2	Shift. 3	Drilling	Core length	Drilling	Total	Engineer	Worker
October	123	TO.	m	m	m	shift	shift	man	man
1 2 3 4	Transpor. Reassemb. Reassemb. 8.10	9.20	15.50	32,80	30,70	3	6	16	61
.5 6 7 8 9 10	11.40 12.30 13.50 12.00 10.00 Dismant.	12.20 14.10 12.00 9.00 9.30	15.40 10.50 12.00 11.00 3.10	39.00 36.90 37.50 32.00 22.40	39.00 36.90 37.50 32.00 22.40	15	17	27	107
12 13 14 15 16 17 18	Transpor. Transpor. Transpor. Packing Packing Packing Packing				:		7	28	98
19 20 21 22 23	Packing Packing Packing Packing Transpor.						5	20	70
Total	67.30	65.80	67.50	200.60	198.50	18	35	91	336

Table 6 Summary of the Drilling Operation on MJZ-7

				S	urvey	Peri	od			Total m	an day
			Pe	eriod		days	w	ork day	off day	Engineer	worker
	Prepara tion	27.7.	1986	^31.7	.1986	5		days 5	days 0	man 20	man 60
on	Drillin	g 1.8.1	986	v11.8.	1986	11		rilling 11	0	44	157
Operation				:			r	ecover-	0	0	0
Op	Removin	g 12.8.	1986	5∿16.8	.1986	5	_	4	1	15	46
	Total	27.7.	1986	5^16.8	.1986	21		20	1	79	263
-E	Length planned	300.	m 00	Surfa soil burde	Over-	10.	m 40	Core	e recove	ery of 10	0 m hole
ngth	Increas			Quate				Deptl ho		core recovery	recovery
len,	or		m	Core		283.	m eo	(m)		(%)	cumulatéd (%)
Drilling	Decreas in	e -		lengt	h	203.		0 %	100	93.4	93.4
111	length					, <u>-</u>	%	1000		100.0	96.8
ä	Length drilled	300.	50 ^m	Core recov	ery	97.		200 ∿		99.6	97.8
	Drillin	g	157	h '°30'	63.0	76 4	% 8.5	DEE.	iciency	of Drill	ing
	Other w	orking	92	°30'	37.0) 2	8.4		m/work d(m/day)		/11days m/day)
hours	Recover	ing				-	_			1 300.50m,	/30shifts
1 1	Total			0°00'	100		6.9	Dri		ength/bit	
Working	Reasse			3°001		$\frac{1}{1}$	3.2	(each si	zed bit)	- -
Wor	 -	tlement	8	00°	· .	_	2.5			NQ	BQ
	Water transpo	rtation	(174	°00')				Drill lengt		0 174.10	121.40
		nstruc- d others	24	°00'			7.4	Core lengt	n	162.80	121.00
	G. Tota	1	325	°001		100	0				
pipe	Size	meteras	ze ja:	eterag rillin ength	e g ×10	ery	.ov-		٠.		
ng p: ertec	НХ	(m) 5.00	-	(%) 1.		10)			٠.	
Casing r inserté		30.00	-	10.0		100					
O	NX	179.10		59.0							
	ВХ	1/2.10				1 6	3.1				

Table 7 Summary of the Drilling Operation on MJZ-8

Survey Period Total man Period days work day off day Engineer Note	
Preparation 2.7.1986\(^11.7.1986\) 10 days days man days days man days days days days days days days days	man 140 190
Tiepara 2.7.1986\11.7.1986 10 10 0 40	140 190 0
Drilling 12.7.1986\25.7.1986 14 14 0 56 recover-0ing 0 0	0
0 ing 0 0 0 Removing 26.7.1986\26.7.1986 1 1 0 4	
$ \stackrel{\Omega}{\circ} $ Removing 26.7.1986 $\sqrt{26.7.1986}$ 1 1 0 4	15
Total 2.7.1986~26.7.1986 25 25 0 100	345
Length soil Over-burden 2.70 Core recovery of 100	m hole core
Quaternary Depth of core re la	covery mulated
or Core (m) (%)	(%)
	83.6
	91.6
	94.4
Drilling 174°20' 55.7 42.7 Efficiency of Drillin	ng
Other working 138°10' 44.1 33.9 Total m/work 300.50m/more 300.50m/mor	
Recovering 0°30' 0.2 0.1 Total m/total 300.50m/3	7shifts
	hift)
Reassemblage 78°00' 19.1 Drilling length/off (each sized bit)	
Reassemblage 78°00' 19.1 Brilling length/bit (each sized bit) Dismantlement 8°00' 2.0 Bit size HX NQ	ВQ
Water Drilled	121,00
Road construction and others 9°00' 2.2 Core length 1.10 159.50	120.70
G. Total 408°00' 100	
Size meterage drilling × 100 Recov-	
1ength ery (%)	
Company Comp	
S.F. NX 33.00 11.0 100	
BX 179.50 59.8 100	

Table 8 Summary of the Drilling Operation on MJZ-II

				S	lurvey	Pe	rio	d		 	Total m	an day
			P	eriod		da	ıys	wo	rk day	off day	Engineer	worker
	Prepara tion	15.9	. 1986	ა∿20 . 9	.1986		6		days 4	days 2	man 16	man 72
ton	Drillin	g 21.9.	1986	5∿29.9	.1986		9		illing 9	0	36	134
Operation								re	cover- 0 ing	0	0	0
9	Removin	g 30.9.	1986	5∿30.9	.1986		1		1	0 -	3	12
	Total	15.9.	1986	5∿30.9	.1986	1	6		14	2	55	218
,c,	Length planned	300.0	O m	Surfa soil burde	Over-		1.50	m)	Core	recov	ery of 10	Omhole core
ength	Increase			Quate					Depth		core recovery	recovery
1 "	or		m	Core	Ì			m	(m)	1	(%)	cumulated (%)
Drilling	Decrease in length	e		1engt	h	28	5.10)	0 %	100	85.8	85.8
Dri	Length		o m	Core				%	100 ∿		100	92.9
	drilled	300.5		recov			5.3	· ·	200 ∿	300.5	100	95.3
	Drillin	g	150	h 1°00	68.3	%	57°.	% 0	Eff	iciency	of Drill	ing
	Other w		69	°30'	31.7		26.	4	1	m/work l(m/day		/9 days m/day)
hours	Recover: Total	ing	219	° 30 ¹	100	-	83.				300.50m/	
1	Reasser	mblage	37	°001			14.	1	Dril	lling l	_ ength/bit zed bit)	
Working	Disman	tlement	6	° 30 '			2.	5	Bit si		NQ	BQ
W	Water transpo	rtation	(126	°00')					Drille length	1 6	50 127.20	167.80
	Road con	nstruc- d others							Core length	1 -	117.30	167.80
	G. Tota	1	263	°00'			100) .				
oipe sd	Size	meteras	ge di	eterag cillin ength (%)	g	IR	lecov ry (%)	7 —				
Casing pipe inserted	нх	(m) 5.50			L . 8		100) + . 			, ta la ett
Cas:	NX	27.00		9	0.0		100					
	ВХ	132.70		44	. 2		100					

Table 9 Summary of the Drillilng Operation on MJZ-12

		1)ie 9 		innar y	or u		UHH.	g	Obera	tion on	+		
					S	urvey	P	erio					Cotal m	T
	<u> </u>			Po	eriod		d	lays	wo					worker
	Prepara tion	_	1.10.	1986	∿3.10	.1986		3		days 3	day ()	S	man 12	man 45
ion	Drillin	8	4.10.	1986	√9.10	.1986		6		illing 6 cover-	0	-	24	97
Operation						4. 4 .			re	0 ing	0		0	0
o G	Removin	g	10.10	.198	6 ∿23. 1	01986		14		14	0		55	194
	Total		1.10.	1986	∿23.10	0.1986	5	23		23	0		91	336
ч	Length planned		200.0	00 m	Surfa soil burde	0ver-		1.00	m)	Core	e recov	ery	of 10	0 m hole
length	Increas			-	Quate					Depth ho			ore covery	recovery
1 1	or	- {		· m	Core	.	7	98.50	m	(m)			(%)	cumulatéd (%)
Drilling	Decreas in	e	_		1engt	h .	4	90.30	,	0 ∿	100		98.8	98.8
	length									100 ∿			100	99.4
Ä	Length drilled	.	200.6	60 ^m	Core recov		•	99.4	%	100				
	Drillin	g		10	h 1°40'	70.6	% î	35.	% 9	Eff	iciency	of	Drill	ing
	Other w	orl	king	4	2°20'	29.4	4	15.	0 .		m/work d(m/day		200.60m (33.43	/6 days m/day)
hours	Recover	ing	g .					<u> </u>		Total	m/tota (m/shif	1 2		/18shifts
1 1	Total				4°00'	100		50.			•		th/bit	m/shift)
kin	Reasse				7°00'		-	9.			each si	zed	ĺbit) ľ	
Working	Disman	t1e	ement	4	0°001			14.	1_	Bit si			NQ	BQ
	Water transpo	rta	ation	(1	6°00')	·	į		<u> </u>	Drill lengt	1 4 1	60	197.00)
	Road co			7	2°00'			25.	5	Core length	a 2.0	60	195.90)
	G. Tota	1		28	3°00'			100)				-	
Casing pipe inserted	Size	me	eterag	e di	eterag cillin ength (%)	g	0	Recovery	v-					
ert	нх		1.00	-	0.5			100	<u> </u>					ļ
Casi	NX		11.00	+	5.5			1.00		.*				
	вх						-			İ				

LEGEND

000		Surface soil	4.4.0	Br	Breccia
	Sh	Shale		V, Nw	Vein & Network
	Ss	Sandstone		Mass Ore	Massive Ore
, , , , , , , , , , , , , , , , , , , ,	Cong	Conglomerate	::	Diss Ore	Dissemination
	_ s	Limestone	P-01		Polished section
	00	Dolomite	X-01		X-ray Difraction
<i>[]</i>	o-Are	Dolomitic arenaceous rock	~~~		Shear zone
	Ch	Chert	•		

Abbreviation |

Ср	Chalcopyrite	Dol	Dolomite
Во	Bornite	Sid	Siderite and/or Sideritic Dolomite
Сс	Chalcocite	Ank	Ankerite
Di	Digenite	Qtz	Quartz
Mal	Malachite	Fe-Ox	Iron Oxides (mainly hematite)
Gal	Galena	Lim	Limonite
Ten	Tennantite	Altn	Alternation
Ру	Pyrite	Drs	Druse
Cal	Calcite and/or Calcitic Dolomite		

C. R Core Recovery

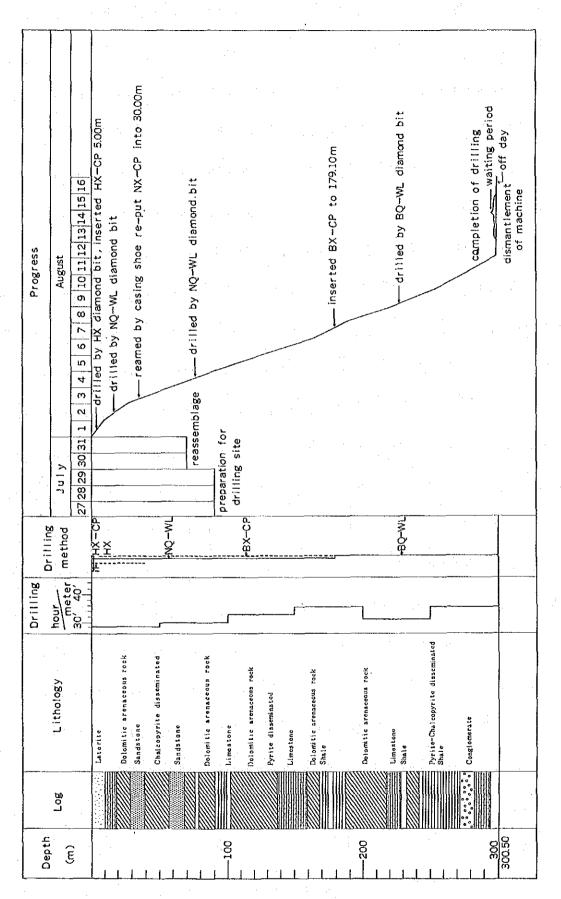


Fig. 18 Drilling Progress on MJZ-7

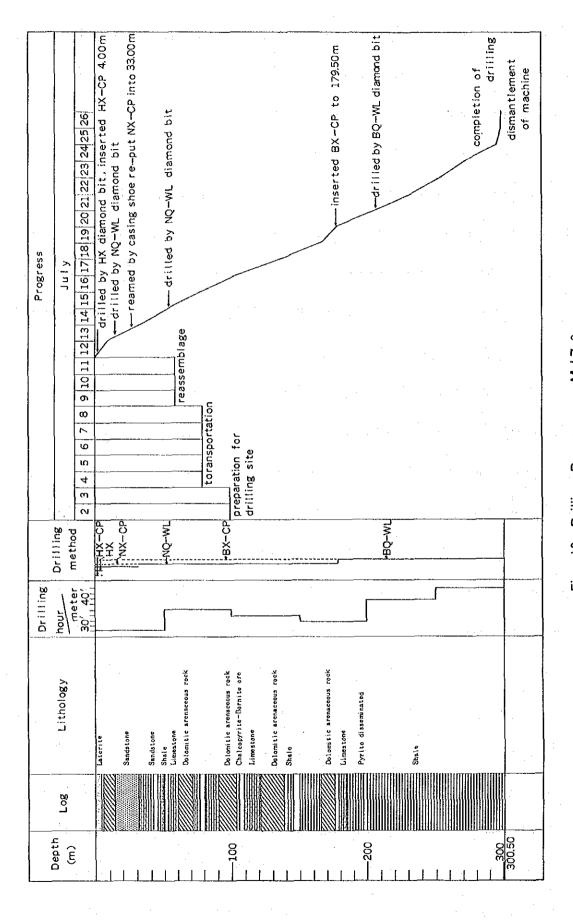


Fig. 19 Drilling Progress on MJZ-8

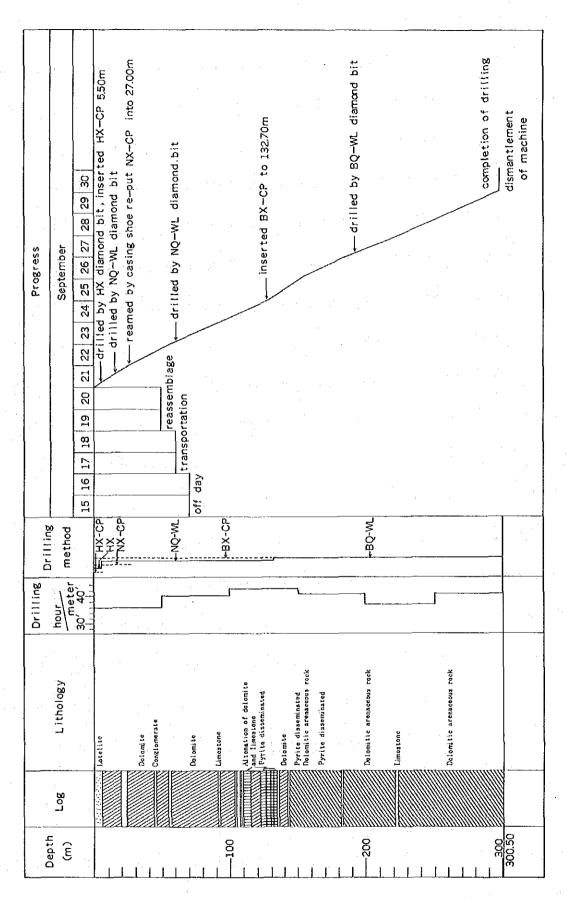


Fig. 20 Drilling Progress on MJZ-11

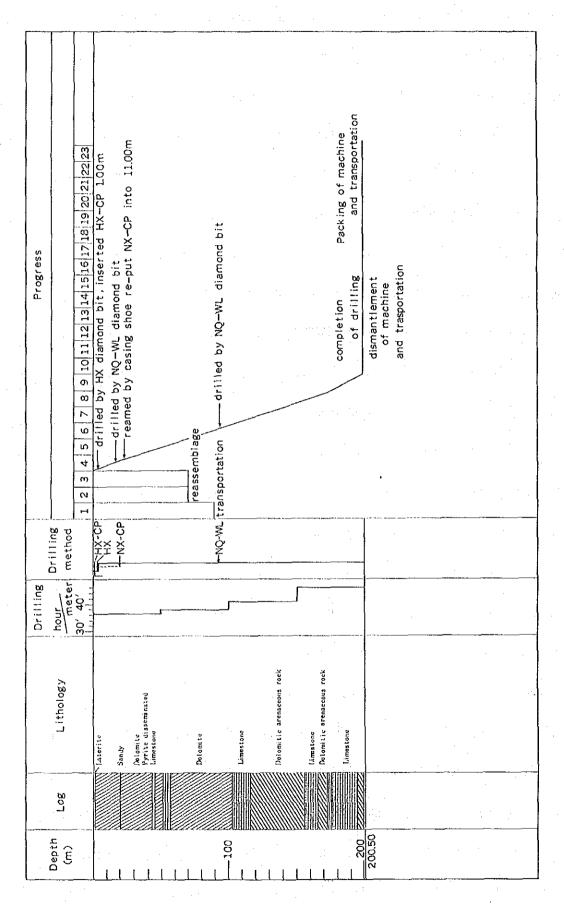


Fig. 21 Drilling Progress on MJZ-12

Drill Hole No.	MJZ-7	Inclination	-45°
Location	Sable Antelope	Bearing	36*
Elevation	Approx 1200 m	Term	Aug. 1~11. '86
Depth	300.50 m	Core Recovery	97.8%

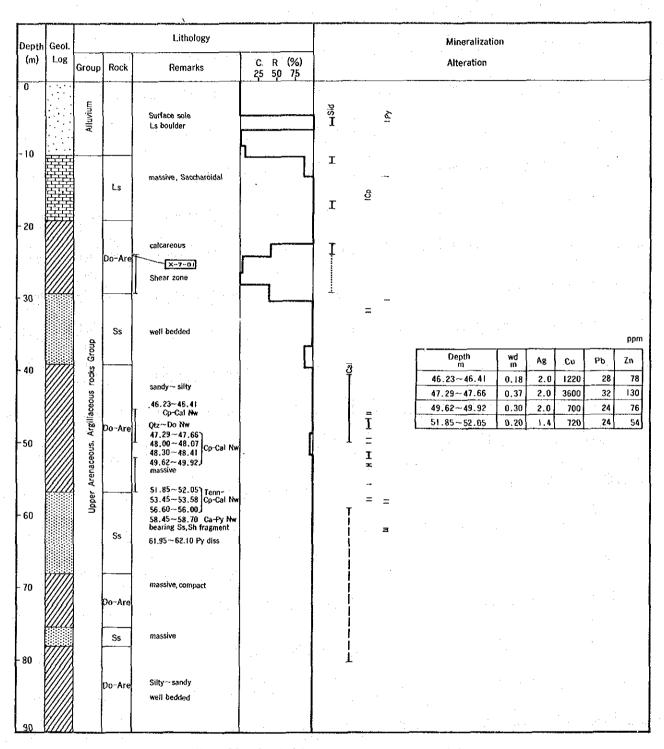


Fig. 22 Geological Log MJZ-7 (I)

Depth	Geol.			Lithology					Mineralizat	ion				
(m)	Log	Group	Rock	Remarks	C. R (%) 25 50 75				Alteration		٠			
90		Do Are	<u>-</u>	calcareous				,					•	
			Sh	greenish colored		 -				-				
-100				(93.50~106.50)		<u>s</u>								
	7777		Ls	brown hematite layer				. :						
		.		well bedded argillaceous		.:			· .					
-110				blk Sh layer (106.50~)	-									
				T brown calcareous		I			· .			: .		
			.	hematite leyer - (113.50~119.15)		3 .								
-120		'	Do-Are	т] _T	<u>\$</u>							
				Shear zone Cal v								•		
				127.82~127.90 128.11~128.52 Py-Cal Nw		1	<u>č</u> T		Donth	111.4				ppm
-130				greenish colored altered (125,10 ~ 137.55)		_			Depth m 128.11~128.52	wd m	Ag 0.1	Cu 98	Pb 24	Zn
i		9		Cal V P.X-7-03 128.66~132.67 Py-Cal Nw		r	T		128.66~129.00 129.00~129.60	0.34	0.4	136 580	24 28	78 118
-140		ks Group		135.32~135.70 Py diss 136.30~137.55 along \ \ bedding					129.60~130.30	0.70	< 0.10	98	30	82
140		ous rocks		brown hematite layer (137.55~144.30)					130.30~130.70 130.70~132.67	1.97	<0.10 <0.10	50	28	70 34
		Argillaceous		x-7-04 massive					135,32~135,70 136,30~136,50	0.38	< 0.10 0.4	70 84	20 28	66 34
-150			Ls	X-7-05	-				136.50~137.55 197.77~198.20	1.05 0.43	0.4	76 180	32 32	54 118
		Arenaceous.		x-7-06 hamatite layer (152.50 ~ 153.50										
		Upper A		(157.55~158.50)						-	•			: -
-160		5		hamatite veinlets (159.30~163,10) brecciated		:								
			Do-Are	silt shale (bk)	1.				•					
									÷.,					
-170			Sh	blk muddy										
		İ	Do-Are	Calc sdy Shale			-		· •					
-180														
	- A		Sh	T bik			- =					:		
	70101			brecciated 183.53~183.70	·	Ŧ						•		
- 190 -				Py-Cp-drs Cal NW		I					,i		·	
			Do-Are	massive wen dedded party		T								
	/////			drusy cal veinlets 197.77~198.20 Cp-drs		1 I	r r		••					

MJZ-7(1)

Depth	Geol.			Lithology		Mineralization
(m)	Log	Group	Rock	Remarks	C. R (%) 25 50 75	Alteration
200		1		I		টু
		3		and the second s		I to the state of
				laminated		. .
-210			Do-Are	massive well bedded partly	٠.	
				drs cal veinlets		
				X-7-07		
	4/4/			laminated		
-220						
			Ls	Saccharoidal		*
				laminated		
			ļ			Ĭ
- 230		1	Sh	blk		
	/////	1			ጎ	
		1		drs		\mathbf{I}
-240		3 :	Do⊸Are			
		1				
		9				
		S Gro	Sh	blk sift banded		
250	/////	Argillaceous rocks Group				<u> </u>
		Seous	Do-Are			ΤŤŢ
	/////	gilla(Sh Do-Are	silt banded 251.05~256.86		
		IS. A		Py-Cp-drs Nw		ī
-260		Upper Arenaceous.		X-7-08		
		Aren	Sh	bik		
		pper				
-270		,				
	000				** .	
			_	granule:Sh, Ls	. :	
			Cong	matrix:sandy~silty		
-280		,		279.51 ~279.62 Cp diss in Ls breccia		īı
	3 3 3 4		-	280.56~281.63 Py-Cp diss in drs		r
				Do-Are layer Sh fragments bearing, massive		
200			Ls			ppn
-290				292.20~292,49		= = Depth wd Ar Cu Db 70
		1	'	Py-Cp in breccia		=
			Do-Are	brecciated Sh. fragments bearing		280.56~280.76 0.20 2.0 660 52 440
-300 300.50			JU AIE	matrix: sandy	_	280.76-281.63 0.87 1.0 300 56 640
300.50			,			292.20~292.49 0.29 1.4 320 124 700
1.11	:				1 1	

M J Z − 7 (II)

Drill Hole No.	MJZ-8	Inclination	45 *
Location	Sable Antelope	Bearing	36*
Elevation	Approx 1200 m	Term	July. 12~25 '86
Depth	300.50 m	Core Recovery	94.4%

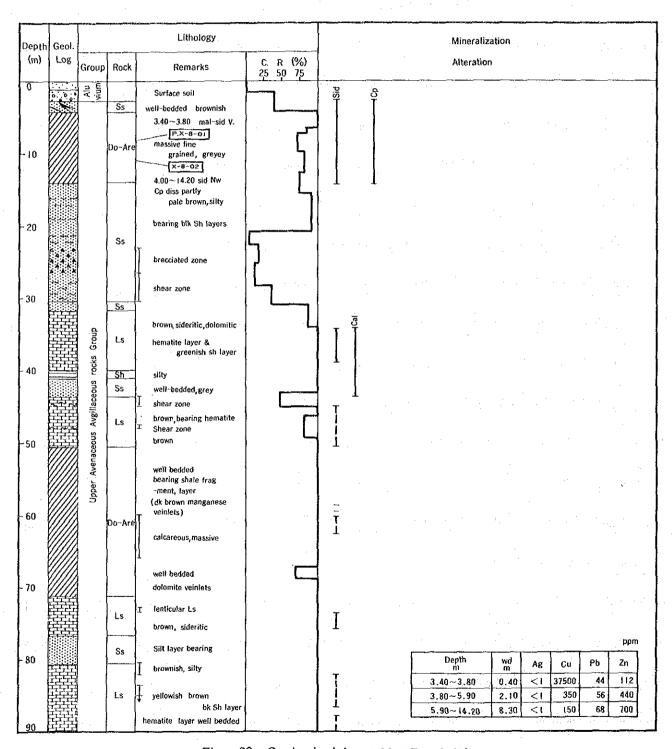
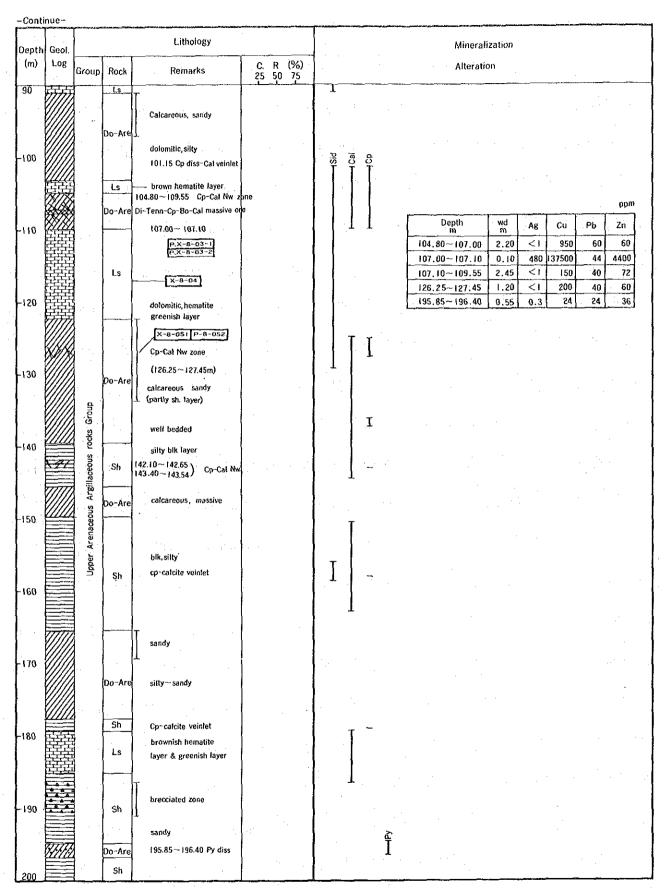



Fig. 23 Geological Log MJZ-8(I)

MJZ-8(1)

Depth	Geol.			Lithology				Mineralization		
(m)	1.og	Group	Rock	Remarks	C. R (%) 25 50 75		: -	Alteration		
200				·			, , , , , , , , , , , , , , , , , , , ,			
				Alth (Sh and silt)		Cal	Py.			
-210			Sh	brecciated			-			
-220				.1 silty shale		=				٠
				·					•	
-230				231.77~231.90 Cp-Py-Cal Nw Conglomeratic			<u> </u>			
-240		Group		pebble gravel~granule [Sitt,sitty Ss pl. green sitt)						
		is rocks Gr		calcareous 1 matrix:sandy (229.00~264.75m)						٠
-250		Argillaceous rocks	Sh .	254.65 <i>~</i> 256.94				Denth Wd .		pp
		aceous A		Py-drs Cat Nw dolomitic arenaceous drs Cat Nw		Ī	- _I	Depth wd M Ag 231.77~231.90 0.13 0.3 254.65~256.40 1.75 0.1	Cu Pb 120 28 88 24	Zn 48 52
-260		Upper Arenaceous		x-8-0G 260.20~260.35 Py diss dis Cal NW		Ī	=	256.40~256.94 0.54 (0.1 282.49~282.98 0.49 0.6	24 30 26 28	31
		ם		uis our nav			-	282.98~283.62 0.64 0.3	16 24	2
-270		·							· · · · .	
				silty layer Aftn			-			
-280	•. •. •		Sh	282.49~283.62 Py diss	<u> </u>	Ţ	T			
	A A A			Conglomeratic			. 1			
-290					l.	:				.*.
-300 300.50							· · .			,
300.50									* *	1

M J Z – 8 (II)

Drill Hole No.	MJZ-11	Inclination	45°
Location	Sable Antelope	Bearing	20°
Elevation	Approx 1200 m	Term	Sept. 21~29 '86
Depth	300.50 m	Core Recovery	95.3%

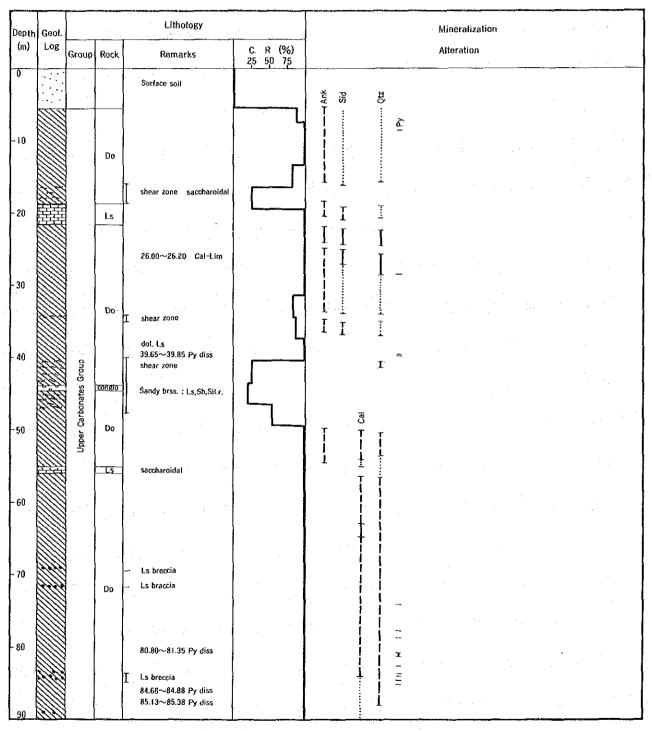
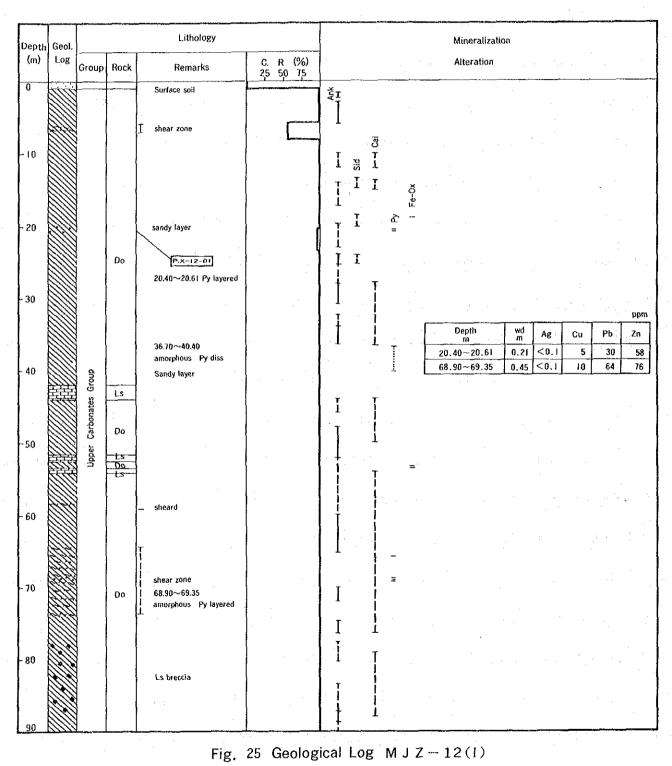


Fig. 24 Geological Log M J Z \sim 11 (1)


epth	Geol.			Lithology		•					Mineraliza	tion				
(m)	l no i	Group	Rock	Remarks	C. 25	R (%) 50 75] ,				Alteration					
90	7777	Do-	Ls	brecciated Ls.	· - · · · · ·	_ll		Çă				·				
									<u>1</u> 0	ح.						
			Do							II Py						
00							[
			Ls	brecciated dof. Ls												
			Do				Ì			Ξ	• •					
10	朔		Ls Do	brecciated												
			Ls	brecciated			 									٠
			Do	i T	-		ļ ·			==						
20										=						
			Ls	brecciated 124.50~124.80 Py			.			=						
			Do	125.75~127.50 Py Nw 128.45~128.80 Py diss						· I						
30			t:s	I brecciated]			Ξ						
			Do Ls	brecciated		.*										
			1.5	<u>1</u> π												
40		5	Do	brecciated			-				Depth	wd	À.;;	·	Pb	ρ, Zn
40		Group	1.5	140.97~141.27 Lim-Cal Nw 143.73~143.93 Lim-Cal Nw					_		m 125.75~126.40	m 0.65	Ag 0.1	Cu 12	56	7
		Carbonates		P-11-02-2					_	='	126.40~127.50	1.10	0.1	18	46	5
		S.		145.03∼145.40 Py v, Nw				Š			145.03~145.40 169.63~170.18	0.37	0.1	220 44	176	
50		Upper		151.47~153.23 Py diss compact				I.	٠	Ť	170.86~171.23	0.37	0.1	40	60	10
				153.50~153.84 Py diss						I						
			'	154.22~154.68 Py diss												
60] . }							
			Do-Are	Mn (?) Ls:pinkish				4.	l I	=			-			
				164.10~164.30 Py veinlet 164.50~165.05 Py diss						_	•					
70		·		P.X-11-11-03 169.63~170.18 Py Nw			1		- .	=						
				170.86~171.23 Py Nw Ls & arena.r, foliated					F	æ						
				x-11-04 conglomeratic, matrix sdy.] !	Ξ						
				175.02~175.32 Py Nw 178.95~179.70 Py diss Mn (?)				•	_	T						
80				180.11~180.80 Py layered					:	I =				,		
			.5	P.X-11-05				-	Ī							
		,		[-X-11-00]						. •						
90				massive							•					
			Do-Are	Higasire	٠.		•	11							:	
	(////		[sil breocia (?) bearing			1		 				* *			

M J Z - 11 (I)

Depth	Geol.			Lithology		•					Mineraliza	tion				
(m)	LAG	Group	Rock	Remarks	C. R (%) 25 50 75						Alteration					
200				sit breccia (?) bearing												
-210			Do-Are					70,	: Å					:		
			:	212.40~213.70 Py diss P.X-11-07					I							
-220			Ls	220.53~221.18 Py diss ms.					-							
i				limy 227,95∼228.30 Py diss		Pis	2		: ; H				. •			
-230				9			I	_			•					
				milky			1	٠								
-240				Ţ] -						٠.			
nkn		s Group		Cal veinlets		1	- ¦	_								
-250		Carbonates	,	— drusy Cal vein		1		: .						•		
260		Upper	Do-Are						_						:	
:				T Mn (?) Ls Tilm bearing			i						:			
-270			 	270.50~270.80 Py. 272.05~272.30 Py layered 272.76~272.98 Py layered					æ Æ	<u> </u>	Depth m	wd m	Ag	Cu	Pb	_
				l L milky, partly pinkish film bearing			: . T		*	272.	40-213.70 05-272.30 76-272.98	1.30	0.1 0.1 <0.1	76 64 52	120 84 96	_
-280				282.40~283.90 Py diss			1 1		I		.5 612.30	V. č.C	<u> </u>			_
				285.40~287.90 Py diss matrix;sdy			Ţ		I							
-290				brecciated (?)			Ī	·.		٠.						
				1			Ţ			÷				٠,		
-300 · 300.50	<i>[[][[</i>]	 			 	4	•								-	
	•			e de la companya de l											٠.	

M J Z − 11 (II)

Drill Hole No.	MJZ-12	Inclination	90°
Location	Sable Antelope	Bearing	
Elevation	Approx 1200 m	Term	Oct 4~9 '86
Depth	200,60 m	Core Recovery	99.4%

-Conti	nue-
--------	------

	Geol.			Lithology		}		Mineralization
(m)	Log	Group	Rock	Remarks	C. R (%) 25 50 75		•	Alteration
90				fine grained		Ank	φ	
						 	I I Fe-Dx	
			Do				_	
-100							了 I	
·			 -	· .			Ţ	
				saccharoidal	r .		1.	
'	安强		١.	311001111111111111111111111111111111111				÷ .
-110			Ls					
				grey lamina				
	77777		-	Ĺ		S I		
:						1		
-120		i		I			· ·	
				125.77~125.82			<u> </u>	
				Py diss milky color				
-130				compact.				
				125.98~126.02 Py diss				
:			Do-Are				Ì	•
				partly drusy		਼	†	
-140			l. i			\ \ \	ļ	
	<i>{////}</i>					I		
						1	* -t.	
				T Ls breccia				
-150:	////					1	_	
						1 7		
*		•	+:					
-160	盘			dotomitized (impure)			÷	
			Ls					
						T T	1	
			-				· 	
-170			Do-Are	milky color compact		}.	=	
٠.			<u>Ls</u>	Ls, laminated			+ -	
			Do-Are					
-180				T dolomitized		I		•
	題			dalomitîzed		Ţ		
	題		Ls	r r		1		
- 190	選	17.						
130							-	
	国国					200		
			Do-Are	milky color compact		ΙΙ	 !	
200		ļ	L ₆			* +	L 1.44	

M J Z − 12 (I)

sandstone)

At depths of 46.23 - 46.41m (Cu 1220ppm), 47,29 - 47.66m (Cu 3600ppm), 48.00 - 48.41m, 49.62 - 52.05m, 53.45 - 58.50m, dolomite and calcite stockworks bearing mainly chalcopyrite. Tetrahedrite and rarely pyrites are found.

At a depth 127.82 - 137.55m, there is a strati-formed pyrites impregnation and calcite veinlets. It appears to be S 1 to 2%. At depths of 183.50 - 183.70m, 197.77 - 198.20m, and 251.05 - 256.96m, chalcopyrite partly associated with pyrite is recognized to disseminate in drusy calcite veinlets. At a depth of between 256.50 and 256.86m, Cu was 1900ppm and Zn was 940ppm.

At depths of 279.51 - 277.62m, 280.56 - 281.63m, and 292.20 - 292.49m (Cu 320ppm, Zn 700ppm, Pb 124ppm), there was a dissemination by chalcopyrite and pyrites.

Down to a depth of 30m, there are siderite veins and further down sideritic calcite veins or dolomitic calcite veins developing with the mineralization occur mainly in the arenaceous rock.

2-3-2 MJZ-8 Hole

Depth 0 - 2.70m Laterite

" 2.70 - 122.00m Mainly arenaceous rock (sandstone) with a number of layers of intercalated limestone

" 122.00 - 300.50m Mainly black shale intercalating a thin layers of fine-grained arenaceous rock (sandstone) in the shallow part

At a depth of between 3.40 and 3.80m, azurite, malachite and siderite were observed indicating Cu 3.75%, Zn 112ppm and Pb 44ppm.

At a depth of between 3.80 and 14.20m, veins and veinlets of dolomitic calcite and siderite was found, slightly companied with chalcopyrite.

At a depth of between 104.80 - 109.55m, dolomite and calcite veinlets are developing, and they are disseminated slightly by mainly chalcopyrite. At a depth of between 107.00 and 107.10m, there is a massive sulphide ore composed of bornite and chalcopyrite shows latticed ex solution texture, as well as tennantite, digenite and pyrites indicating Cu 13.75%, Zn 4400ppm, Pb 44ppm and Ag 480g/t. There was Cu 950ppm at a depth of between 104.80 and 107.00m. Chalcopyrite bearing dolomite and calcite veinlets were also found at depths of between 126.25 and 127.45m, and between 142.10 and 142.65m.

At a depth of 185.00m and deeper, fine flake like laminated pyrites were often observed along the schistose black shale. At depths of between 231.77 and 231.90m, and between 254.65 and 264.75m, chalcopyrite bearing calcite veinlets were found, indicating a maximum of Cu 120ppm. At a depth of between 282.49 and 286.90m, siderite and calcite veinlets were observed.

2-3-3 MJZ-11 Hole

Depth 0 - 1.50m Laterite

1.50 - 142.70m

Mainly medium-grained dolomite with intercalated thin layers of limestone and brecciated and sheared zones Mainly dolomitic arenaceous rock

" 142.70 - 300.50m

(fine-grained

sandstone)

Powderly or laminated pyrites were observed mainly in the brecciated zones at depths of 124.50 - 128.80m, 140.97 - 145.40m, 151.47 - 153.84m, 164.10 - 180.80m, 212.40 - 213.70m, and 270.50 - 272.98m, and they are estimated to be 2 - 3% S.

(Cu 220ppm, Pb 60ppm and Zn 184ppm were observed at a depth of between 145.03 and 145.40m), and Cu 44ppm, Pb 176ppm and Zn 44ppm at a depth of between 169.63 and 170.18m.

In the shallow part, there was a tendency for ankerite (about 50m and shallower) and siderite (about 90m and shallower) to develop.

2-3-4 MJZ-12 Hole

Depth 0 - 1.00m Laterite

1.00 - 102.05m Mainly medium-to-fine-grained dolomite with

intercalated arenaceous rock (sandstone),

and limestone

102.05 - 200.60m Partly-striped massive limestone and

arenaceous rock (fine-grained sandstone)

Stratiformed pyrites are observed at depths of 36.70 - 40.40m, and 68.90 - 69.35m (Pb 64ppm, Zn 76ppm). Specularite veinlets are observed, apart from pyrite zone.

Ankerite is developing to a depth of 95m from the surface.

CHAPTER 2 KAMIYOBO AREA

1. Geophysical survey

1-1 Purpose and area of the survey

Two anomalous zones have been delineated in Kamiyobo area by geological survey and geochemical prospecting of Cu, Pb and Zn in the second year. The anomaly at the southwest was judged promising, being composed of many anomalies high in Cu, Pb and Zn values.

The SIP method was conducted in this year to delineate a depth and inclination of ore deposits which might be intersected by drilling.

Three lines M, N and O of one kilometre each were laid down to traverse an area of about 0.3 square kilometres as illustrated in Fig.26.

1-2 Survey and analysis

The geochemical anomaly being as a target of the SIP survey in this year is a highly anomalous zone in Cu, Pb and Zn extending more than one kilometre and its centre being more than the value of the mean plus a triple of standard deviation is of some 300m in length. No outcrop has been observed on the surface, but due to an existence of magnetite around the anomaly, it was assumed that an effect of weathering would be rather small and a primary sulphide deposit might occur.

1-2-1 Sections of PFE and AR (Fig. 27)

Anomalous zones of 3 to 4%PFE were broadly detected in central parts of lines M, N and O. These zones have similar contour patterns of PFE and depths of top are considered to be about 150m. The AR of the anomaly ranges from 300 to 500 ohm-m but the AR in the east of each line exceeds 1,000 ohm-m and it becomes less than 300 ohm-m in the west. The anomaly is located in a middle of these ends.

1-2-2 Plans of PFE and AR (Fig. 28)

The anomaly was located in the central part of each line with a N-S elongation. A zone of more than 4%PFE at N=3 roughly coincides with the centre of the geochemical anomaly.

The AR in the zone of PFE anomaly ranges from 300 to 500 ohm-m and becomes more than 1000 ohm-m in the east or less than 300 ohm-m in the west where no PFE anomaly has been detected, reflecting strongly a difference of geology.

1-2-3 Phase section (Figs. 29 to 31)

Anomalous zones of phase ranging from -20 to -30 mrad were delineated in each of lines on the area of 3 to 4% PFE. One the line M, areas of -20 mrad appear both in a field of phase decrease to the west of No.4 and in a field of phase increase at a change from 0.125 to 0.375 Hz. On the line O, an area of -20 mrad is situated in the field of phase decrease. From a reference to rock properties in the laboratory, anomalies in black shales on line M can be distinguished in a zone of pyrite dissemination and in a zone without mineralization. The anomaly of line O is deemed to indicate a zone of pyrite dissemination.

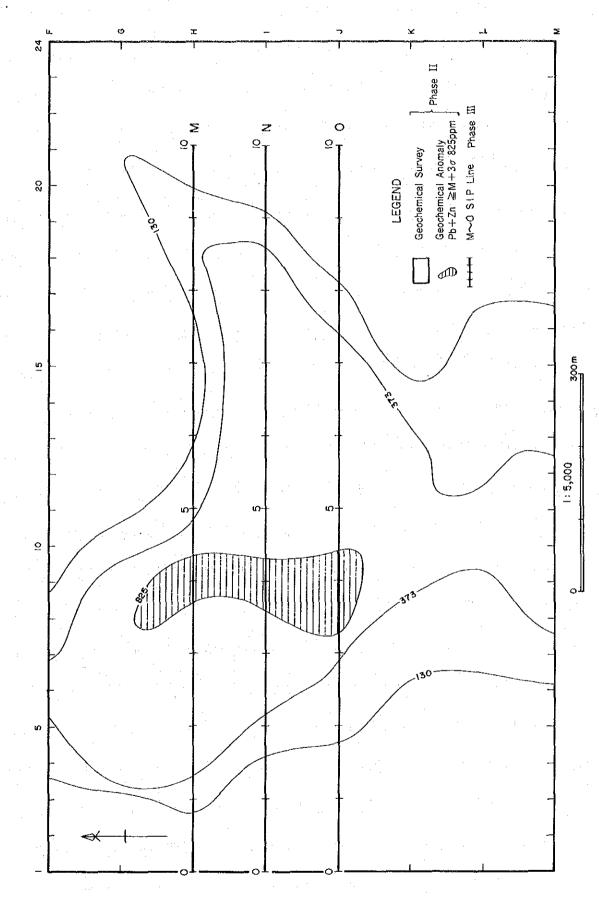


Fig. 26 Location Map of SIP Survey Line in Kamiyobo Area

1-2-4 Diagrams of various spectra (Figs. 32 to 34)

These diagrams of spectra give characteristics over the whole range of frequency from 0.125 to 88 Hz. Almost data show a tendency to increase phases in accordance with an increase of frequency in the field of high frequency. The phases in the field of low frequency are of great interest as pointed out in the previous section.

All magnitude spectra have a tendency to decrease in accordance with an increase of frequency without giving a specific useful information.

1-2-5 Decoupling (Figs. 29 to 35)

As indicated in the case of Sable Antelope, a part of information of IP response in the range of low frequency seems to have been lost after a correction of electromagnetic coupling in the range of high frequency.

The most useful information seems to be provided by raw data of phase spectra in the range of low frequency.

1-2-6 Simulation (Fig. 36)

Lines of M, N and O give similar patterns of PFE contours. The simulation was conducted on line O which showed the broadest anomaly. An existence of mineralized zone is expected in a central part of the line, dipping to the east.

2. Drilling Survey

2-1 Outline of the Drilling Survey

2-1-1 Location of the drill holes and the condition of drilling

The drilling of 2 holes in this area was conducted in the
geochemical and geophysical anomaly zone of the southwestern area.

The locations and geological section of the drill holes are shown in Figs.37 & 38 and the condition of drilling in Table 10.

Table 10 The List of the Drillings (Kamiyobo Area)

Drill Hole No.	Depth (m)	Inclina- tion	Bearing	Depth of Laterite (m)	Length of Core (m)	Core recovery (%)	Term Start- ing	Comple- tion	Explora- tion Target
JHZ-9	300.5	-45°	90°	6.0	285.2	96.8	23 Aug.	31 Aug.	IP anomaly zone and geo- chemical anomaly zone
MJZ-10	300,5	-45°	270°	19.0	269.8	95.8	4 Sep.	13 Sep.	Ditto

Core Recovery = $\frac{\text{Length of Core}}{\text{Depth - Depth of Laterite}} \times 100$

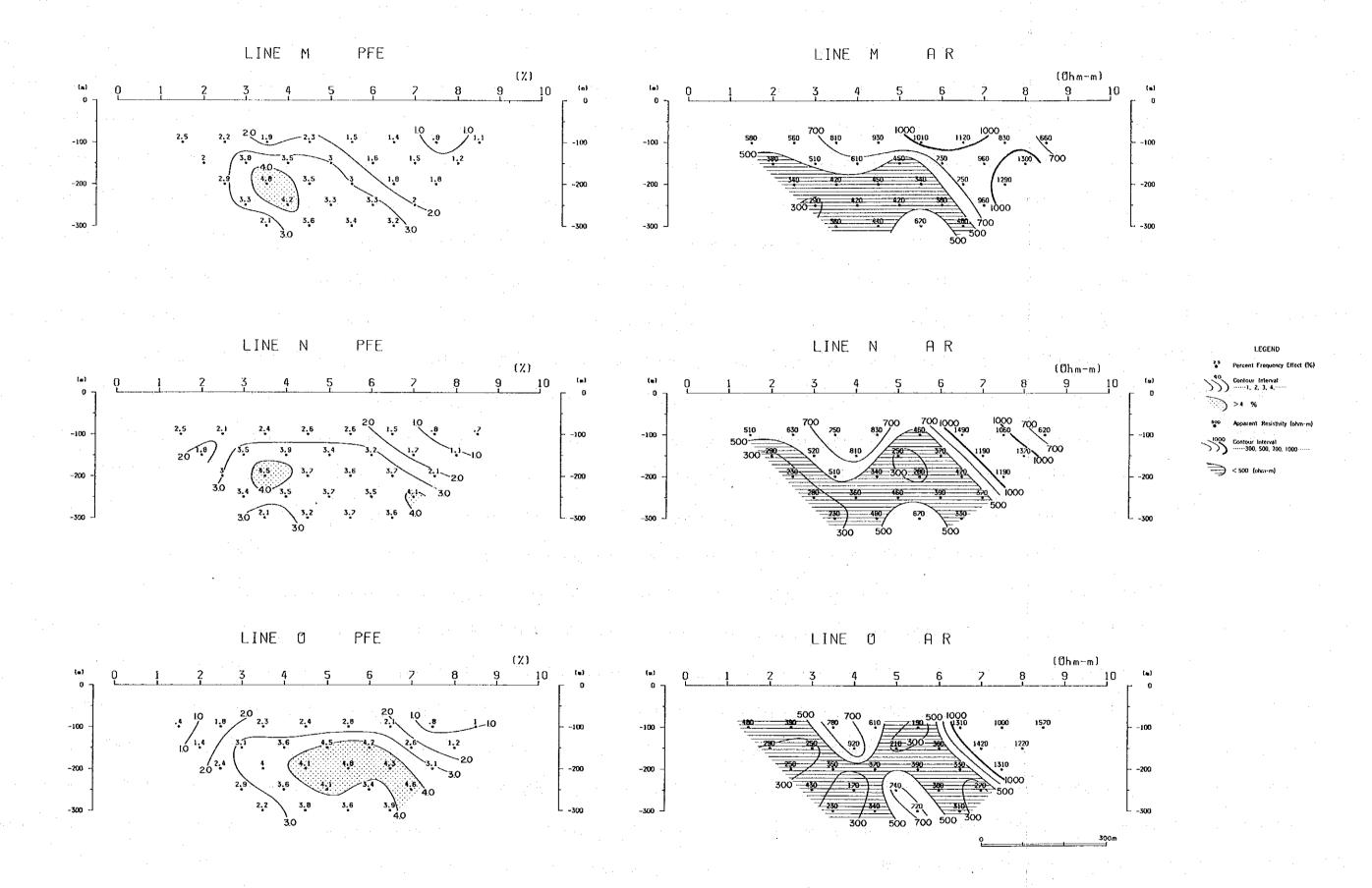


Fig. 27 Pseudo-Secition of PFE & AR (Line M, N, O)

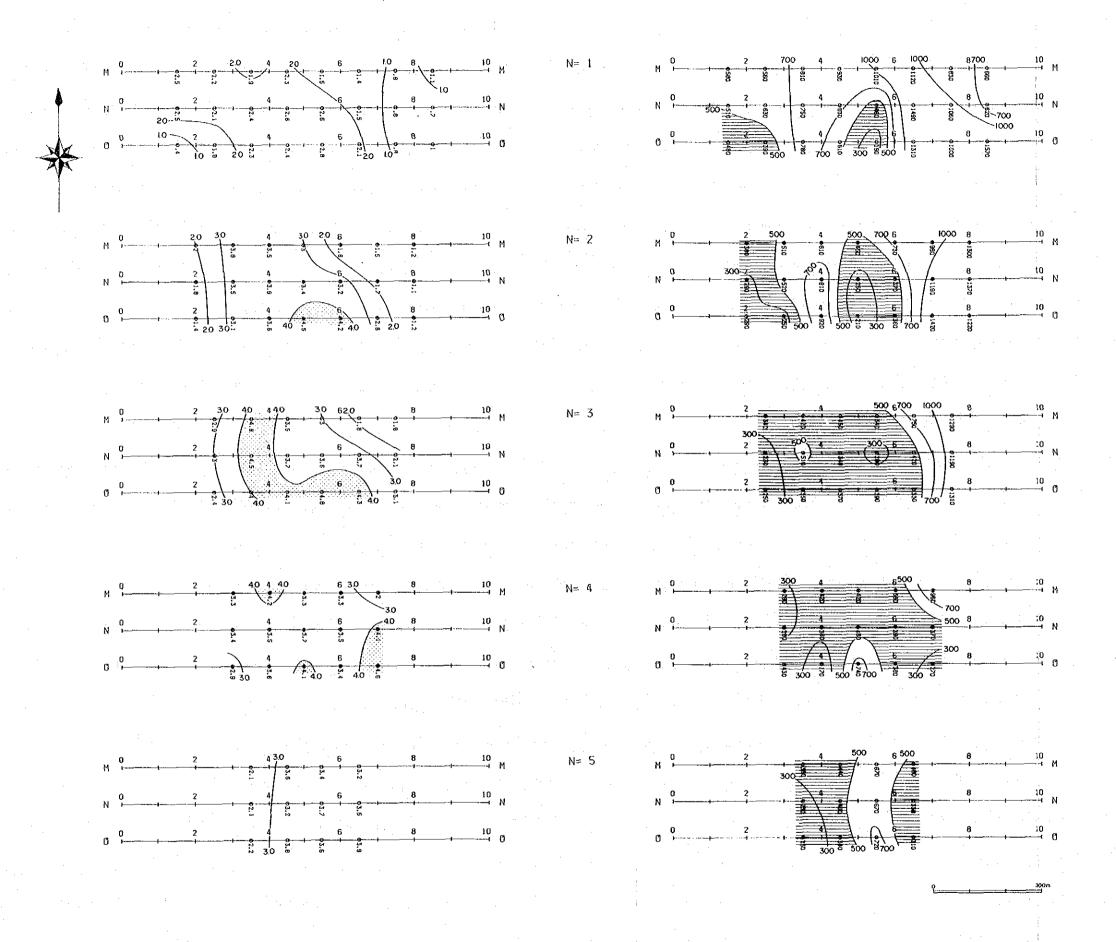


Fig. 28 Plan Map of PFE (0.125-1.0Hz) & AR (0.125Hz) (n=1-5)

20 1 + 6+1 Percent Frequency Effect (%)

Fig. 29 Phase at Five Freguencnes Line M

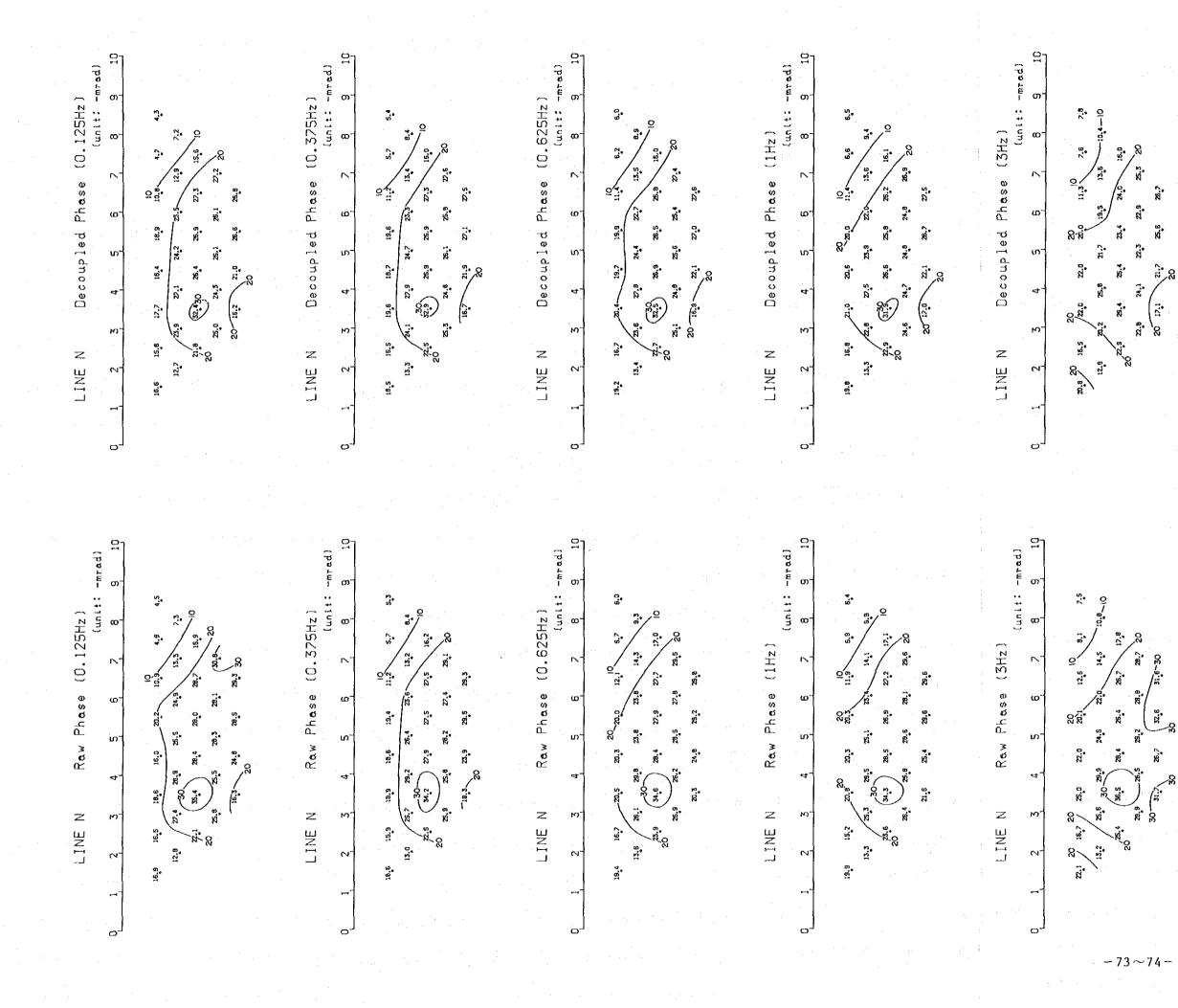


Fig. 30 Phase at Five Frequencies Line N

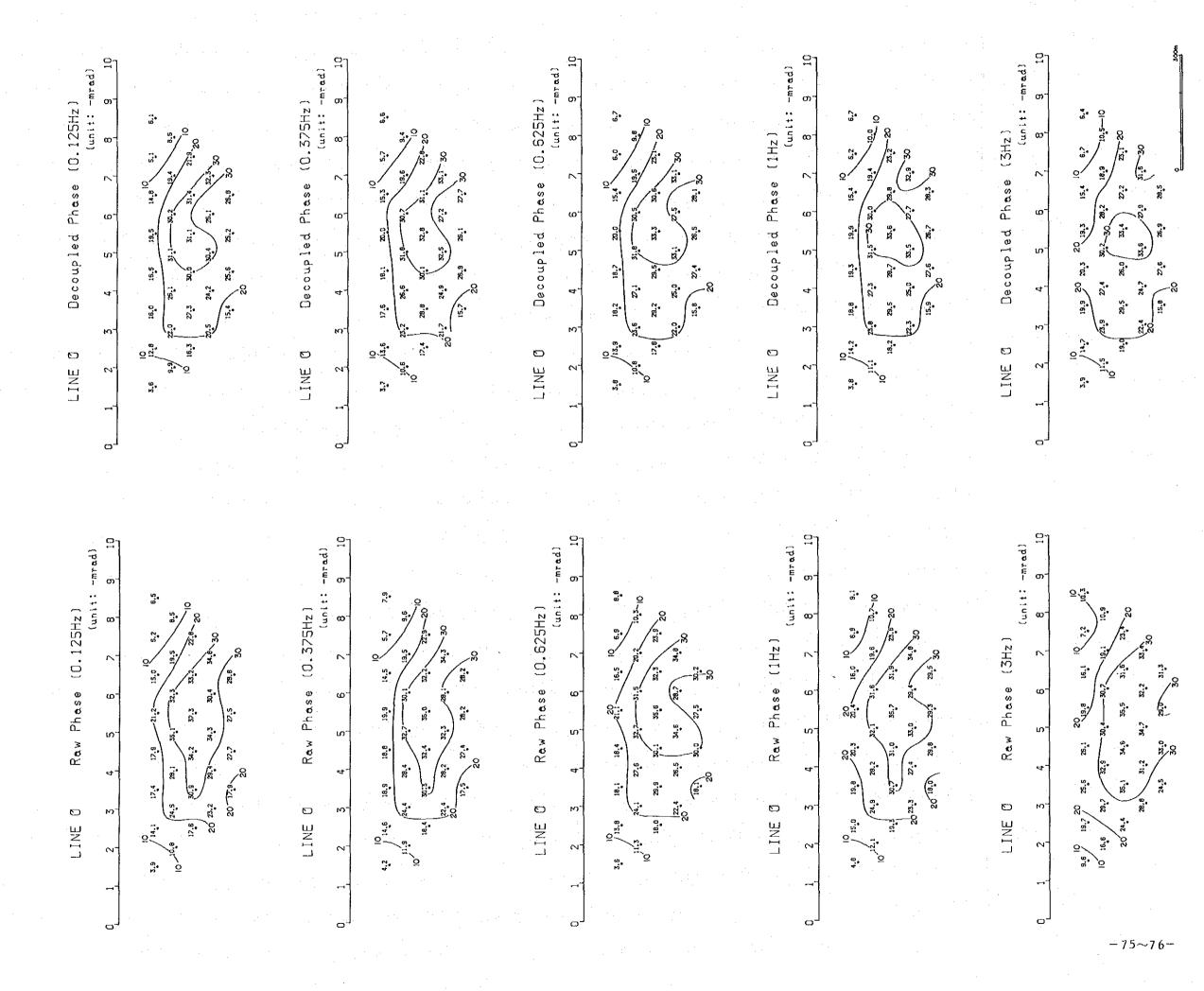


Fig. 31 Phase at Five Frequeucíes Line O

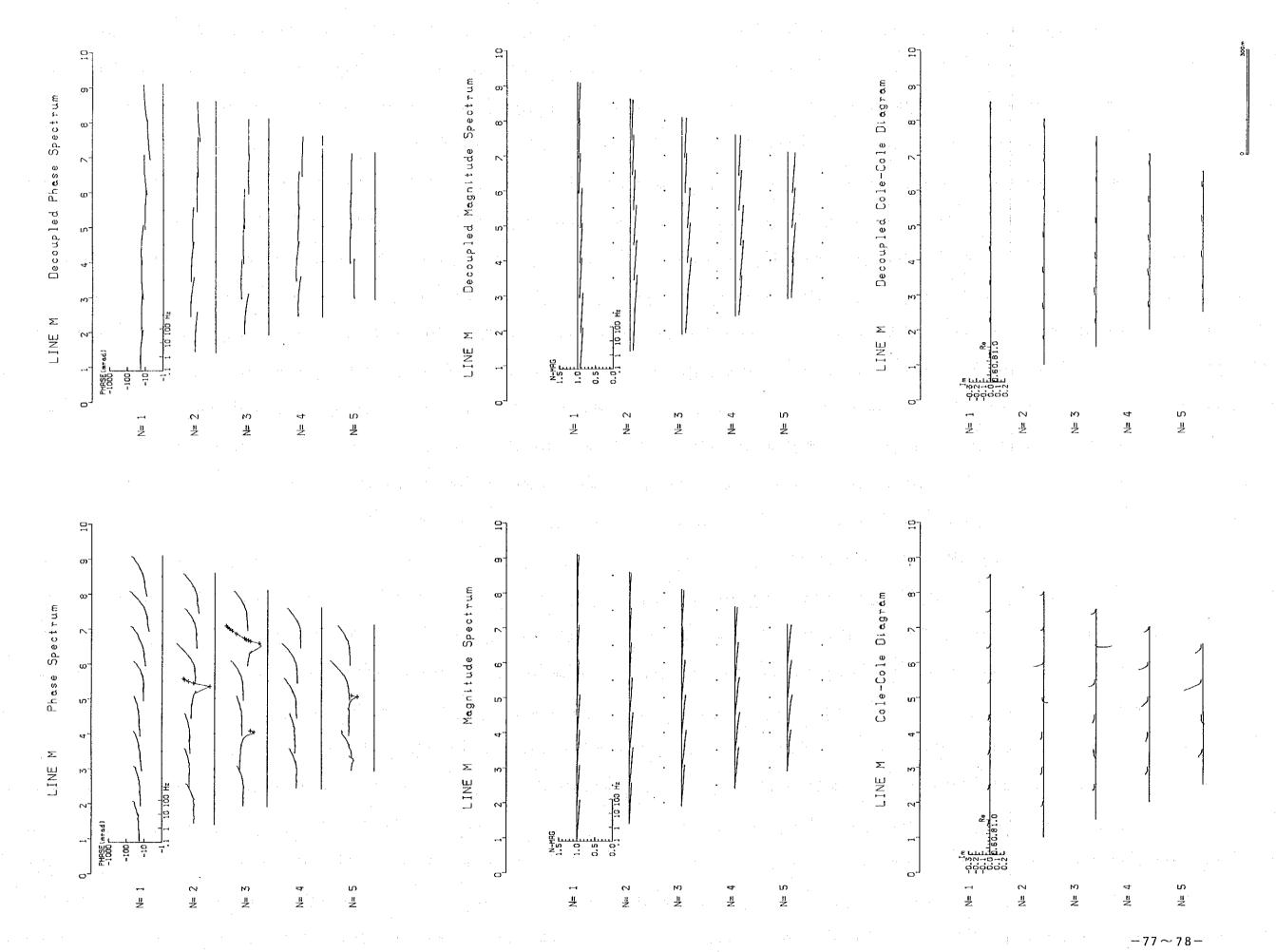
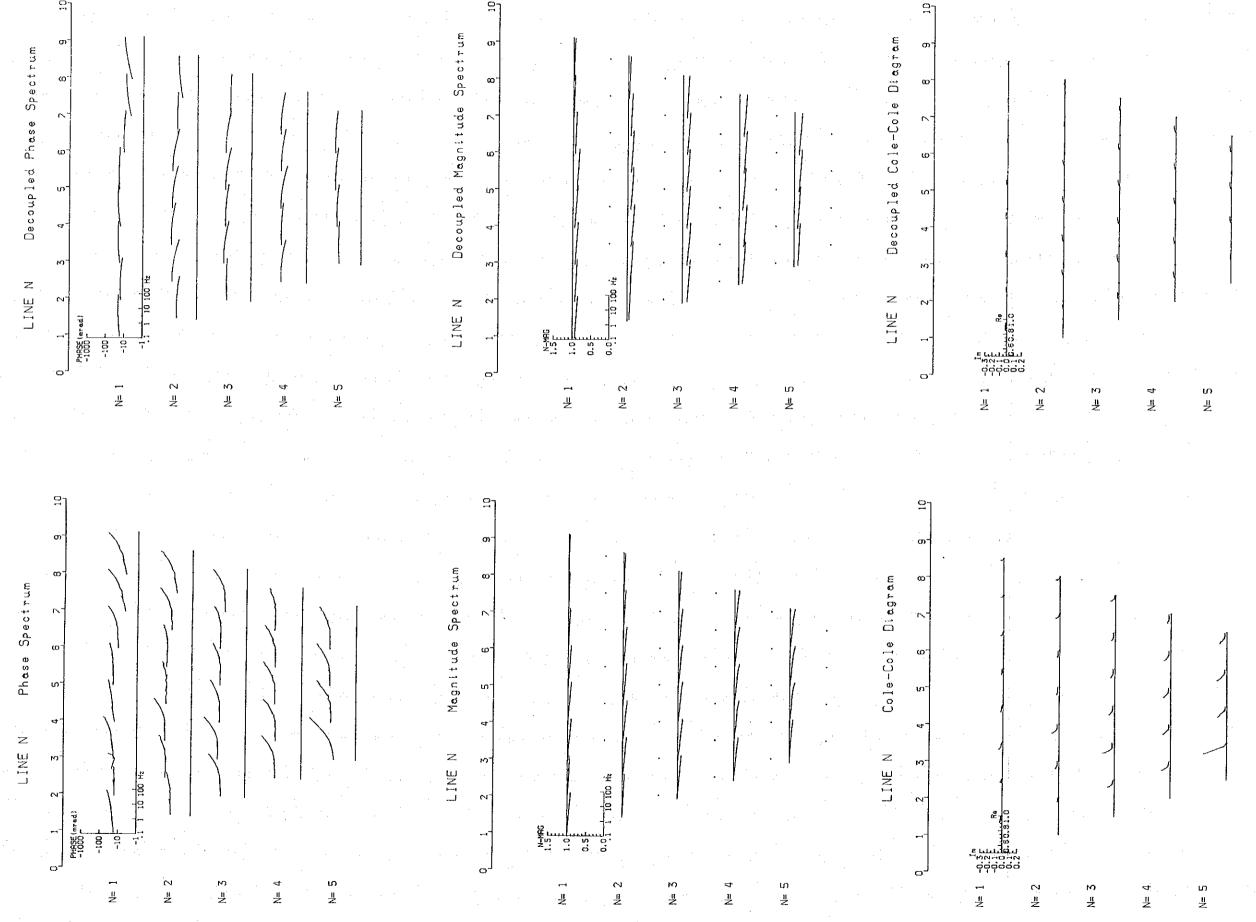



Fig. 32 Phase, Magnitude & Cole. Cole Spectrum Line M

-79~80-

Fig. 33 Phase, Magnitude & Cole. Cole Spectrum Line N

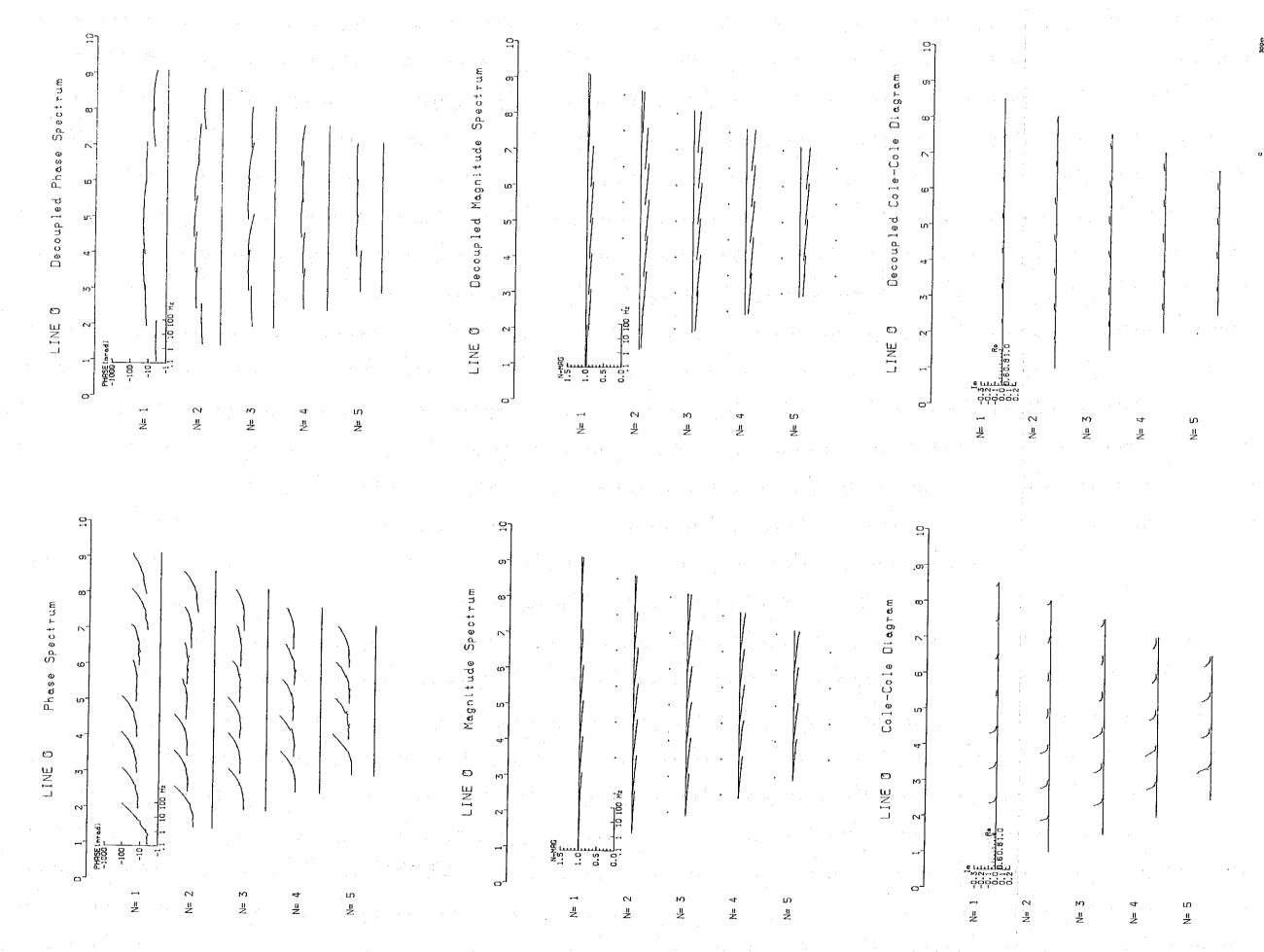
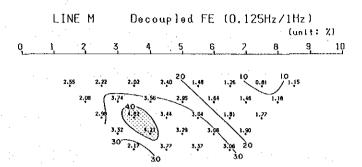
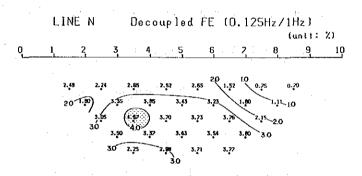




Fig. 34 Phase, Magnitude & Cole. Cole Spectrum Line O

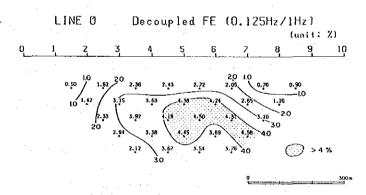


Fig. 35 Decoupled PFE Line M, N, O

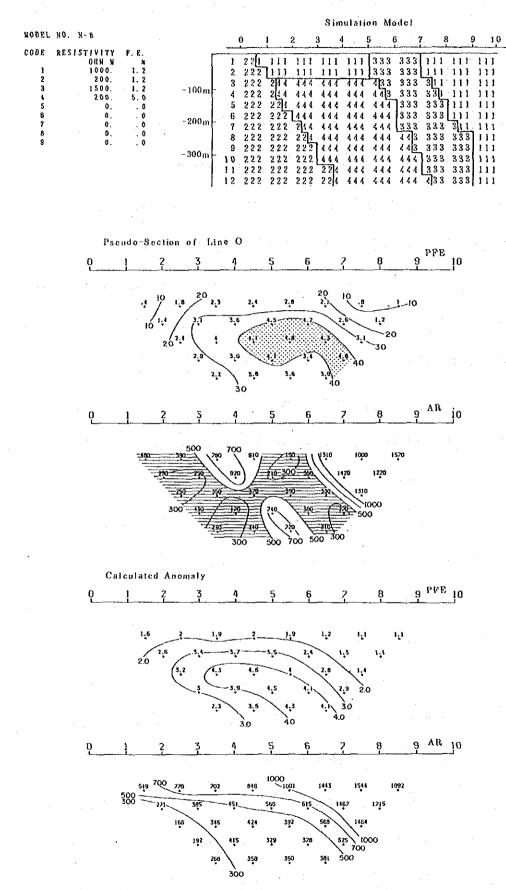


Fig. 36 Result of Model Simulation Line O

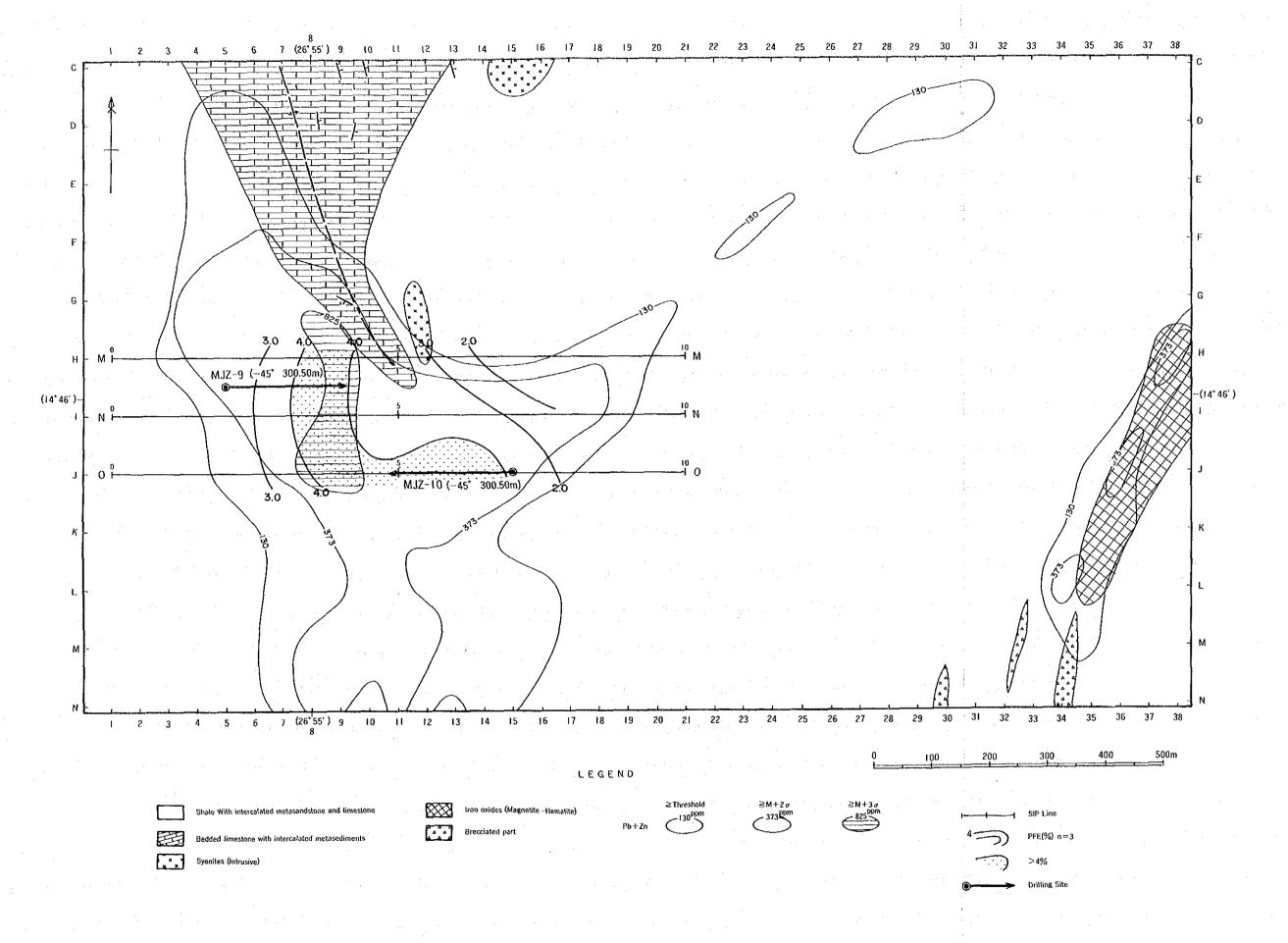
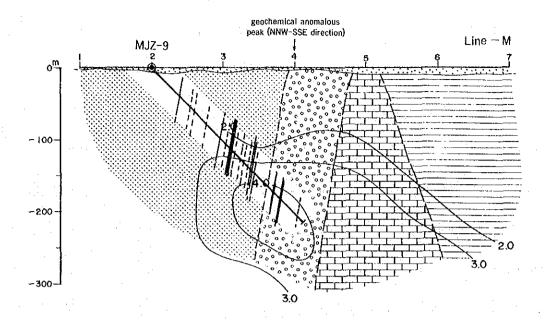
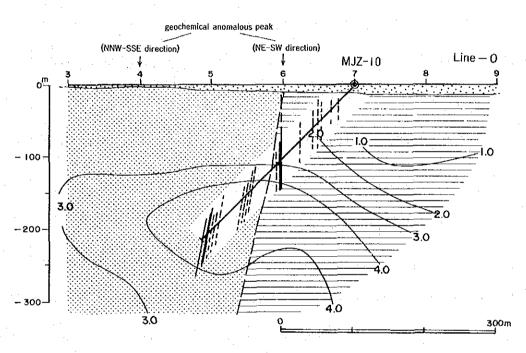




Fig. 37 Lacation Map of Drillings in Kamiyobo Area

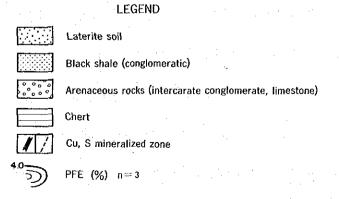


Fig. 38 Geological Section in Kamiyobo Area

2-1-2 Surface Geology

The geology of this area consists of bedded limestone of the upper carbonate rocks, shale of arenaceous, argillaceous rocks overlying the above carbonate rock, and syenite porphyry intruding these rocks locally in small scale (Fig. 37).

In the vicinity of the drilling site exists the bedded limestone which, being a core at the top of an anticline, is distributed over a small area. These rocks are intercalated by a few millimeters thick of sandstone. These rocks alternate or interfinger with the fine-grained sandstone and chert. Shale which is exposed relatively well in the west is reddish-brown to yellowish brown in color. The rock contains medium to fine-grained sandstone and partly has a conglomeratic appearance, particularly near the bedded limestone.

The geological structure strikes N20°W dips 80°W in the west. The above-mentioned anticline is assumed to strike NNW-SSE and plunges SSE. The east is not known in detail.

In the vicinity of the drilling site, limonite and hematite veinlets are observed with a thickness of a few centimeters. In the east area, however, there are outcrops of hematite and magnetite, and in the north of this area the Kamiyobo mineralized zone, a predominant effect of copper mineralization is confirmed.

The geochemically anomalous zone extending for more than lkm in NNW-SSE (Fig. 37) consists of anomalies of Cu, Pb and Zn elements. Pb+Zn geochemical anomalous zones are composed of two different elongation peaks: an elongation NNW-SSE in the west and a NE-SW in the east. The anomalous value of the former elongation is highest, and its total length of the central part (M+3 σ) is approximately 300m.

- 2-2 Drilling operation
- (1) Drilling Method
 Same as described in Chapter 1, 2-2 (1)
- (2) Rig and Materials
 Same as described in Chapter 1, 2-2 (2)
- (3) Operation
 Same as described in Chapter 1, 2-2 (3)
- (4) Results of drilling Progress
 The results of the drilling progress classified by hole are shown in
 Tables 11 to 12, the overall results of the drilling operation in
 Tables 13 to 14, and the drilling work schedule in Figs. 39 to 40.
- 2-3 Geology and mineralization of the drill holes

The drilling logs for the MJZ-9 and MJZ-10 are shown in Fig.41 and Fig.42 and the results of a chemical analysis, a microscopic observation of polished section and X-ray diffractive analysis of the mineral are shown in Ap.Tables 9 to 11, respectively.

2-3-1 MJZ-9 Hole

Table 11 Record of the Drilling Operation on MJZ-9

		Dril	ling lengt	h	Tota	n1	Shift	t .	Working	man
		Shift, l	Shift. 2	Shift. 3	Drilling	Core length	Drilling	Total	Engineer	Worker
Augus	t	m	m	m	m	tn _i	shift	shift	man	man
	.17	Pds.						- \		
4.5	18	Transpor.						ļ		
	19	Transpor.					1			
	20	Transpor	ļ., ļ				Ι .			
	21	Reassemb.			·			i		
	22	Reassemb.	,				! !			
	23	12,00	13.20	6.30	31.50	19,60	3	9	28	119
	24	4.70	12.40	12.30	29.40	27.20	J			
	25	15.00	9.20	15,40	39.60	39.00	ĺ	ļ		
	26	18.00	15.00	10.40	43.40	42.80	l.			
	27	6.90	13.40	14.20	34.50	34.50				
	28	12.00	12.00	15.00	39.00	39.00	i [·		
	29	12.00	10.80	13,20	36.00	36.00		Ī		
	30	12.00	12.00	6.00	30.00	30.00	21	21	28	103
	31	9.00	8.10	Out-C.P	17.10	17.10				
Septem	ber	}	ł		[ļ		
	1	Dismant			:		2	. 4	. 7	27
Tota.	1	101.60	106.10	92.80	300.50	285,20	26	34	63	249

Table 12 Record of the Drilling Operation on MJZ-10

	Dril:	ling lengt	h .	Tota	1	Shift		Working	man
	Shift. 1	Shift. 2	Shift, 3	Drilling	Core length	Drilling	Total	Engineer	Worker
September	m	m	. 60	m	m	shift	shift	man	man
2	Reassemb	1		i .	1	1 1			
3	Reassemb.				ŀ				
4	19.50	12.00	10.50	42.00	18.60				
. 5	10.50	12.00	13.00	35.50	28.50	1			
6	8.00	12.00	9.00_	29.00	28.70	9	11	20	79
7	12.00	12,00	10.50	34.50	34.50	•			
. 8	7.40	12,00	9.00	28.40	28.40	1 1			
9	9.00	12.00	10.50	31,50	31,50	1			
10	750	9.00	9.00	25.50	25.50				
11	9.00	8.00	7.00	24.00	24.00	1			١.
12	12.00	12.00	9.00	33.00	33.00]			
13	9.00	8.10	Out-C.P.	17.10	17.10	20	21	28	109
14	Dismant.						1	3.	15
Total	103.90	109.10	87.50	300.50	269.80	29	33	51	203

Abbrevlation

Pds. : Preparation for drilling site

Reassemb. : Reassemblage

Transpor. : Transportation

Dismant. : Dismantlement

Table 13 Summary of the Drilling Operation on MJZ-9

			·			~			<u> </u>	Total	m	ın day
					urvey	Τ	r	1 1				r
<u> </u>			Pe	eriod	· · · · · · · · · · · · · · · · · · ·	days	WO	rk day days	off day	Engine	er:	worker
	Prepara tion	17.3.	1986	5∿22.8	.1986	6		6	0	24		102
uo.	Drillin	23.8.	1986	n 31.8	.1986	9		illing 9	0	36	<u>:</u>	135
Operation	DETERM						re	cover- 0 ^{1ng}	. 0	0		0
o o	Removin	g 1.9.1	986	1.9.1	986	1		1	. 0	3		12
	Total	17.8.	1986	ο [^] 1.9.	1986	16		16	0	63		249
	Length	300.	00 ^m	Surfa soil	0ver-	6.	00 ^m	Cor	e recov	ery of	100	
ıgth	planned	<u> </u>		burde Quate				Dept		core	1	core ecovery
lengt	Increas		m	Core			m	ho.	1	recover (%)	У	umulatéd (%)
Drilling	Decrease in	e -		lengt	h	285.	20	0 ~	100	90.7	1	90.7
	length		-				%	100 ∿	200	99.4	1	95.2
Ä	Length drilled	300.		Core recov	ery	96.	8 %	200 ∿	300.5	100	1	96.8
	Drillin	g	14:	3°10'	66.3	51	% .5	Eff	iciency	of Dri	111	ng
	Other w	orking	70	0°30!	32.6	25	.4		m/work d(m/day	1	0m	/9 days m/day)
irs	Recover	ing		2°20'	1.1	0	.8	<u> </u>				26shifts
hours	Total		216	5°00'	100	77	.7	shift	(m/shif	t) (11.	55m	/shift)
in	Reasse	mblage	-54	4°00'		19	.4	Dri	lling l each si	ength/b zed bit	it)	411
Working	Disman	tlement	,	3°00'		2	.9	Bit si	ze HX	NQ		BQ
3	Water transpo	rtation	(156	5°00')				Drille lengt	1 T	00 138	.90	156.60
	Road co			. : :				Core lengtl	n -	128	.60	156.60
	G. Tota	1	278	8°00'		10	00					
ed	Size	meterag	ge di	eterag rillin ength		0 Rec					÷	
Casing pipe inserted		(m)	1.0	(%)		(%)				:	
ser	нх	5.00		1.	7	10	0					
Cas	NX	33.10		11.	0	10	0					
	BX	143.90		47.	9	10	0					

Table 14 Summary of the Drilling Operation on MJZ-10

Γ		able 14				, :				ion on	T	otal m	an 3	317
	:	:	n .	s eriod	urvey	7			nle dos-	off day			7	
-	Proper			ELTOG	··· ···	108	ays	wo	days	days		man	ī	nan
	Prepara tion	2.9.1	986∿	3,9.19	986		2		2	0.		8		34
uo	Drillin;	4.9.1	986∿	13.9.1	1986		10		111ing 10	0		40	1	54
Operation	DITTI		-					re	cover- 0 ing	0		0		0
o	Removing	g 14.9.	1986	∿14.9.	.1986		. 1		1	0		3		15
	Total	2.9.1	986∿	14.9.	1986		13		13	0		51_	2	03
년	Length planned	300.0	o m	Surfa soil burde	Over-	1	9.00	m	<i>-</i>	recov	ery	of 10		ole ore
length	Increase	5	m	Quate		-		m	Deptl ho			ore overy	recov	ery
, ,	or		. 111	Core		26	9.80		(m)			6)	cumu] (%)	
ling	Decrease in	2 -		lengt	h				0 ~	100		85.5	85	.5
Drilling	length	_	m	Comp				<i>aj</i>	100 ∿	200		00	93	.5
Α	Length drilled	300.5			ery	9	5,8	/6	200 ∿	300.5	1	00	95	.8
	Drillin;	g	164	°00 '		% 3	61.	% O	Eff	iciency	of	Drill	ing	
. :	Other wo	orking	76	°00'	31.	7	28.	2	II .	4.7				
hours	·	ing	240	°00'	100		89.	2			- i			
1 ' 1		nblage	20	°00'		\dashv	7.	4	Dri	lling 1	engi			
Working	-		9	°00 '		-	3.	4						 3Q
M	Water transpo	rtation	(166	Core recovery 95.8 % 200 ~ 200 100 93. 100 ~ 200 100 93. 200 ~ 300.5 100 95. 68.3 61.0 Efficiency of Drilling 200 ~ 300.5 100 95. 200 ~ 300.5 100 95. 200 ~ 300.5 100 95. 200 ~ 300.5 100 95. 200 ~ 31.7 28.2 Total m/work period(m/day) (30.50m/10day 200 ~ 100 39.2 Total m/total 300.50m/29shi shift(m/shift) (10.36m/shift 200 ~ 200 100 300.50m/29shi shift(m/shift) (10.36m/shift 200 ~ 300.5 100 95. 200										
		164°00' 68.3 61.0 Efficiency of Drill 240°00' 31.7 28.2 Total m/work period(m/day) (30.05) 300.50m 240°00' 100 39.2 Shift(m/shift) (10.36) 300.50m Shift(m/shift) (10.36)	159	.50										
	G. Tota	1	269	°00'			100	0						-,
) e	Size	meterag	se jai	TTTTU	e g × 10	1	Reco	ν -						
pipe		(m)	116	ength (%)		ľ	(%)	ĺ						
ing	нх	9.50		3.	2		100)						÷
Casing r inserte	NX	27.00		9,0)		100)						
	BX	141.00		46.	9	1	100)		* * .				

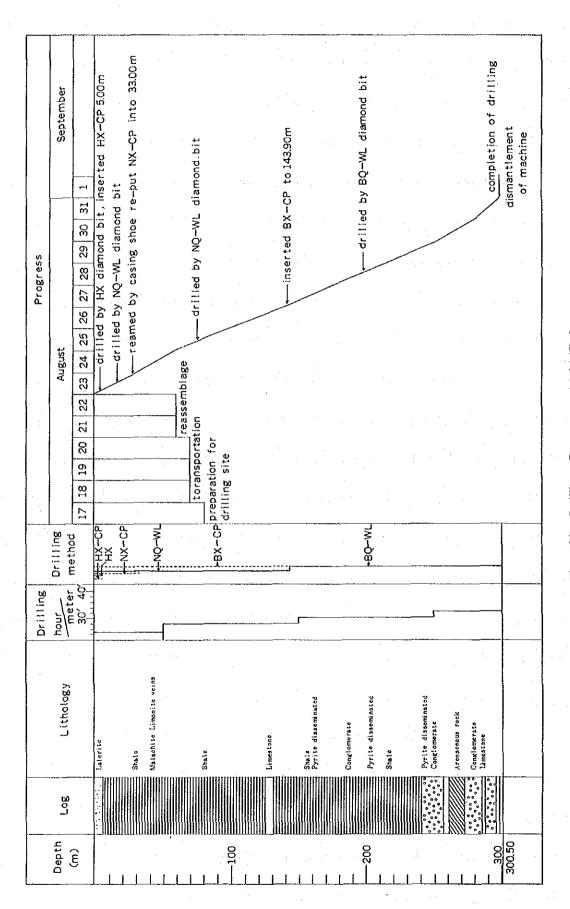


Fig. 39 Drilling Progress on MJZ-9

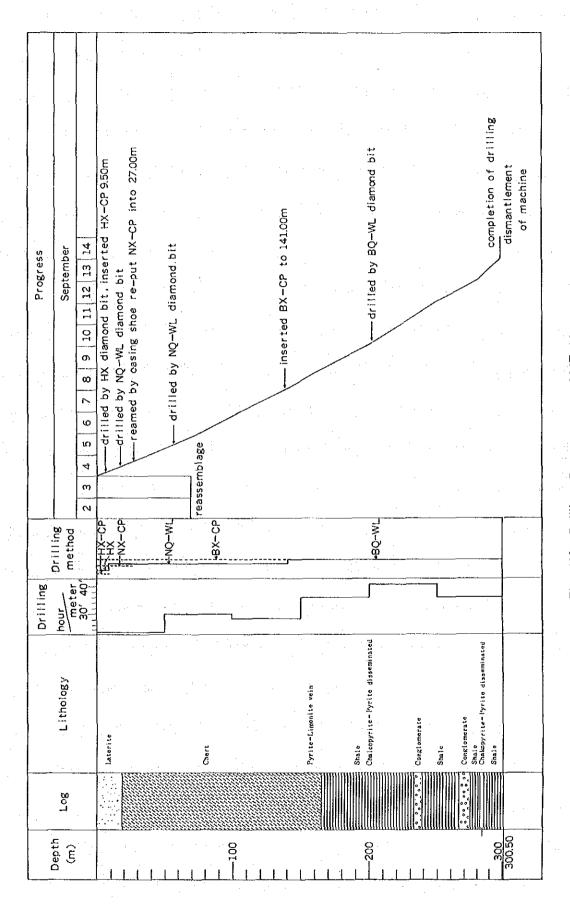


Fig. 40 Drilling Progress on MJZ-10

Drill Hole No.	MJZ-9	Inclination	-45°
L-ocation .	KAMIYOBO	Bearing	90°
Elevation	Approx 1200 m	Term	Aug. 23~Aug 31 '86
Depth	300.50m	Core Recovery	96.8%

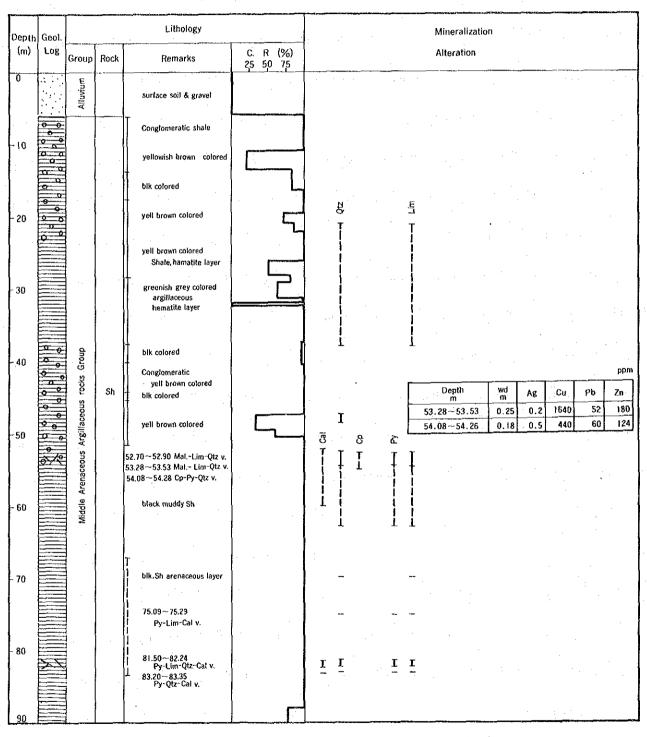


Fig. 41 Geological Log MJZ-9(1)

-Cont	linue-																
00-11	Con		. :	Lithology	- W Carlotte - Car				arrantord		<u> </u>	Minera	lization				
(w)	Geol.	Group	Rock	Remarks	C. R 25 50	(%) 75						Alterat					
90				greenish ~ brown ishgrey colored argillaceous											IA ROLL		
-100				blk-grey conglomeratic 100.85~100.95 Cp-Py-Qtz-veinlet partly sandy hematite layer				1002	<u>3</u>	₫.	ш¬Т-		:		÷ .		
-110			Sh								L						
-120							ICal	T			ì		:				
-130		dno	Ls	yellowish brown marl,containing hematite layer			1	1.		• .	ı						-
-140		aceous rocks Group		block compact shale 136.30~137.00 Mail-Cp-Lim-Catv.					1					e et			
		Arenaceous Argillaceous rocks		fine banded Sh 147.40 Cp-Py -Gal-Cal-Qtz veinlet				I -	-								
-150		Middle Are		Conglomeratic, blk Sh. 154.27-160.15 Py, (layered) vein Py with Cp-Cal Nw						I							-
160	*		Sh	P.X-9-03 hem, rich, fine calcareous Sh	ļ.				I	1	_	Depth m	wd m	Ag	Cu	Рb	2n
-170		-		164.75~164.85 Py-Cat v.			_		-	. -	154 155	30~ (37). 27~ (55). 55~ (57). 00~ (58).	55 1.2 00 1.4	8 0.9 15 0.3	640 144	50 72 60 52	36 13 6
-180				blk Sh. 176.00~176.30 (Cp)-Py Nw	٠.		=	٠	=	==	198	55~160. 16~197. 48~199. 40~200.	26 1. 40 0.5	10 0.2 32 0.1	220 92	35 68 37 30	· 11
			Cong	183.70-183.95 Py-Cal Nw Ss breccla matrix:sandy			= -		_	.T	-1 '						
- 190				190.93~191.53 Py-Cal-Qtz Nw 194.80~195.10 Py-Cal-Qtz Nw			ı	I		I							

M J Z – 9 (1)

Depth	Geol.			Lithology				Mineralization	
(m)	Log	Group	Rock	Remarks	C. R (%) 25 50 75			Alteration	
200	ž, V,			200.60~201.23 Py diss 205.65~207.40 Py Nw diss predominant Conglomeratic hematite			[5		1
-220			Sh	Couglomeratic bearing breccia coated by hematite					
230				partly sandy breccia coated by hematite		H	<u>-</u> : . –	Depth wd Ag	ppm Cu Pb Zn
-240		us rocks Group	- 1	240:20 → 244:80 Sedimentary Py. Py-Cal Nw predominant		I	I	205.65~206.76 1.11 0.2 206.76~207.40 0.64 0.1 240.20~241.40 1.20 0.1 241.40~242.40 1.00 <0.1 242.40~243.40 1.00 0.1	280 36 70 76 24 172 56 28 280 76 24 124 80 24 88
-250		Arenaceous Argillaceous	Cong	X-9-08 P.X-9-09 P.X-9-09 P.X-9-09 P.X-9-09 P.X-9-250.12 P.X-9-10 P.X-9-1		Ι Ι -	I	243.40~244.40	32 20 100 40 22 120 164 30 180 132 24 76 50 27 40
260		Middle Are	Sh	matrix:sandy Sh. 253.25 ~ 257.75 Cp-Py-Cal Nw-zowe greenish ~ light orange sandy Sh.		1 =	<u>i</u> _	256.40~256.83	60 22 84 880 36 180 40 25 46
-270			Аге	calcareous, arenaceous rock I conglomeratic		- -	-		
280			Cong	micro porphyritic breccia holocrystalline igneous rock breccia altered sillceous Sh. igneous		·			
290			Ls	rocks-accidental breccia pl gneen timestone 287.60~288.80 Py diss breccia: micro porphyry sandy Sh.		·	=		
300 300.50			Ls	pale green limestone		li	=		
-					٠				

M J Z - 9 (II)

Drill Hole No.	MJZ-10	Inclination	45°
Location	KAMIYOBO	Bearing	270°
Elevation	Approx 1200 m	Term	Sept. 4~Sept. 13 '86
Depth	300.50 m	Core Recovery	95.8%

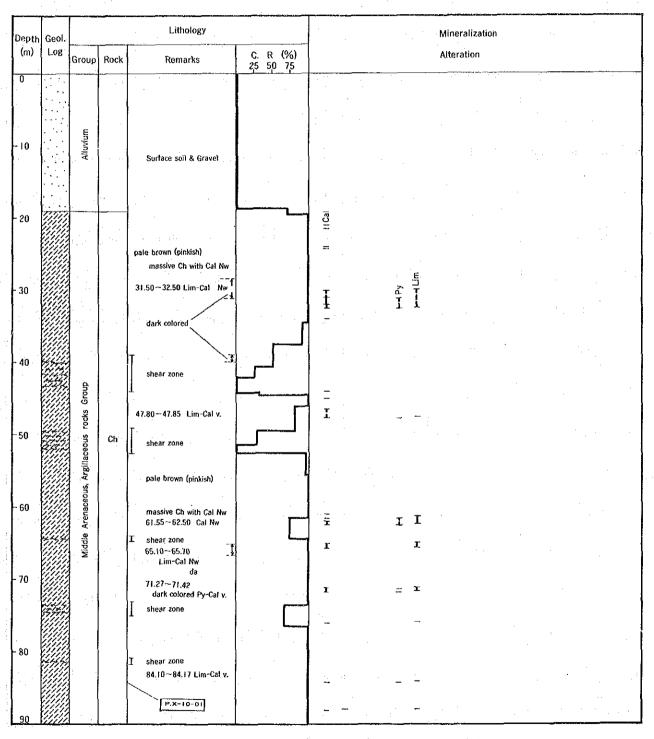


Fig. 42 Geological Log M J Z-10(1)

Depth	Geol,			Lithology							Mineraliza	tion				
(m)	Log	Group	Rock	Remarks	C. 25	R (%) 50 75					Alteration					
90			:	shear zone		[ig ig									
-100			-	greyey~ pale brown massive 106.34 ~ 106.66 Lim-Qtz Nw brecciated, Cal and Qtz Nw				تا ن لت	.*	W.Lim	ā			:		
-110		1.1								-	æ.			•		٠.
-120				T Pl. green colored well bedded		Í		:								
-130		Group	Ch	well bedded, sandy			T				Depth m !43.90~!44.52	wd m	Ag 0.2	Cu 20	Pb 24	ppr Zn 28
-140		Argillaceous rocks		P.X-10-02 143.94~144.52 Py-Qtz v.			I T		Val		145.90~146.40 146.40~147.40 147.40~148.40 148.60~149.70	0.50 1.00 1.00 1.00	0.1 0.1 0.1 0.1	128 500 320 172	30 32 64 76	150 320 400 460
-150		Middle Arenaceous	-	pt brown – greyey brownish from color with the color with x-10-03 145.90~149.70 Py-Lim-Cal Nw			4	+	I	Ĭ						
-160				153.92~154.10 Lim-Qtz bearing blk Sh fragments, hematite rock			I	-		I	Ĺ				:	
-170				i Conglomeratic blk Shale								÷				
-180			Sħ	Siliceous pebble: stained by Fe-ox.												
190 -			Şħ										. *			
				L									* .			٠

M J Z - 10 (II)

-Cont	inue-				n en militiran en en en en en en en en en en en en en	· F 40. Int. a 				and the second second second second					<u></u>
Danih	Geol.			Lithology		-					Mineraliza	ntion			
(m)	Log	Group	Rock	Remarks	C. R. (%) 25 50 75						Alteration				
200				201.55 ~ 201.65 Cp-Cal Nw granule size, mainly		ĪĒ		31	ā l		: :				
				(Siliceous pebble gravel.size, more or less)		I		_ T	·						
-210				P-10-D4-2 Conglomeratic blk 207.05~207.12		ł		Ŧ.	1						
				207.05~207.12 207.23~207.36 Cp-Cal Nw 207.42~207.53 blk shale 211.90~212.17		I		Γ			-			-	
			Sh	Cp-Cal Nw		1		Ī	<u>.i</u>	-					
-2 20				220.00~220.12 Cp-Cal Nw	i .	T			7	ŗ					
				banded sdy breccia containing	t a second	i -	ō ū		j	• .					
-230					·	- T			- 7	Г.					
	000								1				÷		
			Cong	Conglomerate siliceous pabble gravel								A			
-240		a.	 !	matrix:blk muddy		7			-	•					
		s Group							-						
		us rocks	:	Conglomeratic blk shale					٠ .				•		
-250		Argillaceous	\$h	siliceous granule, mainly	: 1				•				:		
				3		I		=	Ţ	[-				4	
260		Arenaceous					•		 						
,		ggi	٠.						+		-				
	000	2	-	269.95~270.20 Cp-Cal Nw	· ·	1						.*			
-270			Cong	Conglomerate Cobble Gravel size bearing		=		=							-
				277.64~277.86 Cp-Cal Nw		=			. =	=					
-280			Sh	ms black shale 280.85~281.02 Cp-Cal Nw		=		=		= Γ					
	8000		Cong	Conglomerate				İ	· [
	v° ⁄0	9		286.35~286.50 286.60~286.72 287.00~287.12 Cp-Cal Nw					į	Г. Г	Derth	wd	Г		
-290			Sh	287.50~287.60 P.X-10-06 Conglomeratic blk		=		†	igal	284.	Depth m 76 – 285 . 06	0.30	Ag 0.7	Cu 320	Ръ 56
	r'A		110	shale: pebble gravel				+		287.	95-288.43 40-290.14	0.48	0.7	1040 640	48 56
				bk Sh. etc.) 287.95~288.43 288.70~288.86) Cp-Cal Nw	:	= T		į †		290.	14~290.85 40~292.40	0.71	0.6	1200	68 44
- 300 300.50		 		289.40~290.85 Gal-Cc-Cp-Cal Nw		, <u>.</u>		T	. '	<u> </u>	40~292.40 40~293.02	0.62	1.0	1260	60

M J Z − 10 (🖺)

- 99 −

6.00m Depth Laterite 6.00 - 130.70mMainly conglomeratic black shale with intercalated thin layer of hematite and darkgreen to yellowish brown shale 130.70 - 257.75mMainly conglomeratic black shale, containing pebbles covered with hematite are seen remarkably at a depth of 207.40m and deeper. 11 257.75 - 300.50m Mainly sandstone and conglomerate containing at a depth greater than 272.50m a conglomerate composed of igneous rocks and thin layers of pale green limestone are intercalated.

At a depth of between 51.70 and 62.90m are observed calcite and quartz veins bearing mainly pyrite and limonite and partly malachite (depth 53.28 to 53.53m; Cu 1640ppm, Zn 180ppm).

Cu $8000 \mathrm{ppm}$ and Zn $360 \mathrm{ppm}$ were indicated at a depth of between 136.30 and $137.00 \mathrm{m}$.

At depths of 154.27 - 160.15m, 240.20 - 244.80m, and 253.25 - 257.75m, a considerably high concentrated zones of stratiformed pyrite, associated with calcite - dolomite veinlets partly bearing chalcopyrite and pyrite are distinguished (including S 5 - 10%).

Cu 640ppm, Pb 72ppm and Zn 132ppm were detected almost at a depth of 155m, Zn 280ppm, Zn 280ppm almost at 241m and Cu 880ppm and Zn 180ppm almost at 256.85m

At a depth of 147.42m, fine-grained galena was observed together with chalcopyrite and pyrite in calcite - quartz-veinlet.

Moreover, at a depth of 275 to 285m, an extrusion of clay took place during the drilling work, by which a fractured fault zone was confirmed.

2-3-2 MJZ-10 Hole

Depth 0 - 19.00m Laterite
19.00 - 165.00m Massive, partly brecciated chert. Bedded chert at 116.50 to 136.00m is intercalated.
165.00 - 300.50m Mainly conglomeratic black shale containing a thin layer of conglomerate composed of sandstone and black shale.

Chalcopyrite-quartz veins and iron oxide-calcite veins are recognized well at a depth of 141.90 - 149.70m, and pyrite-calcite veinlets are recognized at depths of 201.55 - 212.17m, and 277.64 - 300.50m.

Zn 400ppm and Pb 60ppm were detected at a depth of almost 148m and Cu 1,200 to 2,000ppm, Zn 100 to 200ppm and Pb 40 to 60ppm at a depth of 290m and deeper. Although pyrite, which was observed as a veinlet stratiformed pyrite is frequently recognized to occur along the bedding of the black shale sulphur concentrations of these pyrite zones sporadically are assumed S 1-2%. It should also be noted that galena, too, was observed to be associated with chalcopyrite and pyrite at a depth of 290.55m.

PART III SYNTHETIC INTERPRETATION AND DISCUSSION

PART III SYNTHETIC INTERPRETATIN AND DISCUSSION

1. Sable Antelope area

1-1 Geophysical Anomalies and Mineralized Zones (Figs. 43 to 45)

The result of SIP is to be interpreted by AR, PFE and phase in the range of low frequency. Due to smallness of anomalies on lines J, K and L in this year being at less than 2%PFE, two drill holes were sunk on the anomalies of Nos.1 and 2 (MJZ-11 and MJZ-12) on line C, on which the IP survey was carried out in the second year.

The AR in these anomalies ranges from 9,000 to 10,000 ohm-m with 2 to 3%PFE. Being inferred from the result on adjacent line J, the phase of the anomalous zones is less than -20 mrad and decreases in accordance with a change of frequency from 0.125 to 0.375 Hz (Fig. 5). After drilling, dissemination of pyrite in siliceous rocks became apparent, indicating to be an origin of geophysical anomalies.

Two holes (MJZ-7 and MJZ-8) were put down on geophysical anomalies on Blue Jacket. The AR of the anomalous zone ranges from 300 to 800 ohm-m with 4 to 6%PFE. According to the result on line I which is one of SIP lines in the second year laid down between line A and line B, the phase in the anomalous zone stands at -30 to -40 mrad and decreases with a change of frequency from 0.125 to 0.375 Hz (Fig. 26).

Drilling revealed an existence of black shale associated with chalcopyrite and pyrite dissemination and this probably accounts for an origin of geophysical anomaly.

In the anomalous zone on line G, which is a SIP line in the second year between line B and line C, there appeared a zone of phase increase at the southwest of No.15 and a zone of phase decrease in the northeast of No.15 when the frequency increased from 0.125 to 0.375 Hz. A part of the zone of phase increase became a part of the zone of phase decrease when the frequency was changed from 1 to 3 Hz. According to rock properties of samples, this phase characteristic is similar to that of ores in the second year from Sable Antelope and is of great interest.

1-2 Correlation of Drilling Survey Result

Blue Jacket mineralized area in the southwestern part of the Area consists of argillaceous-arenaceous metasediments, while Sable Antelope deposit area in the central to northeastern part of the Area consists of carbonate rocks, as shown respectively in the results of MJZ-7 and MJZ-8, MJZ-11 and MJZ-12. The formations strike WNW-ESE, steeply dipping south in a monoclinic structure. Intraformational foldings and breccia-fractured zones occur extensively in the argillaceous-arenaceous metasediments, on the other hand breccia-fractured zone are common in carbonate rocks.

Mineralizations are observed in these tectonic zones in both areas, but there are respective characteristics in mineralization type in each area, namely network type veins are common in Blue Jacket, whereas mineralizations are embedded in fractured zone in Sable Antelope. The copper ores are mostly emplaced in the argillaceous-arenaceous rocks, and pyrites occur as marginal facies of the copper mineralization. According to results of chemical analysis of drill cores, zinc-lead mineralization

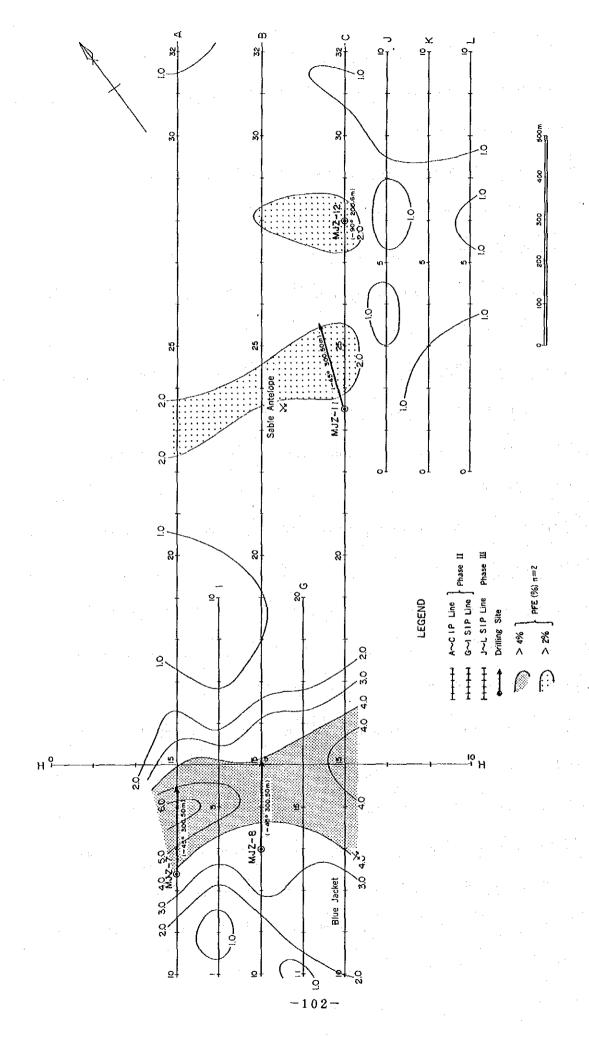


Fig. 43 Geophysical Anomaly & Drilling Sable Antelope Area

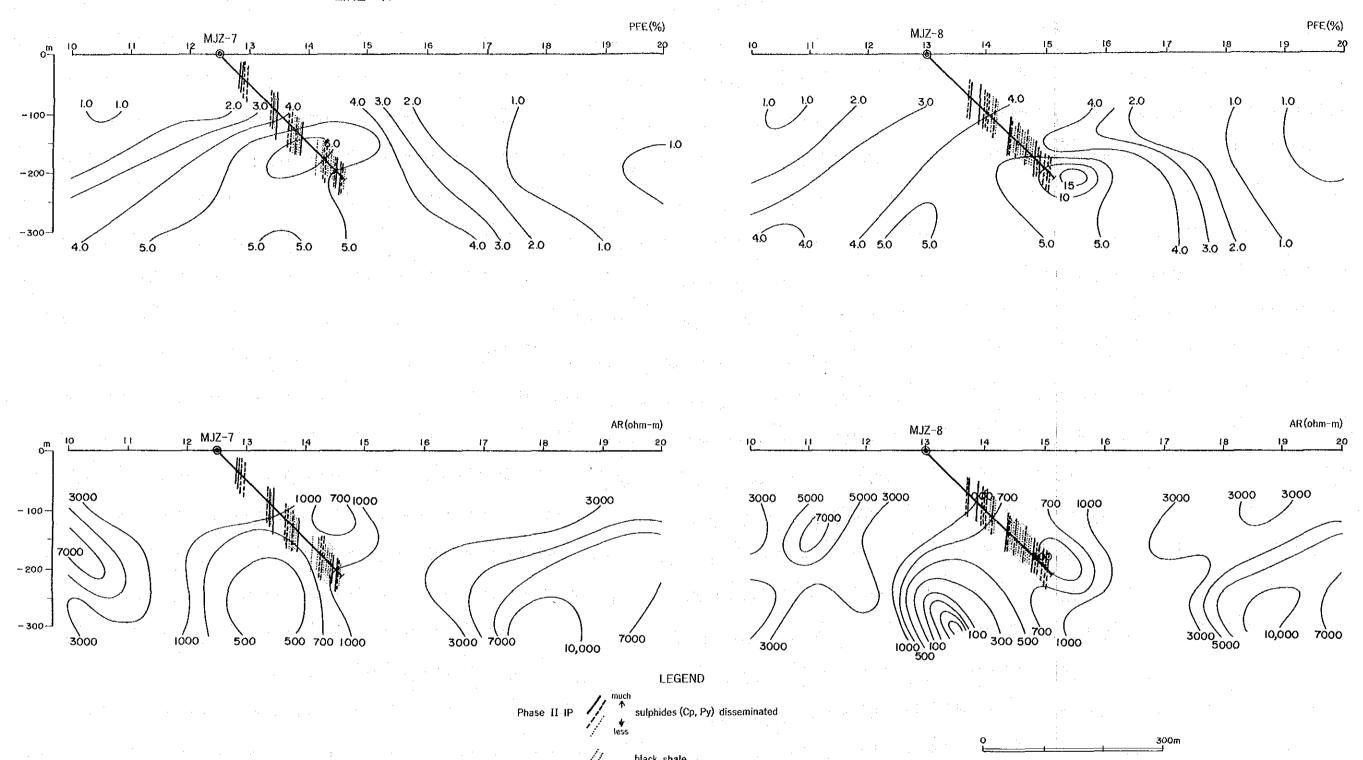
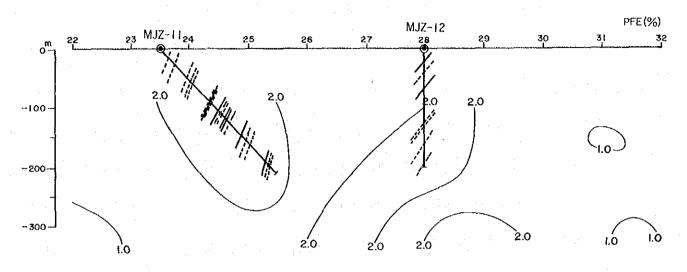



Fig. 44 Geophysical Anomaly & Drilling Result in Sable Antelope Area (I)

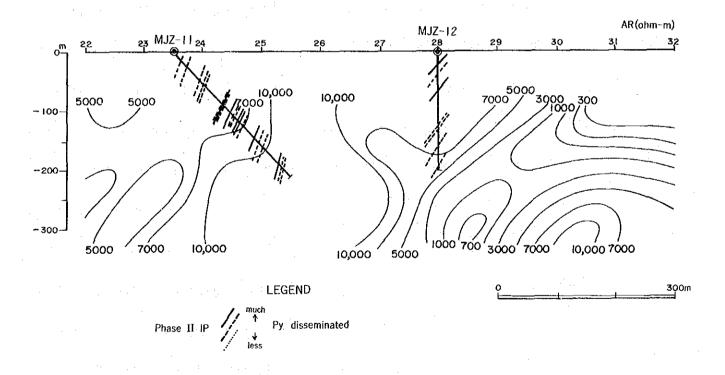
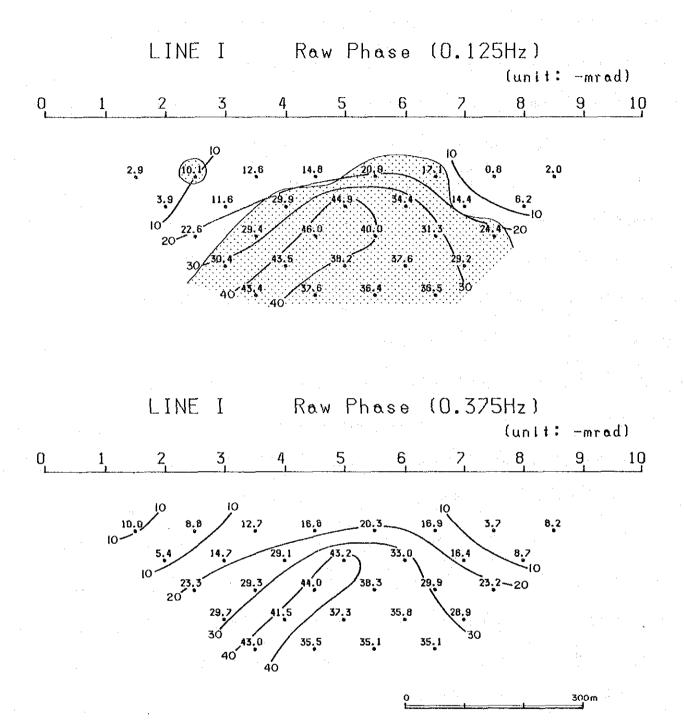



Fig. 45 Geophysical Anomaly & Drilling Result in Sable Antelop Area (II)

Zone of Decreasing Phase

Fig. 46 Phase Characteristics in the Low Frepuency Range (Line I)

tends to be present in the carbonate rocks at deeper part from 280m of MJZ-7, and also in MJZ-11 and MJZ-12.

Blue Jacket mineralized zone and Sable Antelope Deposit are respectively embedded in various formation, and the former occurs coming off and on in lens shape in the arenaceous rock formation, and the latter is partly accompanied by massive sulphide ore bodies. It may be inferred that the copper, zinc and lead were mostly re-moved from some source to network crack zone and fractured zone formed along the strata owing to tectonic movement, and concentrated there as present type of mineralization. This mineralization type consists presumably of a concentration part of copper, zinc and lead, and a sulphide zone occuring at marginal of the concentration part. It is supposed in fact that MJZ-7 penetrated at north west marginal part of Blue Jacket, and MJZ-11 at east marginal part of Sable Antelope Deposit. A ore in MJZ-8 is of high temperature facies, because of existence of exsolution texture of chalcopyrite and bornite, while ores of MJZ-7 belong to low temperature side owing to low ratio of Cu/Pb and Zn/Pb. Mineralization of MJZ-11 is also regarded as marginal facies of Sable Antelope Deposit, considering resemblance to mineralization of MJZ-7.

2 Kamiyobo Area

2-1 Geophysical Anomalies and Mineralized Zones (Fig. 47 and Fig. 48)
Two holes (MJZ-9 and MJZ-10) were drilled in this area on geophysical

In the anomaly zone on line M, the AR ranges from 300 to 500 ohm-m, with 3 to 4%PFE and -20 to -30 mrad in phase. With a change of frequency from 0.125 to 0.375 Hz, a field of phase increase in the east of No.4 and a field of decrease in the west of No.4 appeared (Fig. 29). The drill hole passed the proximity of boundary between these fields.

The anomalous zone on line O is larger than those of lines M and N. The AR in the zone ranges from 200 to 500 ohm-m with 3 to 4%PFE and a phase of -20 to -30 mrad. The most of phases in the anomalous zone decrease with a change of frequency from 0.125 to 0.375 Hz (Fig. 31). Black shales and pebble-bearing shales with chalcopyrite and pyrite disseminations were penetrated as an origin of geophysical anomalies.

2-2 Correlation of Drilling Survey Result

The area consists mainly of argellaceous-arenaceous rocks. Sandstone and chert and distributed from the northeast part to the east part of the Area including drilling sites, while conglomeratic black shale in the west part. In the central part placed between these, limestone exists with wedge in shape from the northern side.

An anticline runs presumably with a NNW-SSE axial direction in the central part of the limestone area, and in the drilling site area the strata dips 80° WSW in a isoclinal folding.

Mineralization is mainly of a stratabound deposit type, which (dolomitic) calcite network veinlets (several mm in each thickness) associated with dissemination of chalcopyrite and pyrite are embedded along bedding planes in the central part, although a calcite-quartz bearing vein type, disseminated pyrite and chalcopyrite with $1-2\,\mathrm{cm}$, at time $10\,\mathrm{cm}$, in width, occurs in the east and west part including drilling sites.

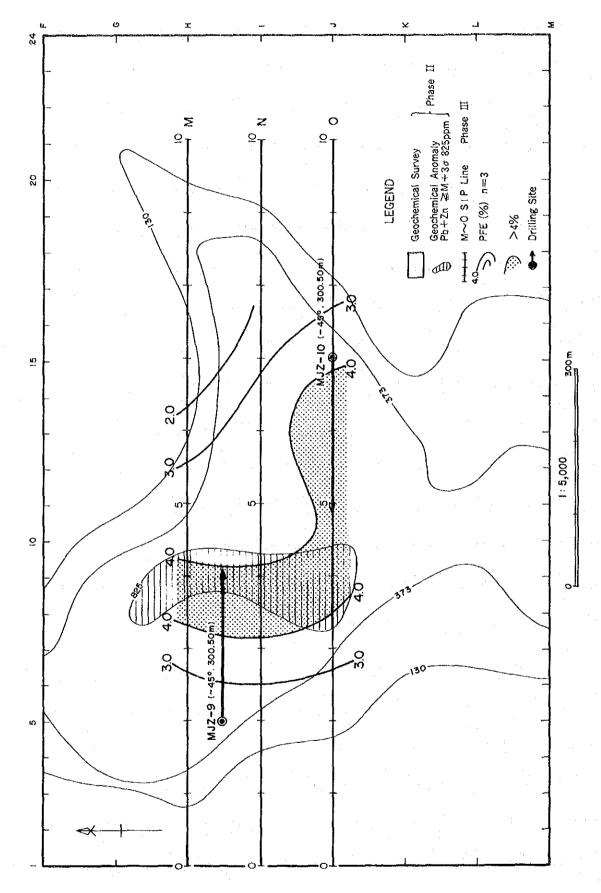
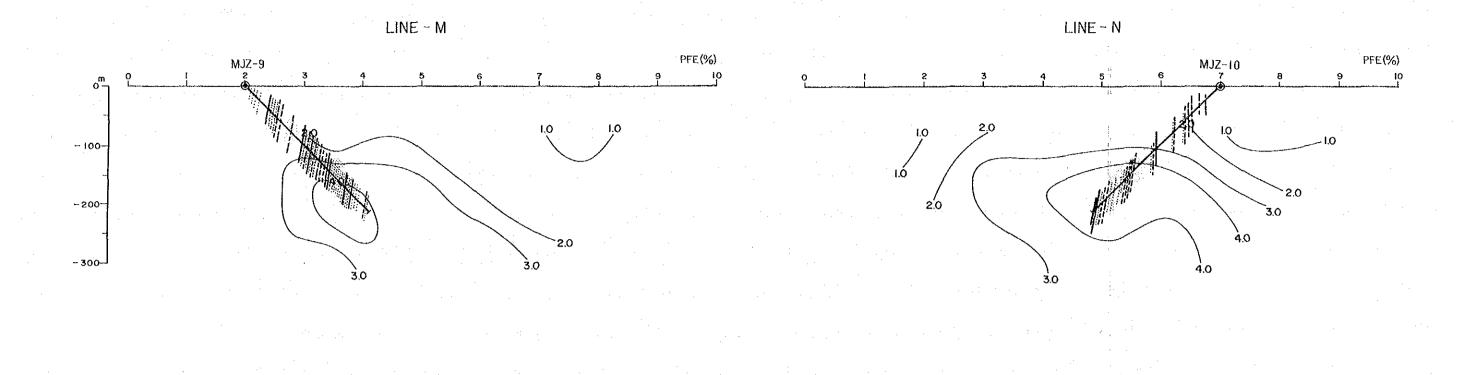



Fig. 47 Geophysical Anomaly & Drilling Site in Kamiyobo Area

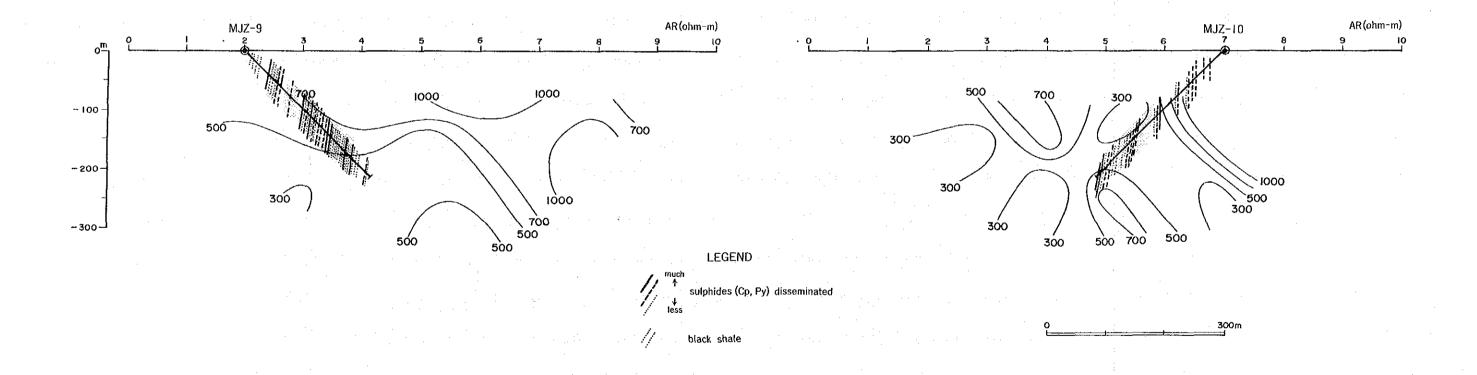


Fig. 48 Geophysical Anomaly & Drilling Result in Kamiyobo Area

The mineralization of chalcopyrite and pyrite is predominantly emplaced in conglomeratic black shale of conglomerate composed of pebbles of sandstone and shale, and also accompanies sedimentary-origined nodular pyrite or lamina pyrite. The dissemination of galena is rarely observable with naked eye. Copper concentration in the mineralization of the Area is lower than that in Sable Antelope Area. On the other hand, ratio of Zn/Pb is smaller, and contents of Pb and Zn are slightly richer than that of the Sable Antelope Area.

In the correlation between geochemical anomalous values and analytical values of ores from drilling cores, the latter contains larger value of copper and smaller values of lead and zinc (particularly smaller value of lead) than that of the former, while ratio of Cu/Zn of the latter is larger, Zn/Pb of the latter is slightly larger than that of the former. It is unclear how copper, lead and zinc behave under dissolution and dispersion near the ground surface. However from the above-mentioned fact it may be inferred that copper-riched mineralization was emplaced in deep place, on the contrary lead-zinc-riched mineralization in shallow part, and the geochemical anomaly reflects the residual part of the mineralization on the ground surface.

The result of the MJZ-10 indicates that east side peak in the geochemical anomalous zone is caused by vein type mineralization occuring along fractures.

PART IV SYNTHESIS AND CONCLUSION

PART IV SYNTHESIS AND CONCLUSION

1. Synthesis

l-1 Geophysical Anomalies and Mineralized Zones

The drilling survey conducted in the geophysical anomaly reveals relationship between the anomaly and mineralization as follows;

In the Blue Jacket anomaly zone, the anomalies are attributed to the pyrite-disseminated black shale. The apparent resistivity (AR) ranging from 300 ohm-m to 800 ohm-m, and frequency effect (PEF) from 4% to 6% were detected in the anomalous zone. The difference in phase decreases from 0.125Hz to 0.375Hz.

In the Kamiyobo anomaly zone, the anomalies is attributed to pyrite-disseminated black shale. AR of 200 - 500 ohm-m and PEF of 3 - 4% were detected in this anomalous zone. The difference in phase increases or decreases depending on the points along the survey line M, and almost always shows decreases from 0.125 to 0.375Hz along the survey line 0.

In the Sable Antelope anomaly zone, the anomalies is attributed to pyrite-dissemination in the siliceous rocks. AR of 5,000-10,000 ohm-m and PEF of 2-3% were detected in this anomalous zone. The difference in phase, as inferred from the results, of the survey along the line J shows decreases from 0.125 to 0.375Hz.

The anomalies in the Blue Jacket anomaly zone and the Kamiyobo anomaly zone are attributed exclusively to the pyrite-disseminated black shale. According to the difference in phase of the samples, the rocks are characterised by that keeping constant, although it decreases in the low phase domain (from 0.125Hz to 0.375Hz). On the other hand, ores of the Sable Antelope increase difference in phase, in many case, in low frequency domain (from).125Hz to 0.375Hz), while keeping constant difference in phase in another phase from 1Hz to 3Hz. Consequently, the difference in phase in a low-frequency domain is important as a means to distinguish the types of ores in this area. It can be assumed that a large difference in phases, an increase of the difference in phase in the low frequency domain from 0.125Hz to 0.375Hz, and increase of the difference in phase from 1 to 3Hz are useful for detecting the presence of ores.

1-2 Characteristics of Mineralized Zone

A large number of mineralized zones contain copper, zinc and lead, though minor extent, in the Sable Antelope and the Kamiyobo Areas. These mineralized zones form locally a stockwork type mineralized zone with relatively high concentration of copper. Although there are differences in feature between individual mineralized zones, they are generally characterized by stratabound deposit type suggesting sedimentary origin.

1-2-1 Structure of the mineralized zones

In the vicinity of the Sable Antelope deposit, pyrite dissemination or stockwork mineralized zones are mainly emplaced in fine-grained compact dolomitic sandstone.

In the Blue Jacket mineralized area, dolomitic stockwork mineralized zone is disseminated by copper sulfide ores, and pyrite disseminated zone forms network veinlets, beds and fine lamina. The former occurs in fine-grained dolomite sandstone, and the latter in

shistosed black shale, partly in breccia-fractured zone or silicified rock. Minor lead and zinc mineralization are observed in the carbonate rock zone.

In the Kamiyobo area, there are several types of mineralization, namely stratiformed mineralized zone consisting of chalcopyrite and pyrite bearing network veinlets, alternated mineralized zone of fine pyrite and black shale, and pyrite-disseminated zone with pyrite nodules and fragments of siliceous rocks crusted by aggregated pyrite.

Pyrite dissemination occurs partly in a thin layer of limestone intercalated in the black shale. In addition, vein type mineralization such as a calcite vein and quartz vein each with a few cm in width occur in the black shale and the chert.

1-2-2 Distribution of copper, zinc and lead in the mineralized zone
Mineral assemblage and country rock of the ores are as follows;

(mineral assemblage *)
Chalcopyrite-bornite-tetrahedrite
chalcopyrite
chalcopyrite-pyrite

(country rock)
arenaceous rocks, carbonates
argillaceous, arenaceous rocks
argillaceous rocks
(particularly predominant)
argillaceous rocks

chalcopyrite-pyrite-galena argillaceous rocks
* Dolomite, calcite, and quartz accompany as gangue minerals in all
the above assemblage.

The descending order of these mineral assemblages corresponds with the distance from the center of the mineralized zone to the periphery. A lattice-patterned exsolution texture is distinctly observed in the assemblage of chalcopyrite-bornite. A chalcopyrite often forms idiomorphic crystal. Pyrites in dolomite, calcite and quartz is also of idiomorphic crystal. A pyrite of the layer intercalated in the black shale are generally granular in shape, and retaines original texture of sedimentation. A part of the pyrite has undergone recrystalization. Lead and zinc ores are rarely recognized with necked eye.

Copper, zinc and lead, in connection with the mineral assemblage shows a some tendency in their distribution, namely copper generally is high contents in the arenaceous rocks in which large ratio of Cu/Pb and Zn/Pb are detected. On the other hand, in carbonate rocks is lowest ratio of Cu/Pb owing to scarce content of copper, and contents relatively high zinc and lead with small ratio of Zn/Pb. Pyrite generally occurs often in high concentration in the argillaceous metasediments, whereas contents of the lead and zinc are not high.

Argillaceous metasediments contain generally a low copper, and show low ratios of Cu/Zn and Zn/Pb.

As can be seen from foregoing, a high concentration of copper is observed in the arenaceous rocks, while high concentrations of lead and zinc are in the carbonate rocks. It is assumed that in the mechanism contributing toward such high concentrations of minerals, an important role is played by particular temperature conditions brought by the intrusive rocks which simultaneously have intruded into the

area near the mineralized zone with the formation of the cracks along the breccia-fractured zone formed later or weak line.

2 Conclusion

The geophysical and the drilling surveys were conducted in the Sable Antelope and Kamiyobo Areas in the third phase. The results of the surveys unravel relationship between geophysical anomaly and mineralized zone, and characteristics of the mineralization, as follows;

1) Sable Antelope Area

Drilling reveals that No.3 IP anomaly results mainly from pyritedisseminated black shale, while No.1 and No.2 IP anomalies from pyrite disseminations in sandstone.

Of the mineralization obtained by drilling, there are two types mineralizations, namely one is mainly of copper in sandstone, another concentrates comparatively zinc and lead in dolomite or sandstone. However both are weak mineralization. Pyrites are also disseminated in above mentioned rocks, but some pyrites are sedimentary-origined, and are embedded frequently in black shale.

2) Kamiyobo Area

The IP anomaly zone found by geophysical survey in the geochemical anomaly area, also results from pyrite-disseminated black shale.

The thin pyrite layers, which is inferred to be sedimentary origin, alternate in the black shale, and network veins and veins having dissemination of chalcopyrite, pyrite are also emplaced in black shale. These mineralizations are widely distributed, but most are weak copper-zinc-lead in content.

3 Recommendation for the future

On the basis of characteristic of the mineralization unravelled through this phase surveys, it is recommendable to prospect along mineralized horizone, and survey on the geological structure. It is desirable to apply the knowledge obtained through this survey to prospecting works in the other area.

BIBLIOGRAPHY

Japan International Cooperation Agency and Metal Mining Agency of Japan (1985): Report on the mineral exploration of Karenda area, the Republic of Zambia.

Japan International Cooperation Agency and Metal Mining Agency of Japan (1986): Report on the mineral exploration of Karenda area, the Republic of Zambia.

Metal Mining Agency of Japan (1980, 81, 82, 83, 84): Report on the development of exploration technology of mineral resources (SIP and CSAMT)

Pelton, W.H., Ward, S.H., Hallof, P.G., Sill, W.R. and Nelson, P.H. (1978): Mineral discrimination and removal of inductive coupling with multifrequency IP, Geophysics, Vol. 43, No. 3.

Hallof, P.G. and Pelton, W.H. (1980): The removal of inductive coupling effects from spectral IP data, S.E.G. 50th Annual international meeting in Houston.

Hallof, P.G. and Pelton, W.H. (1980): Spectral IP Survey Elura Deposit (Line 50800N) Cobar, NSW, Bull. Aust. Soc. Explor. Geophys., v.11, no.4.

Webster, S.S. (1980): Implication of a Spectral IP Survey at Elura, Bull. Aust. Soc. Explor. Geophys., v.11, no.4.