


MEMBRE DE LA MISSION D'ETUDE

Kenji KOBAYASHI

Chef de la Mission

Division Coopération Financière Non-remboursable,

Bureau de la Coopération Economique, Ministère des

Affaires Etrangères

Minami NAGAI

Coordinateur

Division Planning de Base, Bureau de la Coopération

Financière Non-remboursable, Agence Japonaise

Coopération Internationale

Toshiharu YAMAMOTO

Ingénieur en Chef

(Planning de canalisation)

Chuô Kaīhatsu S.A.

Hiroatsu NARITA

Ingénieur

(Matériel de captage, planning des équipments)

Chuô Kaīhatsu S.A.

Shigemi KIMURA

Ingénieur

(Prospection des eaux souterraines)

Chuô Kaïhatsu S.A.

Tomoho FUKAZAWA

Ingénieur

(Planning de distribution de l'eau)

Chuô Kaīhatsu S.A.

Masayoshi SHINOZAKI

Interprète

(Etude des conditions sociales zaīroises)

Chuô Kaīhatsu S.A.

PROGRAMME DE LA MISSION D'ETUDE (1)

Note: 1ère Equipe (Mss. KOBAYASHI, NAGAI, YAMAMOTO et SHINOZAKI) 2ème Equipe (Mss. NARITA, KIMURA et FUKAZAWA)

				ceme by the (riss. Namila,	NAMILIA, MINUM EU FUNAGAWA)
Date	Jour	Itinéraire	Lieu de Séjour	Pro	Programme
21 Mai	Lundi	Tokyo -	Avion		Voyage
22	Mardi	Paris	Panis		dito
23	Mercredi	Paris - Kinshasa	Kinshasa		dito
24	Jeudi		1ère Equipe: 2ème Equipe: Kinshasa Mbanza-Ngungu	1 ère Equipe: Réunion avec REGIDESO	Zème Equipe: Visite protocolaire à l'Ambassade du Japon. Départ pour Mbanza-Ngungu
SS SS	Vendredi		dito dito	Réunion avec REGIDESO	Sondage électrique dans la plaine Loma
26	Samedi		dito	Réunion avec REGIDESO	dito
27	Dimanche		Mbanza-Nqungu	Départ pour Mbanza-Ngungu	Sondage électrique dans le bassin de la rivière Kusu-Kusu
88	Lundi		dito	Réunion avec M. Fernandez, conseiller tecnique a du directeur du buresu REGIDESO à Mbanza-Ngungu. Sondage électrique dans le bassin de la rivière	Fernandez, conseiller tecnique auprès buresu REGIDESO à Mbanza-Ngungu. que dans le bassin de la rivière Kusu-Kusu
23	Mardi		dito	Réunion avec directeur du service voirie. Inspection du terrain pour la canalisation. Sondage electrique au camp militaire.	service voirie. la canalisation. militaire.
30	Mercedi		dito	Réunion avec la Société Nationale d'Electricité. Choix du lieu de forage d'essaí. Visite aux reservoirs existants. Réparation d'une tracé du terrain.	Nationale d'Electricité. d'essai. istants. lu terrain.

PROGRAMME DE LA MISSION D'ETUDE (2)

Note: 1ère Equipe (Mss. KOBAYASHI, NAGAI, YAMAMOTO et SHINOZAKI)

31 Mai J			•	r r Ogramme	drining.
5	Jeudi	1ère Equipe: Kinshasa	2ème Equipe: dito	Réunion avec M. Fernandez et zairoises Retour à Kinshasa	autres contreparties Continuation des travaux à Mbanza-Ngungu
uino l	1 Juin Vendredi	dito	dito	Réunion avec REGIDESO pour la préparation de l'avant-projet du procès-verbal.	Examen du terrain pour la nouvelle canalisation de refoulement. Sondage électrique à Boko.
ผ	Samedi	dito	Matadi	Visite du terrain pour futur réservoir Loma.	Visite à Matadi. Réunion avec le directeur du bureau RESIDESO à Matadi.
m H	Dimanche	dito	Mbanza-Ngungu	Réunion intee	Retour à Mbanza-Ngungu
ਹ ਜ	Lundi	dito	dito	Réunion avec M. Fernandez. Modification à l'avant- projet du procès-verbal	Examen du terrain pour futur réservoir Loma. Examen du débit et de qualité d'eau á la rivièrs Kusu-Kusu et à des puits.
in.	Mardi	dito	dito	Réunion avec REGIDESO. Signature du procès-verbal.	Examen du terrain pour la canalisation. Examen de l'eau fluviale et de l'eau de puits dans la plaine Loma.

PROGRAMME DE LA MISSION D'ETUDE (3)

Note: 1ère Equipe (Mss. KOBAYASHI, NAGAI, YAMAMOTO et SHINOZAKI)

2ème Equipe (Mss. NARITA, KIMURA et FUKAZAWA)

					ceme equipe (mes. Manila, nimona	MUNA EL FUNAZAWA/
	Date	Jour	Itinéraire	Lieu de Séjour	Programme	amme
	6 Juin	Juin Mercredi	M. KOBAYASHI M. NAGAI Kinshasa - Copenbagen	dito dito	Visite protocolaire à l'Ambassade du Japon. M.KOBAYASHI et M.NAGAI partent pour le Japon.	Examen de canalisation à partir de Loma réservoir Loma Examen de qualité de l'eau aux environs de la rivière Kusu-Kusu.
		Jeudi	Copenhagen	M.YAMAMOTO, M.SHINOZAKI M.NARITA, S.KIMURA et M.FUKAZAWA à Mbanza-Ngungu	M.YAMAMOTO et M.SHINOZAKI vont à Mbanza-Ngung.	Inspection de canalisation existante. Analyse de données obtenues par les sondages éléctriques.
	ထ	Vendredi	Copenhagen -	dito	Inspection de canalisation existante. Dénombrement des sociétés locaux de i	alisation existante. sociétés locaux de injénieurs-civils.
	ത	Samedi	Tokyo	dito	Examen de canalisation existante soupapes at a Matadi. Réception du plan de canaliation.	ante y compris soupapes at tion.
		Dimanche Luidi		dito	Etude des documents rassemblés Examen de qualité de l'eau. Etude des documents rassemblés	8,9 8,9 8,9 8,9 8,9 8,9 8,9 8,9 8,9 8,9
_	2	Mardi		dito	Deuxième inspection du terrain pour principale de l'eau de refoulement	terrain pour la conduite refoulement.
	13	Mercredi		dito	Levé topographique. Etudes des documents rassemblés	lés

PROGRAMME DE LA MISSION D'ETUDE (4)

				Z	Note: 1ère Equipe (Mss. KOBAYASHI, NAGAI, YAMAMOTO et SHINOZAKI) 2ème Equipe (Mss. NARITA, KIMURA et FUKAZAWA)
A	Date	Jour	Itinéraire	Lieu de Séjour	Programme
11		Jeudi		dito	Examen de l'état d'érosion de canalisation existante.
<u>17</u>		Vendredi		dito	Etudes des documents rassemblés. Inspection du forage d'essai effectué par REGIDESO.
16		Samedi		Kinshasa	Retour à Kinshasa. Réunion avec les contreparties zaīroises.
17	Di	Dimanche		dito	Etude des documents rassemblés
<u>6</u>		Lundi		dito	Compte-rendu à l'Ambassade du Japon. Visite à l'usine de traitement NUGILI.
10		Mardî		dito	Visite de remerciement à l'Ambassade du Japon. Compilation des données concernant les côuts de construction.
20		Mercredi	Kinshasa - M.YAMAMOTO, M.SHINOZAKI M.NARITA S.KIMURA M.FUKAZAWA		Compilation des données concernant les coûts de construction. Retour au Japon.
۲.		Jeudi	Copenhagen	Copenhagen	Voyage
22		Vendredi	Copenhagen -	Avion	dito
23	,	Samedi	Tokyo	Tokyo	dito

Au Citoyen Ambassadeur de la République du Zaïre au

JAPON.

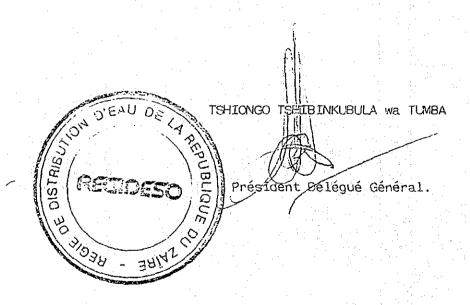
Le Président Délègue Général

SG/551/MBL/TNM

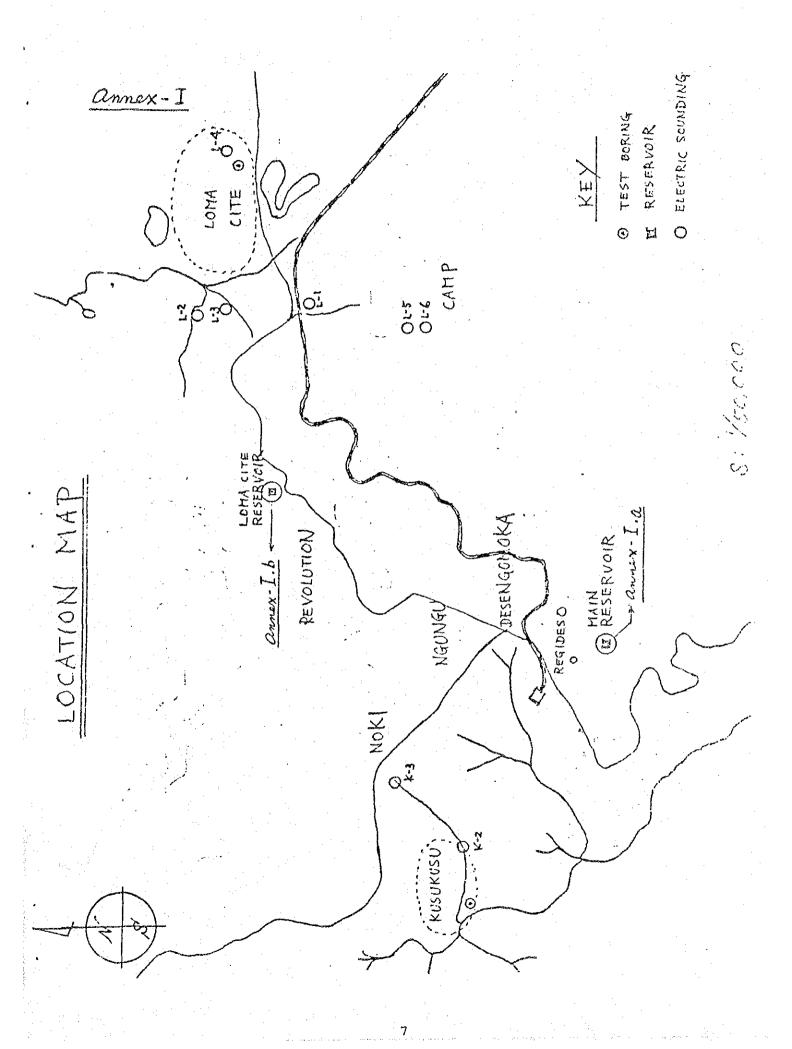
Kinshasa, le 6 juin 1984.

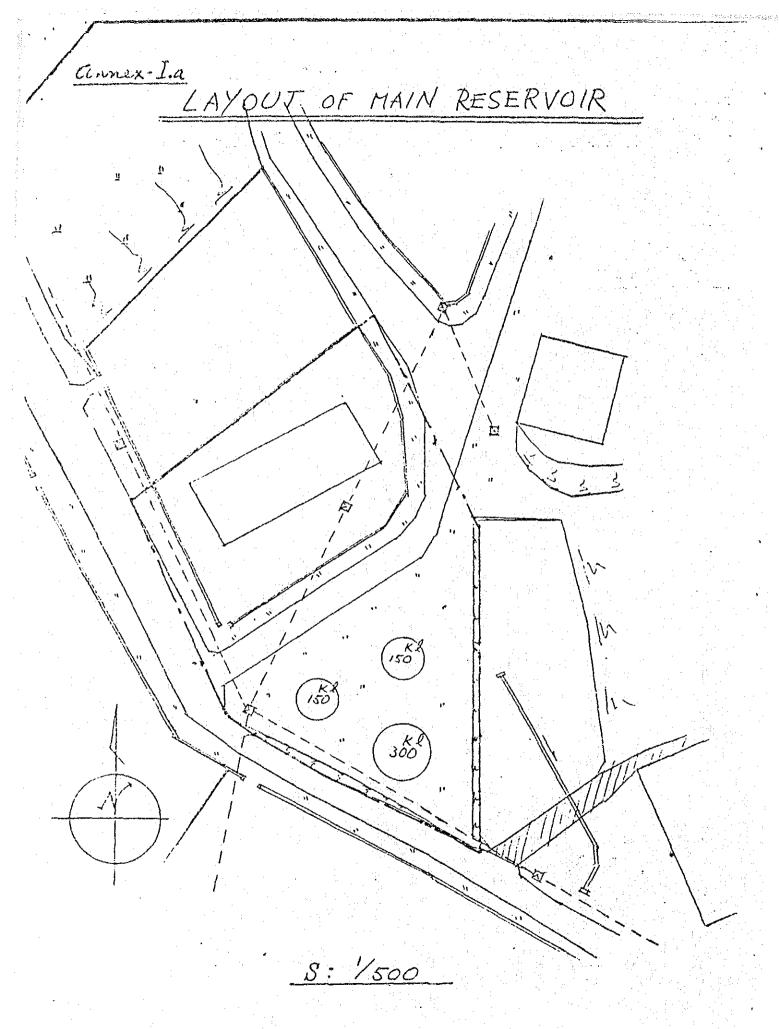
Citoyen Ambassadeur,

Concerne : Projet d'Alimentation en Eau Potable de la ville de MBANZA-NGLNGU.

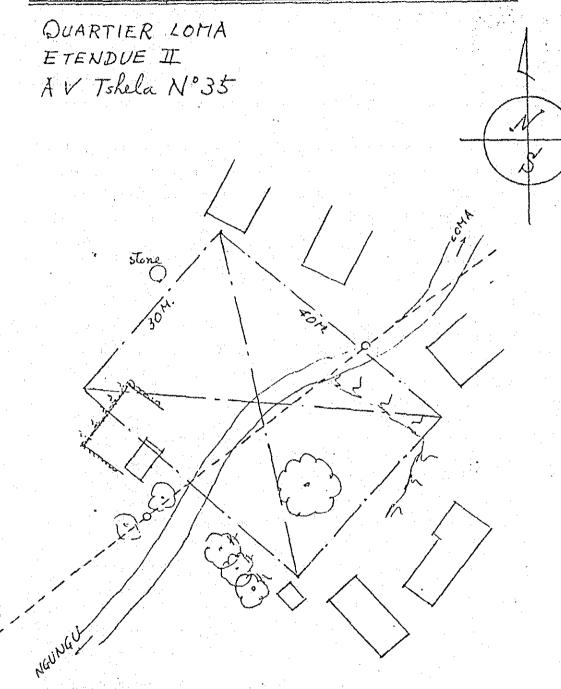

Une mission Japonaise d'études pour le planning de base du projet sous rubrique a séjourné au Zaïre du 23 mai au 20 juin 1984.

Elle a procédé ensemble avec la REGIDESO, à l'identification de ce projet.


Nous vous communiquons en annexe de la présente, le document conjointement élaboré et signé entre la mission Japonaise et la REGIDESO.


Nous vous en souhaitons bonne réception.

Veuillez agréer, Citoyen Ambassadeur, l'assurance de notre considération très distinguée.


Annexe : 1.

annex- I.b

LAYOUT of LOMA CITE RESERVOIR

8: 1/500

ANNEXE II

Le Zaïre a demandé au Japon dans le cadre de la coopération financière non-remboursable les prestations ci-après :

1°. Zones à desservir en eau potable :

- LOMA
- REVOLUTION
- DISENCOMOKA
- NGUNGU
- NOKI.

2°. Biens et services :

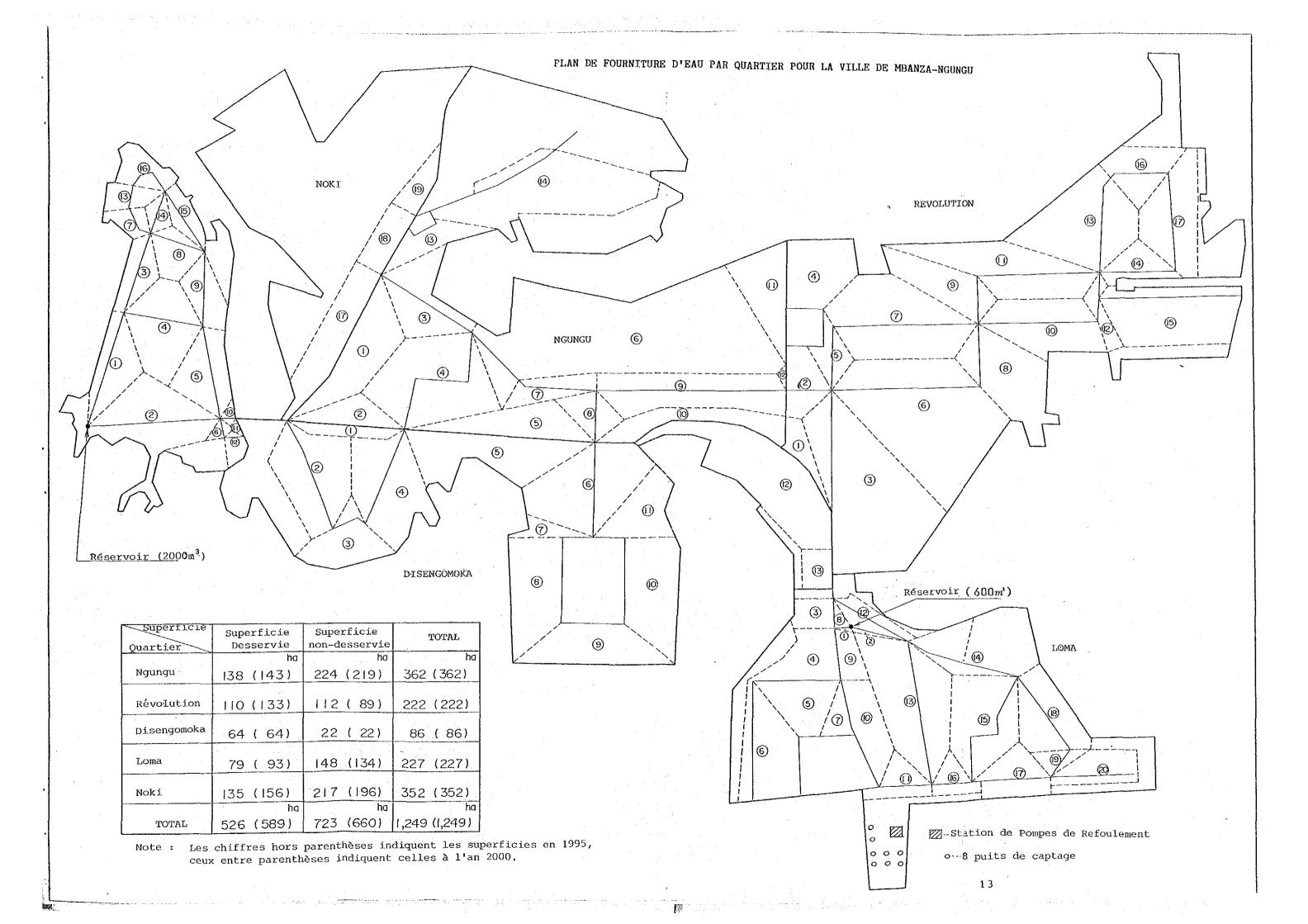
- Ouvrage (s) de captage
- Ouvrages d'adduction
- Ouvrages de stockage d'eau
- Conduites de distribution
- Matériel accessoire pour la distribution et la commercialisation
- Divers (à spécifier de commun accord).

de f

ANNEXE III

Il est demandé au Conseil Exécutif de la République du Zaïre de prendre les mesures ci-après pour permettre la réalisation du projet :

- 1°. Mettre à disposition les terrains nécessaires au projet, les nettoyer, les remblayer et les niveler avant le commencement des travaux.
- 2°. Exécuter les ouvrages nécessaires à la fourniture d'électricité avec les puissances requises. Aménager les routes d'accès et les installations d'évacuation des eaux des sites retenus dans le projet.
- 3°. L'exécution des forages en nombre suffisant pour les besoins du projet.
- 4°. Fournir au consultant et au constructeur japonais toutes les données et informations nécessaires à l'ingénierie détaillée et à l'exécution des travaux.
- 5°. Accorder l'exemption des taxes et frais douaniers et veiller à la rapidité des formalités pour le déchargement et l'acheminement des biens importés dans le cadre de la coopération financière non-remboursable.
- 6°. Exonérer les personnes physiques et morales des droits de douane, des taxes intérieures et des autres fiscalités qui pourraient être imposées par le Zaîre sur les biens et services faisant l'objet de la coopération non-remboursable.
- 7°. Accorder les permissions nécessaires, les licences et les autres autorisations requises pour l'exécution du projet.
- 8°. Entretenir et utiliser correctement et avec efficacité les ouvrages achetés, installés et construits sous la coopération financière non-remboursable et prévoir les budgets nécessaires à cet effet.
- 9°. Prendre à sa charge la pose des branchements particuliers et autres canalisations.
- 10. Prendre à sa charge les dépenses ne faisant pas l'objet de la coopératic financière non-remboursable et nécessaires pour ce projet, par exemple: construction des clôtures et mise en place de l'éclairage extérieur.


ELARGISSEMENT DE LA SUPERFICIE DESSERVIE PAR QUARTIER EN 1995 ET A L'AN 2000

Quartier	1/	2/	TOTAL (1995)
Ngungu	125	13	138
Révolution	50	€0	110
Disengomoka	62	2	64
Loma	49	30	79
Noki	88	47	135
TOTAL	374 ha	152ha	526 ha

- 1/ Superficie desservie en 1982 (ha)
- 2/ Agrandissement en superficie desservie entre 1982 et 1995 (ha)

Quartier	1/	2/	TOTAL (2000)
Ngungu	138	5	143
Révolution	110	23	133
Disengomoka	64	- -	64
Loma	79	14	93
Noki	135	21	156
TOTAL	526 ha	63ha	589 ha

- 1/ Superficie desservie en 1995 (ha)
- 2/ Agrandissement en superficie desservie entre 1995 et 2000 (ha)

•	

TABLEAU CALUCULATIF DES BESOINS EN 1995

			1 1 1		•	and the second of the second	and the second second
Q۱	uartier	Ngungu	Révol- ution	Disen- gomoka	Loma	Noki	-TÖTAL
opi	ılation (hab)	15,010	49,490	29,290	24,690	9,200	127,680
3.P	B. C.	25 3,753 70	30 14,847 70	25 7,323 70	20 4,938 70	40 3,680 70	34,541 (hab)
	Besoins	263	1,039	513	346	258	2,419 m³
3.V	A. B. C.	25 3,753 35	40 19,796 35	35 10,252 35	20 4,938 35	30 2,760 35	41,499 (hab)
	Besoins	131	693	359	173	97	1,453 m³
3.F	A. B. C.	50 7,504 20	30 14,847 20	40 11,715 20	60 14,814 20	30 2,760 20	51,640 (hab)
	Besoins	150	297	234	296	55	1,032 m³
	soins Globaux	(100%) 544	(100%) 2,029	(100%) 1,106	(100%) 815	(100%) 410	4,904 m³
						<u> </u>	<u> </u>
Ε.	D. Besoins	20 176	10 88	10 88	20 176	40 352	(100%) 880 m³
Jot	soins urnaliers yens	720	2,117	1,194	991	762	5,784 <i>m</i> ³
	4.	loyenne poi	ndérée pour	la totali	te de la v	ille	45ℓ
Joi	soins arnaliers ximum	830	2,430	1,370	1,140	880	6,650 m³

Note: A.= Taux de répartition (%)

B.= Population (hab)

C.= Consomation journalière en litre

D.= Répartition en pourcentage par quartier

E.= Entreprises, services et administration

TABLEAU CALUCULATIF DES BESOINS EN 2000

S	Quartier	Ngungu	Révol- ution	Disen- gomoka	Loma	Nok i.	TOTAL
Popu	ulation (hab	17,510	52,710	33,280	32,660	11,150	147,310
B.P	A: B. C.	25 4,378 70	30 15,813 70	25 8,320 70	20 6,532 70	40 4,460 70	39,503
•	Besoins	306	1,107	582	457	312	2,764 m³
B.V	A. B. C.	25 4,378 35	40 21,084 35	35 11,648 35	20 6,532 35	30 3,345 35	46,987
	Besoins	153	738	408	229	117	$1,645m^3$
B.F	A. B. C.	50 8,754 20	30 15,813 20	40 13,312 20	60 19,596 20	30 3,345 20	60,820
	Besoins	175	316	266	392	67	$1,216m^3$
l .	esoins	(100%)	(100%)	(100%)	(100%)	(100%)	
	Globaux	634	2,161	1,256	1,078	496	5,625m³
	D	20	10	10	20	40	(100%)
Ε.	Besoins	202	101	101	202	404	1,010 m³
Jo	esoins ournaliers oyens	836	2,262	1,357	1,280	900	6,635 <i>m</i> ³
		Moyenne po	ondérée pou	r la total	ite de la v	ville	45 <i>L</i>
Jo	esoins ournaliers Maximum	960	2,600	1,560	1,470	1,040	7,630 m³

Note: A.= Taux de répartition (%)

B.= Population (hab)

C.= Consomation journalière en litre

D.= Répartition en pourcentage par quartier

E.= Entreprises, services et administration

A :	la Stati		MNEW DO	POWDAGE E			
AB/2 (m)	MN/2 (m)	I (mA) (M ₁)	GRADUATION (S4)	LECTURE (RV4)	RESISTIVITE	COEFFICIENT	$ ho_{a} \ (arOmega \cdot m)$
3	0.5	120	1	3.8	3.8	27.5	105
4	0.5	100	1	2.6	2.6	49.5	129
5	0.5	100	1	1.8	1.8	77.8	140
6.5	0.5	110	0.1	11.3	1.13	132	149
8	0.5	100	0.1	7.6	0.76	200	152
10	0.5	90	0.1	4.8	0.48	313	150
13	0.5	110	0.01	25.1	0.251	530	133
13	3	90	0.1	15.3	1.53	83.8	128
16	0.5	90	0.01	13.4	0.134	803	108
16	3	80	0.1	8.4	0.84	129	108
20	3	115	0.1	4.5	0.45	205	92.3
25	3	120	0.1	2.8	0.28	323	9 0 ⁻⁴
30	3	100	0.1	1.7	0.17	467	79.4
40	3	110	0.01	8.0	0:08	833	66.6
50	3	110	0.01	3.5	0.035	1300	45.5
65	3	90	0.01	1.6	0.016	2210	35.4
80	3	100	0.01	1.1	0.011	3350	36.9
80	15	90	0.01	8.9	0.089	647	57.6
100	3	80	0.01	0.5	0.005	5230	26.2
100	15	80	0.01	10.3	0.103	1020	105
130	25	90	0.01	1.2	0.012	1023	12.3

A la Station L-2

AB/2 (m)	MN/2 (m)	I (mA) (M _t)	GRADUATION (S4)	LECTURE (RV4)	RESISTIVITE	COEFFICIENT	$(\Omega \cdot m)$
3	0.5	50	1	20.4	20.4	27.5	561
4	0.5	50	1	13.5	13.5	49.5	668
5	0.5	50	1	9.4	9.4	77.8	731
6.5	0.5	50	1	5.5	5.5	132	726
8	0.5	30	1	3.6	3.6	200	720
10	0.5	30	1	2.2	2.2	313	689
13	0.5	30	1	1.2	1.2	530	636
13	3	30	1	10.0	10.0	83.8	838
16	0.5	50	0.1	7.8	0.78	803	626
16	3	50	1	6.0	6.0	129	774
20	3	50	1.0	3.6	3.6	205	738
25	3	30	1	2.2	2.2	323	711
30	3	30	0.1	15.5	1.55	467	724
40	3	30	0.1	8.2	0.82	833	683
50	3	25	0.1	5.0	0.5	1300	650
65	3	40	0.1	2.9	0.29	2210	641
80	3	25	0.01	. 15.5	0.155	. 3350	519
80	15	30	0.1	12.0	1.20	647	776
100	13	50	0.01	10.3	0.103	5230	539
100	15	50	0.1	7.3	0.73	1020	745
130	15	75	0.1	3.5	0.35	1750	613
160	15	70	0.01	22.4	0.224	2660	596
200	15	50	0.01	15.0	0.150	4170	626
250	15	70	0.01	7.2	0.072	6520	469
300	15	60	0.01	6.5	0.065	9400	611

A la Station L - 3

-							
AB/2 (m)	MN/2 (m)	I(mA) (Mı)	GRADUATION (S4)	LECTURE (RV4)	RESISTIVITE	COEFFICIENT	$ ho_a \ (arOmega \cdot m)$
3	0.5	150	1	17.5	17.5	27.5	481
4	0.5	140	ı	12.3	12.3	47.5	609
5	0.5	135	1	9.2	9.2	77.8	716
6.5	0.5	140	1	6.3	6.3	132	832
- 8	0.5	140	1	4.4	4.4	200	880
10	0.5	135	1	2.8	2.8	313	876
13	0.5	130	1	1.6	1.6	530	848
13	3	130	1	12.5	12.5	83.8	1048
16	0.5	125	1	1.1	1.1	803	883
16	3	130	1	7.9	7.9	129	1019
20	3	130	1	4.6	4.6	205	943
25	3	130	1	2.9	2.9	323	937
30	3	130	0.1	18.9	1.89	467	883
40	3	130	0.1	10.9	1.09	833	908
50	3	125	0.1	6.6	0.66	1300	858
65	3	125	0.1	3.7	0.37	2210	818
80	3	100	0.1	2.2	0.22	3350	737
80	15	100	0.1	13.0	1.3	647	841
100	13	135	0.1	1.4	0.14	5230	732
100	15	135	0.1	7.5	0.75	1020	765
130	15	140	0.1	3.7	0.37	1750	648
160	15	140	0.1	2.6	0.26	2660	692
200	15	65	0.1	1.7	0.17	4170	709

A la Station L-4

AB/2 (m)	MN/2 (m)	I (mA) (M ₁)	GRADUATION (S4)	LECTURE (RV4)	RESISTIVI	TE COEFFICIENT	$(arOmega_{^{lpha}})$
3	0.5	120	1	15.2	15.2	27.5	418
4	0.5	120	1	11.0	11.0	49.5	545
5	0.5	120	1	8.5	8.5	77.8	661
6.5	0.5	120	1	6.0	6.0	132	792
8	0.5	110	1	4.4	4.4	200	880
10	0.5	115	1	2.9	2.9	313	908
13	0.5	110	1	1.6	1.6	530	848
13	3	110	1	12.4	12.4	83.8	1039
16	0.5	120	0.1	10.2	1.02	803	819
16	3	120	1	7.5	7.5	129	968
20	3	110	1	4.5	4.5	205	923
25	3	120	1	2.6	2.6	323	840
30	3	125	0.1	16.6	1.66	467	775
40	3	135	0.1	8.0	0.8	833	666
50	3	145	0.1	5.0	0.5	1300	650
65	3	115	0.1	2.5	0.25	2210	553
80	3	130	0.01	14.2	0.142	3350	476
80	15	125	0.1	8.4	0.84	647	543
100	3	140	0.01	7.4	0.074	5230	387
100	15	140	0.11	4.5	0.45	1020	459
130	15	130	0.01	17.4	0.174	1750	305
160	15	100	0.01	10.2	0.102	2660	271
200	15	100	0.01	7.3	0.073	4170	304
250	15	90	0.01	5.8	0.058	6520	378
300	15	130	0.01	4.1	0.041	9400	385

A la Station L - 5

AB/2 (m)	MN/2 (m)	I (mA) (M ₁)	GRADUATION (S ₄)	LECTURE (RV4)	RESISTIVITE	COEFFICIENT	$(\Omega \cdot m)$
3	0.5	125	1	14.0	14.0	27.5	385
4	0.5	130	1	11.5	11.5	49.5	569
5	0.5	100	1	9.8	9.8	77.8	762
6.5	0.5	110	1	6.5	6.5	132	858
8	0.5	120	1	4.4	4.4	200	880
10	0.5	140	1	3.2	3.2	313	1000
13	0.5	110	1	2.3	2.3	530	1220
13	3	110	1	12.0	12.0	83.8	1006
16	0.5	90	0.1	15.6	1.56	803	1250
16	3	90	1	8.3	8.3	129	1070
20	3	80	1	5.0	5.0	205	1025
25	3	105	1	3.0	3	323	969
30	3	115	1	2.0	2	467	934
40	3	120	0.1	10.3	1.00	833	858
50	3	130	0.1	5.4	0.54	1300	702
65	3	130	0.1	2.5	0.25	2210	553
80	3	140	0.01	13.5	0.135	3350	452
80	15	150	0.1	7.1	0.71	647	459
100	3	16 0	0.01	7.7	0.077	5230	403
100	15	160	0.1	4.0	0.40	1020	408
130	15	130	0.01	17.8	0.178	1750	312
160	15	110	0.01	11.8	0.118	2660	314
200	15	80	0.01	7.8	0.078	4170	325
250	15	50	0.01	2.7	0.027	6520	176
300	15	5 0	0.01	1.3	0.013	9400	122

A la Station

L-6

AB/2 (m)	MN/2 (m)	I'(mA) (M _t)	GRADUATION (S ₄)	LECTURE (RV4)	RESISTIVITE	COEFFICIENT	$(arOmega_{\cdot m})$
3	0.5	120	1	20.5	20.5	27.5	564
4	0.5	115	1	13.8	13.8	49.5	683
5	0.5	95	1.	9.5	9.5	77.8	739
6.5	0.5	100	1	5.9	5.9	132	779
8	0.5	95	1	3.9	3.9	200	780
10	0.5	90	1	2.5	2.5	313	783
13	0.5	90	0.1	14.2	1.42	530	753
13	3	90	1	10.1	10.1	83.8	846
16	0.5	85	0.1	8.9	0.89	803	715
16	3	85	1	6.2	6.2	129	800
20	3	90	1	3.7	3.7	205	759
25	3	95	1	2.2	2.2	323	711
30	3	90	0.1	14.0	1.4	467	654
40	3	115	0.1	6.9	0.69	833	575
50	3	100	0.1	3.9	0.39	1300	507
65	3	130	0.1	2.0	0.2	2210	442
80	3	120	0.1	1.2	0.12	3350	402
80	15	120	0.1	8.2	0.82	647	531
100	3	100	0.01	6.0	0.06	6230	314
100	15	100	0.1	4.0	0.4	1020	408
130	15	110	0.1	1.5	0.15	1750	263
160	15	100	0.01	9.4	0.094	2660	250
100	15	110	0.01	7.0	0.07	4170	292
150	15	90	0.01	4.4	0.044	6520	287
100	15	55	0.01	1.4	0.014	9400	132

A la Station K-1

AB/2 (m)	MN/2 (m)	I (mA)	GRADUATION	LECTURE	RESISTIVITE	COEFFICIENT	ρ_a
J			(S ₁)	(RV ₄)	1		$(\Omega \cdot m)$
3	0.5	50	10	10.3	103	27.5	2830
4	0.5	40	10	6.8	68	49.5	3370
5	0.5	40	10	4.5	45	77.8	3500
6.5	0.5	50	10	2.5	25	132	3300
8	0.5	40	1	16.1	16.1	200	3220
10	0.5	40	1	10.4	10.4	313	3260
13	0.5	35	1	5.5	5.5	530	2920
13	3	35	10	8.0	8.0	83.8	6704
16	0.5	20	. 1	2.8	2.8	803	2250
16	3	20	10	4.3	4.3	129	5550
20	3	30	1	22.3	22.3	205	4570
25	3	30	1	11.2	11.2	323	3620
30	3	30	1	6.3	6.3	467	2940
40	3	20	1	2.6	2.6	833	2170
50	3	50	0.1	15.0	1.5	1300	1950
65	3	40	0.1	7.4	0.74	2210	1640
80	3	30	0.1	4.0	0.40	3350	1340
80	15	30	0.1	24.0	2.4	647	1550
100	3	20	0.01	20.3	0.203	5230	1060
100	15	30	0.1	8.9	0.89	1020	910
130	15	35	0.1	3.5	0.35	1750	613
160	30	30	0.1	3.5	0.35	1293	454
100	30	35	0.01	9.5	0.095	2047	194

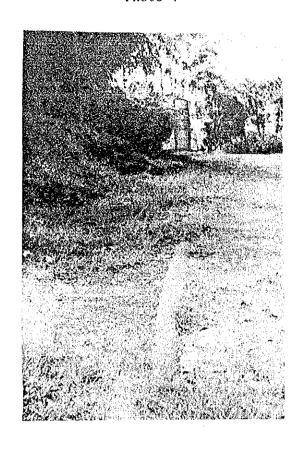
A la Station K-2

AB/2 (m)	MN/2 (m)	I (mA) (M _L)	GRADUATION (S4)	LECTURE (RV4)	RESISTIVIT	EICOEFFICIENT	$(\Omega \cdot m)$
3	0.5	40	10	3.6	36	27.5	990
4	0.5	40	10	2.5	25	49.5	1240
5	0.5	40	10	1.9	19	77.8	1480
6.5	0.5	40	1	14.1	14.1	132	1860
8	0.5	80	1	11.5	11.5	200	2300
10	0.5	65	1	8.5	8.5		2660
13	0.5	65	1	5.4	5.4	530	2860
13	3	60	10	4.4	4.4	83.8	3690
16	0.5	80	1	3.8	3.8	803	3050
16	3	65	10	3.1	31	129	4000
20	3	65	1	18.5	18.5	205	3790
25	3	65	1	9.6	9.6	323	3100
30	3	75	1	5.7	5.7	467	2660
40	3	60	1	3.0	3.0	833	2500
50	3	60	0.1	16.0	1.6	1300	2080
65	3	50	0.1	5.0	0.5	2210	1100
80	3	50	0.1	2.8	0.28	3350	940
80	15	50	0.1	17.5	1.75	647	1130
100	3	60	0.01	15.0	0.15	5230	785
100	15	60	0.1	9.1	0.91	1020	928
130	15	70	0.1	1.6	0.16	1750	280
160	15	85	0.01	11.0	0.11	2660	290
200	15	80	0.01	7.2	0.072	4170	300

A la Station K-3

la St	ation	K – 3					. *
AB/2 (m)	MN/2 (m)	I (mA) (M ₁)	GRADUATION (S4)	LECTURE (RV4)	RESISTIVITE	COEFFICIENT	$ \rho_a $ $ (\Omega \cdot m) $
3	0.5	100	1	16.0	16	27.5	440
4	0.5	115	1	11.3	11.3	49.5	559
5	0.5	110	1	8.4	8.4	77.8	654
6.5	0.5	100	1	5.6	5.6	132	739
8	0.5	115	1	3.8	3.8	200	760
10	0.5	100	1	2.5	2.5	313	783
13	0.5	90	0.1	11.9	1.19	530	631
13	3	90	1	8.1	8.1	83.8	679
16	0.5	85	0.1	7.2	0.72	803	578
16	3	85	1	4.7	4.7	129	606
20	3	85	0.1	26.4	2.64	205	541
25	3	60	0.1	13.9	1.39	323	449
30	3	70	0.1	9.7	0.97	467	453
40	3	90	0.1	5.3	0.53	833	441
50	3	90	0.1	3.2	0.32	1300	416
65	3	100	0.01	16.7	0.167	2210	369
80	3	110	0.0	9.4	0.094	3350	315
80	15	110	0.1	6.7	0.67	647	433
100	3	100	0.01	5.0	0.05	5230	262
100	15	100	0.11	3.9	0.39	1020	398
130	15	90	0.01	18.9	0.189	1750	331
160	15	100	0.01	11.6	0.616	2660	309
200	15	80	0.01	10.5	0.105	4170	438
250	15	70	0.01	8.6	0.086	6520	567
300	15	80	0.01	7.5	0.075	9400	705

A la Station B - 1


AB/2 (m)	MN/2 (m)	I(mA) (M _L)	GRADUATION (S4)	LECTURE (RV ₄)	RESISTIVITE	COEFFICIENT	$(\Omega \cdot m)$
4	0.5	110	1	14.4	14.4	27.5	396
5	0.5	100	1	9.8	9.8	49.5	485
5	0.5	110	1	6.6	6.6	77.8	513
6.5	0.5	100	1	4.1	4.1	132	541
8	0.5	60	1	2.7	2.7	200	540
10	0.5	60	0.1	16.9	1.69	313	529
13	0.5	60	0.1	10.5	1.05	530	557
13	3	60	1	7.3	7.3	83.8	612
16	0.5	60	0.1	7.0	0.70	803	562
16	3	60	1	4.9	4.9	129	632
20	3	60	1	2.9	2.9	205	595
25	3	45	0.1	18.6	1.86	323	601
30	3	30	0.1	12.9	1.29	467	602
40	3	65	0.1	6.9	0.69	833	575
50	3	75	0.1	4.0	0.40	1300	520
65	3	50	0.1	1.9	0.19	2210	420
80	3	80	0.01	10.9	0.109	3350	365
80	15	80	0.1	5.6	0.56	647	362
100	3	100	0.01	5.6	0.056	5230	293
100	15	100	0.1	4.1	0.31	1020	316
130	15	50	0.01	19.3	0.193	1750	338
160	15	80	0.01	8.4	0.084	2660	223
200	15	60	0.01	5.4	0.054	4170	225
250	15	50	0.01	2.4	0.024	6520	156
300	15	50	0.01	1.3	0.013	9400	122

A la Station

•		•			PECTURAL	•	
A la S	tation	B - 2					
AB/2 (m)	MN/2 (m)	I (mA) (M ₁)	GRADUATION (S4)	LECTURE (RV4)	RESISTIVITE	COEFFICIENT	$(\Omega \cdot m)$
3	0.5	65	10	3.3	33	27.5	908
4	0.5	70	10	1.8	18	49.5	891
5	0.5	70	1	11.9	11.9	77.8	926
6.5	0.5	60	1	6.6	6.6	132	871
8	0.5	50	1	4.1	4.1	200	820
10	0.5	50	1	2.4	2.4	313	751
13	0.5	50	1	1.2	1.2	530	636
13	3	50	1	8.6	8.6	83.8	721
16	0.5	75	0.1	7.7	0.77	803	618
16	3	65	1	5.0	5.0	129	645
20	3	75	11	3.0	3.0	205	615
25	3	65	0.1	16.1	1.61	323	520
30	3	60	0.1	10.1	1.01	467	472
40	3	65	0.1	4.6	0.46	833	383
50	3	65	0.1	2.5	0.25	1300	325
65	3	45	0.01	11.7	0.117	2210	259
80	3	70	0.01	7.9	0.079	3350	265
80	15	70	0.1	4.6	0.46	647	298
100	3	60	0.01	5.0	0.05	5230	262
100	15	65	0.1	3.1	0.31	1020	316
130	15	45	0.01	17.9	0.179	1750	313
160	15	70	0.01	13.9	0.139	2660	370
200	15	60	0.01	10.6	0.106	4170	442
250	15	60	0.01	5.60	0.0569	6520	371
300	15	70	0.01	4.5	0.045	9400	423

Photo 1

Conduite actuelle exposée au grand jour

Photo prise le long du chemin en pente venant du réservoir

Conduite actuelle exposée au grand jour

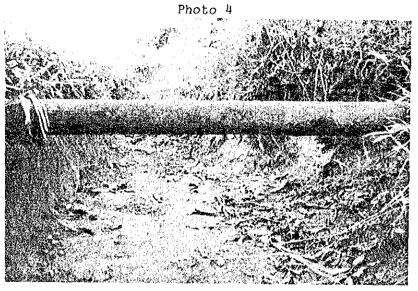
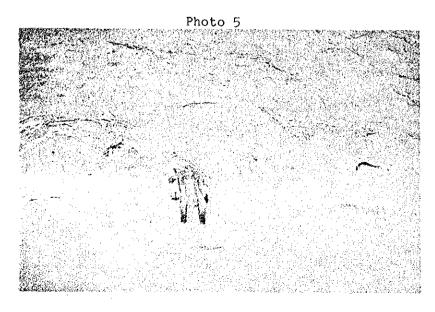

Photo prise le long du chemin en pente venant du réservoir

Photo 2



Conduite venant du réservoir

Tuyau de branchement actuel, ramification de la conduite de la photo 3

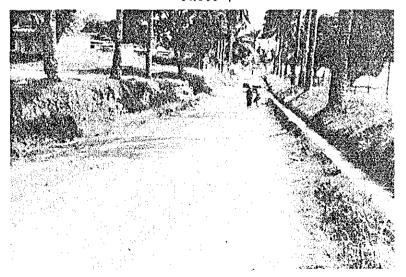
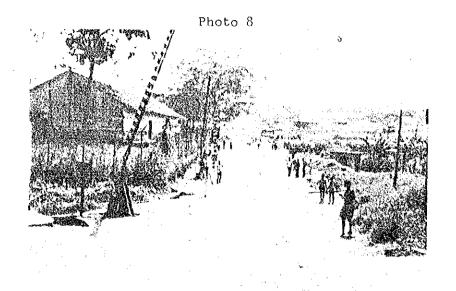
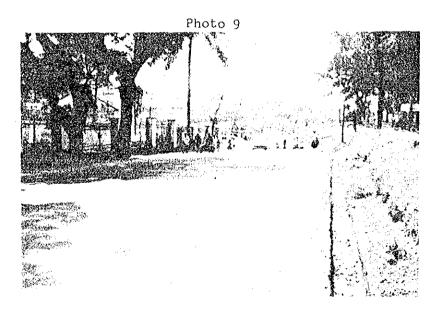
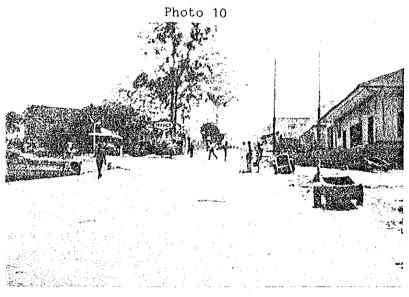

Tuyau de distribution traversant une rue, bride tordue

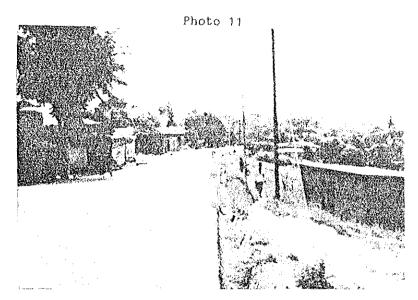
Photo 6

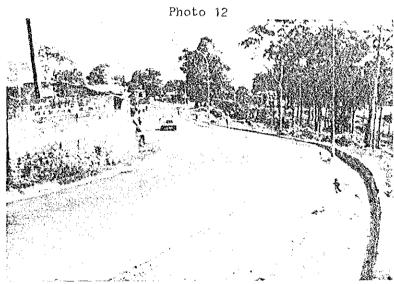


Masse pour tuyau de décharge près d'une rue, profondeur entre 1,6 et 2 m. La nouvelle canalisation passera sous cette masse

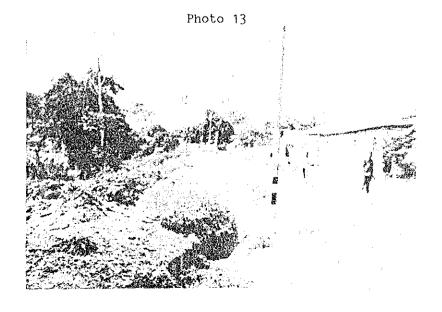

Photo 7


Rue défoncée par les eaux de pluies

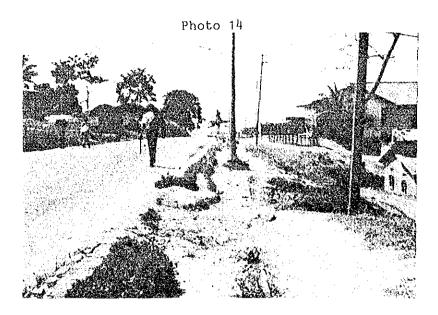

La nouvelle canalisation doit traverser la voie ferrée.


Rue se trouvant près du passage à niveau (1) où la nouvelle canalisation sera posée (enterrée). Il n'y a presque pas de place

Rue se trouvant près du passage à niveau (2) où la nouvelle canalisation sera enterrée.



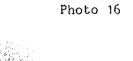
La nouvelle canalisation sera posée à côte des poteaux.



Le terrain pour l'installation de tuyaux de distribution.

Il n'y a presque pas
de place pour
l'installation.

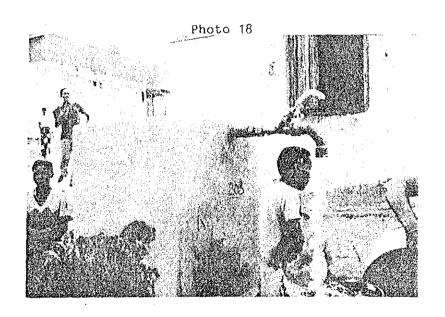
Dito



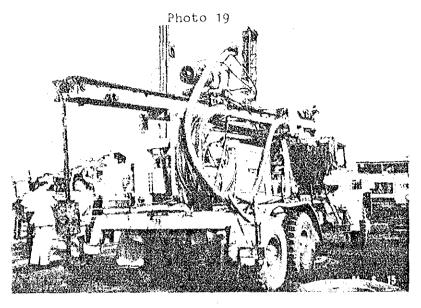
Canalisation actuelle exposée au grand jour, près d'une rue. La canalisation de cable est juxtaposée.

Photo 15

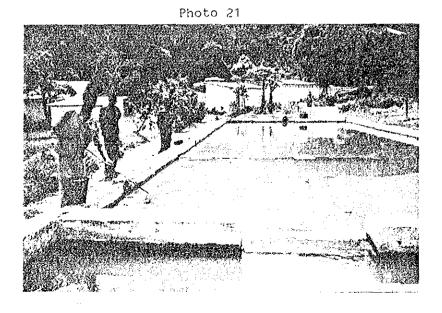
La nouvelle canalisation doit passer au-dessus du fossé d'ecoulement.



nouvelle canalisation sera posé le long du chemin encaissé. Il y a suffisamment de place.


Photo 17

Borne fontaine dans la ville de Matadi (1)


Borne fontaine dans la ville de Matadi (2)

Perceuse utilisée actuellement au Zaïre pour le forage

Bâtiment des pompes de l'usine de traitement de Kusu-Kusu

Poste de décantation de l'usine de traitement de Kusu-Kusu

