4.3 GENERATED TRAFFIC

Forest covers 35 % of the area influenced by the new road (4,300 km²), according to the survey by a German Forestry Mission. The commercially exploitable timber of moist semi-deciduous and moist evergreen species are estimated as follows:

	Moist Semi-deciduous	Moist Evergreen	Total	
Commercially Exploitable area				
(%)	7	24		
(km ²)	105	361	466	
Exploitable timber				
(m ³ /km ²)	1,343	1,930	· 🗕	
(m ³)	141,000	696,700	837,700	

TABLE 4-6 TIMBER RESOURCES IN PROJECT AREA

On assumption that the production cycle is 25 years on an average, the annually exploitable timber volume is estimated at 33,500 m³. Such volume of timber is presumed to be extracted at gradually increasing rates, and the volume of extraction and generated traffic is estimated as tabulated on Table 4-7.

Year	Annual Commercial Potential	Annual Extraction		АDТ	
	(m ³)	(१)	(m ³)		
1984	33,500	20	6,700	3	
85	33,500	25	8,375	4	
86	33,500	30	10,050	4	
87	33,500	35	11,725	5	
88	33,500	40	13,400	6	
89	33,500	45	15,075	7	
90	33,500	50	16,750	7	
91	33,500	55	18,425	8	
92	33,500	60	20,100	9	
93	33,500	65	21,775	10	
94	33,500	70	23,450	10	
95	33,500	75	25,125	11	
96	33,500	80	26,800	. 12	
97	33,500	85	28,475	12	
98	33,500	90	30,150	13	
99	33,500	95	31,825	14	
2000	33,500	100	33,500	15	
1	33,500	100	33,500	15	
2	33,500	100	33,500	15	
3	33,500	100	33,500	15	

TUDUU = 1 $TTUDUU DUTUUVTOU TUDU + 1010 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000 + 10000$	TABLE	4-7	TIMBER	EXTRACTION	AND	TRAFFIC
--	-------	-----	--------	------------	-----	---------

 $ADT = \frac{Annual Extraction x 0.8}{Truck Capacity (10 t)} \times 1/365 \times 2$

.

- 27 -

Development for agriculture in the area influenced by the new road will also be accelerated due to opening of the new road, for marketing, as well as improvement of such cultivation techniques as application of improved seed, and varieties, application of fertilizer and insecticide, agricultural extension services, etc. The area for cultivation of major crops is estimated as follows:

	Lofa County <u>/1</u>	Area Influenced by New Road/2
Total area (km ²)	23,570	4,300
Cultivated area:		
(%)	2.3	2.3
(Ha.)	55,200	9,890
Rice	33,200 (60.1 %)	5,940
Coffee	6,750 (12.3 %)	1,220
Cocoa	5,450 (9.9 %)	980
Others	9,800 (17.7 %)	1,750

TABLE 4-8 CULTIVATION AREA

/l Ministry of Planning and Economic Affairs

 $\underline{/2}$ Rates assumed to be proportionate to that of Lofa Country

The area of cultivation and the production of major crops in the Project area under with- and without project condition is estimated as shown on Table 4-9 to Table 4-12.

On the assumption that all the products of coffee and cocoa and a half of rice production will be transported to Monrovia area by 5-ton trucks, the traffic induced from agricultural development in the area influenced by the new road is estimated as summarized in Table 4-13.

- 28 -

,			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Share Part of the other of the Part of States and States and	<u>(ha.)</u>
	Without Project		ect		
	Traditional /1	Upla	nd	New	New
	Upland Rice/1	Tradit. <u>/2</u>	Improv.	Upland	Swamp
1984	6,140	4,940	1,200	150	50
1985	6,340	3,940	2,400	300	50
1986	6,550	2,950	3,600	500	100
1987	6,760	1,760	5,000	1,000	150
1988	6,990		6,990	1,500	150
1989	7,220		7,220	2,000	200
1990	7,460		7,460	2,000	300
1991	7,700		7,700	2,000	500
1992	7,960		7,960	2,000	500
1993	8,220		8,220	2,000	500
1994	8,490		8,490	2,000	500
1995	8,770		8,770	2,000	500
1996	9,060	_	9,060	2,000	500
1997	9,360	_	9,360	2,000	500
1998	9,670		9,670	2,000	500
1999	9,990		9,990	2,000	500
2000	10,320		10,320	2,000	500
2001	10,660		10,660	2,000	500
2002	11,010		11,010	2,000	500
2003	:11,370		11,370	2,000	500

TABLE 4-9 AREA OF CULTIVATION (RICE)

Remarks: /1 increased at 3.3 % (equiv. to population increase rate) 5,940 ha. in 1978-83.

<u>/2</u> traditional upland rice cultivation will be improved in 5 years.

- 29 -

TABLE	4-10	PRODUCTION OF	RICE
-------	------	---------------	------

	Without		With Project						
Year	Project	Upl	and	Swamp	Total				
	······································	Tradit.	Impr./New		iocai				
1984	7,370	5,930	2,300	165	8,395				
1985	7,610	4,730	4,590	165	9,485				
1986	7,860	3,540	6,970	300	10,810				
1987	8,110	2,110	10,200	500	12,810				
1988	8,390		14,430	500	14,930				
1989	8,660	<u> </u>	15,670	660	16,330				
1990	8,950	_	16,080	990	17,070				
1991	9,240		16,490	1,650	18,140				
1992	9,550		16,930	1,650	18,580				
1993	9,860		17,370	1,650	19,020				
L994	10,190	_	17,870	1,650	19,480				
L995	10,520		18,310	1,650	19,960				
L996	10,870		18,800	1,650	20,450				
L997	11,230		19,310	1,650	20,960				
L998	11,600		19,840	1,650	21,490				
999	11,990		20,380	1,650	22,030				
2000	12,380	-	20,940	1,650	22,590				
001	12,790		21,520	1,650	23,170				
002	13,210		22,120	1,650	23,770				
003	13,640	_	22,730	1,650	24,380				

Remarks:	Traditional upland rice	:	1.2 t/ha.
	Improved upland rice	:	1.7 t/ha.
	New swamp rice	. :	3.3 t/ha.

- 30 -

	Withou	t Project	With Project						
Year	Area (ha)	Pro- <u>/1</u> duction (t)	Area Tradi- tional	Area Im- proved	New Plan- tation	Pro- duction Tradi- tional	Pro- <u>/2</u> duction Im- proved	Pro- <u>/2</u> duction New Plant.	Pro- duction Total
1984	1,220	233	1,020	200	200	180			189
85	1,300	240	900	4000	500	167		-	167
86	1,300	240	500	800	1,000	93	_		93
87	1,300	240	300	1,000	1,500	56	188	188	432
88	1,300	240		1,300	2,000	_	376	470	846
89	1,300	240	·	1,300	2,000	_	754	940	1,694
90	1,300	240		1,300	2,000	_	940	1,410	2,350
91	1,300	240	-	1,300	2,000	_	1,220	1,880	3,100
•	1,300	240		1,300	2,000		1,220	1,880	3,100
2003	1,300	240		1,300	2,000	_	1,220	1,880	3,100

TABLE 4-11 AREA AND PRODUCTION (COFFEE)

TABLE 4-1	AREA	AND	PRODUCTION	(COCOA)
-----------	------	-----	------------	---------

	Without Project		out Project With Project						
	Area (ha)	Pro- <u>/3</u> duction (t)	Area Tradi- tional	Area Im- proved	New Plan- tation	Pro- duction Tradi- tional	Pro- <u>/4</u> duction Im- proved	Pro- duction New Plant.	Pro- duction Total
1984	980	363	780	200	200	289			289
85	1,000	370	700	300	500	259	_		259
86	1,000	370	700	300	1,000	259	_	_	259
87	1,000	370	700	300	1,500	259		_	259
88	1,000	370	500	500	2,000	185	162	162	509
89	1,000	370		1,000	2,500	_	243	405	648
90	1,000	370	_	1,000	2,500	_	243	810	1,053
91	1,000	370		1,000	2,500		243	1,215	1,458
92	1,000	370	_	1,000	2,500	. 	405	1,620	2,025
93	1,000	370		1,000	2,500		810	2,025	2,835
94	1,000	370		1,000	2,500		810	2,025	2,835
2003	1,000	370	_	1,000	2,500	· _	810	2,025	2,835

Remarks: <u>/1</u> 0.185 ton/ha <u>/3</u> 0.37 ton/ha <u>/2</u> 0.94 ton/ha <u>/4</u> 0.81 ton/ha during 5-20th year.

Year	Rice	Coffee	Сосоа	Total (ADI
1984	5	1	1.	7
85	6	1	1	8
86	6	1	1	8
87	8	1	1	10
88	9	1	1.	11
89	9	2	1	12
90	10	3	2	15
91	10	4	2	16
92	11	4	3	18
93	11	4	4	19
94	11	4	4	19
95	11	4	4	19
96	12	4	4	20
97	12	4	4	20
98	12	4	4	20
99	13	4	4	21
2000	13	4	4	21
1	13	4	4	21
2	14	4	4	22
3	14	4	4	22

TABLE 4-13 TRAFFIC OF AGRICULTURAL PRODUCTS

国際協力事業団蔵書

4.4 DIVERTED TRAFFIC

After the completion of the new Kpakuta - Wologisi -Bopolu road, a part of the traffic along the Kolahun -Voinjama road will be diverted to the new road. Although the detailed traffic survey (OD) has not been made, it is presumed that 10 % of passenger cars and 50 % of trucks along the Kolahun - Voinjama road have their origin or destination at Monrovia area, and that a half of such traffic will be diverted to the new road which is shorter than the existing road via Gbarnga by 150 km. The diverted traffic is estimated as tabulated on Table 4-14.

4.5 TOTAL ESTIMATED TRAFFIC

The normal traffic, generated traffic and diverted traffic forecasted under Chapter 4.1 to 4.4 are summarized and shown on Table 4-15.

	N	omina	1 Tı	affi	.c <u>/1</u>	I	Diverte	d Trai		
Year		7 7	7oin.	¥	(ola.	Sami	- Wo	L Bo	L.	ion.
	P/C	L/B	L/T	н/т	Total	P/C^{2}	L/B/2	L/T/3	<u>н/т/3</u>	Total
1984	108	230	36	7	381	5	12	9	2	28
85	114	244	38	8	404	б	12	10	2	30
86	121	259	40	8	428	6	13	10	2	31
87	129	274	43	9	455	6	14	11	2	33
88	136	291	45	9	481	7	15	11	2	35
89	145	308	48	10	511	7	15	12	3	37
90	153	327	51	10	541	8	16	13	3	40
91	161	343	54	11	569	8	17	14	3	42
92	169	360	56	12	597	8	18	14	3	43
93	177	378	59	12	626	9	19	15	3	46
94	186	397	62	12	657	9	20	16	3	48
95	196	417	65	13	691	10	21	16	3	50
96	205	438	68	14	725	10	22	17	3	53
97	216	460	72	14	762	11	23	18	4	56
98	226	483	75	15	799	11	24	19	4	58
99	238	507	79	16	840	12	25	20	4	61
2000	250	532	83	17	882	13	27	21	4	65
1	260	554	87	17	918	13	28	22	4	67
2	270	576	90	18	954	14	29	23	5	71
3	281	599	94	19	993	14	30	24	5	73

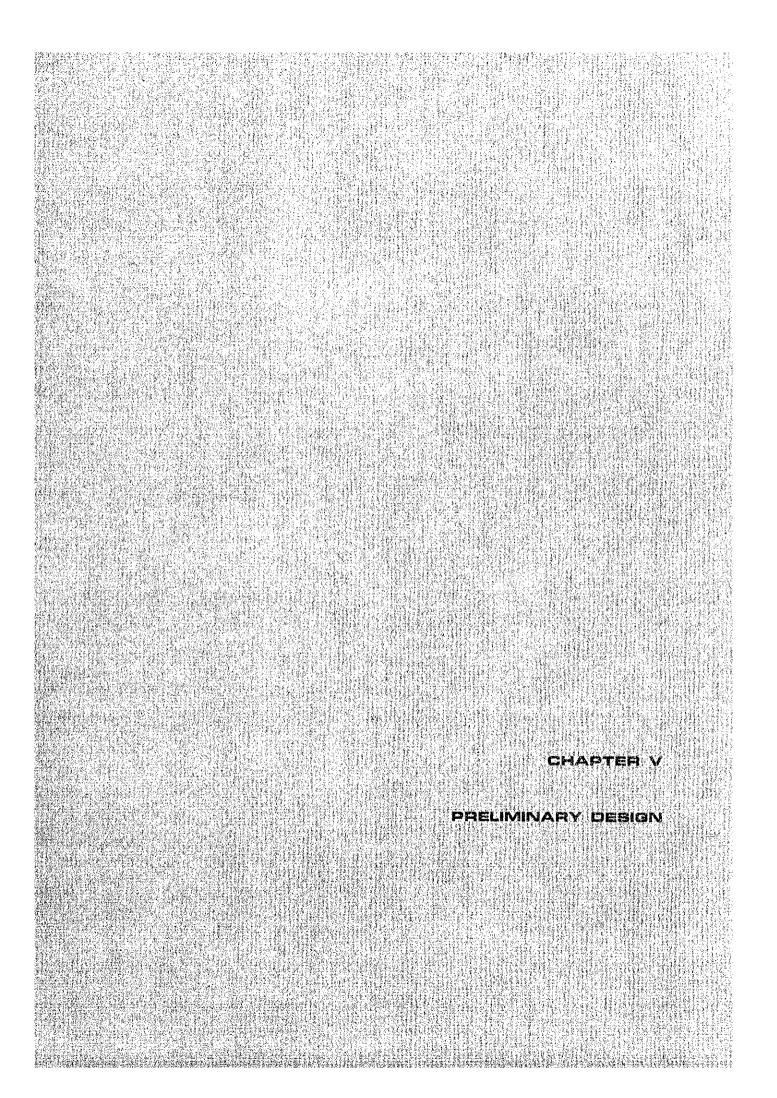
TABLE 4-14 DIVERTED TRAFFIC

 $\frac{\frac{1}{2}}{\frac{3}{3}}$ Vo x 0.1 x 0.5 Vt x 0.5 x 0.5

	W	ologi	н1, —	Kprku	ita	Wol Kpelle					
Yoar	P/C	t//B	<u>{./'}</u>	н/т	Total	P/C	L/B	L/T	8/Т	Total	
1984	5	30	21	2	58	37	19	18	80	154	
85	6	30	23	2	61	38	13	19	82	3.58	
86	6	32	23	2	63	39	22	29	84	164	
87	6	33	25	2	66	39	22	20	87	169	
88	7	35	26	2	70	41	26	22	32	278	
8 9	7	39	28	3	77	42	24	26	103	235	
90	8	40	30	3	81	43	25	27	146	262	
91	8	42	32	3	85	44	27	29	250	251	
92	· 8	44	33	3	88	44	28	29	153	254	
93	9	45	35	3	92	46	30	31	<u>157</u>	264	
94	9	47	37	3	96	46	31	32	1.57	266	
95	10	49	38	3	100	48	33	33	160	274	
96	10	51	40	4	105	48	34	34	162	278	
97	11	52	42	4	109	50	36	36	164	286	
98	11	54	44	4	113	51	38	38	167	294	
99	12	56	47	4	119	52	39	39	369	299	
2000	13	59	49	4	125	54	42	41	172	309	
1	13	61	51	4	129	55	44	43	174	316	
2	14	63	53	5	135	56	45	44	177	322	
3	14	65	56	5	140	57	47	45	179	329	

TABLE 4-15 TOTAL TRAFFIC FORECAST

•


• . .

.

.

.

.

CHAPTER V

5.1 BASIC DATA

5.1.1 Topography

The topographic map on the scale of 1/20,000 along the new Wollgisi - Bopolu road and the Kpakuta - Wologisi road has been prepared during the course of this study. Aerial photographs were taken to cover 2,400 km² (7 flying course with total length of 270 km). Ground control survey for mapping was made by applying the NNSS system, and 1/20,000maps at contour intervals of 10 m were prepared to cover 340 km² (9 sheets).

The survey at six major river crossing points (Ziliba river, Maaso creek, Wenzia river, Butulu creek, Molu river, Mafu river) was made on the scale of 1/500 with contour intervals of 1 m.

The topographic maps thus prepared have been used to decide the final alignment of the new road and to prepare preliminary design and cost estimate.

5.1.2 Soils and Materials

Soils along the route are mainly composed of brown or raddish brown laterite, accompanied by clayed and sandy soils. Gravel beds are observed in some parts of the river beds, as well as on the ground surface of 0.5-1 m in thickness. In hilly region, granite and gneiss makes sporadic outcrops, which are partly weathered intensively. The surface soils have been checked and analysed as shown on Table 5-1 and Fig. 5-1. It was found that such soils may be utilized for base course at appropriate moisture content, and gravelly laterite of modified CBR 20 will be utilized as pavement materials. River gravel and granite or gneiss rocks may be used as concrete aggregate for the construction of bridges and other structures.

5.1.3 Hydrology

In estimating the river discharge for the preliminary design of the structures, it was provisionally applied to use the following formula and mean monthly precipitation:

 $Q = C 4/\overline{A^3}$ (Dicken's formula)

where, Q : discharge (m³/sec) A : catchment area (km²) C : coefficient:

2.77 at flat land
3.46 at hilly region
4.15 at mountain region

- 38 -

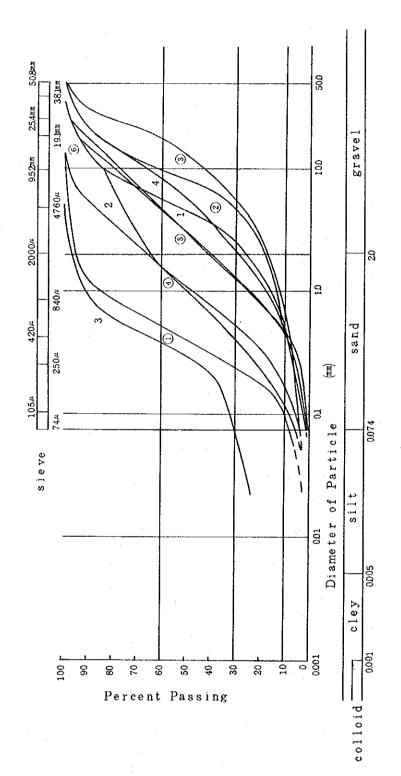

And a second	in the second second	-								
ication Casegrande	SM	GM	GW	SM	sc	SM	sc	SM		GM
Classificat A.A.S.H.O Case	A - 2 - 4	A-2-6	A-1-a	A-2-4	A-2-6	A-2-7	A-2-6	A-2-4		A-2-7
Р°I Ч	6.9	14.7		6.3	1 8.8	1 7.3	1 4.2	9.2	1	14.1
Ъ.Г.	3 3.1	2 5.9	Р.	21.7	1 9.6	28.6	2 2.9	2 3.8	1	2 7.9
L.L.	4 0.0	4 0.6	N.P.	28.0	38.5	4 5.9	37.1	33.0	1	42.0
Speci gravitg	2.60	2.6.6	2.6.6		2.7.6			2.66	2.65	
Dia 10%	0.1 1	0.52	0.7 2	0.12	0.47	0.47	0.5 8	0.18	1	0.5 5
Dia 60%	0.52	9.5	1 7.0	1.7	4.6	4.7.6	5.8	1.5	0.3.7	8.5
Max Dia	1 0.0	5 0.0	5 0.0	1 0.0	3 0.0	3 0.0	3 0.0	4 0.0	5.0	4 0.0
25.40	100	9 1.8	8 0.8	100	9 8.2	9.7.6	9 6.0	91.4	100	93.3
4.760	98.2	2 9.7	27.7	8 7.5	64.3	6 0.7	52.1	7 5.0	100	4 1.9
2.000	95.9	1 7.5	1 6.0 ·	6 6.0	3 9.6	3 8.7	24.9	64.9	9.7.6	2 8.8
0.420	5 1.4	9.5	8.3	3 0.1	6.9	8.2	7.7	2 5.4	6 6.0	1.7
0.074	6.9	1.3	3.2	6.4	1.2	0.8	0.8	3.2	3 0.9	1.1
Sample Ma	Ð	3	۲	4	٢	٢	part	2	3	4

Table 5-1 RESULT.OF SOIL ANALYSIS

sampling

① ~ ⑥.Kpakuta ~ wologisi ~ Gondrahun

1 ~ 4.Bopolu ~ Gengba ~ Kpelle

- 40 -

			(inch)
Year	Bopolu	Kolahun	Voinjama
Jan.	0.92	0.44	0.65
Feb.	1.56	1.14	2.23
Mar.	4.83	4.66	5.71
Apr.	6.99	5.30	8.51
May	8.80	8.57	9.69
Jun.	10.41	12.22	14.02
Jul.	14.62	12.66	17.32
Aug.	14.19	14.66	15.49
Sep.	21.75	21.30	17.73
Oct.	12.88	14.01	12.10
Nov.	6.20	9.74	10.24
Dec.	2.16	2.91	2.44
Annual	105.29	107.61	116.33

TABLE 5-2 MONTHLY MEAN PRECIPITATION

Annual : Ten year average 1963-1972 Source : Ministry of public works

The discharge has thus been estimated preliminarily as summarized in Table 5-3. on the basis of the catchment area and flow area as shown on Fig. 5-2 to Fig. 5-4.

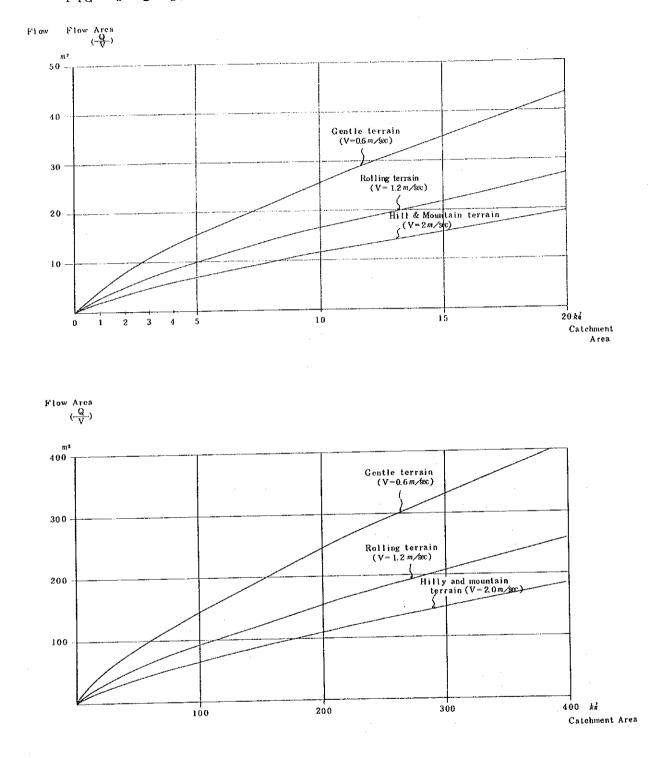
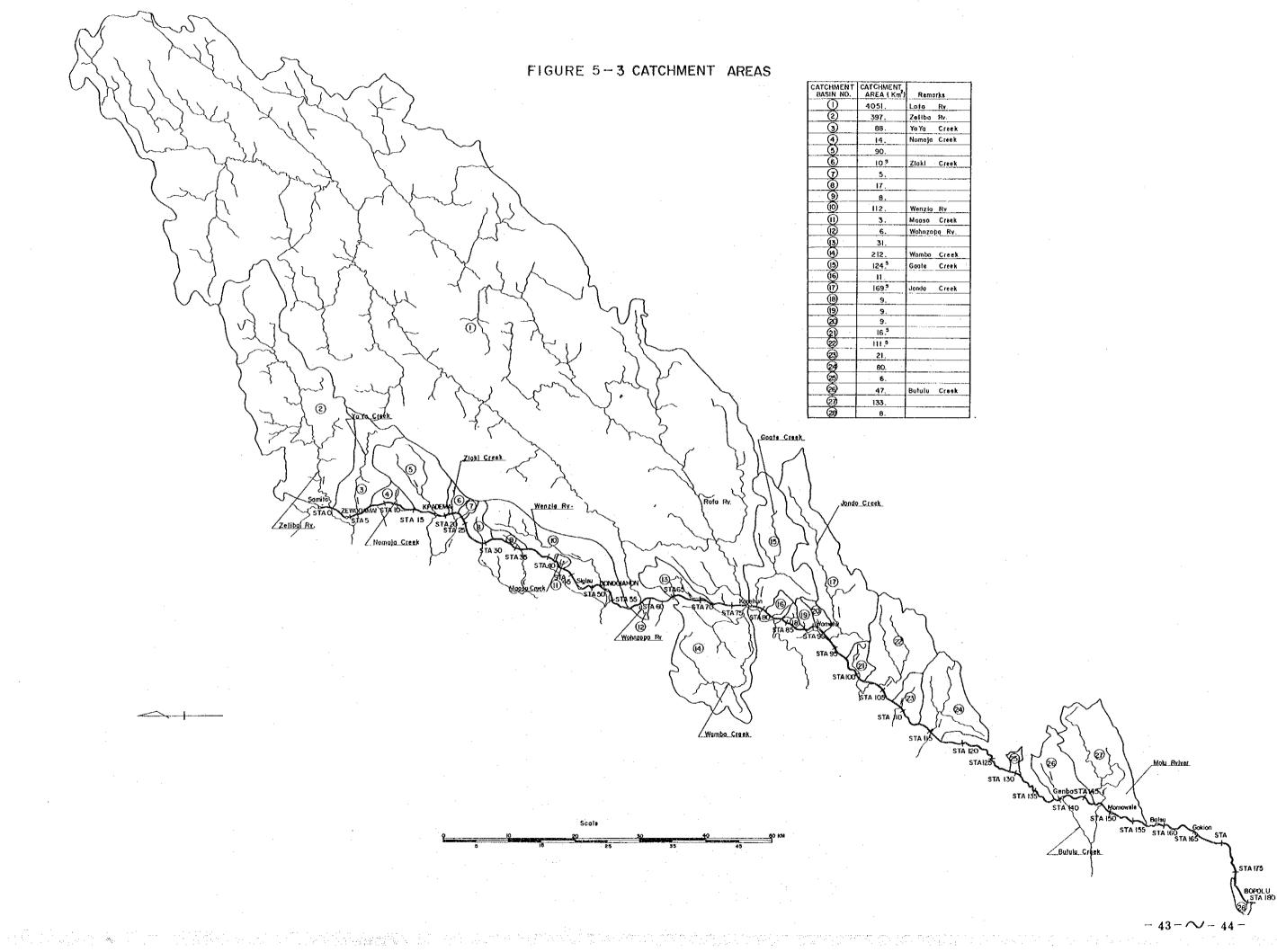



FiG 5-2 Catchment Area - Flow Area Diagram

-42-

Table 5-3 DISCHARGE

			Topography									
No,		Catchm.	Flat V:	= 0.6 m/sec	Hilly V=	1.2 m /sec	Mount V=2.0 m/sec					
NO.	River Creek	Area (kā)	Disch. (nl⁄sec)	Flow area (n)	Dischar- ge (m//sec)	Flow area (<i>n</i> !)	Dischar ge (m/sec)	Flow area (<i>m</i> !)				
1	Lofa Rv.	4051.0	1406.5	2344.2	1756.9	1464.1	2107.3	1053.				
2	Zeliba Rv.	397.0	246.4	410.6	307.7	256.4	369.1	184.				
3	Yoya Creek	8-8.0	7 9.6	1 3 2.6	9 9.4	8 2.8	1 1 9.2	5 9.				
4	Noma Creek	1 4.0	2 0.0	3 3.4	2 5.0	2 0.9	3 0.3	1 5.				
5		9 0.0	8 0.9	134.9	101.1	8 4.3	1 2 1.3	6 0.				
6	Ziaki Creek	1 0.5	1 6.2	2 6.9	2 0.2	1 6.8	2 4.2	1 2.				
7		5.0	9.3	1 5.4	1 1.6	9.6	1 3.9	6.				
8	· ·	1 7.0	2 3.3	3 8.7	3 0.0	2 4.1	3 4.7	17.				
9		8.0	1 3.2	2 2.0	1 6.5	1 3.7	1 9.7	9.				
10	Wenzia Creek	1 1 2.0	9 5.4	1 5 8.9	119.1	9 9.3	1 4 2.9	71.				
11	Mauso Creek	3.0	6.3	1 0.5	7.9	6.5	9.5	4.				
12	Wahnzopa Rv.	6.0	1 0.6	1 7.7	1 3.3	1 1.1	1-5.9	7.				
13		3 1.0	3 6.4	6 0.7	4 5.5	3 7.9	5 4.5	2 7.				
14	Wambo Creek	212.0	153.9	256.5	192.2	160.2	2 3 0.6	115.				
15	Gaate Creek	1 2 4.5	1 0 3.2	172.1	1 2 9.0	107.5	154.6	77.				
16		1 1.0	1 6.7	2 7.9	2 0.9	17.4	2 5.1	12.				
17	Jando Creek	1 6 9.5	1 3 0.1	216.9	162.5	1354	195.0	97.				
18	· .	9.0	1 4.4	2 4.0	1 8.0	1 5.0	2 1.6	1 0.				
19	· · ·	9.0	14.4	2 4.0	1 8.0	1 5.0	2 1.6	1 0.				
20		9.0	1 4.4	2 4.0	1 8.0	1 5.0	2 1.6	1 0.				
21		1 6.5	227	3 7.8	2 8.3	2 3.6	3 4.0	1 7.				
22		1 1 1.5	9 5.0	158.4	118.7	142.5	1424	71.				
23		2 1.0	2 7.2	4 5.3	3 3.9	2 8.8	4 0.7	2 3.				
24		8 0.0	7 4.1	123.5	9 2.6	7 7.1	1 1 0.0	5 5.				
25		6.0	1 0.6	1 7.7	1 3.3	1 1.1	1 5.9	8.				
26		4 7.0	4 9.7	8 2.9	6 2.1	5 1.8	7 4.5	3 7.				
27		1 3 3.0	108.5	180.8	135.5	112.9	162.5	8 1.				
28		8.0	1 3.2	2 2.0	1 6.5	1 3.7	1 9.7	9.				

- 45 -

5.2 DESIGN CRITERIA

On the basis of the traffic forecast in Chapter IV, it will be appropriate to design the new road as a secondary road under the Road Standard in Liberia. Accordingly, the design speed is adopted to be 40 km/hr, but it was considered desirable to design the alignment to be capable of future improvement for the design speed of 60 km/hr at minimum additional costs. The carriageway width of the road will be 5.5 m for the two lanes. The geometric design criteria are summarized on Table 5-4.

Design speed	40	km/hr
Right-of-way	40	m
Carriageway width	5.5	m
Shoulder width	0.75	m
Sight distance	75	m.
Min. curve radius	60	m
Max. longitudinal grade	. 7	00
Max. cross fall	5.0	8
Max. combined grade	8.0	8
Shoulder cross fall	4.0 - 5.0	몃
Bridge design load	HS20 - 4	14
Bridge carriage width	7.0	m

TABLE 5-4 GEOMETRIC DESIGN CRITERIA

5.3 PRELIMINARY DESIGN OF ROAD

The improvement required for the existing roads has been defined on the basis of the field investigation and the design criteria as noted in Chapter 5.2. For the section to be newly constructed, the alignment has been designed in view of the topographic and soil condition, as well as continuity of alignment. Where the construction cost is not substantially increased, the minimum horizontal curve radius of 140 m and maximum gradient of 6 % has been applied to enable future improvement at the least additional cost for the design speed of 60 km/hr. The alignment (Plan and Profile) of the new road and the improvement of existing roads are shown on the 1/20,000 scale map in ANNEX-II appended to this report.

Earthwork is, in principle, designed as summarized hereunder.

a)	Slope:	embankment	1:1.5
		cutting	1:0.5

Slope protection for erosion control is made by coble stone facing, only at the required section.

b) Base course:

Sandy laterite or gravelly laterite soils. (In case clayey laterite is used, moisture content should be carefully controlled.)

c) Embankment: By side borrow system

d) Side ditch: Earth ditch

Pavement design is to be prepared on the basis of the laterite soil condition. Clayey laterite will have CBR value of 3-5 % under wet condition, while gravelly laterite will have CBR value of 20-45 %. It is designed that pavement is made by two layer of laterite: upper layer (10 cm) with CBR 20-45 % and lower layer (10 cm) with CBR 10-20 %. The laterite pavement will loose its strength and cause damages on surface in wet season, while it will raise dusts in dry season. To protect such damages it is designed to overlay by prime coat which will be rehabilitated once every ten years.

The typical cross section of the proposed road, as well as preliminary design of pipe culverts, cross ditch and box culverts, are shown on the Drawings (Dwg. 18 to Dwg. 20) in ANNEX-II.

5.4 PRELIMINARY DESIGN OF BRIDGES

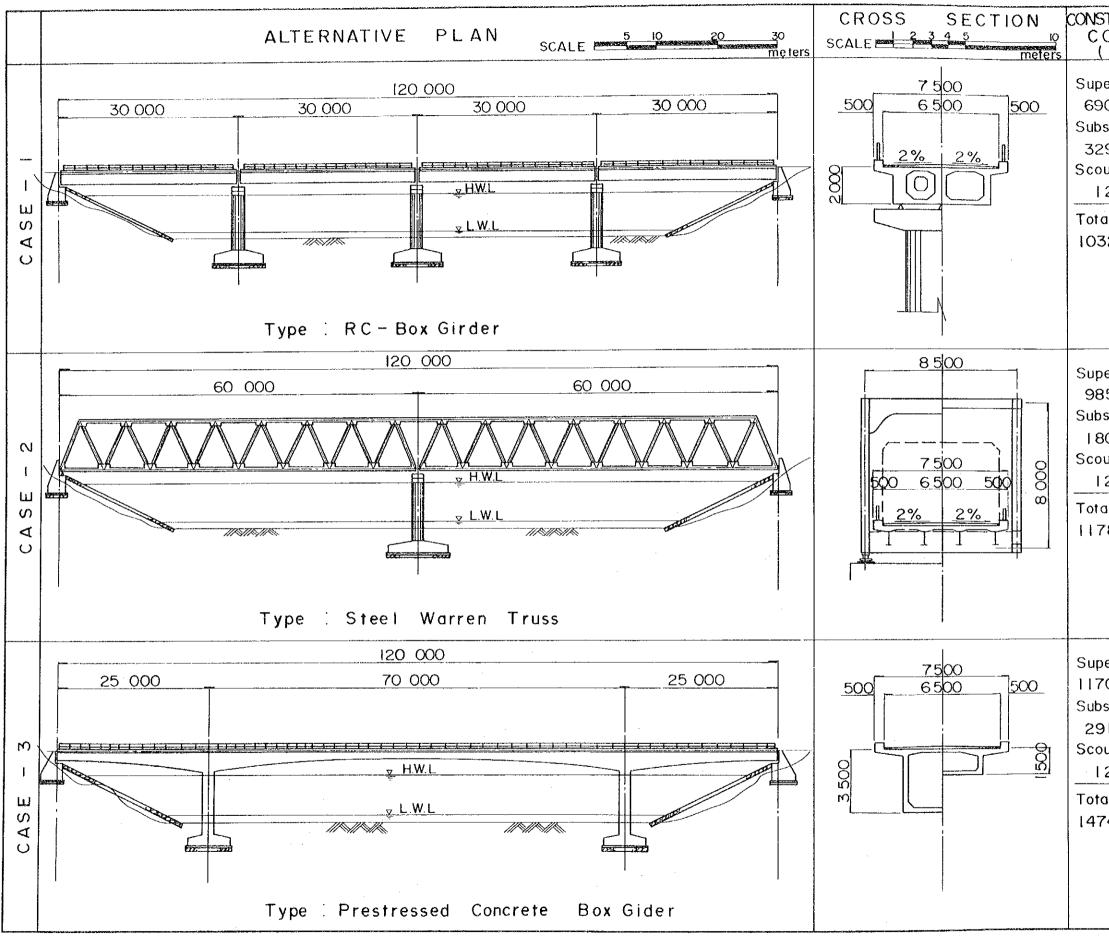
For the new road construction and improvement of the existing road, it is necessary to design bridges over Lofa river and other streams. The Lofa river has, at the crossing point, discharge of 2,107 m³/sec., which will require flow area of 1,503 m². With the clearance at high water level plus 2 m, the bridge will have length of 120 m.

Three types of bridge structures have been comparatively studied: RC Box girder type, Steel Warren truss type and Prestressed concrete box girder type. In view of the fact that the temporary river closure for bridge construction is practicable in the dry season, and that transportation of construction materials should be minimized for difficult access to the bridge site, and that the construction cost should be minimized as far as possible, it was selected to adopt RC Box girder type bridge for Lofa river crossing, as illustrated in Fig. 5-4.

For design of smaller bridges, it was designed to apply, in principle, following types of super and sub-structures:

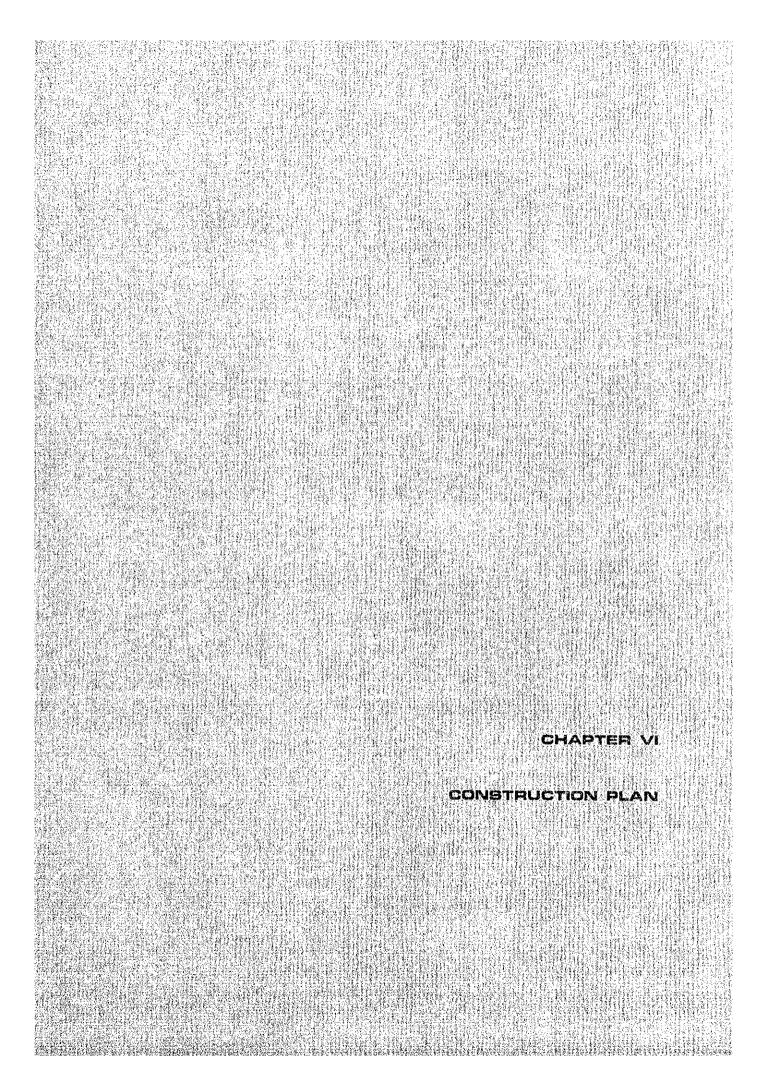
Superstructure	Span Length or Height $L \leq 10m$	<u>Type</u> RC slab
- 	$10m < L \leq 25m$	RC T beam
Sub-structure	$H \cong 4m$ $4m \le H \cong 10m$	Gravity Adverse T type
	10m - H	Counterfort type

The outline of the proposed bridges on the new road is summarized on Table 5-5. The Drawing No. 21 and 22 in ANNEX-II illustrate the standard bridge design.


(

۰.

LIST OF PROPOSED BRIDGE	
Table 5-5	


Remarks	Replacement	===	æ	11	1	11	1	2	New Construction	-		-	-	5	-	Replacement	1	
Carriageway Width	0-1	7.0	=	12	11		13	94			6.5	7.0	1	7.0	7.0	1	7.0	
Bridge Length	25.0	10.0		25.0	10.0	20.0	10.0	20.0	10.0	25.0	30.0 × 4 = 120	20.0	25.0	20.0	10.0	11	25.0	
Type of Bridge	RC~T-Beam - Bridge	RC-Slab - Bridge	-	RC-T-Beam - Bridge	RC-Slab - Bridge	RC-T-Beam - Bridge	RC-Slab - Bridge	RC-T-Beam - Bridge	RC-Slab - Bridge	RC-T-Beam - Bridge	RC-Box-Girdger Br.	RC-T-Beam - Bridge	RC-T-Beam - Bridge		RC-Slab - Bridge	-	RC-T-Beam - Bridge	
Name of Bridge	Zeriba Rv. Br.	Yaya Creek Br.	Nomaja Creek Br.			Maaso Creek Br.		Wenzia Rv. Br.	Wahnzepa Creek Br.	Wambo Creek Br.	Lofa Rv. Br.	Gaate Creek Br.	Jondo Creek Br.			Butulu Creek Br.	Molu Rv. Br.	
Station	Sta 1 + 100	5 + 950	13 + 350	19 + 500	29 + 500	42 + 870	48 + 100	57 + 650	59 + 400	77 + 300	78 + 000	79 + 450	92 + 200	102 + 200	114 + 900	140 + 000	148 + 200	
								50-		- 								-

COMPARATIVE STUDY FOR LOFA RIVER BRIDGE Fig. 5-2

STRUCTION OST (\$)	CONSRUCTION PERIOD (MONTHS)	JUDGEMENT					
berstruct. 00 930 0struct 29 000 0ur Protect 2 540 al Cost 32 470	26	BEST					
perstruct. 35 500 ostruct. 30 000 our Protect 2 540 al Cost 78 340	18	BETTER					
perstruct. 70 000 ostruct. 21 800 our Protect. 2 540 al Cost 74 340	22	GOOD					
	51 - 55						

51 - 52

CHAPTER VI

6.1 CONSTRUCTION QUANTITY

1 a 1

On the basis of the inventory survey of the existing road and preliminary design for the improvement and new road construction, the quantity of the construction works for the Kpakuta - Wologisi - Bopolu road have been estimated. The estimate of the quantities for each work has been made on the following basis:

a) Clearing and grubbing:

10 m in width on an average along the entire route

b) Common excavation:

to be made on the basis of horizontal alignment, corss section, road width and soil conditions

(For new road section, work quantity was estimated by electronic computer.)

c) Borrow excavation:

designed by side borrow system in principle, but at some sections, required borrow excavation has been estimated

- d) Side ditch excavation:
 estimated for excavation of unlined earth ditch
- e) Prime coat: twice at 0.7 1/m² each

f) Cross ditch (CD):

CD 0.8 x 0.8 $= 0.512 \text{ m}^3/\text{sec}$ 0.512 m³/sec CD 1.0 x 1.0 $= 0.80 \text{ m}^3/\text{sec}$

g) Pipe culvert:

h) Box culvert:

2.82 m³/sec 3.0 x 3.0 = 7.2 m³/sec 7.2 m³/sec 4.0 x 4.0 = 12.8 m³/sec 12.8 m³/sec (4x4) x 2 = 25.6 m³/sec

i) Short-span bridge:

Span 10 m : RC slab type Span 20-25 m : RC T beam type Abutment : H = 4m or H = 6m

The work quantities estimated for each item of work are summarized in Table 6-1. The quantities for work section between Kpakuta and Lofa river bridge (Section-I) and between Lofa river bridge and Bopolu (Section-II) are also tabulated in Table 6-2 and 6-3.

Work Item	Unit	Q'ty	Remarks
No.1 Site Clearance;			
- Clearing & Grubbing	ha	181.6	
No.2 Earth Works;			
- Common Excavation	m ³	1,506,200.0	
- Borrow Excavation	m ³	600,000.0	
- Side drain Excavation	m3	90,500.0	
No.3 Pavement Works;			
- Surface Treatment	m ³	254,200.0	
- Prime Coat 85 - 100	kg	978,800.0	
No.4 Drainage;			
- Cross ditch (0.80 x 0.80)	L•m	1,020.0	
- Cross ditch (1.00 x 1.00)	l.m	290.0	
- Corrugated Steel Pipe Ø 10 M	l·m	190.0	·····
- Inlet & Outlet for Pipe Ø 10 M	each	28	
- Corrugated Steel Pipe Ø 1.5 M	l·m	967.0	
- Inlet & Outlet for Pipe Ø 1.5 M	each	184	
- Corrugated Steel Pipe Ø 1.5M x 2	l•m	179.0	
- Inlet & Outlet for Pipe Ø1.5M x 2	each	36	
- Barrel of Box Culvert (3.0 x 3.0)	l·m.	101.0	
- Headwall of Box Culvert (3.0 x 3.0)	each	22	······································
- Barrel of Box Culvert (4.0 x 4.0)	L· m	74.0	
- Headwall of Box Culvert (4.0 x 4.0)	each	18	
- Barrel of Box Calvert (4.0 x 4.0) x 2	l·m	24.0	
- Headwall of Box Culvert (4.0x4.0)x2	each	6	
- Demolition of Wooden Culverts	L·m.	· · · · · · · · · · · · · · · · · · ·	
No.5 Bridges; Rip Rap			
- 10m R.C. Slab	each	7	
- 20m R.C. T-Beam	each	4	
- 25m R.C. T-Beam	each	5	
- 30m Box Girder	each	4	
- Piers	each	3	·
- Abutment H = 4m	each	16	
- Abutment H = 6m	each	18	,
- Demolition of Wooden Bridges	l·m.	373	

Table 6-1 Summary of Construction Quantities

Table 6-2 CONSTRUCTION QUANTITIES (1)

-

Section I (STA. 0 - STA. 77 + 900) From Kpakuta to Lofa River

•

WORK ITEM	Length (L·m)	Nos	Excavation			Reinforcing		Area	Material	
			(m3)	Class A	Class C	Steel (kg)	Gravel(m ³)	(ha)	(m ³ or kg)	Remark
Clearing & Grubbing						1		77.9		
Common Excavation		Sand (Jan 1977 - LEONAN (1994) - Carlos (1994)	646,100.0			·			· · · · · · · · · · · · · · · · · · ·	
Borrow Excavation			257,400.0							
Side drain Excavation			38,800.0							
Surface treatment (Laterite paved)									109,000.0m ³	
Prime Coat				-			j		419,900.0kg	
Cross ditch 0.80 x 0.80	384.0		345.6		587.5	9,984.0	153.6			
Cross ditch 1.00 x 1.00	162.0		178.2		291.6	4,698.0	64.8			
Corrugated Steel Pipe Ø1.0M	190.0					· · · · · · · · · · · · · · · · · · ·		· · ·	1	
Inlet & Outlet for Pipe Ø 1.0 M		28	117.6]	159.6	9,576.0	39.2			·
Corrugated Steel Pipe Ø 1.5 M	405.0	· · ·								
Inlet & Outlet for Pipe ø 1.5 M		72	388.8		576.0	34,560.0	136.8			
Corrugated Steel Pipe Ø 1.5M x 2	32.0									
Inlet & Outlet for Pipe Ø 1.5 M x 2		8	75.2		97.6	5,856.0	28.0			
Barrel of Box Culvert 3.0 x 3.0	8.0		22.4		39.2	3,136.0	6.4	·		
Headwall of Box Culvert 3.0 x 3.0		2	40.4		44.8	2,688.0	10.6			
Barrel of Box Culvert 4.0 x 4.0	33.0		132.0		257.4	20,592.0	33.0			
Headwall of Box Culvert 4.0 x 4.0		8	191.2		244.0	14,640.0	41.6			
Barrel of Box Culvert (4.0 x 4.0) x 2	8.0		62.7		108.3	8,666.0	15.0	· · · · · · · · · · · · · · · · · · ·		
Headwall of Box Culvert(4.0 x 4.0) x 2		2	93.8		105.0	6,300.0	19.0			
Demolition of Wooden Culverts										
10 m - R.C. Slab - Bridge	50.0	5		291.5		40,810.0				
20 m - R.C. T-Beam - Bridge	40.0	2	· · ·	256.0		40,960.0				
25 m - R.C. T-Beam - Bridge	75.0	3		553.8		88,608.0				
30 m - Box-girder - Bridge				· · · ·					<u>+</u>	
Abutment H = 4m		10	701.0		588.0	17,640.0	44.0			
Abutment H = 6m		10	2,696.0		651.0	52,080.0	69.0			
Piers							28.8	<u></u>		
Rip Rap										
Demolition of Wooden Bridges		······································								
Total			945,728.6	1,101.3	3,750.0	360,794.0	689.8	77.9	109,000 m ³ 419,900 kg	

Table 6-3 CONSTRUCTION QUANTITIES (II)

Section II (STA 77+900 - STA 181+600) From Lofa River to Bopolu

WORK ITEM	Length	Nos	Excavation (m ³)	Concrete(m ³) Class A Class C		Reinforcing Steel(m ³)	Sand & Gravel(m ³)	Area	Mater (m ³ o
·····	(l·m)		(m°)	Class A		Steer (m)	Graver(m ²)	(ha)	- (m° 0
Clearing & Grubbing								103.7	
Common Excavation			860,100.0	· · · · · ·					
Borrow Excavation			342,600.0			· · · · · · · · · · · · · · · · · · ·			
Side drain Excavation			51,700.0						
Surface treatment (Laterite paved)									145,
Prime Coat									558,
Cross ditch 0.8 x 0.80	637.0		573.3		974.6	16,562.0	254.8		
Cross ditch 1.00 x 1.00	129.0		141.9		232.2	3,741.0	51.6		
Corrugated Steel Pipe Ø 1.0 M	0.								
Inlet & Outlet for Pipe Ø 1.0 M									
Corrugated Steel Pipe Ø 1.5 M	562.0	·	·						
Inlet & Outlet for Pipe Ø 1.5 M		112	604.8		896.0	53,760.0	212.8		
Corrugated Steel Pipe Ø 1.5 M x 2	147.0								
Inlet & Outlet for Pipe ϕ 1.5 M x 2		28	263.2		341.6	20,496.0	98.0		
Barrel of Box Culvert 3.0 x 3.0	93.0		260.4		455.7	36,456.0	74.4		
Headwall of Box Culvert 3.0 x 3.0		20	404.0		448.0	26,880.0	106.0		
Barrel of Box Culvert 4.0 x 4.0	41.0		164.0		319.8	25,584.0	41.0		
Headwall of Box Culvert 4.0 x 4.0		10	239.0		305.0	18,300.0	52.0		
Barrel of Box Culvert(4.0 x 4.0) x 2	16.0		125.4		216.6	17,331.0	30.1		
Headwall of Box Culvert(4.0 x 4.0) x 2		4	187.6		210.0	12.600.0	38.0		
Demolition of Wooden Culverts									
10m - R.C. Slab - Bridge	20.0	2		116.6		16.324.0			
20m - R.C. T-Beam - Bridge	40.0	2		256.0		40.960.0			
25m - R.C. T-Beam - Bridge	50.0	2		369.2		59,072.0			
30m Box-girder Bridge	120.0	4		757.6		151,520.0			1
Abutment H = 4 m		6	420.6	· · · · · · · · · · · · · · · · · · ·	352.8	10,584.0	26.4		
Abutment $H = 6 \text{ m}$	· · · · · · · · · · · · · · · · · · ·	8	2,152.0		520.8	41,664.0	55.2		
Piers		3	384.0		567.0	45,360.0	28.8		
Rip Rap									
Demolition of Wooden Bridge			······						
Total			1,260,320.2	1,499.4	5,840.1	597,194.0	1,069.1	103.7	145, 558,

erial	Remarks
or kg)	Remarks
	······································
<u> </u>	
5,200.0m ³	
3,900.0kg	
·	,,, _,
<u>,</u>	
	· · · · · · · · · · · · · · · · · · ·
	······
 ,	
· · · · · · · · · · · · · · · · · · ·	
	· · · · · · · · · · · · · · · · · · ·
5,200 m ³	
3,900 kg	- 60
59	00

6.2 CONSTRUCTION PLAN

The construction of the new Kpaluta - Wologisi - Bopolu road will involve new road construction of 75 km and improvement of existing road for about 107 km. The work is provisionally divided into two sections: Section-I from Kpakuta to Lofa river bridge and Section-II from Lofa river bridge to Bopolu.

	Section I	Section II	Total
Length (km)	77.9	103.7	181.6
Earthwork (km)			
Improvement	57.270	49.565	106.835
New Road Const.	20.465	53.940	74.405
Total Length	77.735	103.505	181.240
Bridges (km)	0.165 (10)	0.195 (7)	0.360
Box Culvert (each)	6	17	23
Pipe Culvert (each)	36	70	106

TABLE 6-4 SUMMARY OF WORK FOR EACH SECTION

Section I : From Kpakuta to Lofa river (STA 0 - STA 77+900) Section II : From Lofa river to Bopolu (STA 77+900 - STA 181+600)

The earth work should be scheduled to be done during the dry seasons. It is provisionally planned to use buldozers of 21-ton class for the earth work of 180 m³ per day. On condition that workable days in dry season are 23 days a month, it will require 22 buldozers for 24 months to complete all the earth work of 2.2 million m³.

For the pavement work, it is scheduled to carry out the work in dry season and to prepare and store pavement materials of $254,000 \text{ m}^3$ in wet season.

For construction of the Lofa river bridge, it is required to construct, at the earliest, a pilot road for access to the bridge site. For construction of the RC box girder type bridge of 120 m in length, the construction period is estimated to be about 26 months. For smaller bridges, construction will take about 4.5 months per each site (2.5 months for substructure and 2 months for superstructure). To complete 16-bridge construction, it will take 27 months if bridge construction is carried out at three sites at one time.

For other structures, it is estimated to take the construction period as follows:

	Box	Pipe	Cross
	<u>Culvert</u>	<u>Culvert</u>	Ditch
Standard period of work per each structure	45 days	20 days	16 days
Total month required to complete all the works	18	21	21
	months	months	months

On the basis of the above construction plan, the construction schedule for the project has been worked out as illustrated in Fig. 6-1 to Fig. 6-3. Fig 6 - 1 IMPLEMENTATION SCHEDULE

																[
Item	1979	64		1980	· .		1981	Ę			1982		-	61	1983	
	1-3 4-6	7-9 10-12	1-3 4-6	5 7-9	10-12	1-3	4-6 7	1-9 10	10-12 1-3	3 4-6	⊢	7-9 10-12	00 1 1	4-6	7-9 10-12	0-12
Study		Z														
Location Survey & Soil Surveys																
b b b b b b b b b b b b b b b b b b b													·			
Tendering - Contract Award			<i>ی</i> ے			 				 						
Mobilization					Ø	N N										
Construction							\square									П
Opening									•							
					•											

; Rainy Season

- 63 -

Work Item	1980	1981	1982	1983
	1-3 4-6 7-9 10-	0-12 1-3 4-6 7-9 10-12	1-3 4-6 7-9 10-12	1-3 4-6 7-9 10-12
Mobilization & Preparatory Works				
Clearing & Grubbing				
Common Excavation				
Embankment				
Surface Treatment & Prime				
Pipe Culvert & Drainage				
Box Culvert				
Short Span Bridge				
Long Span Bridge				
		; Rainv Season		

Fig 6 - 2 WORK SCHEDULE (1)

- 64 -

Fig 6 - 3 WORK SCHEDULE (II)

Section II (STA77+900 - STA181+600) From Lota River to Bo

Work Item	1980		1981		1982		1983
	1-3 4-6 7	7-9 10-12 1-	3 4-6 7-9 10-1	2 1-3 4	4-6 7-9 10-12	2 1-3 4	-6 7-9 10-12
Mobilization & Preparatory Works							
Clearing & Grubbing							
Common Excavation							
Embænkmen t							
Surface treatment & Prime							
Pipe Culvert & Drainage							
Box Culvert							
Short Span Bridge							
Long Span Bridge							

; Rainy Season

6.3 CONSTRUCTION COST

On the basis of the work quantities estimated under Chapter 6.1 and the field survey of construction cost, the preliminary estimate of the construction cost of the project has been made as summarized in Table 6-5.

In total, the construction of the new Kpakuta - Wologisi -Bopolu road will cost about US\$25.7 million.

6.4 MAINTENANCE COST

Periodical maintenance and repair of the new road should be carried out, covering of pot-holes, cleaning of culverts and ditches, repair of slope erosion and maintenance of major structures. In addition, overlay of prime coat will have to be made once every 10 years. Such cost of maintenance and repair works is estimated as summarized hereunder.

	<u>Unit Rate</u>	Estimated Cost
Periodical maintenance	\$ 1,100/km	\$199,000/year
Overlay after 10 years	\$17,000/km	\$3,077,000

			Unit:	1000 US\$
			Estimated Cos	st
	Description /1	Local Cost	Foreign Cost	Total
1)	Site Clearance	217	509	726
2)	Earth Works	2,039	4,758	6,797
3)	Pavement Works	642	1,870	2,512
4)	Drainage	981	2,279	3,260
5)	Bridges	1,006	2,196	3,202
6)	Miscellaneous	58	518	576
	Sub-Total	4,943	12,130	17,073
Enç	jineering/Supervision	643	1,577	2,220
Phy	vsical Contingency	671	1,645	2,316
Pri	.ce Contingency	1,173	2,878	4,051
Tot	al Estimated Cost	7,430	18,230	25,660
<u> </u>				

-

TABLE 6-5 SUMMARY OF CONSTRUCTION COSTS

 $\underline{/1}$ Excluding cost of land acquisition

- 67 -

TABLE	6-6	BREAKDOWN	OF	CONSTRUCTION	COSTS

	Work Item	Unit of Q'ty	Q'ty	Unit Price	Total Cost
1)	Site Clearance:				
	- Clearing & Grubbing	ha		4,000	726,400
?)	Earth Works:				
	- Common Excavation	m3	1,506,200	2.50	3,765,500
	- Borrow Excavation	m3	600,000	4.60	2,760,000
	- Side Drain Excavation	<i>ш</i> 3	90,500	3.00	271,500
3)	Pavement Works:	2			
	- Surface Treatment	m_3	254,200	5.80	1,474,400
	- Prime Coat 85 - 100	kg	978,800	1.06	1,037,50
)	Drainage:				
	- Cross Ditch (0.80 x 0.80)	(.m	1,020	415.00	423,30
	- Cross Ditch (1.00 x 1.00)	/ .m	290	482.00	139,80
	- Corrugated Steel Pipe øl.0 M	% .m	190	265.00	50,40
	- Inlet Outlet for Pipe \$1.0 M	each	28	2,224.00	62,30
	- Corrugated Steel Pipe Ø1.5 M	(.m	967	480.00	464,20
	- Inlet & Outlet for Pipe Ø1.5 M	each	184	3,115.00	573,20
	- Corrugated Steel Pipe 2 x \$1.5M	X•w	179	960.00	171,80
	- Inlet & Outlet for Pipe 2 x \emptyset 1.5M	each	36	4,785.00	172,30
	- Barrel of Box Culvert (3.0 x 3.0)		101	2,365.00	237,80
	- Headwall "	each	22	8,761.00	192,70
	- Barrel of Box Culvert (4.0 x 4.0)	∕.m each	74 18	3,731.00 11,820.00	276,10 212,80
	- Headwall	€acn ∕.m	24	6,491.00	155,80
	- Barrel of Box Culvert 2 x (4.0-4.0) - Headwall	each	6	20,410.00	122,50
	- Demolition of Wooden Culvert	∠.m	90	60.00	5,40
}	Bridges:				
·	- Abutment H=4m	each	16	17,890.00	286,20
	- 10 m R.C. Clab	each	7	39,120.00	273,80
	- 20 m R.C. T-Beam	each	4	92,930.00	371,70
	- 25 m R.C. T-Beam	each	5	134,020.00	670,10
	- 30 m Box - Girder	each	4	172,730.00	690,90
	- Piers	each	3	97,510.00	292,50
	- Abutment H=6m	each	18	30,380.00	546,80
	- Rip Rap	m3	1,099	38.00	41,80
	- Demolition of Wooden Bridges	/ . m	373	75.00	28,00
)	Miscellancous:				
	- Traffic Signs, Roadmarking, km Post Guardrail, etc.	% . m	181,600	3.17	575,70
	Sub-Total				<u>17,073,20</u>
na	ineering/Supervision				2,220,00
-	sical Contingency (12 %)				2,316,00
_	ce Contingency (22 %)				4,051,00
			· · · · · · · · · · · · · · · · · · ·		25,660,00

ANNEX-I INVENTORY OF EXISTING ROADS

Ассит	Dist						Exis	ting	Road	Cond	ition	
Mile)	(km)	Place Name	Route	Investigation	Terrain	Road Width (m)	Pove ment Type	Surface Condition	Horizontal Alighment	Vertica: Alignment	Side Ditch	Remarks
22 5	36 0											
200	320											
17.5	280											
6 63	26 G	Kpakula	Kolahun —	<u>Voinjama</u>		~ 7 1 ~			Pod -	8		
155 150	24 8 24 0	Zeriba Rv		Wd - Br 35 - 15 2 Wd - Br 42 - 50 Wd - 6r 30 - 4 2		_6 C-6 Z_			Guod For P	Bod	Bod	
358	2173	Zewodamai	C-P# 0.58.	Wd 8i _35-52		·					Fair	
	200 19.88	Yaya Creek		Wd-Br 27-60 Matovemol		_46~57		00 90	Good		Fair	
10	175					i			Bod	6 op d		
IG C	16.0				Roll	62	Surfoțing			Bod	 	
		Zioyozu		Zisyszu			4) 22		Bad			
763	15.0	Nomaja <u>Creek</u>		Wo Br 3C 6C		_58~75_	จะเวล า อา			Good	Bad	
50	8 0 7 85		<u>-</u>	40-42 KEalenai				Foir	Sood	-1 -1		
	7.85		Ktoloirei	र्डनॅंट 2 जन्म न्त्र		_7 /- 8 ?			Bad	Bod Fa.		
25	40			Wa-Br 38-618	4						Bog	
		Zioki Creek		W3-87 34-84		_6(~79_		·····	Good			
				Wd Br 46-37	<u>с</u> . Ц			Good	ŏ	pord O		
00	00	Wologist Comp		LWologisi								

ROAD INVENTORY-FEEDER ROAD

ROAD INVENTORY-FEEDER ROAD

Wologisi Camp~Gondolahun~Yaselehun

Accur	n Dist	[Ex	isting	Road	l Condi	tion	[
(Mile)	(Km)	Place Name	Route Investigation	Terroin	Road Width (m)	Pavement	Surface Condition	Horiz on to! Align ment	Vertica I Alignment	Side Ditch	Remarks
- 22.5	36.0-				30						
- 20.0	350		<u>Хб-84</u> <u>46-84</u> <u>47-82</u> <u>47-82</u> <u>47-82</u> <u>47-82</u> <u>47-82</u> <u>47-82</u> <u>47-82</u>		<u>50~5.9</u>	Surfeding	Very Bad		Bad L Bad		
17.72 17.54 17.5	28.35 28.07 28.0	Gondolahun Wider Rv.	C-PDx1/09 ~~ 33-130			Not	Fair	Gabd	Fair Fair Boo		
15.0	1		с-Р(ст)#0.9~~ -690 Wd-Br 5.1-К.В		47.84		80d		Good Jie Bod Jie Jie Jie Jie Jie Jie Jie Jie Jie Jie		
12.5	ł		C-R(0)#09 -970 C-R(0)#09 20 -7.10 C-R(0)#09 -7.10 C-P(0)#09 -610 C-P#09-620 	Rolling	- <u>-</u> ,	icing	-19	- 900			
11.42		Maso Creek Magusa Ry) (Wd-Br 2.7-171 5.60		- <u>37</u>	Laterite Surracing	Rai	-+{	ia Lu Bad		
	12.0 11.47 P	oto Sawmiil	Mauntain		37-55			το Θ		· · · · · · · · · · · · · · · · · · ·	
5 0	80-		WT-Br 4.0-9.7	Flat			Bod	101	Fair		
280-4	630 148 10			Rolling			Good Fair	0000	Bad Good		
73 1	17	ilogi si Camp	Wd-Br 42-79 Form Road	F 101	5.4265		Good Fair		Good		
		ogiar cump	Xpokulo								

ROAD INVENTORY-PRIVATE ROAD

Bopolu~T.F.C ~ Kpelle National Forest

(1)

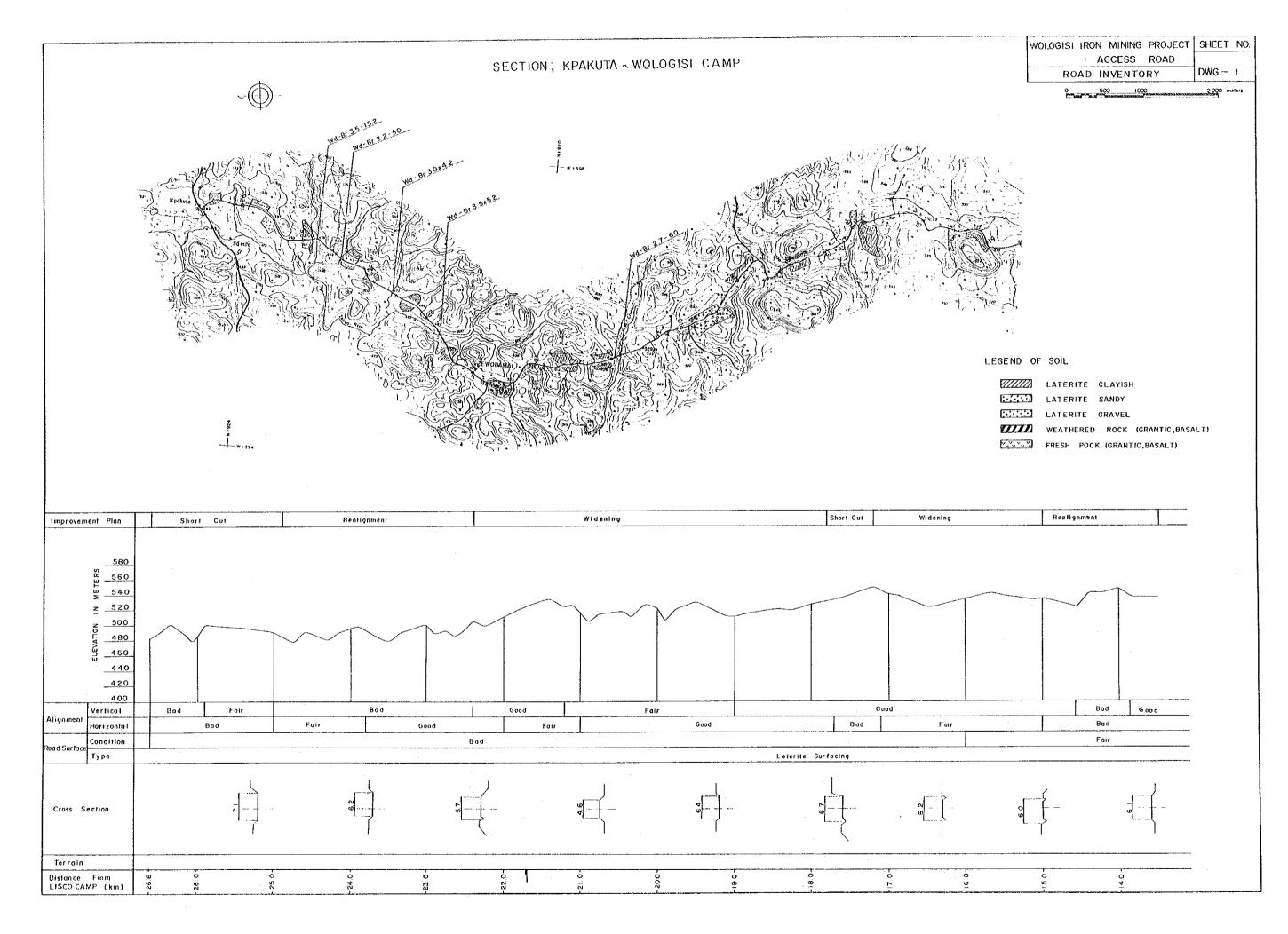
Accu	n Dieł	· · · · · ·		<u> </u>	1	E		Daci		() 	
ACCIN	1,0151					EXI	sting	r - 1		T	
(Mile)	(Km)	Place Name	Route Investigation	Terroin	Road Width (m)	Pavement Type	Sur face Condition	Horizantal Alignment	Vertical Alignment	Side Ditch	Remarks
- 22 51	36.0-	-Baisu	Boto		15.0	8		poo	Good		
- 20.0-	32.0		Wd-Br 103-4 Wd-Br 95-40 Wd-Br			te Surfacing	Good	Fdir Bad Fair Good	Fbir Good pp		
- 18.12-	29.1	Gokiohn	W1-Br 05-40 W3-Br 05-40 W3-Br 03-53 W3-Br W3	٤	- <u>- - - - - - - - - -</u>	Laterit			Poos Foir Poos		
-17 5-	28.0	L	W8-Cul		7.3			Foir	0 0 0 0 0 0	Good	
- 15.0-	24.0		W8-Cul W4-Cul W4-Cul-100 W4-Cul-100 W4-Cul-100 W4-Cul-100		<u>85.107</u>		Fair		Good		
-125-	20.0-		Wd-Oul-8.8	<u>0</u>	<u>8</u> 5~9 <u>8</u>		Gaod		Fair Go		
- 10.0			Wd-Cut Wd-Br 76-50 Wd-Cut Wd-Gr Wd-Cut Wd-Gr Wd-Cut Wd-Gr 77-100	5			Good Fair	Bod		8	
10.0	16.0-	ŧ	Wd Cu-li 5 Wd Cu-li 5 Wd-Cu-li 5 Wd-Br W	-	76~1 <u>30</u>	Surfacing	8 8 9			Bod Fat	
	1245	Gbange	W1 Gr 15 W4 Gr 87 31 W8 Gr 10 W4 Gr 87 31 W8 Gr 10 W4 Gr 87 31 10.0 - 1.5 W4 Gr 87 31 90 - 1.5 W4 Gr 87 31 W4 Cul 2 W4 Gr 87 31	8 <u>0.</u>	92	Laterite		Good	Good		
50	8.0-	- f	Nd-Cul 95-15	z	1		Fo.	Fair	Fair Fair	1011	
25	40	I	Wd-Cut 100-20				Fair Good	ar Good			
	0.7		Wi-8 85-20 93-54 Wai-8r 93-30 93-30 Wi-8r 93-30		5.0		Good	Good	G&d	19 89 9 89	
1		Dopolu M	Bopotu Village							Fair	
I	ļ					1					

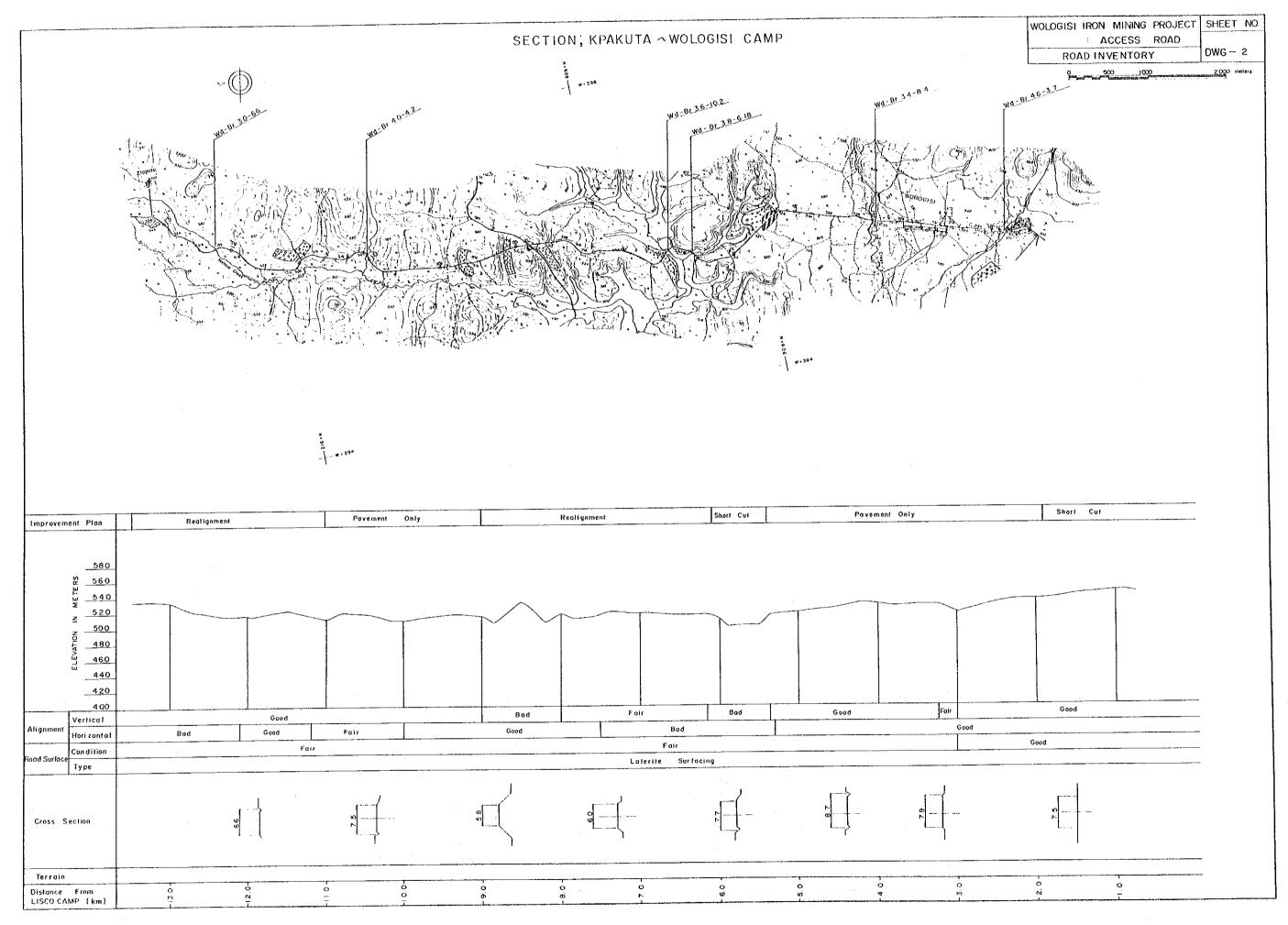
ROAD INVENTORY - PRIVATE ROAD Bopolu- T.F.C ~ Kpelle National Forest

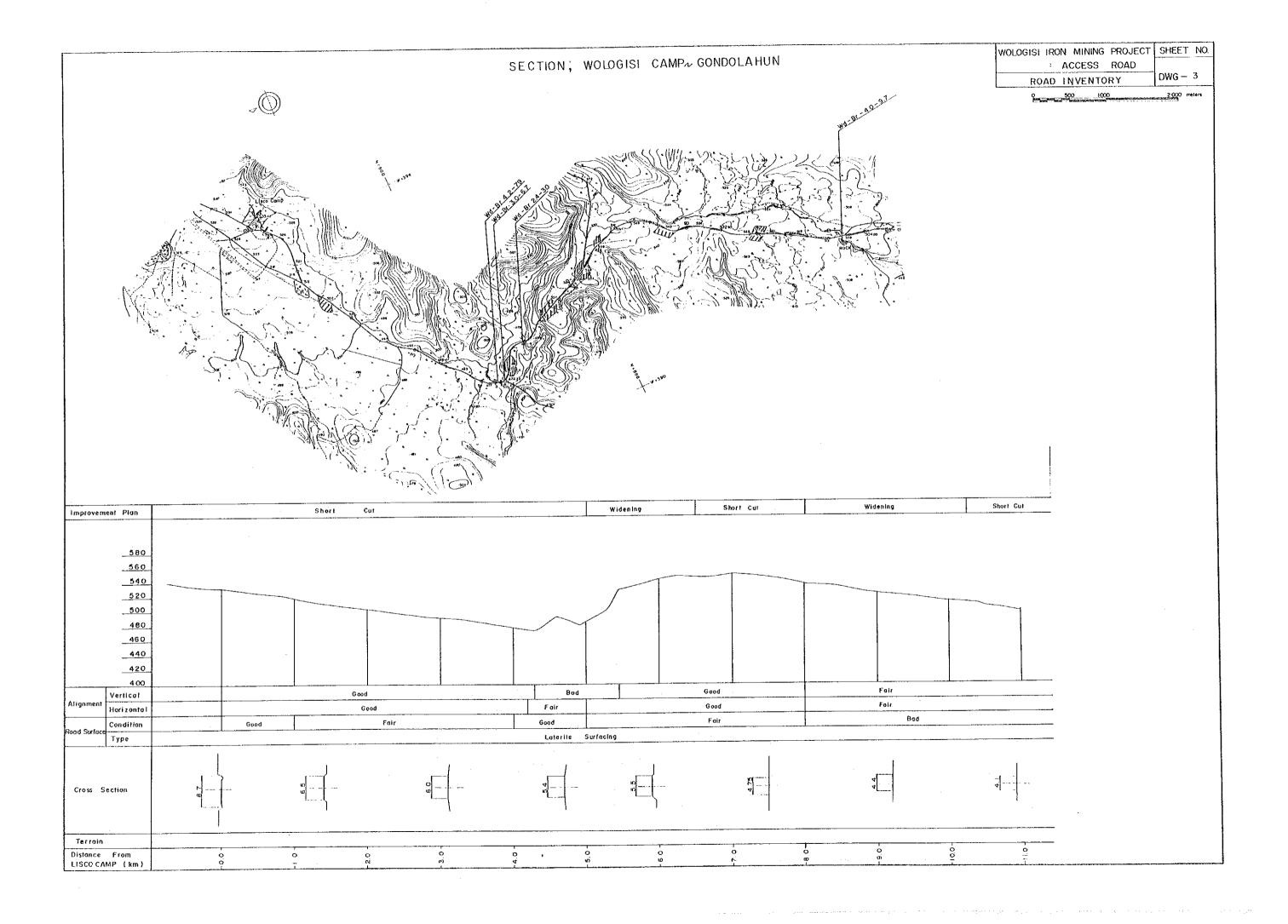
(2)

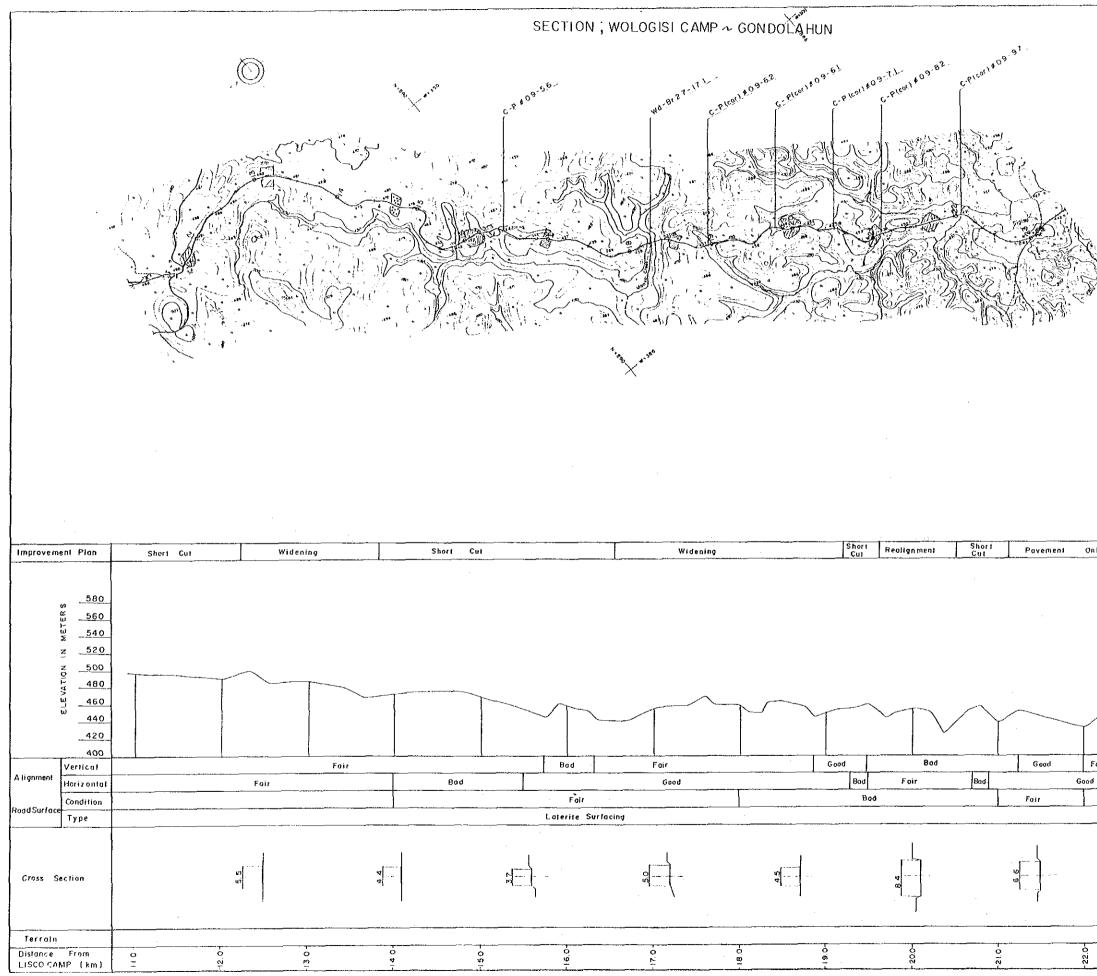
-

r			1	. 	.C ~ Kpelle Not	·····			(2)	····
Accum	n Dist	4				Exist	· · · · · · · · · · · · · · · · · · ·	id Condit	ion	
(Mile)	(Km)	Place Name	Route Investigation	Terrain	Road Width (m)	Pavement Type	Surface Condition Horizontal	Alignment Vertica i Alignment	Side Ditch	Remarks
450	72 0				88-100				Fair	
-425	68.0			Mountainous	1		Fai Ga Ba Fai	xd Bad yd Bad yd Bad yd Da ad Sy		
-40.0-	640-	-		Maunto	1 <u>85~100</u>		801	Bud Fair	B B B	
-37.5	e0.0-						Geo			
-35.0 -34.63 34.25 -34.19 	55.4 54.8 54.7 54.5	Sowmill Butula Creek Vilage	We-Br 57-21.6			sing	Fair 89 Feir	Bod		
-33 44 -32.5	1	Gengbo Comp	Wd-Br Wd-Br Wd-Br Wd-Br B3-110		93,98	Laterite Surfacing		POB Good Po B	Fair	
30.0	480		Wd-Br 113-70 Wd-Cul #06- 	Rolling		-	foir e	Foir Bud ©		
28.81 28.15 28.63 28.63		Malu Rv. Henry Town	Comp				Poor Poor	7	Good	
2544 4	- 1		Wd-Br W3-Br 105-45 W+5.5 ^m	2	92~106		6000	Bod Fair	Bad	
25 0 - 4 23 94 - 3			W-CU #05_~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ling Mauntaindus	80*120		Fair	fair	Foir	
2 5 3	6.0	Baisu		<u>7</u>			5	Good		

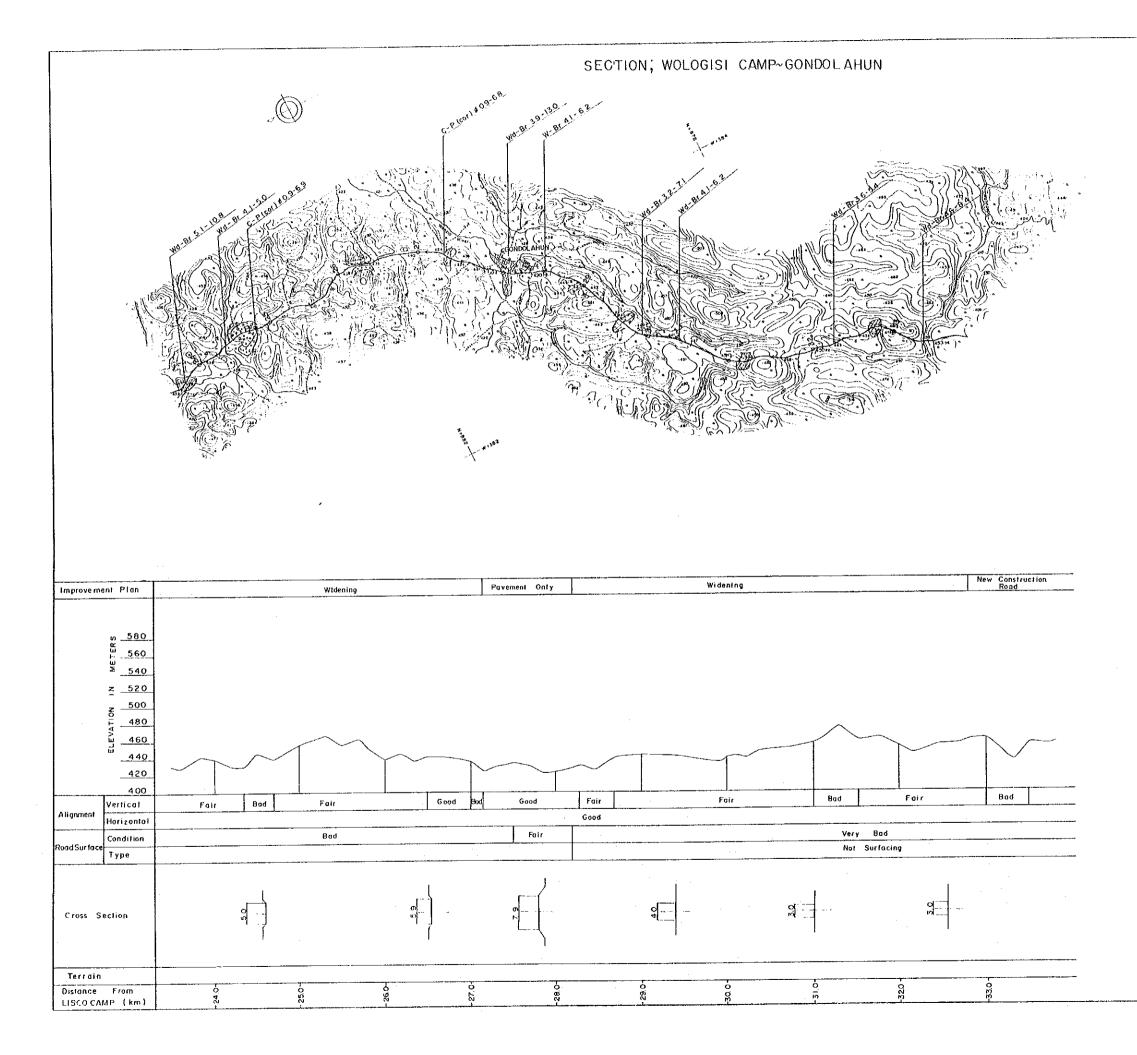

•

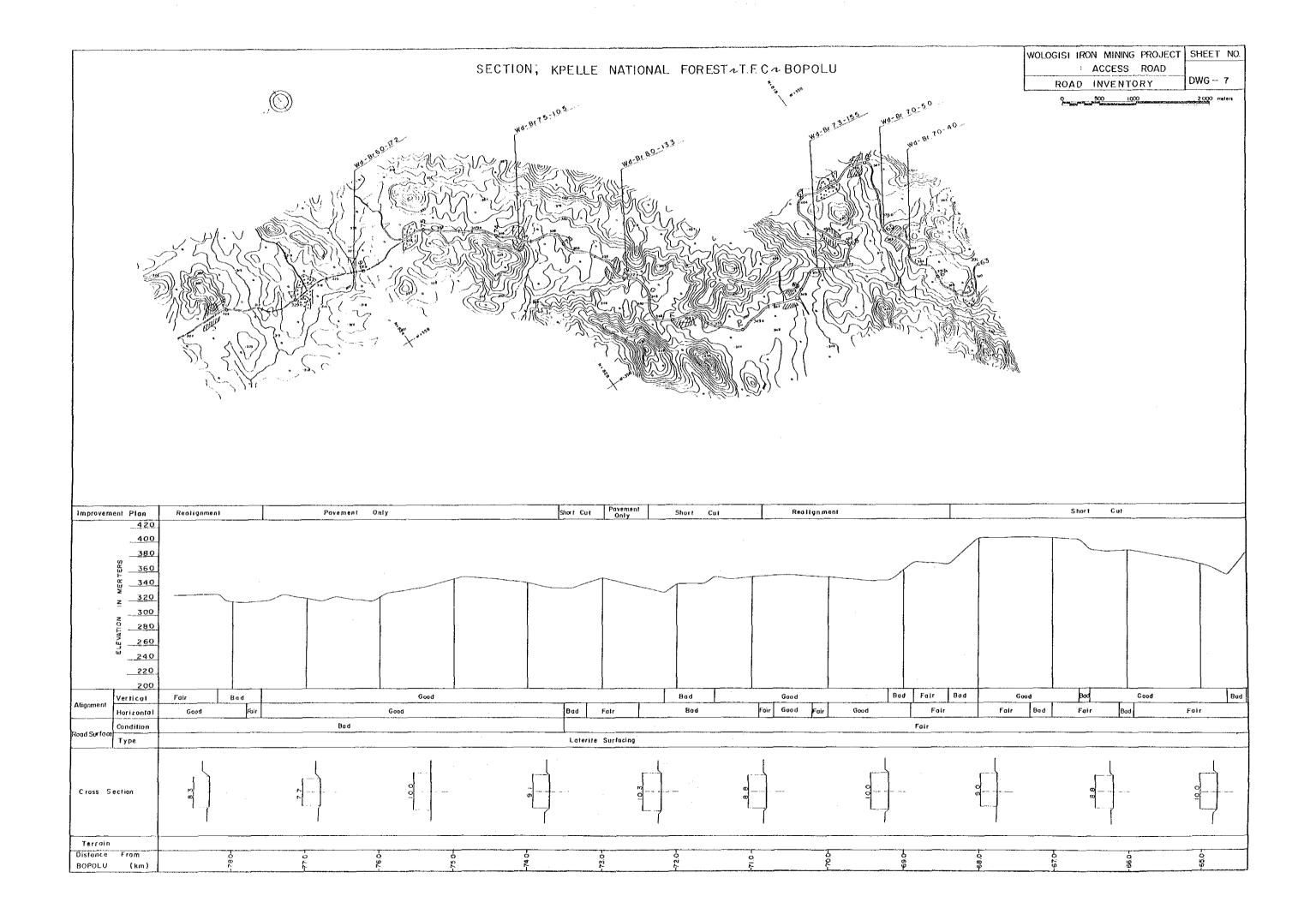

ROAD INVENTORY - PRIVATE ROAD

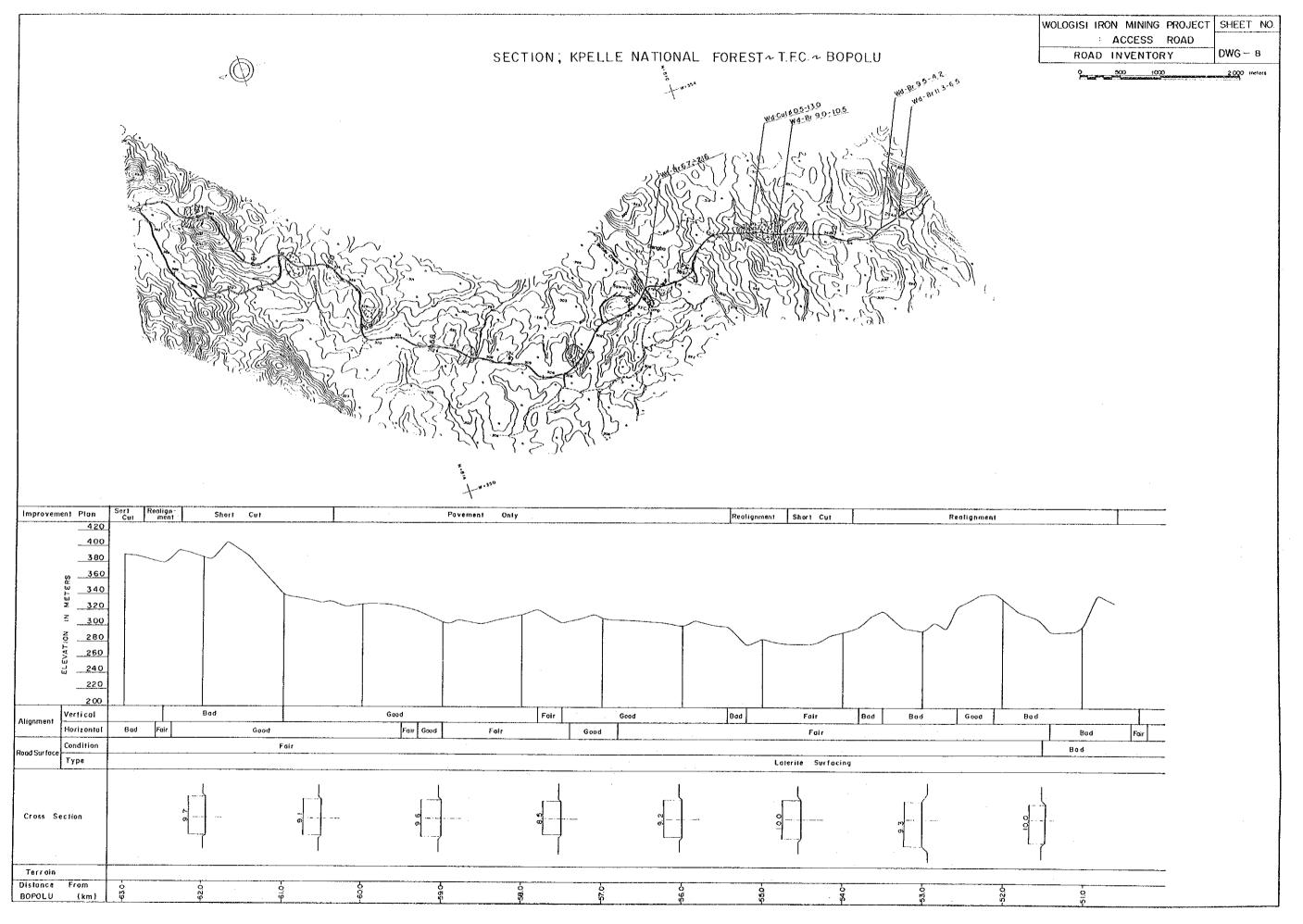

Bopolu ~ T. F. C ~ Kpelle National Forest (3) Existing Road Condition

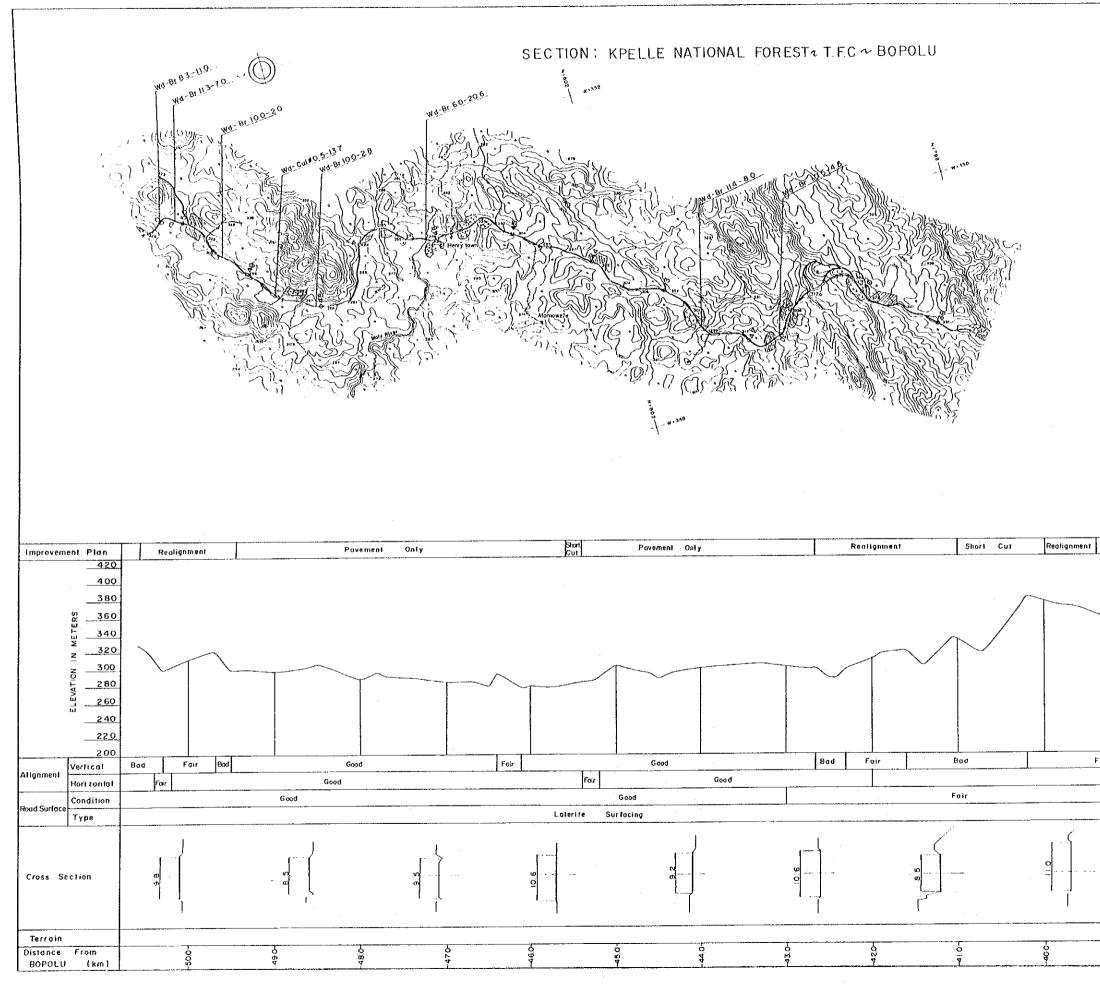

. .

Accum	Dist		1			Γ		1			Condi		
(Mile)		Place	Name	Route II	nvestigation	Terrain	Road Width (m)	Pavement Type			Verticat Alignment		Remarks
- 67.5-	1080-					- - -							-
- 65 0-	1040-					149 particip 149 base							
- 62.5-	100.0-					:							
- 600	96.0-											•	
57.5	92.0-												
- 55.0-	88.0-												
52.5	840						7.0~8.2						
500	80.0			Cot 08				6		<u></u>	Fair God Sod		
47.5 47.06			 		W4-Br 60-172 Clearing drd Grubhing W1-09 Grubhing W1-09 Grubhing W1-81 7.5-105	ous Rolling	<u>9.2+100</u>	Laterite Surfacing	8ad	Good 12, Good	2 3ad 9000	Bad	
45.0-	72.0			<u> </u>	Wd-Br BO-133	<u>Mauntai rous</u>			- 1	3aa Folr Bod	0 894		

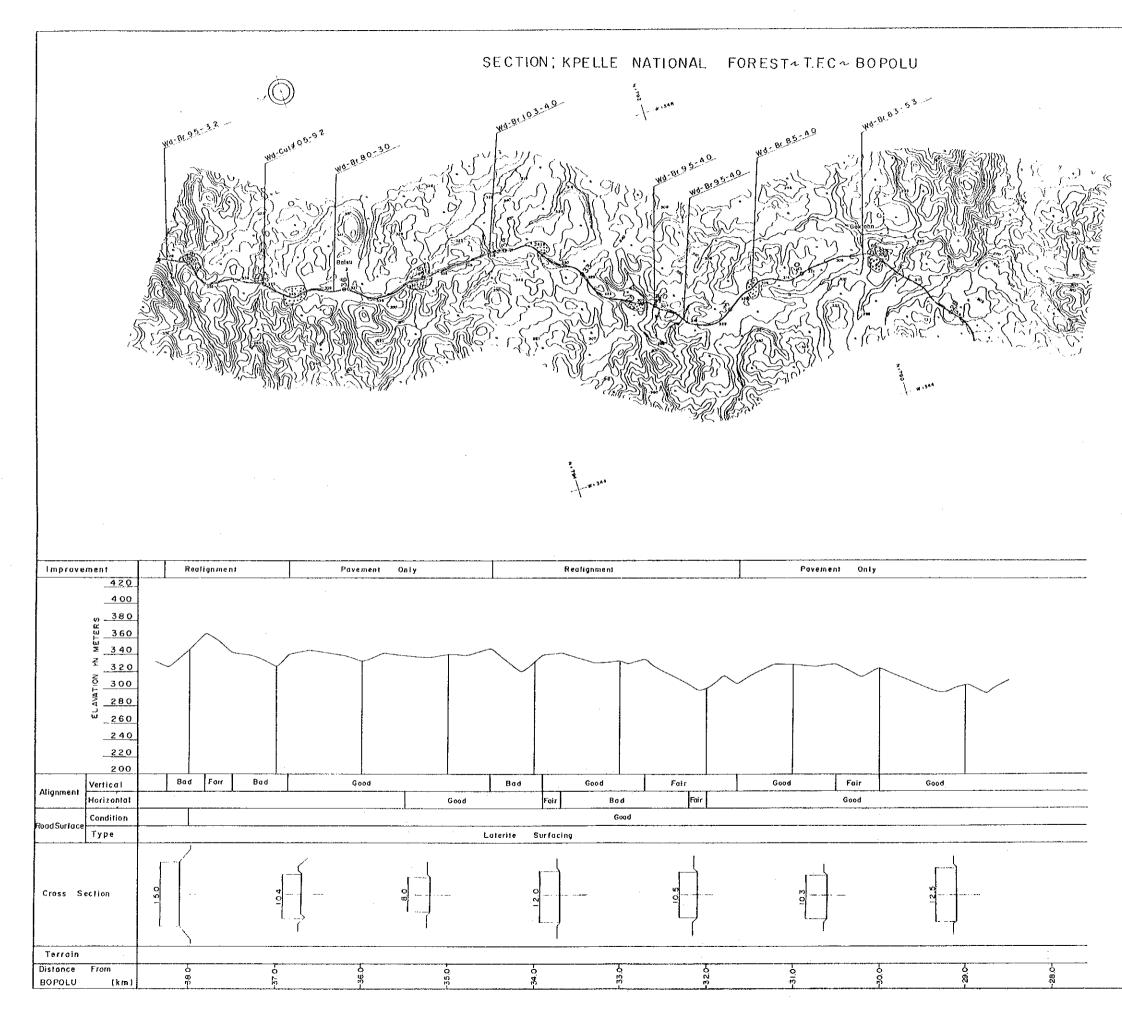





WOL		ON MINING ACCESS	T SHEET NO.
		INVENTO	 DWG - 4
	0 Portagenera	500 11	2000 melers
	Widen	sing	
Go	xad Fai	τ	
	4 7		
	-23.0-		



Constraint of the second	50	0 10	0	2000 meters
ROA	D IN	VENTOR	₹Y	DWG - 5
		CCESS		
WOLOGISI	IRON	MINING	PROJECT	SHEET NO.


	SECTION; KPELL NATIONAL FORESTAT. F.C & BOPOLU	WOLOGISI IRON MINING PROJEC : ACCESS ROAD ROAD INVENTORY	CT SHEET
-			
Improvement Plan	Pavement Only Sha	17 Cut	
Improvement Plan 420 400		11 Cut	
<u>420</u> <u>400</u> <u>9</u> <u>380</u>		rt Cut	
420 400 2 380 ₩ 360 ₩ 360 ₩ 340 2 320		rt Cut	
420 400 2380 380 380 360 340 2320 2320 2300 2300 2300		11 Cut	
420 400 2 380 2 380 2 320 2 320 2 320 2 300 2 280 2 260 2 40		11 Cut	
420 400 380 380 380 360 340 2 320 2300 280 280 260 240 220		ft Cut	
420 400 2380 380 380 380 380 380 380 380	Grad Bod	Fair	
Alignment Vertical Horizontal	Grad Bod	Fair	
Alignment Vertical Horizontal	Grad Bad Fai	Fair	
Alignment Horizontal Condition	Grad Bad Fai	Fair	
420 400 380 2300 240 220 200 <td< td=""><td>Grad Bad Fai</td><td>Fair</td><td></td></td<>	Grad Bad Fai	Fair	

		ACCESS	 - DWG - 9	
	(magazine	300 10	2 000 mule	< 1
Short	Cut			
ł		<u> </u>		
Foir				
	5 5 7			

	ROAD	INVENTO	RY	DWG -	- 10
L <u></u>	0	500 100)	2000	meters